NASA Astrophysics Data System (ADS)
Roth, T. R.; Nolin, A. W.
2015-12-01
Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.
Williams, Jennifer M.; Brown, Donald J.; Wood, Petra B.
2017-01-01
Mountaintop removal mining is a large-scale surface mining technique that removes entire floral and faunal communities, along with soil horizons located above coal seams. In West Virginia, the majority of this mining occurs on forested mountaintops. However, after mining ceases the land is typically reclaimed to grasslands and shrublands, resulting in novel ecosystems. In this study, we examined responses of herpetofauna to these novel ecosystems 10–28 y postreclamation. We quantified differences in species-specific habitat associations, (sub)order-level abundances, and habitat characteristics in four habitat types: reclaimed grassland, reclaimed shrubland, forest fragments in mined areas, and nonmined intact forest. Habitat type accounted for 33.2% of the variation in species-specific captures. With few exceptions, forest specialists were associated with intact forest and fragmented forest sites, while habitat generalists were either associated with grassland and shrubland sites or were distributed among all habitat types. At the (sub)order level, salamander (Order Urodela) captures were highest at fragmented and intact forest sites, frog and toad (Order Anura) captures were lowest at intact forest sites, and snake (Suborder Serpentes) captures were highest at shrubland sites. Habitat type was a strong predictor for estimated total abundance of urodeles, but not for anurans or snakes. Tree stem densities in grasslands differed from the other three habitat types, and large trees (>38 cm diameter at breast height) were only present at forest sites. Overstory vegetation cover was greater in forested than in reclaimed habitat types. Ground cover in reclaimed grasslands was distinct from forest treatments with generally less woody debris and litter cover and more vegetative cover. It is important to consider the distributions of habitat specialists of conservation concern when delineating potential mountaintop mine sites, as these sites will likely contain unsuitable habitat for forest specialists for decades or centuries when reclaimed to grassland or shrubland.
Information system of forest growth and productivity by site quality type and elements of forest
NASA Astrophysics Data System (ADS)
Khlyustov, V.
2012-04-01
Information system of forest growth and productivity by site quality type and elements of forest V.K. Khlustov Head of the Forestry Department of Russian State Agrarian University named after K.A.Timiryazev doctor of agricultural sciences, professor The efficiency of forest management can be improved substantially by development and introduction of principally new models of forest growth and productivity dynamics based on regionalized site specific parameters. Therefore an innovative information system was developed. It describes the current state and gives a forecast for forest stand parameters: growth, structure, commercial and biological productivity depend on type of site quality. In contrast to existing yield tables, the new system has environmental basis: site quality type. The information system contains set of multivariate statistical models and can work at the level of individual trees or at the stand level. The system provides a graphical visualization, as well as export of the emulation results. The System is able to calculate detailed description of any forest stand based on five initial indicators: site quality type, site index, stocking, composition, and tree age by elements of the forest. The results of the model run are following parameters: average diameter and height, top height, number of trees, basal area, growing stock (total, commercial with distribution by size, firewood and residuals), live biomass (stem, bark, branches, foliage). The system also provides the distribution of mentioned above forest stand parameters by tree diameter classes. To predict the future forest stand dynamics the system require in addition the time slot only. Full set of forest parameters mention above will be provided by the System. The most conservative initial parameters (site quality type and site index) can be kept in the form of geo referenced polygons. In this case the system would need only 3 dynamic initial parameters (stocking, composition and age) to simulate forest parameters and their dynamics. The system can substitute traditional processing of forest inventory field data and provide users with detailed information on the current state of forest and give a prediction. Implementation of the proposed system in combination with high resolution remote sensing is able to increase significantly the quality of forest inventory and at the same time reduce the costs. The system is a contribution to site oriented forest management. The System is registered in the Russian State Register of Computer Programs 12.07.2011, No 2011615418.
Fauna using nest boxes in four timber types in eastern Texas
Richard N. Conner; Daniel Saenz; D. Craig Rudolph
1995-01-01
Occupancy of 240 nest boxes in pure pine, pine-hardwood, upland hardwood, and bottomland hardwood forests (60 boxes in each forest type) were monitored for six years on the Stephen F. Austin Experimental Forest, Nacogdoches County in eastern Texas. Three boxes were placed at twenty sites in each forest type. Initially, each site had a box with 3.2, 4.7, or 5.7 cm...
Hewlette S. Crawford
1976-01-01
The impacts of forest cutting upon understory vegetation were evaluated for Ozark oak-hickory and Appalachian oak-pine stands. These findings were related to similar information from other eastern forest types. Production of understory vegetation is related to stand type, stand structure, stand disturbance, and site. Stand type, structure, and site operate together to...
Classification of forest land attributes using multi-source remotely sensed data
NASA Astrophysics Data System (ADS)
Pippuri, Inka; Suvanto, Aki; Maltamo, Matti; Korhonen, Kari T.; Pitkänen, Juho; Packalen, Petteri
2016-02-01
The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008-2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland.
Streby, Henry M.; Andersen, David E.
2013-01-01
We used radio telemetry to monitor movements, cover-type selection, and survival for fledglings of the mature-forest nesting Ovenbird (Seiurus aurocapilla) at two managed forest sites in north-central Minnesota. Both sites contained forested wetlands, regenerating clearcut stands of various ages, and logging roads, but differed in mature forest composition; one deciduous with open understory, and the other mixed coniferous-deciduous with dense understory. We used compositional analysis, modified to incorporate age-specific limitations in fledgling movements, to assess cover-type selection by fledglings throughout the dependent (on adult care) post-fledging period. Compared to those that were depredated, fledglings from nests in deciduous forest that survived the early post-fledging period had more older (sapling-dominated) clearcut available, directed movements toward older clearcuts and forested wetlands, and used older clearcuts more than other cover types relative to availability. Fledglings that were depredated had more young (shrub-dominated) clearcut and unpaved logging road available, and used mature forest and roads more than expected based on availability. For birds from nests in mixed mature forest with dense understory, movements and cover-type selection were similar between fledglings that survived and those that were depredated. However, fledglings that were depredated at that site also had more young clearcut available than fledglings that survived. We conclude that Ovenbird fledgling survival is influenced by distance of their nest to various non-nesting cover types, and by the subsequent selection among those cover types, but that the influence of non-nesting cover types varies depending on the availability of dense understory vegetation in mature forest.
Ballantyne, Mark; Pickering, Catherine Marina
2015-08-15
Recreational trails are one of the most common types of infrastructure used for nature-based activities such as hiking and mountain biking worldwide. Depending on their design, location, construction, maintenance and use, these trails differ in their environmental impacts. There are few studies, however, comparing the impacts of different trail types including between formal management-created trails and informal visitor-created trails. Although both types of trails can be found in remote natural areas, dense networks of them often occur in forests close to cities where they experience intense visitor use. To assess the relative impacts of different recreational trails in urban forests, we compared the condition of the trail surface, loss of forest strata and changes in tree structure caused by seven types of trails (total network 46.1 km) traversing 17 remnants of an endangered urban forest in Australia. After mapping and classifying all trails, we assessed their impact on the forest condition at 125 sites (15 sites per trail type, plus 15 control sites within undisturbed forest). On the trail sites, the condition of the trail surface, distance from the trail edge to four forest strata (litter, understory, midstorey and tree cover) and structure of the tree-line were assessed. Informal trails generally had poorer surface conditions and were poorly-designed and located. Per site, formal and informal trails resulted in similar loss of forest strata, with wider trails resulting in greater loss of forest. Because there were more informal trails, however, they accounted for the greatest cumulative forest loss. Structural impacts varied, with the widest informal trails and all formal hardened trails resulting in similar reductions in canopy cover and tree density but an increase in saplings. These structural impacts are likely a function of the unregulated and intense use of large informal trails, and disturbance from the construction and maintenance of formal trails. The results demonstrate that different types of recreational trails vary in the type and range of impacts they cause to forests. They highlight the importance of careful consideration towards management options when dealing with trail networks especially in areas of high conservation value. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carbon and nitrogen distribution in oak-hickory forests distributed along a productivity gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reber, R.T.; Kaczmarek, D.J.; Pope, P.E.
1993-12-31
Biomass, carbon and nitrogen pools were determined for oak-hickory forests of varying productivity. Little information of this type is available for the central hardwood region. Six oak-hickory dominated forests were chosen to represent a range in potential site productivity as influenced by soil type, amount of recyclable nutrients and available water. Biomass, carbon and nitrogen storage were determined for the following components: above ground standing biomass, fine root biomass, forest floor organic layers and litterfall. As site sequestered at each site was dependent more on the amount of living biomass at each site Litterfall, to some extent, increased with increasingmore » site productivity. As potential site productivity decreased, total fine root biomass increased. The data suggest that as site quality decreased fine root production and turnover may become as important in nutrient cycling as annual litterfall.« less
36 CFR 228.64 - Community sites and common-use areas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Community sites and common-use areas. 228.64 Section 228.64 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.64 Community sites and...
36 CFR 228.64 - Community sites and common-use areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Community sites and common-use areas. 228.64 Section 228.64 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.64 Community sites and...
36 CFR 228.64 - Community sites and common-use areas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Community sites and common-use areas. 228.64 Section 228.64 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.64 Community sites and...
36 CFR 228.64 - Community sites and common-use areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Community sites and common-use areas. 228.64 Section 228.64 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.64 Community sites and...
36 CFR 228.64 - Community sites and common-use areas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Community sites and common-use areas. 228.64 Section 228.64 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.64 Community sites and...
CO2 flux studies of different hemiboreal forest ecosystems
NASA Astrophysics Data System (ADS)
Krasnova, Alisa; Krasnov, Dmitrii; Noe, Steffen M.; Uri, Veiko; Mander, Ülo; Niinemets, Ülo; Soosaar, Kaido
2017-04-01
Hemiboreal zone is a transition between boreal and temperate zones characterized by the combination of climatic and edaphic conditions inherent in both zones. Hemiboreal forests are typically presented by mixed forests types with different ratios of deciduous and conifer tree species. Dominating tree species composition affects the functioning of forest ecosystem and its influence on biogeochemical cycles. We present the result of ecosystem scale CO2 eddy-covariance fluxes research conducted in 4 ecosystems (3 forests sites and 1 clear-cut area) of hemiboreal zone in Estonia. All 4 sites were developing under similar climatic conditions, but different forest management practices resulted in different composition of dominating tree species: pine forest with spruce trees as a second layer (Soontaga site); spruce/birch forest with single alder trees (Liispõllu site); forest presented by sectors of pine, spruce, birch and clearcut areas (SMEAR Estonia site); 5-years old clearcut area (Kõnnu site).
NASA Technical Reports Server (NTRS)
Anderson, J. E.; Kalcic, M. T. (Principal Investigator)
1982-01-01
Digital processed aircraft-acquired thematic mapping simulator (TMS) data collected during the winter season over a forested site in southern Mississippi are presented to investigate the utility of TMS data for use in forest inventories and monitoring. Analyses indicated that TMS data are capable of delineating the mixed forest land cover type to an accuracy of 92.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct, respectively. The figures reflect the performance for products produced using the best subset of channels for each forest cover type. It was found that the choice of channels (subsets) has a significant effect on the accuracy of classification produced, and that the same channels are not the most desirable for all three forest types studied. Both supervised and unsupervised spectral signature development techniques are evaluated; the unsupervised methods proved unacceptable for the three forest types considered.
Forest habitat types of central Idaho
Robert Steele; Robert D. Pfister; Russell A. Ryker; Jay A. Kittams
1981-01-01
A land-classification system based upon potential natural vegetation is presented for the forests of central Idaho. It is based on reconnaissance sampling of about 800 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. A total of eight climax series, 64 habitat types, and 55 additional phases of habitat types...
Forest habitat types of eastern Idaho-western Wyoming
Robert Steele; Stephen V. Cooper; David M. Ondov; David W. Roberts; Robert D. Pfister
1983-01-01
A land-classification system based upon potential natural vegetation is presented for the forests of central Idaho. It is based on reconnaissance sampling of about 980 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. A total of six climax series, 58 habitat types, and 24 additional phases of habitat types are...
Latent heat exchange in the boreal and arctic biomes.
Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank
2014-11-01
In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling. © 2014 John Wiley & Sons Ltd.
Kling, Lindsey J.; Juliano, Steven A.
2008-01-01
Discarded tires are an important habitat for larvae of multiple species of disease-transmitting mosquitoes. Although tire locations likely influence composition and abundance of vectors, there are few data linking vector populations to the characteristics of the aquatic tire environment. We sampled water-filled tires at three times at a forested and an unforested site to evaluate how differences in detritus inputs or nutrients in these two macrohabitats may be associated with composition of mosquito-dominated invertebrate communities. The forested site had significantly greater inputs of leaves, twigs, seeds, and fine detritus at the first sampling, but subsequent sampling indicated no differences in inputs of any detritus type. Total phosphorous levels were significantly greater in the forested site, but there was no difference in total nitrogen or total ion concentrations during any sampling. Chlorophyll a levels were not different between sites, even though light levels were greater and canopy cover was less at the unforested site. Culex restuans dominated at the unforested site, and Ochlerotatus triseriatus, Anopheles barberi, and Orthopodomyia signifera were found primarily in the forest. Tires at the forested site had significantly more species but not more individuals than at the unforested site. Leaf amount was a good predictor of densities of Oc. triseriatus and overall abundance of mosquitoes in the forest, whereas the amount of seeds was a good predictor of overall invertebrate richness and of Oc. triseriatus numbers in the unforested site. Differences in mosquito assemblage composition between forested and unforested locations may be explained by greater inputs of plant-based detritus and some nutrients, but other factors, such as macrohabitat or host preferences of adult mosquitoes, also may be important. PMID:18260510
Multicentury fire and forest histories at 19 sites in Utah and eastern Nevada
Emily K. Heyerdahl; Peter M. Brown; Stanley G. Kitchen; Marc H. Weber
2011-01-01
Our objective is to provide site-specific fire and forest histories from Utah and eastern Nevada that can be used for land management or additional research. We systematically sampled fire scars and tree-recruitment dates across broad gradients in elevation and forest type at 13 sites in Utah and 1 in eastern Nevada to characterize spatial and temporal variation in...
Abell-Davis, Sandra E; Gadek, Paul A; Pearce, Ceridwen A; Congdon, Bradley C
2012-01-01
Across three tropical Australian sclerophyll forest types, site-specific environmental variables could explain the distribution of both quantity (abundance and biomass) and richness (genus and species) of hypogeous fungi sporocarps. Quantity was significantly higher in the Allocasuarina forest sites that had high soil nitrogen but low phosphorous. Three genera of hypogeous fungi were found exclusively in Allocasuarina forest sites including Gummiglobus, Labyrinthomyces and Octaviania, as were some species of Castoreum, Chondrogaster, Endogone, Hysterangium and Russula. However, the forest types did not all group according to site-scale variables and subsequently the taxonomic assemblages were not significantly different between the three forest types. At site scale, significant negative relationships were found between phosphorous concentration and the quantity of hypogeous fungi sporocarps. Using a multivariate information theoretic approach, there were other more plausible models to explain the patterns of sporocarp richness. Both the mean number of fungal genera and species increased with the number of Allocasuarina stems, at the same time decreasing with the number of Eucalyptus stems. The optimal conditions for promoting hypogeous fungi sporocarp quantity and sporocarp richness appear to be related to the presence and abundance of Allocasuarina (Casuarinaceae) host trees. Allocasuarina tree species may have a higher host receptivity for ectomycorrhizal hypogeous fungi species that provide an important food resource for Australian mycophagous animals.
A user's guide to nursery stock types
R. Kasten Dumroese; Peyton W. Owston
2003-01-01
Foresters must consider many factors when selecting nursery stock types for their planting projects. Forest nurseries can now produce a vast array of stock types to meet any challenge in the field - these target seedlings can be defined for particular sites. It is important that foresters work with a nursery that is known from experience or reputation to provide a...
Coniferous forest habitat types of central and southern Utah
Andrew P. Youngblood; Ronald L. Mauk
1985-01-01
A land-classification system based upon potential natural vegetation is presented for the coniferous forests of central and southern Utah. It is based on reconnaissance sampling of about 720 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. Seven climax series, 37 habitat types, and six additional phases of...
Forest habitat types of Montana
Robert D. Pfister; Bernard L. Kovalchik; Stephen F. Arno; Richard C. Presby
1977-01-01
A land-classification system based upon potential natural vegetation is presented for the forests of Montana. It is based on an intensive 4-year study and reconnaissance sampling of about 1,500 stands. A hierarchical classification of forest sites was developed using the habitat type concept. A total of 9 climax series, 64 habitat types, and 37 additional phases of...
Dwarf forest recovery after disturbances in the Luquillo Mountains of Puerto Rico
P.L. Weaver
2008-01-01
Dwarf forest in Puerto Ricoâs Luquillo Mountains varies according to substrate and topography with very short, dense forest growing on exposed, rocky sites. High elevation level sites suffered considerable damage during past hurricanes whereas the trees on certain lower slopes were protected by ridges or spurs. Post-disturbance recovery of dwarf forest on two types of...
Evaluation of Skylab (EREP) data for forest and rangeland surveys
Robert C. Aldrich
1976-01-01
Data products from the Skylab Earth Resources Experiment Package were examined monocularly or stereoscopically using a variety of magnifying interpretation devices. Land use, forest types, physiographic sites, and plant communities, as well as forest stress, were interpreted and mapped at sites in Georgia, South Dakota, and Colorado. Microdensitometric techniques and...
Acorn Production on the Missouri Ozark Forest Ecosystem Project Study Sites: Pre-treatment Data
Larry D. Vangilder
1997-01-01
In the pre-treatment phase of a study to determine if even- and uneven-aged forest management affects the production of acorns on the Missourt Forest Ecosystem Project (MOFEP) study sites, acorn production was measured on the nine study sites by randomly placing from 2 to 6 plots in each of four ecological land type (ELT) groupings (N=130 plots). A split-plot...
Forest type influences transmission of Phytophthora ramorum in California oak woodlands.
Davidson, Jennifer M; Patterson, Heather A; Wickland, Allison C; Fichtner, Elizabeth J; Rizzo, David M
2011-04-01
The transmission ecology of Phytophthora ramorum from bay laurel (Umbellularia californica) leaves was compared between mixed-evergreen and redwood forest types throughout winter and summer disease cycles in central, coastal California. In a preliminary multisite study, we found that abscission rates of infected leaves were higher at mixed-evergreen sites. In addition, final infection counts were slightly higher at mixed-evergreen sites or not significantly different than at redwood sites, in part due to competition from other foliar pathogens at redwood sites. In a subsequent, detailed study of paired sites where P. ramorum was the main foliar pathogen, summer survival of P. ramorum in bay laurel leaves was lower in mixed-evergreen forest due to lower recovery from infected attached leaves and higher abscission rates of infected leaves. Onset of inoculum production and new infections of bay laurel leaves occurred later in mixed-evergreen forest. Mean inoculum levels in rainwater and final infection counts on leaves were higher in redwood forest. Based on these two studies, lower summer survival of reservoir inoculum in bay laurel leaves in mixed-evergreen forest may result in delayed onset of both inoculum production and new infections, leading to slower disease progress in the early rainy season compared with redwood forest. Although final infection counts also will depend on other foliar pathogens and disease history, in sites where P. ramorum is the main foliar pathogen, these transmission patterns suggest higher rates of disease spread in redwood forests during rainy seasons of short or average length.
The National Visitor Use Monitoring methodology and final results for round 1
S.J. Zarnoch; E.M. White; D.B.K. English; Susan M. Kocis; Ross Arnold
2011-01-01
A nationwide, systematic monitoring process has been developed to provide improved estimates of recreation visitation on National Forest System lands. Methodology is presented to provide estimates of site visits and national forest visits based on an onsite sampling design of site-days and last-exiting recreationists. Stratification of the site days, based on site type...
NASA Astrophysics Data System (ADS)
Marin-Spiotta, E.; Atkinson, E. E.
2015-12-01
Litter decomposition is one of the most studied ecosystem processes, given its role in carbon cycling and nutrient availability, yet our knowledge of how decomposition is influenced by novel species assemblages in tropical forests emerging on post-agricultural landscapes is limited. This is especially true in tropical dry forests, which are some of the most fragmented forests worldwide due to human pressures and sensitive to changes in rainfall and fire regimes. Here we tested for the effects of litter quality, site conditions, and microbial "home-field advantage" on decomposition rates in subtropical dry forests in St. Croix, U.S. Virgin Islands. We conducted a 22-month in situ and reciprocal transplant field decomposition experiment of aboveground litter and fine roots in 10-year old sites dominated by an early successional N-fixing tree and 40-year old mixed-species secondary forests. Total annual litterfall mass did not differ between the two forest types, but monthly amounts did, with more litter accumulating in the 40-year old secondary forests during the dry season and in the 10-year old secondary forests during the wet season. Litter chemistry differed between the two forest types and showed divergent patterns over the two-year field incubation. To test for the effects of litter quality on decomposition rates, we compared mass loss rates for aboveground and root litter from each forest decomposed in situ and transplanted to the other forest type. Litter in the 10-year old forests decomposed faster in situ (k= 1.07 ± 0.04) than when it was transplanted (k=0.86 ± 0.04). Litter from the 40-year old forests showed the opposite pattern. In situ root decomposition in both forests occurred at the same rate compared to roots that were transplanted there from the other forest type, suggesting that site conditions were equally important as litter quality. Our results were not consistent with a microbial home-field advantage for litter and root decomposition, that is, microbes were not more efficient at decomposing their own native litter, regardless of chemistry. Rather, decomposition patterns may be largely controlled by litter quality (and the combined effects of litter quality and site conditions specifically for roots) in contrast to the decomposer community in these subtropical dry forests.
A tropical freshwater wetlands: I. Structure, growth, and regeneration
Allen, J.A.; Krauss, K.W.; Ewel, K.C.; Keeland, B.D.; Waguk, E.E.
2005-01-01
Forested wetlands dominated by Terminalia carolinensis are endemic to Micronesia but common only on the island of Kosrae, Federated States of Micronesia. On Kosrae, these forests occur on Nansepsep, Inkosr, and Sonahnpil soil types, which differ in degree of flooding and soil saturation. We compared forest structure, growth, nutrition, and regeneration on two sites each on Nansepsep and Inkosr soils and one site on the much less common Sonahnpil soil type. Terminalia tree sizes were similar on all three soil types, but forests differed in total basal area, species of smaller trees, and total plant species diversity. Terminalia regeneration was found only on the Inkosr soil type, which had the highest water table levels. Other Terminalia species are relatively light demanding, and T. carolinensis exhibited similar characteristics. It is therefore likely that Terminalia requires periodic, but perhaps naturally rare, stand-replacing disturbances (e.g., typhoons) in order to maintain its dominanace, except on the wettest sites, where competition from other species is reduced. Terminalia swamps in the Nansepsep soil type appeared to be at the greatest risk of conversion to other uses, but swamps on all three types may face reater pressure as Kosrae's population increases and the island's infrastrucure becomes more developed.
Houping Liu; Leah S. Bauer; Tonghai Zhao; Ruitong Gao; Therese M. Poland
2016-01-01
Seasonal abundance and population development of the Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), and prevalence of its natural enemies were studied on Hankow willow (Salix matsudana Koidz.) at an urban forest site (Anci) and a rural forest site (Tangerli) in Hebei province...
Forest Species Diversity in Upper Elevation Hardwood Forests in the Southern Appalachian Mountains
Katherine J. Elliott; Deidre Hewitt
1997-01-01
Overstory, shrub-layer, and herb-layer flora composition and abundance patterns in eleven forest sites were studied to evaluate species diversity and richness before implementing three types of harvest treat- ments. The sites were within the Wine Spring Creek Watershed and were classified as high elevation, dry, Quercus rubra-Rhododendron calendulaceum based on...
Soil carbon storage following road removal and timber harvesting in redwood forests
Seney, Joseph; Madej, Mary Ann
2015-01-01
Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second-growth forests and old-growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site-scale and landscape-scale variables in predicting SOC accumulation in treated road prisms and second-growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second-growth and old-growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second-growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%
Forest vegetation in the Rocky Mountain and Intermountain regions: Habitat types and community types
Robert R. Alexander
1988-01-01
Habitat types and community types and their phases for the major forest tree species in the Rocky Mountain and Intermountain regions are tabulated. Included are the name(s), general location, elevation, relative site, successional status, principal tree and undergrowth associates, and the authority.
Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA.
Juillerat, Juliette I; Ross, Donald S; Bank, Michael S
2012-08-01
Mercury (Hg) is an atmospheric pollutant that, in forest ecosystems, accumulates in foliage and upper soil horizons. The authors measured soil and litterfall Hg at 15 forest sites (northern hardwood to mixed hardwood/conifer) throughout Vermont, USA, to examine variation among tree species, forest type, and soils. Differences were found among the 12 tree species sampled from at least two sites, with Acer pensylvanicum having significantly greater litterfall total Hg concentration. Senescent leaves had greater Hg concentrations if they originated lower in the canopy or had higher surface:weight ratios. Annual litterfall Hg flux had a wide range, 12.6 to 28.5 µg/m(2) (mean, 17.9 µg/m(2) ), not related to forest type. Soil and Hg pools in the Oi horizon (litter layer) were not related to the measured Hg deposition flux in litterfall or to total modeled Hg deposition. Despite having lower Hg concentrations, upper mineral soil (A horizons) had greater Hg pools than organic soil horizons (forest floor) due to greater bulk density. Significant differences were found in Hg concentration and Hg/C ratio among soil horizons but not among forest types. Overall, our findings highlight the importance of site history and the benefits of collecting litterfall and soils simultaneously. Observed differences in forest floor Hg pools were strongly correlated with carbon pools, which appeared to be a function of historic land-use patterns. Copyright © 2012 SETAC.
The future of long-term USDA Forest Service research sites in the Northeast
Michael T. Rains
2006-01-01
The mission of the Northeastern Research Station is "Improving Lives and Protecting Our Earth Through Research." Our nine experimental sites are the keystone of this mission. Our experimental sites are located in major forest types from West Virginia to Maine, and in Baltimore, Maryland, where we have a long-term ecological research site representing urban...
Madis Sipols
1998-01-01
Systematic assessment and observation (survey, inventory) of forests in Latvia has been underway since the 1700's. Latvia's forests are in the boreal/temperate forest zone and cover 44 percent of the country. Forest growing conditions are subdivided into five site class types: forests on dry mineral, wet mineral, wet peat, drained mineral, drained peat soils...
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-03-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-01-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871
NASA Technical Reports Server (NTRS)
Rejmankova, E.; Pope, K. O.; Roberts, D. R.; Lege, M. G.; Andre, R.; Greico, J.; Alonzo, Y.
1998-01-01
Surveys of larval habitats of Anopheles vestitipennis and Anopheles punctimacula were conducted in Belize, Central America. Habitat analysis and classification resulted in delineation of eight habitat types defined by dominant life forms and hydrology. Percent cover of tall dense macrophytes, shrubs, open water, and pH were significantly different between sites with and without An. vestitipennis. For An. punctimacula, percent cover of tall dense macrophytes, trees, detritus, open water, and water depth were significantly different between larvae positive and negative sites. The discriminant function for An. vestitipennis correctly predicted the presence of larvae in 65% of sites and correctly predicted the absence of larvae in 88% of sites. The discriminant function for An. punctimacula correctly predicted 81% of sites for the presence of larvae and 45% for the absence of larvae. Canonical discriminant analysis of the three groups of habitats (An. vestitipennis positive; An. punctimacula positive; all negative) confirmed that while larval habitats of An. punctimacula are clustered in the tree dominated area, larval habitats of An. vestitipennis were found in both tree dominated and tall dense macrophyte dominated environments. The forest larval habitats of An. vestitipennis and An. punctimacula seem to be randomly distributed among different forest types. Both species tend to occur in denser forests with more detritus, shallower water, and slightly higher pH. Classification of dry season (February) SPOT multispectral satellite imagery produced 10 land cover types with the swamp forest and tall dense marsh classes being of particular interest. The accuracy assessment showed that commission errors for the tall, dense marsh and swamp forest appeared to be minor; but omission errors were significant, especially for the swamp forest (perhaps because no swamp forests are flooded in February). This means that where the classification indicates there are An. vestitipennis breeding sites, they probably do exist; but breeding sites in many locations are not identified and could be more abundant than indicated.
Evans, Andrew; Odom, Richard H.; Resler, Lynn M.; Ford, W. Mark; Prisley, Stephen
2014-01-01
The northern hardwood forest type is an important habitat component for the endangered Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus) for den sites and corridor habitats between boreo-montane conifer patches foraging areas. Our study related terrain data to presence of northern hardwood forest type in the recovery areas of CNFS in the southern Appalachian Mountains of western North Carolina, eastern Tennessee, and southwestern Virginia. We recorded overstory species composition and terrain variables at 338 points, to construct a robust, spatially predictive model. Terrain variables analyzed included elevation, aspect, slope gradient, site curvature, and topographic exposure. We used an information-theoretic approach to assess seven models based on associations noted in existing literature as well as an inclusive global model. Our results indicate that, on a regional scale, elevation, aspect, and topographic exposure index (TEI) are significant predictors of the presence of the northern hardwood forest type in the southern Appalachians. Our elevation + TEI model was the best approximating model (the lowest AICc score) for predicting northern hardwood forest type correctly classifying approximately 78% of our sample points. We then used these data to create region-wide predictive maps of the distribution of the northern hardwood forest type within CNFS recovery areas.
Site factor variations and responses in temporary forest types in northern Idaho
J. A. Larsen
1940-01-01
The object of the study was to analyze and evaluate the environmental factors which govern the progressional stages of the secondary forest succession in northern Idaho. \\When this study began much uncertainty existed regarding the distribution of trees and forest types in relation to temperature, precipitation, and evaporation and regarding their soil moisture and...
Farris, Zach J; Morelli, Toni Lyn; Sefczek, Timothy; Wright, Patricia C
2011-01-01
The aye-aye is considered the most widely distributed lemur in Madagascar; however, the effect of forest quality on aye-aye abundance is unknown. We compared aye-aye presence across degraded and non-degraded forest at Ranomafana National Park, Madagascar. We used secondary signs (feeding sites, high activity sites) as indirect cues of aye-aye presence and Canarium trees as an indicator of resource availability. All 3 measured variables indicated higher aye-aye abundance within non-degraded forest; however, the differences across forest type were not significant. Both degraded and non-degraded forests showed a positive correlation between feeding sites and high activity sites. We found that Canarium, an important aye-aye food source, was rare and had limited dispersal, particularly across degraded forest. This preliminary study provides baseline data for aye-aye activity and resource utilization across degraded and non-degraded forests. Copyright © 2011 S. Karger AG, Basel.
Effect of tree line advance on carbon storage in NW Alaska
Wilmking, M.; Harden, J.; Tape, K.
2006-01-01
We investigated the size, distribution, and temporal dynamics of ecosystem carbon (C) pools in an area of recent tree line advance, northwest Alaska. Repeat aerial photographs show forest cover increased ???10% in our study area since 1949. We sampled C pools of four principal ecosystem types, tussock tundra, shrub tundra, woodland, and forest, all located on a 600-800 year old river terrace. Significant differences between ecosystem C pools, both above ground and below ground existed. Tundra sites store >22.2 kg C/m2, shrub tundra sites and woodland sites store 9.7 kg C/m2 and 14.3 kg C/m2, respectively, and forest sites store 14.4 kg C/m2. Landscape variation of total ecosystem C was primarily due to organic soil C and was secondarily due to C stored in trees. Soil C/N profiles of shrub tundra sites and woodland sites showed similarities with forest site soils at surface and tundra site soils at depth. We hypothesize that tundra systems transformed to forest systems in this area under a progression of permafrost degradation and enhanced drainage. On the basis of C pool estimates for the different ecosystem types, conversion of tundra sites to forest may have resulted in a net loss of > 7.8 kg C/m2, since aboveground C gains were more than offset by belowground C losses to decomposition in the tundra sites. Tree line advance therefore might not increase C storage in high-latitude ecosystems and thus might not, as previously suggested, act as a negative feedback to warming. Key to this hypothesis and to its projection to future climate response is the fate of soil carbon upon warming and permafrost drainage. Copyright 2006 by the American Geophysical Union.
Zheng, Jingming; Jiang, Fengqi; Zeng, Dehui
2003-06-01
To realize the sustainable management of forest ecosystems, we should explicitly clarify the types and differences of the ecosystem services provided by different ecosystems under different conditions, with rethinking about the value of forest ecosystems; then solid management strategies and measurements will be enacted and applied to achieve the objects. The broad-leaved Korean pine forest (BLKPF) in Changbai Mountain is a unique and important forest type in China, owing to its many important ecosystem services such as preventing soil erosion, regulating climates, nutrient cycling, providing wood and non-timber forest products, etc. This paper is a preliminary study on the management strategy of BLKPF on the basis of analyzing the characters of the ecosystems and the relative importance of services they provided in this region. Based on the latest research of ecosystem services of BLKPF in Changbai Mountain, an idea of eco-value level (EVL) was introduced, and accordingly, management strategies were summarized by adopting the advanced theories in ecosystem management science and by analyzing field survey data. EVL means the relative amount of the value of ecosystem services provided by certain ecosystem, which can indicate the difference between services in given objects. The EVL classification of BLKPF implies the relative amount of the eco-value of different ecosystems including virgin forest, secondary forest, forest with human disturbance, and man-made forest in the clear-cutting sites. Analytical Hierarchical Processing method was used to formulate the equation for EVL index. Eight factors, namely, slope, soil depth, stability of soil maternal material, coverage of above-ground canopy, species diversity, regeneration rate of the stand, life span of dominant tree species, and intensity of human disturbance were chosen to build the formula. These factors belonged to three aspects affecting ecosystem services including the physical environment, community, and disturbance regime, and their selection and scaling were based on the previous studies on the BLKPF. The equation of EVL index (EI) was expressed as: EI = 0.542A1 + 0.171A2 + 0.072A3 + 0.067B1 + 0.043B2 + 0.014B3 + 0.010B4 + 0.081C1. According to the range of EI, ecosystems were classified into three types: low EVL type with EI from 1.000 to 1.874, medium EVL type with EI 1.874-2.749, and high EVL type with EI 2.749-3.623. Typical plots were surveyed and scaled with EI, and the predominant characters of each EVL type were summarized. Most forests of high EVL type were those in sites at high risk of soil erosion and hard to recover after disrupted. Forests of medium EVL type were those with worse community structure and composition, and were disturbed by human activities in relative steep sites. Forest of low EVL type were those in plane site with serious disruption or some young man-made stands. Based on the analyses of the characters of these three types, different management strategies were put forward. For high EVL type forest, strictly protection is most important to maintain the forest in natural succession and its eco-services. For medium EVL type forest, the key points of management are restoring their health and vigor by regulating their composition and structure in a seminatural way. For low EVL type forest, some area could be used to extensive exploration for economic benefits, and the rests should be reconstructed towards the original stand in composition and structure, based on the 'shadow ecosystem' in a close-to-nature way to promote the capacity of providing more eco-services.
Kershaw, H Maureen; Morris, Dave M; Fleming, Robert L; Luckai, Nancy J
2015-11-01
Overall demand for forest products in the boreal forest is increasing to supply growing bio-energy demands in addition to traditional forest products. As a result, there is a need to refine current forest policies to reconcile production and ecosystem function within the context of ecologically sustainable management. This study assessed understory plants' richness, evenness, and diversity in six harvested boreal black spruce-dominated stands situated on loam, sand, and peat site types 15 years after the application of four harvest treatments of increasing biomass removals. Treatments included uncut, stem-only harvest, full-tree harvest, and full-tree harvest + blading of O horizon. Following canopy removal, species richness and diversity (Shannon's and Simpson's indices) increased on all soil types. The more than doubling of slash loading on the stem-only treatment plots compared to the full-tree plots led to significantly lower species diversity on loam sites; however, the reverse was observed on peat sites where the slash provided warmer, drier microsites facilitating the establishment of a broader array of species. Preexisting ericaceous shrub and sphagnum components continued to dominate on the peat sites. Compositional shifts were most evident for the full-tree + bladed treatment on all soil types, with increases in herbaceous cover including ruderal species. The results suggest that the intensification of harvesting on plant diversity varies with soil type, and these differential results should be considered in the refinement of forest biomass-harvesting guidelines to ensure ecological sustainability and biodiversity conservation over a broad suite of soil types.
Empirical yield tables for Michigan.
Jerold T. Hahn; Joan M. Stelman
1984-01-01
Describes the tables derived from the 1980 Forest Survey of Michigan and presents ways the tables can be used. These tables are broken down according to Michigan's four Forest Survey Units, 14 forest types, and 5 site-index classes.
Analysis of forest structure using thematic mapper simulator data
NASA Technical Reports Server (NTRS)
Peterson, D. L.; Westman, W. E.; Brass, J. A.; Stephenson, N. J.; Ambrosia, V. G.; Spanner, M. A.
1986-01-01
The potential of Thematic Mapper Simulator (TMS) data for sensing forest structure information has been explored by principal components and feature selection techniques. In a survey of forest structural properties conducted for 123 field sites of the Sequoia National Park, the canopy closure could be well estimated (r = 0.62 to 0.69) by a variety of channel bands and band ratios, without reference to the forest type. Estimation of the basal area was less successful (r = 0.51 or less) on the average, but could be improved for certain forest types when data were stratified by floristic composition. To achieve such a stratification, individual sites were ordinated by a detrended correspondence analysis based on the canopy of dominant species. The analysis of forest structure in the Sequoia data suggests that total basal area can be best predicted in stands of lower density, and in younger even-aged managed stands.
Ardente, Natália Carneiro; Ferreguetti, Átilla Colombo; Gettinger, Donald; Leal, Pricila; Mendes-Oliveira, Ana Cristina; Martins-Hatano, Fernanda; Bergallo, Helena Godoy
2016-01-01
The Carajás National Forest contains some of the largest iron ore deposits in the world. The majority of the minerals are found below a plant community known as Savana Metalófila, or "Canga", which represents only 3% of the landscape within the Carajás National Forest (CNF). The aim of our study was to understand the diversity of community of non-volant small mammals in the two predominant vegetation types: Ombrophilous Forest and Canga, and to examine how mining impacts these communities. Sampling was conducted from January 2010 to August 2011 in 11 sampling sites divided by the total area of Canga and 12 sampling sites in the forest, totalizing 23 sites. Of these, 12 sites (Canga and Forest) were considered impacted areas located close to the mine (< 900 meters) and 11 sites (Canga and Forest), serving as controls, which were at least 7,000 meters from the mine. We recorded 28 species, 11 from the Order Didelphimorphia and 17 from the Order Rodentia. The two forest types shared 68.42% of the species found in the CNF. A gradient analysis (Non-metric multidimensional scaling) revealed that the first axis clearly separated the non-flying small mammal communities by vegetation type. Occupancy models showed that the detectability of species was affected by the distance from the mining activities. Of all the small mammals analyzed, 10 species were positively affected by the distance from mining in areas impacted (e.g. more likely to be detected farther from mining areas) and detectability was lower in impacted areas. However, three species were negatively affected by the distance from mining, with higher detectability in the impacted areas, and seven species showed no effect of their proximity to mining operations. To date, there are no studies in Brazil about the impact of mining on mammals or other vertebrates. This study reveals that the effect of mining may go beyond the forest destruction caused by the opening of the mining pits, but also may negatively affect sensitive wildlife species.
Ardente, Natália Carneiro; Ferreguetti, Átilla Colombo; Gettinger, Donald; Leal, Pricila; Mendes-Oliveira, Ana Cristina; Martins-Hatano, Fernanda; Bergallo, Helena Godoy
2016-01-01
The Carajás National Forest contains some of the largest iron ore deposits in the world. The majority of the minerals are found below a plant community known as Savana Metalófila, or “Canga”, which represents only 3% of the landscape within the Carajás National Forest (CNF). The aim of our study was to understand the diversity of community of non-volant small mammals in the two predominant vegetation types: Ombrophilous Forest and Canga, and to examine how mining impacts these communities. Sampling was conducted from January 2010 to August 2011 in 11 sampling sites divided by the total area of Canga and 12 sampling sites in the forest, totalizing 23 sites. Of these, 12 sites (Canga and Forest) were considered impacted areas located close to the mine (<< 900 meters) and 11 sites (Canga and Forest), serving as controls, which were at least 7,000 meters from the mine. We recorded 28 species, 11 from the Order Didelphimorphia and 17 from the Order Rodentia. The two forest types shared 68.42% of the species found in the CNF. A gradient analysis (Non-metric multidimensional scaling) revealed that the first axis clearly separated the non-flying small mammal communities by vegetation type. Occupancy models showed that the detectability of species was affected by the distance from the mining activities. Of all the small mammals analyzed, 10 species were positively affected by the distance from mining in areas impacted (e.g. more likely to be detected farther from mining areas) and detectability was lower in impacted areas. However, three species were negatively affected by the distance from mining, with higher detectability in the impacted areas, and seven species showed no effect of their proximity to mining operations. To date, there are no studies in Brazil about the impact of mining on mammals or other vertebrates. This study reveals that the effect of mining may go beyond the forest destruction caused by the opening of the mining pits, but also may negatively affect sensitive wildlife species. PMID:27893798
Victoria A. Saab; Jonathan G. Dudley
1998-01-01
From 1994 to 1996, researchers monitored 695 nests of nine cavity-nesting bird species and measured vegetation at nest sites and at 90 randomly located sites in burned ponderosa pine forests of southwestern Idaho. Site treatments included two types of salvage logging, and unlogged controls. All bird species selected nest sites with higher tree densities, larger...
Revisiting Pearson's climate and forest type studies on the Fort Valley Experimental Forest
Joseph E. Crouse; Margaret M. Moore; Peter Fule
2008-01-01
Five weather station sites were established in 1916 by Fort Valley personnel along an elevational gradient from the Experimental Station to near the top of the San Francisco Peaks to investigate the factors that controlled and limited forest types. The stations were located in the ponderosa pine, Douglas-fir, limber pine, Engelmann spruce, and Engelmann spruce/...
Revisiting Pearson's climate and forest type studies on the Fort Valley Experimental Forest (P-53)
Joseph E. Crouse; Margaret M. Moore; Peter Z. Fule
2008-01-01
Five weather station sites were established in 1916 by Fort Valley personnel along an elevational gradient from the Experimental Station to near the top of the San Francisco Peaks to investigate the factors that controlled and limited forest types. The stations were located in the ponderosa pine, Douglas-fir, limber pine, Engelmann spruce, and Engelmann spruce/...
Inventory of forest and rangeland and detection of forest stress
NASA Technical Reports Server (NTRS)
Heller, R. C.; Aldrich, R. C.; Weber, F. P.; Driscoll, R. S. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. Some ERTS-1 imagery has been received for each of the test sites: Black Hills, Atlanta, and Manitou. Only small portions of each site are covered and clouds have precluded capturing good imagery over the center of each site. Discoloration infestations of ponderosa pine are being located and sized on CIR transparencies. A computer program was completed from microdensitometer scans of CIR photos which maps areas of an image which are spectrally similar. Decided differences between forest types are present as well as differences between forest and other vegetative and nonvegetative land classes.
Observation and Analysis of Particle Nucleation at a Forest Site in Southeastern US
This study examines the characteristics of new particle formation at a forest site in the Southeast U.S. Particle size distributions above a Loblolly pine plantation were measured between November, 2005 and September, 2007 and analyzed by event type and frequency as well as relat...
Experimental Forests and Ranges of the USDA Forest Service
Mary Beth Adams; Linda Loughry; Linda, comps. Plaugher
2008-01-01
The USDA Forest Service has an outstanding scientific resource in the 77 Experimental Forests and Ranges that exist across the United States and its territories. These valuable scientific resources incorporate a broad range of climates, forest types, research emphases, and history. This publication, revised in March 2008, describes each of the research sites within the...
Long-term research at the USDA Forest Service's experimental forests and ranges.
Ariel D. Lugo; Frederick J. Swanson; Olga Ramos González; Mary Beth Adams; Brian Palik; Ronald E. Thill; Dale G. Brockway; Christel Kern; Richard Woodsmith; Robert Musselman
2006-01-01
The network of experimental forests and ranges administered by the U.S. Department of Agriculture Forest Service consists of 77 properties that are representative of most forest cover types and many ecological regions in the Nation. Established as early as 1908, these sites maintain exceptional, long-term databases on environmental dynamics and biotic responses. Early...
NASA Astrophysics Data System (ADS)
Horsák, Michal; Juřičková, Lucie; Horsáková, Veronika; Pokorná, Adéla; Pokorný, Petr; Šizling, Arnošt L.; Chytrý, Milan
2018-04-01
Diversity patterns of forest snail assemblages have been studied mainly in Europe. Siberian snail faunas have different evolutionary history and colonization dynamics than European faunas, but studies of forest snail diversity are almost missing from Siberia. Therefore, we collected snails at 173 forest sites in the Russian Altai and adjacent areas, encompassing broad variation in climate and forest types. We found 51 species, with a maximum of 15 and an average of seven species per site. The main gradient in species composition was related to soil pH, a variable that also positively correlates with snail abundances. The second gradient was associated with climate characteristics of winter. We observed significant differences in both species richness and composition among six forest types defined based on vegetation classification. Hemiboreal continental forests were the poorest of these types but hosted several species characteristic of European full-glacial stages of the Late Pleistocene. A high snow cover in Temperate coniferous and mixed forests, protecting the soil from freezing, allowed the frost-sensitive large-bodied (>10 mm) species to inhabit this forest type. In contrast to most of the European snail assemblages studied so far we found that the factors responsible for the variation in species richness differed from those driving species composition. This may be attributed to the sharp climatic gradient and the presence of the cold-adapted species typical of the Pleistocene cold stages. We suggest that southern Siberian forests hosting these species can serve as modern analogues of full-glacial forests in periglacial Central and Eastern Europe.
NASA Astrophysics Data System (ADS)
Looker, N. T.; Kolka, R.; Colin, P. O.; Asbjornsen, H.
2017-12-01
The alteration of soil field-saturated hydraulic conductivity (Ksat) is a primary mechanism by which land-use/cover changes influence catchment hydrologic behavior. While previous studies have demonstrated declines in Ksat with forest cover loss, we lack a comprehensive framework for predicting the response of Ksat to increases in forest cover or to changes in land-use intensity (rather than changes in cover type per se). Variation in Ksat due to biophysical factors (e.g., climate or topography) may further obscure the effects of land cover or intensity. We assessed differences in Ksat between four cover types representative of a catchment in central Veracruz, Mexico (maize, pasture, shade coffee, and secondary cloud forest) and evaluated the factors that control variation across sites within cover types. In 38 sites distributed from 1200 m to 2900 m above sea level, we estimated Ksat at a depth of 25 cm using a Guelph permeameter. Ksat was significantly lower in soils under pasture and maize than in those under woody cover types (i.e., shade coffee and secondary forest), largely due to differences in horizon thickness. Variation in Ksat within woody cover types was associated with vegetation productivity and seasonality as inferred using remotely sensed vegetation indices. Unexpectedly, coffee and forest sites exhibited contrasting relationships between Ksat and vegetation indices. We propose possible mechanisms for these relationships and explore their implications for the regionalization of Ksat in catchment modeling applications.
The Impact of Afforestation on the Carbon Stocks of Mineral Soils Across the Republic of Ireland.
NASA Astrophysics Data System (ADS)
Wellock, M.; Laperle, C.; Kiely, G.; Reidy, B.; Duffy, C.; Tobin, B.
2009-04-01
At the beginning of the twentieth century forests accounted for only 1% of the total Irish land cover (Pilcher & Mac an tSaoir, 1995). However, due to the efforts of successive governments there has been rapid afforestation since the 1960s resulting in a 10.0% forest land cover as of 2007 (The Department of Agriculture, Fisheries, and Food, 2007). A large proportion of this afforestation took place after the mid-1980s and was fueled by government grant incentive schemes targeted at private landowners (Renou & Farrell 2005). Consequently, 54% of forests are less than 20 years old (Byrne, 2006). This specific land use change provides an opportunity for Ireland to meet international obligations set forth by the United Nations Framework Convention on Climate Change (UNFCCC, 1992). These obligations include the limitation of greenhouse gas emissions to 13% above 1990 levels. In order to promote accountability for these commitments, the UNFCCC treaty and the Kyoto Protocol (Kyoto Protocol, 1997) mandate signatories to publish greenhouse gas (GHG) emissions inventories for both greenhouse gas sources and removals by sinks. Article 3.3 of the Kyoto Protocol allows changes in C stocks due to afforestation, reforestation, and deforestation since 1990 to be used to offset inventory emissions. Therefore, due to the rapid rate of afforestation and its increased carbon sequestration since 1990, Ireland has the potential to significantly offset GHG emissions. There is little known as to the impacts of afforestation on the carbon stocks in soils over time, and even less known about the impact on Irish soils. The FORESTC project aims to analyse this impact by undertaking a nationwide study using a method similar to that of the paired plot method in Davis and Condron, 2002. The study will examine 42 forest sites across Ireland selected randomly from the National Forest Inventory (National Forest Inventory, 2007). These 42 sites will be grouped based on the forest type which includes conifer, broadleaf, and mixed (broadleaf and conifer) and soil type: brown earth, podzol, brown podzolic, gley and brown earth. The paired plot method involves selecting a second site that represents the same soil type and physical characteristics as the forest site. The only difference between the two sites should be the current land-use of the pair site, which should represent the pre-afforestation land-use of the forest site. Each forest site and its pair site will be sampled in the top 30 cm of soil for bulk density and organic carbon %, while litter and F/H layer samples will be taken and analysed for carbon. This data should provide an analysis of the carbon stocks of the soil and litter of both the forest site and its pair site allowing for comparison and thus the impact of afforestation on carbon stocks. References. Byrne, K.A., & Milne, R. (2006). Carbon stocks and sequestration in plantation forests in the Republic of Ireland. Forestry, 79, no. 4: 361. Davis, M.R., & Condron, L.M. (2002). Impact of grassland afforestation on soil carbon in New Zealand: a review of paired-site studies. Australian Journal of Soil Research, 40, no. 4: 675-690. Kyoto Protocol. 1997 Kyoto Protocol to the United Nations Framework Convention on Climate Change. FCCC/CP/1997/7/Add.1, Decision 1/CP.3, Annex 7. UN. National Forest Inventory: NFI Methodology. (2007). Forest Service, The Department of Agriculture, Fisheries, and Food, Wexford, Ireland. Pilcher, J.R. & Mac an tSaoir, S. (1995). Wood, Trees and Forests in Ireland. (Royal Irish Academy, Dublin. Renou, F. & Farrell, E.P. (2005). Reclaiming peatlands for forestry: the Irish experience. In: Stanturf, J.A. and Madsen, P.A. (eds.). Restoration of boreal and temperate forests. CRC Press, Boca Raton. p.541-557. UNFCCC. 1992 United Nations Framework Convention on Climate Change. Palais des Nations, Geneva. http://www.unfccc.de/index.html
NASA Astrophysics Data System (ADS)
Razali, Nor Bazilah; Abdul-Rahim, Ahmad Rizal; Md-Nor, Shukor; Mohd-Taib, Farah Shafawati
2018-04-01
Exploitation of forest for commercial agriculture has taken toll on wildlife species worldwide. A forest farm project with the aim of compensating the forest loss has been implemented in Kemasul Forest Reserve, of Pahang State, Malaysia through plantation of fast growing and adaptable plant species. The objective of this study is to determine the impact of this practice on diversity. The study was conducted in a long strip of forest fragment, where two study sites with different landscape matrix types were chosen; oil palm plantation (JR) and Acacia mangium plantations (CM). A total of 75 individuals from 13 species and six families were collected at both sites. The result shows forest with A. mangium plantations matrix types yield higher species diversity. There are 10 shared species that can be found at both study sites including Callosciurus notatus, Hystrix brachyura, Macaca nemestrina, and Tupaia glis. However, some species only existed at selected sites such as Leopoldamys sabanus which can only be found at JR. On the other hand, Callosciurus nigrovittatus, Viverra tangalunga and Paradoxurus hermaphroditus were only recorded at CM. Out of all individuals collected, four of them are protected species as reported by IUCN. Callosciurus nigrovittatus is listed as Near Threatened while the other three species (Maxomys rajah, Maxomys whiteheadi, and Macaca nemestrina) are Vulnerable. If conservation efforts in Kemasul Forest Reserved are neglected, these four species would be exposed to critical threats that might cause them facing extinction in the future. Mann Whitney U test shows no significant difference of distribution and species richness of small to medium-sized mammals in both study sites (U=51.5, p=0.59). This study therefore reveals that although the compensatory forest plantation initiatives yield positive effect on diversity of mammal's species, it does not necessarily provide ample food resources to the wildlife, instead it serves as important buffer zones for wildlife movement.
NASA Astrophysics Data System (ADS)
Mátyás, Csaba; Berki, Imre; Bidlo, Andras; Czimber, Kornel.; Gálos, Borbala; Gribovszki, Zoltan; Lakatos, Ferenc; Borovics, Attila; Csóka, György; Führer, Ernő; Illés, Gábor; Rasztovits, Ervin; Somogyi, Zoltán; Bartholy, Judit
2017-04-01
The rapid progress of site potential change, caused by the shift of climate zones is a serious problem of lowland management in Southeast Europe. In forestry, the resilience potential of main, climate-dependent tree species (e.g. spruce, beech, sessile oak) and ecosystems is limited at their lower (xeric) limits of distribution. A conventional mitigation measure for adaptive forest management is the return to nature-close management. Severe drought- and biotic impacts in forests indicate however the urgency of fundamental changes in forest policy. To provide assistance in selecting climate-tolerant provenances, species and adaptive technologies for future site conditions is therefore critical. A simplified Decision Support System has been developed for Hungary, keeping conventional elements of site potential assessment. Projections are specified for discrete site types. Processing forest inventory, landcover and geodata, the System provides GIS-supported site information and projections for individual forest compartments, options for tree species better tolerating future climate scenarios as well as their expected yield and risks. Data respectively projections are available for recent and current conditions, and for future reference periods until 2100. Also non-forest site conditions in the novel grassland (steppe) climate zone appear in projections. Experiences for proper management on these sites are however scarce.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.
Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less
NASA Astrophysics Data System (ADS)
Gutenberg, L. W.; Krauss, K.; Qu, J. J.; Hogan, D. M.; Zhu, Z.; Xu, C.
2017-12-01
The Great Dismal Swamp in Virginia and North Carolina, USA, has been greatly impacted by human use and management for the last few hundred years through logging, ditching, and draining. Today, the once dominant cedar, cypress and pocosin forest types are fragmented due to logging and environmental change. Maple-gum forest has taken over more than half the remaining area of the swamp ecosystem, which is now a National Wildlife Refuge and State Park. The peat soils and biomass store a vast quantity of carbon compared with the size of the refuge, but this store is threatened by fire and drying. This study looks at three of the main forest types in the GDS— maple-sweet gum, tall pine pocosin, and Atlantic white cedar— in terms of their carbon dioxide and methane soil flux. Using static chambers to sample soil gas flux in locally representative sites, we found that cedar sites showed a higher carbon dioxide flux rate as the soil temperature increased than maple sites, and the rate of carbon dioxide flux decreased as soil moisture increased faster in cedar sites than in maple sites. Methane flux increased as temperature increased for pocosin, but decreased with temperature for cedar and maple. All of the methane fluxes increased as soil moisture increased. Cedar average carbon dioxide flux was statistically significantly different from both maple and pocosin. These results show that soil carbon gas flux depends on soil moisture and temperature, which are factors that are changing due to human actions, as well as on forest type, which is also the result of human activity. Some of these variables may be adjustable by the managers of the land. Variables other than forest type, temperature and soil moisture/inundation may also play a role in influencing soil flux, such as stand age, tree height, composition of the peat and nutrient availability, and source of moisture as some sites are more influenced by groundwater from ditches and some more by rainfall depending on the direction of groundwater lateral flow. Increasing temperatures and changes in precipitation and soil moisture may impact the carbon storage and health of this ecosystem, although it is already strongly influenced by anthropogenic activities such as past logging and water level management.
Keith, Heather; Mackey, Brendan G; Lindenmayer, David B
2009-07-14
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized.
Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests
Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.
2009-01-01
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCollom, M.
1979-01-01
The existing terrestrial ecosystems at the plant site and impacts on them are described. The following are discussed for the fuelwood harvest region: forest soils, forest types and ecological succession, nutrient cycles in the forest ecosystem, fauna of the ecosystem, forest practices in the harvest region, and long-term productivity of the forest resource. (MHR)
Interpreting Michigan forest cover types from color infrared aerial photographs
NASA Technical Reports Server (NTRS)
Hudson, W. D.
1984-01-01
The characteristics of 17 cover types (13 forest types or tree species and 4 nonforest cover types) in Michigan are discussed as well as their interpretation from medium scale color infrared photography. The occurrence of each type is described by region and site requirements. Those attributes of a tree or stand which are helpful when attempting to interpret the type from a vertical perspective are discussed as well as common crown types. The identification of the forest type or tree species by using image characteristics (size, shape, shadow, color, texture, pattern, or association) is discussed. Ground photographs and sketches of individual trees are included. Stereograms of typical stands are available.
Designing Forest Adaptation Experiments through Manager-Scientist Partnerships
NASA Astrophysics Data System (ADS)
Nagel, L. M.; Swanston, C.; Janowiak, M.
2014-12-01
Three common forest adaptation options discussed in the context of an uncertain future climate are: creating resistance, promoting resilience, and enabling forests to respond to change. Though there is consensus on the broad management goals addressed by each of these options, translating these concepts into management plans specific for individual forest types that vary in structure, composition, and function remains a challenge. We will describe a decision-making framework that we employed within a manager-scientist partnership to develop a suite of adaptation treatments for two contrasting forest types as part of a long-term forest management experiment. The first, in northern Minnesota, is a red pine-dominated forest with components of white pine, aspen, paper birch, and northern red oak, with a hazel understory. The second, in southwest Colorado, is a warm-dry mixed conifer forest dominated by ponderosa pine, white fir, and Douglas-fir, with scattered aspen and an understory of Gambel oak. The current conditions at both sites are characterized by overstocking with moderate-to-high fuel loading, vulnerability to numerous forest health threats, and are generally uncharacteristic of historic structure and composition. The desired future condition articulated by managers for each site included elements of historic structure and natural range of variability, but were greatly tempered by known vulnerabilities and projected changes to climate and disturbance patterns. The resultant range of treatments we developed are distinct for each forest type, and address a wide range of management objectives.
Merschel, Andrew G; Spies, Thomas A; Heyerdahl, Emily K
Twentieth-century land management has altered the structure and composition of mixed-conifer forests and decreased their resilience to fire, drought, and insects in many parts of the Interior West. These forests occur across a wide range of environmental settings and historical disturbance regimes, so their response to land management is likely to vary across landscapes and among ecoregions. However, this variation has not been well characterized and hampers the development of appropriate management and restoration plans. We identified mixed-conifer types in central Oregon based on historical structure and composition, and successional trajectories following recent changes in land use, and evaluated how these types were distributed across environmental gradients. We used field data from 171 sites sampled across a range of environmental settings in two subregions: the eastern Cascades and the Ochoco Mountains. We identified four forest types in the eastern Cascades and four analogous types with lower densities in the Ochoco Mountains. All types historically contained ponderosa pine, but differed in the historical and modern proportions of shade-tolerant vs. shade-intolerant tree species. The Persistent Ponderosa Pine and Recent Douglas-fir types occupied relatively hot–dry environments compared to Recent Grand Fir and Persistent Shade Tolerant sites, which occupied warm–moist and cold–wet environments, respectively. Twentieth-century selective harvesting halved the density of large trees, with some variation among forest types. In contrast, the density of small trees doubled or tripled early in the 20th century, probably due to land-use change and a relatively cool, wet climate. Contrary to the common perception that dry ponderosa pine forests are the most highly departed from historical conditions, we found a greater departure in the modern composition of small trees in warm–moist environments than in either hot–dry or cold–wet environments. Furthermore, shade-tolerant trees began infilling earlier in cold–wet than in hot–dry environments and also in topographically shaded sites in the Ochoco Mountains. Our new classification could be used to prioritize management that seeks to restore structure and composition or create resilience in mixed-conifer forests of the region.
Katherine J. Elliott; James M. Vose
1993-01-01
Fire is now prescribed as a silvicultural treatment to restore low-diversity, low-productivity sites in southern Appalachian forests.Eastern white pine (Pinus strobus L.) is then planted on many of these sites to provide a mixed pine-oak forest type (see Swift et al. 1993).Fire reduces sprout vigor, which delays growth of Kalmia latifolia L., a common understory shrub...
Sludge fertilization of State Forest land in northern Michigan
D.G. Brockway
1991-01-01
A five-year research-demonstration project to examine the logistic, economic, environmental and sociological aspects of municipal wastewater sludge application was conducted on State Forest land occupied by forest types of major commercial importance in northern Michigan. The procedures utilized for site preparation, sludge transportation and sludge application proved...
Empirical yield tables for Wisconsin.
Burton L. Essex; Jerold T. Hahn
1976-01-01
Describes the tables derived from the 1968 forest survey of Wisconsin. These tables are broken down according to Wisconsin's 5 Forest Survey Units, 12 forest types, and 5 site index classes. Presents 18 tables as examples of the more than 500 that can be ordered by using the order form enclosed in the publication.
A discrimlnant function approach to ecological site classification in northern New England
James M. Fincher; Marie-Louise Smith
1994-01-01
Describes one approach to ecologically based classification of upland forest community types of the White and Green Mountain physiographic regions. The classification approach is based on an intensive statistical analysis of the relationship between the communities and soil-site factors. Discriminant functions useful in distinguishing between types based on soil-site...
NASA Astrophysics Data System (ADS)
Prussian, K. M.
2006-12-01
The density of forest canopy affects the amount of rain reaching the forest floor in forested environments of Southeast Alaska. Less throughfall occurs in the second growth sites than in the old growth site and greater throughfall occurs in the clear-cut sites. More specifically, preliminary data show that SG sites received between 38 and 87% of the OG throughfall and the clear-cut sites experienced between 145 and 248% of the OG throughfall. Precipitation gages were used to monitor throughfall in each of the forested vegetation sites on Prince of Wales Island, Alaska, as an indicator of the amount of water reaching the forest floor in these different forest types. Data collected during 2004 and 2005 included 23 storms ranging from 0.2 to 10.6 inches of rain in the clear-cut forest. This monitoring is an effort to determine the affect, if any, that forest management could have on throughfall, and furthermore, lend information to forest management effects on the water balance within a watershed. Site selection focused on similarities in location, elevation, aspect, and accessibility while accounting for the three varying vegetation conditions. Data collected during 2004 and 2005 sampling seasons were in the same sampling plots, while data collected in 2006 is a duplicate set of sites. Twenty-three storms were used to determine the affect, if any, that forest management could have on throughfall, and furthermore, lend information to forest management effects on the water balance within a watershed. The second growth stand was harvested in 1979 and is currently in stem re-initiation phase with thick conifer regeneration. The clear-cut site was harvested in 1999 and contains conifer vegetation, blueberry, and salmonberry vegetation less than five feet in height. Storms were defined as events that were clearly delineated by lack of rainfall for a period of time, or similar antecedent conditions, and totaled at least .2 inches of rain at the CC site. Analysis of a storm event began prior to rainfall (in the CC site) and terminated post throughfall in the SG sites.
Litter dynamics in two Sierran mixed conifer forests. I. Litterfall and decomposition rates
Stohlgren, Thomas J.
1988-01-01
Litterfall was measured for 4 years and leaf litter decomposition rates were studied for 3.6 years in two mixed conifer forest (giant sequoia-fir and fir-pine) in the southern Sierra Nevada of California. The giant sequoia-fir forest (GS site) was dominated by giant sequoia (Sequoiadendron giganteum (Lindl.) Buchh.), white fir (Abies concolor Lindl. & Gord.), and sugar pine (Pinus lambertiana Dougl.). The fir-pine forest (FP site) was dominated by white fir, sugar pine, and incense cedar (Calocedrus decurrens (Torr.) Florin). Litterfall, including large woody debris -1•year-1 compared with 4355 kg•ha-1•year-1 at the FP site (3.4:1). In the GS site, leaf litter decomposition after 3.6 years was slowest for giant sequoia (28.2% mass loss), followed by sugar pine (34.3%) and white fie (45.1%). In the FP site, mass loss was slowest for sugar pine (40.0%), followed by white fir (45.1%), while incense cedar showed the greatest mass loss (56.9%) after 3.6 years. High litterfall rates of large woody debris (i.e., 2.5-15.2 cm diameter) and slow rates of leaf litter decomposition in the giant sequoia-fir forest type may result in higher litter accumulation rates than in the fir-pine type. Leaf litter times to 95% decay for the GS and FP sites were 30 and 27 years, respectively, if the initial 0.7-year period (a short period of rapid mass decay) was ignored in the calculation. A mass balance approach for total litterfall (<15.2 cm diameter) decomposition yielded lower decay constants than did the litterbag study and therefore longer times to 95% decay (57 years for the GS site and 62 years for the FP site).
Fuel Type Classification and Fuel Loading in Central Interior, Korea: Uiseong-Gun
Myoung Soo Won; Kyo Sang Koo; Myung Bo Lee; Si Young Lee
2006-01-01
The objective of this study is classification of fuel type and calculation of fuel loading to assess forest fire hazard by fuel characteristics at Uiseong-gun, Gyeongbuk located in the central interior of Korea. A database was constructed of eight factors such as forest type and topography using ArcGIS 9.1 GIS programs. An on-site survey was conducted for investigating...
Lin, Guigang; McCormack, M Luke; Ma, Chengen; Guo, Dali
2017-02-01
Compared with ectomycorrhizal (ECM) forests, arbuscular mycorrhizal (AM) forests are hypothesized to have higher carbon (C) cycling rates and a more open nitrogen (N) cycle. To test this hypothesis, we synthesized 645 observations, including 22 variables related to below-ground C and N dynamics from 100 sites, where AM and ECM forests co-occurred at the same site. Leaf litter quality was lower in ECM than in AM trees, leading to greater forest floor C stocks in ECM forests. By contrast, AM forests had significantly higher mineral soil C concentrations, and this result was strongly mediated by plant traits and climate. No significant differences were found between AM and ECM forests in C fluxes and labile C concentrations. Furthermore, inorganic N concentrations, net N mineralization and nitrification rates were all higher in AM than in ECM forests, indicating 'mineral' N economy in AM but 'organic' N economy in ECM trees. AM and ECM forests show systematic differences in mineral vs organic N cycling, and thus mycorrhizal type may be useful in predicting how different tree species respond to multiple environmental change factors. By contrast, mycorrhizal type alone cannot reliably predict below-ground C dynamics without considering plant traits and climate. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
The role of forest humus in watershed management in New England
G. R., Jr. Trimble; Howard W. Lull
1956-01-01
Forest humus is one of the most interesting components of the forest environment. Its surface serves as a depository for leaf fall and needle fall, with successive depths marking stages of transmutation from the freshly fallen to the decomposed. And humus is responsive: humus type and depth are indicators of forest treatment and, to some extent, of site quality....
Forest discrimination with multipolarization imaging radar
NASA Technical Reports Server (NTRS)
Ford, J. P.; Wickland, D. E.
1985-01-01
The use of radar polarization diversity for discriminating forest canopy variables on airborne synthetic-aperture radar (SAR) images is evaluated. SAR images were acquired at L-Band (24.6 cm) simultaneously in four linear polarization states (HH, HV, VH, and VV) in South Carolina on March 1, 1984. In order to relate the polarization signatures to biophysical properties, false-color composite images were compared to maps of forest stands in the timber compartment. In decreasing order, the most useful correlative forest data are stand basal area, forest age, site condition index, and forest management type. It is found that multipolarization images discriminate variation in tree density and difference in the amount of understory, but do not discriminate between evergreen and deciduous forest types.
Pollen-based biomes for Beringia 18,000, 6000 and 0 14C yr BP
Edwards, M.E.; Anderson, P.M.; Brubaker, L.B.; Ager, T.A.; Andreev, A.A.; Bigelow, N.H.; Cwynar, L.C.; Eisner, Wendy R.; Harrison, S.P.; Hu, F.-S.; Jolly, D.; Lozhkin, A.V.; MacDonald, G.M.; Mock, Cary J.; Ritchie, J.C.; Sher, A.V.; Spear, R.W.; Williams, J.W.; Yu, G.
2000-01-01
The objective biomization method developed by Prentice et al. (1996) for Europe was extended using modern pollen samples from Beringia and then applied to fossil pollen data to reconstruct palaeovegetation patterns at 6000 and 18,000 14C yr BP. The predicted modern distribution of tundra, taiga and cool conifer forests in Alaska and north-western Canada generally corresponds well to actual vegetation patterns, although sites in regions characterized today by a mosaic of forest and tundra vegetation tend to be preferentially assigned to tundra. Siberian larch forests are delimited less well, probably due to the extreme under-representation of Larix in pollen spectra. The biome distribution across Beringia at 6000 14C yr BP was broadly similar to today, with little change in the northern forest limit, except for a possible northward-advance in the Mackenzie delta region. The western forest limit in Alaska was probably east of its modern position. At 18,000 14C yr BP the whole of Beringia was covered by tundra. However, the importance of the various plant functional types varied from site to site, supporting the idea that the vegetation cover was a mosaic of different tundra types.
Are prescribed fire and thinning dominant processes affecting snag occurrence at a landscape scale?
Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.
2014-11-01
Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less
NASA Astrophysics Data System (ADS)
Ivanova, G. A.; Conard, S. G.; McRae, D. J.; Kukavskaya, E. A.; Bogorodskaya, A. V.; Kovaleva, N. M.
2010-12-01
Wildfire and large-scale forest harvesting are the two major disturbances in the Russian boreal forests. Non-recovered logged sites total about a million hectares in Siberia. Logged sites are characterized by higher fire hazard than forest sites due to the presence of generally untreated logging slash (i.e., available fuel) which dries out much more rapidly compared to understory fuels. Moreover, most logging sites can be easily accessed by local population; this increases the risk for fire ignition. Fire impacts on the overstory trees, subcanopy woody layer, and ground vegetation biomass were estimated on 14 logged and unlogged comparison sites in the Lower Angara Region in 2009-2010 as part of the NASA-funded NEESPI project, The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia. Based on calculated fuel consumption, we estimated carbon emission from fires on both logged and unlogged burned sites. Carbon emission from fires on logged sites appeared to be twice that on unlogged sites. Soil respiration decreased on both site types after fires. This reduction may partially offset fire-produced carbon emissions. Carbon emissions from fire and post-fire ecosystem damage on logged sites are expected to increase under changing climate conditions and as a result of anticipated increases in future forest harvesting in Siberia.
NASA Astrophysics Data System (ADS)
Leigh, D.; Gragson, T. L.
2017-12-01
Summits of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, including use of fire. We hypothesize differences in soil chemical and physical traits evolved because of this transformation. Paired forest versus grassland soils were sampled at four separate hillslope sites having a clear boundary between the two vegetation types. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples from the upper 7.6 cm of the mineral soil within each vegetation type and the A horizon thickness was recorded at each core hole. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. Analyses included bulk density, pH, plant-available nutrients, organic matter, fulvic versus humic acids, total carbon and nitrogen, amorphous silica, and charcoal content. Results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, and have lower bulk densities. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we validated with saturated hydraulic conductivity tests. Melanization has been more pronounced in the managed pastures, which contain significantly more humic acids than forests. Significantly more charcoal (black carbon) is present in the pastured soils from long-term use of fire, and having implications for sequestration of carbon. Pastures register significantly higher soil magnetic susceptibility than forests, also related to past use of fire as a management tool. Pastures contain greater contents of amorphous silica due to more rapid phytolith production from grasses as opposed to trees. Anthropic manipulation of the biotic factor of pedogenesis has created new soil materials, processes, and functions. Our results indicate better soil quality in pastured soils, counter to stereotypical concepts of soil degradation due to grazing, and having important implications for soil sustainability
Empirical yield tables for Minnesota.
Jerold T. Hahn; Gerhard K. Raile
1982-01-01
Describes the tables derived from the 1977 Forest Survey of Minnesota and presents examples of how the tables can be used. These tables are broken down according to Minnesota's four Forest Survey Units, 14 forest types, and 5 site index classes. Presents 210 of the 350 possible tables that contained sufficient data to justify publication.
Natural regeneration following timber harvest in interior cedar-hemlock-white pine forests
Dennis E. Ferguson
1994-01-01
Natural regeneration of interior cedar-hemlock-white pine forests is usually prompt and abundant. These productive sites support up to 10 commercial timber species. Retrospective examination of cutover forest stands allowed determination of variables that are important predictors of regeneration. This report discusses variables such as habitat type, slope, aspect,...
Soil properties and aspen development five years after compaction and forest floor removal
Douglas M. Stone; John D. Elioff
1998-01-01
Forest management activities that decrease soil porosity and remove organic matter have been associated with declines in site productivity. In the northern Lake States region, research is in progress in the aspen (Populus tremuloides Michx. and P. grandidentata Michx.) forest type to determine effects of soil compaction and organic...
Observed response of vulnerable forest ecosystems to ongoing site condition changes
NASA Astrophysics Data System (ADS)
Bidló, András; Gulyás, Krisztina; Gálos, Borbála; Horváth, Adrienn
2017-04-01
In the last decades, several symptoms of drought damages have been observed in the Hungarian forests (e.g. sparse canopy, leaf drop, top drying, fungal diseases). Forest responses are also influenced by other factors beyond climate (e.g. available water content, soil conditions, biotic damages, adaptive capacity, etc.). Our aim was to prepare a complex analysis of the change of all site conditions, that could lead to the observed health status decline of the forest tree species. For a case study region in Hungary (Keszthely Mountains, near to Lake Balaton) precipitation and temperature tendencies as well as the frequency of extreme dry summers have been determined for the period 1961-2100. Soil conditions have been investigated in 9 profiles and soil mapping analysis has been carried out including 100 sites with hand soil auger. For the investigation of the water-balance we used the modified Thornthwaite-type monthly model and determined water stress when the relative extractable water (REW) decreased below 40% (Granier et al., 1999). In the last 30 years three severe droughts have been detected when duration of extremely dry and hot periods exceeded 3-4 years. Not only orographic and microclimate conditions but also soil types show a large diversity within a relatively small distance in the case study area. On rendzina with shallow topsoil layer thickness, low water holding capacity, black pine was planted. Brown earth with medium and brown forest soils with deep topsoil layer thickness is favourable for oak (sessile or Turkey) and beech. These microscale differences between the three site condition types resulted different available water contents quantified by the modified Thornthwaite-type monthly water-balance model. Our results show the different sensitivity of the studied sites to water stress. It means that the local scale orographic and soil conditions can enhance the projected drought risk of the region. However, the favourable microclimatic effects of the existing forest stands are still a knowledge gap and the topic of the ongoing research. The research is supported by the "Agroclimate-2" (VKSZ_12-1-2013-0034) joint EU-national research project and by the ÚNKP-16-4-3 New National Excellence Program of the Ministry of Human Capacities. Keywords: climate extremes, changing site conditions, water stress
NASA Astrophysics Data System (ADS)
Su, Y.; Guo, Q.; Jin, S.; Gao, S.; Hu, T.; Liu, J.; Xue, B. L.
2017-12-01
Tree height is an important forest structure parameter for understanding forest ecosystem and improving the accuracy of global carbon stock quantification. Light detection and ranging (LiDAR) can provide accurate tree height measurements, but its use in large-scale tree height mapping is limited by the spatial availability. Random Forest (RF) has been one of the most commonly used algorithms for mapping large-scale tree height through the fusion of LiDAR and other remotely sensed datasets. However, how the variances in vegetation types, geolocations and spatial scales of different study sites influence the RF results is still a question that needs to be addressed. In this study, we selected 16 study sites across four vegetation types in United States (U.S.) fully covered by airborne LiDAR data, and the area of each site was 100 km2. The LiDAR-derived canopy height models (CHMs) were used as the ground truth to train the RF algorithm to predict canopy height from other remotely sensed variables, such as Landsat TM imagery, terrain information and climate surfaces. To address the abovementioned question, 22 models were run under different combinations of vegetation types, geolocations and spatial scales. The results show that the RF model trained at one specific location or vegetation type cannot be used to predict tree height in other locations or vegetation types. However, by training the RF model using samples from all locations and vegetation types, a universal model can be achieved for predicting canopy height across different locations and vegetation types. Moreover, the number of training samples and the targeted spatial resolution of the canopy height product have noticeable influence on the RF prediction accuracy.
Phylobetadiversity among forest types in the Brazilian Atlantic Forest complex.
Duarte, Leandro Da Silva; Bergamin, Rodrigo Scarton; Marcilio-Silva, Vinícius; Seger, Guilherme Dubal Dos Santos; Marques, Márcia Cristina Mendes
2014-01-01
Phylobetadiversity is defined as the phylogenetic resemblance between communities or biomes. Analyzing phylobetadiversity patterns among different vegetation physiognomies within a single biome is crucial to understand the historical affinities between them. Based on the widely accepted idea that different forest physiognomies within the Southern Brazilian Atlantic Forest constitute different facies of a single biome, we hypothesize that more recent phylogenetic nodes should drive phylobetadiversity gradients between the different forest types within the Atlantic Forest, as the phylogenetic divergence among those forest types is biogeographically recent. We compiled information from 206 checklists describing the occurrence of shrub/tree species across three different forest physiognomies within the Southern Brazilian Atlantic Forest (Dense, Mixed and Seasonal forests). We analyzed intra-site phylogenetic structure (phylogenetic diversity, net relatedness index and nearest taxon index) and phylobetadiversity between plots located at different forest types, using five different methods differing in sensitivity to either basal or terminal nodes (phylogenetic fuzzy weighting, COMDIST, COMDISTNT, UniFrac and Rao's H). Mixed forests showed higher phylogenetic diversity and overdispersion than the other forest types. Furthermore, all forest types differed from each other in relation phylobetadiversity patterns, particularly when phylobetadiversity methods more sensitive to terminal nodes were employed. Mixed forests tended to show higher phylogenetic differentiation to Dense and Seasonal forests than these latter from each other. The higher phylogenetic diversity and phylobetadiversity levels found in Mixed forests when compared to the others likely result from the biogeographical origin of several taxa occurring in these forests. On one hand, Mixed forests shelter several temperate taxa, like the conifers Araucaria and Podocarpus. On the other hand, tropical groups, like Myrtaceae, are also very representative of this forest type. We point out to the need of more attention to Mixed forests as a conservation target within the Brazilian Atlantic Forest given their high phylogenetic uniqueness.
Phylobetadiversity among Forest Types in the Brazilian Atlantic Forest Complex
Duarte, Leandro Da Silva; Bergamin, Rodrigo Scarton; Marcilio-Silva, Vinícius; Seger, Guilherme Dubal Dos Santos; Marques, Márcia Cristina Mendes
2014-01-01
Phylobetadiversity is defined as the phylogenetic resemblance between communities or biomes. Analyzing phylobetadiversity patterns among different vegetation physiognomies within a single biome is crucial to understand the historical affinities between them. Based on the widely accepted idea that different forest physiognomies within the Southern Brazilian Atlantic Forest constitute different facies of a single biome, we hypothesize that more recent phylogenetic nodes should drive phylobetadiversity gradients between the different forest types within the Atlantic Forest, as the phylogenetic divergence among those forest types is biogeographically recent. We compiled information from 206 checklists describing the occurrence of shrub/tree species across three different forest physiognomies within the Southern Brazilian Atlantic Forest (Dense, Mixed and Seasonal forests). We analyzed intra-site phylogenetic structure (phylogenetic diversity, net relatedness index and nearest taxon index) and phylobetadiversity between plots located at different forest types, using five different methods differing in sensitivity to either basal or terminal nodes (phylogenetic fuzzy weighting, COMDIST, COMDISTNT, UniFrac and Rao’s H). Mixed forests showed higher phylogenetic diversity and overdispersion than the other forest types. Furthermore, all forest types differed from each other in relation phylobetadiversity patterns, particularly when phylobetadiversity methods more sensitive to terminal nodes were employed. Mixed forests tended to show higher phylogenetic differentiation to Dense and Seasonal forests than these latter from each other. The higher phylogenetic diversity and phylobetadiversity levels found in Mixed forests when compared to the others likely result from the biogeographical origin of several taxa occurring in these forests. On one hand, Mixed forests shelter several temperate taxa, like the conifers Araucaria and Podocarpus. On the other hand, tropical groups, like Myrtaceae, are also very representative of this forest type. We point out to the need of more attention to Mixed forests as a conservation target within the Brazilian Atlantic Forest given their high phylogenetic uniqueness. PMID:25121495
Xiaoqian Sun; Zhuoqiong He; John Kabrick
2008-01-01
This paper presents a Bayesian spatial method for analysing the site index data from the Missouri Ozark Forest Ecosystem Project (MOFEP). Based on ecological background and availability, we select three variables, the aspect class, the soil depth and the land type association as covariates for analysis. To allow great flexibility of the smoothness of the random field,...
C.B. LeDoux; J.E. Baumgras
1991-01-01
The impact of selected site and stand attributes on stand management is demonstrated using actual forest model plot data and a complete systems simulation model called MANAGE. The influence of terrain on the type of logging technology required to log a stand and the resulting impact on stand management is also illustrated. The results can be used by managers and...
NASA Technical Reports Server (NTRS)
Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.
2004-01-01
"Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.
Tweiten, Michael A; Calcote, Randy R; Lynch, Elizabeth A; Hotchkiss, Sara C; Schuurman, Gregor W
2015-10-01
Landscape-scale vulnerability assessment from multiple sources, including paleoecological site histories, can inform climate change adaptation. We used an array of lake sediment pollen and charcoal records to determine how soils and landscape factors influenced the variability of forest composition change over the past 2000 years. The forests in this study are located in northwestern Wisconsin on a sandy glacial outwash plain. Soils and local climate vary across the study area. We used the Natural Resource Conservation Service's Soil Survey Geographic soil database and published fire histories to characterize differences in soils and fire history around each lake site. Individual site histories differed in two metrics of past vegetation dynamics: the extent to which white pine (Pinus strobus) increased during the Little Ice Age (LIA) climate period and the volatility in the rate of change between samples at 50-120 yr intervals. Greater increases of white pine during the LIA occurred on sites with less sandy soils (R² = 0.45, P < 0.0163) and on sites with relatively warmer and drier local climate (R² = 0.55, P < 0.0056). Volatility in the rate of change between samples was positively associated with LIA fire frequency (R² = 0.41, P < 0.0256). Over multi-decadal to centennial timescales, forest compositional change and rate-of-change volatility were associated with higher fire frequency. Over longer (multi-centennial) time frames, forest composition change, especially increased white pine, shifted most in sites with more soil moisture. Our results show that responsiveness of forest composition to climate change was influenced by soils, local climate, and fire. The anticipated climatic changes in the next century will not produce the same community dynamics on the same soil types as in the past, but understanding past dynamics and relationships can help us assess how novel factors and combinations of factors in the future may influence various site types. Our results support climate change adaptation efforts to monitor and conserve the landscape's full range of geophysical features.
Forest plantations in the Midsouth, U.S.A.
James F. Rosson
1995-01-01
Timberland that has been artificially regenerated in the seven Midsouth States was analyzed by ownership, forest type, stocking class, age, tree density, basal area, site class, and volume. Growing-stock volumes of natural stands and plantations were compared.
Young, J.A.; Smith, D.R.; Snyder, C.D.; Lemarie, D.P.
2002-01-01
Biodiversity surveys are often hampered by the inability to control extraneous sources of variability introduced into comparisons of populations across a heterogenous landscape. If not specifically accounted for a priori, this noise can weaken comparisons between sites, and can make it difficult to draw inferences about specific ecological processes. We developed a terrain-based, paired-site sampling design to analyze differences in aquatic biodiversity between streams draining eastern hemlock (Tsuga canadensis) forests, and those draining mixed hardwood forests in Delaware Water Gap National Recreation Area (USA). The goal of this design was to minimize variance due to terrain influences on stream communities, while representing the range of hemlock dominated stream environments present in the park. We used geographic information systems (GIS) and cluster analysis to define and partition hemlock dominated streams into terrain types based on topographic variables and stream order. We computed similarity of forest stands within terrain types and used this information to pair hemlock-dominated streams with hardwood counterparts prior to sampling. We evaluated the effectiveness of the design through power analysis and found that power to detect differences in aquatic invertebrate taxa richness was highest when sites were paired and terrain type was included as a factor in the analysis. Precision of the estimated difference in mean richness was nearly doubled using the terrain-based, paired site design in comparison to other evaluated designs. Use of this method allowed us to sample stream communities representative of park-wide forest conditions while effectively controlling for landscape variability.
S. B. Cox; M. R. Willig; F. N. Scatena
2002-01-01
We assessed the effects of landscape features (vegetation type and topography), season, and spatial hierarchy on the nutrient content of surface soils in the Luquillo Experimental Forest (LEF) of Puerto Rico. Considerable spatial variation characterized the soils of the LEF, and differences between replicate sites within each combination of vegetation type (tabonuco vs...
Chemical, physical and biological factors affecting wood decomposition in forest soils
Martin Jurgensen; Peter Laks; David Reed; Anne Collins; Deborah Page-Dumroese; Douglas Crawford
2004-01-01
Organic matter (OM) decomposition is an important variable in forest productivity and determining the potential of forest soils to sequester atmospheric CO2 (Grigal and Vance 2000; Kimble et al. 2003). Studies using OM from a particular location gives site-specific decomposition information, but differences in OM type and quality make it difficult to compare results...
Height-diameter allometry of tropical forest trees
T.R. Feldpausch; L. Banin; O.L. Phillips; T.R. Baker; S.L. Lewis; C.A. Quesada; K. Affum-Baffoe; E.J.M.M. Arets; N.J. Berry; M. Bird; E.S. Brondizio; P de Camargo; J. Chave; G. Djagbletey; T.F. Domingues; M. Drescher; P.M. Fearnside; M.B. Franca; N.M. Fyllas; G. Lopez-Gonzalez; A. Hladik; N. Higuchi; M.O. Hunter; Y. Iida; K.A. Salim; A.R. Kassim; M. Keller; J. Kemp; D.A. King; J.C. Lovett; B.S. Marimon; B.H. Marimon-Junior; E. Lenza; A.R. Marshall; D.J. Metcalfe; E.T.A. Mitchard; E.F. Moran; B.W. Nelson; R. Nilus; E.M. Nogueira; M. Palace; S. Patiño; K.S.-H. Peh; M.T. Raventos; J.M. Reitsma; G. Saiz; F. Schrodt; B. Sonke; H.E. Taedoumg; S. Tan; L. White; H. Woll; J. Lloyd
2011-01-01
Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical...
Forest values and how to sustain them
Leon S. Minckler
1995-01-01
The forestry profession has the responsibility of managing forests for all of their values. In the past, this has usually not been done. Often, timber has been the only value considered. The emphasis has not been on practices that combine other values with timber production. Such forestry practices must consider forest types and conditions, site quality and...
Amphibian malformations and body condition across an agricultural landscape of northwest Argentina.
Guerra, Cecilia; Aráoz, Ezequiel
2016-09-26
Agricultural landscapes support large amphibian populations because they provide habitat for many species, although agriculture affects amphibians through various mechanisms. Pollution with agrochemicals is the major threat to amphibian populations after habitat loss, as chemicals alter the ecophysiology of amphibians, putting their health and survival at risk. We aimed to assess the effect of different environments, sites, width of forest buffers and sampling years on the health of amphibians, which was estimated through the prevalence of malformations and body condition. During 3 yr of pitfall trapping, we captured 4491 amphibians. The prevalence of malformations was higher in the croplands than in the forests, while the body condition was better within forests. The prevalence of malformations was higher in the narrower forest site than in the wider forest site. The prevalence of malformations and the body condition were higher in the third year. The prevalence of malformations differed by species. We found 11 types of malformation, which mainly affected limbs and were unilateral or bilaterally asymmetrical. Our results showed that the prevalence of malformations and body condition reflect different aspects of the health of amphibians and that forest individuals are healthier than those from croplands. The results also highlight the importance of spatial configuration besides the conservation of natural habitats to preserve healthy amphibians in agricultural landscapes. The types of malformation that we found suggest that agrochemicals could be an important cause of malformations.
Environmental characteristics of the Grand Fir Mosaic and adjacent habitat types
Dennis E. Ferguson; John C. Byrne
2000-01-01
Grand Fir Mosaic habitats differ from adjacent forest habitats in their slow rate of secondary succession to woody vegetation. Remote monitoring stations were used to sample the environment at a Grand Fir Mosaic site and three adjacent habitat types. The Grand Fir Mosaic site has shorter growing seasons, cooler temperatures, and more soil moisture than the other sites...
NASA Astrophysics Data System (ADS)
Kuttner, Benjamin George
Natural fire return intervals are relatively long in eastern Canadian boreal forests and often allow for the development of stands with multiple, successive cohorts of trees. Multi-cohort forest management (MCM) provides a strategy to maintain such multi-cohort stands that focuses on three broad phases of increasingly complex, post-fire stand development, termed "cohorts", and recommends different silvicultural approaches be applied to emulate different cohort types. Previous research on structural cohort typing has relied upon primarily subjective classification methods; in this thesis, I develop more comprehensive and objective methods for three common boreal mixedwood and black spruce forest types in northeastern Ontario. Additionally, I examine relationships between cohort types and stand age, productivity, and disturbance history and the utility of airborne LiDAR to retrieve ground-based classifications and to extend structural cohort typing from plot- to stand-levels. In both mixedwood and black spruce forest types, stand age and age-related deadwood features varied systematically with cohort classes in support of an age-based interpretation of increasing cohort complexity. However, correlations of stand age with cohort classes were surprisingly weak. Differences in site productivity had a significant effect on the accrual of increasingly complex multi-cohort stand structure in both forest types, especially in black spruce stands. The effects of past harvesting in predictive models of class membership were only significant when considered in isolation of age. As an age-emulation strategy, the three cohort model appeared to be poorly suited to black spruce forests where the accrual of structural complexity appeared to be more a function of site productivity than age. Airborne LiDAR data appear to be particularly useful in recovering plot-based cohort types and extending them to the stand-level. The main gradients of structural variability detected using LiDAR were similar between boreal mixedwood and black spruce forest types; the best LiDAR-based models of cohort type relied upon combinations of tree size, size heterogeneity, and tree density related variables. The methods described here to measure, classify, and predict cohort-related structural complexity assist in translating the conceptual three cohort model to a more precise, measurement-based management system. In addition, the approaches presented here to measure and classify stand structural complexity promise to significantly enhance the detail of structural information in operational forest inventories in support of a wide array of forest management and conservation applications.
Törn, A; Tolvanen, A; Norokorpi, Y; Tervo, R; Siikamäki, P
2009-03-01
Nature-based tourism in protected areas has increased and diversified dramatically during the last decades. Different recreational activities have a range of impacts on natural environments. This paper reports results from a comparison of the impacts of hiking, cross-country skiing and horse riding on trail characteristics and vegetation in northern Finland. Widths and depths of existing trails, and vegetation on trails and in the neighbouring forests were monitored in two research sites during 2001 and 2002. Trail characteristics and vegetation were clearly related to the recreational activity, research site and forest type. Horse trails were as deep as hiking trails, even though the annual number of users was 150-fold higher on the hiking trails. Simultaneously, cross-country skiing had the least effect on trails due to the protective snow cover during winter. Hiking trail plots had little or no vegetation cover, horse riding trail plots had lower vegetation cover than forest plots, while skiing had no impact on total vegetation cover. On the other hand, on horse riding trails there were more forbs and grasses, many of which did not grow naturally in the forest. These species that were limited to riding trails may change the structure of adjacent plant communities in the long run. Therefore, the type of activities undertaken and the sensitivity of habitats to these activities should be a major consideration in the planning and management of nature-based tourism. Establishment of artificial structures, such as stairs, duckboards and trail cover, or complete closure of the site, may be the only way to protect the most sensitive or deteriorated sites.
Doyle, T.W.; Smith, T. J.; Robblee, M.B.
1995-01-01
On August 24, 1992, Hurricane Andrew downed and defoliated an extensive swath of mangrove trees across the lower Florida peninsula. Permanent field sites were established to assess the extent of forest damage and to monitor the rate and process of forest recovery. Canopy trees suffered the highest mortality particularly for sites within and immediately north of the storm's eyewall. The type and extent of site damage, windthrow, branch loss, and defoliation generally decreased exponentially with increasing distance from the storm track. Forest damage was greater for sites in the storm's right quadrant than in the left quadrant tor the same given distance from the storm center. Stand exposure, both horizontally and vertically, increased the susceptibility and probability of forest damage and accounted for much of the local variability. Slight species differences were found. Laguncularia racemosa exceeded Avicennia germinans and Rhizophora mangle in damage tendency under similar wind conditions. Azimuths of downed trees were strongly correlated with maximum wind speed and vector based on a hurricane simulation of the storm. Lateral branch loss and leaf defoliation on sites without windthrow damage indicated a degree of crown thinning and light penetration equivalent to treefall gaps under normally intact forest conditions. Mangrove species and forests are susceptible to catastrophic disturbance by hurricanes; the impacts of which are significant to changes in forest structure and function.
Daniel A. Marion; Jonathan D. Phillips; Chad Yocum; Stephanie H. Mehlhope
2014-01-01
This study investigates the geomorphic effects of ford-type stream crossings in an off-highway vehicle (OHV) trail complex in the Ouachita National Forest, Arkansas. At a total of 15 crossing sites, we used a disturbed vs. undisturbed study design to assess soil truncation and an upstream vs. downstream design to assess in-channel effects. The 15 sites ranged from OHV...
Community turnover of wood-inhabiting fungi across hierarchical spatial scales.
Abrego, Nerea; García-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel
2014-01-01
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence.
Community Turnover of Wood-Inhabiting Fungi across Hierarchical Spatial Scales
Abrego, Nerea; García-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel
2014-01-01
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence. PMID:25058128
Lead forms in urban turfgrass and forest soils as related to organic matter content and pH
Ian D. Yesilonis; Bruce R. James; Richard V. Pouyat; Bahram Momen
2008-01-01
Soil pH may influence speciation and extractability of Pb, depending on type of vegetation in urban soil environments. We investigated the relationship between soil pH and Pb extractability at forest and turf grass sites in Baltimore, Maryland. Our two hypotheses were: (1) due to lower pH values in forest soils, more Pb will be in exchangeable forms in forested than in...
Forest nutrient and carbon pools at Walker Branch watershed: changes during a 21-year period
Carl C. Trettin; D.W. Johnson; D.E. Todd
1999-01-01
A 21-yr perspective on changes in nutrient and C pools on undisturbed upland forest sites is provided. Plots originally representing four cover types have been sampled three times. On each plot, forest biomass, forest floor, and soil, to a depth of 60 cm, were measured, sampled, and analyzed for Ca, Mg, C, N, and P. Exchangeable soil Ca and Mg have declined in most...
Joseph Wunderle, Jr; Wayne J. Arendt
2011-01-01
The Luquillo Experimental Forest (LEF) located on the Caribbean island of Puerto Rico has a rich history of ecological research, including a variety of avian studies, and is one of the most active ecological research sites in the Neotropics. The LEF spans an elevational range from 100 to 1075mover which five life zones and four forest types are found in a warm, humid...
[Spatial pattern of sub-alpine forest restoration in west Sichuan].
Zhang, Yuandong; Liu, Shirong; Zhao, Changming
2005-09-01
West Sichuan sub-alpine is an extension of Qinghai-Tibet Plateau to southeast China, which is covered mainly with dark coniferous forest. As a result of long-term large scale over-logging, the forests have been greatly reduced and degraded. Nowadays, the forest restoration and regeneration in the region are being highlighted. Selecting Miyaluo as a case study area and employing the methods of plot investigation, ETM image interpretation, and overlaying vegetation map with digital topography, this paper analyzed the relations between the appearance and origin of four forest vegetation types, along with their topography differentiation and spatial patterns after a large scale logging and regeneration. The results showed that the appearance of forest vegetations was significantly correlated with their origin. Old coniferous forests (OC) were primitive ones, middle-aged and young coniferous forests (MYC) were from artificial regeneration, deciduous broadleaf forests (DB) were natural secondary ones, while mixed coniferous and deciduous forests (MCD) were partly from natural secondary ones and others from the conjunct action of artificial and natural regeneration. The main cut area in Miyaluo located in the sites with elevation from 2 800 to 3 600 m, where forest restoration appeared difference among different aspects. MYC was mainly distributed on sunny and half-sunny slope, DB and MCD were distributed on shady and half-shady slope, and OC were reserved on the sites with elevation more than 3 600 m. In the process of forest restoration, the four forest vegetation types were in mosaic pattern, and the landscape was seriously fragmentized.
USDA-ARS?s Scientific Manuscript database
McPhail-type traps baited with ammonium acetate and putrescine were used to monitor populations of Anastrepha obliqua and A. suspensa at four sites in Guánica, Puerto Rico; one forest fragment in Ponce, Puerto Rico; in a commercial mango orchard in Guayanilla, PR; and an experimental carambola orcha...
Gervais, B R.; MacDonald, G M.
2001-04-01
We sampled and analyzed surface sediments from 31 lakes along a latitudinal transect crossing the coniferous treeline on the Kola Peninsula, Russia. The major vegetation zones along the transect were tundra, birch-forest tundra, pine-forest tundra, and forest. The results indicate that the major vegetation types in our study area have distinct pollen spectra. Sum-of-squares cluster analysis and principal components analysis (PCA) groupings of pollen sites correspond to the major vegetation zones. PCA ordination of taxa indicates that the first axis separates taxa typical of the forest zone (Pinus, Picea) from taxa typical of tundra and forest-tundra zones (Polypodiaceae, Ericaceae, and Betula). The current position of the coniferous treeline, defined in our region by Pinus sylvestris, occurs roughly where Pinus pollen values reach 35% or greater. Arboreal pollen (AP)/non-arboreal pollen (NAP) ratios were calculated for each site and plotted against geographic distance along the transect. AP/NAP ratios of 7 or greater are found within pine-forest tundra and forest vegetation zones. Pinus stomates (dispersed stomatal guard cells) are absent from sites north of the coniferous treeline and all but two samples from the forested sites contain stomates. Stomate concentrations among the samples are highly variable and range from 10 to 458 per ml and positively correlate with the changing Pinus pollen values.
NASA Astrophysics Data System (ADS)
Kelly, A. E.; Goulden, M.; Fellows, A. W.
2013-12-01
California's Mediterranean climate supports a broad diversity of ecosystem types, including Sequoia forests in the mid-montane Sierra Nevada. Understanding how winter cold and summer drought interact to produce the lush forest in the Sierra is critical to predicting the impacts of projected climate change on California's ecosystems, water supply, and carbon cycling. We investigated how smooth gradients of temperature and water availability produced sharp thresholds in biomass, productivity, growing season, water use, and ultimately ecosystem type and function. We used the climate gradient of the western slope of the Sierra Nevada as a study system. Four eddy covariance towers were situated in the major ecosystem types of the Sierra Nevada at approximately 800-m elevation intervals. Eddy flux data were combined with remote sensing and direct measurements of biomass, productivity, soil available water, and evapotranspiration to understand how weather and available water control ecosystem production and function. We found that production at the high elevation lodgepole site at 2700 m was strongly limited by winter cold. Production at the low elevation oak woodland site at 400 m was strongly limited by summer drought. The yellow pine site at 1200 m was only 4 °C cooler than the oak woodland site, yet had an order of magnitude more biomass and productivity with year-round growth. The mixed conifer site at 2000 m is 3.5 °C warmer than the lodgepole forest, yet also has higher biomass, ten times higher productivity, and year-round growth. We conclude that there is a broad climatological 'sweet spot' within the Sierra Nevada, in which the Mediterranean climate can support large-statured forest with high growth rates. The range of the mid-elevation forest was sharply bounded by water limitation at the lower edge and cold limitation at the upper edge despite small differences in precipitation and temperature across these boundaries. Our results suggest that small changes in precipitation or winter warming could markedly alter ecosystem structure and function as well as carbon and water cycling in the Sierra Nevada.
Ferreira, R V; Serpa, D; Machado, A I; Rodríguez-Blanco, M L; Santos, L F; Taboada-Castro, M T; Cerqueira, M A; Keizer, J J
2016-12-01
Over the past decades, wildfires have affected extensive areas of the Mediterranean region with negative impacts on the environment. Most of the studies on fire-affected areas have focused on sediment losses by overland flow, whereas few have addressed post-fire nutrient export. The present study aimed to address this research gap by assessing nitrogen (nitrate and total nitrogen) losses by overland flow in a recently burnt area in north-central Portugal. To this end, three burnt slopes were selected for their contrasting forest types (eucalypt vs. pine) and parent materials (granite vs. schist). The selected study sites were a eucalypt site on granite (BEG), a eucalypt site on schist (BES) and a maritime pine site on schist (BPS). Overland flow samples were collected during the first six months after the wildfire on a 1- to 2-weekly basis, after which this study had to be cancelled due to bench terracing of some of the sites. A peak in total nitrogen concentrations was observed in burnt areas immediately after the first post-fire rainfall event as a response to the erosion of the N-enriched ash layer. After this initial peak, smaller peaks were observed throughout the study period, mainly as a response to overland flow and/or erosion events. Nitrogen export differed strikingly between the two types of forests on schist, being higher at the eucalypt than at the pine site, due to the lack of a protective soil layer. Parent material did not play an important role on nitrogen export by overland flow since no significant differences were found between the eucalypt sites on granite and schist. The present study provides some insight into the differences in post-fire soil fertility losses between forest types and parent materials in the Mediterranean region, which is crucial information for defining post-fire land management measures to reduce soil degradation. Copyright © 2015 Elsevier B.V. All rights reserved.
Disturbance-mediated accelerated succession in two Michigan forest types
Abrams, Marc D.; Scott, Michael L.
1989-01-01
In northern lower Michigan, logging accelerated sugar maple (Acer saccharum) dominance in a northern white cedar (Thuja occidentals) community, and clear-cutting and burning quickly converted certain sites dominated by mature jack pine (Pinus banksiana) to early-succesional hardwoods, including Prunus, Populus, and Quercus. In both forest types the succeeding hardwoods should continue to increase in the future at the expense of the pioneer conifer species. In the cedar example, sugar maple was also increasing a an undisturbed, old-growth stand, but at a much reduced rate than in the logged stand. Traditionally, disturbance was through to set back succession to some earlier stage. However, out study sites and at least several other North American forest communities exhibited accelerated succession following a wide range of disturbances, including logging fire, ice storms, wind-throw, disease, insect attack, and herbicide spraying.
Advances in remote sensing of forest background reflectance with MODIS BRDF data across Europe
NASA Astrophysics Data System (ADS)
Pisek, Jan; Alikas, Krista; Lukeš, Petr; Lundin, Lars; Kobler, Johannes; Santos-Reis, Margarida; Chen, Jing
2017-04-01
Spatial and temporal patterns of forest background (understory) reflectance are crucial for retrieving biophysical parameters of forest canopies (overstory) and subsequently for ecosystem modeling. However, systematic reflectance data covering different site types are almost missing. This presentation will focus on the validation of background reflectance retrievals using MODIS bidirectional reflectance distribution function (BRDF) data against in-situ understory reflectance measurements covering a diverse set of long-term ecological research (LTER) sites distributed along a wide latitudinal and elevational gradient across Europe: protected coniferous blueberry forest in Sweden, karst forest system in Austria, floodplain broadleaf forest and coniferous forest in the Czech Republic, and Mediterranean agro-sylvo-pastoral woodlands in Portugal. The multi-angle remote sensing data-based methodology was originally developed for the forest background signal retrieval in a boreal region. Here its performance will be tested across diverse forest conditions and moments during the growing season, which is a necessary step before conducting extensive mapping over forested areas. The results can be also used as an input for improved modeling of local carbon and energy fluxes.
NASA Astrophysics Data System (ADS)
Leigh, David; Gragson, Theodore
2017-04-01
Mounting evidence indicates that highland pastures of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, as early as during the late Neolithic and Bronze age by human actions including use of fire. We observe pronounced differences between soil profiles of ancient pastures and old-growth forests in otherwise similar landscape positions. In order to test physical and chemical differences, we collected paired samples of forest versus grassland soils at four separate hillslope sites where there was a clear boundary between the two vegetation types. Animal trails were excluded from sampling. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples (7.6 cm diameter) from the upper 7.6 cm of the mineral soil within each vegetation type, and the A horizon thickness was recorded at each core hole site. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. In addition, we measured the magnetic susceptibility of the mineral soil surface on two transects crossing the vegetation boundary. Core samples have been measured for bulk density, pH, plant-available nutrients, and organic matter; and tests for total carbon and nitrogen, amorphous silica, charcoal, and other forms of black carbon are ongoing. Preliminary results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, have lower soil bulk densities, have much finer and stronger structural development of soil aggregates. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we have validated with saturated hydraulic conductivity tests. Pedogenically, the pastured soils indicate that melanization processes have been much more pronounced than in the forested soils. Distinct changes in soil materials result from conversion to pasture. Significantly more black carbon (including macro-charcoal) appears to be present in the pastured soils, indicating that it plays an important role in melanization, in addition to long-term sequestration of carbon. Pastured soils contain greater contents of amorphous silica due to more rapid phytolith production from grasses as opposed to trees. Pastures register significantly higher soil magnetic susceptibility than forests, presumably from past use of fire. In essence, anthropic manipulation of the biotic factor of pedogenesis has created new soil materials, processes, and functions. Our current research involves radiocarbon and chronostratigraphy to establish rates of this anthropisation of the biotic factor.
NASA Astrophysics Data System (ADS)
Plch, Radek; Pulkrab, Karel; Bukáček, Jan; Sloup, Roman; Cudlín, Pavel
2016-10-01
The selection of the most sustainable forest management under given site conditions needs suitable criteria and indicators. For this purpose, carbon and economic balance assessment, completed with environmental impact computation using the Life Cycle Assessment (LCA) were used. The aim of this study was to compare forestry operations and wood production of selected forest stands with different i) tree species composition (Norway spruce - Picea abies and European beech - Fagus sylvatica) and ii) type of felling (chainsaw and harvester). Carbon and economic balance methods consist in the comparison of quantified inputs (fossil fuels, electricity, used machinery, fertilizers, etc., converted into emission units of carbon in Mg of C- CO2-eq. or EUR) with quantified outputs (biomass production in Mg of carbon or EUR). In this contribution, similar forest stands (“forest site complexes”) in the 4th forest vegetation zone (in the Czech Republic approximately 400-700 m above sea-level) were selected. Forestry operations were divided into 5 main stages: i) seedling production, ii) stand establishment and pruning, iii) thinning and final cutting, iv) skidding, and v) secondary timber transport and modelled for one rotation period of timber production (ca. 100 years). The differences between Norway spruce and European beech forest stands in the carbon efficiency were relatively small while higher differences were achieved in the economic efficiency (forest stands with Norway spruce had a higher economic efficiency). Concerning the comparison of different types of felling in Norway spruce forest stands, the harvester use proved to induce significantly higher environmental impacts (emission of carbon) and lower economic costs. The comparison of forestry operation stages showed that the main part of carbon emissions, originating from fuel production and combustion, is connected with a thinning and final cutting, skidding and secondary timber transport in relations to different types of felling.
Karis J. McFarlane; Margaret S. Torn; Paul J. Hanson; Rachel C. Porras; Christopher W. Swanston; Mac A. Callaham; Thomas P. Guilderson
2013-01-01
Forest soils represent a significant pool for carbon sequestration and storage, but the factors controlling soil carbon cycling are not well constrained.We compared soil carbon dynamics at five broadleaf forests in the Eastern US that vary in climate, soil type, and soil ecology: two sites at the University of Michigan Biological Station (MI-Coarse, sandy;MI-Fine,...
The chestnut oak forests of the anthracite region
C. F. Burnham; M. J. Ferree; F. E. Cunningham
1947-01-01
The chestnut oak forests occur mostly on poor sites along the tops and southern slopes of ridges in the central and southern parts of the Anthracite Region (see map). This forest type is not of much commercial value. It contains some saw timber and mine timber, but most of the chestnut oak stands are of seedling-and-sapling size. Furthermore, many of them are in...
Occupancy rates of primary burrowing crayfish in natural and disturbed large river bottomlands
Loughman, Zachary J.; Welsh, Stuart A.; Simon, Thomas P.
2012-01-01
Among crayfish, primary burrowing species are the least understood ecologically. Many primary burrowing crayfish inhabit floodplains where forested landscapes have been fragmented by agricultural, industrial, or residential uses. In this study, site occupancy rates (ψ) were modeled for two primary burrowing crayfish, Fallicambarus fodiens (Cottle, 1863) and Cambarus thomai Jezerinac, 1993, from Ohio and Kanawha river floodplains in West Virginia, U.S.A. Fallicambarus fodiens is one of West Virginia’s rarest crayfish, while C. thomai is prevalent in most wetlands along both river floodplains. Occupancy rate modeling incorporated four environmental covariates (forest age, soil type, tree frequency, and land use). Based on presence/absence data, forests with tree ages >100 years (ΔQAICc = 0) and sites with loam soils (ΔQAICc = 1.80) were most likely to harbor F. fodiens populations. For C. thomai, several models were supported owing to model selection uncertainty, but those with the land use covariate had more total model weight (total w i = 0 . 54 ) than all other covariate models. Cambarus thomai rarely occupied industrial/agricultural sites, but were often present in forested and residential sites. Although the influence of covariates on site occupancy differed between species, both taxa readily utilized mature forested habitats when available. Conservation actions for F. fodiens and C. thomai should focus on preserving forested tracts along large river floodplains
Mapping and Monitoring Delmarva Fox Squirrel Habitat Using an Airborne LiDAR Profiler
NASA Technical Reports Server (NTRS)
Nelson, Ross; Ratnaswamy, Mary; Keller, Cherry
2004-01-01
Twenty five hundred thirty nine kilometers of airborne laser profiling and videography data were acquired over the state of Delaware during the summer of 2000. The laser ranging measurements and video from approximately one-half of that data set (1304 km) were analyzed to identify and locate forested sites that might potentially support populations of Delmarva fox squirrel (DFS, Sciurus niger cinereus). The DFS is an endangered species previously endemic to tall, dense, mature forests with open understories on the Eastern Shore of the Chesapeake Bay. The airborne LiDAR employed in this study can measure forest canopy height and canopy closure, but cannot measure or infer understory canopy conditions. Hence the LiDAR must be viewed as a tool to map potential, not actual, habitat. Fifty-three potentially suitable DFS sites were identified in the 1304 km of flight transect data. Each of the 53 sites met the following criteria according to the LiDAR and video record: (1 ) at least 120m of contiguous forest; (2) an average canopy height greater than 20m; (3) an average canopy closure of >80%; and (4) no roofs, impervious surface (e.g., asphalt, concrete), and/or open water anywhere along the 120m length of the laser segment. Thirty-two of the 53 sites were visited on the ground and measurements taken for a DFS habitat suitability model. Seventy eight percent of the sites (25 of 32) were judged by the model to be suited to supporting a DFS population. Twenty-eight of the 32 sites visited in the field were in forest cover types (hardwood, mixed wood, conifer, wetlands) according to a land cover GIS map. Of these, 23 (82%) were suited to support DFS. The remaining 4 sites were located in nonforest cover types - agricultural or residential areas. Two of the four, or 50% were suited to the DFS. All of the LiDAR flight data, 2539 km, were analyzed to
NASA Astrophysics Data System (ADS)
Landhäusser, Simon
2017-04-01
Forest loss and degradation is occurring worldwide, but at the same time efforts in forest restoration are ever increasing. While approaches to restoration often follow specific stakeholder objectives, regional climates and the degree of site degradation also play an important role in the prioritization of restoration efforts. Often the restoration of degraded lands can satisfy only few measurable objectives; however, to design and restore resistant and resilient ecosystems that can adapt to changing conditions, there is a need for new and adaptive management approaches. Mining and other resource extraction industries are affecting more and more forested areas worldwide. A priority in the reclamation and certification of forest lands disturbed by industrial activity is their expeditious redevelopment to functioning forests. To rehabilitate these heavily disturbed areas back to forest ecosystems, planting of trees remains one of the most effective strategies for the redevelopment of a continuous tree canopy on a site. It is well understood that access to good quality seedling stock is essential to achieve establishment success and early growth of seedlings. However, most reclamation areas have challenging initial site conditions and these conditions are often not a single factor but a combination of factors that can be additive or synergistic. Therefore successful forest restoration on degraded lands needs to consider multiple objectives and approaches to minimize trade-offs in achieving these objectives. To meet these demands, new methods for the production and evaluation of seedling stock types are needed to ensure that that seedlings are fit to grow on a wide range of site conditions or are particularly designed to grow in very specific conditions. Generally, defining seedling quality is difficult as it is species specific and results have been mixed; likely influenced by site conditions, further reiterating the need to carefully evaluate sites allowing appropriate seedling qualities to be identified. In this presentation, I will show results from a range of studies that explored the role of seedling characteristics in response to challenging site conditions and explore the need for a balance between the recognition and improvement of limiting site conditions and the availability of quality seedling stock in forest restoration.
An analysis of modern pollen rain from the Maya lowlands of northern Belize
Bhattacharya, T.; Beach, T.; Wahl, D.
2011-01-01
In the lowland Maya area, pollen records provide important insights into the impact of past human populations and climate change on tropical ecosystems. Despite a long history of regional paleoecological research, few studies have characterized the palynological signatures of lowland ecosystems, a fact which lowers confidence in ecological inferences made from palynological data. We sought to verify whether we could use pollen spectra to reliably distinguish modern ecosystem types in the Maya lowlands of Central America. We collected 23 soil and sediment samples from eight ecosystem types, including upland, riparian, secondary, and swamp (bajo) forests; pine savanna; and three distinct wetland communities. We analyzed pollen spectra with non-metric multidimensional scaling (NMDS), and found significant compositional differences in ecosystem types' pollen spectra. Forested sites had spectra dominated by Moraceae/Urticaceae pollen, while non-forested sites had significant portions of Poaceae, Asteraceae, and Amaranthaceae pollen. Upland, bajo, and riparian forest differed in representation of Cyperaceae, Bactris-type, and Combretaceae/Melastomataceae pollen. High percentages of pine (Pinus), oak (Quercus), and the presence of Byrsonima characterized pine savanna. Despite its limited sample size, this study provides one of the first statistical analyses of modern pollen rain in the Maya lowlands. Our results show that pollen assemblages can accurately reflect differences between ecosystem types, which may help refine interpretations of pollen records from the Maya area. ?? 2010 Elsevier B.V.
Timber type separability in Southeastern United States on LANDSAT-1 MSS data
NASA Technical Reports Server (NTRS)
Kan, E. P.; Dillman, R. D.
1975-01-01
A quantitative, computer-aided study was made on the spectral separability of timber types and condition classes in the Southeastern United States, using LANDSAT-1 multispectral scanner data. It was concluded that LANDSAT-1 could be used effectively to discriminate the gross forest features of softwood, hardwood, and regeneration. The only significant detectable age difference would be between an established forest versus a young (or denuded) forest. The red or near infrared bands would be better for discrimination; phenological early and late spring data would be better than winter. And a temporal analysis would be superior to single-season analysis. Lastly, two spectral bands would be most cost effective for computer analysis. The study site was Sam Houston National Forest of East Texas, a typical forest in the Flatwoods Zone, Southern Region, U. S. Forest Service.
NASA Astrophysics Data System (ADS)
Liu, Chunwei; Sun, Ge; McNulty, Steven G.; Noormets, Asko; Fang, Yuan
2017-01-01
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. This study aimed at deriving monthly Kc for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly Kc data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), Kc values had large seasonal variation across all land covers. The spatial variability of Kc was well explained by latitude, suggesting site factors are a major control on Kc. Seasonally, Kc increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly Kc in all land covers, except in EBF. During the peak growing season, forests had the highest Kc values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for Kc by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. The Kc models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunwei; Sun, Ge; McNulty, Steven G.
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less
Liu, Chunwei; Sun, Ge; McNulty, Steven G.; ...
2017-01-18
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less
Convergent structural responses of tropical forests to diverse disturbance regimes.
Kellner, James R; Asner, Gregory P
2009-09-01
Size frequency distributions of canopy gaps are a hallmark of forest dynamics. But it remains unknown whether legacies of forest disturbance are influencing vertical size structure of landscapes, or space-filling in the canopy volume. We used data from LiDAR remote sensing to quantify distributions of canopy height and sizes of 434,501 canopy gaps in five tropical rain forest landscapes in Costa Rica and Hawaii. The sites represented a wide range of variation in structure and natural disturbance history, from canopy gap dynamics in lowland Costa Rica and Hawaii, to stages and types of stand-level dieback on upland Mauna Kea and Kohala volcanoes. Large differences in vertical canopy structure characterized these five tropical rain forest landscapes, some of which were related to known disturbance events. Although there were quantitative differences in the values of scaling exponents within and among sites, size frequency distributions of canopy gaps followed power laws at all sites and in all canopy height classes. Scaling relationships in gap size at different heights in the canopy were qualitatively similar at all sites, revealing a remarkable similarity despite clearly defined differences in species composition and modes of prevailing disturbance. These findings indicate that power-law gap-size frequency distributions are ubiquitous features of these five tropical rain forest landscapes, and suggest that mechanisms of forest disturbance may be secondary to other processes in determining vertical and horizontal size structure in canopies.
Management of Giant Sequoia at Blodgett Forest Research Station
Robert C. Heald
1986-01-01
Researchers at Blodgett Forest Research Station, University of California, are studying giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz) growth under both even-age and selection management in relationship to the presence of several shrub species and five native conifers. The sequoias are also being studied under several types of site...
Integration of ground and satellite data to model Mediterranean forest processes
NASA Astrophysics Data System (ADS)
Chiesi, M.; Fibbi, L.; Genesio, L.; Gioli, B.; Magno, R.; Maselli, F.; Moriondo, M.; Vaccari, F. P.
2011-06-01
The current work presents the testing of a modeling strategy that has been recently developed to simulate the gross and net carbon fluxes of Mediterranean forest ecosystems. The strategy is based on the use of a NDVI-driven parametric model, C-Fix, and of a biogeochemical model, BIOME-BGC, whose outputs are combined to simulate the behavior of forest ecosystems at different development stages. The performances of the modeling strategy are evaluated in three Italian study sites (San Rossore, Lecceto and Pianosa), where carbon fluxes are being measured through the eddy correlation technique. These sites are characterized by variable Mediterranean climates and are covered by different types of forest vegetation (pine wood, Holm oak forest and Macchia, respectively). The results of the tests indicate that the modeling strategy is generally capable of reproducing monthly GPP and NEE patterns in all three study sites. The highest accuracy is obtained in the most mature, homogenous pine wood of San Rossore, while the worst results are found in the Lecceto forest, where there are the most heterogeneous terrain, soil and vegetation conditions. The main error sources are identified in the inaccurate definition of the model inputs, particularly those regulating the site water budgets, which exert a strong control on forest productivity during the Mediterranean summer dry season. In general, the incorporation of NDVI-derived fAPAR estimates corrects for most of these errors and renders the forest flux simulations more stable and accurate.
AmeriFlux US-Blo Blodgett Forest
Goldstein, Allen [University of California, Berkeley
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Blo Blodgett Forest. Site Description - The flux tower site at Blodgett Forest is on a 1200 ha parcel of land owned by Sierra Pacific Industries in the Sierra Nevada range near Georgetown, California. The field site was established in May 1997 with continuous operation since May 1999. The site is situated in a ponderosa pine plantation, mixed-evergreen coniferous forest, located adjacent to Blodgett Forest Research Station. The Mediterranean-type climate of California is characterized by a protracted summer drought, with precipitation occurring mainly from October through May. The infrastructure for the ecosystem scale flux measurements includes a walkup measurement tower, two temperature controlled instrument buildings, and an electrical generation system powered by a diesel generator. Typical wind patterns at the site include upslope flow during the day (from the west) and downslope flow at night (from the east). The plantation is relatively flat, and contains a homogenous mixture of evenly aged ponderosa pine with other trees and shrubs scattered throughout the ecosystem making up less than 30% of the biomass. The daytime fetch for the tower measurements extends approximately 200 m to the southwest of the tower (this region contributes ~90% of the daytime flux), thus remote sensing images to be used for modeling should probably be centered approximately 100 m from the tower at an angle of 225 deg.
Remote sensing-based estimation of annual soil respiration at two contrasting forest sites
NASA Astrophysics Data System (ADS)
Huang, Ni; Gu, Lianhong; Black, T. Andrew; Wang, Li; Niu, Zheng
2015-11-01
Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual Rs estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zone soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites. In addition, a multicollinearity problem among LST-night, root-zone soil moisture, and plant photosynthesis factor was effectively avoided by selecting the LST-night-driven model. Cross validation showed that temporal variation in Rs was captured by the LST-night-driven model with a mean absolute error below 1 µmol CO2 m-2 s-1 at both forest sites. An obvious overestimation that occurred in 2005 and 2007 at the Missouri Ozark site reduced the evaluation accuracy of cross validation because of summer drought. However, no significant difference was found between the Arrhenius-type function driven by LST-night and the function considering LST-night and root-zone soil moisture. This finding indicated that the contribution of soil moisture to Rs was relatively small at our multiyear data set. To predict intersite Rs, maximum leaf area index (LAImax) was used as an upscaling factor to calibrate the site-specific reference respiration rates. Independent validation demonstrated that the model incorporating LST-night and LAImax efficiently predicted the spatial and temporal variabilities of Rs. Based on the Arrhenius-type function using LST-night as an input parameter, the rates of annual C release from Rs were 894-1027 g C m-2 yr-1 at the BC-Campbell River 1949 Douglas-fir site and 818-943 g C m-2 yr-1 at the Missouri Ozark site. The ratio between annual Rs estimates based on remotely sensed data and the total annual ecosystem respiration from eddy covariance measurements fell within the range reported in previous studies. Our results demonstrated that estimating annual Rs based on remote sensing data products was possible at deciduous and evergreen forest sites.
Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim M. Buttle; Mary B. Adams; Fred D. Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy Miniat; Patricia Ramlal; Amartya Saha; Stephen Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia Yao
2014-01-01
Climate warming is projected to affect forest water yields but the effects are expected to vary.We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm...
Parresol, B. R.; Scott, D. A.; Zarnoch, S. J.; ...
2017-12-15
Spatially explicit mapping of forest productivity is important to assess many forest management alternatives. We assessed the relationship between mapped variables and site index of forests ranging from southern pine plantations to natural hardwoods on a 74,000-ha landscape in South Carolina, USA. Mapped features used in the analysis were soil association, land use condition in 1951, depth to groundwater, slope and aspect. Basal area, species composition, age and height were the tree variables measured. Linear modelling identified that plot basal area, depth to groundwater, soils association and the interactions between depth to groundwater and forest group, and between land usemore » in 1951 and forest group were related to site index (SI) (R 2 =0.37), but this model had regression attenuation. We then used structural equation modeling to incorporate error-in-measurement corrections for basal area and groundwater to remove bias in the model. We validated this model using 89 independent observations and found the 95% confidence intervals for the slope and intercept of an observed vs. predicted site index error-corrected regression included zero and one, respectively, indicating a good fit. With error in measurement incorporated, only basal area, soil association, and the interaction between forest groups and land use were important predictors (R2 =0.57). Thus, we were able to develop an unbiased model of SI that could be applied to create a spatially explicit map based primarily on soils as modified by past (land use and forest type) and recent forest management (basal area).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parresol, B. R.; Scott, D. A.; Zarnoch, S. J.
Spatially explicit mapping of forest productivity is important to assess many forest management alternatives. We assessed the relationship between mapped variables and site index of forests ranging from southern pine plantations to natural hardwoods on a 74,000-ha landscape in South Carolina, USA. Mapped features used in the analysis were soil association, land use condition in 1951, depth to groundwater, slope and aspect. Basal area, species composition, age and height were the tree variables measured. Linear modelling identified that plot basal area, depth to groundwater, soils association and the interactions between depth to groundwater and forest group, and between land usemore » in 1951 and forest group were related to site index (SI) (R 2 =0.37), but this model had regression attenuation. We then used structural equation modeling to incorporate error-in-measurement corrections for basal area and groundwater to remove bias in the model. We validated this model using 89 independent observations and found the 95% confidence intervals for the slope and intercept of an observed vs. predicted site index error-corrected regression included zero and one, respectively, indicating a good fit. With error in measurement incorporated, only basal area, soil association, and the interaction between forest groups and land use were important predictors (R2 =0.57). Thus, we were able to develop an unbiased model of SI that could be applied to create a spatially explicit map based primarily on soils as modified by past (land use and forest type) and recent forest management (basal area).« less
Ferreira, R V; Serpa, D; Cerqueira, M A; Keizer, J J
2016-05-01
Over the past decades, wildfires have affected vast areas of Mediterranean ecosystems leading to a variety of negative on- and off-site environmental impacts. Research on fire-affected areas has given more attention to sediment losses by fire-enhanced overland flow than to nutrient exports, especially in the Mediterranean region. To address this knowledge gap for post-fire losses of phosphorus (P) by overland flow, a recently burnt forest area in north-central Portugal was selected and instrumented immediately after a wildfire. Three slopes were selected for their contrasting forest types (eucalypt vs. pine) and parent materials (granite vs. schist). The selected study sites were a eucalypt site on granite (BEG), a eucalypt site on schist (BES) and a maritime pine site on schist (BPS). Micro-plots were monitored over a period of six months, i.e. till the construction of terraces for reforestation obliged to the removal of the plots. During this 6-month period, overland flow samples were collected at 1- to 2-weekly intervals, depending on rainfall. Total P and PO4-P losses differed markedly between the two types of forests on schist, being lower at the pine site than at the eucalypt site, probably due to the presence of a protective layer of pine needle cast. Parent material did not play an important role in PO4-P losses by overland flow but it did in TP losses, with significantly lower values at the eucalypt site on granite than that on schist. These differences in TP losses can be attributed to the coarser texture of granite soils, typically promoting infiltration and decreasing runoff. The present findings provided further insights into the spatial and temporal patterns of post-fire soil nutrient losses in fire-prone forest types during the initial stages of the window-of-disturbance, which can be useful for defining post-fire emergency measures to reduce the risk of soil fertility losses. Copyright © 2016 Elsevier B.V. All rights reserved.
Ongoing change of site conditions important for sustainable forest management planning
NASA Astrophysics Data System (ADS)
Bidló, András; Horváth, Adrienn; Gulyás, Krisztina; Gálos, Borbála
2016-04-01
Observed tree mortality of the last decades has shown that the vulnerable forest ecosystems are especially affected by the recurrent, long lasting droughts, heat waves and their consequences. From all site conditions climate is changing the fastest, in this way it can be the largest threatening factor in the 21st century. Beyond climate, soil characteristics are playing an important influencing role. Until now, silvicultural technologies and species preferences of many countries are prescribed by binding regulation based on climate conditions that are assumed to be constant over time. Therefore the aim of our research was to investigate the ongoing and projected change of site conditions that are considered to be of primary importance in terms of tree species selection. For a case study region in Hungary (Keszthely Mountains, near to Lake Balaton) long-term climate tendencies have been determined for the period 1961-2100, as well as a detailed soil sample analysis has been carried out including ~100 sites. Results show a 0.5 degree increase of temperature and a 6-7 % decrease of the precipitation amount for the summer months in the last decades. For the future, significant warming and drying of summers is expected. Decrease of the summer precipitation sum can exceed 25 % until the end of the century, probability of extreme hot days may increase. These tendencies together with the unfavourable soil conditions and biotic damages can be the reason of the ongoing forest dieback. One of the characteristic soil type of the region is rendzina with a thin topsoil layer and an unfavourable water holding capacity. These properties are limiting the amount of available water for plants, especially in case of intense precipitation events. Black pine stands planted on rendzinas after many years of grazing; therefore erosion may have played a significant role. Not only microclimate conditions but also soil types show a large diversity within a relatively small distance. However, tree mortality has been observed also in stands on favourable soils (rusty brown forest soil, brown earth, lessivated brown forest soil) because these soil sites can only mitigate the damage of extremes. Consequently, there is ongoing change of site conditions that are important for the sustainable forest management planning. Therefore it is an urgent need to rethink regulations considering the changing climate and soil conditions in order to decide about sustainable tree species preference and to maintain forest cover. Keywords: climate change impacts, forest mortality, adaptation, sustainable forest management planning Acknowledgements: Research is supported by the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU-national joint funded research project.
Kumar, Amit; Sharma, M P
2016-12-01
Constructions of dams/reservoirs all over the world are reported to emit significant amount of greenhouse gases (GHGs) and are considered as environmental polluters. Organic carbon is contributed by the forest in the catchment, part of soil organic carbon is transported through the runoffs to the reservoir and undergoes aerobic and anaerobic degradation with time to release GHGs to the atmosphere. Literature reveals that no work is available on the estimation of 'C' stock of trees of forest catchment for assessing/predicting the GHGs emissions from the reservoirs to atmosphere. To assess the GHGs emission potential of the reservoir, an attempt is made in the study to estimate the 'C' stock in the forest catchment of Kotli Bhel 1A hydroelectric reservoir located in Tehri Garhwal district of Uttarakhand, India. For this purpose, the selected area was categorized into the site-I, II and III along the Bhagirathi River based on type of forest available in the catchment. The total carbon density (TCD) of tree species of different forest types was calculated using diameter at breast height (dbh) and trees height. The results found that the TCD of forest catchment was found 76.96MgCha -1 as the highest at the site-II and 29.93MgCha -1 as lowest at site-I with mean of 51.50MgCha -1 . The estimated forest 'C' stock shall be used to know the amount of carbon present before and after construction of the dam and to predict net GHGs emissions. The results may be helpful to study the potential of a given reservoir to release GHG and its subsequent impacts on global warming/climate challenges. Copyright © 2015 Elsevier Inc. All rights reserved.
Countryside biogeography of Neotropical reptiles and amphibians.
Mendenhall, Chase D; Frishkoff, Luke O; Santos-Barrera, Georgina; Pacheco, Jesús; Mesfun, Eyobed; Mendoza Quijano, Fernando; Ehrlich, Paul R; Ceballos, Gerardo; Daily, Gretchen C; Pringle, Robert M
2014-04-01
The future of biodiversity and ecosystem services depends largely on the capacity of human-dominated ecosystems to support them, yet this capacity remains largely unknown. Using the framework of countryside biogeography, and working in the Las Cruces system of Coto Brus, Costa Rica, we assessed reptile and amphibian assemblages within four habitats that typify much of the Neotropics: sun coffee plantations (12 sites), pasture (12 sites), remnant forest elements (12 sites), and a larger, contiguous protected forest (3 sites in one forest). Through analysis of 1678 captures of 67 species, we draw four primary conclusions. First, we found that the majority of reptile (60%) and amphibian (70%) species in this study used an array of habitat types, including coffee plantations and actively grazed pastures. Second, we found that coffee plantations and pastures hosted rich, albeit different and less dense, reptile and amphibian biodiversity relative to the 326-ha Las Cruces Forest Reserve and neighboring forest elements. Third, we found that the small ribbons of "countryside forest elements" weaving through farmland collectively increased the effective size of a 326-ha local forest reserve 16-fold for reptiles and 14-fold for amphibians within our 236-km2 study area. Therefore, countryside forest elements, often too small for most remote sensing techniques to identify, are contributing -95% of the available habitat for forest-dependent reptiles and amphibians in our largely human-dominated study region. Fourth, we found large and pond-reproducing amphibians to prefer human-made habitats, whereas small, stream-reproducing, and directly developing species are more dependent on forest elements. Our investigation demonstrates that tropical farming landscapes can support substantial reptile and amphibian biodiversity. Our approach provides a framework for estimating the conservation value of the complex working landscapes that constitute roughly half of the global land surface, and which are experiencing intensification pressure worldwide.
Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity.
Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne
2016-06-01
A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mineral Soil Carbon in Managed Hardwood Forests of the Northeastern US
NASA Astrophysics Data System (ADS)
Vario, C.; Friedland, A.; Hornig, C.
2013-12-01
New England is characterized by extensive forest cover and large reservoirs of soil carbon (C). In northern hardwood forests, mineral soil C can account for up to 50% of total ecosystem C. There has been an increasing demand for forests to serve both as a C sink and a renewable energy source, and effective management of the ecosystem C balance relies on accurate modeling of each compartment of the ecosystem. However, the dynamics of soil C storage with respect to forest use are variable and poorly understood, particularly in mineral soils. For example, current regional models assume C pools after forest harvesting do not change, while some studies suggest that belowground mineral soil C pools can be affected by disturbances at the soil surface. We quantified mineral soil C pools in previously clear-cut stands in seven research or protected forests across New York, New Hampshire, Massachusetts, and Vermont. The ages of the sites sampled ranged from recently cleared to those with no disturbance history, with 21 forest stands represented in the study. Within each research forest studied, physical parameters such as soil type, forest type, slope and land-use history (aside from forest harvest) did not vary between the stands of different ages. Soil samples were collected to a depth of 60 cm below the mineral-organic boundary using a gas-powered augur and 9.5-cm diameter drill bit. Samples were collected in 10-cm increments in shallow mineral soil and 15-cm increments from 30-60 cm depth. Carbon, nitrogen (N), pH, texture and soil mineralogy were measured across the regional sites. At Bartlett Experimental Forest (BEF) in New Hampshire, mineral soil biogeochemistry in cut and uncut sites was studied at a finer scale. Measurements included soil temperature to 55 cm depth, carbon compound analyses using Py-GCMS and soil microbial messenger RNA extractions from mineral soil. Finally, we simulated C dynamics after harvesting by building a model in Stella, with a particular interest in the role that priming effects may play if C is transported from organic to mineral soil layers after forest harvest. Laboratory analyses were conducted at Dartmouth College and at the University of New Hampshire. For the regional study, mineral soil C and N concentrations, and in some cases, pools were highest at locations that had never been harvested. Although sites represented different stages of succession after clearing, there were no significant patterns over time since harvest. At BEF, soil temperature at 55 cm depth in a recently cleared stand was on average 1.5° C higher than surrounding forested sites between June and September, and shallower depths had greater temperature discrepancies. Our model, which was parameterized using published field data from Bartlett and Hubbard Brook forests, showed that inputs of labile C to mineral soil after harvest could prime the decomposition of preexisting mineral soil C and account for up to 40% of the observed difference in C pools between harvested and undisturbed sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Ken
This is the AmeriFlux version of the carbon flux data for the site US-Dix Fort Dix. Site Description - The Fort Dix site is located in the upland forests of the New Jersey Pine Barrens, the largest continuous forested landscape on the Northeastern coastal plain. Upland forests occupy 62% of the 1.1 million acre Pine Barrens and can be divided into three dominant stand types, Oak/Pine (19.1%), Pine/Oak (13.1%), and Pitch Pine/Scrub oak (14.3%). The majority of mature upland forests are the product of regeneration following late 19th century logging and charcoaling activities. Gypsy moths first appeared in the Pinemore » Barrens of New Jersey in 1966. Since the time of arrival, the upland forest stands have undergone several episodes of defoliation, the most significant occurred in 1972, 1981, and 1990. In recent years, the overstory oaks and understory oaks and shrubs of the Fort Dix stand, underwent two periods of defoliation by Gypsy moth, in 2006 and 2007. During these two years, maximum leaf area reached only 70% of the 2005 summer maximum.« less
Slancarova, Jana; Bartonova, Alena; Zapletal, Michal; Kotilinek, Milan; Faltynek Fric, Zdenek; Micevski, Nikola; Kati, Vasiliki; Konvicka, Martin
2016-01-01
The biodiversity of the Southern Balkans, part of the Mediterranean global biodiversity hot-spot, is threatened by land use intensification and abandonment, the latter causing forest encroachment of formerly open habitats. We investigated the impact of forest encroachment on butterfly species richness, community species composition and the representation of life history traits by repeated seasonal visits of 150 one-hectare sites in five separate regions in three countries—Greece, Bulgaria, and the Republic of Macedonia (FYROM—the Former Yugoslav Republic of Macedonia)— 10 replicates for each habitat type of grasslands, open formations and scrub forest within each region. Grasslands and open formations sites hosted in average more species and more red-listed species than scrub forest, while no pattern was found for numbers of Mediterranean species. As shown by ordination analyses, each of the three habitat types hosted distinct butterfly communities, with Mediterranean species inclining either towards grasslands or open formations. Analysing the representation of life history traits revealed that successional development from grasslands and open formations towards scrub forest shifts the community composition towards species overwintering in earlier stages, having fewer generations per year, and inhabiting large European or Eurosiberian (e.g. northern) ranges; it decreases the representation of Mediterranean endemics. The loss of grasslands and semi-open formations due to forest encroachment thus threatens exactly the species that should be the focus of conservation attention in the Mediterranean region, and innovative conservation actions to prevent ongoing forest encroachment are badly needed. PMID:26999008
Predicting healthcare associated infections using patients' experiences
NASA Astrophysics Data System (ADS)
Pratt, Michael A.; Chu, Henry
2016-05-01
Healthcare associated infections (HAI) are a major threat to patient safety and are costly to health systems. Our goal is to predict the HAI performance of a hospital using the patients' experience responses as input. We use four classifiers, viz. random forest, naive Bayes, artificial feedforward neural networks, and the support vector machine, to perform the prediction of six types of HAI. The six types include blood stream, urinary tract, surgical site, and intestinal infections. Experiments show that the random forest and support vector machine perform well across the six types of HAI.
The conservation value of degraded forests for agile gibbons Hylobates agilis.
Lee, David C; Powell, Victoria J; Lindsell, Jeremy A
2015-01-01
All gibbon species are globally threatened with extinction yet conservation efforts are undermined by a lack of population and ecological data. Agile gibbons (Hylobates agilis) occur in Sumatra, Indonesia and adjacent mainland Southeast Asia. Population densities are known from four sites (three in Sumatra) while little is known about their ability to tolerate habitat degradation. We conducted a survey of agile gibbons in Harapan Rainforest, a lowland forest site in Sumatra. The area has been severely degraded by selective logging and encroachment but is now managed for ecosystem restoration. We used two survey methods: an established point count method for gibbons with some modifications, and straight line transects using auditory detections. Surveys were conducted in the three main forest types prevalent at the site: high, medium, and low canopy cover secondary forests. Mean group density estimates were higher from point counts than from line transects, and tended to be higher in less degraded forests within the study site. We consider points more time efficient and reliable than transects since detectability of gibbons was higher from points per unit effort. We recommend the additional use of Distance sampling methods to account for imperfect detection and provide other recommendations to improve surveys of gibbons. We estimate that the site holds at least 6,070 and as many as 11,360 gibbons. Our results demonstrate that degraded forests can be extremely important for the conservation of agile gibbons and that efforts to protect and restore such sites could contribute significantly to the conservation of the species. © 2014 Wiley Periodicals, Inc.
Zhang, Tai Dong; Wang, Chuan Kuan; Zhang, Quan Zhi
2017-10-01
Five forests under diverse site conditions but under identical climate in the Maoershan region of Northeast China were sampled for measuring contents of soil carbon (C), nitrogen (N), and phosphorus (P), soil bulk density, and soil thickness by soil profile horizons. The stands included two plantations (i.e., Pinus koraiensis and Larix gmelinii plantations) and three broadleaved forests (i.e., Quercus mongolica stand, Populus davidiana Betula platyphylla mixed stand, and hardwood stand). Our aim was to examine vertical distribution of the content, density, and stoichio metry of soil C, N and P for the five forest types. The results showed that the contents and densities of soil C, N and P differed significantly among the forest types, with the maxima of the soil C and N at both O and A horizons occurring in the hardwood stand. The contents of C and N decreased significantly with increasing soil depth in all the stands. P content decreased significantly only in the broadleaved stands, and P content had no significant difference among different soil layers in the coniferous stands. The soil C/N at the A horizon, N/P at the O horizon, and the C/P at A and B horizons were significantly different among the forest types. The soil C and N linearly correlated significantly across all the forest types without significant differences in the slopes and intercepts, and the soil N and P, or the soil C and P correlated significantly only in the broadleaved stands. This result suggested that the C-N coupling relationship tended to converge across the forest types, and the N-P and C-P relationships varied with forest types.
How extreme weather events can influence the way of thinking about forest management?
NASA Astrophysics Data System (ADS)
Ziemblińska, Klaudia; Merbold, Lutz; Urbaniak, Marek; Haeni, Matthias; Olejnik, Janusz
2014-05-01
One third of the total area of Poland, which is covered by forests, is currently managed by "The State National Forest Holding" - the biggest organization in Europe managing forests. Common management practice is based on clear-cutting the vegetation to maintaining forests and ensuring regrowth. While sufficient information exists on the quantity of harvested biomass and particularly its economic value, little knowledge exists on the overall environmental impact of such management including the carbon budgets of forests in Poland. At the same time these forests are very vulnerable to extreme events such as wind throws. Large wind throws can be used as an experimental platform to study both, the effects of extreme events itself but also the effects of management such as clear-cuts, due to the fact that after such kind of natural disasters similar steps then following clear-cuts are implemented. These activities include the removal of whole trees, collection of branches and pulling out stems with heavy machinery, causing additional disturbance. In this study, we aim at providing information to fill the current knowledge gap of changing C budget after clear-cuts and wind throws. We hypothesize large C losses after clear-cuts and ask whether one can improve current forest management to "save" C and/or enhance C sequestration? To answer this specific question we used the eddy covariance (EC) method to adequately measure the net ecosystem exchange of carbon dioxide (NEE) between a deforested area and the atmosphere (treatment) and compare it to measurements from an intact forest of the same type (control). Both sites have the same soil type (brunic arenosoil - after FAO classification) which is sandy and relatively not fertile. Moreover, main species and composition were similar. The treatment area was chosen after the occurrence of a 20min-lasting tornado in July 2012 in Western Poland. The storm resulted in the destruction of more than 500 ha of 75-year old pine forest and provided a unique situation to assess the C budget of a pine forest after wind throw leading to the construction of the Trzebciny EC tower (treatment site). Measurements of CO2 and H2O exchange continue since the beginning of 2013. Measurements from both sites were directly compared to an already established monitoring station (65-year old Tuczno forest, control). We observed a huge difference in NEE between an intact middle age coniferous forest (control site, net gain of 463 g(C-CO2) m-2 in 2013) and an area of similar forest that was destroyed by a tornado and cleared thereafter (treatment site, net loss of about 518 g(C-CO2) m-2 in 2013). Our results provide a great opportunity to re-evaluate current forest management in Poland and will provide a first step towards adjusting forestry management and policy to become less susceptible to climate change (especially extreme events).
Limited native plant regeneration in novel, exotic-dominated forests on Hawaii
Joseph Mascaro; Kristen K. Becklund; R. Flint Hughes; Stefan A. Schnitzer
2008-01-01
Ecological invasions are amajor driver of global environmental change. When invasions are frequent and prolonged, exotic species can become dominant and ultimately create novel ecosystem types. These ecosystems are now widespread globally. Recent evidence from Puerto Rico suggests that exoticdominated forests can provide suitable regeneration sites for native species...
Validating visual disturbance types and classes used for forest soil monitoring protocols
D. S. Page-Dumroese; A. M. Abbott; M. P. Curran; M. F. Jurgensen
2012-01-01
We describe several methods for validating visual soil disturbance classes used during forest soil monitoring after specific management operations. Site-specific vegetative, soil, and hydrologic responses to soil disturbance are needed to identify sensitive and resilient soil properties and processes; therefore, validation of ecosystem responses can provide information...
Nitrogen deposition's role in determining forest photosynthetic capacity; a FLUXNET synthesis
NASA Astrophysics Data System (ADS)
Fleischer, K.; Rebel, K.; van der Molen, M.; Erisman, J.; Wassen, M.; Dolman, H.
2011-12-01
There is growing evidence that nitrogen (N) deposition stimulates forest growth, as many forest ecosystems are N-limited. However, the significance of N deposition in determining the strength of the present and future terrestrial carbon sink is strongly debated. We investigated and quantified the effect of N deposition on ecosystem photosynthetic capacity (Amax) with the FLUXNET database, including 80 forest sites, covering the major forest types and climates of the world. The relative effect of climate and N deposition on photosynthesis was assessed with regression models. We found a significant positive correlation of Amax and N deposition for evergreen needleleaf forests in our dataset. We further found indications that foliar N and LAI scale positively with N deposition, reflecting the 2 mechanisms at which N is believed to cause an increase in carbon gain. We can support the hypothesis that foliar N is the principal scaling factor for canopy Amax across all forest types. Deciduous forests are less diverse in terms of climate and nutritional conditions for the included sites and these forests exhibited weak to no correlations with the included climate and N predictor variables. Quantifying the effect of N deposition on photosynthetic rates at the canopy level is an essential step for quantifying its contribution to the terrestrial carbon sink and for predicting vegetation response to N fertilization and global change in the future. The approach shows that eddy-covariance measurements of carbon fluxes at the canopy scale allow us to test hypotheses with respect to the expected nitrogen-photosynthesis relationships at the canopy scale.
Hughes, R F; Kauffman, J B; Cummings, D L
2000-09-01
Regenerating forests have become a common land-cover type throughout the Brazilian Amazon. However, the potential for these systems to accumulate and store C and nutrients, and the fluxes resulting from them when they are cut, burned, and converted back to croplands and pastures have not been well quantified. In this study, we quantified pre- and post-fire pools of biomass, C, and nutrients, as well as the emissions of those elements, at a series of second- and third-growth forests located in the states of Pará and Rondônia, Brazil. Total aboveground biomass (TAGB) of second- and third-growth forests averaged 134 and 91 Mg ha -1 , respectively. Rates of aboveground biomass accumulation were rapid in these systems, but were not significantly different between second- and third-growth forests, ranging from 9 to 16 Mg ha -1 year -1 . Residual pools of biomass originating from primary forest vegetation accounted for large portions of TAGB in both forest types and were primarily responsible for TAGB differences between the two forest types. In second-growth forests this pool (82 Mg ha -1 ) represented 58% of TAGB, and in third-growth forests (40 Mg ha -1 ) it represented 40% of TAGB. Amounts of TAGB consumed by burning of second- and third-growth forests averaged 70 and 53 Mg ha -1 , respectively. Aboveground pre-fire pools in second- and third-growth forests averaged 67 and 45 Mg C ha -1 , 821 and 707 kg N ha -1 , 441 and 341 kg P ha -1 , and 46 and 27 kg Ca ha -1 , respectively. While pre-fire pools of C, N, S and K were not significantly different between second- and third-growth forests, pools of both P and Ca were significantly higher in second-growth forests. This suggests that increasing land use has a negative impact on these elemental pools. Site losses of elements resulting from slashing and burning these sites were highly variable: losses of C ranged from 20 to 47 Mg ha -1 ; N losses ranged from 306 to 709 kg ha -1 ; Ca losses ranged from 10 to 145 kg ha -1 ; and P losses ranged from 2 to 20 kg ha -1 . Elemental losses were controlled to a large extent by the relative distribution of elemental mass within biomass components of varying susceptibilities to combustion and the temperatures of volatilization of each element. Due to a relatively low temperature of volatilization and its concentration in highly combustible biomass pools, site losses of N averaged 70% of total pre-fire pools. In contrast, site losses of P and Ca resulting from burning were 33 and 20% of total pre-fire pools, respectively, as much of the mass of those elements was deposited on site as ash. Pre- and post-fire biomass and elemental pools of second- and third-growth forests, as well as the emissions from those systems, were intermediate between those of primary forests and pastures in the Brazilian Amazon. Overall, regenerating forests have the capacity to act as either large terrestrial sinks or sources of C and nutrients, depending on the course of land-use patterns within the Brazilian Amazon. Combining remote sensing techniques with field measures of aboveground C accumulation in regenerating forests and C fluxes from those forests when they are cut and burned, we estimate that during 1990-1991 roughly 104 Tg of C was accumulated by regenerating forests across the Brazilian Amazon. Further, we estimate that approximately 103 Tg of C was lost via the cutting and burning of regenerating forests across the Brazilian Amazon during this same period. Since average C accumulations (5.5 Mg ha -1 year -1 ) in regenerating forests were 19% of the C lost when such forests are cut and burned (29.3 Mg ha -1 ), our results suggest that when less than 19% of the total area accounted for by secondary forests is cut and burned in a given year, those forests will be net accumulators of C during that year. Conversely, when more than 19% of regenerating forests are burned, those forests will be a net source of C to the atmosphere.
Meyer, Michael L; Huey, Greg M
2006-05-01
This study utilized telemetric systems to sample microbes and pathogens in forest, burned forest, rangeland, and urban watersheds to assess surface water quality in northern New Mexico. Four sites included remote mountainous watersheds, prairie rangelands, and a small urban area. The telemetric system was linked to dataloggers with automated event monitoring equipment to monitor discharge, turbidity, electrical conductivity, water temperature, and rainfall during base flow and storm events. Site data stored in dataloggers was uploaded to one of three types of telemetry: 1) radio in rangeland and urban settings; 2) a conventional phone/modem system with a modem positioned at the urban/forest interface; and 3) a satellite system used in a remote mountainous burned forest watershed. The major variables affecting selection of each system were site access, distance, technology, and cost. The systems were compared based on operation and cost. Utilization of telecommunications systems in this varied geographic area facilitated the gathering of hydrologic and water quality data on a timely basis.
Sediment dynamics in restored riparian forest with agricultural surroundings
NASA Astrophysics Data System (ADS)
Stucchi Boschi, Raquel; Cooper, Miguel; Alencar de Matos, Vitor; Ortega Gomes, Matheus; Ribeiro Rodrigues, Ricardo
2017-04-01
The riparian forests are considered Permanent Preservation Areas due to the ecological services provided by these forests. One of these services is the interception of the sediments before they reach the water bodies, which is essential to preserve water quality. The maintenance and restoration of riparian forests are mandatory, and the extent of these areas is defined based on water body width, following the Brazilian Forest Code. The method used to define the size of riparian forest areas elucidates the lack of accurate scientific data of the influence of the riparian forest in maintaining their ecological functions, particularly regarding the retention of sediments. In this study, we investigate the dynamics of erosion and sedimentation in restored riparian forests of a Semideciduous Tropical Forest situated in agricultural areas inserted in sugarcane landscapes in the state of São Paulo, Brazil. We defined two sites with soils of contrasting texture to monitor the dynamics and amount of deposited sediments. Site A is in the municipality of Araras and the soil is mainly clay. Site B is in the municipality of São Manuel and is dominated by sandy soils. In both areas, we defined plots to install graded metal stakes that were partially buried to monitor the dynamics of sediments. In site A, we defined eight plots and installed 27 metal stakes in each one. Three of the plots presented 30 m of riparian forest, two presented 15 m of riparian forest and three, 15 m of pasture followed by 15 m of forest. The design of the metal stakes was similar for all plots and was defined based on the type of erosion observed in site A. In site B, we defined seven points to monitor the sediments inside the reforested areas. Here, we observed erosive processes of great magnitude inside the forests, which results in a different design for the metal stakes. A total of nearly 150 metal stakes were installed to monitor these processes and also to verify the deposition in areas not yet affected by erosive processes of great magnitude. The monitoring of the metal stakes started in January of 2016. The data of intensity and frequency of rainfall were collected from rain gauges installed in the areas. The results show great deposition in site B, dominated by sandy soil whereas in site A, a sheet erosion process is dominant. Site A is dominated by clay soils that are not susceptible to erosion processes. In site B, a small amount of deposition was observed inside a gully, which means that the sediments may be being carried to the water bodies. A large amount of sediment was observed in areas which present a spontaneous vegetation followed by a small track of forest. Strong events were responsible for generating most of the sediments. The results will be important to support the discussion about an ideal width of riparian vegetation to ensure the retention of sediments and quality of water bodies.
NASA Astrophysics Data System (ADS)
Christianini, Alexander V.; Galetti, Mauro
2007-11-01
Studies of post-dispersal seed removal in the Neotropics have rarely examined the magnitude of seed removal by different types of granivores. The relative impact of invertebrates, small rodents, and birds on seed removal was investigated in a 2,178 ha Atlantic forest fragment in southeastern Brazil. We used popcorn kernels ( Zea mays—Poaceae) to investigate seed removal in a series of selective exclosure treatments in a replicated, paired design experiment that included forest understory, gaps, and forest edge sites. We recorded the vegetation around the experimental seed stations in detail in order to evaluate the influence of microhabitat traits on seed removal. Vertebrate granivores (rodents and birds) were surveyed to determine whether granivore abundance was correlated with seed removal levels. Seed removal varied spatially and in unpredictable ways at the study site. Seed encounter and seed use varied with treatments, but not with habitat type. However, seed removal by invertebrates was negatively correlated with gap-related traits, which suggested an avoidance of large gaps by granivorous ants. The abundance of small mammals was remarkably low, but granivorous birds (tinamous and doves) were abundant at the study site. Birds were the main seed consumers in open treatments, but there was no correlation between local granivorous bird abundance and seed removal. These results emphasize the stochastic spatial pattern of seed removal, and, contrary to previous studies, highlight the importance of birds as seed predators in forest habitats.
Simulation of Longwave Enhancement beneath Montane and Boreal Forests in CLM4.5
NASA Astrophysics Data System (ADS)
Todt, M.; Rutter, N.; Fletcher, C. G.; Wake, L. M.; Loranty, M. M.
2017-12-01
CMIP5 models have been shown to underestimate both trend and variability in northern hemisphere spring snow cover extent. A substantial fraction of this area is covered by boreal forests, in which the snow energy balance is dominated by radiation. Forest coverage impacts the surface radiation budget by shading the ground and enhancing longwave radiation. Longwave enhancement in boreal forests is a potential mechanism that contributes to uncertainty in snowmelt modelling, however, its impact on snowmelt in global land models has not been analysed yet. This study assesses the simulation of sub-canopy longwave radiation and longwave enhancement by CLM4.5, the land component of the NCAR Community Earth System Model, in which boreal forests are represented by three plant functional types (PFT): evergreen needleleaf trees (ENT), deciduous needleleaf trees (DNT), and deciduous broadleaf trees (DBT). Simulation of sub-canopy longwave enhancement is evaluated at boreal forest sites covering the three boreal PFT in CLM4.5 to assess the dependence of simulation errors on meteorological forcing, vegetation type and vegetation density. ENT are evaluated over a total of six snowmelt seasons in Swiss alpine and subalpine forests, as well as a single season at a Finnish arctic site with varying vegetation density. A Swedish artic site features varying vegetation density for DBT for a single winter, and two sites in Eastern Siberia are included covering a total of four snowmelt seasons in DNT forests. CLM4.5 overestimates the diurnal range of sub-canopy longwave radiation and consequently longwave enhancement, overestimating daytime values and underestimating nighttime values. Simulation errors result mainly from clear sky conditions, due to high absorption of shortwave radiation during daytime and radiative cooling during nighttime. Using recent improvements to the canopy parameterisations of SNOWPACK as a guideline, CLM4.5 simulations of sub-canopy longwave radiation improved through the implementation of a heat mass parameterisation, i.e. including thermal inertia due to biomass. However, this improvement does not substantially reduce the amplitude of the diurnal cycle, a result also found during the development of SNOWPACK.
J. P. Perkins; J. A. Thrailkill; W. J. Ripple; K. T. Hershey
1997-01-01
We investigated landscape characteristics around 41 Northern Spotted Owl (Strix occidentalis caurina) nest sites to assess habitat proportions and patterns on this highly fragmented landscape in the central Coast Ranges of Oregon. We compared the proportion of seven forest cover-types between nest sites and random sites at plot sizes of 112 ha, 456...
NASA Astrophysics Data System (ADS)
Skoczylas, Daniel R.; Muth, Norris Z.; Niesenbaum, Richard A.
2007-11-01
Predation of herbivorous Lepidoptera larvae by insectivorous avifauna was estimated on Lindera benzoin in edge and interior habitats at two sites in eastern Pennsylvania (USA). Clay baits modeled after Epimecis hortaria (Geometridae) larvae, the primary herbivore of L. benzoin at our study sites, were used to estimate predation by birds. In both habitat types, models were placed on uninjured L. benzoin leaves as well as on leaves that had prior insect herbivore damage. Rates of model attack were greater, and model longevity reduced, in forest edge plots compared to interiors. Naturally occurring herbivore damage on L. benzoin was greater in forest interiors. However, model attack was not significantly greater on leaves with prior herbivory damage, suggesting that birds do not effectively use this type of leaf damage as a cue in their foraging. Our findings are consistent with a contribution of bird predation towards top-down control of herbivory in this system. We further discuss these results in a broader context considering the possible effects of habitat type on leaf quality, leaf defense, and herbivore performance.
Dugger, Katie M.; Wagner, Frank; Anthony, Robert G.; Olson, Gail S.
2005-01-01
We used data from Northern Spotted Owl (Strix occidentalis caurina) territories to model the effects of habitat (particularly intermediate-aged forest stand types), climate, and nonhabitat covariates (i.e., age, sex) on owl reproductive rate and apparent survival in southwestern Oregon. Our best model for reproductive rate included an interaction between a cyclic, annual time trend and male breeding experience, with higher reproductive rates in even years compared to odd, particularly for males with previous breeding experience. Reproductive rate was also negatively related to the amount of winter precipitation and positively related to the proportion of old-growth forest near the owl territory center. Apparent survival was not associated with age, sex, climate or any of the intermediate-aged forest types, but was positively associated with the proportion of older forest near the territory center in a pseudothreshold pattern. The quadratic structure of the proportion of nonhabitat farther from the nest or primary roost site was also part of our best survival model. Survival decreased dramatically when the amount of nonhabitat exceeded ∼50%. Habitat fitness potential estimates (λ̂h) for 97 owl territories ranged from 0.29–1.09, with a mean of 0.86 ± 0.02. Owl territories with habitat fitness potentials <1.0 were generally characterized by <40%–50% old forest habitat near the territory center. Our results indicate that both apparent survival and reproductive rate are positively associated with older forest types close to the nest or primary roost site. We found no support for either a positive or negative direct effect of intermediate-aged forests on either survival or reproductive rate.
NASA Astrophysics Data System (ADS)
Ťupek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero
2015-04-01
In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net warming.
NASA Astrophysics Data System (ADS)
Doerr, S. H.; Woods, S. W.; Martin, D. A.; Casimiro, M.
2009-06-01
SummarySoils under a wide range of vegetation types exhibit water repellency following the passage of a fire. This is viewed by many as one of the main causes for accelerated post-fire runoff and soil erosion and it has often been assumed that strong soil water repellency present after wildfire is fire-induced. However, high levels of repellency have also been reported under vegetation types not affected by fire, and the question arises to what degree the water repellency observed at burnt sites actually results from fire. This study aimed at determining 'natural background' water repellency in common coniferous forest types in the north-western USA. Mature or semi-mature coniferous forest sites ( n = 81), which showed no evidence of recent fires and had at least some needle cast cover, were sampled across six states. After careful removal of litter and duff at each site, soil water repellency was examined in situ at the mineral soil surface using the Water Drop Penetration Time (WDPT) method for three sub-sites, followed by collecting near-surface mineral soil layer samples (0-3 cm depth). Following air-drying, samples were further analyzed for repellency using WDPT and contact angle ( θsl) measurements. Amongst other variables examined were dominant tree type, ground vegetation, litter and duff layer depth, slope angle and aspect, elevation, geology, and soil texture, organic carbon content and pH. 'Natural background' water repellency (WDPT > 5 s) was detected in situ and on air-dry samples at 75% of all sites examined irrespective of dominant tree species ( Pinus ponderosa, Pinus contorta, Picea engelmanii and Pseudotsuga menziesii). These findings demonstrate that the soil water repellency commonly observed in these forest types following burning is not necessarily the result of recent fire but can instead be a natural characteristic. The notion of a low background water repellency being typical for long-unburnt conifer forest soils of the north-western USA is therefore incorrect. It follows that, where pre-fire water repellency levels are not known or highly variable, post-fire soil water repellency conditions are an unreliable indicator in classifying soil burn severity. The terrain and soil variables examined showed, overall, no convincing relationship with the repellency levels observed ( R2 < 0.15) except that repellency was limited in soils (i) developed over meta-sedimentary lithology and (ii) with clay contents >4%. This suggests that water repellency levels cannot be predicted with confidence from common terrain or soil variables.
Doerr, S.H.; Woods, S.W.; Martin, D.A.; Casimiro, M.
2009-01-01
Soils under a wide range of vegetation types exhibit water repellency following the passage of a fire. This is viewed by many as one of the main causes for accelerated post-fire runoff and soil erosion and it has often been assumed that strong soil water repellency present after wildfire is fire-induced. However, high levels of repellency have also been reported under vegetation types not affected by fire, and the question arises to what degree the water repellency observed at burnt sites actually results from fire. This study aimed at determining 'natural background' water repellency in common coniferous forest types in the north-western USA. Mature or semi-mature coniferous forest sites (n = 81), which showed no evidence of recent fires and had at least some needle cast cover, were sampled across six states. After careful removal of litter and duff at each site, soil water repellency was examined in situ at the mineral soil surface using the Water Drop Penetration Time (WDPT) method for three sub-sites, followed by collecting near-surface mineral soil layer samples (0-3 cm depth). Following air-drying, samples were further analyzed for repellency using WDPT and contact angle (??sl) measurements. Amongst other variables examined were dominant tree type, ground vegetation, litter and duff layer depth, slope angle and aspect, elevation, geology, and soil texture, organic carbon content and pH. 'Natural background' water repellency (WDPT > 5 s) was detected in situ and on air-dry samples at 75% of all sites examined irrespective of dominant tree species (Pinus ponderosa, Pinus contorta, Picea engelmanii and Pseudotsuga menziesii). These findings demonstrate that the soil water repellency commonly observed in these forest types following burning is not necessarily the result of recent fire but can instead be a natural characteristic. The notion of a low background water repellency being typical for long-unburnt conifer forest soils of the north-western USA is therefore incorrect. It follows that, where pre-fire water repellency levels are not known or highly variable, post-fire soil water repellency conditions are an unreliable indicator in classifying soil burn severity. The terrain and soil variables examined showed, overall, no convincing relationship with the repellency levels observed (R2 < 0.15) except that repellency was limited in soils (i) developed over meta-sedimentary lithology and (ii) with clay contents >4%. This suggests that water repellency levels cannot be predicted with confidence from common terrain or soil variables. ?? 2009 Elsevier B.V.
Atmospheric deposition to forests in the eastern USA
Risch, Martin R.; DeWild, John F.; Gay, David A.; Zhang, Leiming; Boyer, Elizabeth W.; Krabbenhoft, David P.
2017-01-01
Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007–2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m2/yr) and ranged from 2.2 to 23.4 μg/m2/yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007–2009 than in 2012–2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors.
Atmospheric mercury deposition to forests in the eastern USA.
Risch, Martin R; DeWild, John F; Gay, David A; Zhang, Leiming; Boyer, Elizabeth W; Krabbenhoft, David P
2017-09-01
Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007-2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007-2009 than in 2012-2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors. Published by Elsevier Ltd.
DOE Research Set-Aside Areas of the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, C.E.; Janecek, L.L.
1997-08-31
Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) tomore » 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.« less
Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia
2014-01-01
Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. PMID:24757012
Riparian litter inputs to streams in the central Oregon Coast Range
Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.
2013-01-01
Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves <5 m downslope annually. N concentrations of several litter fractions were higher at deciduous sites and, when combined with greater litter amounts, yielded twice as much total litter N flux to streams in deciduous than coniferous sites. The presence of red alder in riparian forests along many small streams of the deeply incised and highly dendritic basins of the Oregon Coast Range enhances total fluxes and seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.
Responses of soil fungi to logging and oil palm agriculture in Southeast Asian tropical forests.
McGuire, K L; D'Angelo, H; Brearley, F Q; Gedallovich, S M; Babar, N; Yang, N; Gillikin, C M; Gradoville, R; Bateman, C; Turner, B L; Mansor, P; Leff, J W; Fierer, N
2015-05-01
Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.
Root competition slows growth of p1antings on unprepared sites in scrub oak
E. F. McNamara; Irvin C. Reigner
1955-01-01
Planting experiments during the past 7 years on the Dilldown Unit of the Delaware-Lehigh Experimental Forest in Pennsylvania and elsewhere in the scrub oak type have been aimed at finding methods for converting the scrub cover to more valuable timber types at least cost. Some sort of site preparation has been recognized from the beginning as essential to successful...
A study of stability effects in forested terrain
NASA Astrophysics Data System (ADS)
Desmond, Cian J.; Watson, Simon
2014-12-01
Data from four well instrumented met masts located in heavily forested European sites in different locations and terrain types are examined. Seven stability metrics are applied to the data sets and a novel method is used to identify the metric which most consistently identifies stability events of importance for wind energy generation. It was found that the Obukhov length, as calculated by fast response sonic anemometer, provides the most reliable results in these highly complex sites. It was also found that non-neutral stabilities can be expected a significant portion of the time for wind speeds of less than 10 m/s at the considered sites.
Distribution of Diatoms in Relation to Land Use and pH in Blackwater Coastal Plain Streams
NASA Astrophysics Data System (ADS)
Zampella, Robert A.; Laidig, Kim J.; Lowe, Rex L.
2007-03-01
We compared the composition of diatom assemblages collected from New Jersey Pinelands blackwater streams draining four different land uses, including forest land, abandoned-cranberry bogs, active-cranberry bogs, and developed and upland-agricultural land. Over a 2-year period (2002-2003), we collected 132 diatom taxa at 14 stream sites. Between-year variability in the composition of stream samples was high. Most diatom species were rarely encountered and were found in low abundance. Specific conductance and pH were higher at developed/agricultural sites compared with all other site types. Neither species richness nor genus richness was significantly different between stream types. However, clear community patterns were evident, and a significant difference in species composition existed between the developed/agricultural sites and both cranberry and forest sites. The primary community gradient, represented by the first axis of a DCA ordination, was associated with variations in pH and specific conductance. Although community patterns revealed by ordinating the data collected in 2002 differed from those obtained using the 2003 data, both ordinations contrasted the developed/agricultural sites and the other sites. Acidobiontic and acidophilous diatoms characterized the dominant species at forest, abandoned-bog, and cranberry sites, whereas indifferent species dominated the developed/agricultural samples. Although our study demonstrated a relationship between the composition of diatom assemblages and watershed conditions, several factors, including taxonomic problems, the large number of diatom species, incomplete pH classifications, and year-to-year variability may limit the utility of diatom species as indicators of watershed conditions in the New Jersey Pinelands.
NASA Astrophysics Data System (ADS)
Reid, T. D.; Essery, R.; Rutter, N.; Huntley, B.; Baxter, R.; Holden, R.; King, M.; Hancock, S.; Carle, J.
2012-12-01
Boreal forests exert a strong influence on weather and climate by modifying the surface energy and radiation balance. However, global climate and numerical weather prediction models use forest parameter values from simple look-up tables or maps that are derived from limited satellite data, on large grid scales. In reality, Arctic landscapes are inherently heterogeneous, with highly variable land cover types and structures on a variety of spatial scales. There is value in collecting detailed field data for different areas of vegetation cover, to assess the accuracy of large-scale assumptions. To address these issues, a consortium of researchers funded by the UK's Natural Environment Research Council have collected extensive data on radiation, meteorology, snow cover and canopy structure at two contrasting Arctic forest sites. The chosen study sites were an area of boreal birch forest near Abisko, Sweden in March/April 2011 and mixed conifer forest at Sodankylä, Finland in March/April 2012. At both sites, arrays comprising ten shortwave pyranometers and four longwave pyrgeometers were deployed for periods of up to 50 days, under forest plots of varying canopy structures and densities. In addition, downwelling longwave irradiance and global and diffuse shortwave irradiances were recorded at nearby open sites representing the top-of-canopy conditions. Meteorological data were recorded at all sub-canopy and open sites using automatic weather stations. Over the same periods, tree skin temperatures were measured on selected trees using contact thermocouples, infrared thermocouples and thermal imagery. Canopy structure was accurately quantified through manual surveys, extensive hemispherical photography and terrestrial laser scans of every study plot. Sub-canopy snow depth and snow water equivalent were measured on fine-scale grids at each study plot. Regular site maintenance ensured a high quality dataset covering the important Arctic spring period. The data have several applications, for example in forest ecology, canopy radiative transfer models, snow hydrological modelling, and land surface schemes, for a variety of canopy types from sparse, leafless birch to dense pine and spruce. The work also allows the comparison of modern, highly detailed methods such as laser scanning and thermal imagery with older, well-established data collection methods. By combining these data with airborne and satellite remote sensing data, snow-vegetation-atmosphere interactions could be estimated over a wide area of the heterogeneous boreal landscape. This could improve estimates of crucial parameters such as land surface albedo on the grid scales required for global or regional weather and climate models.
NASA Astrophysics Data System (ADS)
Šamonil, Pavel; Daněk, Pavel; Adam, Dušan; Phillips, Jonathan D.
2017-12-01
Tree breakage and uprooting are two possible scenarios of tree death that have differing effects on hillslope processes. In this study we aimed to (i) reveal the long-term structure of the biomechanical effects of trees (BETs) in relation to their radial growth and tree death types in four old-growth temperate forests in four different elevation settings with an altitudinal gradient of 152-1105 m a.s.l., (ii) quantify affected areas and soil volumes associated with the studied BETs in reserves, and (iii) derive a general model of the role of BETs in hillslope processes in central European temperate forests. We analyzed the individual dynamics of circa 55,000 trees in an area of 161 ha within four old-growth forests over 3-4 decades. Basal tree censuses established in all sites in the 1970s and repeated tree censuses in the 1990s and 2000s provided detailed information about the radial growth of each tree of DBH ≥ 10 cm as well as about types of tree death. We focused on the quantification of: (i) surviving still-living trees, (ii) new recruits, (iii) standing dead trees, (iv) uprooted trees, and (v) broken trees. Frequencies of phenomena were related to affected areas and volumes of soil using individual statistical models. The elevation contrasts were a significant factor in the structure of BETs. Differences between sites increased from frequencies of events through affected areas to volumes of soil associated with BETs. An average 2.7 m3 ha-1 year-1 was associated with all BETs of the living and dying trees in lowlands, while there was an average of 7.8 m3 ha-1 year-1 in the highest mountain site. Differences were caused mainly by the effects of dying trees. BETs associated with dead trees were 7-8 times larger in the mountains. Effects of dying trees and particularly treethrows represented about 70% of all BETs at both mountain sites, while it was 58% at the highland site and only 32% at the lowland site. Our results show a more significant role of BETs in hillslope processes including slope denudation in the mountains. We would expect a significant decrease of the biogeomorphic effect of trees in managed forests, but with a greater relative effect in mountains.
Carbon storage in subalpine forests and meadows of the Olympic Mountains, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prichard, S.J.; Peterson, D.L.
1995-06-01
We investigated carbon storage in high elevation ecosystems of the Olympic Mountains. A sharp precipitation gradient created by the Olympic mountain range allows for comparison of carbon storage in different climatic regimes and vegetation types. Carbon in soils, vegetation, and woody debris was examined in subalpine forests and meadows of the northeast (dry) and southwest (wet) Olympics. Soil carbon storage in high elevation sites appears to be considerably greater than most low elevation forests. Above-ground carbon storage is generally greater in southwest sites. Meadow soils contained high carbon concentrations in upper horizons, while forests also stored a substantial amount ofmore » carbon in lower horizons. Information gained from this study will provide a better understanding of soil-vegetation relationships in subalpine ecosystems, especially with respect to potential climatic change impacts.« less
Evaluation of Sentinel-1A Data For Above Ground Biomass Estimation in Different Forests in India
NASA Technical Reports Server (NTRS)
Vadrevu, Krishna Prasad
2017-01-01
Use of remote sensing data for mapping and monitoring of forest biomass across large spatial scales can aid in addressing uncertainties in carbon cycle. Earlier, several researchers reported on the use of Synthetic Aperture Radar (SAR) data for characterizing forest structural parameters and the above ground biomass estimation. However, these studies cannot be generalized and the algorithms cannot be applied to all types of forests without additional information on the forest physiognomy, stand structure and biomass characteristics. The radar backscatter signal also saturates as forest parameters such as biomass and the tree height increase. It is also not clear how different polarizations (VV versus VH) impact the backscatter retrievals in different forested regions. Thus, it is important to evaluate the potential of SAR data in different landscapes for characterizing forest structural parameters. In this study, the SAR data from Sentinel-1A has been used to characterize forest structural parameters including the above ground biomass from tropical forests of India. Ground based data on tree density, basal area and above ground biomass data from thirty-eight different forested sites has been collected to relate to SAR data. After the pre-processing of Sentinel 1-A data for radiometric calibration, geo-correction, terrain correction and speckle filtering, the variability in the backscatter signal in relation tree density, basal area and above biomass density has been investigated. Results from the curve fitting approach suggested exponential model between the Sentinel-1A backscatter versus tree density and above ground biomass whereas the relationship was almost linear with the basal area in the VV polarization mode. Of the different parameters, tree density could explain most of the variations in backscatter. Both VV and VH backscatter signals could explain only thirty and thirty three percent of variation in above biomass in different forest sites of India. Results also suggested saturation of the Sentinel-1A backscatter signal around hundred tonnes per hectare for VV polarization and one hundred and forty five tonnes per hectare for VH polarization. The presentation will highlight the above results in addition to potentials and limitations of Sentinel-1A data for retrieving forest structural parameters. Also, background information on different forest types of India, biomass variations and forest type mapping efforts in the region will be presented.
Robert S. Pierce; James W. Hornbeck; Wayne C. Martin; Louise M. Tritton; Tattersall C. Smith; Anthony C. Federer; Harry W. Yawney
1993-01-01
Studies of impacts of whole-tree clearcutting in spruce-fir, northern hardwood, and central hardwood forest types are summarized for use by practicing foresters, land managers, environmental protection agencies and organizations, and the general public. Guidelines are given for protecting soils, stream water quality, nutrient cycles, and site productivity.
Hydrological responses to changes in forest cover on uplands and peatlands. Chapter 13.
Stephen D. Sebestyen; Elon S. Verry; Kenneth N. Brooks
2011-01-01
Long-term data are used to quantify how ecosystem disturbances such as vegetation management, insect defoliation, wildfires, and extreme meteorological events affect hydrological processes in forested watersheds. The long-term, paired-watershed approach has been used at many sites to measure the effects of vegetation manipulations (e.g., harvesting and cover-type...
Germination of Sophora chrysophylla increased by presowing treatment
Paul G. Scowcroft
1978-01-01
Increasing germination of Sophora chrysophylla seed over current levels is an important step in reforesting portions of the mamane-naio forests on the slopes of Mauna Kea, Hawaii. Three types of seedground, old pod, and new pod, were collected at four different sites and shipped to the U.S. Forest Service's Eastern Tree Seed Laboratory, Macon...
T.L. van Huysen; M.E. Harmon; S.S. Perakis; H. Chen
2013-01-01
Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled...
Canopy accession strategies and climate-growth relationships in Acer Rubrum.
Justin L. Hart; Megan L. Buchanan; Scott J. Torreano
2012-01-01
A pervasive pattern of forest composition change is occurring throughout the Central Hardwood Forest of the eastern US. Acer rubrum has invaded the understory of Quercus stands across a variety of site types. The proliferation of A. rubrum, and that of other shade-tolerant mesophytes, inhibits the regeneration of Quercus. Without alterations in disturbance or climate...
Surface energy exchanges along a tundra-forest transition and feedbacks to climate
Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.
2005-01-01
Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi
2016-04-01
Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated the limitations of the method for closed canopies, where the understory signal retrieval is much attenuated. The retrieval of understory signal can be used e.g. to improve the estimates of leaf area index (LAI), fAPAR in sparsely vegetated areas, and also to study the phenology of understory layer. Our results are particularly useful to producing Northern hemisphere maps of seasonal dynamics of forests, allowing to separately retrieve understory variability, being a main contributor to spring emergence and fall senescence uncertainty. The inclusion of understory variability in ecological models will ultimately improve prediction and forecast horizons of vegetation dynamics.
NASA Astrophysics Data System (ADS)
Mudd, R. G.; Giambelluca, T. W.
2006-12-01
Epiphyte water retention was quantified at two montane cloud forest sites in Hawai'i Volcanoes National Park, one native and the other invaded by an alien tree species. Water storage elements measured included all epiphytic mosses, leafy liverworts, and filmy ferns. Tree surface area was estimated and a careful survey was taken to account for all epiphytes in the sample area of the forest. Samples were collected and analyzed in the lab for epiphyte water retention capacity (WRC). Based on the volume of the different kinds of epiphytes and their corresponding WRC, forest stand water retention capacity for each survey area was estimated. Evaporation from the epiphyte mass was quantified using artificial reference samples attached to trees that were weighed at intervals to determine changes in stored water on days without significant rain or fog. In addition, a soil moisture sensor was wrapped in an epiphyte sample and left in the forest for a 6-day period. Epiphyte biomass at the Native Site and Invaded Site were estimated to be 2.89 t ha-1 and 1.05 t ha-1, respectively. Average WRC at the Native Site and Invaded Site were estimated at 1.45 mm and 0.68 mm, respectively. The difference is likely due to the presence of the invasive Psidium cattleianum at the Invaded Site because its smooth stem surface is unable to support a significant epiphytic layer. The evaporation rate from the epiphyte mass near WSC for the forest stand at the Native Site was measured at 0.38 mm day-1, which represented 10.6 % of the total ET from the forest canopy at the Native Site during the period. The above research has been recently complemented by a thorough investigation of the WSC of all water storage elements (tree stems, tree leaves, shrubs, grasses, litter, fallen branches, and epiphytes) at six forested sites at different elevations within, above, and below the zone of frequent cloud-cover. The goal of this study was to create an inexpensive and efficient methodology for acquiring estimates of above-ground water retention in different types of forests by means of minimally-destructive sampling and surveying. The results of this work serve as baseline data providing a range of possible values of the water retention of specific forest elements and the entire above-ground total where no values have been previously recorded.
NASA Astrophysics Data System (ADS)
Musavi, Talie; Migliavacca, Mirco; Mahecha, Miguel D.; Reichstein, Markus; Kattge, Jens; Wirth, Christian; Black, T. Andrew; Janssens, Ivan; Knohl, Alexander; Loustau, Denis; Roupsard, Olivier; Varlagin, Andrej; Rambal, Serge; Cescatti, Alessandro; Gianelle, Damiano; Kondo, Hiroaki; Tamrakar, Rijan
2017-04-01
Gross primary productivity, GPP, the total uptake of carbon dioxide (CO2) by ecosystems via photosynthesis, is the largest flux in the global carbon cycle. The photosynthetic capacity at light saturation (GPPsat) is a fundamental ecosystem functional property and its interannual variability (IAV) is propagated to the net ecosystem exchange of CO2. In this contribution we made use of a variety of data streams consisting of ecosystem-atmosphere CO2 fluxes measured at eddy covariance flux sites with more than 4 years of data, the GPPsat derived at the different sites, information about climate (temperature, precipitation, and water availability index - WAI), biodiversity information and species richness, stand age, and plant traits, nutrient availability indexes derived from field campaigns, ancillary databases, and the literature. We also used data about forest structure derived from satellite products. Sites were selected according to the availability of eddy covariance flux measurements for at least 4 years, information about stand age, canopy cover, canopy height, and species abundance. The resulting global database consisted of 50 sites with different vegetation types across different climatic regions. Considering the importance of the understanding of IAV in CO2 fluxes to improve the predictive capacity of the global carbon cycle we analyzed a range of alternative hypotheses and potential drivers of the magnitude of IAV in GPPsat in forest ecosystems. The results show that the IAV in GPPsat within sites is driven by climate (i.e. fluctuations in air temperature and soil water availability), but the magnitude of IAV in GPPsat is related to ecosystem structure, and more in details to stand age and biodiversity (R2=0.55, p<0.0001). We conclude that irrespective of forest type the IAV of GPPsat in older and more diverse forests is dampened, and is higher in younger forests with few dominant species.
Bieber, Ana Gabriela D.; Silva, Paulo S. D.; Sendoya, Sebastián F.; Oliveira, Paulo S.
2014-01-01
Ants frequently interact with fleshy fruits on the ground of tropical forests. This interaction is regarded as mutualistic because seeds benefit from enhanced germination and dispersal to nutrient-rich microsites, whereas ants benefit from consuming the nutritious pulp/aril. Considering that the process of deforestation affects many attributes of the ecosystem such as species abundance and composition, and interspecific interactions, we asked whether the interaction between ants and fallen fleshy fruits in the Brazilian Atlantic forest differs between human-created fragments and undisturbed forests. We controlled diaspore type and quantity by using synthetic fruits (a plastic ‘seed’ covered by a lipid-rich ‘pulp’), which were comparable to lipid-rich fruits. Eight independent areas (four undisturbed forests, and four disturbed forest fragments) were used in the field experiment, in which we recorded the attracted ant species, ant behaviour, and fruit removal distance. Fruits in undisturbed forest sites attracted a higher number of species than those in disturbed forests. Moreover, the occurrence of large, fruit-carrying ponerine ants (Pachycondyla, Odontomachus; 1.1 to 1.4 cm) was higher in undisturbed forests. Large species (≥3 mm) of Pheidole (Myrmicinae), also able to remove fruits, did not differ between forest types. Following these changes in species occurrence, fruit displacement was more frequent in undisturbed than in disturbed forests. Moreover, displacement distances were also greater in the undisturbed forests. Our data suggest that fallen fleshy fruits interacting with ants face different fates depending on the conservation status of the forest. Together with the severe loss of their primary dispersers in human-disturbed tropical forest sites, vertebrate-dispersed fruits may also be deprived of potential ant-derived benefits in these habitats due to shifts in the composition of interacting ant species. Our data illustrate the use of synthetic fruits to better understand the ecology of ant-fruit interactions in variable ecological settings, including human-disturbed landscapes. PMID:24587341
Bieber, Ana Gabriela D; Silva, Paulo S D; Sendoya, Sebastián F; Oliveira, Paulo S
2014-01-01
Ants frequently interact with fleshy fruits on the ground of tropical forests. This interaction is regarded as mutualistic because seeds benefit from enhanced germination and dispersal to nutrient-rich microsites, whereas ants benefit from consuming the nutritious pulp/aril. Considering that the process of deforestation affects many attributes of the ecosystem such as species abundance and composition, and interspecific interactions, we asked whether the interaction between ants and fallen fleshy fruits in the Brazilian Atlantic forest differs between human-created fragments and undisturbed forests. We controlled diaspore type and quantity by using synthetic fruits (a plastic 'seed' covered by a lipid-rich 'pulp'), which were comparable to lipid-rich fruits. Eight independent areas (four undisturbed forests, and four disturbed forest fragments) were used in the field experiment, in which we recorded the attracted ant species, ant behaviour, and fruit removal distance. Fruits in undisturbed forest sites attracted a higher number of species than those in disturbed forests. Moreover, the occurrence of large, fruit-carrying ponerine ants (Pachycondyla, Odontomachus; 1.1 to 1.4 cm) was higher in undisturbed forests. Large species (≥3 mm) of Pheidole (Myrmicinae), also able to remove fruits, did not differ between forest types. Following these changes in species occurrence, fruit displacement was more frequent in undisturbed than in disturbed forests. Moreover, displacement distances were also greater in the undisturbed forests. Our data suggest that fallen fleshy fruits interacting with ants face different fates depending on the conservation status of the forest. Together with the severe loss of their primary dispersers in human-disturbed tropical forest sites, vertebrate-dispersed fruits may also be deprived of potential ant-derived benefits in these habitats due to shifts in the composition of interacting ant species. Our data illustrate the use of synthetic fruits to better understand the ecology of ant-fruit interactions in variable ecological settings, including human-disturbed landscapes.
Development of growth and yield models for southern hardwoods: site index determinations
John Paul McTague; Daniel J. Robison; David O' Loughlin; Joseph Roise; Robert Kellison
2006-01-01
Growth and yield data from across 13 southern States, collected from 1967 to 2004 from fully-stocked even-aged southern hardwood forests on a variety of site types, was used to calculate site index curves. These derived curves provide an efficient means to evaluate the productivity-age relation which varies across many sites. These curves were derived for mixed-species...
Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status
Dauer, Jenny M.; Perakis, Steven S.
2014-01-01
Calcium oxalate (Ca oxalate) is an insoluble biomineral that forms in plants and fungi, and occurs in soils across many types of ecosystems. Assessing how Ca oxalate may shape ecosystem Ca cycling requires information on the distribution of Ca oxalate among plant biomass, detritus, and mineral soil, and how it varies with ecosystem Ca status. We compared two Douglas-fir forests of contrasting ecosystem Ca availability, and found that Ca oxalate was partitioned similarly among plant biomass, detritus and mineral soil major ecosystem compartments at both sites, and total pools of Ca oxalate were greater in the high-Ca forest. However, the proportional importance of Ca oxalate was greater in the low-Ca than high-Ca forest (18% versus 4% of actively cycling ecosystem Ca, respectively). And calcium oxalate in mineral soil, which is of particular interest as a potential long-term Ca reservoir, was a larger portion of total available Ca (exchangeable Ca plus Ca oxalate Ca) in the low-Ca site than the high-Ca site (9% versus 1% of available soil Ca, respectively). Calcium oxalate was the dominant form of Ca returned from plants to soil as leaf litterfall at the high-Ca site, yet calcium oxalate disappeared rapidly from decomposing litter (0.28 yr−1 or faster) at both sites. We conclude that accumulation of Ca oxalate in forest ecosystems appears most closely related to overall Ca supply for live biomass pools, and that the accumulation of Ca oxalate in forest floor and mineral soil is limited by rapid microbial degradation of putatively unavailable Ca oxalate.
Effects of oil-palm plantations on diversity of tropical anurans.
Faruk, Aisyah; Belabut, Daicus; Ahmad, Norhayati; Knell, Robert J; Garner, Trenton W J
2013-06-01
Agriculturally altered vegetation, especially oil-palm plantations, is rapidly increasing in Southeast Asia. Low species diversity is associated with this commodity, but data on anuran diversity in oil-palm plantations are lacking. We investigated how anuran biological diversity differs between forest and oil-palm plantation, and whether observed differences in biological diversity of these areas is linked to specific environmental factors. We hypothesized that biological diversity is lower in plantations and that plantations support a larger proportion of disturbance-tolerant species than forest. We compared species richness, abundance, and community composition between plantation and forest areas and between site types within plantation and forest (forest stream vs. plantation stream, forest riparian vs. plantation riparian, forest terrestrial vs. plantation terrestrial). Not all measures of biological diversity differed between oil-palm plantations and secondary forest sites. Anuran community composition, however, differed greatly between forest and plantation, and communities of anurans in plantations contained species that prosper in disturbed areas. Although plantations supported large numbers of breeding anurans, we concluded the community consisted of common species that were of little conservation concern (commonly found species include Fejervarya limnocharis, Microhyla heymonsi, and Hylarana erythrea). We believe that with a number of management interventions, oil-palm plantations can provide habitat for species that dwell in secondary forests. © 2013 Society for Conservation Biology.
Use of map analysis to elucidate flooding in an Australian Riparian River Red Gum Forest
NASA Astrophysics Data System (ADS)
Bren, L. J.; O'Neill, I. C.; Gibbs, N. L.
1988-07-01
Red gum (Eucalyptus camaldulensis) forests occur on extensive floodplains along the river Murray in Australia. This type of forest is unusual because of its high quality in a semiarid area, the absence of woody species other than red gum, and its survival on a deep, intractable, swelling clay soil of depths exceeding 20 m. This soil probably acts as an aquiclude. The forests require flooding to thrive and regenerate. For many years there has been speculation that irrigation regulation of the river was reducing forest flooding. A grid cell analysis of flood maps of areas flooded over a period of 22 years showed that vegetation communities and forest site quality were statistically related to the flood frequencies of sites. The percentage of forest inundated was dependent on the peak daily flow during the period of inundation. A historical analysis of the estimated percentage of forest inundated showed a substantial influence of river regulation on both timing and extent of inundation. Estimates of historical floodings showed that the environment is one that changes rapidly from wetland to dry land. Although not without limitations, the analysis produced information not available from other sources.
NASA Astrophysics Data System (ADS)
Potthast, Karin; Meyer, Stefanie; Crecelius, Anna; Schubert, Ulrich; Michalzik, Beate
2016-04-01
It is supposed that the changing climate will promote extreme weather events that in turn will increase drought periods and the abundance of fire events in temperate climate regions such as Central Europe. The impact of fires on the nutrient budgets of ecosystems is highly diverse and seems to depend on the ecosystem type. For example, little is known about fire effects on water-bound organic matter (OM) and nutrient fluxes in temperate managed forest ecosystems. Fires can strongly alter the distribution (forest floor vs. mineral soil), binding forms (organic vs. inorganic) and availability (solubility by water) of OM and associated nutrients. To elucidate the effects and seasonality of low intensity fires on the mobilization of dissolved organic carbon and nutrients, an experimental ground fire was conducted in November 2014 in the Hainich region, Central Germany. In addition, differences in response patterns between two land-use types (pasture and beech forest) were investigated. Lysimeters (n=5 controls/ 5 fire-manipulated) with topsoil monoliths (0-4 cm), rainfall/throughfall samplers, littertraps as well as temperature and moisture sensors were installed on three sites of each land-use type. During the one year of monitoring (Sep14-Dec15) soil solution, rainfall, and throughfall samples were taken biweekly and analyzed for pH, dissolved and particulate organic carbon (DOC, POC) and nitrogen (DN, PN) as well as for nutrients (e.g. K, Ca, Mg, P, S). Compared to the control sites, the ground fire immediately induced a short-run release peak of DOC in both land-use types. Within two weeks these differences were muted in the post-fire period. The effect of fire was land-use specific with annual DOC fluxes of 82 and 45 kg/(ha*a) for forest and pasture sites, respectively. In contrast, nitrogen fluxes responded differently to the fire event. In the forest, a significant increase in DN concentrations was notable five months after the fire, at the beginning of the vegetation period and lasted until November with DN concentrations in June being 4 times higher compared to the control (82 vs. 18 mg DN/L) and being negatively correlated with pH-values (r=-0.51 p<0.001). Annual DN fluxes from fire manipulated forest plots were two times higher compared to control ones (62 vs. 29 kg DN/(ha*a)) whereas only low impact was found at the pasture with 45 and 38 kg DN/(ha*a) for fire-manipulated plots and control, respectively. In general, the results exhibit highly differing response patterns of elements to fire between the two land-use types and with season. Starting in spring higher DN fluxes following fire event at the forest site could be associated with accelerated activity of soil microbes mineralizing released organic substances from burned forest floor and/or from dead roots. This mineralization process resulted in a significant increase in acidity of the soil solution that may affect important ecosystem functions like nutrient cycling and primary production. Hence, high resolution monitoring following a low intensive fire indicated nutrient losses from the forest ecosystem that could be a hazard for managed forests on nutrient poor soils if fire frequency increases with climate change.
Messaoud, Yassine; Bergeron, Yves; Asselin, Hugo
2007-05-01
The reproductive potentials of balsam fir and white spruce (co-dominants in mixedwood forests) and black spruce (dominant in coniferous forests) were studied to explain the location of the ecotone between the two forest types in the boreal zone of Quebec. Four sites were selected along a latitudinal gradient crossing the ecotone. Cone crop, number of seeds per cone, percentage filled seeds, and percentage germination were measured for each species. Balsam fir and white spruce cone crops were significantly lower in the coniferous than in the mixedwood forest, while black spruce had greater crop constancy and regularity between both forest types. Mast years were more frequent for black spruce than for balsam fir in both forest types (mast year data not available for white spruce). The number of seeds per cone was more related to cone size than to forest type for all species. Black spruce produced more filled seeds in the coniferous forest than balsam fir or white spruce. The sum of growing degree-days and the maximum temperature of the warmest month (both for the year prior to cone production) significantly affected balsam fir cone production. The climate-related northward decrease in reproductive potential of balsam fir and white spruce could partly explain the position of the northern limit of the mixedwood forest. This could change drastically, however, as the ongoing climate warming might cancel this competitive advantage of black spruce.
Drought effects on water quality in the South Platte River Basin, Colorado
Sprague, Lori A.
2005-01-01
Twenty-three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite-plus-nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water-derived calcium bicarbonate type base flow likely led to elevated pH and specific-conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.
Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S
2009-10-01
Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data.
Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.
Sunarto, Sunarto; Kelly, Marcella J.; Parakkasi, Karmila; Klenzendorf, Sybille; Septayuda, Eka; Kurniawan, Harry
2012-01-01
The critically endangered Sumatran tiger (Panthera tigris sumatrae Pocock, 1929) is generally known as a forest-dependent animal. With large-scale conversion of forests into plantations, however, it is crucial for restoration efforts to understand to what extent tigers use modified habitats. We investigated tiger-habitat relationships at 2 spatial scales: occupancy across the landscape and habitat use within the home range. Across major landcover types in central Sumatra, we conducted systematic detection, non-detection sign surveys in 47, 17×17 km grid cells. Within each cell, we surveyed 40, 1-km transects and recorded tiger detections and habitat variables in 100 m segments totaling 1,857 km surveyed. We found that tigers strongly preferred forest and used plantations of acacia and oilpalm, far less than their availability. Tiger probability of occupancy covaried positively and strongly with altitude, positively with forest area, and negatively with distance-to-forest centroids. At the fine scale, probability of habitat use by tigers across landcover types covaried positively and strongly with understory cover and altitude, and negatively and strongly with human settlement. Within forest areas, tigers strongly preferred sites that are farther from water bodies, higher in altitude, farther from edge, and closer to centroid of large forest block; and strongly preferred sites with thicker understory cover, lower level of disturbance, higher altitude, and steeper slope. These results indicate that to thrive, tigers depend on the existence of large contiguous forest blocks, and that with adjustments in plantation management, tigers could use mosaics of plantations (as additional roaming zones), riparian forests (as corridors) and smaller forest patches (as stepping stones), potentially maintaining a metapopulation structure in fragmented landscapes. This study highlights the importance of a multi-spatial scale analysis and provides crucial information relevant to restoring tigers and other wildlife in forest and plantation landscapes through improvement in habitat extent, quality, and connectivity. PMID:22292063
Sunarto, Sunarto; Kelly, Marcella J; Parakkasi, Karmila; Klenzendorf, Sybille; Septayuda, Eka; Kurniawan, Harry
2012-01-01
The critically endangered Sumatran tiger (Panthera tigris sumatrae Pocock, 1929) is generally known as a forest-dependent animal. With large-scale conversion of forests into plantations, however, it is crucial for restoration efforts to understand to what extent tigers use modified habitats. We investigated tiger-habitat relationships at 2 spatial scales: occupancy across the landscape and habitat use within the home range. Across major landcover types in central Sumatra, we conducted systematic detection, non-detection sign surveys in 47, 17×17 km grid cells. Within each cell, we surveyed 40, 1-km transects and recorded tiger detections and habitat variables in 100 m segments totaling 1,857 km surveyed. We found that tigers strongly preferred forest and used plantations of acacia and oilpalm, far less than their availability. Tiger probability of occupancy covaried positively and strongly with altitude, positively with forest area, and negatively with distance-to-forest centroids. At the fine scale, probability of habitat use by tigers across landcover types covaried positively and strongly with understory cover and altitude, and negatively and strongly with human settlement. Within forest areas, tigers strongly preferred sites that are farther from water bodies, higher in altitude, farther from edge, and closer to centroid of large forest block; and strongly preferred sites with thicker understory cover, lower level of disturbance, higher altitude, and steeper slope. These results indicate that to thrive, tigers depend on the existence of large contiguous forest blocks, and that with adjustments in plantation management, tigers could use mosaics of plantations (as additional roaming zones), riparian forests (as corridors) and smaller forest patches (as stepping stones), potentially maintaining a metapopulation structure in fragmented landscapes. This study highlights the importance of a multi-spatial scale analysis and provides crucial information relevant to restoring tigers and other wildlife in forest and plantation landscapes through improvement in habitat extent, quality, and connectivity.
Matyssek, R; Wieser, G; Calfapietra, C; de Vries, W; Dizengremel, P; Ernst, D; Jolivet, Y; Mikkelsen, T N; Mohren, G M J; Le Thiec, D; Tuovinen, J-P; Weatherall, A; Paoletti, E
2012-01-01
Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. Copyright © 2011 Elsevier Ltd. All rights reserved.
Vera L. Engel; John A. Parrotta
2001-01-01
As part of a larger study evaluating several silvicultural techniques for restoring tropical moist forests on abandoned agricultural lands in southeastern Brazil, direct seeding with five early-successional Atlantic forest species was tested at three degraded sites, characterized by different soil types and land-use histories, within the Environmental Protection Area...
Elizabeth Reinhardt; Lisa Holsinger
2010-01-01
Fuel treatments alter conditions in forested stands at the time of the treatment and subsequently. Fuel treatments reduce on-site carbon and also change the fire potential and expected outcome of future wildfires, including their carbon emissions. We simulated effects of fuel treatments on 140 stands representing seven major habitat type groups of the northern Rocky...
Controls on the size and occurrence of pools in coarse-grained forest rivers
John M. Buffington; Thomas E. Lisle; Richard D. Woodsmith; Sue Hilton
2002-01-01
Controls on pool formation are examined in gravel- and cobble-bed rivers in forest mountain drainage basins of northern California, southern Oregon, and southeastern Alaska. We demonstrate that the majority of pools at our study sites are formed by flow obstructions and that pool geometry and frequency largely depend on obstruction characteristics (size, type, and...
Effect of competition on height growth and survival of planted Japanese larch
E. F. McNamara; Irvin C. Reigner
1960-01-01
On the Dilldown Unit of the Delaware-Lehigh Experimental Forest in Pennsylvania, several planting studies have been made with the aim of finding the most economical and practical methods of converting scrub oak areas to productive high-forest types. These studies have already shown the need for site preparation prior to planting. Seedlings planted on prepared areas...
Vertebrate assemblages associated with headwater hydrology in western Oregon managed forests.
D.H. Olson; G. Weaver
2007-01-01
We characterized headwater stream habitats, fish, and amphibian fauna, in and along 106 headwater stream reaches at 12 study sites within managed forest stands 40 to 70 years old in western Oregon. Headwater stream types in our sample included perennial, spatially intermittent, and dry reaches. We captured 454 fish of three species groups and 1,796 amphibians of 12...
Silvicultural Alternatives in Bottomland Hardwoods and Their Impact on Stand Quality
Harvey E. Kennedy; Robert L. Johnson
1984-01-01
Bottomland hardwoods occur on some 35 million acres of forest land in swamps, creek margins, river bottoms, and brown loam bluffs from Virginia to Texas. These hardwood types are very important because the wood has great value and is in demand by forest industries. This article discusses silvicultural alternatives such as site-species relationships, how hardwood timber...
D.G. Brockway; G. Schneider; D.P. White
1979-01-01
The impact of wastewater applications upon a variety of forest ecosystems has received widespread attention in the United States over the past 20 years. During this period the efforts of many researchers have improved our under- standing of the species composition and site characteristics which are appropriate for wastewater irrigation in various forest types (Smith...
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module discusses the characteristics of alternate sites and management schemes and attempts to evaluate the efficiency of each alternative in terms of waste treatment. Three types of non-crop land application are discussed: (1) forest lands; (2) park and recreational application; and (3) land reclamation in surface or strip mined areas. (BB)
NASA Astrophysics Data System (ADS)
Abelleira, O. J.
2011-12-01
The African tulip tree, Spathodea campanulata, has been introduced to and dominates many post-agricultural secondary forests in the moist tropics, particularly in islands. Some consider these novel forests have null to negative ecological value, yet they appear to restore ecosystem processes on degraded sites. This study describes the litterfall mass and seasonality, canopy phenology, and microclimate of S. campanulata forests on alluvial and karst substrates in northern Puerto Rico. These substrates have different water drainage properties and I hypothesized that (1) annual leaf fall mass and seasonality would differ between substrate types; because (2) leaf fall would be related to water availability and seasonality. I used analysis of variance to compare annual and biweekly litterfall mass across three sites on each substrate type, and multiple linear regression analysis to relate biweekly litterfall to environmental variables. Litterfall mass was high (13.8 Mg/ha/yr, n = 6, SE = 0.60) yet its components did not differ by substrate type except for reproductive part mass which was higher on karst due to more S. campanulata flowers. Leaf fall had a bimodal seasonality and was negatively related to the number of dry days indicating it occurs when water is readily available or in excess as during floods. Observations show systematic leaf senescence in this deciduous species can be caused by water and nutrient demand from flowering. Litterfall mass and seasonality of novel S. campanulata forests is similar to that of native forests in Puerto Rico, yet flower fall appears to be higher than that of tropical forests worldwide. The environmental variables that affect litterfall seasonality and canopy phenology are similar to those in tropical forests in Puerto Rico and elsewhere. Litterfall seasonality and canopy phenology regulate understory microclimate, and influence the establishment and growth of juvenile trees and other organisms within S. campanulata forests. Thus, the forest ecosystem processes and properties restored by novel S. campanulata forests facilitate tree species establishment, growth, and turnover in deforested, abandoned, and degraded agricultural lands in Puerto Rico. This study illustrates how anthropogenic land use change and species transport interact to modify the phenology of current forest cover, and suggests that anthropogenic climate change that modifies seasonal patterns of tempreature and precipitation will have an influence on the litterfall and phenology of novel S. campanulata forests.
Karl Tennant
1989-01-01
Diverse problems confront the forest manager when planting bottomland hardwoods. Bottomland vegetation types and sites are complex and differ markedly from uplands. There are different and more numerous hardwood species that grow faster in denser stands. Sites are subject to varying intensities and duration of flooding and the action of overflow river currents that...
Nitrous oxide flux and nitrogen transformations across a landscape gradient in Amazonia
NASA Technical Reports Server (NTRS)
Livingston, Gerald P.; Vitousek, Peter M.; Matson, Pamela A.
1988-01-01
Nitrous oxide flux and nitrogen turnover were measured in three types of Amazonian forest ecosystems within Reserva Florestal Ducke near Manaus, Brazil. Nitrogen mineralization and nitrate production measured during 10-day laboratory incubations were 3-4 times higher in clay soils associated with 'terra firme' forests on ridge-top and slope positions than in 'campinarana' forests on bottomland sand soils. In contrast, nitrous oxide fluxes did not differ significantly among sites, but were highly variable in space and time. The observed frequency distribution of flux was positively skewed, with a mean overall sites and all sampling times of 1.3 ng N2O-N/sq cm per hr. Overall, the flux estimates were comparable to or greater than those of temperature forests, but less than others reported for Amazoonia. Results from a field fertilization experiment suggest that most nitrous oxide flux was associated with denitrification of soil nitrate.
Chakraborty, Anusheema; Joshi, Pawan Kumar; Sachdeva, Kamna
2018-05-01
Our study explores the nexus between forests and local communities through participatory assessments and household surveys in the central Himalayan region. Forest dependency was compared among villages surrounded by oak-dominated forests (n = 8) and pine-dominated forests (n = 9). Both quantitative and qualitative analyses indicate variations in the degree of dependency based on proximity to nearest forest type. Households near oak-dominated forests were more dependent on forests (83.8%) compared to households near pine-dominated forests (69.1%). Forest dependency is mainly subsistence-oriented for meeting basic household requirements. Livestock population, cultivated land per household, and non-usage of alternative fuels are the major explanatory drivers of forest dependency. Our findings can help decision and policy makers to establish nested governance mechanisms encouraging prioritized site-specific conservation options among forest-adjacent households. Additionally, income diversification with respect to alternate livelihood sources, institutional reforms, and infrastructure facilities can reduce forest dependency, thereby, allowing sustainable forest management.
NASA Astrophysics Data System (ADS)
Burcsu, Theresa Katherine
Edge effects are among the most serious threats to forest integrity because as global forest cover decreases overall, forest edge influence increases proportionally, driving habitat change and loss. Edge effects occur at the division between adjacent habitat types. Our understanding of edge effects comes mainly from tropical wet, temperate and boreal forests. Because forest structure in moisture-limited forests differs from wetter forest types, edge dynamics are likely to differ as well. Moreover, dry forests in the tropics have been nearly eliminated or exist only as forest fragments, making edge influence an important conservation and management concern for remaining dry forests. This study addresses this gap in the edge influence knowledge by examining created, regenerating edges associated with forest management in a seasonally dry pine-oak forest of Oaxaca, creating a new data point in edge effects research. In this study I used Landsat TM imagery and a modified semivariance analysis to estimate the distance of edge influence for vegetation. I also used field methods to characterize forest structure and estimate edge influence on canopy and subcanopy vegetation. To finalize the project I extended the study to bird assemblages to identify responses and habitat preferences to local-scale changes associated with regenerating edges created by group-selection timber harvest. Remote sensing analysis estimated that the distance of edge influence was 30-90 m from the edge. Vegetation analysis suggested that edge effects were weak relative to wetter forest types and that remote sensing data did not provide an estimate that was directly applicable to field-measured vegetative edge effects. The bird assemblages likewise responded weakly to habitat change associated with edge effect. Open canopy structure, simple vertical stratigraphy, and topographic variation create forest conditions in which small openings do not create a high contrast to undisturbed forest. Thus, in this seasonally dry, open forest, vegetation and bird communities respond less to small openings than they do in wetter, more closed-canopy forests. Management practices and historical land-use interact and interfere with the detectability of edge influence in our study area. These results support hypotheses proposed for open forest types and suggest that patterns in edge influence in wet forest types may not be applicable to dry sites.
NASA Astrophysics Data System (ADS)
CHOI, S.; Shi, Y.; Ni, X.; Simard, M.; Myneni, R. B.
2013-12-01
Sparseness in in-situ observations has precluded the spatially explicit and accurate mapping of forest biomass. The need for large-scale maps has raised various approaches implementing conjugations between forest biomass and geospatial predictors such as climate, forest type, soil property, and topography. Despite the improved modeling techniques (e.g., machine learning and spatial statistics), a common limitation is that biophysical mechanisms governing tree growth are neglected in these black-box type models. The absence of a priori knowledge may lead to false interpretation of modeled results or unexplainable shifts in outputs due to the inconsistent training samples or study sites. Here, we present a gray-box approach combining known biophysical processes and geospatial predictors through parametric optimizations (inversion of reference measures). Total aboveground biomass in forest stands is estimated by incorporating the Forest Inventory and Analysis (FIA) and Parameter-elevation Regressions on Independent Slopes Model (PRISM). Two main premises of this research are: (a) The Allometric Scaling and Resource Limitations (ASRL) theory can provide a relationship between tree geometry and local resource availability constrained by environmental conditions; and (b) The zeroth order theory (size-frequency distribution) can expand individual tree allometry into total aboveground biomass at the forest stand level. In addition to the FIA estimates, two reference maps from the National Biomass and Carbon Dataset (NBCD) and U.S. Forest Service (USFS) were produced to evaluate the model. This research focuses on a site-scale test of the biomass model to explore the robustness of predictors, and to potentially improve models using additional geospatial predictors such as climatic variables, vegetation indices, soil properties, and lidar-/radar-derived altimetry products (or existing forest canopy height maps). As results, the optimized ASRL estimates satisfactorily resemble the FIA aboveground biomass in terms of data distribution, overall agreement, and spatial similarity across scales. Uncertainties are quantified (ranged from 0.2 to 0.4) by taking into account the spatial mismatch (FIA plot vs. PRISM grid), heterogeneity (species composition), and an example bias scenario (= 0.2) in the root system extents.
Nilsen, E T; Walker, J F; Miller, O K; Semones, S W; Lei, T T; Clinton, B D
1999-11-01
In the southern Appalachian mountains a subcanopy species, Rhododendron maximum, inhibits the establishment and survival of canopy tree seedlings. One of the mechanisms by which seedlings could be inhibited is an allelopathic effect of decomposing litter or leachate from the canopy of R. maximum (R.m.) on seed germination, root elongation, or mycorrhizal colonization. The potential for allelopathy by R.m. was tested with two bioassay species (lettuce and cress), with seeds from four native tree species, and with three ectomycorrhizal fungi. Inhibitory influences of throughfall, fresh litter, and decomposed litter (organic layer) from forest with R.m. (+R.m. sites) were compared to similar extractions made from forest without R.m. (-R.m. sites). Throughfall and leachates of the organic layer from both +R.m. and -R.m. sites stimulated germination of the bioassay species above that of the distilled water control, to a similar extent. There was an inhibitory effect of leachates of litter from +R.m. sites on seed germination and root elongation rate of both bioassay species compared with that of litter from -R.m. sites. Native tree seed stratified in forest floor material from both forest types had a slightly higher seed germination rate compared with the control. A 2-yr study of seed germination and seedling mortality of two tree species, Quercus rubra and Prunus serotina, in field plots showed no significant influence of litter or organic layer from either forest type. Incorporating R.m. leaf material into the growth medium in vitro depressed growth of one ectomycorrhizal species but did not affect two other species. Leaf material from other deciduous tree species depressed ectomycorrhizal growth to a similar or greater extent as leaf material from R.m. In conclusion, R.m. litter can have an allelopathic effect on seed germination and root elongation of bioassay species as well as some ectomycorrhizal species. However, this allelopathic affect is not manifest in field sites and is not likely to be an important cause for the inhibition of seedling survival within thickets of R.m.
Remote sensing-based estimation of annual soil respiration at two contrasting forest sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Ni; Gu, Lianhong; Black, T. Andrew
Here, soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual R s estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zonemore » soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites.« less
Modeling snow accumulation and ablation processes in forested environments
NASA Astrophysics Data System (ADS)
Andreadis, Konstantinos M.; Storck, Pascal; Lettenmaier, Dennis P.
2009-05-01
The effects of forest canopies on snow accumulation and ablation processes can be very important for the hydrology of midlatitude and high-latitude areas. A mass and energy balance model for snow accumulation and ablation processes in forested environments was developed utilizing extensive measurements of snow interception and release in a maritime mountainous site in Oregon. The model was evaluated using 2 years of weighing lysimeter data and was able to reproduce the snow water equivalent (SWE) evolution throughout winters both beneath the canopy and in the nearby clearing, with correlations to observations ranging from 0.81 to 0.99. Additionally, the model was evaluated using measurements from a Boreal Ecosystem-Atmosphere Study (BOREAS) field site in Canada to test the robustness of the canopy snow interception algorithm in a much different climate. Simulated SWE was relatively close to the observations for the forested sites, with discrepancies evident in some cases. Although the model formulation appeared robust for both types of climates, sensitivity to parameters such as snow roughness length and maximum interception capacity suggested the magnitude of improvements of SWE simulations that might be achieved by calibration.
Overton, C.T.; Schmitz, R.A.; Casazza, Michael L.
2006-01-01
Mineral sites are scarce resources of high ion concentration used heavily by the Pacific Coast subpopulation of band-tailed pigeons. Over 20% of all known mineral sites used by band-tailed pigeons in western Oregon, including all hot springs, have been abandoned. Prior investigations have not analyzed stand or landscape level habitat composition in relation to band-tailed pigeon use of mineral sites. We used logistic regression models to evaluate the influence of habitat types, identified from Gap Analysis Program (GAP) products at two spatial scales, on the odds of mineral site use in Oregon (n = 69 currently used and 20 historically used). Our results indicated that the odds of current use were negatively associated with non-forested terrestrial and private land area around mineral sites. Similarly, the odds of current mineral site use were positively associated with forested and special status (GAP stewardship codes 1 and 2) land area. The most important variable associated with the odds of mineral site use was the amount of non-forested land cover at either spatial scale. Our results demonstrate the utility of meso-scale geographic information designed for regional, coarse-filter approaches to conservation in fine-filter investigation of wildlife-habitat relationships. Adjacent landcover and ownership status explain the pattern of use for known mineral sites in western Oregon. In order for conservation and management activities for band-tailed pigeons to be successful, mineral sites need to be addressed as important and vulnerable resources. Management of band-tailed pigeons should incorporate the potential for forest management activities and land ownership patterns to influence the risk of mineral site abandonment.
NASA Astrophysics Data System (ADS)
Pisek, J.; Lang, M.; Kuusk, J.; Kobayashi, H.; Suzuki, R.; Rautiainen, M.; Schaepman, M. E.; Nikopensius, M.; Raabe, K.
2013-12-01
Since ground vegetation (understory) has an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal and temperate forests, its reflectance spectra are urgently needed in various forest reflectance modelling efforts. However, systematic reflectance data covering different site types are almost missing. Measurement of understory reflectance is a real challenge because of extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum and its variable nature. Understory consists of several sub-layers (tree regeneration, shrub, grasses or dwarf shrub, mosses or lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional problems are introduced by patchiness of ground vegetation, ground surface roughness and understory-overstory relations. Due to this variability, remote sensing might be the only technology to provide consistent data at the required spatially extensive scales. Here we follow on our previous effort at mapping understory reflectance dynamics using multi-angle remote sensing observations (Pisek et al. (2012). Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data. Remote Sensing of Environment, 117, 464-468). This presentation will focus on the validation of this approach against an extended collection of different types of forest sites with available in-situ understory reflectance measurements distributed along a wide latitudinal gradient: a sparse black spruce forest in Alaska (Poker range; 65.12 N), a northern European boreal forest (Hyytiala; 61.85 N), hemiboreal needleleaf and deciduous stands in Estonia (Jarvselja; 58.27 N), a temperate deciduous forest in Switzerland (Laegeren; 47.48 N), and a dense black spruce forest in Canada (Sudbury; 47.16 N). Our results are pertinent to the ultimate goal of production of circumpolar maps of seasonal dynamics of forest understory over boreal forests using the MODIS BRDF data, starting from 2000. This will allow us to assess the changes in seasonal dynamics of boreal forest understory over the full decade.
Postfire Forest Recovery in California's National Forests
NASA Astrophysics Data System (ADS)
Welch, K.; Young, T.; Safford, H.
2012-12-01
Due to fire suppression policies and other management practices over the last century, many low- to mid-elevation forest types in the Sierra Nevada have accumulated high fuel loads that promote stand-replacing high-intensity fires. Current and future projected trends in climate are predicted to increase the occurrence of such fires. We established over 1,000 plots in a range of elevations, environments, forest types, climate zones and fire severity classes to provide insight into the factors that promote natural tree regeneration after wildfires, the limiting factors in species establishment, and the differences in post-fire responses of conifers and hardwoods. We employed a standardized protocol that measured site characteristics, seedling densities, and woody plant growth. Preliminary results reveal that fire severity generally has a unimodal relationship with rates of natural regeneration, although effects of site and local environment act to modulate the shape of the relationship. Above low to moderate severities, natural regeneration rates of all tree species decrease with increasing severity, possibly due to a combination of factors including seed mortality, increasing distance to the nearest living seed tree, and more severe microclimatic conditions. Though hardwoods (oaks) are able to both seed and resprout from top-killed root crowns in a postfire environment, conifers still have the numerical advantage over hardwoods through seeding alone. We did not find evidence that shrubs have a strong either facilitative or competitive effect on conifer seedling establishment or growth in the first five years of forest recovery. Understanding forest recovery and regeneration processes after high severity fires is critical to appropriately applying management strategies on National Forest lands.
NASA Astrophysics Data System (ADS)
Schneider, Julia; Lukasheva, Maria; Gudyrev, Vasiliy; Mikhaylov, Oleg; Miglovets, Mikhail
2015-04-01
In the Komi Republic, which is situated in Northeastern Europe and is subject of Russian Federation, 306,000km2 or about 73 % of the total area are covered by forest. The predominant part of these forests lies within the boreal zone. Within the boreal forests the vegetation patterns are a result of the moisture characteristics and air temperature. Based on the moisture conditions forest communities can be grouped into wet, mesic and dry sites. In conditions of high soil moisture content forest peatlands can develop. In boreal forest landscapes it is not a rare phenomenon and can reach coverage of up to one third of the total area. In addition to the high water content of the soils forested peatlands are characterised by low soil temperatures, high organic matter accumulation and low organic matter decomposition. The thick moss-organic layer on the forest floor and waterlogged soils favours methanogenesis. Such process of accumulation of poorly decomposed organic matter mostly originating from Sphagnum which involves the formation of waterlogged conditions is defined as paludification. Highly favourable to forest paludification are sites characterised by fine-textured soils which highly hamper percolation. Paludified forests also occur at peatland margins as a result of peatland expansion. During the last years peatland margins were considered as potential biogeochemical hotspots within the peatlands and due to their high nutrient and dissolved organic matter content they may also be a major methane emitter. Paludification can also occur at forests sites after clear cutting, which is a very intensive logging type and usually leads to water table elevations. In this study measurements were conducted at peatland margins and at a clear cut site during two climatically different years. The summer of the year 2013 was considerably warmer and drier, and the summer of the year 2014 was considerably colder and wetter than the long term mean. In this study we show, that regardless of the weather conditions and the water table levels related thereto, the peatland margins did not act as strong methane emitter but are mostly sources of methane and the clear cut sites emit very small amounts of methane or are even sinks for atmospheric methane.
Earth Observations taken by the Expedition 16 Crew
2007-12-23
ISS016-E-018385 (23 Dec. 2008) --- Luquillo Mountains, Puerto Rico are featured in this image photographed by an Expedition 16 crewmember on the International Space Station. The Luquillo Mountains are located in the northeastern portion of Puerto Rico and rise to elevations of 1,075 meters. According to scientists, the mountains are comprised mainly of volcanic rock material that was uplifted by tectonism - Puerto Rico is located between the junction of the North American and Caribbean plates - approximately 37--28 million years ago. Prevailing easterly winds bring moisture from the Caribbean Sea that falls as precipitation as they cross the mountains. Higher elevations receive more rainfall than lower elevations, leading to subtropical forest types in the lowlands and montane forest types near the summits. This image, taken during the rainy season, illustrates the rich vegetation cover of the mountains. The rapid change in ecosystems with elevation, land use history, and exposure to frequent natural disturbances (such as hurricanes) makes the Luquillo Mountains as ideal location for ecological study. The Luquillo Experimental Forest Long Term Ecological Research (LTER) site is contained within the Luquillo National Forest, covering much of the mountains to the southwest of the city of Luquillo (center). Historical human land uses in the Forest -- such as logging, agriculture, charcoal production, and coffee plantations - have determined much of the current ecosystem structure. Results of LTER site research indicates that the forest ecosystems recover more rapidly from natural disturbances (like hurricanes) than they do from human disturbance.
NASA Astrophysics Data System (ADS)
Doerr, Stefan; Woods, Scott; Martin, Deborah; Casimiro, Marta
2013-04-01
Soils under a wide range of vegetation types exhibit water repellency following the passage of a fire. This is viewed by many as one of the main causes for accelerated post-fire runoff and soil erosion and it has often been assumed that strong soil water repellency present after wildfire is fire-induced. However, high levels of repellency have also been reported under vegetation types not affected by fire, and the question arises to what degree the water repellency observed at burnt sites actually results from fire. This study aimed at determining 'natural background' water repellency in common coniferous forest types in the north-western USA. Mature or semi-mature coniferous forest sites (n = 81), which showed no evidence of recent fires and had at least some needle cast cover, were sampled across six states. After careful removal of litter and duff at each site, soil water repellency was examined in situ at the mineral soil surface using the Water Drop Penetration Time (WDPT) method for three sub-sites, followed by col- lecting near-surface mineral soil layer samples (0-3 cm depth). Following air-drying, samples were fur- ther analyzed for repellency using WDPT and contact angle (hsl) measurements. Amongst other variables examined were dominant tree type, ground vegetation, litter and duff layer depth, slope angle and aspect, elevation, geology, and soil texture, organic carbon content and pH. 'Natural background' water repellency (WDPT > 5 s) was detected in situ and on air-dry samples at 75% of all sites examined irrespective of dominant tree species (Pinus ponderosa, Pinus contorta, Picea engelma- nii and Pseudotsuga menziesii). These findings demonstrate that the soil water repellency commonly observed in these forest types following burning is not necessarily the result of recent fire but can instead be a natural characteristic. The notion of a low background water repellency being typical for long- unburnt conifer forest soils of the north-western USA is therefore incorrect. It follows that, where pre-fire water repellency levels are not known or highly variable, post-fire soil water repellency conditions are an unreliable indicator in classifying soil burn severity. The terrain and soil variables examined showed, overall, no convincing relationship with the repellency levels observed (R2 < 0.15) except that repellency was limited in soils (i) developed over meta-sedimen- tary lithology and (ii) with clay contents >4%. This suggests that water repellency levels cannot be pre- dicted with confidence from common terrain or soil variables. This work is presented in the memory of the late Scott Woods, who was instrumental in the success of this study and an inspiration to us all.
NASA Astrophysics Data System (ADS)
Blume, T.; Heidbuechel, I.; Hassler, S. K.; Simard, S.; Guntner, A.; Stewart, R. D.; Weiler, M.
2015-12-01
We hypothesize that there is a shift in controls on landscape scale soil moisture patterns when plants become active during the growing season. Especially during the summer soil moisture patterns are not only controlled by soils, topography and related abiotic site characteristics but also by root water uptake. Root water uptake influences soil moisture patterns both in the lateral and vertical direction. Plant water uptake from different soil depths is estimated based on diurnal fluctuations in soil moisture content and was investigated with a unique setup of 46 field sites in Luxemburg and 15 field sites in Germany. These sites cover a range of geologies, soils, topographic positions and types of vegetation. Vegetation types include pasture, pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 3-5 soil moisture and soil temperature profiles, matrix potential, piezometers and sapflow sensors as well as standard climate data. At sites with access to a stream, discharge or water level is also recorded. The analysis of soil moisture patterns over time indicates a shift in regime depending on season. Depth profiles of root water uptake show strong differences between different forest stands, with maximum depths ranging between 50 and 200 cm. Temporal dynamics of signal strength within the profile furthermore suggest a locally shifting spatial distribution of root water uptake depending on water availability. We will investigate temporal thresholds (under which conditions spatial patterns of root water uptake become most distinct) as well as landscape controls on soil moisture and root water uptake dynamics.
ATLANTIC BATS: a data set of bat communities from the Atlantic Forests of South America.
Muylaert, Renata D L; Stevens, Richard D; Esbérard, Carlos E L; Mello, Marco A R; Garbino, Guilherme S T; Varzinczak, Luiz H; Faria, Deborah; Weber, Marcelo D M; Kerches Rogeri, Patricia; Regolin, André L; Oliveira, Hernani F M D; Costa, Luciana D M; Barros, Marília A S; Sabino-Santos, Gilberto; Crepaldi de Morais, Mara Ariane; Kavagutti, Vinicius S; Passos, Fernando C; Marjakangas, Emma-Liina; Maia, Felipe G M; Ribeiro, Milton C; Galetti, Mauro
2017-12-01
Bats are the second most diverse mammal order and they provide vital ecosystem functions (e.g., pollination, seed dispersal, and nutrient flux in caves) and services (e.g., crop pest suppression). Bats are also important vectors of infectious diseases, harboring more than 100 different virus types. In the present study, we compiled information on bat communities from the Atlantic Forests of South America, a species-rich biome that is highly threatened by habitat loss and fragmentation. The ATLANTIC BATS data set comprises 135 quantitative studies carried out in 205 sites, which cover most vegetation types of the tropical and subtropical Atlantic Forest: dense ombrophilous forest, mixed ombrophilous forest, semideciduous forest, deciduous forest, savanna, steppe, and open ombrophilous forest. The data set includes information on more than 90,000 captures of 98 bat species of eight families. Species richness averaged 12.1 per site, with a median value of 10 species (ranging from 1 to 53 species). Six species occurred in more than 50% of the communities: Artibeus lituratus, Carollia perspicillata, Sturnira lilium, Artibeus fimbriatus, Glossophaga soricina, and Platyrrhinus lineatus. The number of captures divided by sampling effort, a proxy for abundance, varied from 0.000001 to 0.77 individuals·h -1 ·m -2 (0.04 ± 0.007 individuals·h -1 ·m -2 ). Our data set reveals a hyper-dominance of eight species that together that comprise 80% of all captures: Platyrrhinus lineatus (2.3%), Molossus molossus (2.8%), Artibeus obscurus (3.4%), Artibeus planirostris (5.2%), Artibeus fimbriatus (7%), Sturnira lilium (14.5%), Carollia perspicillata (15.6%), and Artibeus lituratus (29.2%). © 2017 by the Ecological Society of America.
Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F
2016-07-20
Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.
Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.
2016-01-01
Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389
NASA Astrophysics Data System (ADS)
Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.
2016-07-01
Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.
Donald T. Gordon; Richard D. Cosens
1952-01-01
Records of permanent sample plots and extensive observations by forest management research workers indicate that tree selection methods of cutting in sugar pine-fir types have not favored the establishment of sugar pine reproduction. Since sugar pine is a highly prized lumber producing species in the California region, special measures to preserve or increase its place...
Christopher E. Moorman; David C. Guynn; John C. Kilgo
2002-01-01
During the 1996, 1997, and 199X breeding seasons, WC located and monitored Hooded Warbler (Wilsonia citrina) nests in a bottomland forest and examined the effects of edge proximity, edge type, and nest-site vegetation on nesting success. SW- cessful Hooded Warbler nests were more concealed from below and were located in nest patches with a greater...
NASA Astrophysics Data System (ADS)
Roth, Travis R.; Nolin, Anne W.
2017-11-01
Forest cover modifies snow accumulation and ablation rates via canopy interception and changes in sub-canopy energy balance processes. However, the ways in which snowpacks are affected by forest canopy processes vary depending on climatic, topographic and forest characteristics. Here we present results from a 4-year study of snow-forest interactions in the Oregon Cascades. We continuously monitored snow and meteorological variables at paired forested and open sites at three elevations representing the Low, Mid, and High seasonal snow zones in the study region. On a monthly to bi-weekly basis, we surveyed snow depth and snow water equivalent across 900 m transects connecting the forested and open pairs of sites. Our results show that relative to nearby open areas, the dense, relatively warm forests at Low and Mid sites impede snow accumulation via canopy snow interception and increase sub-canopy snowpack energy inputs via longwave radiation. Compared with the Forest sites, snowpacks are deeper and last longer in the Open site at the Low and Mid sites (4-26 and 11-33 days, respectively). However, we see the opposite relationship at the relatively colder High sites, with the Forest site maintaining snow longer into the spring by 15-29 days relative to the nearby Open site. Canopy interception efficiency (CIE) values at the Low and Mid Forest sites averaged 79 and 76 % of the total event snowfall, whereas CIE was 31 % at the lower density High Forest site. At all elevations, longwave radiation in forested environments appears to be the primary energy component due to the maritime climate and forest presence, accounting for 93, 92, and 47 % of total energy inputs to the snowpack at the Low, Mid, and High Forest sites, respectively. Higher wind speeds in the High Open site significantly increase turbulent energy exchanges and snow sublimation. Lower wind speeds in the High Forest site create preferential snowfall deposition. These results show the importance of understanding the effects of forest cover on sub-canopy snowpack evolution and highlight the need for improved forest cover model representation to accurately predict water resources in maritime forests.
Water Vapor Exchange in a Costa Rican Lower Montane Tropical Forest
NASA Astrophysics Data System (ADS)
Andrews, R.; Miller, G. R.; Cahill, A. T.; Moore, G. W.; Aparecido, L. M. T.
2015-12-01
Because of high canopy interception in tropical forests, evaporation from wet canopy surfaces makes up a sizeable portion of the total water vapor flux. The modeling complexities presented by changing canopy wetness, along with a scarcity of land-atmosphere flux exchange data from tropical forests, means evapotranspiration (ET) processes have been poorly represented in the tropics in land-surface modeling schemes. To better understand tropical forest ET, we will evaluate the influence of canopy wetness and various micrometeorological data on ET partitioning and total ET flux. We have collected flux data from a lower montane forest in Costa Rica at a newly established AmeriFlux site, which notably has the highest mean annual precipitation of any site in the network. The site features a 39-m canopy tower, equipped with two eddy covariance systems (LI-7200, LI-COR), a CO2/H2O atmospheric profile system (AP200, Campbell Scientific), leaf wetness sensors (LWS, Decagon Devices), sap flow sensors, and a soil respiration chamber (LI-8100A, LI-COR) as well as an array of other micrometeorological sensors. At the site, total ET is driven primarily by available energy, and to a lesser extent, by vapor pressure deficit. Average daily latent energy fluxes peak at values of 160, 75, and 35 W m-2 for dry, partially wet, and wet canopy conditions respectively. Correlations between latent energy flux and all other variables are strongest for drier canopy conditions. Complex relationships between canopy wetness and tropical forest ET cause the environmental controls on these fluxes to be significantly different from those in other biomes. As a result, a new modeling paradigm is needed to more accurately model ET differences between tropical forests and other vegetation types.
The nitrogen budget for different forest types in the central Congo Basin
NASA Astrophysics Data System (ADS)
Bauters, Marijn; Verbeeck, Hans; Cizungu, Landry; Boeckx, Pascal
2016-04-01
Characterization of fundamental processes in different forest types is vital to understand the interaction of forests with their changing environment. Recent data analyses, as well as modeling activities have shown that the CO2 uptake by terrestrial ecosystems strongly depends on site fertility, i.e. nutrient availability. Accurate projections of future net forest growth and terrestrial CO2 uptake thus necessitate an improved understanding on nutrient cycles and how these are coupled to the carbon (C) cycle in forests. This holds especially for tropical forests, since they represent about 40-50% of the total carbon that is stored in terrestrial vegetation, with the Amazon basin and the Congo basin being the largest two contiguous blocks. However, due to political instability and reduced accessibility in the central Africa region, there is a strong bias in scientific research towards the Amazon basin. Consequently, central African forests are poorly characterized and their role in global change interactions shows distinct knowledge gaps, which is important bottleneck for all efforts to further optimize Earth system models explicitly including this region. Research in the Congo Basin region should combine assessments of both carbon stocks and the underlying nutrient cycles which directly impact the forest productivity. We set up a monitoring network for carbon stocks and nitrogen fluxes in four different forest types in the Congo Basin, which is now operative. With the preliminary data, we can get a glimpse of the differences in nitrogen budget and biogeochemistry of African mixed lowland rainforest, monodominant lowland forest, mixed montane forest and eucalypt plantations.
Relationships of forest vegetation to habitat on two types of glacial drift in New Hampshire
William B. Leak
1978-01-01
Species composition and site index were determined on nine tree habitats in an area of schistose drift and compared with previous findings on habitats with granitic drift. Habitats on schistose drift supported more sugar maple and had somewhat higher site indexes. Compact tills in schistose drift supported northern hardwoods, and the site indexes for yellow birch were...
Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia
2014-10-01
Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David
2017-07-01
At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW) are spreading southward at the expense of more productive closed-canopy black spruce-moss forests (MF). The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer) showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg) than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart) than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation structure (stand density) and composition (ground cover type) and their subsequent consequences on soil environmental parameters (moisture, radiation rate, redox conditions, etc.). Our data underline significant differences in soil biogeochemistry under different forest ecosystems and reveal the importance of interactions in the soil-vegetation-climate system for the determination of soil composition.
Saha, Dulal C; Padhy, Pratap K
2011-11-15
The Rajmahal-type quality stones for building purposes are found abundantly in Birbhum district, West Bengal, India, where stone mining and crushing have become the main industrial activity. Although crusher dust is injurious to health, demand for crushed stone is ever-increasing as a result of rapid infrastructural growth in the country. Most of the crusher units at Rampurhat are situated along the roadways adjacent to forest under Tumboni Beat of Rampurhat Range of Birbhum Forest Division. Excessive load of air pollution in this area has led to degradation of this forest. The status of the ambient air and noise level was evaluated. The effect of air and noise pollution on abundance and variability of birds in this forest have been compared to an almost non-polluted forest of the same bio-geographic zone. Both species diversity and population density of birds were found to decrease in the polluted forest, especially in the areas adjacent to crushers. For comparing the pollution status of two different forest sites and for establishing whether the density of birds have any correlation between the sites, the Student's t-test and the chi-square test were applied respectively. Most of the results proved to be significant. Copyright © 2011 Elsevier B.V. All rights reserved.
Site preparation affects survival, growth of koa on degraded montane forest land
Paul G. Scowcroft; Kenneth T. Adee
1991-01-01
Banana poka vines (Possifloro mollisrimo) and kikuyu pass (Pennirerurn clondestinum) can limit koa(Acacia koa) reforestation in Hawaii. Performance of planted koa seedlings was studied in relation to type of site preparation: broadcast spraying of Roundup herbicide at three rates (2.02, 4.05, and 6.07 kg...
Humid tropical rain forest has expanded into eucalypt forest and savanna over the last 50 years
Tng, David Y P; Murphy, Brett P; Weber, Ellen; Sanders, Gregor; Williamson, Grant J; Kemp, Jeanette; Bowman, David M J S
2012-01-01
Tropical rain forest expansion and savanna woody vegetation thickening appear to be a global trend, but there remains uncertainty about whether there is a common set of global drivers. Using geographic information techniques, we analyzed aerial photography of five areas in the humid tropics of northeastern Queensland, Australia, taken in the 1950s and 2008, to determine if changes in rain forest extent match those reported for the Australian monsoon tropics using similar techniques. Mapping of the 1950s aerial photography showed that of the combined study area (64,430 ha), 63% was classified as eucalypt forests/woodland and 37% as rain forest. Our mapping revealed that although most boundaries remained stable, there was a net increase of 732 ha of the original rain forest area over the study period, and negligible conversion of rain forest to eucalypt forest/woodland. Statistical modeling, controlling for spatial autocorrelation, indicated distance from preexisting rain forest as the strongest determinant of rain forest expansion. Margin extension had a mean rate across the five sites of 0.6 m per decade. Expansion was greater in tall open forest types but also occurred in shorter, more flammable woodland vegetation types. No correlations were detected with other local variables (aspect, elevation, geology, topography, drainage). Using a geographically weighted mean rate of rain forest margin extension across the whole region, we predict that over 25% of tall open forest (a forest type of high conservation significance) would still remain after 2000 years of rain forest expansion. This slow replacement is due to the convoluted nature of the rain forest boundary and the irregular shape of the tall open forest patches. Our analyses point to the increased concentration of atmospheric CO2 as the most likely global driver of indiscriminate rain forest expansion occurring in northeastern Australia, by increasing tree growth and thereby overriding the effects of fire disturbance. PMID:22408724
Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472
Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa
2016-01-01
The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests. PMID:27974832
NASA Astrophysics Data System (ADS)
Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa
2016-12-01
The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.
NASA Astrophysics Data System (ADS)
Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Petäjä, T.; Rinne, J.; Bäck, J.; Boy, M.; Dal Maso, M.; Hakala, J.; Kajos, M.; Keronen, P.; Rantala, P.; Aalto, J.; Aaltonen, H.; Paatero, J.; Vesala, T.; Hakola, H.; Levula, J.; Pohja, T.; Herrmann, F.; Auld, J.; Mesarchaki, E.; Song, W.; Yassaa, N.; Nölscher, A.; Johnson, A. M.; Custer, T.; Sinha, V.; Thieser, J.; Pouvesle, N.; Taraborrelli, D.; Tang, M. J.; Bozem, H.; Hosaynali-Beygi, Z.; Axinte, R.; Oswald, R.; Novelli, A.; Kubistin, D.; Hens, K.; Javed, U.; Trawny, K.; Breitenberger, C.; Hidalgo, P. J.; Ebben, C. J.; Geiger, F. M.; Corrigan, A. L.; Russell, L. M.; Ouwersloot, H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.; Vogel, A.; Beck, M.; Bayerle, A.; Kampf, C. J.; Bertelmann, M.; Köllner, F.; Hoffmann, T.; Valverde, J.; González, D.; Riekkola, M.-L.; Kulmala, M.; Lelieveld, J.
2011-05-01
This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July-12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site were characterized by a higher proportion of southerly flow. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.
Direct seeding in northern forest types
Ralph H. Griffin
1977-01-01
Two direct-seeding experiments were established to determine the effect of time of seeding (spring 1962 versus fall 1962), type of seedbed (prepared versus unprepared), and species (red pine (Pinus resinosa Ait.) versus white spruce (Picea glauca (Moench) Voss)) upon the success attained in the reforestation of a pine-barren site...
NASA Astrophysics Data System (ADS)
Meyer, Victoria; Saatchi, Sassan; Clark, David B.; Keller, Michael; Vincent, Grégoire; Ferraz, António; Espírito-Santo, Fernando; d'Oliveira, Marcus V. N.; Kaki, Dahlia; Chave, Jérôme
2018-06-01
Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (˜ 25-30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA-AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.
Diggins, Corinne A.; Silvis, Alexander; Kelly, Christine A.; Ford, W. Mark
2017-01-01
Context: Understanding habitat selection is important for determining conservation and management strategies for endangered species. The Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus) is an endangered subspecies found in the high-elevation montane forests of the southern Appalachians, USA. The primary use of nest boxes to monitor CNFS has provided biased information on habitat use for this subspecies, as nest boxes are typically placed in suitable denning habitat.Aims: We conducted a radio-telemetry study on CNFS to determine home range, den site selection and habitat use at multiple spatial scales.Methods: We radio-collared 21 CNFS in 2012 and 2014–15. We tracked squirrels to diurnal den sites and during night-time activity.Key results: The MCP (minimum convex polygon) home range at 95% for males was 5.2 ± 1.2 ha and for females was 4.0 ± 0.7. The BRB (biased random bridge) home range at 95% for males was 10.8 ± 3.8 ha and for females was 8.3 ± 2.1. Den site (n = 81) selection occurred more frequently in montane conifer dominate forests (81.4%) vs northern hardwood forests or conifer–northern hardwood forests (9.9% and 8.7%, respectively). We assessed habitat selection using Euclidean distance-based analysis at the 2nd order and 3rd order scale. We found that squirrels were non-randomly selecting for habitat at both 2nd and 3rd order scales.Conclusions: At both spatial scales, CNFS preferentially selected for montane conifer forests more than expected based on availability on the landscape. Squirrels selected neither for nor against northern hardwood forests, regardless of availability on the landscape. Additionally, CNFS denned in montane conifer forests more than other habitat types.Implications: Our results highlight the importance of montane conifer to CNFS in the southern Appalachians. Management and restoration activities that increase the quality, connectivity and extent of this naturally rare forest type may be important for long-term conservation of this subspecies, especially with the impending threat of anthropogenic climate change.
Ross, R.M.; Redell, L.A.; Bennett, R.M.; Young, J.A.
2004-01-01
Avian biodiversity may be at risk in eastern parks and forests due to continued expansion of the hemlock woolly adelgid (Adelges tsugae), an exotic homopteran insect native to East Asia. To assess avian biodiversity, mesohabitat relations, and the risk of species loss with declining hemlock forests in Appalachian park lands, 80 randomly distributed fixed-radius plots were established in which territories of breeding birds were estimated on four forest-terrain types (hemlock and hardwood benches and ravines) in the Delaware Water Gap National Recreation Area. Both species richness and number of territories were higher in hardwood than hemlock forest types and in bench than ravine terrain types. Four insectivorous species, Acadian flycatcher (Empidonax virescens), blue-headed vireo (Vireo solitarius), black-throated green warbler (Dendroica virens), and Blackburnian warbler (Dendroica fusca), showed high affinity for hemlock forest type and exhibited significantly greater numbers of territories in hemlock than hardwood sites. These species are hemlock-associated species at risk from continued hemlock decline in the Delaware River valley and similar forests of the mid-Atlantic east slope. Two of these species, the blue-headed vireo and Blackburnian warbler, appeared to specialize on ravine mesohabitats of hemlock stands, the vireo a low-to-mid canopy species, the warbler a mid-to-upper canopy forager. Unchecked expansion of the exotic adelgid and subsequent hemlock decline could negatively impact 3,600 pairs from the park and several million pairs from northeastern United States hemlock forests due to elimination of preferred habitat.
Nitrous Oxide Emissions From Northern Forested and Harvested Ecosystems
NASA Astrophysics Data System (ADS)
Kavanaugh, K. M.; Kellman, L. M.
2005-12-01
Very little is known about how deforestation alters the soil subsurface production and surface emissions of N2O from northern forest soils. Soil N2O surface fluxes and subsurface concentrations from two 3 year old harvested and intact forest pairs of contrasting soil texture were monitored during the 2004 and 2005 growing seasons in the Acadian forest of Atlantic Canada in order to: 1) quantify N2O emissions associated with each land-use type, 2) examine spatial and temporal variations in subsurface concentrations and surface fluxes at each site, and 3) determine the suitability of a photoacoustic gas monitor (PGM) for in- situ field measurements vs. field sample collection and laboratory analysis on a gas chromatograph. Each site was instrumented with 11 permanent collars for surface flux measurements designed to capture the microsite variability at the sites. Subsurface soil gas samplers, designed to identify the important zones of N2O production in the vertical profile were installed at depths of 0, 10, 20 and 35 cm below the organic-mineral soil interface. Surface fluxes were measured with non-steady-state vented surface flux chambers with measurements of all surface flux and subsurface data made on a bi-weekly basis. Results suggest that spatial and temporal variability in surface emissions are very high and routinely close to zero. Subsurface profile concentration data shows vertical concentration profiles at intact forest sites with concentrations close to atmospheric, while harvested sites show a pattern of increasing N2O concentration with depth, reaching a maximum of approximately 27000ppb at 35cm.
NASA Astrophysics Data System (ADS)
Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J. J.
2016-10-01
The Tibetan Plateau holds some of the world's highest undisturbed natural treelines and timberlines. Such extreme environments constitute potentially valuable monitoring sites of the effects of climate warming on high-elevation forests. Here, we analyze a network of 21 Smith fir forests situated in the Sygera Mountains, southeastern Tibetan Plateau, using tree-ring width (TRW) and basal area increment (BAI) chronologies. Sampled sites encompassed a wide elevation gradient, from 3600 to 4400 m, including some treeline sites and diverse aspects and tree ages. In comparison with TRW series, BAI series better capture the long-term warming signal. Previous November and current April and summer temperatures are the dominant climatic factors controlling Smith fir radial growth. The mean inter-series correlations of TRW increased upwards, but the forest limit presented the highest potential to reconstruct past temperature variability. Moreover, the growth responses of young trees were less stable than those of trees older than 100 years. Climate warming is accelerating radial growth of Smith fir forest subjected to mesic conditions. Collectively, these findings confirm that the effects of site elevation and tree age should be considered when quantifying climate-growth relationships. The type of tree-ring data (BAI vs. TRW) is also relevant since BAI indices seem to be a better climatic proxy of low-frequency temperature signals than TRW indices. Therefore, site (e.g., elevation) and tree (e.g., age) features should be considered to properly evaluate the effects of climate warming on growth of high-elevation forests.
NASA Astrophysics Data System (ADS)
Michelsen-Correa, S.; Harrison, R. B.
2017-12-01
In Pacific Northwest forests, N is known to be a limiting nutrient particularly in Douglas-fir (Pseudotsuga menziesii) ecosystems. Fertilizers are commonly applied to increase productivity in commercially managed forests. Despite known N limitations, Douglas-fir uptake of applied fertilizers is typically low and highly variable depending on environmental site conditions of a particular forest. We measured N recovery within a 1-year time frame at five sites using a fertilizer enriched in 15N as a tracer. Comparisons were also made between Enhanced Efficiency Fertilizers (EEFs) and an unformulated urea fertilizer to determine if N recovery is improved with fertilizers designed to limit volatile losses of ammonia. Retention was low across all sites and fertilizer types with a mean of 39.0% recovered after 1-year. The largest fertilizer pool was the top 20cm of mineral soil. The use of EFFs as a management tool to improve N use efficiency at the five sites in our study is not supported by our results as no significant differences in total 1-year N recovery or tree uptake of N were observed between treatments. The low N recovery after 1-year but simultaneous increases in above ground biomass support a model of N loss where the ecosystem can continue to accumulate biomass with simultaneous leaching and gaseous losses of N. This conclusion contrasts with the commonly held assumption that fertilization of N limited Douglas-fir forests, should yield negligible losses of N and high recovery of the applied fertilizer. Additionally, we conclude that management decisions regarding fertilizer use efficiency and the benefits of fertilization need to be site specific due to the variable N recovery rates based on site factors as opposed to fertilizer treatment type. Finally, despite differences in the size of available soil N pools the amount of N recovered in the above group pools (i.e. bole wood and foliage) were not significantly different between sites. N uptake by the plants pools may have been at its maximum, thus additional N in the soil pools would not make a difference in terms of productivity over just one year. It remains to be seen what the longer-term impacts of the fertilizer treatments are, as the sites with a larger reservoir of plant available N are expected to maintain their growth rates for longer than the sites with lower N recovery.
Pfaff, Alexander; Robalino, Juan; Sandoval, Catalina; Herrera, Diego
2015-01-01
The leading policy to conserve forest is protected areas (PAs). Yet, PAs are not a single tool: land users and uses vary by PA type; and public PA strategies vary in the extent of each type and in the determinants of impact for each type, i.e. siting and internal deforestation. Further, across regions and time, strategies respond to pressures (deforestation and political). We estimate deforestation impacts of PA types for a critical frontier, the Brazilian Amazon. We separate regions and time periods that differ in their deforestation and political pressures and document considerable variation in PA strategies across regions, time periods and types. The siting of PAs varies across regions. For example, all else being equal, PAs in the arc of deforestation are relatively far from non-forest, while in other states they are relatively near. Internal deforestation varies across time periods, e.g. it is more similar across the PA types for PAs after 2000. By contrast, after 2000, PA extent is less similar across PA types with little non-indigenous area created inside the arc. PA strategies generate a range of impacts for PA types—always far higher within the arc—but not a consistent ranking of PA types by impact. PMID:26460126
A Multitemporal, Multisensor Approach to Mapping the Canadian Boreal Forest
NASA Astrophysics Data System (ADS)
Reith, Ernest
The main anthropogenic source of CO2 emissions is the combustion of fossil fuels, while the clearing and burning of forests contribute significant amounts as well. Vegetation represents a major reservoir for terrestrial carbon stocks, and improving our ability to inventory vegetation will enhance our understanding of the impacts of land cover and climate change on carbon stocks and fluxes. These relationships may be an indication of a series of troubling biosphere-atmospheric feedback mechanisms that need to be better understood and modeled. Valuable land cover information can be provided to the global climate change modeling community using advanced remote sensing capabilities such as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR). Individually and synergistically, data were successfully used to characterize the complex nature of the Canadian boreal forest land cover types. The multiple endmember spectral mixture analysis process was applied against seasonal AVIRIS data to produce species-level vegetated land cover maps of two study sites in the Canadian boreal forest: Old Black Spruce (OBS) and Old Jack Pine (OJP). The highest overall accuracy was assessed to be at least 66% accurate to the available reference map, providing evidence that high-quality, species-level land cover mapping of the Canadian boreal forest is achievable at accuracy levels greater than other previous research efforts in the region. Backscatter information from multichannel, polarimetric SAR utilizing a binary decision tree-based classification technique methodology was moderately successfully applied to AIRSAR to produce maps of the boreal land cover types at both sites, with overall accuracies at least 59%. A process, centered around noise whitening and principal component analysis features of the minimum noise fraction transform, was implemented to leverage synergies contained within spatially coregistered multitemporal and multisensor AVIRIS and AIRSAR data sets to successfully produce high-accuracy boreal forest land cover maps. Overall land cover map accuracies of 78% and 72% were assessed for OJP and OBS sites, respectively, for either seasonal or multitemporal data sets. High individual land cover accuracies appeared to be independent of site, season, or multisensor combination in the minimum-noise fraction-based approach.
NASA Astrophysics Data System (ADS)
Soulsby, C.; Dick, J.; Tetzlaff, D.; Bradford, J.
2016-12-01
The role of vegetation on the partitioning of precipitation, and the subsequent storage and release of water within the landscape is poorly understood. In particular, the relationship between vegetation and soil moisture is complex and reciprocal. The role of soil moisture as the primary source of water to plants may affect vegetation distribution. In turn, the structure of vegetation canopies may regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in the inputs, together with complex patterns of water uptake from highly distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Here, we present a study combining 3D and 2D ERT surveys with soil moisture measurements in a 3.2km upland catchment in the Scottish Highlands to understand influences of different vegetation types on spatio-temporal dynamics in soil moisture. The study focussed on one year of fortnightly ERT surveys to investigate plant-soil-water interactions within the root zone in podzolic soils. Locations were selected in both forest stands of 15m high Scots pine (Pinus sylvestris) and non-forest locations dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities in the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses, with pronounced wetting cycles of the soil surrounding the bole of trees as a consequence of stem flow. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the heather site, with drying typically being focussed on the areas around the trees, and reflecting the amount of water uptake. Moisture changes in the heather site were fairly heterogeneous are related to micro-topographic affects, lower interception ( 30% compared with 45%) and a smaller microclimatic effect of the canopy which serves to create greater fluctuations in soil moisture. Our results confirm the value in using geophysics to spatially elucidate subsurface plant-soil-water interactions.
Gottdenker, Nicole L.; Calzada, José E.; Saldaña, Azäel; Carroll, C. Ronald
2011-01-01
Anthropogenic disturbance is associated with increased vector-borne infectious disease transmission in wildlife, domestic animals, and humans. The objective of this study was to evaluate how disturbance of a tropical forest landscape impacts abundance of the triatomine bug Rhodnius pallescens, a vector of Chagas disease, in the region of the Panama Canal in Panama. Rhodnius pallescens was collected (n = 1,186) from its primary habitat, the palm Attalea butyracea, in five habitat types reflecting a gradient of anthropogenic disturbance. There was a high proportion of palms infested with R. pallescens across all habitat types (range = 77.1–91.4%). Results show that disturbed habitats are associated with increased vector abundance compared with relatively undisturbed habitats. Bugs collected in disturbed sites, although in higher abundance, tended to be in poor body condition compared with bugs captured in protected forest sites. Abundance data suggests that forest remnants may be sources for R. pallescens populations within highly disturbed areas of the landscape. PMID:21212205
AIS Spectra for Stressed and Unstressed Plant Communities in the Carolina Slate Belt
NASA Technical Reports Server (NTRS)
Wickland, D. E.
1985-01-01
Airborne imaging spectrometer (AIS) data were collected over a number of derelict heavy metal mine sites in the Carolina slate belt of North Carolina. A 32 channel (1156 to 1456 nm) data set was acquired in October, 1983 at the time of peak fall foliage display, and a 128 channel (1220 to 2420) data set was acquired near the end of the spring leaf flush in May, 1984. Spectral curves were extracted from the AIS data for differing ground cover types (e.g., pine forests, mixed deciduous forests, mine sites, and pastures). Variation in the width of an absorption feature located at approximately 1190 nm has been related to differences in forest type. Small differences in the location and shape of features in the near infrared plateau (1156 to 1300 nm) and the region 2000 to 2420 nm have yet to be evaluated. Because these variations were subtle, and because atmospheric effects were apparent in the data, high priority must be assigned to devising a means of removing atmospheric effects from AIS spectra.
Yang, Qi; Meng, Fan-Rui; Bourque, Charles P-A; Zhao, Zhengyong
2017-09-08
Forest ecosite reflects the local site conditions that are meaningful to forest productivity as well as basic ecological functions. Field assessments of vegetation and soil types are often used to identify forest ecosites. However, the production of high-resolution ecosite maps for large areas from interpolating field data is difficult because of high spatial variation and associated costs and time requirements. Indices of soil moisture and nutrient regimes (i.e., SMR and SNR) introduced in this study reflect the combined effects of biogeochemical and topographic factors on forest growth. The objective of this research is to present a method for creating high-resolution forest ecosite maps based on computer-generated predictions of SMR and SNR for an area in Atlantic Canada covering about 4.3 × 10 6 hectares (ha) of forestland. Field data from 1,507 forest ecosystem classification plots were used to assess the accuracy of the ecosite maps produced. Using model predictions of SMR and SNR alone, ecosite maps were 61 and 59% correct in identifying 10 Acadian- and Maritime-Boreal-region ecosite types, respectively. This method provides an operational framework for the production of high-resolution maps of forest ecosites over large areas without the need for data from expensive, supplementary field surveys.
AmeriFlux US-Wi3 Mature hardwood (MHW)
Chen, Jiquan [Michigan State University
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Wi3 Mature hardwood (MHW). Site Description - The Wisconsin Mature Hardwood site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. As an assemblage, the ten Wisconsin sites are indicative of the successional stages of development in the predominant stand types of a physically homogeneous landscape. The mature hardwood stand represents a typical naturally regenerated second-growth forest, free of anthropogenic disturbances for at least 70 years.
Donald B.K. English; Susan M. Kocis; J. Ross Arnold; Stanley J. Zarnoch; Larry Warren
2003-01-01
In estimating recreation visitation at the National Forest level in the US, annual counts of a number of types of visitation proxy measures were used. The intent was to improve the overall precision of the visitation estimate by employing the proxy counts. The precision of visitation estimates at sites that had proxy information versus those that did not is examined....
Site Index Comparisons for Several Tree Species in the Virginia- Carolina Piedmont
David F. Olson; Lino Della-Bianca
1959-01-01
The Piedmont of southern Virginia and the Carolinas contains thousands of acres of pine-hardwood forests. The most widespread commercial timber type of the region is the shortleaf pine-hardwood type. The less extensive Virginia pine-hardwood type lies along the western edge of the Piedmont, but reaches its peak development in the adjacent Appalachian Mountain region (...
Coop, Jonathan D; Parks, Sean A; McClernan, Sarah R; Holsinger, Lisa M
2016-03-01
Large and severe wildfires have raised concerns about the future of forested landscapes in the southwestern United States, especially under repeated burning. In 2011, under extreme weather and drought conditions, the Las Conchas fire burned over several previous burns as well as forests not recently exposed to fire. Our purpose was to examine the influences of prior wildfires on plant community composition and structure, subsequent burn severity, and vegetation response. To assess these relationships, we used satellite-derived measures of burn severity and a nonmetric multidimensional scaling of pre- and post- Las Conchas field samples. Earlier burns were associated with shifts from forested sites to open savannas and meadows, oak scrub, and ruderal communities. These non-forested vegetation types exhibited both resistance to subsequent fire, measured by reduced burn severity, and resilience to reburning, measured by vegetation recovery relative to forests not exposed to recent prior fire. Previous shifts toward non-forested states were strongly reinforced by reburning. Ongoing losses of forests and their ecological values confirm the need for restoration interventions. However, given future wildfire and climate projections, there may also be opportunities presented by transformations toward fire-resistant and resilient vegetation types within portions of the landscape.
Use of ecoacoustics to determine biodiversity patterns across ecological gradients.
Grant, Paul B C; Samways, Michael J
2016-12-01
The variety of local animal sounds characterizes a landscape. We used ecoacoustics to noninvasively assess the species richness of various biotopes typical of an ecofriendly forest plantation with diverse ecological gradients and both nonnative and indigenous vegetation. The reference area was an adjacent large World Heritage Site protected area (PA). All sites were in a global biodiversity hotspot. Our results showed how taxa segregated into various biotopes. We identified 65 singing species, including birds, frogs, crickets, and katydids. Large, natural, protected grassland sites in the PA had the highest mean acoustic diversity (14.1 species/site). Areas covered in nonnative timber or grass species were devoid of acoustic species. Sites grazed by native and domestic megaherbivores were fairly rich (5.1) in acoustic species but none were unique to this habitat type, where acoustic diversity was greater than in intensively managed grassland sites (0.04). Natural vegetation patches inside the plantation mosaic supported high mean acoustic diversity (indigenous forests 7.6, grasslands 8.0, wetlands 9.1), which increased as plant heterogeneity and patch size increased. Indigenous forest patches within the plantation mosaic contained a highly characteristic acoustic species assemblage, emphasizing their complementary contribution to local biodiversity. Overall, acoustic signals determined spatial biodiversity patterns and can be a useful tool for guiding conservation. © 2016 Society for Conservation Biology.
Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.
2009-01-01
Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data. ?? 2009 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Roth, T. R.; Nolin, A. W.
2016-12-01
Temperate forests modify snow evolution patterns both spatially and temporally relative to open areas. Dense, warm forests both impede snow accumulation through increased canopy snow interception and increase sub-canopy longwave energy inputs onto the snow surface. These process modifications vary in magnitude and duration depending on climatic, topographic and forest characteristics. Here we present results from a four year study of paired forested and open sites at three elevations, Low - 1150 m, Mid - 1325 m and High - 1465 m. Snowpacks are deeper and last up to 3-4 weeks longer at the Low and Mid elevation Open sites relative to the adjacent Forest sites. Conversely, at the High Forest site, snow is retained 2-4 weeks longer than the Open site. This change in snowpack depth and persistence is attributed to deposition patterns at higher elevations and forest structure differences that alter the canopy interception efficiency and the sub-canopy energy balance. Canopy interception efficiency (CIE) in the Low and Mid Forest sites, over the duration of the study were 79% and 76% of the total event snowfall, whereas CIE was 31% at the High Forest site. Longwave radiation in forested environments is the primary energy component across each elevation band due to the warm winter environment and forest presence, accounting for 82%, 88%, and 59% of the energy balance at the Low, Mid, and High Forest sites, respectively. High wind speeds in the High elevation Open site significantly increases the turbulent energy and creates preferential snowfall deposition in the nearby Forest site. These results show the importance of understanding the effects of forest cover on sub-canopy snowpack evolution and highlight the need for improved forest cover model representation to accurately predict water resources in maritime forests.
Mapping Tropical Forest Mosaics with C- and L-band SAR: First Results from Osa Peninsula, Costa Rica
NASA Astrophysics Data System (ADS)
Pinto, N.; Hensley, S.; Aguilar-Amuchastegui, N.; Broadbent, E. N.; Ahmed, R.
2016-12-01
In tropical countries, economic incentives and improved infrastructure are creating forest mosaics where small-scale farming and industrial plantations are embedded within and potentially replacing native ecosystems. Practices such as agroforestry, slash-and-burn cultivation, and oil palm monocultures bring widely different impacts on carbon stocks. Characterizing these production systems is not only critical to ascribe deforestation to particular drivers, but also essential to understand the impact of macroeconomic scenarios, national policies, and land tenure schemes on carbon fluxes. The last decade has experienced a dramatic improvement in the extent and consistency of tree cover and gross deforestation products from optical imagery. At the same time, recent work shows that Synthetic Aperture Radar (SAR) can complement optical data and reveal structural types that cannot be easily resolved with reflectance measurements alone. While these results demonstrate the validity of sensor fusion methodologies, they typically rely on local classifications or even manual delineation and as such they cannot support large-scale investigations. Furthermore, there have been few attempts to exploit PolInSAR or multiple wavelengths that can provide critical information to resolve natural and anthropogenic land cover types. We report results from our research at Costa Rica's Osa Peninsula. This site is ideal for algorithm development as it includes a highly diverse tropical forest within Corcovado National Park, as well as agroforestry zones, mangroves, and palm plantations. We first integrate SAR backscatter and coherence data from NASA's L-band UAVSAR, JAXA's ALOS/PALSAR, and ESA's Sentinel to produce a map of structural types. Second, we assess whether coherence measurements and PolInSAR retrievals can be used to resolve forest stand differences at 30m resolution and disitinguish between primary and secondary forest sites.
Stability and change in kelp forest habitats at San Nicolas Island
Kenner, Michael C.; Tinker, M. Tim
2018-01-01
Kelp forest communities are highly variable over space and time. Despite this complexity it has been suggested that kelp forest communities can be classified into one of 2 states: kelp dominated or sea urchin dominated. It has been further hypothesized that these represent “alternate stable states” because a site can remain in either of these states for decades before some perturbation causes a rapid shift to the other state. Our research group has maintained a subtidal community monitoring program for 38 years at San Nicolas Island consisting of twice-annual scuba-based surveys at 6 sites distributed within 4 regions around the island. Three types of perturbations are thought to be relevant to subtidal community dynamics at San Nicolas: (1) physical disturbances in the form of major storm and El Niño/Southern Oscillation (ENSO) events; (2) invertebrate diseases, which periodically decimate urchin populations; and (3) the reintroduction and subsequent increase of sea otters (Enhydra lutris nereis). These 3 perturbations differ in spatial and temporal specificity; physical disturbances and disease outbreaks occur periodically and could affect all 4 regions, while sea otter predation has been concentrated primarily at the West End sites over the last 15 years. The different types of perturbations and the duration of the time series at the kelp forests at San Nicolas make the data set ideal for testing the “alternate stable state” hypothesis. We use nonmetric multidimensional scaling (NMDS) to examine spatial and temporal patterns of community similarity at the 4 regions. In particular, we evaluate support for the existence of stable states, which are represented on NMDS plots as distinct spatial clusters. Community dynamics at each site approximated a biased random walk in NMDS space, with one or more basins of attraction and occasional jumps between basins. We found evidence for alternative stable states at some sites, and we show that transitions from one stable state to another may be influenced by interactions between multiple perturbations.
NASA Astrophysics Data System (ADS)
Mani, Shanmugam; Merino, Agustín; García-Oliva, Felipe; Riotte, Jean; Sukumar, Raman
2016-04-01
Soil organic carbon (SOC) storage and quality are some of the most important factors determining ecological process in tropical forests, which are especially sensitive to global climate change (GCC). In India, the GCC scenarios expect increasing of drought period and wildfire, which may affect the SOC, and therefore the capacity of forest for C sequestration. The aim of the study was to evaluate the amount of soil C and its quality in the mineral soil across precipitation gradient with different factors (vegetation, pH, soil texture and bedrock composition) for generate SOC predictions under GCC. Six soil samples were collected (top 10 cm depth) from 19 1-ha permanent plots in the Mudumalai Wildlife Sanctuary of southern India, which are characterised by four types of forest vegetation (i.e. dry thorn, dry deciduous, moist deciduous and semi-evergreen forest) distributed along to rainfall gradient. The driest sites are dominated by sandy soils, while the soil clay proportion increased in the wet sites. Total organic C (Leco CN analyser), and the SOM quality was assessed by Differential Scanning Calorimetry (DSC) and Solid-state 13CCP-MAS NMR analyses. Soil organic C was positively correlated with precipitation (R2 = 0.502, p<0.01) and with soil clay content (R2 =0.15, p<0.05), and negatively with soil sand content (R2=0.308, p<0.001) and with pH (R2=0.529, p<0.01); while the C/N was only found positive correlation with clay (R2= 0.350, p<0.01). The driest sites (dry thorn forest) has the lowest proportion of thermal combustion of recalcitrant organic matter (Q2,375-475 °C) than the other sites (p<0.05) and this SOC fraction correlated positively with rainfall (R2=0.27, p=0.01). The Q2 model with best fit included rainfall, pH, sand, clay, C and C/N (R2=0.52, p=0.01). Principal component analysis explains 77% of total variance. The sites on the fist component are distributed along the rainfall gradient. These results suggest that the 50% of variance was explained by precipitation and therefore vegetation type. Consequently, the drier sites has a lower C pools with a higher proportion of labile SOC fraction. As a consequence, we expect if the rainfall decreased by GCC could increase SOC mineralization, and therefore reducing the capacity of C sequestration within soil profile.
The Salutary Influence of Forest Bathing on Elderly Patients with Chronic Heart Failure.
Mao, Genxiang; Cao, Yongbao; Wang, Bozhong; Wang, Sanying; Chen, Zhuomei; Wang, Jirong; Xing, Wenmin; Ren, Xiaoxu; Lv, Xiaoling; Dong, Jianhua; Chen, Shasha; Chen, Xiuyuan; Wang, Guofu; Yan, Jing
2017-03-31
The aim of the current study was to test the hypothesis that forest bathing would be beneficial for elderly patients with chronic heart failure (CHF) as an adjunctive therapy. Two groups of participants with CHF were simultaneously sent to the forest or an urban control area for a four-day trip, respectively. Subjects exposed to the forest site showed a significant reduction of brain natriuretic peptide (BNP) in comparison to that of the city group and their own baseline levels. The values for the cardiovascular disease related pathological factors, including endothelin-1 (ET-1), and constituents of the renin-angiotensin system (RAS), including renin, angiotensinogen (AGT), angiotensin II (ANGII), and ANGII receptor type 1 or 2 (AT1 or AT2) in subjects exposed to the forest environment were lower than those in the urban control group. Obviously, a decreased level of inflammatory cytokines and improved antioxidant function was observed in the forest group rather than in the city group. The assessment of the profile of mood states (POMS) indicated that the negative emotional mood state was alleviated after forest bathing. As anticipated, a better air quality in the forest site was observed according to the detection of PM 2.5 (particulate matter <2.5 μm) and negative ions. These results provided direct evidence that forest bathing has a beneficial effect on CHF patients, and thus may pave the way for potential development of forest bathing as an effective adjunctive therapy on cardiovascular disorders.
Floristic conservation value, nested understory floras, and the development of second-growth forest.
Spyreas, Greg; Matthews, Jeffrey W
2006-08-01
Nestedness analysis can reveal patterns of plant composition and diversity among forest patches. For nested floral assemblages, the plants occupying any one patch are a nested subset of the plants present in successively more speciose patches. Elimination of sensitive understory plants with human disturbance is one of several mechanisms hypothesized to generate nonrandom, nested floral distributions. Hypotheses explaining distributions of understory plants remain unsubstantiated across broad landscapes of varying forest types and disturbance histories. We sampled the vegetation of 51 floodplain and 55 upland forests across Illinois (USA) to examine how the diversity, composition, and nestedness of understory floras related to their overstory growth and structure (basal area), and their overall floristic conservation value (mean C). We found that plant assemblages were nested with respect to site species richness, such that rare plants indicated diverse forests. Floras were also nested with respect to site mean C and basal area (BA). However, in an opposite pattern from what we had expected, floras of high-BA stands were nested subsets of those of low-BA stands. A set of early-successional plants restricted to low-BA stands, and more importantly, the absence of a set of true forest plants in high-BA stands, accounted for this pattern. Additionally, we observed a decrease in species richness with increasing BA. These results are consistent with the hypothesis that recovery of true forest plants does not occur concurrently with overstory regeneration following massive anthropogenic disturbance. Nestedness by site mean C indicates that high conservation value (conservative) plants co-occur in highly diverse stands; these forests are assumed to be less disturbed historically. Because site mean C was uncorrelated with BA, BA-neutral disturbances such as livestock usage are suggested as accounting for between-site differences in mean C. When considered individually, conservative plants were actually more likely to be found in low-BA stands (uplands only). This suggests that floras of historically more open-canopied oak-hickory uplands are being degraded by canopy closure from increasing density of "mesophytic, nonpyrogenic" trees. It also indirectly suggests that recent moderate logging is uncorrelated with floristic conservation values.
AmeriFlux US-Bar Bartlett Experimental Forest
Richardson, Andrew [Harvard University
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Bar Bartlett Experimental Forest. Site Description - The Bartlett Experimental Forest (448170 N, 71830 W) is located within the White Mountains National Forest in north-central New Hampshire, USA. The 1050 ha forest extends across an elevational range from 200 to 900 m a.s.l. It was established in 1931 and is managed by the USDA Forest Service Northeastern Research Station in Durham, NH. The climate is humid continental with short, cool summers (mean July temperature, 19.8C) and long, cold winters (mean January temperature, 9.8C). Annual precipitation averages 130 cm and is distributed evenly throughout the year. Soils are developed from glacial till and are predominantly shallow, well-drained spodosols. At lowto mid-elevation, vegetation is dominated by northern hardwoods (American beech, Fagus grandifolia; sugar maple, Acer saccharum; yellow birch, Betula alleghaniensis; with some red maple, Acer rubrum and paper birch, Betula papyrifera). Conifers (eastern hemlock, Tsuga canadensis; eastern white pine, Pinus strobus; red spruce, Picea rubens) are occasionally found intermixed with the more abundant deciduous species but are generally confined to the highest (red spruce) and lowest (hemlock and pine) elevations. In 2003, the site was adopted as a NASA North American Carbon Program (NACP) Tier-2 field research and validation site. A 26.5 m high tower was installed in a low-elevation northern hardwood stand in November, 2003, for the purpose of making eddy covariance measurements of the forest–atmosphere exchange of CO2, H2O and radiant energy. Continuous flux and meteorological measurements began in January, 2004, and are ongoing. Average canopy height in the vicinity of the tower is approximately 20–22 m. In the tower footprint, the forest is predominantly classified into red maple, sugar maple, and American beech forest types. Leaf area index in the vicinity of the tower is 3.6 as measured by seasonal litterfall collection, and 4.5 as measured by the optically based Li-Cor LAI-2000 instrument. Further site information: http://www.fs.fed.us/ne/durham/4155/bartlett.htm
Eddy-covariance methane flux measurements over a European beech forest
NASA Astrophysics Data System (ADS)
Gentsch, Lydia; Siebicke, Lukas; Knohl, Alexander
2015-04-01
The role of forests in global methane (CH4) turnover is currently not well constrained, partially because of the lack of spatially integrative forest-scale measurements of CH4 fluxes. Soil chamber measurements imply that temperate forests generally act as CH4 sinks. Upscaling of chamber observations to the forest scale is however problematic, if the upscaling is not constrained by concurrent 'top-down' measurements, such as of the eddy-covariance type, which provide sufficient integration of spatial variations and of further potential CH4 flux components within forest ecosystems. Ongoing development of laser absorption-based optical instruments, resulting in enhanced measurement stability, precision and sampling speed, has recently improved the prospects for meaningful eddy-covariance measurements at sites with presumably low CH4 fluxes, hence prone to reach the flux detection limit. At present, we are launching eddy-covariance CH4 measurements at a long-running ICOS flux tower site (Hainich National Park, Germany), located in a semi natural, unmanaged, beech dominated forest. Eddy-covariance measurements will be conducted with a laser spectrometer for parallel CH4, H2Ov and CO2 measurements (FGGA, Los Gatos Research, USA). Independent observations of the CO2 flux by the FGGA and a standard Infrared Gas Analyser (LI-7200, LI-COR, USA) will allow to evaluate data quality of measured CH4 fluxes. Here, we want to present first results with a focus on uncertainties of the calculated CH4 fluxes with regard to instrument precision, data processing and site conditions. In future, we plan to compare eddy-covariance flux estimates to side-by-side turbulent flux observations from a novel eddy accumulation system. Furthermore, soil CH4 fluxes will be measured with four automated chambers situated within the tower footprint. Based on a previous soil chamber study at the same site, we expect the Hainich forest site to act as a CH4 sink. However, we hypothesize that our measurements might also reveal short CH4 emission periods when soils become water-saturated. Nonetheless, CH4 emissions by plants could also result in a close to neutral net CH4 flux.
Miller, Kirk A.; Clark, Melanie L.; Wright, Peter R.
2005-01-01
The National Water-Quality Assessment Program of the U.S. Geological Survey initiated an assessment in 1997 of the quality of water resources in the Yellowstone River Basin. Water-quality samples regularly were collected during 1999-2001 at 10 fixed sites on streams representing the major environmental settings of the basin. Integrator sites, which are heterogeneous in land use and geology, were established on the mainstem of the Yellowstone River (4 sites) and on three major tributaries?Clarks Fork Yellowstone River (1 site), the Bighorn River (1 site), and the Powder River (1 site). Indicator sites, which are more homogeneous in land use and geology than the integrator sites, were located on minor tributaries with important environmental settings?Soda Butte Creek in a mineral resource area (1 site), the Tongue River in a forested area (1 site), and the Little Powder River in a rangeland area (1 site). Water-quality sampling frequency generally was at least monthly and included field measurements and laboratory analyses of fecal-indicator bacteria, major ions, dissolved solids, nutrients, trace elements, pesticides, and suspended sediment. Median concentrations of fecal coliform and Escherichia coli were largest for basins that were predominantly rangeland and smallest for basins that were predominantly forested. Concentrations of fecal coliform and Escherichia coli significantly varied by season (p-value <0.001); the smallest median concentrations were during January?March and the largest median concentrations were during April?June. Fecal-coliform concentrations exceeded the U.S. Environmental Protection Agency recommended limit for a single sample of 400 colonies per 100 milliliters in 2.6 percent of all samples. Escherichia coli concentrations exceeded the U.S. Environmental Protection Agency recommended limit for a single sample of 298 colonies per 100 milliliters for moderate use, full-body contact recreation in 7.6 percent of all samples. Variations in water type in the basin are reflective of the diverse geologic terrain in the Yellowstone River Basin. The water type of Soda Butte Creek and the Tongue River was calcium bicarbonate. These two sites are in forested and mountainous areas where igneous rocks and Paleozoic-era and Mesozoic-era sedimentary rocks are the dominant geologic groups. The water type of the Little Powder River was sodium sulfate. The Little Powder River originates in the plains, and geology of the basin is nearly homogenous with Tertiary-period sedimentary rocks. Water type of the Yellowstone River changed from a mixed-cation bicarbonate type upstream to a mixed-cation sulfate type downstream. Dissolved-solids concentrations ranged from fairly dilute in Soda Butte Creek, which had a median concentration of 118 milligrams per liter, to concentrated in the Little Powder River, which had a median concentration of 2,840 milligrams per liter. Nutrient concentrations generally were small and reflect the relatively undeveloped conditions in the basin; however, some correlations were made with anthropogenic factors. Median dissolved-nitrate concentrations in all samples from the fixed sites ranged from 0.04 milligram per liter to 0.54 milligram per liter. Flow-weighted mean dissolved-nitrate concentrations were positively correlated with increasing agricultural land use and rangeland on alluvial deposits upstream from the sites and negatively correlated with increasing forested land. Ammonia concentrations generally were largest in samples collected from the Yellowstone River at Corwin Springs, Montana, which is downstream from Yellowstone National Park and receives discharge from geothermal waters that are high in ammonia. Median total-phosphorus concentrations ranged from 0.007 to 0.18 milligram per liter. Median total-phosphorus concentrations exceeded the U.S. Environmental Protection Agency's recommended goal of 0.10 milligram per liter for preventing nuisance plant growth for samples collec
NASA Astrophysics Data System (ADS)
Schneider, Julia; Lukasheva, Maria; Gudyrev, Vasiliy; Miglovets, Mikhail
2017-04-01
In the Komi Republic, which is situated in Northeastern Europe and is subject of Russian Federation, 306,000km2 or about 73 % of the total area are covered by forest. The predominant part of these forests lies within the boreal zone. Within the boreal forests the vegetation patterns are a result of the moisture characteristics and air temperature. Based on the moisture conditions forest communities can be grouped into wet, mesic and dry sites. In conditions of high soil moisture content forest peatlands can develop. In boreal forest landscapes it is not a rare phenomenon and can reach coverage of up to one third of the total area. In addition to the high water content of the soils forested peatlands are characterised by low soil temperatures, high organic matter accumulation and low organic matter decomposition. The thick moss-organic layer on the forest floor and waterlogged soils favours methanogenesis. Such process of accumulation of poorly decomposed organic matter mostly originating from Sphagnum which involves the formation of waterlogged conditions is defined as paludification. Highly favourable to forest paludification are sites characterised by fine-textured soils which highly hamper percolation. Paludified forests also occur at peatland margins as a result of peatland expansion. During the last years peatland margins were considered as potential biogeochemical hotspots within the peatlands and due to their high nutrient and dissolved organic matter content they may also be a major methane emitter. Paludification can also occur at forests sites after clear cutting, which is a very intensive logging type and usually leads to water table elevations. In this study measurements were conducted at peatland margins and at a clear cut sites during three climatically different years. The summer of the year 2013 was considerably warmer and drier, and the summer of the year 2014 was considerably colder and wetter than the long term mean. The investigation period in 2015 was characterised by warm and dry spring and early summer, July was colder and very dry, and from August on the weather in the region was colder and wetter than the mean. In this study we show, that regardless of the weather conditions and the water table levels related thereto, the peatland margins did not act as strong methane emitter but are mostly sources of methane and the clear cut sites emit very small amounts of methane or are even sinks for atmospheric methane.
Nitrogen fluxes in the forests of the Congo Basin
NASA Astrophysics Data System (ADS)
Bauters, Marijn; Verbeeck, Hans; Cizungu, Landry; Makelele, Isaac; Boeckx, Pascal
2017-04-01
The tropical forest of the Congo basin remains very poorly investigated and understood; mainly because of logistic, political and research capacity constraints. Nevertheless, characterization and monitoring of fundamental processes in this biome is vital to understand future responses and to correctly parameterize Earth system models. Nutrient fluxes are key in these processes for the functioning of tropical forests, since CO2 uptake by terrestrial ecosystems strongly depends on site fertility, i.e. nutrient availability. Accurate projections of future net forest growth and terrestrial CO2 uptake thus necessitate an improved understanding on nutrient cycles and how these are coupled to the carbon (C) cycle in forests. Research in the Congo Basin region should combine assessments of both carbon fluxes and the underlying nutrient cycles which directly impact the forest productivity. We set up a monitoring network for nitrogen fluxes in four different forest types in the Congo Basin, resulting in a unique and integrate dataset. The questions to be answered: How do the N-budgets of four different forest types in the Congo Basin compare? How do these fluxes compare to fluxes in the Amazon forest? What is the influence from the strong slash-and-burn regimes on the N-cycle in the natural forests? We answer these questions with our empirical dataset of one hydrological year, combined with satellite and modeling data.
Abella-Medrano, Carlos Antonio; Ibáñez-Bernal, Sergio; MacGregor-Fors, Ian; Santiago-Alarcon, Diego
2015-09-24
Land-use change has led to a dramatic decrease in total forest cover, contributing to biodiversity loss and changes of ecosystems' functions. Insect communities of medical importance can be favored by anthropogenic alterations, increasing the risk of novel zoonotic diseases. The response of mosquito (Diptera: Culicidae) abundance and richness to five land-use types (shade coffee plantation, cattle field, urban forest, peri-urban forest, well-preserved montane cloud forest) and three seasons ("dry", "rainy" and "cold") embedded in a neotropical montane cloud forest landscape was evaluated. Standardized collections were performed using 8 CDC miniature black-light traps, baited with CO2 throughout the year. Generalized additive mixed models were used to describe the seasonal and spatial trends of both species richness and abundance. Rank abundance curves and ANCOVAs were used to detect changes in the spatial and temporal structure of the mosquito assemblage. Two cluster analyses were conducted, using 1-βsim and the Morisita-Horn index to evaluate species composition shifts based on incidences and abundances. A total of 2536 adult mosquitoes were collected, belonging to 9 genera and 10 species; the dominant species in the study were: Aedes quadrivittatus, Wyeomyia adelpha, Wy. arthrostigma, and Culex restuans. Highest richness was recorded in the dry season, whereas higher abundance was detected during the rainy season. The urban forest had the highest species richness (n = 7) when compared to all other sites. Species composition cluster analyses show that there is a high degree of similarity in species numbers across sites and seasons throughout the year. However, when considering the abundance of such species, the well-preserved montane cloud forest showed significantly higher abundance. Moreover, the urban forest is only 30 % similar to other sites in terms of species abundances, indicating a possible isolating role of the urban environment. Mosquito assemblage was differentially influenced by land-use change and seasonality, but at the same time the assemblage is rather homogeneous across the studied landscape, suggesting a high degree of spatial connectivity. Information generated in this study is potentially useful in the development of urban planning and surveillance programs focused mainly on mosquito species of medical and veterinary importance.
Global variation of carbon use efficiency in terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Tang, Xiaolu; Carvalhais, Nuno; Moura, Catarina; Reichstein, Markus
2017-04-01
Carbon use efficiency (CUE), defined as the ratio between net primary production (NPP) and gross primary production (GPP), is an emergent property of vegetation that describes its effectiveness in storing carbon (C) and is of significance for understanding C biosphere-atmosphere exchange dynamics. A constant CUE value of 0.5 has been widely used in terrestrial C-cycle models, such as the Carnegie-Ames-Stanford-Approach model, or the Marine Biological Laboratory/Soil Plant-Atmosphere Canopy Model, for regional or global modeling purposes. However, increasing evidence argues that CUE is not constant, but varies with ecosystem types, site fertility, climate, site management and forest age. Hence, the assumption of a constant CUE of 0.5 can produce great uncertainty in estimating global carbon dynamics between terrestrial ecosystems and the atmosphere. Here, in order to analyze the global variations in CUE and understand how CUE varies with environmental variables, a global database was constructed based on published data for crops, forests, grasslands, wetlands and tundra ecosystems. In addition to CUE data, were also collected: GPP and NPP; site variables (e.g. climate zone, site management and plant function type); climate variables (e.g. temperature and precipitation); additional carbon fluxes (e.g. soil respiration, autotrophic respiration and heterotrophic respiration); and carbon pools (e.g. stem, leaf and root biomass). Different climate metrics were derived to diagnose seasonal temperature (mean annual temperature, MAT, and maximum temperature, Tmax) and water availability proxies (mean annual precipitation, MAP, and Palmer Drought Severity Index), in order to improve the local representation of environmental variables. Additionally were also included vegetation phenology dynamics as observed by different vegetation indices from the MODIS satellite. The mean CUE of all terrestrial ecosystems was 0.45, 10% lower than the previous assumed constant CUE of 0.50. CUE varied significantly between sites - from 0.13 to 0.93 - and between ecosystem types, ranging between 0.41 and 0.60, decreasing from wetlands, to tundra, to croplands, to grasslands until the lower CUE found on average for forested ecosystems. Our analysis shows that ecosystem type was the most important predictor of CUE in terrestrial ecosystems, immediately followed by Tmax; MAT and management practices. For crop, forest and wetland ecosystems CUE varied with climate zones and a strong linear negative correlation was found between CUE and MAT and MAP for grassland ecosystems. Overall, the interaction between different environmental variables showed significant effects on CUE for all ecosystem types. Our results challenge the consideration of a constant value of 0.5 for modeling global purposes, and argue for a deeper understanding of environmental controls on CUE for different ecosystem types.
How does forest disturbance and succession affect summer streamflow recession?
NASA Astrophysics Data System (ADS)
Brena, A.; Stahl, K.; Weiler, M.
2011-12-01
Streamflow recession is a main signature of catchment behavior during dry conditions. The storage-discharge relationship of every catchment reflects the aquifer properties and land surface processes including evapotranspiration rates. Commonly, the storage-discharge relationship in watersheds is analyzed through the recession limb of the hydrograph, which generally follows a nonlinear pattern. It is, however, unknown how forest disturbance and succession may modify the degree of nonlinearity of baseflow recession and the magnitude of baseflow. The presented study analyzes and characterizes streamflow recession during summer before and after forest disturbance using data from six experimental paired-watersheds with controlled forest disturbances across different climatic regions and ecozones of the USA. Characteristic non-linear recession parameters were fitted by a Monte Carlo resampling method. No systematic relationship was found between annual precipitation, drainage area, mean elevation, and recession characteristics. However, higher storage rates and low flows across the sites were detected following forest disturbance. Exceptions are the snow-dominated watersheds and changes appear to be stronger in watersheds with deciduous forests. The results are however dependent on the method of recession limb selection, including start level and time. Further research is needed over a wide range of forest sites and according to the type of disturbance (e.g. fire, disease), which may ultimately define the dynamics of forest succession and therefore the streamflow recession behavior.
Smith, T. J.; Anderson, G.H.; Balentine, K.; Tiling, G.; Ward, G.A.; Whelan, K.R.T.
2009-01-01
Hurricanes have shaped the structure of mangrove forests in the Everglades via wind damage, storm surges and sediment deposition. Immediate effects include changes to stem size-frequency distributions and to species relative abundance and density. Long-term impacts to mangroves are poorly understood at present. We examine impacts of Hurricane Wilma on mangroves and compare the results to findings from three previous storms (Labor Day, Donna, Andrew). Surges during Wilma destroyed ??? 1,250 ha of mangroves and set back recovery that started following Andrew. Data from permanent plots affected by Andrew and Wilma showed no differences among species or between hurricanes for stem mortality or basal area lost. Hurricane damage was related to hydro-geomorphic type of forest. Basin mangroves suffered significantly more damage than riverine or island mangroves. The hurricane by forest type interaction was highly significant. Andrew did slightly more damage to island mangroves. Wilma did significantly more damage to basin forests. This is most likely a result of the larger and more spatially extensive storm surge produced by Wilma. Forest damage was not related to amount of sediment deposited. Analyses of reports from Donna and the Labor Day storm indicate that some sites have recovered following catastrophic disturbance. Other sites have been permanently converted into a different ecosystem, namely intertidal mudflats. Our results indicate that mangroves are not in a steady state as has been recently claimed. ?? 2009 The Society of Wetland Scientists.
NASA Astrophysics Data System (ADS)
Williams, J.; Crowley, J.; Fischer, H.; Harder, H.; Martinez, M.; Petäjä, T.; Rinne, J.; Bäck, J.; Boy, M.; Dal Maso, M.; Hakala, J.; Kajos, M.; Keronen, P.; Rantala, P.; Aalto, J.; Aaltonen, H.; Paatero, J.; Vesala, T.; Hakola, H.; Levula, J.; Pohja, T.; Herrmann, F.; Auld, J.; Mesarchaki, E.; Song, W.; Yassaa, N.; Nölscher, A.; Johnson, A. M.; Custer, T.; Sinha, V.; Thieser, J.; Pouvesle, N.; Taraborrelli, D.; Tang, M. J.; Bozem, H.; Hosaynali-Beygi, Z.; Axinte, R.; Oswald, R.; Novelli, A.; Kubistin, D.; Hens, K.; Javed, U.; Trawny, K.; Breitenberger, C.; Hidalgo, P. J.; Ebben, C. J.; Geiger, F. M.; Corrigan, A. L.; Russell, L. M.; Ouwersloot, H. G.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.; Vogel, A.; Beck, M.; Bayerle, A.; Kampf, C. J.; Bertelmann, M.; Köllner, F.; Hoffmann, T.; Valverde, J.; González, D.; Riekkola, M.-L.; Kulmala, M.; Lelieveld, J.
2011-10-01
This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July-12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.
NASA Astrophysics Data System (ADS)
Williams, J.; Petäjä, T.
2012-04-01
This submission describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12th July-12th August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO2) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures.
NASA Astrophysics Data System (ADS)
Possell, M.; Jenkins, M.; Bell, T. L.; Adams, M. A.
2014-09-01
We estimated of emissions of carbon, as CO2-equivalents, from planned fire in four sites in a south-eastern Australian forest. Emission estimates were calculated using measurements of fuel load and carbon content of different fuel types, before and after burning, and determination of fuel-specific emission factors. Median estimates of emissions for the four sites ranged from 20 to 139 T CO2-e ha-1. Variability in estimates was a consequence of different burning efficiencies of each fuel type from the four sites. Higher emissions resulted from more fine fuel (twigs, decomposing matter, near-surface live and leaf litter) or coarse woody debris (CWD; > 25 mm diameter) being consumed. In order to assess the effect of estimating emissions when only a few fuel variables are known, Monte-Carlo simulations were used to create seven scenarios where input parameters values were replaced by probability density functions. Calculation methods were: (1) all measured data were constrained between measured maximum and minimum values for each variable, (2) as for (1) except the proportion of carbon within a fuel type was constrained between 0 and 1, (3) as for (2) but losses of mass caused by fire were replaced with burning efficiency factors constrained between 0 and 1; and (4) emissions were calculated using default values in the Australian National Greenhouse Accounts (NGA), National Inventory Report 2011, as appropriate for our sites. Effects of including CWD in calculations were assessed for calculation Method 1, 2 and 3 but not for Method 4 as the NGA does not consider this fuel type. Simulations demonstrate that the probability of estimating true median emissions declines strongly as the amount of information available declines. Including CWD in scenarios increased uncertainty in calculations because CWD is the most variable contributor to fuel load. Inclusion of CWD in scenarios generally increased the amount of carbon lost. We discuss implications of these simulations and how emissions from prescribed burns in temperate Australian forests could be improved.
NASA Astrophysics Data System (ADS)
Zuria, Iriana; Gates, J. Edward; Castellanos, Ignacio
2007-03-01
Hedgerows as well as other narrow corridors could be valuable habitats for birds in regions of intensive agriculture, however, it is still not clear how successful breeding birds are in different types of hedgerows as compared to birds nesting in their natural habitats. We used artificial nests to examine whether hedgerows were sinks (ecological traps) for birds by comparing rates of predation in two types of hedgerows with different vegetation structure (simple and complex), and in a tract of scrub forest in an agricultural landscape of central Mexico. We determined also the types of predators responsible for egg predation. Ground and elevated nests were baited with one Japanese quail Coturnix japonica egg and one plasticine egg and placed alternately along transects. Significantly, greater predation rates were found in scrub forest and complex hedgerows than in simple hedgerows. Higher predation rates in complex habitats seemed to reflect the higher number of predator types found there. The most important predator types were carnivores followed by rodents, birds, and humans. Carnivores and rodents mainly predated ground nests, whereas birds and humans predated elevated nests. Simple hedgerows in this landscape appeared to offer relatively safe nest sites in terms of predation pressure when compared to more complex habitats (complex hedgerows and scrub forest).
NASA Astrophysics Data System (ADS)
Nikopensius, Maris; Raabe, Kairi; Pisek, Jan
2014-05-01
The knowledge about spectral properties and seasonal dynamics of understory layers in boreal forests currently holds several gaps. This introduces severe uncertainties while modelling the carbon balance of this ecosystem, which is expected to be prone to major shifts with climate change in the future. In this work the seasonal reflectance dynamics in European hemi-boreal forests are studied. The data for this study was collected at Järvselja Training and Experimental Forestry District (Estonia, 27.26°E 58.30°N). Measurements were taken in three different stands. The silver birch (Betula Pendula Roth) stand grows on typical brown gley-soil and its understory vegetation is dominated by a mixture of several grass species. The Scots pine (Pinus sylvestris) stand grows on a bog with understory vegetation composed of sparse labrador tea, cotton grass, and a continuous Sphagnum moss layer. The third stand, Norway spruce (Picea abies), grows on a Gleyi Ferric Podzol site with understory vegetation either partially missing or consisting of mosses such as Hylocomium splendens or Pleurozium schreberi [1]. The sampling design was similar to the study by Rautiainen et al. [3] in northern European boreal forests. At each study site, a 100 m long permanent transect was marked with flags. In addition, four intensive study plots (1 m × 1 m) were marked next to the transects at 20 m intervals. The field campaign lasted from May to September 2013. For each site the fractional cover of understory and understory spectra were estimated ten times i.e. every 2 to 3 weeks. Results from Järvselja forest were compared with the seasonal profiles from boreal forests in Hyytiälä, Finland [2]. References [1] A. Kuusk, M. Lang, J. Kuusk, T. Lükk, T. Nilson, M. Mõttus, M. Rautiainen, and A. Eenmäe, "Database of optical and structural data for validation of radiative transfer models", Technical Report, September 2009 [2] M. Rautiainen, M. Mõttus, J. Heiskanen, A. Akujärvi, T. Majasalmi, P. Stenberg, "Seasonal reflectance dynamics of common understory types in a northern Europe boreal forest," Remote Sensing of Environment, vol. 115, pp. 3020-3028, July 2011
On the patterns and processes of wood in northern California streams
NASA Astrophysics Data System (ADS)
Benda, Lee; Bigelow, Paul
2014-03-01
Forest management and stream habitat can be improved by clarifying the primary riparian and geomorphic controls on streams. To this end, we evaluated the recruitment, storage, transport, and the function of wood in 95 km of streams (most drainage areas < 30 km2) in northern California, crossing four coastal to inland regions with different histories of forest management (managed, less-managed, unmanaged). The dominant source of variability in stream wood storage and recruitment is driven by local variation in rates of bank erosion, forest mortality, and mass wasting. These processes are controlled by changes in watershed structure, including the location of canyons, floodplains and tributary confluences; types of geology and topography; and forest types and management history. Average wood storage volumes in coastal streams are 5 to 20 times greater than inland sites primarily from higher riparian forest biomass and growth rates (productivity), with some influence by longer residence time of wood in streams and more wood from landsliding and logging sources. Wood recruitment by mortality (windthrow, disease, senescence) was substantial across all sites (mean 50%) followed by bank erosion (43%) and more locally by mass wasting (7%). The distances to sources of stream wood are controlled by recruitment process and tree height. Ninety percent of wood recruitment occurs within 10 to 35 m of channels in managed and less-managed forests and upward of 50 m in unmanaged Sequoia and coast redwood forests. Local landsliding extends the source distance. The recruitment of large wood pieces that create jams (mean diameter 0.7 m) is primarily by bank erosion in managed forests and by mortality in unmanaged forests. Formation of pools by wood is more frequent in streams with low stream power, indicating the further relevance of environmental context and watershed structure. Forest management influences stream wood dynamics, where smaller trees in managed forests often generate shorter distances to sources of stream wood, lower stream wood storage, and smaller diameter stream wood. These findings can be used to improve riparian protection and inform spatially explicit riparian management.
Monitoring and Modeling Carbon Dynamics at a Network of Intensive Sites in the USA and Mexico
NASA Astrophysics Data System (ADS)
Birdsey, R.; Wayson, C.; Johnson, K. D.; Pan, Y.; Angeles, G.; De Jong, B. H.; Andrade, J. L.; Dai, Z.
2013-05-01
The Forest Services of the USA and Mexico, supported by NASA and USAID, have begun to establish a network of intensive forest carbon monitoring sites. These sites are used for research and teaching, developing forest management practices, and forging links to the needs of communities. Several of the sites have installed eddy flux towers to basic meteorology data and daily estimates of forest carbon uptake and release, the processes that determine forest growth. Field sampling locations at each site provide estimates of forest biomass and carbon stocks, and monitor forest dynamic processes such as growth and mortality rates. Remote sensing facilitates scaling up to the surrounding landscapes. The sites support information requirements for implementing programs such as Reducing Emissions from Deforestation and Forest Degradation (REDD+), enabling communities to receive payments for ecosystem services such as reduced carbon emissions or improved forest management. In addition to providing benchmark data for REDD+ projects, the sites are valuable for validating state and national estimates from satellite remote sensing and the national forest inventory. Data from the sites provide parameters for forest models that support strategic management analysis, and support student training and graduate projects. The intensive monitoring sites may be a model for other countries in Latin America. Coordination among sites in the USA, Mexico and other Latin American countries can ensure harmonization of approaches and data, and share experiences and knowledge among countries with emerging opportunities for implementing REDD+ and other conservation programs.
The Hill plots: A rare long-term vegetation study (P-53)
Jonathan D. Bakker; Margaret M. Moore; Daniel C. Laughlin
2008-01-01
One legacy of the Fort Valley Experimental Forest is the number and quality of long-term studies associated with it. One such study is the "Hill plots," which began in 1912 and is still being actively studied. Livestock exclosures were built at five sites to examine vegetation recovery when protected from livestock grazing. Sites span a range of soil types...
The Hill plots: A rare long-term vegetation study
Jonathan D. Bakker; Margaret M. Moore; Daniel C. Laughlin
2008-01-01
One legacy of the Fort Valley Experimental Forest is the number and quality of long-term studies associated with it. One such study is the "Hill plots," which began in 1912 and is still being actively studied. Livestock exclosures were built at five sites to examine vegetation recovery when protected from livestock grazing. Sites span a range of soil types...
Selection of summer roosting sites by Indiana bats (Myotis sodalis) in Missouri
Callahan, E.V.; Drobney, R.D.; Clawson, R.L.
1997-01-01
Summer roosting sites were studied at four maternity colonies of Indiana bats (Myotis sodalis) in northern Missouri. Colonies of Indiana bats used two types of roosts, primary and alternate, that differed in intensity of use, number, and probable function. Primary roosts were denned as roosts where use by >30 bats on more than one occasion was observed. The number of primary roosts per colony ranged from one to three. All primary roosts were in standing dead trees situated in trees exposed to direct sunlight. Alternate roosts were used by smaller numbers of bats. These roosts included both living and dead trees that typically were located within the shaded forest interior. Differences in patterns of use between types of roosts seemed to be influenced by weather conditions in that use of alternate roost trees increased during periods of elevated temperature and precipitation. Indiana bats have specific requirements for roost sites, but also must be able to relocate when loss of bark, tree fall, or other events render their current roost sites unusable. Practices of forest management within the summer range of Indiana bats should favor retention of large-diameter, mature, and senescent trees.
NASA Astrophysics Data System (ADS)
Michalzik, Beate; Bischoff, Sebastian; Levia, Delphis; Schwarz, Martin; Escher, Peter; Wilcke, Wolfgang; Thieme, Lisa; Kerber, Katja; Kaupenjohann, Martin; Siemens, Jan
2017-04-01
In forested ecosystems, throughfall and stemflow function as key components in the cycling of water and associated biogeochemistry. Analysing annual flux data collected from 27 intensively monitored forest sites of the Biodiversity Exploratories, we found throughfall fluxes of DOC (dissolved organic carbon) linearly related (R2 = 0.40, p < 0.001) to the silvicultural management intensity indicator (SMI) developed by Schall and Ammer (2013). The SMI combines tree species, stand age and aboveground living and dead woody biomass, thereby allowing the quantifying of silvicultural management intensities of stands differing in species composition, age, silvicultural system as they convert from one stand type into another. Throughfall fluxes of particulate organic C and N (POC and PN) and dissolved N were, however independent from those forest structural metrics as well as annual C and N stemflow fluxes, which varied greatly among management intensity classes. In this context, we suggest that canopy structure metrics are more important drivers of water and matter stemflow dynamics, than structural metrics on the level of forest stands. On the other hand, leaching losses of DOC and POC from the litter layer of forests increased significantly with increasing forest management intensity. The observed relationships revealed by intensive flux monitoring are important because they allow us to link organic matter fluxes to forest metrics of larger forested areas (e.g. derived from LiDAR imagery), and hence to model and up-scale water-bound OC dynamics to the landscape level.
Land use type significantly affects microbial gene transcription in soil.
Nacke, Heiko; Fischer, Christiane; Thürmer, Andrea; Meinicke, Peter; Daniel, Rolf
2014-05-01
Soil microorganisms play an essential role in sustaining biogeochemical processes and cycling of nutrients across different land use types. To gain insights into microbial gene transcription in forest and grassland soil, we isolated mRNA from 32 sampling sites. After sequencing of generated complementary DNA (cDNA), a total of 5,824,229 sequences could be further analyzed. We were able to assign nonribosomal cDNA sequences to all three domains of life. A dominance of bacterial sequences, which were affiliated to 25 different phyla, was found. Bacterial groups capable of aromatic compound degradation such as Phenylobacterium and Burkholderia were detected in significantly higher relative abundance in forest soil than in grassland soil. Accordingly, KEGG pathway categories related to degradation of aromatic ring-containing molecules (e.g., benzoate degradation) were identified in high abundance within forest soil-derived metatranscriptomic datasets. The impact of land use type forest on community composition and activity is evidently to a high degree caused by the presence of wood breakdown products. Correspondingly, bacterial groups known to be involved in lignin degradation and containing ligninolytic genes such as Burkholderia, Bradyrhizobium, and Azospirillum exhibited increased transcriptional activity in forest soil. Higher solar radiation in grassland presumably induced increased transcription of photosynthesis-related genes within this land use type. This is in accordance with high abundance of photosynthetic organisms and plant-infecting viruses in grassland.
Soil carbon storage in plantation forests and pastures: land-use change implications
NASA Astrophysics Data System (ADS)
Scott, Neal A.; Tate, Kevin R.; Ford-Robertson, Justin; Giltrap, David J.; Tattersall Smith, C.
1999-04-01
Afforestation may lead to an accumulation of carbon (C) in vegetation, but little is known about changes in soil C storage with establishment of plantation forests. Plantation forest carbon budget models often omit mineral soil C changes from stand-level C budget calculations, while including forest floor C accumulation, or predict continuous soil C increases over several rotations. We used national soil C databases to quantify differences in soil C content between pasture and exotic pine forest plantations dominated by P. radiata (D. Don), and paired site studies to quantify changes in soil C with conversion of pasture to plantation forest in New Zealand. Overall, mineral soil C to 0.10 m was 20 40% lower under pine for all soil types (p<0.01) except soils with high clay activity (HCA), where there was no difference. Similar trends were observed in the 0.1 0.3 m layer. Moreover, mineral soil C to 0.1 m was 17 40% lower under pine than pasture in side-by-side comparisons. The only non-significant difference occurred at a site located on a HCA soil (p=0.08). When averaged across the site studies and the national databases, the difference in soil C between pasture and pine was about 16 t C ha
1on non-HCA soils. This is similar to forest floor C averaged across our individual sites (about 20 t C ha
1). The decrease in mineral soil C could result in about a 15% reduction in the average C sequestration potential (112 t C ha
1) when pasture is converted to exotic plantation forest on non-HCA soils. The relative importance of this change in mineral soil C will likely vary depending on the productivity potential of a site and harvest impacts on the forest floor C pool. Our results emphasize that changes in soil C should be included in any calculations of C sequestration attributed to plantation forestry.
NASA Astrophysics Data System (ADS)
Stretch, V.; Gedalof, Z.; Berg, A. A.
2010-12-01
Increased atmospheric CO2 could increase photosynthetic rates and cause trees to use water more efficiently, thereby increasing overall growth rates relative to climatic limiting factors. CO2 fertilization has been found across a range of forest types; however results have been inconsistent and based on short-term studies. Long-term studies based on tree-rings have generally been restricted to a few sites and have produced conflicting results. An initial global analysis of tree-ring widths for evidence of increasing growth relative to drought suggested a small but highly significant proportion of trees exhibit increasing growth over the past 130 years. These growth increases could not be attributed to increasing water use efficiency, elevation effects, nitrogen deposition, or divergence. These results suggest that CO2 fertilization is occurring at some locations and may influence future forest dynamics but this does not appear to occur at all locations. The processes causing differential responses are the focus of this study. Here we illustrate response differences between Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). Using multiple site chronologies from these species over western North America, we demonstrate several site-specific explanations for differential responses to CO2 fertilization, such as forest composition, density, slope, aspect, soil type, and position relative to range limits.
Forest Fires and Post - Fire Regeneration in Algeria Analysis with Satellite Data
NASA Astrophysics Data System (ADS)
Zegrar, Ahmed
2016-07-01
The Algerian forests are characterized by a particularly flammable material and fuel. The wind, the relief and the slope facilitates the propagation of fire. The use of remote sensing data multi-dates, combined with other types of data of various kinds on the environment and forest burned, opens up interesting perspectives for the management of post-fire regeneration. In this study the use of multi-temporal remote sensing image Alsat-1 and Landsat combined with other types of data concerning both background and burned down forest appears to be promising in evaluating and spatial and temporal effects of post fire regeneration. A spatial analysis taking into consideration the characteristics of the burned down site in the North West of Algeria, allowed to better account new factors to explain the regeneration and its temporal and spatial variation. We intended to show the potential use of remote sensing data from satellite ALSAT-1, of spatial resolution of 32 m. . This approach allows showing the contribution of the data of Algerian satellite ALSAT in the detection and the well attended some forest fires in Algeria.
Beyond edge effects: landscape controls on forest structure in the southeastern US
NASA Astrophysics Data System (ADS)
Fagan, M. E.; Morton, D. C.; Cook, B.; Masek, J. G.; Zhao, F. A.; Nelson, R.; Huang, C.
2016-12-01
The structure of forest canopies (i.e., their height and complexity) is known to be influenced by a variety of factors, including forest age, species composition, disturbance, edaphic and topographical conditions, and exposure to edge environments. The combined impact of each of these factors on canopy structure is not well characterized for most forest ecosystems, however, which limits our ability to predict the regional impacts of forest fragmentation. The objective of this study was to elucidate the main biophysical drivers of canopy structure across two dominant ecosystems in the southeastern U.S: natural mixed deciduous forests, and industrial conifer plantations. We analyzed spatial changes in canopy structure along aerial transects of LiDAR data ( 3,000 km in all). High-resolution (1 m) LiDAR data from Goddard's LiDAR, Hyperspectral, and Thermal Airborne Imager (G-LiHT) were combined with time series of Landsat imagery to quantify forest type, age, composition, and fragmentation. Forest structural metrics (height, gap fraction, and canopy roughness) were examined across forest types, ages, topography, and decreasing edge exposure. We hypothesized that 1) structural edge effects would be weak in both natural and plantation forest types, and 2) age, composition, and topography would be the dominant influences on natural forest structure. We analyzed all large (>4 ha) fragments from the 8562 distinct forests measured during G-LiHT data collections in 2011 across the southeastern U.S. In general, the relationship between forest structural metrics and edge exposure was highly variable in both natural forests and plantations. However, variability in all structural metrics decreased with distance from an edge. Forest age and topography were strong predictors of canopy structure in natural forests. However plantations tended to be located in sites with limited topographical variation, and thinning disturbances of conifer plantations decreased the strength of the age-structure relationship. We found that canopy structure in our region is influenced by edge effects, but other factors played a larger role in determining forest characteristics. Our results highlight the importance of endogenous, stand-specific processes for forest structure, biomass, and biodiversity in the southeastern U.S.
Schmitt, J L; Windisch, P G
2010-08-01
The extractive exploitation of the tree fern Alsophila setosa Kaulf. alters forest formations and diminishes the availability of micro-habitat for epiphytes. A survey of epiphytic fern communities on A. setosa at 16 study sites in different forest formations in the State of Rio Grande do Sul, Brazil, documented the occurrence of 31 species representing 16 genera and six families. The greatest richness of species occurred in Polypodiaceae (39%) and in the genus Asplenium L. (22%). Habitual holoepiphyte was the predominant ecological category, representing 61% of the species. Similarity analysis demonstrated heterogeneity in the composition of the epiphytic ferns at the study sites and indicated that the vegetation type is not the main factor for floristic difference. The lowest total specific richness (5) was recorded for the seasonal deciduous forest site. The majority of the sites presented similar averages of phorophyte height and epiphyte richness per caudex. In 25% of the sites the height of the host plants presented significant correlation with specific richness. Considering that the majority of the epiphytes are habitual and that some of them occur exclusively or preferentially on tree ferns, the maintenance of these host plants in the vegetation is essential for the conservation of epiphytic species.
The impact of different management techniques on carbon balance of a pine stand after windthrow
NASA Astrophysics Data System (ADS)
Ziemblinska, Klaudia; Urbaniak, Marek; Merbold, Lutz; Chojnicki, Bogdan H.; Olejnik, Janusz
2015-04-01
Forest ecosystems cover approximately 1/3 of the global land area (and 29.8% in Poland). Since forests are constantly exposed to various types of disturbances - both natural and anthropogenic such as fires, wind, insects outbreaks or clear cuts - it is important to investigate the impact of such damages on the carbon dynamics. This becomes even more important due to the fact that future climate change will most likely result in a higher frequency and intensity of extreme climatic events. Even though wind damages cause large disturbances to forests only few places in the world exist where continuous measurements of carbon exchange (CO2) in windthrown sites are carried out. Besides the opportunity to assess the carbon dynamics following wind disturbance, there is an additional possibility of evaluating differences in post windthrow forest management practices. To fill this knowledge gap we set up two measuring stations in north-western Poland in the 500ha area of pine forest damaged by tornado in July 2012, to assess the impact of such disturbance on CO2 and H2O exchange by use of Eddy Covariance (EC) technique (Tlen I and Tlen II). Both sites are characterized by similar climatic as well as soil conditions and are located 3km from each other. While at the site Tlen I all biomass (coarse and fine woody debris were collected together with stumps) was removed and ploughed thereafter, at Tlen II only trunks and main branches were taken out from the site without ploughing. Total harvested biomass per hectare, as derived from local forest inventory, were almost 18 % higher at Tlen I than Tlen II site (where uprooted stumps were left to decompose). First analysis of the eddy covariance data shows that both sites are significant carbon sources. Emissions of carbon dioxide from the non-ploughed site (Tlen II) are higher than from the ploughed site (Tlen I). Both sites released more than 8.1 t of CO2 per ha during a three month time period (mid July to mid August 2014) after being prepared for reforestation as described above . Future analysis and continuation of the measurements will help to answer the following remaining questions: How does the carbon flux change in time at both sites? When does either system reach a compensation point (NEP0)? How large are the differences in CO2 loss between both sites? Which management technique appears to be more "carbon friendly" (less CO2 released to the atmosphere per decade). If these questions are answered they will allow to adapt current post-windthrow management activities and provide potential mitigation abilities in disturbed forest ecosystems.
Simons, Theodore R.; Shriner, Susan A.; Farnsworth, George L.
2006-01-01
We compared breeding bird communities and vegetation characteristics at paired point locations in primary (undisturbed) and mature secondary forest (70-100 years old) sites in Great Smoky Mountains National Park, USA to understand how sites logged prior to creation of the park compare to undisturbed sites following 70 years of protection from human disturbance. We found that bird and vegetation communities are currently similar, but retain some differences in species composition. Rank abundance curves for primary and secondary forest bird communities showed very similar patterns of species dominance. Species composition was also similar on the two sites which shared 24 of the 25 most frequently recorded species. Nonetheless, comparisons of density estimates derived from distance sampling showed three bird species were more abundant on primary forest sites and that one bird species was significantly more abundant on secondary forest sites. Notably, comparisons based on raw counts (unadjusted for potential differences in detectability) produced somewhat different results. Analyses of vegetation samples for the paired sites also showed relative similarity, but with some differences between primary and secondary forests. Primary forest sites had more large trees (trees greater than 50 cm diameter at breast height) and late successional species. Primary forest sites had a denser tall shrub layer while secondary forest sites had a denser canopy layer. Nonetheless, tree species richness, basal area of live trees and number of standing snags did not differ between primary and secondary forest sites. Results indicate that breeding bird communities on sites within the park that were logged commercially 70 years ago are currently quite similar to bird communities on sites with no history of human disturbance. Similarities between the bird communities on previously disturbed and undisturbed sites in Great Smoky Mountains National Park may exceed those on more fragmented landscapes because large patches of primary forest, adjacent to commercially logged sites, remained in the park when it was established in 1935. These patches of primary forest may have served as source areas for commercially logged sites.
Terada, Saeko; Nackoney, Janet; Sakamaki, Tetsuya; Mulavwa, Mbangi Norbert; Yumoto, Takakazu; Furuichi, Takeshi
2015-06-01
Understanding the habitat requirements of great apes is essential for effective conservation strategies. We examined annual habitat use of a bonobo group in the Wamba field site within the Luo Scientific Reserve, Democratic Republic of the Congo. Using satellite imagery, we categorized the group's ranging area into three forest types: (1) primary and old secondary forest (P/OS), (2) young secondary forest and agriculture (YS/Ag), and (3) swamp forest (Sw). We tracked the group for 1 year (2007-2008) and compared usage of the three forest types for ranging, feeding, and night-sleeping. We also recorded what the bonobos ate and monitored monthly fruit availability in each forest type. The group ranged and fed more often in P/OS and less often in YS/Ag and Sw than expected based on habitat availability. Also, the group slept mostly in P/OS (94% of nights monitored), but also in YS/Ag (1%), and Sw (5%). Fruit availability in P/OS had no significant effect on habitat selection, but the group fed in YS/Ag most often during the two months when fruits in P/OS were least abundant. In June, when fruit of Uapaca spp. (selectively eaten by bonobos) was generally abundant in Sw, the group mostly ranged and slept there. The bonobos fed most often on herbaceous plants in all three forest types. In Sw, the bonobos frequently ate mushrooms. Our results show that semi-open forest with abundant herbaceous plants such as YS/Ag could be an important feeding habitat and may provide fallback food for bonobos when fruits are scarce. Furthermore, Sw can serve seasonally as a main habitat to complement P/OS if adequate food resources and tree nesting opportunities are available. We conclude that bonobos use diverse habitats depending on their needs and we highlight the importance of minor-use habitats for sustaining populations of target species in conservation planning. © 2015 Wiley Periodicals, Inc.
Komatsu, Masabumi; Kaneko, Shinji; Ohashi, Shinta; Kuroda, Katsushi; Sano, Tetsuya; Ikeda, Shigeto; Saito, Satoshi; Kiyono, Yoshiyuki; Tonosaki, Mario; Miura, Satoru; Akama, Akio; Kajimoto, Takuya; Takahashi, Masamichi
2016-09-01
After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, information about stand-level spatial patterns of radiocesium initially deposited in the surrounding forests was essential for predicting the future dynamics of radiocesium and suggesting a management plan for contaminated forests. In the first summer (approximately 6 months after the accident), we separately estimated the amounts of radiocesium ((134)Cs and (137)Cs; Bq m(-2)) in the major components (trees, organic layers, and soils) in forests of three sites with different contamination levels. For a Japanese cedar (Cryptomeria japonica) forest studied at each of the three sites, the radiocesium concentration greatly differed among the components, with the needle and organic layer having the highest concentrations. For these cedar forests, the proportion of the (137)Cs stock in the aboveground tree biomass varied from 22% to 44% of the total (137)Cs stock; it was 44% in highly contaminated sites (7.0 × 10(5) Bq m(-2)) but reduced to 22% in less contaminated sites (1.1 × 10(4) Bq m(-2)). In the intermediate contaminated site (5.0-5.8 × 10(4) Bq m(-2)), 34% of radiocesium was observed in the aboveground tree biomass of the Japanese cedar stand. However, this proportion was considerably smaller (18-19%) in the nearby mixed forests of the Japanese red pine (Pinus densiflora) and deciduous broad-leaved trees. Non-negligible amounts of (134)Cs and (137)Cs were detected in both the sapwood and heartwood of all the studied tree species. This finding suggested that the uptake or translocation of radiocesium had already started within 6 months after the accident. The belowground compartments were mostly present in the organic layer and the uppermost (0-5 cm deep) mineral soil layer at all the study sites. We discussed the initial transfer process of radiocesium deposited in the forest and inferred that the type of initial deposition (i.e., dry versus wet radiocesium deposition), the amount of rainfall after the accident, and the leaf biomass by the tree species may influence differences in the spatial pattern of radiocesium by study plots. The results of the present study and further studies of the spatial pattern of radiocesium are important for modeling future radiocesium distribution in contaminated forest ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mendonça, Milton De S; Piccardi, Hosana M F; Jahnke, Simone M; Dalbem, Ricardo V
2010-01-01
Galling arthropods create plant structures inside which they find shelter. Factors acting on galler diversity are still being discussed, with this fauna considered more diverse in xeric than mesic environments (higrothermic stress hypothesis, HSH), and also in more plant diverse sites. Here we compare galler abundance (N), equitability (E), species richness (S) and composition between adjacent restinga (xeric) and swamp forests (mesic) in Parque Estadual de Itapeva (29°21' S, 49°45' W), Rio Grande do Sul, southern Brazil. Five trails, two in swamp forest and three in restingas, were sampled four times each (January/December 2005). After an effort of 60h/person, 621 galled plant individuals belonging to 104 gall morphotypes were recorded. This suggests a high galler diversity for the Park, comparable to the richest places known. No differences were found for N, E or S between restingas and swamp forests. However, faunal composition differs significantly between the vegetation types. The dominant (most abundant) species are different in either vegetation type, and are rare or absent on the other vegetation type. Such species composition analysis is still largely ignored for gallers, and stresses the fact that the HSH cannot explain this pattern, since the latter is based on preferences by the ovipositing galler for xeric sites instead of mesic ones. The two habitats differ in microclimate, but species richness, as would be predicted by the HSH, does not differ. This small scale pattern can perhaps be attributed to biogeographic processes on larger scales, as suggested by the resource synchronisation hypothesis.
NASA Technical Reports Server (NTRS)
Birnie, R. W.; Stoiber, R. E. (Principal Investigator)
1983-01-01
Computer classification of LANDSAT data was used for forest type mapping in New England. The ability to classify areas of hardwood, softwood, and mixed tree types was assessed along with determining clearcut regions and gypsy moth defoliation. Applications of the information to forest management and locating potential deer yards were investigated. The principal activities concerned with remote sensing of volcanic emissions centered around the development of remote sensors for SO2 and HCl gas, and their use at appropriate volcanic sites. Two major areas were investigated (Masaya, Nicaragua, and St. Helens, Washington) along with several minor ones.
Strategies for detection of floodplain inundation with multi-frequency polarimetric SAR
NASA Technical Reports Server (NTRS)
Hess, Laura L.; Melack, John M.
1992-01-01
Mapping of floodplain inundation patterns is a key element in developing hydrological and biogeochemical models for large tropical river basins such as the Amazon. Knowledge of the time sequence of inundation is necessary to determine both water routing and biogenic gas fluxes. Synthetic Aperture Radar (SAR) is uniquely suited for this application because of its ability to penetrate cloud cover and, in many cases, to detect flooding beneath a forest or herbaceous canopy. A procedure for discriminating flooded forest, flooded herbaceous vegetation, and open water from other cover types for a coastal wetland site on the lower Altamaha floodplain, Georgia, emphasizing robust classifiers that are not site-specific is currently being developed.
Pereira, G A; Araújo, H F P; Azevedo-Júnior, S M
2016-01-01
The Pernambuco Endemism Center in north-east Brazil has the most fragmented forest cover and the largest number of threatened birds of the whole Atlantic Forest. We analyzed the distribution of three groups of bird species: forest-dependent, endemic and/or threatened using the interpolation method of Inverse Distance Weighting. We also checked the concentration of these birds in protected and unprotected areas, suggesting new sites that need to be protected. The richness concentration of forest-dependent, endemic and/or threatened birds in 123 sites were analysed. There was a greater concentration of the three groups in north Alagoas, south and north Pernambuco, and north and west Paraíba. The distribution of the three groups was almost regular in different vegetation types, although a lower concentration was found in the pioneer formation. There was a greater concentration of birds from all three groups between Pernambuco and Alagoas, and this must be due to the presence of more forest fragments with better structure and vegetation heterogeneity. The protected and unprotected areas hosted important records of endemic and/or threatened birds. We suggested some important places for implementation of new protected areas due to the larger concentrations of the target birds and because they are located within the boundaries of the Important Bird Areas.
Deacon, Jeffrey R.; Smith, Thor E.; Johnston, Craig M.; Moore, Richard B.; Blake, Laura J.; Weidman, Rebecca M.
2006-01-01
A study of total nitrogen concentrations and loads was conducted from December 2002 to September 2005 at 13 river sites in the upper Connecticut River Basin. Ten sites were selected to represent contributions of nitrogen from forested, agricultural, and urban land. Three sites were distributed spatially on the main stem of the Connecticut River to assess the cumulative total nitrogen loads. To further improve the understanding of the sources and concentrations and loads of total nitrogen in the upper Connecticut River Basin, ambient surface water-quality sampling was supplemented with sampling of effluent from 19 municipal and paper mill wastewater-treatment facilities. Mean concentrations of total nitrogen ranged from 0.19 to 2.8 milligrams per liter (mg/L) at river sampling sites. Instantaneous mean loads of total nitrogen ranged from 162 to 58,300 pounds per day (lb/d). Estimated mean annual loads of total nitrogen ranged from 49,100 to 21.6 million pounds per year (lb/yr) with about 30 to 55 percent of the loads being transported during the spring. The estimated mean annual yields of total nitrogen ranged from 1,190 to 7,300 pounds per square mile per year (lb/mi2)/yr. Mean concentrations of total nitrogen ranged from 4.4 to 30 mg/L at wastewater-treatment sampling sites. Instantaneous mean loads of total nitrogen from municipal wastewater-treatment facilities ranged from 36 to 1,780 lb/d. Instantaneous mean loads of total nitrogen from paper mill wastewater-treatment facilities ranged from 96 to 160 lb/d. The median concentration of total nitrogen was 0.24 mg/L at forested sites, 0.48 mg/L at agricultural sites, 0.54 mg/L at urban sites, 0.48 mg/L at main-stem sites, and 14 mg/L at wastewater-treatment sites. Concentrations of total nitrogen at forested sites were significantly less than at all other site types (p0.05) but were significantly greater (p<0.05) than at forested sites and significantly less than concentrations at wastewater-treatment sites (p<0.05). Total nitrogen concentrations at wastewater-treatment sites were significantly different from all other site types (p<0.05). Annual yields of total nitrogen ranged from 732 to 1,920 (lb/mi2)/yr at forested sites; 1,550 to 2,980 (lb/mi2)/yr at agricultural sites; 1,280 to 1,860 (lb/mi2)/yr at urban sites that were not directly affected by wastewater effluent; 7,090 to 7,770 (lb/mi2)/yr at an urban site directly affected by wastewater effluent; and 1,300 to 2,390 (lb/mi2)/yr at main-stem sites. In this study, the mean annual load and yield of total nitrogen at the Connecticut River at Wells River, VT, was estimated at 4.47 million lb/yr and 1,690 (lb/mi2)/yr, respectively. The mean annual load and yield of total nitrogen at the Connecticut River at North Walpole, NH, was estimated at 9.60 million lb/yr and 1,750 (lb/mi2)/yr, respectively. The mean annual load and yield of total nitrogen leaving the upper Connecticut River Basin, as estimated at the Connecticut River at Thompsonville, CT, was 21.6 million lb/yr and 2,230 (lb/mi2)/yr, respectively.
[Soil seed bank research in China: present status, progress and challenges].
Shen, You-Xin; Zhao, Chun-Yan
2009-02-01
By searching soil seed bank (SSB) papers from http://www.cqvip.com (1989-2006) and Web of Science (1985-2006), the information on SSB density, species richness, and research methods were summarized according to the 29 classified vegetation types in Vegetation of China. In total, the data of 238 sites with 14 vegetation types were collected. The results showed that the research methods adopted by different researchers and the obtained data of SSB density and species richness varied greatly. In related researches, sampling work was mostly conducted in April and October, sampling plot number ranged from 2 to 480, plot area ranged from 78 cm2 to 10,000 cm2, with 10 cm x 10 cm and 20 cm x 20 cm as most common, and total sampling area ranged from 600 cm2 to 500,000 cm2, with the most being 1,000-10,000 cm2. SSB density varied from 8 ind x m(-2) (desert) to 65,355 ind x m(-2) (tropical rain forest), and species richness varied from 1 (secondary bare alkali-saline patch in temperate) to 74 (tropical seasonal rain forest) per site. SSB density and species richness were higher in tropical rain forest and seasonal rain forest than in temperate coniferous forest, and in manmade forest than in agricultural land or barren land. Grassland, desert, and meadow had smaller species richness. In future, the SSB research should be extended both in scope and in deepness, with the focus on the long term research and strategy research of some important ecosystems, and the research should be incorporated into vegetation regeneration and restoration studies. The related methodological research should be also emphasized in the future.
Neill, Christopher; Piccolo, Marisa C; Cerri, Carlos C; Steudler, Paul A; Melillo, Jerry M; Brito, Marciano
1997-04-01
Previous studies of the effect of tropical forest conversion to cattle pasture on soil N dynamics showed that rates of net N mineralization and net nitrification were lower in pastures compared with the original forest. In this study, we sought to determine the generality of these patterns by examining soil inorganic N concentrations, net mineralization and nitrification rates in 6 forests and 11 pastures 3 years old or older on ultisols and oxisols that encompassed a wide variety of soil textures and spanned a 700-km geographical range in the southwestern Brazilian Amazon Basin state of Rondônia. We sampled each site during October-November and April-May. Forest soils had higher extractable NO 3 - -N and total inorganic N concentrations than pasture soils, but substantial NO 3 - -N occurred in both forest and pasture soils. Rates of net N mineralization and net nitrification were higher in forest soils. Greater concentrations of soil organic matter in finer textured soils were associated with greater rates of net N mineralization and net nitrification, but this relationship was true only under native forest vegetation; rates were uniformly low in pastures, regardless of soil type or texture. Net N mineralization and net nitrification rates per unit of total soil organic matter showed no pattern across the different forest sites, suggesting that controls of net N mineralization may be broadly similar across a wide range of soil types. Similar reductions in rates of net N transformations in pastures 3 years old or older across a range of textures on these soils suggest that changes to soil N cycling caused by deforestation for pasture may be Basin-wide in extent. Lower net N mineralization and net nitrification rates in established pastures suggest that annual N losses from largely deforested landscapes may be lower than losses from the original forest. Total ecosystem N losses since deforestation are likely to depend on the balance between lower N loss rates from established pastures and the magnitude and duration of N losses that occur in the years immediately following forest clearing.
NASA Astrophysics Data System (ADS)
Taylor, A. H.; Belmecheri, S.; Harris, L. B.
2016-12-01
We identified variation on water use efficiency interpreted from carbon 13 in tree ring cellulose in dense ponderosa pines forests in Washington and Arizona. Historically, these forests burned every decade until fires were suppressed beginning in the early twentieth century. The reduction in fire caused large increases in forest density and forest biomass and potential for intense fire. Forests with hazardous fuels are common in the western United States and these types of forests are treated with mechanical thinning and mechanical thinning and burning to reduce hazardous fuels and fire intensity. At each site we extracted tree ring samples from five trees in each treatment type and a control to identify the effects of fuel treatment of concentration of carbon 13 in tree ring cellulose. Water use efficiency as measured by carbon 13 increased after fuel treatments. Treatment effects were larger for the mechanical plus burn treatment than for the mechanical treatment in each study area compared to the control stands Our results suggest that fuel treatments reduce sensitivity of tree growth to climate and increase water use efficiency. Since tree ring carbon 13 is related to plant productivity, carbon 13 in tree rings can be used as a metric of change in ecosystem function for evaluating fuel treatments.
Öztürk, Melih; Bolat, İlyas
2014-04-01
This study investigates the effects of forest transformation into recreation site. A fragment of a Pinus pinaster plantation forest was transferred to a recreation site in the city of Bartın located close to the Black Sea coast of northwestern Turkey. During the transformation, some of the trees were selectively removed from the forest to generate more open spaces for the recreationists. As a result, Leaf Area Index (LAI) decreased by 0.20 (about 11%). Additionally, roads and pathways were introduced into the site together with some recreational equipment sealing parts of the soil surface. Consequently, forest environment was altered with a semi-natural landscape within the recreation site. The purpose of this study is to assess the effects of forest transformation into recreation site particularly in terms of the LAI parameter, forest floor, and soil properties. Preliminary monitoring results indicate that forest floor biomass is reduced by 26% in the recreation site compared to the control site. Soil temperature is increased by 15% in the recreation site where selective removal of trees expanded the gaps allowing more light transmission. On the other hand, the soil bulk density which is an indicator of soil compaction is unexpectedly slightly lower in the recreation site. Organic carbon (C(org)) and total nitrogen (N(total)) together with the other physical and chemical parameter values indicate that forest floor and soil have not been exposed to much disturbance. However, subsequent removal of trees that would threaten the vegetation, forest floor, and soil should not be allowed. The activities of the recreationists are to be concentrated on the paved spaces rather than soil surfaces. Furthermore, long-term monitoring and management is necessary for both the observation and conservation of the site.
Čerevková, A; Renčo, M; Cagáň, L
2013-09-01
The nematode communities in spruce forests were compared with the short-term effects of forest damage, caused by windstorm, wildfire and management practices of forest soils. Soil samples were collected in June and October from 2006 to 2008 in four different sites: (1) forest unaffected by the wind (REF); (2) storm-felled forest with salvaged timber (EXT); (3) modified forest affected by timber salvage (wood removal) and forest fire (FIR); and (4) storm-felled forest where timber had been left unsalvaged (NEX). Nematode analysis showed that the dominant species in all four investigated sites were Acrobeloides nanus and Eudorylaimus silvaticus. An increase of A. nanus (35% of the total nematode abundance) in the first year in the FIR site led to the highest total abundance of nematodes compared with other sites, where nematode abundance reached the same level in the third year. In the FIR site bacterial feeders appeared to be the most representative trophic group, although in the second and third year, after disturbance, the abundance of this trophic group gradually decreased. In the NEX site, the number of nematode species, population densities and Maturity Index were similar to that recorded for the FIR site. In EXT and NEX sites, the other dominant species was the plant parasitic nematode Paratylenchus microdorus. Analyses of nematodes extracted from different forest soil samples showed that the highest number of species and diversity index for species (H'spp) were in the REF site. Differences between the nematode fauna in REF and other localities were clearly depicted by cluster analysis. The greatest Structure Index and Enrichment Index values were also in REF. In the EXT site, the number of nematode species, their abundance, H'spp and Maturity Index were not significantly different from those recorded in the reference site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munger, J. William; Foster, David R.; Richardson, Andrew D.
This report summarizes work to improve quantitative understanding of the terrestrial ecosystem processes that control carbon sequestration in unmanaged forests It builds upon the comprehensive long-term observations of CO2 fluxes, climate and forest structure and function at the Harvard Forest in Petersham, MA. This record includes the longest CO2 flux time series in the world. The site is a keystone for the AmeriFlux network. Project Description The project synthesizes observations made at the Harvard Forest HFEMS and Hemlock towers, which represent the dominant mixed deciduous and coniferous forest types in the northeastern United States. The 20+ year record of carbonmore » uptake at Harvard Forest and the associated comprehensive meteorological and biometric data, comprise one of the best data sets to challenge ecosystem models on time scales spanning hourly, daily, monthly, interannual and multi-decadal intervals, as needed to understand ecosystem change and climate feedbacks.« less
NASA Astrophysics Data System (ADS)
Fernandez Bou, A. S.; Carrasquillo Quintana, O.; Dierick, D.; Harmon, T. C.; Johnson, S.; Schwendenmann, L.; Zelikova, T. J.
2016-12-01
The goal of this work is to advance our understanding of soil carbon cycling in highly productive neotropical wet forests. More specifically, we are investigating the influence of leaf cutter ants (LCA) on soil CO2 gas dynamics in primary and secondary forest soils at La Selva Biological Station, Costa Rica. LCA are the dominant herbivore in tropical Americas, responsible for as much as 50% of the total herbivory. Their presence is increasing and their range is expanding because of forest fragmentation and other human impacts. We installed gas sampling wells in LCA (Atta cephalotes) nest and control sites (non-nests in the same soil and forest settings). The experimental design encompassed land cover (primary and secondary forest) and soil type (residual and alluvial). We collected gas samples monthly over an 18-month period. Several of the LCA nests were abandoned during this period. Nevertheless, we continued to sample these sites for LCA legacy effects. In several of the sites, we also installed sensors to continuously monitor soil moisture content, temperature, and CO2 levels. Within the 18-month period we conducted a 2-month field campaign to collect soil and nest vent CO2 efflux data from 3 of the nest-control pairs. Integrating the various data sets, we observed that for most of the sites nest and control soils behaved similarly during the tropical dry season. However, during the wet season gas well CO2 concentrations increased in the control sites while levels in the nests remained at dry season levels. This outcome suggests that ants modify soil gas transport properties (e.g., tortuosity). In situ time series and efflux sampling campaign data corroborated these findings. Abandoned nest CO2 levels were similar to those of the active nests, supporting the notion of a legacy effect from LCA manipulations. For this work, the period of abandonment was relatively short (several months to 1 year maximum), which appears to be insufficient for estimating the duration effect. Overall, these results demonstrate that LCA exert a significant effect on carbon cycling in rain forest soils.
Meli, Paula; Holl, Karen D.; Rey Benayas, José María; Jones, Holly P.; Jones, Peter C.; Montoya, Daniel; Moreno Mateos, David
2017-01-01
Global forest restoration targets have been set, yet policy makers and land managers lack guiding principles on how to invest limited resources to achieve them. We conducted a meta-analysis of 166 studies in naturally regenerating and actively restored forests worldwide to answer: (1) To what extent do floral and faunal abundance and diversity and biogeochemical functions recover? (2) Does recovery vary as a function of past land use, time since restoration, forest region, or precipitation? (3) Does active restoration result in more complete or faster recovery than passive restoration? Overall, forests showed a high level of recovery, but the time to recovery depended on the metric type measured, past land use, and region. Abundance recovered quickly and completely, whereas diversity recovered slower in tropical than in temperate forests. Biogeochemical functions recovered more slowly after agriculture than after logging or mining. Formerly logged sites were mostly passively restored and generally recovered quickly. Mined sites were nearly always actively restored using a combination of planting and either soil amendments or recontouring topography, which resulted in rapid recovery of the metrics evaluated. Actively restoring former agricultural land, primarily by planting trees, did not result in consistently faster or more complete recovery than passively restored sites. Our results suggest that simply ending the land use is sufficient for forests to recover in many cases, but more studies are needed that directly compare the value added of active versus passive restoration strategies in the same system. Investments in active restoration should be evaluated relative to the past land use, the natural resilience of the system, and the specific objectives of each project. PMID:28158256
Interacting factors driving a major loss of large trees with cavities in a forest ecosystem.
Lindenmayer, David B; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E; Franklin, Jerry F; Laurance, William F; Stein, John A R; Gibbons, Philip
2012-01-01
Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.
Meli, Paula; Holl, Karen D; Rey Benayas, José María; Jones, Holly P; Jones, Peter C; Montoya, Daniel; Moreno Mateos, David
2017-01-01
Global forest restoration targets have been set, yet policy makers and land managers lack guiding principles on how to invest limited resources to achieve them. We conducted a meta-analysis of 166 studies in naturally regenerating and actively restored forests worldwide to answer: (1) To what extent do floral and faunal abundance and diversity and biogeochemical functions recover? (2) Does recovery vary as a function of past land use, time since restoration, forest region, or precipitation? (3) Does active restoration result in more complete or faster recovery than passive restoration? Overall, forests showed a high level of recovery, but the time to recovery depended on the metric type measured, past land use, and region. Abundance recovered quickly and completely, whereas diversity recovered slower in tropical than in temperate forests. Biogeochemical functions recovered more slowly after agriculture than after logging or mining. Formerly logged sites were mostly passively restored and generally recovered quickly. Mined sites were nearly always actively restored using a combination of planting and either soil amendments or recontouring topography, which resulted in rapid recovery of the metrics evaluated. Actively restoring former agricultural land, primarily by planting trees, did not result in consistently faster or more complete recovery than passively restored sites. Our results suggest that simply ending the land use is sufficient for forests to recover in many cases, but more studies are needed that directly compare the value added of active versus passive restoration strategies in the same system. Investments in active restoration should be evaluated relative to the past land use, the natural resilience of the system, and the specific objectives of each project.
Natural cavities used by wood ducks in north-central Minnesota
Gilmer, D.S.; Ball, I.J.; Cowardin, L.M.; Mathisen, J.
1978-01-01
Radio telemetry was used to locate 31 wood duck (Aix sponsa) nest cavity sites in 16 forest stands. Stands were of 2 types: (1) mature (mean = 107 years) northern hardwoods (10 nest sites), and (2) mature (mean = 68 years) quaking aspen (Populus tremuloides) (21 nest sites). Aspen was the most important cavity-producing tree used by wood ducks and accounted for 57 percent of 28 cavities inspected. In stands used by wood ducks, the average density of suitable cavities was about 4 per hectare. Trees containing nests were closer to water areas (P < 0.05) and the nearest forest canopy openings (P < 0.01) than was a random sample of trees from the same stands. A significant (P < 0.005) relationship existed between the orientation of the cavity entrance and the nearest canopy opening. Potential wood duck cavities usually were clustered within a stand rather than randomly distributed. Selection of trees by woodpeckers for nest hole construction probably influenced the availability of cavities used by wood ducks. A plan for managing forests to benefit wood ducks and other wildlife dependent on old-growth timber is discussed.
da Silva Carvalho, Lidiany C; Fearnside, Philip M; Nascimento, Marcelo T; Barbosa, Reinaldo I
2018-04-18
Pyrogenic carbon (PyC) derived from charcoal particles (paleo + modern) deposited in the soil column has been little studied in the Amazon, and our understanding of the factors that control the spatial and vertical distribution of these materials in the region's forest soils is still unclear. The objective of this study was to test the effect of forest type and distance from the ignition source on the PyC stocks contained in macroscopic particles of soil charcoal (≥2 mm; 1 m depth) dispersed in ecotone forests of the northern Brazilian Amazon. Thirty permanent plots were set up near a site that had been occupied by pre-Columbian and by modern populations until the late 1970s. The sampled plots represent seasonal and ombrophilous forests that occur under different hydro-edaphic restrictions. Our results indicate that the largest PyC stock was spatially dependent on distance to the ignition source (<3 km), occurring mainly in flood-free ombrophilous forests (3.46 ± 5.22 Mg PyC/ha). The vertical distribution of PyC in the deeper layers of the soil (> 50 cm) in seasonal forests was limited by hydro-edaphic impediments that restricted the occurrence of charcoal. These results suggest that PyC stocks derived from macroscopic charcoal particles in the soil of this Brazilian Amazon ecotone region are controlled by the distance from the ignition source of the fire, and that forest types with higher hydro-edaphic restrictions can inhibit formation and accumulation of charcoal. Making use of these distinctions reduces uncertainty and improves our ability to understand the variability of PyC stocks in forests with a history of fire in the Amazon. © 2018 John Wiley & Sons Ltd.
Model-data fusion across ecosystems: from multisite optimizations to global simulations
NASA Astrophysics Data System (ADS)
Kuppel, S.; Peylin, P.; Maignan, F.; Chevallier, F.; Kiely, G.; Montagnani, L.; Cescatti, A.
2014-11-01
This study uses a variational data assimilation framework to simultaneously constrain a global ecosystem model with eddy covariance measurements of daily net ecosystem exchange (NEE) and latent heat (LE) fluxes from a large number of sites grouped in seven plant functional types (PFTs). It is an attempt to bridge the gap between the numerous site-specific parameter optimization works found in the literature and the generic parameterization used by most land surface models within each PFT. The present multisite approach allows deriving PFT-generic sets of optimized parameters enhancing the agreement between measured and simulated fluxes at most of the sites considered, with performances often comparable to those of the corresponding site-specific optimizations. Besides reducing the PFT-averaged model-data root-mean-square difference (RMSD) and the associated daily output uncertainty, the optimization improves the simulated CO2 balance at tropical and temperate forests sites. The major site-level NEE adjustments at the seasonal scale are reduced amplitude in C3 grasslands and boreal forests, increased seasonality in temperate evergreen forests, and better model-data phasing in temperate deciduous broadleaf forests. Conversely, the poorer performances in tropical evergreen broadleaf forests points to deficiencies regarding the modelling of phenology and soil water stress for this PFT. An evaluation with data-oriented estimates of photosynthesis (GPP - gross primary productivity) and ecosystem respiration (Reco) rates indicates distinctively improved simulations of both gross fluxes. The multisite parameter sets are then tested against CO2 concentrations measured at 53 locations around the globe, showing significant adjustments of the modelled seasonality of atmospheric CO2 concentration, whose relevance seems PFT-dependent, along with an improved interannual variability. Lastly, a global-scale evaluation with remote sensing NDVI (normalized difference vegetation index) measurements indicates an improvement of the simulated seasonal variations of the foliar cover for all considered PFTs.
NASA Astrophysics Data System (ADS)
Atkins, J. W.; Fahey, R. T.; Gough, C. M.; Hardiman, B. S.
2016-12-01
Ecosystem structure-function relationships represent a long-standing research area for ecosystem science. Relationships between canopy structural complexity (CSC) and net primary productivity (NPP), have been characterized for a limited number of sites, yet whether these relationships are conserved across eco-climatic boundaries remains unknown. We hypothesize an underlying mechanistic basis for global NPP-CSC linkages to include improved resource-use efficiency as CSC increases, examined here by correlating CSC with measures of light-use efficiency and nitrogen-use efficiency. Here we present a broad, continental scale analysis of CSC-NPP linkages. We are using multiple NEON sites coupled with other sites across a diverse array of temperate forest types spanning six eco-climatic domains of the continental United States to examine CSC-NPP relationships. Portable canopy LiDAR (PCL) data were used to calculate a suite of CSC metrics at the plot-level within each site. Ongoing work compares CSC to co-located measurements of wood net primary production estimated from the incremental change in woody biomass calculated using tree allometries. Results to date show CSC is highly variable across forest sites and may provide additional explanatory power for predicting NPP that is independent of other commonly used forest structural attributes such as leaf area index. CSC metrics such as rugosity vary widely across sites—ranging from high values (30 - 35) in complex canopies such as the Great Smoky Mountains to low values in open, savanna systems like North-Central Florida (< 0.5 - 2). NPP, and light- and nitrogen-use calculations are underway and will be paired with site-level CSC, with the expectation that CSC, resource-use efficiency, and NPP are positively correlated. Advancing understanding of how and why CSC affects forest NPP across a broad spatial dimension could transform mechanistic understanding of ecosystem structure-carbon cycling relationships, and greatly improve carbon cycling models and remote sensing applications, while providing a crucial linkage between the two.
NASA Astrophysics Data System (ADS)
Pierce, J. L.; Meyer, G. A.; Bigio, E.; Nelson, N.; Poulos, M. J.; Jenkins, S.; Riley, K. E.; Weppner, K.; Svenson, L.; Fitch, E. P.; Frechette, J.
2015-12-01
A new synthesis of 10 study areas and >480 14C dates of Holocene fire and erosional response are recorded in alluvial fan sediments of the interior western US. Chronologies are from high elevation mixed conifer forests in the N. Rockies, ponderosa and Douglas-fir forests in the N. Rockies and SW, and low elevation sagebrush steppe and piñon-juniper woodlands near the Snake River Plain. Results are as follows: 1) Late Holocene arrivals of ponderosa, lodgepole and piñon pine at Northern Rockies sites correspond with increased fire severity, linking vegetation and fire regime changes. 2) Deposit types vary with environment; sheetfloods are more common in sparsely vegetated sites and in drier Holocene periods with open forests, whereas dense forests and infrequent severe fires often produce debris flows. 3) Climate variability drives ponderosa pine and Douglas-fir forests in both the SW and N. Rockies to burn 'at both ends of the spectrum', where frequent low-severity fires are typical, but higher-severity fires burn during severe droughts following fuel buildup over wet decades. 4) Fires in dry sage steppe are generally fuel-limited, but burn during prolonged wet and variable climates; grazing, land-use, and invasive species, particularly influence modern fires. 5) At moist high-elevation lodgepole and mixed conifer sites in Yellowstone and central Idaho, episodic large debris flows indicate high severity burns, often during severe multidecadal droughts. 6) Regionally coherent peaks exist ca. 200, 500, 900, 1700 and 2600 cal yr BP, but fire activity is not generally synchronous among sites. Differences in climate among sites likely account for some asynchroneity. 7) Recent severe fires have burned in 8 of 10 sites described; erosional response appears particularly anomalous in the SW, where impacts of fire suppression and land use are greatest. Widespread and severe modern fires may herald the arrival of a no-analog era of fire in the western US.
NASA Astrophysics Data System (ADS)
Hitztaler, Stephanie K.; Bergen, Kathleen M.
2013-12-01
Small-scale resource use became an important adaptive mechanism in remote logging communities in Russia at the onset of the post-Soviet period in 1991. We focused on harvesting of a non-timber forest product, lingonberry (Vaccinium vitis-idaea), in the forests of the Kamchatka Peninsula (Russian Far East). We employed an integrated geographical approach to make quantifiable connections between harvesting and the landscape, and to interpret these relationships in their broader contexts. Landsat TM images were used for a new classification; the resulting land-cover map was the basis for linking non-spatial data on harvesters’ gathering behaviors to spatial data within delineated lingonberry gathering sites. Several significant relationships emerged: (1) mature forests negatively affected harvesters’ initial choice to gather in a site, while young forests had a positive effect; (2) land-cover type was critical in determining how and why gathering occurred: post-disturbance young and maturing forests were significantly associated with higher gathering intensity and with the choice to market harvests; and (3) distance from gathering sites to villages and main roads also mattered: longer distances were significantly correlated to more time spent gathering and to increased marketing of harvests. We further considered our findings in light of the larger ecological and social dynamics at play in central Kamchatka. This unique study is an important starting point for conservation- and sustainable development-based work, and for additional research into the drivers of human-landscape interactions in the Russian Far East.
NASA Astrophysics Data System (ADS)
Liu, Yuan; He, Nianpeng
2017-04-01
How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.
NASA Astrophysics Data System (ADS)
Liu, Y.; He, N.; Zhu, J.; Yu, G.; Xu, L.; Niu, S.; Sun, X.; Wen, X.
2017-12-01
How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.
Analysis on Difference of Forest Phenology Extracted from EVI and LAI Based on PhenoCams
NASA Astrophysics Data System (ADS)
Wang, C.; Jing, L.; Qinhuo, L.
2017-12-01
Land surface phenology can make up for the deficiency of field observation with advantages of capturing the continuous expression of phenology on a large scale. However, there are some variability in phenological metrics derived from different satellite time-series data of vegetation parameters. This paper aims at assessing the difference of phenology information extracted from EVI and LAI time series. To achieve this, some web-camera sites were selected to analyze the characteristics between MODIS-EVI and MODIS-LAI time series from 2010 to 2014 for different forest types, including evergreen coniferous forest, evergreen broadleaf forest, deciduous coniferous forest and deciduous broadleaf forest. At the same time, satellite-based phenological metrics were extracted by the Logistics algorithm and compared with camera-based phenological metrics. Results show that the SOS and EOS that are extracted from LAI are close to bud burst and leaf defoliation respectively, while the SOS and EOS that are extracted from EVI is close to leaf unfolding and leaf coloring respectively. Thus the SOS that is extracted from LAI is earlier than that from EVI, while the EOS that is extracted from LAI is later than that from EVI at deciduous forest sites. Although the seasonal variation characteristics of evergreen forests are not apparent, significant discrepancies exist in LAI time series and EVI time series. In addition, Satellite- and camera-based phenological metrics agree well generally, but EVI has higher correlation with the camera-based canopy greenness (green chromatic coordinate, gcc) than LAI.
Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.
Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie
2008-12-01
Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.
Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years
Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.
2009-01-01
The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central M??xico and lowland Colombia remain unchanged in their biome assignments, although the affinities that these sites have to different biomes do change between 18 000±1000 14C yr BP and present. The " unresponsive" nature of these sites results from their location and the impact of local edaphic influence.
Land-use versus natural controls on soil fertility in the Subandean Amazon, Peru.
Lindell, Lina; Aström, Mats; Oberg, Tomas
2010-01-15
Deforestation to amplify the agricultural frontier is a serious threat to the Amazon forest. Strategies to attain and maintain satisfactory soil fertility, which requires knowledge of spatial and temporal changes caused by land-use, are important for reaching sustainable development. This study highlights these issues by evaluating the relative effects of agricultural land-use and natural factors on chemical fertility of Inceptisols on redbed lithologies in the Subandean Amazon. Macro and micronutrients were determined in topsoil and subsoil in the vicinity of two villages at a total of 80 sites including pastures, coffee plantations, swidden fields, secondary forest and, as a reference, adjacent primary forest. Differences in soil fertility between the land cover classes were investigated by principal component analysis (PCA) and partial least squares regression (PLSR). Primary forest soil was found to be chemically similar to that of coffee plantations, pastures and secondary forests. There were no significant differences between soils of these land cover types in terms of plant nutrients (e.g. N, P, K, Ca, Mg, Mo, Mn, Zn, Cu and Co) or other fertility indicators (OM, pH, BS, EC, CECe and exchangeable acidity). The parent material (as indicated by texture and sample geographical origin) and the slope of the sampled sites were stronger controls on soil fertility than land cover type. Elevated concentrations of a few nutrients (NO(3) and K) were, however detected in soils of swidden fields. Despite being fertile (higher CECe, Ca and P) compared to Oxisols and Ultisols in the Amazon lowland, the Subandean soils frequently showed deficiencies in several nutrients (e.g. P, K, NO(3), Cu and Zn), and high levels of free Al at acidic sites. This paper concludes that deforestation and agricultural land-use has not introduced lasting chemical changes in the studied Subandean soils that are significant in comparison to the natural variability. Copyright 2009 Elsevier B.V. All rights reserved.
Tree species and size structure of old-growth Douglas-fir forests in central western Oregon, USA
Poage, Nathan; Tappeiner, J. C.
2005-01-01
We characterized the structure of 91 old-growth forests dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), using inventory data from recent (1985a??1991) old-growth timber sales in western Oregon. The data were complete counts (i.e., censuses) of all live trees >20 cm diameter at breast height (dbh, measured at 1.4 m above the ground) over a mean area of 17.1 ha at each site. Across all sites, Douglas-fir accounted for 79% of the total basal area (m2/ha) of all species. The average density of trees >100 cm dbh was 19 trees/ha and 90% of these trees were Douglas-fir. Species other than Douglas-fir constituted only about 20% of the total basal area at each old-growth site, on average, but largely accounted for the structural variation between sites. We used multivariate techniques such as cluster analysis, indicator species analysis, and ordination with non-metric multidimensional scaling (NMS) to identify and characterize six structural groups in terms of basal area in different speciesa??diameter classes. Almost 97% of the structural information was captured by the first (r2 = 0.841) and second (r2 = 0.128) NMS ordination axis. Geographic information systems (GIS) analysis and NMS indicated that the structural differences among groups of sites were associated with moisture, temperature, and elevation gradients within the study area. This type of analysis can be used to help define differences among old-growth forests and to set local structural goals for growing forests with old-growth characteristics.
Taylor, D.S.; Reyier, E.A.; Davis, W.P.; McIvor, C.C.
2007-01-01
We investigated the effects of mangrove cutting on fish assemblages in Twin Cays, Belize, in two habitat types. We conducted visual censuses at two sites in adjoining undisturbed/disturbed (30%–70% of shoreline fringe removed) sub-tidal fringing Rhizophora mangle Linnaeus, 1753. Observers recorded significantly more species and individuals in undisturbed sites, especially among smaller, schooling species (e.g., atherinids, clupeids), where densities were up to 200 times greater in undisturbed habitat. Multivariate analyses showed distinct species assemblages between habitats at both sites. In addition, extensive trapping with wire minnow traps within the intertidal zone in both undisturbed and disturbed fringing and transition (landward) mangrove forests was conducted. Catch rates were low: 638 individuals from 24 species over 563 trap-nights. Trap data, however, indicated that mangrove disturbance had minimal effect on species composition in either forest type (fringe/transition). Different results from the two methods (and habitat types) may be explained by two factors: (1) a larger and more detectable species pool in the subtidal habitat, with visual "access" to all species, and (2) the selective nature of trapping. Our data indicate that even partial clearing of shoreline and more landward mangroves can have a significant impact on local fish assemblages.
Remote Sensing of Ecosystem Light Use Efficiency Using MODIS
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Middleton, E.; Landis, D.; Black, T. A.; Barr, A. G.; McCaughey, J. H.; Hall, F.
2009-12-01
Understanding the dynamics of the global carbon cycle requires an accurate determination of the spatial and temporal distribution of photosynthetic CO2 uptake by terrestrial vegetation. Optimal photosynthetic function is negatively affected by stress factors that cause down-regulation (i.e., reduced rate of photosynthesis). Present modeling approaches to determine ecosystem carbon exchange rely on meteorological data as inputs to models that predict the relative photosynthetic function in response to environmental conditions inducing stress (e.g., drought, high/low temperatures). This study examines the determination of ecosystem photosynthetic light use efficiency (LUE) from remote sensing, through measurement of vegetation spectral reflectance changes associated with physiologic stress responses exhibited by photosynthetic pigments. This approach uses the Moderate-Resolution Spectroradiometer (MODIS) on Aqua and Terra to provide frequent, narrow-band measurements. The reflective ocean MODIS bands were used to calculate the Photochemical Reflectance Index (PRI), an index that is sensitive to reflectance changes near 531nm associated with vegetation stress responses exhibited by photosynthetic pigments in the xanthophyll cycle. MODIS PRI values were compared with LUE calculated from CO2 flux measured at four Canadian forest sites: A mature Douglas fir site in British Columbia, mature aspen and black spruce sites in Saskatchewan, and a mixed forest site in Ontario, all part of the Canadian Carbon Program network. The relationships between LUE and MODIS PRI were different among forest types, with clear differences in the slopes of the relationships for conifer and deciduous forests. The MODIS based LUE measurements provide a more accurate estimation of observed LUE than the values calculated in the MODIS GPP model. This suggests the possibility of a GPP model that uses MODIS LUE instead of modeled LUE. This type of model may provide a useful contrast to existing models driven by meteorological data. The main impediment to developing such a model is the lack of a MODIS product that provides surface reflectance for the MODIS ocean bands over land.
Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago
Marchant, R.; Cleef, A.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.; Duivenvoorden, J.; Flenley, J.; De Oliveira, P.; Van Gee, B.; Graf, K.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.; Horn, S.; Kuhry, P.; Ledru, M.-P.; Mayle, F.; Leyden, B.; Lozano-Garcia, S.; Melief, A.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G.; Salgado-Labouriau, M.; Schabitz, F.; Schreve-Brinkman, E. J.; Wille, M.
2009-01-01
The biomisation method is used to reconstruct Latin American vegetation at 6000??500 and 18 000??1000 radiocarbon years before present ( 14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000??500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000??500 14C yr BP reconstruction are comparatively small; change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America show a change in biome assignment, but to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000??1000 14C yr BP 61 samples from 34 sites record vegetation reflecting a generally cool and dry environment. Cool grass/shrubland is prevalent in southeast Brazil whereas Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central Mexico and lowland Colombia remain unchanged in the biome assignments of warm mixed forest and tropical dry forest respectively, although the affinities that these sites have to different biomes do change between 18000??1000 14C yr BP and present. The "unresponsive" nature of these sites results from their location and the impact of local edaphic influence. ?? Author(s) 2009.
78 FR 53726 - Notice of New Fee Site
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... DEPARTMENT OF AGRICULTURE Forest Service Notice of New Fee Site AGENCY: Monongahela National Forest, USDA Forest Service. ACTION: Notice of New Fee Site. SUMMARY: The Monongahela National Forest is... amenities. Fees for overnight use will be used for the continued operation and maintenance of Island...
Neil H. Berg; David L. Azuma
2010-01-01
Accelerated erosion commonly occurs after wildfires on forested lands. As burned areas recover, erosion returns towards prefire rates depending on many site-specific characteristics, including fire severity, vegetation type, soil type and climate. In some areas, erosion recovery can be rapid, particularly where revegetation is quick. Erosion recovery is less well...
Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Faria, Deborah
2016-01-01
Biodiversity maintenance in human-altered landscapes (HALs) depends on the species turnover among localities, but the patterns and determinants of β-diversity in HALs are poorly known. In fact, declines, increases and neutral shifts in β-diversity have all been documented, depending on the landscape, ecological group and spatial scale of analysis. We shed some light on this controversy by assessing the patterns and predictors of bird β-diversity across multiple spatial scales considering forest specialist and habitat generalist bird assemblages. We surveyed birds from 144 point counts in 36 different forest sites across two landscapes with different amount of forest cover in the Brazilian Atlantic forest. We analysed β-diversity among points, among sites and between landscapes with multiplicative diversity partitioning of Hill numbers. We tested whether β-diversity among points was related to within-site variations in vegetation structure, and whether β-diversity among sites was related to site location and/or to differences among sites in vegetation structure and landscape composition (i.e. per cent forest and pasture cover surrounding each site). β-diversity between landscapes was lower than among sites and among points in both bird assemblages. In forest specialist birds, the landscape with less forest cover showed the highest β-diversity among sites (bird differentiation among sites), but generalist birds showed the opposite pattern. At the local scale, however, the less forested landscape showed the lowest β-diversity among points (bird homogenization within sites), independently of the bird assemblage. β-diversity among points was weakly related to vegetation structure, but higher β-diversity values were recorded among sites that were more isolated from each other, and among sites with higher differences in landscape composition, particularly in the less forested landscape. Our findings indicate that patterns of bird β-diversity vary across scales and are strongly related to landscape composition. Bird assemblages are shaped by both environmental filtering and dispersal limitation, particularly in less forested landscapes. Conservation and management strategies should therefore prevent deforestation in this biodiversity hotspot. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Young, Katherine I; Mundis, Stephanie; Widen, Steven G; Wood, Thomas G; Tesh, Robert B; Cardosa, Jane; Vasilakis, Nikos; Perera, David; Hanley, Kathryn A
2017-08-31
Mosquito-borne dengue virus (DENV) is maintained in a sylvatic, enzootic cycle of transmission between canopy-dwelling non-human primates and Aedes mosquitoes in Borneo. Sylvatic DENV can spill over into humans living in proximity to forest foci of transmission, in some cases resulting in severe dengue disease. The most likely vectors of such spillover (bridge vectors) in Borneo are Ae. albopictus and Ae. niveus. Borneo is currently experiencing extensive forest clearance. To gauge the effect of this change in forest cover on the likelihood of sylvatic DENV spillover, it is first necessary to characterize the distribution of bridge vectors in different land cover types. In the current study, we hypothesized that Ae. niveus and Ae. albopictus would show significantly different distributions in different land cover types; specifically, we predicted that Ae. niveus would be most abundant in forests whereas Ae. albopictus would have a more even distribution in the landscape. Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing. Land cover type affects the abundance and distribution of the most likely bridge vectors of sylvatic DENV in Malaysia Borneo. Conversion of forests to agriculture will likely decrease the range and abundance of Ae. niveus but enhance the abundance of Ae. albopictus.
Siers, Shane R.; Savidge, Julie A.; Reed, Robert
2017-01-01
Localized ecological conditions have the potential to induce variation in population characteristics such as size distributions and body conditions. The ability to generalize the influence of ecological characteristics on such population traits may be particularly meaningful when those traits influence prospects for successful management interventions. To characterize variability in invasive Brown Treesnake population attributes within and among habitat types, we conducted systematic and seasonally-balanced surveys, collecting 100 snakes from each of 18 sites: three replicates within each of six major habitat types comprising 95% of Guam’s geographic expanse. Our study constitutes one of the most comprehensive and controlled samplings of any published snake study. Quantile regression on snake size and body condition indicated significant ecological heterogeneity, with a general trend of relative consistency of size classes and body conditions within and among scrub and Leucaena forest habitat types and more heterogeneity among ravine forest, savanna, and urban residential sites. Larger and more robust snakes were found within some savanna and urban habitat replicates, likely due to relative availability of larger prey. Compared to more homogeneous samples in the wet season, variability in size distributions and body conditions was greater during the dry season. Although there is evidence of habitat influencing Brown Treesnake populations at localized scales (e.g., the higher prevalence of larger snakes—particularly males—in savanna and urban sites), the level of variability among sites within habitat types indicates little ability to make meaningful predictions about these traits at unsampled locations. Seasonal variability within sites and habitats indicates that localized population characterization should include sampling in both wet and dry seasons. Extreme values at single replicates occasionally influenced overall habitat patterns, while pooling replicates masked variability among sites. A full understanding of population characteristics should include an assessment of variability both at the site and habitat level.
Siers, Shane R.; Savidge, Julie A.; Reed, Robert N.
2017-01-01
Localized ecological conditions have the potential to induce variation in population characteristics such as size distributions and body conditions. The ability to generalize the influence of ecological characteristics on such population traits may be particularly meaningful when those traits influence prospects for successful management interventions. To characterize variability in invasive Brown Treesnake population attributes within and among habitat types, we conducted systematic and seasonally-balanced surveys, collecting 100 snakes from each of 18 sites: three replicates within each of six major habitat types comprising 95% of Guam’s geographic expanse. Our study constitutes one of the most comprehensive and controlled samplings of any published snake study. Quantile regression on snake size and body condition indicated significant ecological heterogeneity, with a general trend of relative consistency of size classes and body conditions within and among scrub and Leucaena forest habitat types and more heterogeneity among ravine forest, savanna, and urban residential sites. Larger and more robust snakes were found within some savanna and urban habitat replicates, likely due to relative availability of larger prey. Compared to more homogeneous samples in the wet season, variability in size distributions and body conditions was greater during the dry season. Although there is evidence of habitat influencing Brown Treesnake populations at localized scales (e.g., the higher prevalence of larger snakes—particularly males—in savanna and urban sites), the level of variability among sites within habitat types indicates little ability to make meaningful predictions about these traits at unsampled locations. Seasonal variability within sites and habitats indicates that localized population characterization should include sampling in both wet and dry seasons. Extreme values at single replicates occasionally influenced overall habitat patterns, while pooling replicates masked variability among sites. A full understanding of population characteristics should include an assessment of variability both at the site and habitat level. PMID:28570632
Siers, Shane R; Savidge, Julie A; Reed, Robert N
2017-01-01
Localized ecological conditions have the potential to induce variation in population characteristics such as size distributions and body conditions. The ability to generalize the influence of ecological characteristics on such population traits may be particularly meaningful when those traits influence prospects for successful management interventions. To characterize variability in invasive Brown Treesnake population attributes within and among habitat types, we conducted systematic and seasonally-balanced surveys, collecting 100 snakes from each of 18 sites: three replicates within each of six major habitat types comprising 95% of Guam's geographic expanse. Our study constitutes one of the most comprehensive and controlled samplings of any published snake study. Quantile regression on snake size and body condition indicated significant ecological heterogeneity, with a general trend of relative consistency of size classes and body conditions within and among scrub and Leucaena forest habitat types and more heterogeneity among ravine forest, savanna, and urban residential sites. Larger and more robust snakes were found within some savanna and urban habitat replicates, likely due to relative availability of larger prey. Compared to more homogeneous samples in the wet season, variability in size distributions and body conditions was greater during the dry season. Although there is evidence of habitat influencing Brown Treesnake populations at localized scales (e.g., the higher prevalence of larger snakes-particularly males-in savanna and urban sites), the level of variability among sites within habitat types indicates little ability to make meaningful predictions about these traits at unsampled locations. Seasonal variability within sites and habitats indicates that localized population characterization should include sampling in both wet and dry seasons. Extreme values at single replicates occasionally influenced overall habitat patterns, while pooling replicates masked variability among sites. A full understanding of population characteristics should include an assessment of variability both at the site and habitat level.
Simulating Forest Dynamics of Lowland Rainforests in Eastern Madagascar
NASA Technical Reports Server (NTRS)
Armstrong, Amanda; Fischer, Rico; Huth, Andreas; Shugart, Herman; Fatoyinbo, Temilola
2018-01-01
Ecological modeling and forecasting are essential tools for the understanding of complex vegetation dynamics. The parametric demands of some of these models are often lacking or scant for threatened ecosystems, particularly in diverse tropical ecosystems. One such ecosystem and also one of the world's biodiversity hotspots, Madagascar's lowland rainforests, have disappeared at an alarming rate. The processes that drive tree species growth and distribution remain as poorly understood as the species themselves. We investigated the application of the process-based individual-based FORMIND model to successfully simulate a Madagascar lowland rainforest using previously collected multi-year forest inventory plot data. We inspected the model's ability to characterize growth and species abundance distributions over the study site, and then validated the model with an independently collected forest-inventory dataset from another lowland rainforest in eastern Madagascar. Following a comparative analysis using inventory data from the two study sites, we found that FORMIND accurately captures the structure and biomass of the study forest, with r(squared) values of 0.976, 0.895, and 0.995 for 1:1 lines comparing observed and simulated values across all plant functional types for aboveground biomass (tonnes/ha), stem numbers, and basal area (m(squared)/ha), respectively. Further, in validation with a second study forest site, FORMIND also compared well, only slightly over-estimating shade-intermediate species as compared to the study site, and slightly under-representing shade-tolerant species in percentage of total aboveground biomass. As an important application of the FORMIND model, we measured the net ecosystem exchange (NEE, in tons of carbon per hectare per year) for 50 ha of simulated forest over a 1000-year run from bare ground. We found that NEE values ranged between 1 and -1 t Cha(exp -1)year(exp -1), consequently the study forest can be considered as a net neutral or a very slight carbon sink ecosystem, after the initial 130 years of growth. Our study found that FORMIND represents a valuable tool toward simulating forest dynamics in the immensely diverse Madagascar rainforests.
NASA Astrophysics Data System (ADS)
Yamanoi, K.; Mizoguchi, Y.; Utsugi, H.
2015-12-01
Forests play an important role in the terrestrial carbon balance, with most being in a carbon sequestration stage. The net carbon releases that occur result from forest disturbance, and windthrow is a typical disturbance event affecting the forest carbon balance in eastern Asia. The CO2 flux has been measured using the eddy covariance method in a deciduous broadleaf forest (Japanese white birch, Japanese oak, and castor aralia) in Hokkaido, where incidental damage by the strong Typhoon Songda in 2004 occurred. We also used the biometrical method to demonstrate the CO2 flux within the forest in detail. Damaged trees amounted to 40 % of all trees, and they remained on site where they were not extracted by forest management. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production were 1350, 975, and 375 g C m-2 yr-1 before the disturbance and 1262, 1359, and -97 g C m-2 yr-1 2 years after the disturbance, respectively. Before the disturbance, the forest was an evident carbon sink, and it subsequently transformed into a net carbon source. Because of increased light intensity at the forest floor, the leaf area index and biomass of the undergrowth (Sasa kurilensis and S. senanensis) increased by factors of 2.4 and 1.7, respectively, in 3 years subsequent to the disturbance. The photosynthesis of Sasa increased rapidly and contributed to the total GPP after the disturbance. The annual GPP only decreased by 6 % just after the disturbance. On the other hand, the annual Re increased by 39 % mainly because of the decomposition of residual coarse-wood debris. The carbon balance after the disturbance was controlled by the new growth and the decomposition of residues. The forest management, which resulted in the dead trees remaining at the study site, strongly affected the carbon balance over the years. When comparing the carbon uptake efficiency at the study site with that at others, including those with various kinds of disturbances, we emphasized the importance of forest management as well as disturbance type in the carbon balance.
Tree allometry and improved estimation of carbon stocks and balance in tropical forests.
Chave, J; Andalo, C; Brown, S; Cairns, M A; Chambers, J Q; Eamus, D; Fölster, H; Fromard, F; Higuchi, N; Kira, T; Lescure, J-P; Nelson, B W; Ogawa, H; Puig, H; Riéra, B; Yamakura, T
2005-08-01
Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees >or= 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5-6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.
Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans
2014-01-01
Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters.
2008-06-01
complex, formally known as the Birch Creek Shist. Figure 3-3 – Proposed Donnelly Ridge Tower Site 3.1.4 Soils 3.1.4.1 The Delta Creek channel...in elevation, and fire history. Major vegetation types include white and black spruce coniferous forests; paper birch and poplar broadleaf forests...consists primarily of black spruce, dwarf birch , willow, sedges, and grasses (Figure 3-4). 3.2.2 Wildlife 3.2.2.1 The lands associated
Decomposition of New Woody Inputs as a Dry Tropical Forest Regenerates
NASA Astrophysics Data System (ADS)
Schilling, J. S.; Powers, J. S.; Ayres, A.; Kaffenberger, J. T.
2015-12-01
Modeling deadwood dynamics is limited by our empirical understanding of decomposition patterns and drivers. This gap is significant in dry tropical forests (and in the tropics, broadly) where forest regeneration is a management priority but where decision-making lacks resources. Our goal was to track decomposition and its biological drivers in tree boles added to the forest floor of a regenerating dry forest. We cut and then placed logs (~18 cm dia) of eight representative tree species in ground contact at two different sites (n=8, per site). We tracked density loss and element import/export in both sapwood and heartwood each 6 months over two years. We measured initial and final lignin, structural carbohydrates, nitrogen, and extractives. We also quantified insect gallery volumes, and used two residue 'signatures' to determine dominant fungal rot type: 1) dilute alkali solubility (DAS) and lignin:glucan loss. By year 2, mean density losses in sapwood were 11.6 - 44.4% among tree species, excluding one species that decomposed completely. The best predictor of density loss in sapwood was initial pH, but the correlation was negative rather than positive, as has been reported in temperate systems. Decay was consistently more advanced in sapwood than in heartwood, and although extractives were as high as 16.4% in heartwood, trait-density loss correlations were insignificant. Insects contributed little at this stage to density loss (<3%), and both lignin:glucan loss and DAS confirmed that white rot fungi dominated decomposition. Although element import dynamics broadly resembled those from temperate studies (e.g., Ca gain, P, K loss), there was high spatial variability. This perhaps related to zone line (spalting) complexity, suggesting intense competition among fungi colonizing small territories within the wood. Estimated CO2 fluxes from the test logs ranged from ~25 to 75% of the annual fluxes from litter fall at these sites. Collectively, these results implicate wood decomposition as an important component of dry forest carbon cycling. Emergent patterns from decomposers are also interesting in this case, where fungi assigned as a single functional group (white rot type) produced little variability in decay rates (Function 1) but high variability in element translocation (Function 2).
Soil microbiological composition and its evolution along with forest succession in West Siberia
NASA Astrophysics Data System (ADS)
Naplekova, Nadezhda N.; Malakhova, Nataliya A.; Maksyutov, Shamil
2015-04-01
Natural forest succession process in West Siberia is mostly initiated by fire disturbance and involves changing tree species composition from pioneer species to late succession trees. Along with forest aging, litter and forest biomass accumulate. Changes of the soil nitrogen cycle between succession stages, important for plant functioning, have been reported in a number of studies. To help understanding the mechanism of the changes in the soil nitrogen cycle we analyzed soil microbiological composition for soil profiles (0-160 cm) taken at sites corresponding to three forest succession stages: (1) young pine, age 18-20 years, (2) mid age, dark coniferous, age 50-70 years, (3) mature, fir-spruce, age 170-180 years. Soil samples were taken from each soil horizon and analyzed in the laboratory for quantity and species composition of algae and other microorganisms. Algae community at all stages of succession is dominated by species typical for forest (pp. Chlorhormidium, Chlamydomonas, Chloroccocum, Pleurochloris, Stichococcus). Algae species composition is summarized by formulas: young forest C14X10Ch9H2P4Cf1B2amph4, mid age X16C15Ch10H4P4Cf1B2amph4, mature X24C22Ch17H10P2amph5Cf1, with designations C -- Cyanophyta, X -- Xantophyta, Ch -- Chlorophyta, B -- Bacillariophyta. Diversity is highest in upper two horizons and declines with depth. Microorganism composition on upper 20 cm was analyzed in three types of forests separately for consumers of protein (ammonifiers) and mineral nitrogen, fungi, azotobacter, Clostridium pasteurianum, oligonitrophylic (eg diazotrophs), nitrifiers and denitrifiers. Nitrogen biologic fixation in the mature forest soils is done mostly by oligonitrophyls and microorganisms of the genus Clostridium as well as сyanobacteria of sp. Nostoc, but the production rate appears low. Concentrations (count in gram soil) of nitrogen consumers (eg ammonifiers), oligonitrophyls, Clostridium and denitrifiers increase several fold from young forest to mid age, and from mid age to mature forest. On the contrary, azotobacter disappears in mature forest while nitrifiers decline by several times from young to mid age forest. Large variation in microbiological activity was observed between sites reaching different succession stage, however further studies are needed to discriminate between effects of the site productivity and forest age.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
... season. Fees are assessed based on the level of amenities and services provided, cost of operations and... Forest have shown that publics appreciate and enjoy the availability of historic and other type rental...
Adams, Amy L; Dickinson, Katharine J M; Robertson, Bruce C; van Heezik, Yolanda
2013-01-01
Invasive species are often favoured in fragmented, highly-modified, human-dominated landscapes such as urban areas. Because successful invasive urban adapters can occupy habitat that is quite different from that in their original range, effective management programmes for invasive species in urban areas require an understanding of distribution, habitat and resource requirements at a local scale that is tailored to the fine-scale heterogeneity typical of urban landscapes. The common brushtail possum (Trichosurus vulpecula) is one of New Zealand's most destructive invasive pest species. As brushtail possums traditionally occupy forest habitat, control in New Zealand has focussed on rural and forest habitats, and forest fragments in cities. However, as successful urban adapters, possums may be occupying a wider range of habitats. Here we use site occupancy methods to determine the distribution of brushtail possums across five distinguishable urban habitat types during summer, which is when possums have the greatest impacts on breeding birds. We collected data on possum presence/absence and habitat characteristics, including possible sources of supplementary food (fruit trees, vegetable gardens, compost heaps), and the availability of forest fragments from 150 survey locations. Predictive distribution models constructed using the programme PRESENCE revealed that while occupancy rates were highest in forest fragments, possums were still present across a large proportion of residential habitat with occupancy decreasing as housing density increased and green cover decreased. The presence of supplementary food sources was important in predicting possum occupancy, which may reflect the high nutritional value of these food types. Additionally, occupancy decreased as the proportion of forest fragment decreased, indicating the importance of forest fragments in determining possum distribution. Control operations to protect native birds from possum predation in cities should include well-vegetated residential areas; these modified habitats not only support possums but provide a source for reinvasion of fragments.
Remotely Sensed Thermal Anomalies in Western Colorado
Khalid Hussein
2012-02-01
This layer contains the areas identified as areas of anomalous surface temperature from Landsat satellite imagery in Western Colorado. Data was obtained for two different dates. The digital numbers of each Landsat scene were converted to radiance and the temperature was calculated in degrees Kelvin and then converted to degrees Celsius for each land cover type using the emissivity of that cover type. And this process was repeated for each of the land cover types (open water, barren, deciduous forest and evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture hay, and cultivated crops). The temperature of each pixel within each scene was calculated using the thermal band. In order to calculate the temperature an average emissivity value was used for each land cover type within each scene. The NLCD 2001 land cover classification raster data of the zones that cover Colorado were downloaded from USGS site and used to identify the land cover types within each scene. Areas that had temperature residual greater than 2o, and areas with temperature equal to 1o to 2o, were considered Landsat modeled very warm and warm surface exposures (thermal anomalies), respectively. Note: 'o' is used in this description to represent lowercase sigma.
Element budgets of two contrasting catchments in the Black Forest (Federal Republic of Germany)
NASA Astrophysics Data System (ADS)
Feger, K. H.; Brahmer, G.; Zöttl, H. W.
1990-08-01
Rainfall and throughfall inputs of all major cations and anions, via open-field bulk precipitation and canopy throughfall, are compared with streamwater outputs in two forested catchments at higher altitudes of the Black Forest. The sites differ considerably in terms of bedrock geology, soil type, soilwater characteristics, topography, and forest management history. Deposition at both sites is almost equal and, in contrast to other forest areas in Central Europe, of a low-to-moderate level. Dry deposition does not seem to play an important role. Distinct differences in the elemental output emerge owing to the differing site conditions. At Villingen, deposited nitrogen is almost totally retained, whereas at Schluchsee, nitrogen output and input are of the same order of magnitude. This is consistent with the different nitrogen nutrition level of the stands, microbial turnover in the soil, and former management practices (change of tree species, excessive nutrient export). Sulphur is not retained in either of the catchments. At Schluchsee, sulphur export exceeds input from canopy throughfall by a factor of 2.5. The higher output rates, both of nitrogen and sulphur at Schluchsee, are due to the much higher microbial mineralization of organic matter as shown by previous incubation tests. Differences in cation and proton export are mainly caused by a different drainage pattern. In contrast to the Schluchsee catchment, where vertical water pathways prevail, the streamwater solute output at Villingen is dominated by a shallow subsurface runoff. Atmospheric deposition is a contributing, but not the dominant, factor in the biogeochemical cycling at these sites. Hence, a generally applicable quantitative definition of 'critical loads', especially for nitrogen, is illusory and the use of such numbers will be misleading.
Effects of HMX-lead mixtures on reproduction of the earthworm Eisenia andrei.
Savard, Kathleen; Berthelot, Yann; Auroy, Aurelie; Spear, Philip A; Trottier, Bertin; Robidoux, Pierre Yves
2007-10-01
High metal (e.g., Pb) concentrations are typically found in explosive-contaminated soil, and their presence may increase, decrease, or not influence toxicity predicted on the basis of one explosive alone (e.g., HMX). Nevertheless, few data are available in the scientific literature for this type of multiple exposure. Soil organisms, such as earthworms, are one of the first receptors affected by the contamination of soil. Therefore, a reproductive study was conducted using Eisenia andrei in a forest-type soil. Both HMX and Pb decreased reproduction parameters (number of total cocoons, hatched cocoons, and surviving juveniles) individually. Based on the total number of cocoons, HMX was more toxic in a forest soil than Pb, with EC(50) of 31 mg kg(-1), and 1068 mg kg(-1), respectively. The slope of the concentration-response curve was significantly greater in the case of Pb, which is consistent with the possibility that the two compounds do not act on the same target site. The response-addition model was used to predict the response of earthworms and to test for interaction between the two contaminants. The predicted toxicity was not significantly different than the observed toxicity, implying that Pb and HMX were considered noninteractive compounds. The combined action of Pb-HMX may be described, therefore, as dissimilar-noninteractive joint action in a forest soil. The results illustrate the relevance of considering the presence of metals in the risk assessment of explosive-contaminated sites because metals can add their toxicity to explosives. Extension of this study to other types of soil and other metals would improve the understanding of toxicity at these sites.
NASA Astrophysics Data System (ADS)
Nieschulze, Jens; Erasmi, Stefan; Dietz, Johannes; Hölscher, Dirk
2009-01-01
SummaryRainforest conversion to other land use types drastically alters the hydrological cycle in which changes in rainfall interception contribute significantly to the observed differences. However, little is known about the effects of more gradual changes in forest structure and at regional scales. We studied land use types ranging from natural forest over selectively-logged forest to cacao agroforest in a lower montane region in Central Sulawesi, Indonesia, and tested the suitability of high-resolution optical satellite imagery for modeling observed interception patterns. Investigated characteristics indicating canopy structure were mean and standard deviation of reflectance values, local maxima, and self-similarity measures based on the grey level co-occurrence matrix and geostatistical variogram analysis. Previously studied and published rainfall interception data comprised twelve plots and median values per land use type ranged from 30% in natural forest to 18% in cacao agroforests. A linear regression model with local maxima, mean contrast and normalized digital vegetation index (NDVI) as regressors was able to explain more than 84% ( Radj2) of the variation encountered in the data. Other investigated characteristics did not prove significant in the regression analysis. The model yielded stable results with respect to cross-validation and also produced realistic values and spatial patterns when applied at the landscape level (783.6 ha). High values of interception were rare and localized in natural forest stands distant to villages, whereas low interception characterized the intensively used sites close to settlements. We conclude that forest use intensity significantly reduced rainfall interception and satellite image analysis can successfully be applied for its regional prediction, and most forest in the study region has already been subject to human-induced structural changes.
Keeton, William S; Kraft, Clifford E; Warren, Dana R
2007-04-01
Riparian forests regulate linkages between terrestrial and aquatic ecosystems, yet relationships among riparian forest development, stand structure, and stream habitats are poorly understood in many temperate deciduous forest systems. Our research has (1) described structural attributes associated with old-growth riparian forests and (2) assessed linkages between these characteristics and in-stream habitat structure. The 19 study sites were located along predominantly first- and second-order streams in northern hardwood-conifer forests in the Adirondack Mountains of New York (U.S.A.). Sites were classified as mature forest (6 sites), mature with remnant old-growth trees (3 sites), and old-growth (10 sites). Forest-structure attributes were measured over stream channels and at varying distances from each bank. In-stream habitat features such as large woody debris (LWD), pools, and boulders were measured in each stream reach. Forest structure was examined in relation to stand age using multivariate techniques, ANOVA, and linear regression. We investigated linkages between forest structure and stream characteristics using similar methods, preceded by information-theoretic modeling (AIC). Old-growth riparian forest structure is more complex than that found in mature forests and exhibits significantly greater accumulations of aboveground tree biomass, both living and dead. In-stream LWD volumes were significantly (alpha = 0.05) greater at old-growth sites (200 m3/ha) compared to mature sites (34 m3/ha) and were strongly related to the basal area of adjacent forests. In-stream large-log densities correlated strongly with debris-dam densities. AIC models that included large-log density, debris-dam density, boulder density, and bankfull width had the most support for predicting pool density. There were higher proportions of LWD-formed pools relative to boulder-formed pools at old-growth sites as compared to mature sites. Old-growth riparian forests provide in-stream habitat features that have not been widely recognized in eastern North America, representing a potential benefit from late-successional riparian forest management and conservation. Riparian management practices (including buffer delineation and restorative silvicultural approaches) that emphasize development and maintenance of late-successional characteristics are recommended where the associated in-stream effects are desired.
Influence of landslides on biophysical diversity — A perspective from British Columbia
NASA Astrophysics Data System (ADS)
Geertsema, Marten; Pojar, James J.
2007-09-01
Landslides have long been overlooked or underestimated as important natural disturbance agents. In particular the ecological role of landslides in maintaining biological diversity has been largely ignored. Here we provide a western Canadian ( British Columbian) perspective on the influences of landslides on biophysical diversity, which is related in several ways to biological diversity. We recognize several types of biophysical/ecological diversity: site diversity, soil diversity, and the derivative habitat or ecosystem (including aquatic ecosystems) diversity. There are also a variety of landslide types, depending on materials and on the rate and style of movement. We discuss the roles of different landslide types on various aspects of terrestrial diversity. Landslides are simultaneously depositional and erosional processes that influence sites by redistributing materials and changing surface expression — usually creating a complex microtopography that can include very dry ridges and hummocks, and sometimes depressions with standing water. Landslide impacts to site also influence soil and soil development. Portions of landslides with exposed parent material are set back to the initial stages of soil development and ecological succession. Landslides can also change soil density, structure, porosity, surface texture, chemistry and microclimate. By changing site and soil, landslides also influence habitat. Landslides influence habitat diversity by engendering a mosaic of seral stages (often both primary and secondary), and in overwhelmingly forested landscapes often create nodes or hotspots of non-forested habitat and biota. In some areas, like the boreal forest, there is an important interplay between landslides and fire, while on the coast of British Columbia debris and snow avalanches can be the dominant disturbance agent. Low-gradient and deep-seated landslides are often opportunistically colonized by beaver and other water and shrub-loving fauna. Sag ponds and impounded streams provide aquatic habitat — often with standing dead trees. Landslide rubble and scarps provide denning/nesting habitat, escape terrain, and cliff habitat for vertebrates.
Robert L. Fleming; Robert F. Powers; Neil W. Foster; J. Marty Kranabetter; D. Andrew Scott; Felix Jr. Ponder; Shannon Berch; William K. Chapman; Richard D. Kabzems; Kim H. Ludovici; David M. Morris; Deborah S. Page-Dumroese; Paul T. Sanborn; Felipe G. Sanchez; Douglas M. Stone; Allan E. Tiarks
2006-01-01
We examined fifth-year seedling response to soil disturbance and vegetation control at 42 experimental locations representing 25 replicated studies within the North American Long-Term Soil Productivity (LTSP) program. These studies share a common experimental design while encompassing a wide range of climate, site conditions, and forest types. Whole-tree harvest had...
Disturbance gradient shows logging affects plant functional groups more than fire.
Blair, David P; McBurney, Lachlan M; Blanchard, Wade; Banks, Sam C; Lindenmayer, David B
2016-10-01
Understanding the impacts of natural and human disturbances on forest biota is critical for improving forest management. Many studies have examined the separate impacts on fauna and flora of wildfire, conventional logging, and salvage logging, but empirical comparisons across a broad gradient of simultaneous disturbances are lacking. We quantified species richness and frequency of occurrence of vascular plants, and functional group responses, across a gradient of disturbances that occurred concurrently in 2009 in the mountain ash forests of southeastern Australia. Our study encompassed replicated sites in undisturbed forest (~70 yr post fire), forest burned at low severity, forest burned at high severity, unburned forest that was clearcut logged, and forest burned at high severity that was clearcut salvage logged post-fire. All sites were sampled 2 and 3 yr post fire. Mean species richness decreased across the disturbance gradient from 30.1 species/site on low-severity burned sites and 28.9 species/site on high-severity burned sites, to 25.1 species/site on clearcut sites and 21.7 species/site on salvage logged sites. Low-severity burned sites were significantly more species-rich than clearcut sites and salvage logged sites; high-severity burned sites supported greater species richness than salvage logged sites. Specific traits influenced species' sensitivity to disturbance. Resprouting species dominated undisturbed mountain ash forests, but declined significantly across the gradient. Fern and midstory trees decreased significantly in frequency of occurrence across the gradient. Ferns (excluding bracken) decreased from 34% of plants in undisturbed forest to 3% on salvage logged sites. High-severity burned sites supported a greater frequency of occurrence and species richness of midstory trees compared to clearcut and salvage logged sites. Salvage logging supported fewer midstory trees than any other disturbance category, and were distinctly different from clearcut sites. Plant life form groups, including midstory trees, shrubs, and ferns, were dominated by very few species on logged sites. The differences in biotic response across the gradient of natural and human disturbances have significant management implications, particularly the need to reduce mechanical disturbance overall and to leave specific areas with no mechanical disturbance across the cut area during logging operations, to ensure the persistence of resprouting taxa. © 2016 by the Ecological Society of America.
Factors influencing sediment plume development from forest roads
Johnny M. Grace
2005-01-01
Southern forests, which rely on intensive management practices, are some of the most productive forests in the United States. Intensive forest management utilizes forest operations, such as site preparation, fertilization, thinning, and harvesting, to increase site productivity and reduce rotation time. These forest operations are essential to meet the ever-...
Remm, Liina; Lõhmus, Piret; Leis, Mare; Lõhmus, Asko
2013-01-01
Artificial drainage (ditching) is widely used to increase timber yield in northern forests. When the drainage systems are maintained, their environmental impacts are likely to accumulate over time and along accompanying management, notably after logging when new forest develops on decayed peat. Our study provides the first comprehensive documentation of long-term ditching impacts on terrestrial and arboreal biodiversity by comparing natural alder swamps and second-generation drained forests that have evolved from such swamps in Estonia. We explored species composition of four potentially drainage-sensitive taxonomic groups (vascular plants, bryophytes, lichens, and snails), abundance of species of conservation concern, and their relationships with stand structure in two-ha plots representing four management types (ranging from old growth to clearcut). We found that drainage affected plot-scale species richness only weakly but it profoundly changed assemblage composition. Bryophytes and lichens were the taxonomic groups that were most sensitive both to drainage and timber-harvesting; in closed stands they responded to changed microhabitat structure, notably impoverished tree diversity and dead-wood supply. As a result, natural old-growth plots were the most species-rich and hosted several specific species of conservation concern. Because the most influential structural changes are slow, drainage impacts may be long hidden. The results also indicated that even very old drained stands do not provide quality habitats for old-growth species of drier forest types. However, drained forests hosted many threatened species that were less site type specific, including early-successional vascular plants and snails on clearcuts and retention cuts, and bryophytes and lichens of successional and old forests. We conclude that three types of specific science-based management tools are needed to mitigate ditching effects on forest biodiversity: (i) silvicultural techniques to maintain stand structural complexity; (ii) context-dependent spatial analysis and planning of drained landscapes; and (iii) lists of focal species to monitor and guide ditching practices. PMID:23646179
BOREAS TGB-8 Photosynthetic Rate Data over the SSA-OBS and the SSA-OJP
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Lerdau, Manuel
2000-01-01
The BOREAS TGB-8 team collected data to investigate the controls over NMHC fluxes from boreal forest tree species. This data set includes measurements of photosynthetic rates at mature jack pine and black spruce sites. The data were collected at the OJP and OBS tower flux locations in the BOREAS SSA. These areas contained mature stands of jack pine and black spruce and were the focal sites in the BOREAS program for studies of biosphere/atmosphere exchange from these two habitat types. The OBS site is situated in a black spruce/sphagnum bog with the largest trees 155 years old and 10-15 m tall. The OJP site is in a jack pine forest, 80 to 120 years old, which lies on a sandy bench of glacial outwash with the largest tree standing 15 m tall. Temporally, the data cover the period of 24-May-1994 to 19-Sep-1994. The data are stored in tabular ASCII files.
BOREAS TGB-8 Starch Concentration Data Over the SSA-OBS and the SSA-OJP
NASA Technical Reports Server (NTRS)
Lerdau, Manuel; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOREAS TGB-8 team collected data to investigate the controls over NMHC fluxes from boreal forest tree species. This data set includes measurements of starch concentrations in foliar samples at mature jack pine and black spruce sites. The data were collected at the OJP and OBS tower flux locations in the BOREAS SSA. These areas contained mature stands of jack pine and black spruce and were the focal sites in the BOREAS program for studies of biosphere/atmosphere exchange from these two habitat types. The OBS site is situated in a black spruce/sphagnum bog with the largest trees 155 years old and 10-15 m tall. The OJP site is in a jack pine forest, 80 to 120 years old, which lies on a sandy bench of glacial outwash with the largest tree standing 15 m tall. Temporally, the data cover the period of 24-May-1994 to 19-Sep-1994. The data are stored in tabular ASCII files.
BOREAS TGB-8 Monoterpene Concentration Data over the SSA-OBS
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Lerdau, Manuel
2000-01-01
The BOREAS TGB-8 team collected data to investigate the controls over NMHC fluxes from boreal forest tree species. This data set contains measurements of monoterpene concentrations in collected foliar gas emissions and foliar samples. The data were collected at the OJP and OBS tower flux sites in the SSA and were the locus for the monoterpene emission measurements. These areas contained mature stands of jack pine and black spruce and were the focal sites in the BOREAS program for studies of biosphere/atmosphere exchange from these two habitat types. The OBS site is situated in a black spruce/sphagnum bog with the largest trees 155 years old and 10-15 m tall. The OJP site is in a jack pine forest, 80 to 120 years old, which lies on a sandy bench of glacial outwash with the largest tree standing 15 m tall. Temporally, the data cover the period of 24-May-1994 to 19-Sep-1994. The data are stored in tabular ASCII files.
Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years
Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.-P.; Mayle, F.E.; Leyden, B.W.; Lozano-Garcia, S.; Melief, A.B.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G. B.; Salgado-Labouriau, M. L.; Schasignbitz, F.; Schreve-Brinkman, E. J.; Wille, M.
2009-01-01
The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation.
At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded.
At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain forest indicating that forest was present at some locations at the LGM. Some sites in Central M??xico and lowland Colombia remain unchanged in their biome assignments, although the affinities that these sites have to different biomes do change between 18 000±1000 14C yr BP and present. The " unresponsive" nature of these sites results from their location and the impact of local edaphic influence.
Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies.
Maguire, Dorothy Y; Robert, Katleen; Brochu, Kristen; Larrivée, Maxim; Buddle, Christopher M; Wheeler, Terry A
2014-02-01
Forest canopies support high arthropod biodiversity, but in temperate canopies, little is known about the spatial distribution of these arthropods. This is an important first step toward understanding ecological roles of insects in temperate canopies. The objective of this study was to assess differences in the species composition of two dominant and diverse taxa (Diptera and Coleoptera) along a vertical gradient in temperate deciduous forest canopies. Five sugar maple trees from each of three deciduous forest sites in southern Quebec were sampled using a combination of window and trunk traps placed in three vertical strata (understory, mid-canopy, and upper-canopy) for three sampling periods throughout the summer. Coleoptera species richness and abundance did not differ between canopy heights, but more specimens and species of Diptera were collected in the upper-canopy. Community composition of Coleoptera and Diptera varied significantly by trap height. Window traps collected more specimens and species of Coleoptera than trunk traps, although both trap types should be used to maximize representation of the entire Coleoptera community. There were no differences in abundance, diversity, or composition of Diptera collected between trap types. Our data confirm the relevance of sampling all strata in a forest when studying canopy arthropod biodiversity.
Residual pine stocking after harvest on private timberland:A summary for six southern States
William H. McWilliams
1989-01-01
Commercial harvest activity and residual stocking of pine is examined for privately owned pine-site timberland in Alabama, Arkansas, Louisiana, Mississippi, east Oklahoma, and east Texas.Pine regeneration success is evaluated by preharvest forest type and ownership group.
Huang, Shengli; Ramirez, Carlos; Conway, Scott; Kennedy, Kama; Kohler, Tanya; Liu, Jinxun
2016-01-01
High-resolution site index (SI) and mean annual increment (MAI) maps are desired for local forest management. We integrated field inventory, Landsat, and ecological variables to produce 30 m SI and MAI maps for the Tahoe National Forest (TNF) where different tree species coexist. We converted species-specific SI using adjustment factors. Then, the SI map was produced by (i) intensifying plots to expand the training sets to more climatic, topographic, soil, and forest reflective classes, (ii) using results from a stepwise regression to enable a weighted imputation that minimized the effects of outlier plots within classes, and (iii) local interpolation and strata median filling to assign values to pixels without direct imputations. The SI (reference age is 50 years) map had an R2 of 0.7637, a root-mean-square error (RMSE) of 3.60, and a mean absolute error (MAE) of 3.07 m. The MAI map was similarly produced with an R2 of 0.6882, an RMSE of 1.73, and a MAE of 1.20 m3·ha−1·year−1. Spatial patterns and trends of SI and MAI were analyzed to be related to elevation, aspect, slope, soil productivity, and forest type. The 30 m SI and MAI maps can be used to support decisions on fire, plantation, biodiversity, and carbon.
Medhurst, R. Bruce; Wipfli, Mark S.; Binckley, Chris; Polivka, Karl; Hessburg, Paul F.; Salter, R. Brion
2010-01-01
Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that differed in forest management (logged-roaded vs. unlogged-unroaded, hereafter logged and unlogged) within two ecological sub-regions (wet versus dry) within the eastern Cascade Range, Washington, USA. In both ecoregions, total macroinvertebrate density was highest at logged sites (P = 0.001) with gathering-collectors and shredders dominating. Total taxonomic richness and diversity did not differ between ecoregions or forest management types. Shredder densities were positively correlated with total deciduous and Sitka alder (Alnus sinuata) riparian cover. Further, differences in shredder density between logged and unlogged sites were greater in the wet ecoregion (logging × ecoregion interaction; P = 0.006) suggesting that differences in post-logging forest succession between ecoregions were responsible for differences in shredder abundance. Headwater stream benthic community structure was influenced by logging and regional differences in climate. Future development of ecoregional classification models at the subbasin scale, and use of functional metrics in addition to structural metrics, may allow for more accurate assessments of anthropogenic disturbances in mountainous regions where mosaics of localized differences in climate are common.
AmeriFlux CA-Na1 New Brunswick - 1967 Balsam Fir - Nashwaak Lake Site 01 (Mature balsam fir forest)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourque, Charles P.-A.
This is the AmeriFlux version of the carbon flux data for the site CA-Na1 New Brunswick - 1967 Balsam Fir - Nashwaak Lake Site 01 (Mature balsam fir forest). Site Description - immature balsam fir forest
Tedersoo, Leho; Gates, Genevieve; Dunk, Chris W; Lebel, Teresa; May, Tom W; Kõljalg, Urmas; Jairus, Teele
2009-08-01
Decaying wood provides an important habitat for animals and forms a seed bed for many shade-intolerant, small-seeded plants, particularly Nothofagus. Using morphotyping and rDNA sequence analysis, we compared the ectomycorrhizal fungal community of isolated N. cunninghamii seedlings regenerating in decayed wood against that of mature tree roots in the forest floor soil. The /cortinarius, /russula-lactarius, and /laccaria were the most species-rich and abundant lineages in forest floor soil in Australian sites at Yarra, Victoria and Warra, Tasmania. On root tips of seedlings in dead wood, a subset of the forest floor taxa were prevalent among them species of /laccaria, /tomentella-thelephora, and /descolea, but other forest floor dominants were rare. Statistical analyses suggested that the fungal community differs between forest floor soil and dead wood at the level of both species and phylogenetic lineage. The fungal species colonizing isolated seedlings on decayed wood in austral forests were taxonomically dissimilar to the species dominating in similar habitats in Europe. We conclude that formation of a resupinate fruit body type on the underside of decayed wood is not necessarily related to preferential root colonization in decayed wood. Rather, biogeographic factors as well as differential dispersal and competitive abilities of fungal taxa are likely to play a key role in structuring the ectomycorrhizal fungal community on isolated seedlings in decaying wood.
Meteorological factors associated with abundance of airborne fungal spores over natural vegetation
NASA Astrophysics Data System (ADS)
Crandall, Sharifa G.; Gilbert, Gregory S.
2017-08-01
The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the vegetation type. This suggests that overall patterns of fungal spore dynamics may be predictable across heterogeneous landscapes based on local weather patterns.
Goode, Laurel K; Erhardt, Erik B; Santiago, Louis S; Allen, Michael F
2010-07-01
We studied C stable isotopic composition (delta(13)C) of bulk leaf tissue and extracted sugars of four epiphytic Tillandsia species to investigate flexibility in the use of crassulacean acid metabolism (CAM) and C(3) photosynthetic pathways. Plants growing in two seasonally dry tropical forest reserves in Mexico that differ in annual precipitation were measured during wet and dry seasons, and among secondary, mature, and wetland forest types within each site. Dry season sugars were more enriched in (13)C than wet season sugars, but there was no seasonal difference in bulk tissues. Bulk tissue delta(13)C differed by species and by forest type, with values from open-canopied wetlands more enriched in (13)C than mature or secondary forest types. The shifts within forest habitat were related to temporal and spatial changes in vapor pressure deficits (VPD). Modeling results estimate a possible 4% increase in the proportional contribution of the C(3) pathway during the wet season, emphasizing that any seasonal or habitat-mediated variation in photosynthetic pathway appears to be quite moderate and within the range of isotopic effects caused by variation in stomatal conductance during assimilation through the C(3) pathway and environmental variation in VPD. C isotopic analysis of sugars together with bulk leaf tissue offers a useful approach for incorporating short- and long-term measurements of C isotope discrimination during photosynthesis.
Erhardt, Erik B.; Santiago, Louis S.; Allen, Michael F.
2010-01-01
We studied C stable isotopic composition (δ13C) of bulk leaf tissue and extracted sugars of four epiphytic Tillandsia species to investigate flexibility in the use of crassulacean acid metabolism (CAM) and C3 photosynthetic pathways. Plants growing in two seasonally dry tropical forest reserves in Mexico that differ in annual precipitation were measured during wet and dry seasons, and among secondary, mature, and wetland forest types within each site. Dry season sugars were more enriched in 13C than wet season sugars, but there was no seasonal difference in bulk tissues. Bulk tissue δ13C differed by species and by forest type, with values from open-canopied wetlands more enriched in 13C than mature or secondary forest types. The shifts within forest habitat were related to temporal and spatial changes in vapor pressure deficits (VPD). Modeling results estimate a possible 4% increase in the proportional contribution of the C3 pathway during the wet season, emphasizing that any seasonal or habitat-mediated variation in photosynthetic pathway appears to be quite moderate and within the range of isotopic effects caused by variation in stomatal conductance during assimilation through the C3 pathway and environmental variation in VPD. C isotopic analysis of sugars together with bulk leaf tissue offers a useful approach for incorporating short- and long-term measurements of C isotope discrimination during photosynthesis. PMID:20155286
Second-growth yield, stand, and volume tables for the western white pine type
Irvine T. Haig
1932-01-01
The western white pine type is the most important forest unit over large areas of rough uplands in northern Idaho and adjacent portions of eastern Washington and western Montana. It occupies throughout this region the cooler, moister sites between elevations of 2,000 and 5,500 feet, reaching its best development in northern Idaho between the international boundary and...
NASA Astrophysics Data System (ADS)
Possell, M.; Jenkins, M.; Bell, T. L.; Adams, M. A.
2015-01-01
We estimated emissions of carbon, as equivalent CO2 (CO2e), from planned fires in four sites in a south-eastern Australian forest. Emission estimates were calculated using measurements of fuel load and carbon content of different fuel types, before and after burning, and determination of fuel-specific emission factors. Median estimates of emissions for the four sites ranged from 20 to 139 Mg CO2e ha-1. Variability in estimates was a consequence of different burning efficiencies of each fuel type from the four sites. Higher emissions resulted from more fine fuel (twigs, decomposing matter, near-surface live and leaf litter) or coarse woody debris (CWD; > 25 mm diameter) being consumed. In order to assess the effect of declining information quantity and the inclusion of coarse woody debris when estimating emissions, Monte Carlo simulations were used to create seven scenarios where input parameters values were replaced by probability density functions. Calculation methods were (1) all measured data were constrained between measured maximum and minimum values for each variable; (2) as in (1) except the proportion of carbon within a fuel type was constrained between 0 and 1; (3) as in (2) but losses of mass caused by fire were replaced with burning efficiency factors constrained between 0 and 1; and (4) emissions were calculated using default values in the Australian National Greenhouse Accounts (NGA), National Inventory Report 2011, as appropriate for our sites. Effects of including CWD in calculations were assessed for calculation Method 1, 2 and 3 but not for Method 4 as the NGA does not consider this fuel type. Simulations demonstrate that the probability of estimating true median emissions declines strongly as the amount of information available declines. Including CWD in scenarios increased uncertainty in calculations because CWD is the most variable contributor to fuel load. Inclusion of CWD in scenarios generally increased the amount of carbon lost. We discuss implications of these simulations and how emissions from prescribed burns in temperate Australian forests could be improved.
González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A.; Stoner, Kathryn E.
2012-01-01
Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the southeastern Mexican rainforest, such as Terminalia-Dialium, and Brosimum-Dialium. PMID:23056486
González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A; Stoner, Kathryn E
2012-01-01
Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the southeastern Mexican rainforest, such as Terminalia-Dialium, and Brosimum-Dialium.
NASA Astrophysics Data System (ADS)
Kohl, L.; Philben, M. J.; Edwards, K. A.; Podrebarac, F. A.; Jamie, W.; Ziegler, S. E.
2017-12-01
Warmer climates have been associated with reduced soil organic matter (SOM) bioreactivity, lower respiration rates at a given temperature, which is typically attributed to the presence of more decomposed SOM. Cross site studies, however, indicate that ecosystem regime shifts associated with long-term climate warming can affect SOM properties through changes in vegetation and plant litter inputs to soils. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming remains poorly understood. To address this, we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids), and isotopic composition of plant litter and SOM across a well-constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. Climate effects on vascular plant litter chemistry explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer forests. These results indicate that a climate induced decrease in the proportion of moss inputs will not only impact SOM chemistry but also increase the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils.
Liu, Yuan; He, Nianpeng; Zhu, Jianxing; Xu, Li; Yu, Guirui; Niu, Shuli; Sun, Xiaomin; Wen, Xuefa
2017-08-01
How to assess the temperature sensitivity (Q 10 ) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q 10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q 10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q 10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q 10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q 10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q 10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q 10 . The general negative relationships between Q 10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q 10 , were predicted to be more sensitive to climate change under the scenario of global warming. © 2017 John Wiley & Sons Ltd.
Old-growth and mature forests near spotted owl nests in western Oregon
NASA Technical Reports Server (NTRS)
Ripple, William J.; Johnson, David H.; Hershey, K. T.; Meslow, E. Charles
1995-01-01
We investigated how the amount of old-growth and mature forest influences the selection of nest sites by northern spotted owls (Strix occidentalis caurina) in the Central Cascade Mountains of Oregon. We used 7 different plot sizes to compare the proportion of mature and old-growth forest between 30 nest sites and 30 random sites. The proportion of old-growth and mature forest was significantly greater at nests sites than at random sites for all plot sizes (P less than or equal to 0.01). Thus, management of the spotted owl might require setting the percentage of old-growth and mature forest retained from harvesting at least 1 standard deviation above the mean for the 30 nest sites we examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourque, Charles
This is the AmeriFlux version of the carbon flux data for the site CA-Cha New Brunswick - Charlie Lake site 01 (immature balsam fir forest to be thinned in year 3). Site Description - mature balsam fir forest
NASA Astrophysics Data System (ADS)
Pankaew, Prasan; Milton, Edward; Dawson, Terry; Dash, Jadu
2013-04-01
Forests and woodlands play an important role in CO2 flux and in the storage of carbon, therefore it is important to be able to estimate gross primary productivity (GPP) and its change over time. The MODIS GPP product (MOD17) provides near-global GPP, but at relatively coarse spatial resolution (1km pixel size) and only every eight days. In order to study the dynamics of GPP over shorter time periods and over smaller areas it is necessary to make ground measurements or use a plant canopy model. The most reliable ground-based GPP data are those from the FLUXNET network, which comprises over 500 sites worldwide, each of which measures GPP using the eddy covariance method. Each FLUXNET measurement corresponds to GPP from an area around the sampling tower, the size and shape of which varies with weather conditions, notably wind speed and direction. The FLIGHT forest light simulation model (North, 1996) is a Monte Carlo based model to estimate the GPP from forest canopies, which does not take into account the spatial complexity of the site or the wind conditions at the time. Forests in southern England are small and embedded in a matrix of other land cover types (agriculture, urban etc.), so GPP estimated from FLIGHT needs to be adjusted to match that measured from a FLUXNET tower. The aim of this paper is to develop and test a method to adjust FLIGHT GPP so that it matches FLUXNET GPP. The advantage of this is that GPP can then be estimated over many other forests which do not possess FLUXNET sites. The study was based on data from two mixed broadleaf forests in southern England (Wytham Woods and Alice Holt forest), both of which have FLUXNET sites located within them. The FLUXNET meteorological data were prepared for use in the FLIGHT model by converting broadband irradiance to photosynthetically active radiance (PAR) and estimating diffuse PAR, using methods developed in previous work by the authors. The standard FLIGHT model tended to overestimate GPP in the winter and spring period and under-estimate GPP in the summer months. Correction factors were computed based on the midday GPP for each month of the year. The modified FLIGHT model was used to estimate GPP from each of the two forest sites at hourly intervals over a year. Both sites showed a strong linear relationship between GPP estimated from FLIGHT and GPP measured by FLUXNET (Alice Holt forest, R2=0.96, RMSE = 2.39 μmol m-2 s-1, MBE = 1.32 μmol m-2 s-1 , Wytham Wood R2 = 0.97, RMSE = 1.42 μmol m-2 s-1, MBE = 0.57 μmol m-2 s-1). The results suggest that the modified FLIGHT model could be used to estimate GPP at hourly intervals over non-instrumented forest sites across southern England, and thereby obtain regional estimates of GPP at high spatial and temporal resolution. Reference North, P. R. J. (1996). Three-Dimensional Forest Light Interaction Model Using a Monte Carlo Method. IEEE Transactions on Geoscience and Remote Sensing, 34(4), 946-956.
NASA Astrophysics Data System (ADS)
Miyazawa, Y.; Inoue, A.; Maruyama, A.
2013-12-01
Grassland within a caldera of Mt. Aso has been maintained for fertilizer production from grasses and cattle feeding. Due to the changes in the agricultural and social structure since 1950's, a large part of the grassland was converted to plantations or abandoned to shrublands. Because vegetations of different plant functional types differ in evapotranspiration; ET, a research project was launched to examine the effects of the ongoing land use change on the ET within the caldera, and consequently affect the surface and groundwater discharge of the region. As the part of the project, transpiration rate; E of the major 3 forest types were investigated using sap flow measurements. Based on the measured data, stomatal conductance; Gs was inversely calculated and its response to the environmental factors was modeled using Jarvis-type equation in order to estimate ET of a given part of the caldera based on the plant functional type and the weather data. The selected forests were conifer plantation, deciduous broadleaved plantation and shrubland, which were installed with sap flow sensors to calculate stand-level transpiration rate. Sap flux; Js did not show clear differences among sites despite the large differences in sapwood area. In early summer solar radiation was limited to low levels due to frequent rainfall events and therefore, Js was the function of solar radiation rather than other environmental factors, such as vapor pressure deficit and soil water content. Gs was well regressed with the vapor pressure deficit and solar radiation. The estimated E based on Gs model and the weather data was 0.3-1.2 mm day-1 for each site and was comparable to the E of grassland in other study sites. Results suggested that transpiration rate in growing was not different between vegetations but its annual value are thought to differ due to the different phenology.
Martínez Baños, Vera; Pacheco Florez, Vanesa; Ramírez-Pinilla, Martha P
2011-06-01
Geobatrachus walkeri belongs to a monotypic frog genus endemic to the San Lorenzo area, Sierra Nevada de Santa Marta, Colombia. This species has been categorized as endangered because of its small distribution area and the decline in the extent and quality of its habitat. It inhabits two forest types with different composition and structure, the native secondary forest and a pine plantation (dominated by Pinus patula). To compare the relative abundance and microhabitat use of this species in these habitat types, 30 quadrants/environment were distributed randomly. The individual number, microhabitat use and other aspects of its natural history were registered using visual encounter surveys in both sites, including non-sampled areas in the quadrants. The relative abundance of frogs was significantly different between habitats and among seasons. The highest abundance of G. walkeri relative to the total area was found in the pine plantation, being 2.3 times higher than in the natural forest. More frogs were significantly found during the rainy season; nevertheless, active individuals were also found during the dry season. Significant differences were found in the microhabitat use with respect to the forest type and season. The most frequently microhabitat used in the two forest types was the pine leaf-litter; besides, in the native forest, the microhabitat occupied more frequently presented medium and large size stones. Geobatrachus walkeri is a successful species in pine plantations, associated permanently to its leaf-litter environment where it seems to develop its entire life cycle. The clear modifications in the soils and water, derived from the introduction of the pine plantation in this area, seem not to have negatively affected the conservation and successful maintenance of this species.
Quantifying deforestation and forest degradation with thermal response.
Lin, Hua; Chen, Yajun; Song, Qinghai; Fu, Peili; Cleverly, James; Magliulo, Vincenzo; Law, Beverly E; Gough, Christopher M; Hörtnagl, Lukas; Di Gennaro, Filippo; Matteucci, Giorgio; Montagnani, Leonardo; Duce, Pierpaolo; Shao, Changliang; Kato, Tomomichi; Bonal, Damien; Paul-Limoges, Eugénie; Beringer, Jason; Grace, John; Fan, Zexin
2017-12-31
Deforestation and forest degradation cause the deterioration of resources and ecosystem services. However, there are still no operational indicators to measure forest status, especially for forest degradation. In the present study, we analysed the thermal response number (TRN, calculated by daily total net radiation divided by daily temperature range) of 163 sites including mature forest, disturbed forest, planted forest, shrubland, grassland, savanna vegetation and cropland. TRN generally increased with latitude, however the regression of TRN against latitude differed among vegetation types. Mature forests are superior as thermal buffers, and had significantly higher TRN than disturbed and planted forests. There was a clear boundary between TRN of forest and non-forest vegetation (i.e. grassland and savanna) with the exception of shrubland, whose TRN overlapped with that of forest vegetation. We propose to use the TRN of local mature forest as the optimal TRN (TRN opt ). A forest with lower than 75% of TRN opt was identified as subjected to significant disturbance, and forests with 66% of TRN opt was the threshold for deforestation within the absolute latitude from 30° to 55°. Our results emphasized the irreplaceable thermal buffer capacity of mature forest. TRN can be used for early warning of deforestation and degradation risk. It is therefore a valuable tool in the effort to protect forests and prevent deforestation. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect to the water stress to soil CO2 efflux in the Siberian boreal forest
NASA Astrophysics Data System (ADS)
Makhnykina, A. V.; Prokishkin, A. S.; Verkhovets, S. V.; Koshurnikova, N. N.
2017-12-01
The boreal forests in Siberia covered more than 70% area of this region. Due to the climate change this ecosystems represent a very sensitive and significant source of carbon. In forests, total ecosystem respiration tends to be dominated by soil respiration, which accounts for approximately 69% of this large flux (Janssens et al., 2001). Dynamic global vegetation models predict that soil respiration will increase more than total net primary productivity in response to warmer temperatures and increase in precipitation, the terrestrial carbon sink is expected to decline significantly (Bonan et al., 2003). The aim of the present study was to identify the response of the soil CO2 efflux to the different amount of water input for two highly differentiated years by the precipitation conditions in the middle taiga forests in Central Siberia. The study was conducted in the pine forests in Central Siberia (60°N, 90°E), Russia. We used the automated soil CO2 flux system LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. We constructed the field experiment based on the addition of different amount of water (0%, 25%, 50% and 100% sites) after each rain event during the growing season. We found that the amount of precipitation have a huge impact to the value of soil CO2 efflux. For the more precipitated year (2015) the fluxes were almost twice higher compared to less precipitated year (2016). The max fluxes during the season in 2015 observed at the site without any water input there and the min one - for the 100% precipitation site (natural rain conditions). In 2016 we identified the opposite response: the max soil efflux demonstrated the site with 100% precipitation conditions (Fig. 1). We also detected the high dependence between the soil temperature and soil CO2 efflux for the site with 0% additional water input in more precipitated year (with excluding the precipitation factor). These findings confirmed that the increase of precipitation in the boreal forests will enhance soil CO2 efflux.
Forest fragmentation and landscape transformation in a reindeer husbandry area in Sweden.
Kivinen, Sonja; Berg, Anna; Moen, Jon; Ostlund, Lars; Olofsson, Johan
2012-02-01
Reindeer husbandry and forestry are two main land users in boreal forests in northern Sweden. Modern forestry has numerous negative effects on the ground-growing and arboreal lichens that are crucial winter resources for reindeer husbandry. Using digitized historical maps, we examined changes in the forest landscape structure during the past 100 years, and estimated corresponding changes in suitability of forest landscape mosaics for the reindeer winter grazing. Cover of old coniferous forests, a key habitat type of reindeer herding system, showed a strong decrease during the study period, whereas clear-cutting and young forests increased rapidly in the latter half of the 20th century. The dominance of young forests and fragmentation of old-growth forests (decreased patch sizes and increased isolation) reflect decreased amount of arboreal lichens as well as a lowered ability of the landscape to sustain long-term persistence of lichens. The results further showed that variation in ground lichen cover among sites was mainly related to soil moisture conditions, recent disturbances, such as soil scarification and prescribed burning, and possibly also to forest history. In general, the results suggest that the composition and configuration of the forest landscape mosaic has become less suitable for sustainable reindeer husbandry.
NASA Astrophysics Data System (ADS)
Milodowski, D. T.; Mitchard, E. T. A.; Williams, M.
2017-09-01
Accurate, consistent reporting of changing forest area, stratified by forest type, is required for all countries under their commitments to the Paris Agreement (UNFCCC 2015 Adoption of the Paris Agreement (Paris: UNFCCC)). Such change reporting may directly impact on payments through comparisons to national Reference (Emissions) Levels under the Reducing Emissions from Deforestation and forest Degradation (REDD+) framework. The emergence of global, satellite-based forest monitoring systems, including Global Forest Watch (GFW) and FORMA, have great potential in aiding this endeavour. However, the accuracy of these systems has been questioned and their uncertainties are poorly constrained, both in terms of the spatial extent of forest loss and timing of change. Here, using annual time series of 5 m optical imagery at two sites in the Brazilian Amazon, we demonstrate that GFW more accurately detects forest loss than the coarser-resolution FORMA or Brazil’s national-level PRODES product, though all underestimate the rate of loss. We conclude GFW provides robust indicators of forest loss, at least for larger-scale forest change, but under-predicts losses driven by small-scale disturbances (< 2 ha), even though these are much larger than its minimum mapping unit (0.09 ha).
NASA Astrophysics Data System (ADS)
Milodowski, D. T.; Mitchard, E. T. A.; Williams, M.
2016-09-01
Accurate, consistent reporting of changing forest area, stratified by forest type, is required for all countries under their commitments to the Paris Agreement (UNFCCC 2015 Adoption of the Paris Agreement (Paris: UNFCCC)). Such change reporting may directly impact on payments through comparisons to national Reference (Emissions) Levels under the Reducing Emissions from Deforestation and forest Degradation (REDD+) framework. The emergence of global, satellite-based forest monitoring systems, including Global Forest Watch (GFW) and FORMA, have great potential in aiding this endeavour. However, the accuracy of these systems has been questioned and their uncertainties are poorly constrained, both in terms of the spatial extent of forest loss and timing of change. Here, using annual time series of 5 m optical imagery at two sites in the Brazilian Amazon, we demonstrate that GFW more accurately detects forest loss than the coarser-resolution FORMA or Brazil’s national-level PRODES product, though all underestimate the rate of loss. We conclude GFW provides robust indicators of forest loss, at least for larger-scale forest change, but under-predicts losses driven by small-scale disturbances (< 2 ha), even though these are much larger than its minimum mapping unit (0.09 ha).
Brasher, Anne M.D.; Wolff, Reuben H.; Luton, Corene D.
2003-01-01
The island of Oahu is one of 51 study units established as part of the U.S. Geological Surveys National Water-Quality Assessment (NAWQA) program to assess the status and trends of the Nations surface and ground-water resources, and to link status and trends with an understanding of the natural and human factors that affect water quality. As part of the NAWQA program, benthic invertebrate communities were surveyed at ten sites in nine streams representing the three main types of land use on Oahu: urban, agriculture, and forested. At each sampling site, habitat characteristics were determined at a range of spatial scales including drainage basin, segment, reach, transect, and point. Associations among land use, habitat characteristics, and benthic invertebrate community structure were examined. The rapid population growth and increasing urbanization on Oahu has resulted in substantial stream habitat alteration. Instream habitat characteristics at the urban and mixed (urban and agriculture) land-use sites were markedly different from those at the forested sites. Urban and mixed land-use sites, most of which were channelized, tended to have less riparian vegetation, higher water temperatures, smaller substrate, and higher levels of embeddedness and siltation than sites in forested watersheds. The majority of invertebrate taxa identified during this study were non-native. Invertebrate abundance was lower at urban and mixed land-use sites than at forested sites, while species richness (the number of different species) showed the opposite pattern. Multivariate analyses indicated that invertebrate species composition was similar at sites with similar land use. Aquatic insects of the orders Diptera and Trichoptera were the most common insects in all samples. The ratio of Diptera to Trichoptera abundance varied with urbanization. Forested sites were dominated by Trichoptera, and urban and mixed land-use sites were dominated by Diptera. Molluscs typically occurred in channelized urban streams although no native molluscs were collected during this study. The most abundant molluscs were pan-tropical thiarid snails, the introduced clam Corbicula fluminea, and the limpet Ferrissia sharpi. Two native and four introduced species of Crustacea were collected at the sampling sites. To effectively manage Hawaiian watersheds for native species and the communities they form, the ways in which these species respond to human-induced changes needs to be understood. This report provides important information describing the usefulness of invertebrates as indicators of stream quality conditions and how an integrated assessment of stream quality will allow for the development of appropriate monitoring and management strategies.
Site index determination techniques for southern bottomland hardwoods
Brian Roy Lockhart
2013-01-01
Site index is a species-specific indirect measure of forest productivity expressed as the average height of dominant and codominant trees in a stand of a specified base age. It is widely used by forest managers to make informed decisions regarding forest management practices. Unfortunately, forest managers have difficulty in determining site index for southern US...
NASA Astrophysics Data System (ADS)
Rybczynski, N.; Braschi, L.; Gosse, J. C.; Kennedy, C.; Fraser, D.; Lakeman, T.
2013-12-01
The Pliocene fossil record of the High Arctic is represented by a collection of sites that occur across the Canadian Arctic Archipelago (CAA), with deposits in the west comprising a 1200 km-long dissected clastic wedge (Beaufort Formation) and those in the east represented by high terrace gravel deposits. Fossil material from these sites is often very well preserved and provides evidence of a boreal-type forest. In the eastern Arctic our research sites includes the Fyles Leaf Bed (FLB) and the Beaver Pond (BP) sites, on west central Ellesmere Island. These are about 10 km apart and preserve evidence of forest and peatlands. The BP fossil site preserves the remains of fossil vertebrates including fish, frog, horse, beaver, deerlet, and black bear, consistent with a boreal type forest habitat. The FLB site has recently yielded the first fossil evidence for a High Arctic camel, identified with the help of collagen fingerprinting from a fragmentary limb bone (tibia). Although modern camels live in open habitats, biogeographic and comparative dental evidence, in combination, suggest that the North American Arctic camels were browsers, and therefore forest-dwelling. Paleoenvironmental reconstruction of the Ellesmere sites has yielded a Mean Annual Temperature of between 14 to 22 degrees Celsius warmer than today. Minimum cosmogenic nuclide burial ages of 3.4 and 3.8 Ma obtained for the BP and FLB sites, respectively, are consistent with vertebrate and floral biostratigraphic evidence. The Beaufort Formation, located in the Western CAA, was formed by a regional northwesterly flowing braided fluvial system. The Beaufort Formation appears to have filled at least the western portions of the 100 km-wide channels that currently separate the islands of the CAA. Intervals of Pliocene continental-shelf progradation are recorded in the lower Iperk Formation, which is situated offshore and includes complex sigmoid-oblique clinoforms indicative of high-energy, coarse-clastic, deltaic sedimentation. A key objective of our research is to derive new age estimates and improved correlations between the eastern Arctic deposits, Beaufort and Iperk Formations in order to test different hypotheses to explain the nature of the dramatic landscape changes that were responsible for deposition of the Beaufort Formation and infilling of the CAA channels. For example, if the channels of the modern CAA function as a heat source during winter months and a heat sink during summer months, infilling of the CAA channels in the Pliocene by the Beaufort Formation may have functioned to shut down this radiative process, resulting in increased continentality.
Gaudioso, Jacqueline; Lapointe, Dennis; Atkinson, Carter T.; Egan, Ariel N.
2015-01-01
While avian disease has been well-studied in windward forests of Hawai‘i Island, there have been few studies in leeward Ka‘u. We surveyed four altitudinal sites ranging from 1,200 to 2,200 m asl in the Kahuku Unit of Hawai‘i Volcanoes National Park (Kahuku) and three altitudinal sites ranging from 1,200 to 1,500 m asl in the Ka‘u Forest Reserve (Ka‘u) for the prevalence of avian disease and presence of mosquitoes. We collected blood samples from native and non-native forest birds and screened for avian malaria (Plasmodium relictum) using PCR diagnostics. We examined birds for signs of avian pox (Avipoxvirus sp.), knemidokoptic mange (Knemidokoptes jamaicensis) and feather ectoparasites. We also trapped adult mosquitoes (Culex quinquefasciatus and Aedes japonicus japonicus) and surveyed for available larval habitat. Between September, 2012 and October, 2014, we completed 3,219 hours of mist-netting in Kahuku capturing 515 forest birds and 3,103 hours of mist-netting in Ka‘u capturing 270 forest birds. We screened 750 blood samples for avian malaria. Prevalence of avian malaria in all species was higher in Ka‘u than Kahuku when all sites were combined for each tract. Prevalence of avian malaria in resident Hawai‘i ‘amakihi (Chlorodrepanis virens) was greatest at the lowest elevation sites in Kahuku (26%; 1,201 m asl) and Ka‘u (42%; 1,178 m asl) and in general, prevalence decreased with increasing elevation and geographically from east to west. Significantly higher prevalence was seen in Ka‘u at comparable low and mid elevation sites but not at comparable high elevation sites. The overall presumptive pox prevalence was 1.7% (13/785) for both tracts, and it was higher in native birds than non-native birds, but it was not significant. Presumptive knemidokoptic mange was detected at two sites in lower elevation Kahuku, with prevalence ranging from 2‒4%. The overall prevalence of ectoparasites (Analges and Proctophyllodes spp.) was 6.7% (53/785). The site with the highest prevalence was Lower Glover in Kahuku (7.2%; 10/138) and Maka‘alia in Ka‘u. In general, mosquito larval habitat was more prevalent at lower elevation sites than higher elevation sites within the Kahuku—Ka‘u landscape, and more prevalent in Ka‘u than Kahuku. We observed significantly more available larval mosquito habitat in total belt transect plots in Ka‘u than Kahuku for both hapu‘u cavities (Χ2 = 47.06, df = 1, p < 0.01) and other habitat types combined (i.e., ground pools, rock holes, tree holes) (Χ2 = 104.35, df = 1, p < 0.01). Mosquitoes were most abundant at low elevation Kahuku, but were captured at all sites up to 1,532 m asl in Kahuku. The malarial infection rate of live mosquitoes was 21% (39/186) at Kahuku and 25% (2/8) at Ka‘u. There were 19 times more larval habitats available in Ka‘u than Kahuku on survey transects, yet we captured 53 times more C. quinquefasciatus mosquitoes in Kahuku. We captured very few adult A. j. japonicus across the landscape (Ntotal = 6) and no Aedes albopictus were detected in this study. Larval surveys along ranch roads and infrastructure revealed that ground pools along rutted, overgrown ranch roads were the likely source of Kahuku mosquitoes. We did not find mosquito larvae associated with ranching infrastructure. Unlike the low elevation forests on windward Hawai‘i Island, avian malaria prevalence, mosquito abundance, and the density of available larval habitat in Kahuku and Ka‘u were relatively low. Although altitudinal variations in climate appear to be the primary factors limiting the distribution of avian disease, habitat type, avian movements, human activity, and feral pig (Sus scrofa) management all may play important roles in determining the prevalence of avian malaria across the Kahuku—Ka‘u landscape.
Schrumpf, Marion; Axmacher, Jan C; Zech, Wolfgang; Lehmann, Johannes; Lyaruu, Herbert V C
2007-04-15
At the lower parts of the forest belt at Mt. Kilimanjaro, selective logging has led to a mosaic of mature forest, old secondary forests ( approximately 60 years), and old clearings ( approximately 10 years) covered by shrub vegetation. These variations in the vegetation are reflected by differences in nutrient leaching from the canopy and in both amount and quality of litter reaching the ground, thereby also influencing mineralization rates and the composition of seepage water in litter percolate and soil solution. The aim of this study was to investigate how above- and belowground nutrient dynamics vary between regeneration stages, and if forest regeneration at the clearings is hampered by a deterioration of abiotic site conditions. K, Mg, Ca, Na and N compounds were analysed in rainfall, throughfall, organic layer percolate and the soil solution to a depth of 1.00 m at three clearings, three secondary forest and four mature forest sites. Element fluxes via throughfall showed only small variations among regeneration stages except for K and NO(3)-N. With 57-83 kg ha(-1) a(-1)and 2.6-4.1 kg ha(-1) a(-1) respectively, K and NO(3)-N fluxes via throughfall were significantly higher at the clearings than at the mature forest sites (32-37 and 0.7-1.0 kg ha(-1) a(-1) for K and NO(3)-N). In organic layer percolate and in soil solution at 0.15-m soil depth, concentrations of K, Mg, Ca and N were highest at the clearings. In the organic layer percolate, median K concentrations were e.g. 7.4 mg l(-1) for the clearings but only 1.4 mg l(-1) for the mature forests, and for NO(3)-N, median concentrations were 3.1 mg l(-1) for the clearings but only 0.92 mg l(-1) for the mature forest sites. Still, differences in annual means between clearings and mature forests were not always significant due to a high variability within the clearings. With the exception of NO(3)-N, belowground nutrient concentrations in secondary forests ranged between concentrations in mature forests and clearings. Vegetation type-specific differences decreased with increasing soil depths in the soil solution. Overall, the opening of the forest led to a higher spatial and seasonal variation of nutrient concentrations in the seepage water. These results suggest differences in both mineralization rates and in nutrient budgeting at different regeneration stages. Since nutrient availability was highest at the clearings and no compaction of the soil was observed, deterioration of soil properties did not seem to be the main reason for the impeded regeneration on the clearings.
NASA Astrophysics Data System (ADS)
Cross, M.
2016-12-01
An improved process for the identification of tree types from satellite imagery for tropical forests is needed for more accurate assessments of the impact of forests on the global climate. La Selva Biological Station in Costa Rica was the tropical forest area selected for this particular study. WorldView-3 imagery was utilized because of its high spatial, spectral and radiometric resolution, its availability, and its potential to differentiate species in a complex forest setting. The first-step was to establish confidence in the high spatial and high radiometric resolution imagery from WorldView-3 in delineating tree types within a complex forest setting. In achieving this goal, ASD field spectrometer data were collected of specific tree species to establish solid ground control within the study site. The spectrometer data were collected from the top of each specific tree canopy utilizing established towers located at La Selva Biological Station so as to match the near-nadir view of the WorldView-3 imagery. The ASD data was processed utilizing the spectral response functions for each of the WorldView-3 bands to convert the ASD data into a band specific reflectivity. This allowed direct comparison of the ASD spectrometer reflectance data to the WorldView-3 multispectral imagery. The WorldView-3 imagery was processed to surface reflectance using two standard atmospheric correction procedures and the proprietary DigitalGlobe Atmospheric Compensation (AComp) product. The most accurate correction process was identified through comparison to the spectrometer data collected. A series of statistical measures were then utilized to access the accuracy of the processed imagery and which imagery bands are best suited for tree type identification. From this analysis, a segmentation/classification process was performed to identify individual tree type locations within the study area. It is envisioned the results of this study will improve traditional forest classification processes, provide more accurate assessments of species density and distribution, facilitate a more accurate biomass estimate of the tropical forest which will impact the accuracy of tree carbon storage estimates, and ultimately assist in developing a better overall characterization of tropical rainforest dynamics.
Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning.
Dore, S; Kolb, T E; Montes-Helu, M; Eckert, S E; Sullivan, B W; Hungate, B A; Kaye, J P; Hart, S C; Koch, G W; Finkral, A
2010-04-01
Disturbances alter ecosystem carbon dynamics, often by reducing carbon uptake and stocks. We compared the impact of two types of disturbances that represent the most likely future conditions of currently dense ponderosa pine forests of the southwestern United States: (1) high-intensity fire and (2) thinning, designed to reduce fire intensity. High-severity fire had a larger impact on ecosystem carbon uptake and storage than thinning. Total ecosystem carbon was 42% lower at the intensely burned site, 10 years after burning, than at the undisturbed site. Eddy covariance measurements over two years showed that the burned site was a net annual source of carbon to the atmosphere whereas the undisturbed site was a sink. Net primary production (NPP), evapotranspiration (ET), and water use efficiency were lower at the burned site than at the undisturbed site. In contrast, thinning decreased total ecosystem carbon by 18%, and changed the site from a carbon sink to a source in the first posttreatment year. Thinning also decreased ET, reduced the limitation of drought on carbon uptake during summer, and did not change water use efficiency. Both disturbances reduced ecosystem carbon uptake by decreasing gross primary production (55% by burning, 30% by thinning) more than total ecosystem respiration (TER; 33-47% by burning, 18% by thinning), and increased the contribution of soil carbon dioxide efflux to TER. The relationship between TER and temperature was not affected by either disturbance. Efforts to accurately estimate regional carbon budgets should consider impacts on carbon dynamics of both large disturbances, such as high-intensity fire, and the partial disturbance of thinning that is often used to prevent intense burning. Our results show that thinned forests of ponderosa pine in the southwestern United States are a desirable alternative to intensively burned forests to maintain carbon stocks and primary production.
Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery
NASA Astrophysics Data System (ADS)
Stagakis, Stavros; Vanikiotis, Theofilos; Sykioti, Olga
2016-09-01
The advancing technology of hyperspectral remote sensing offers the opportunity of accurate land cover characterization of complex natural environments. In this study, a linear spectral unmixing algorithm that incorporates a novel hierarchical Bayesian approach (BI-ICE) was applied on two spatially and temporally adjacent CHRIS/PROBA images over a forest in North Pindos National Park (Epirus, Greece). The scope is to investigate the potential of this algorithm to discriminate two different forest species (i.e. beech - Fagus sylvatica, pine - Pinus nigra) and produce accurate species-specific abundance maps. The unmixing results were evaluated in uniformly distributed plots across the test site using measured fractions of each species derived by very high resolution aerial orthophotos. Landsat-8 images were also used to produce a conventional discrete-type classification map of the test site. This map was used to define the exact borders of the test site and compare the thematic information of the two mapping approaches (discrete vs abundance mapping). The required ground truth information, regarding training and validation of the applied mapping methodologies, was collected during a field campaign across the study site. Abundance estimates reached very good overall accuracy (R2 = 0.98, RMSE = 0.06). The most significant source of error in our results was due to the shadowing effects that were very intense in some areas of the test site due to the low solar elevation during CHRIS acquisitions. It is also demonstrated that the two mapping approaches are in accordance across pure and dense forest areas, but the conventional classification map fails to describe the natural spatial gradients of each species and the actual species mixture across the test site. Overall, the BI-ICE algorithm presented increased potential to unmix challenging objects with high spectral similarity, such as different vegetation species, under real and not optimum acquisition conditions. Its full potential remains to be investigated in further and more complex study sites in view of the upcoming satellite hyperspectral missions.
Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.
Wood, Tana E; Lawrence, Deborah; Clark, Deborah A; Chazdon, Robin L
2009-01-01
Litter-induced pulses of nutrient availability could play an important role in the productivity and nutrient cycling of forested ecosystems, especially tropical forests. Tropical forests experience such pulses as a result of wet-dry seasonality and during major climatic events, such as strong El Niños. We hypothesized that (1) an increase in the quantity and quality of litter inputs would stimulate leaf litter production, woody growth, and leaf litter nutrient cycling, and (2) the timing and magnitude of this response would be influenced by soil fertility and forest age. To test these hypotheses in a Costa Rican wet tropical forest, we established a large-scale litter manipulation experiment in two secondary forest sites and four old-growth forest sites of differing soil fertility. In replicated plots at each site, leaves and twigs (< 2 cm diameter) were removed from a 400-m2 area and added to an adjacent 100-m2 area. This transfer was the equivalent of adding 5-25 kg/ha of organic P to the forest floor. We analyzed leaf litter mass, [N] and [P], and N and P inputs for addition, removal, and control plots over a two-year period. We also evaluated basal area increment of trees in removal and addition plots. There was no response of forest productivity or nutrient cycling to litter removal; however, litter addition significantly increased leaf litter production and N and P inputs 4-5 months following litter application. Litter production increased as much as 92%, and P and N inputs as much as 85% and 156%, respectively. In contrast, litter manipulation had no significant effect on woody growth. The increase in leaf litter production and N and P inputs were significantly positively related to the total P that was applied in litter form. Neither litter treatment nor forest type influenced the temporal pattern of any of the variables measured. Thus, environmental factors such as rainfall drive temporal variability in litter and nutrient inputs, while nutrient release from decomposing litter influences the magnitude. Seasonal or annual variation in leaf litter mass, such as occurs in strong El Niño events, could positively affect leaf litter nutrient cycling and forest productivity, indicating an ability of tropical trees to rapidly respond to increased nutrient availability.
John M. Kabrick; Stephen R. Shifley; Randy G. Jensen; David R. Larsen; Jennifer K. Grabner
2004-01-01
Physical site factors are known to affect forest species composition but the pattern and variation across forest landscapes has not been well quantified. We discuss relationships between site factors including soil parent materials, depth to dolomite bedrock, aspect, and landform position and the distribution of vegetation, site index, and short-term succession in oak...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Xuhui
This is the AmeriFlux version of the carbon flux data for the site US-GMF Great Mountain Forest. Site Description - The experimental site is in the Great Mountain Forest on moderately hilly terrain in Norfolk, Connecticut. The site is a naturally regenerating forest impacted by fires, logging, hurricanes, and cultivation over the past century. The site switched from a continuous measurement mode to a campaign mode on DOY 125, 2004.
Cliff R. Hupp; Michael R. Schening
2000-01-01
Sedimentation is arguably the most important water-quality concern in the United States. Sediment trapping is cited frequently as a major function of riverine-forested wetlands, yet little is known about sedimcntation rates at the landscape scale in relation to site parameters, including woody vegetation type, elevation, velocity, and hydraulic connection to the river...
The use of time and space by the Panamanian tamarin, Saguinus oedipus.
Dawson, G A
1979-01-01
Tamarin activity patterns and habitat utilization strategies in the Tropical Dry Forest of the Panama Canal Zone were monitored quantitatively using radio-location telemetry. The daily tamarin activity pattern differed from that of other Neotropical primates in that early morning and late afternoon activity normally did not occur. Total daily activity time averaged 676 +/- 62 min. Sleeping trees, and behaviors associated with their use, were documented. Daily path length averaged 2,061 +/- 402 m. Mean travel distance was 468 +/- 66 m. Approximately one-third of the home range was utilized on a given day. Wet season home ranges for two social groups were 26 and 32 ha in area. Areas of low brush, forest edge, and vine-entangled second growth were heavily used by foraging tamarins. Large shade trees, particularly evergreens, were important as refuges from solar radiation. Open-canopy forest types and areas of grass were avoided. Social groups on resource-stable lowland sites defended territories; those on unstable upland sites used a system of time-space segregation. Upland groups became seminomadic during the dry season. Suitability of home range site may affect social group stability, natality, and infant survivorship.
NASA Astrophysics Data System (ADS)
Verchot, Louis V.; Hutabarat, Lusida; Hairiah, Kurniatun; van Noordwijk, Meine
2006-12-01
Changes in land use impact on the N cycle with both local and global consequences. We examined how conversion of forest to agriculture in one catchment in southern Sumatra altered N availability and soil N2O emission. Measurements were made along a chronosequence of forest land converted to coffee gardens. A number of different management practices were also examined. Inorganic N stocks and N cycling rates were highest in the forest and lower in the coffee gardens. The forest and young conversion sites appeared to be N limited, whereas the older agricultural sites and the more intensively managed sites were not as strongly N limited. N2O emissions were low in the forest (<2 kgN ha-1yr-1) and increased sharply following deforestation. Emissions on recently cleared land were 4.6 kgN ha-1yr-1 and 8.4 kgN ha-1yr-1 in a 1-year-old coffee garden. Emissions in the older coffee gardens were lower with the lowest flux observed in a 10 year old site (1.8 kgN ha-1yr-1). We explored the effects of different types of management approaches that farmers are using in this landscape. Emissions in an 18-year-old multistrata coffee garden with a significant overstory of N fixing trees were 5 times greater (15.5 kg ha-1yr-1) than emissions from forests. We also found that intensive organic matter management produced high emissions. To understand the spatial and temporal variability of the N2O emissions we used the hole-in-the-pipe conceptual model. N2O fluxes were lowest on N limited sites. Soil water content also played an important role and emissions were highest when water filled pore space (WFPS) was between 85 and 95%. A number of formulations of this model have been applied in different ways over the years to explain spatial and temporal variation in the soil N-oxide flux, and in this study we found the mechanistic explanation useful. Our study suggests that land use change and intensification of agriculture in N limited highland landscapes may significantly increase the biosphere to atmosphere flux of N gases.
Bulgarian Rila mountain forest ecosystems study site: site description and SO42-, NO3- deposition
Karl Zeller; Christo Bojinov; Evgeny Donev; Nedialko Nikolov
1998-01-01
Bulgaria's forest ecosystems (31 percent of the country's area) are considered vulnerable to dry and wet pollution deposition. Coniferous forests that cover one-third of the total forest land are particularly sensitive to pollution loads. The USDA Forest Service, Sofia University, and the Bulgarian Forest Research Institute (FRI) established a cooperative...
36 CFR 261.16 - Developed recreation sites.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Developed recreation sites. 261.16 Section 261.16 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PROHIBITIONS General Prohibitions § 261.16 Developed recreation sites. The following are prohibited: (a) Occupying any portion of the site for other...
Forest investigations by polarimetric AIRSAR data in the Harz mountains
NASA Technical Reports Server (NTRS)
Keil, M.; Poll, D.; Raupenstrauch, J.; Tares, T.; Winter, R.
1993-01-01
The Harz Mountains in the North of Germany have been a study site for several remote sensing investigations since 1985, as the mountainous area is one of the forest regions in Germany heavily affected by forest decline, especially in the high altitudes above 800 m. In a research program at the University of Berlin, methods are developed for improving remote sensing assessment of forest structure and forest state by additional GIS information, using several datasets for establishing a forest information system. The Harz has been defined as a test site for the SIR-C/X-SAR mission which is going to deliver multifrequency and multipolarizational SAR data from orbit. In a pilot project let by DLR-DFD, these data are to be investigated for forestry and ecology purposes. In preparing a flight campaign to the SIR-C / X-SAR mission, 'MAC EUROPE 1991', performed by NASA/JPL, an area of about 12 km in the Northern Harz was covered with multipolarizational AIRSAR data in the C-, L- and P-band, including the Brocken, the highest mountain of the Harz, with an altitude of 1142 m. The multiparameter AIRSAR data are investigated for their information content on the forest state, regarding the following questions: (1) information on forest stand parameters like forest types, age classes and crown density, especially for the separation of deciduous and coniferous forest; (2) information on the storm damages (since 1972) and the status of regeneration; (3) information on the status of forest destruction because of forest decline; and (4) influence of topography, local incidence angle and soil moisture on the SAR data. Within the project various methods and tools have been developed for the investigation of multipolarimetric radar backscatter responses and for discrimination purposes, in order to use the multipolarization information of the compressed Stokes matrix delivered by JPL.
NASA Astrophysics Data System (ADS)
Thorne, J. H.; Schwartz, M. W.; Holguin, A. J.; Moritz, M.; Batllori, E.; Folger, K.; Nydick, K.
2013-12-01
Ecological systems may respond in complex manners as climate change progresses. Among the responses, site-level climate conditions may cause a shift in vegetation due to the physiological tolerances of plant species, and the fire return interval may change. Natural resource managers challenged with maintaining ecosystem health need a way to forecast how these processes may affect every location, in order to determine appropriate management actions and prioritize locations for interventions. We integrated climate change-driven vegetation type transitions with projected change in fire frequency for 45,203 km2 of the southern Sierra Nevada, California, containing over 10 land management agencies as well as private lands. This Magnitude of Change (MOC) approach involves classing vegetation types in current time according to their climate envelopes, and identifying which sites will in the future have climates beyond what that vegetation currently occurs in. Independently, fire models are used to determine the change in fire frequency for each site. We examined 82 vegetation types with >50 grid cell occurrences. We found iconic resources such as the giant sequoia, lower slope oak woodlands, and high elevation conifer forests are projected as highly vulnerable by models that project a warmer drier future, but not as much by models that project a warmer future that is not drier than current conditions. Further, there were strongly divergent vulnerabilities of these forest types across land ownership (National Parks versus US Forest Service lands), and by GCM. For example, of 50 giant sequoia (Sequoiadendron giganteum) groves and complexes, all but 3 (on Sierra National Forest) were in the 2 highest levels of risk of climate and fire under the GFDL A2 projection, while 15 groves with low-to-moderate risk were found on both the National Parks and National Forests 18 in the 2 under PCM A2. Landscape projections of potential MOC suggest that the region is likely to experience strong upslope shifting of open grassland, chaparral and hardwood types, which may be initiated by increased fire frequencies, particularly where fires have not recently burned within normal fire recurrence interval departures (FRID). An evaluation of four fire management strategies (business as usual; resist change; foster orderly change; protect vital resources) across four combinations of future climate and fire frequency found that no single management strategy was uniformly successful in protecting critical resources across the range of future conditions examined. This limitation is somewhat driven by current management constraints on the amount of management available to resource managers, which suggests management will need to use a triage approach to application of proactive fire management strategies, wherein MOC landscape projections can be used in decision support.
Rozendaal, Danaë M A; Kobe, Richard K
2016-01-01
In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008-2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed-canopy forests.
Rozendaal, Danaë M. A.; Kobe, Richard K.
2016-01-01
In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008–2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed-canopy forests. PMID:27870897
Fire Impact on Surface Fuels and Carbon Emissions in Scots pine Logged Sites of Siberia
NASA Astrophysics Data System (ADS)
Ivanova, G. A.; Kukavskaya, E. A.; Bogorodskaya, A. V.; Ivanov, V. A.; Zhila, S. V.; Conard, S. G.
2012-04-01
Forest fire and large-scale forest harvesting are the two major disturbances in the Russian boreal forests. Non-recovered logged sites total about a million hectares. Logged sites are characterized by higher fire hazard than forest sites due great amounts of logging slash, which dries out much more rapidly compared to understory fuels. Moreover, most logging sites can be easily accessed by local population. Both legal and illegal logging are also increasing rapidly in many forest areas of Siberia. Fire effects on forest overstory, subcanopy woody layer, and ground vegetation biomass were estimated on logged vs. unlogged sites in the Central Siberia region in 2009-2012 as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). Dead down woody fuels are significantly less at unburned/logged area of dry southern regions compared to more humid northern regions. Fuel consumption was typically less in spring fires than during summer fires. Fire-caused carbon emissions on logged sites appeared to be twice that on unlogged sites. Soil respiration is less at logged areas compared to undisturbed forest. After fire soil respiration decreases both at logged and unlogged areas. arbon emissions from fire and post-fire ecosystem damage on logged sites are expected to increase under changing climate conditions and as a result of anticipated increases in future forest harvesting in Siberia.
AmeriFlux US-Fmf Flagstaff - Managed Forest
Dor, Sabina [Northern Arizona Univ., Flagstaff, AZ (United States); Kolb, Thomas [Northern Arizona Univ., Flagstaff, AZ (United States)
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Fmf Flagstaff - Managed Forest. Site Description - Ponderosa pine forest subject to thinning in September 2006. Project webpage http://nau.edu/CEFNS/Forestry/Research/Carbon-Flux/Sites/
A comparison of forest dynamics at two sites in the Southeastern Ozark Mountains of Missouri
Michael A. Jenkins; Stephen G. Pallardy
1993-01-01
Changes in tree species composition and regeneration patterns were studied in 53 permanent vegetation plots located at two sites (Pioneer Forest and University State Forest) in oak-hickory forests of southeastern Missouri where mortality and decline of red oak species have been identified. The two sites also exhibited differing levels of decline and mortality. Between...
NASA Astrophysics Data System (ADS)
Shao, G.; Gallion, J.; Fei, S.
2016-12-01
Sound forest aboveground biomass estimation is required to monitor diverse forest ecosystems and their impacts on the changing climate. Lidar-based regression models provided promised biomass estimations in most forest ecosystems. However, considerable uncertainties of biomass estimations have been reported in the temperate hardwood and hardwood-dominated mixed forests. Varied site productivities in temperate hardwood forests largely diversified height and diameter growth rates, which significantly reduced the correlation between tree height and diameter at breast height (DBH) in mature and complex forests. It is, therefore, difficult to utilize height-based lidar metrics to predict DBH-based field-measured biomass through a simple regression model regardless the variation of site productivity. In this study, we established a multi-dimension nonlinear regression model incorporating lidar metrics and site productivity classes derived from soil features. In the regression model, lidar metrics provided horizontal and vertical structural information and productivity classes differentiated good and poor forest sites. The selection and combination of lidar metrics were discussed. Multiple regression models were employed and compared. Uncertainty analysis was applied to the best fit model. The effects of site productivity on the lidar-based biomass model were addressed.
Effects of wildfire on soil water repellency in pine and eucalypt forest in central Portugal
NASA Astrophysics Data System (ADS)
Faria, Sílvia; Eufemia Varela, María.; Keizer, Jan Jacob
2010-05-01
Soil water repellency is a naturally occurring phenomenon that can be intensified by soil heating during fires. Fire-induced or -enhanced water repellency, together with the loss of plant cover, is widely regarded as a key factor in increased surface runoff and accelerated erosion in recently burnt areas. The present study is part of the EROSFIRE-II project, whose main aim is to assess and predict post-wildfire hydrological and erosion processes at multiple spatial scales, ranging from micro-plot (< 1 m2) to small catchments (< 1 km2). This work concerns the occurrence and severity of topsoil water repellency in the two forest types occurring in the Colmeal study area, i.e. Maritime Pine and eucalypt stands The objectives are: (i) to clarify the role of wildfire, by comparing recently burnt and adjacent long unburned stands; (ii) to determine the temporal patterns in repellency, through monthly measurements during the first year following the wildfire, and relate them to soil moisture variations in particular. The Colmeal study area is located in the Lousã mountain range in central Portugal. The wildfire occurred in August 2008 and consumed a total area of about 70 ha. Within the burnt area, two slopes were selected with the same parent material (schist) but different forest types (Pinus pinaster and Eucaliptus globulus). In addition, two similar but long unburned slopes were selected in the immediate surroundings. For a period of 10 months, starting November 2008, water repellency and moisture content of the 0-5 cm topsoil layer were measured in the field at monthly intervals. Repellency was measured using the ‘Molarity of an Ethanol Droplet' (MED) test, soil moisture content using a DECAGON EC5 sensor. The results revealed a very strong repellency (ethanol classes 6-7) at all four sites during the first sampling period in November 2008, suggesting that the immediate wildfire effects were minor for both forest types. In the subsequent 5 to 6 months, however, there was a definite tendency for higher ethanol classes at the recently burnt than the adjacent unburned sites. Especially in the case of the pine stands, this tendency was inverted during the remaining months. The above-mentioned differences between the neighboring sites reflected more pronounced temporal patters in the case of the unburned sites, where median repellency levels corresponded none to slight severity ratings from December to March (pine) or April (eucalypt). Such seasonal drops in repellency were considerably shorter at the two burnt sites (1-2 months) and also less pronounced, without median ethanol classes becoming zero as occurred at the burnt sites. The seasonal repellency patterns at the unburned sites could be explained rather well by changes in soil moisture content. The same was not true, however, for the burnt sites.
Zeri, Marcelo; Sá, Leonardo D A; Manzi, Antônio O; Araújo, Alessandro C; Aguiar, Renata G; von Randow, Celso; Sampaio, Gilvan; Cardoso, Fernando L; Nobre, Carlos A
2014-01-01
The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha(-1) year(-1), but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change.
Zeri, Marcelo; Sá, Leonardo D. A.; Manzi, Antônio O.; Araújo, Alessandro C.; Aguiar, Renata G.; von Randow, Celso; Sampaio, Gilvan; Cardoso, Fernando L.; Nobre, Carlos A.
2014-01-01
The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha−1 year−1, but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change. PMID:24558378
Forest biomass carbon stocks and variation in Tibet's carbon-dense forests from 2001 to 2050.
Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei
2016-10-05
Tibet's forests, in contrast to China's other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet's forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr -1 between 2001 and 2010 and a decrease of 1.9 Tg C yr -1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet's mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity.
Forest biomass carbon stocks and variation in Tibet’s carbon-dense forests from 2001 to 2050
Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei
2016-01-01
Tibet’s forests, in contrast to China’s other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet’s forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr−1 between 2001 and 2010 and a decrease of 1.9 Tg C yr−1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet’s mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity. PMID:27703215
Complementary models of tree species-soil relationships in old-growth temperate forests
Cross, Alison; Perakis, Steven S.
2011-01-01
Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and species specific studies of tree species soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative species based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. Tree species soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by tree species across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most of ten followed adivergence model,where by species differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent species differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent species differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and context-dependent tree species-soil relationships occur simultaneouslyinold-grow the temperate forests, with context-dependent relationships strongest for organically cycled elements, and site-independent relationships strongest for weather able elements with in organic cycling phases. These models provide complementary explanations for patterns of nutrient accumulation and cycling in mixed species old-growth temperate forests.
Effects of riparian forest removal on the trophic dynamics of a Neotropical stream fish assemblage.
Lobón-Cerviá, J; Mazzoni, R; Rezende, C F
2016-07-01
The effects of riparian forest removal on a neotropical stream fish assemblage were assessed in the Mata Atlântica. Fish assemblage structure and fish feeding patterns were quantified at three sites along a pristine-to-deforested gradient in a Serra do Mar stream: (1) a pristine site fully covered by canopy with no light penetration and transparent waters, (2) an intermediate site with partially removed forest and (3) a fully removed forest site with no canopy and full light penetration where siltation and turbid waters predominate. Fish assemblage structure, fish densities and their feeding patterns differed widely among sites. Whilst the same five fish species occurred at the three sites, forest removal favoured the occurrence of sediment-tolerant iliophagous benthic species at the deforested site. At the pristine site, invertebrate prey predominated in water column fish diet and feeding overlap among species was low. Severe shifts in the feeding patterns were noticed in both deforested sites. Invertebrates were replaced by detritus, organic matter and algae at both sites and feeding overlap increased markedly. The overwhelming feeding adaptability of these neotropical fishes appeared capable of buffering the deleterious effects of forest removal on stream quality in terms of increased light penetration, siltation and water turbidity. Forest cutting in this Mata Atlântica stream clearly caused strong functional changes associated with forest clearance through important modifications in the assemblage organization and trophic patterns of the main species, but did not eliminate species. © 2016 The Fisheries Society of the British Isles.
Stand age and climate drive forest carbon balance recovery
NASA Astrophysics Data System (ADS)
Besnard, Simon; Carvalhais, Nuno; Clevers, Jan; Herold, Martin; Jung, Martin; Reichstein, Markus
2016-04-01
Forests play an essential role in the terrestrial carbon (C) cycle, especially in the C exchanges between the terrestrial biosphere and the atmosphere. Ecological disturbances and forest management are drivers of forest dynamics and strongly impact the forest C budget. However, there is a lack of knowledge on the exogenous and endogenous factors driving forest C recovery. Our analysis includes 68 forest sites in different climate zones to determine the relative influence of stand age and climate conditions on the forest carbon balance recovery. In this study, we only included forest regrowth after clear-cut stand replacement (e.g. harvest, fire), and afforestation/reforestation processes. We synthesized net ecosystem production (NEP), gross primary production (GPP), ecosystem respiration (Re), the photosynthetic respiratory ratio (GPP to Re ratio), the ecosystem carbon use efficiency (CUE), that is NEP to GPP ratio, and CUEclimax, where GPP is derived from the climate conditions. We implemented a non-linear regression analysis in order to identify the best model representing the C flux patterns with stand age. Furthermore, we showed that each C flux have a non-linear relationship with stand age, annual precipitation (P) and mean annual temperature (MAT), therefore, we proposed to use non-linear transformations of the covariates for C fluxes'estimates. Non-linear stand age and climate models were, therefore, used to establish multiple linear regressions for C flux predictions and for determining the contribution of stand age and climate in forest carbon recovery. Our findings depicted that a coupled stand age-climate model explained 33% (44%, average site), 62% (76%, average site), 56% (71%, average site), 41% (59%, average site), 50% (65%, average site) and 36% (50%, average site) of the variance of annual NEP, GPP, Re, photosynthetic respiratory ratio, CUE and CUEclimax across sites, respectively. In addition, we showed that gross fluxes (e.g. GPP and Re) are mainly climatically driven with 54.2% (68.4%, average site) and 54.1% (71.0%, average site) of GPP and Re variability, respectively, explained by the sum of MAT and P. However, annual NEP, GPP to Re ratio and CUEclimax are affected by both forest stand age and climate conditions, in particular MAT. The key result is that forest stand age plays a crucial role in determining CUE (36.4% and 48.2% for all years per site and average site, respectively), while climate conditions have less effect on CUE (13.6% and 15.4% for all years per site and average site, respectively). These findings are relevant for the implementation of Earth system models and imply that information both on forest stand age and climate conditions are critical to improve the accuracy of global terrestrial C models's estimates.
NASA Astrophysics Data System (ADS)
Siregar, P. G.; Supriatna, J.; Koestoer, R. H.; Harmantyo, D.
2017-07-01
This study aims to analyse trade-offs among 6 (six) types of dominant land uses to consider Orangutan livelihood and landscape sustainability. The results of this study assists landscape's planners and policy makers for selecting development scenarios as well as policy within the landscape, especially to reduce human and wildlife conflict as impact of development. This study was conducted in Orangutan sub species Pongo pygmeus pygmeus habitat in West Kalimantan, Indonesia. Net present value analysis was applied to identify economic profit of land uses and also perspective of expert judgment was applied to identify suitability of the land uses to Orangutan livelihood. The study shows that palm oil plantation was the dominant land use type in non-forest area category and natural forest is in forest area category within the site. Palm oil contributed highest economic profit (average IDR 11 Million per year) compared to other land use types, and thus the worst land use type for supporting Orangutan conservation; index suitability for Orangutan achieved only 21.8. The development of agroforestry which planted more than 3 valuable economic commodities is used as an alternative in forest buffer area development that can provide better gain for economic and Orangutan conservation with index suitability for Orangutan was 43.5. In achieving sustainability at the landscape level, it needs to consider the sustainability of the umbrella species, such as Orangutan. The existence of the umbrella species would also protect other biodiversity, forest and its environmental services.
Factors affecting the remotely sensed response of coniferous forest plantations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danson, F.M.; Curran, P.J.
1993-01-01
Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response ofmore » a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation.« less
Huo, Hong; Feng, Qi; Su, Yong-hong
2014-01-01
Understanding the factors that influence the distribution of understory vegetation is important for biological conservation and forest management. We compared understory species composition by multi-response permutation procedure and indicator species analysis between plots dominated by Qinghai spruce (Picea crassifolia Kom.) and Qilian juniper (Sabina przewalskii Kom.) in coniferous forests of the Qilian Mountains, northwestern China. Understory species composition differed markedly between the forest types. Many heliophilous species were significantly associated with juniper forest, while only one species was indicative of spruce forest. Using constrained ordination and the variation partitioning model, we quantitatively assessed the relative effects of two sets of explanatory variables on understory species composition. The results showed that topographic variables had higher explanatory power than did site conditions for understory plant distributions. However, a large amount of the variation in understory species composition remained unexplained. Forward selection revealed that understory species distributions were primarily affected by elevation and aspect. Juniper forest had higher species richness and α-diversity and lower β-diversity in the herb layer of the understory plant community than spruce forest, suggesting that the former may be more important in maintaining understory biodiversity and community stability in alpine coniferous forest ecosystems.
Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.
Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom
2015-07-01
Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved the performance of the generic equation only for stem biomass and had no apparent effect on aboveground, branch, leaf, and root biomass at the site level. The development of a generic allometric equation taking account of interspecific differences is an effective approach for accurately estimating aboveground and component biomass in boreal, temperate, and subtropical natural forests.
John P. Brown; Melissa A. Thomas-Van Gundy; Thomas M. Schuler; Janice K. Wiedenbeck
2018-01-01
A long-term study on the Fernow Experimental Forest (FEF) in West Virginia provided an opportunity to test for differences in the timber quality of trees harvested from three silvicultural practices (HarvestType): diameter-limit, patch cutting, and single-tree selection. The effects of HarvestType and site index (SI) over time on the harvested proportion of trees with...
Coeli M. Hoover; James E. Smith
2012-01-01
The documented role of United States forests in sequestering carbon, the relatively low cost of forest-based mitigation, and the many co-benefits of increasing forest carbon stocks all contribute to the ongoing trend in the establishment of forest-based carbon offset projects. We present a broad analysis of forest inventory data using site quality indicators to provide...
AmeriFlux US-Fuf Flagstaff - Unmanaged Forest
Dor, Sabina [Northern Arizona Univ., Flagstaff, AZ (United States); Kolb, Thomas [Northern Arizona Univ., Flagstaff, AZ (United States)
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Fuf Flagstaff - Unmanaged Forest. Site Description - Ponderosa pine forest not subject to disturbance in the last decades. Project webpage http://nau.edu/CEFNS/Forestry/Research/Carbon-Flux/Sites/.
Toward a Mexican eddy covariance network for carbon cycle science
NASA Astrophysics Data System (ADS)
Vargas, Rodrigo; Yépez, Enrico A.
2011-09-01
First Annual MexFlux Principal Investigators Meeting; Hermosillo, Sonora, Mexico, 4-8 May 2011; The carbon cycle science community has organized a global network, called FLUXNET, to measure the exchange of energy, water, and carbon dioxide (CO2) between the ecosystems and the atmosphere using the eddy covariance technique. This network has provided unprecedented information for carbon cycle science and global climate change but is mostly represented by study sites in the United States and Europe. Thus, there is an important gap in measurements and understanding of ecosystem dynamics in other regions of the world that are seeing a rapid change in land use. Researchers met under the sponsorship of Red Temática de Ecosistemas and Consejo Nacional de Ciencia y Tecnologia (CONACYT) to discuss strategies to establish a Mexican eddy covariance network (MexFlux) by identifying researchers, study sites, and scientific goals. During the meeting, attendees noted that 10 study sites have been established in Mexico with more than 30 combined years of information. Study sites span from new sites installed during 2011 to others with 9 to 6 years of measurements. Sites with the longest span measurements are located in Baja California Sur (established by Walter Oechel in 2002) and Sonora (established by Christopher Watts in 2005); both are semiarid ecosystems. MexFlux sites represent a variety of ecosystem types, including Mediterranean and sarcocaulescent shrublands in Baja California; oak woodland, subtropical shrubland, tropical dry forest, and a grassland in Sonora; tropical dry forests in Jalisco and Yucatan; a managed grassland in San Luis Potosi; and a managed pine forest in Hidalgo. Sites are maintained with an individual researcher's funds from Mexican government agencies (e.g., CONACYT) and international collaborations, but no coordinated funding exists for a long-term program.
Sediment associated with forest operations in the Piedmont region
Kristopher R. Brown; W. Michael Aust; Kevin J. McGuire
2013-01-01
Reduced-impact forestry uses best management practices (BMPs) during operations to minimize soil erosion and sediment delivery to streams and to maintain or improve site productivity. However, the efficacy of specific types of BMP implementation is not widely documented. This review synthesizes recent research that investigated contemporary BMP implementation and...
Factors influencing leaf litter decomposition: An intersite decomposition experiment across China
Zhou, G.; Guan, L.; Wei, X.; Tang, X.; Liu, S.; Liu, J.; Zhang, Dongxiao; Yan, J.
2008-01-01
The Long-Term Intersite Decomposition Experiment in China (hereafter referred to as LTIDE-China) was established in 2002 to study how substrate quality and macroclimate factors affect leaf litter decomposition. The LTIDE-China includes a wide variety of natural and managed ecosystems, consisting of 12 forest types (eight regional broadleaf forests, three needle-leaf plantations and one broadleaf plantation) at eight locations across China. Samples of mixed leaf litter from the south subtropical evergreen broadleaf forest in Dinghushan (referred to as the DHS sample) were translocated to all 12 forest types. The leaf litter from each of other 11 forest types was placed in its original forest to enable comparison of decomposition rates of DHS and local litters. The experiment lasted for 30 months, involving collection of litterbags from each site every 3 months. Our results show that annual decomposition rate-constants, as represented by regression fitted k-values, ranged from 0.169 to 1.454/year. Climatic factors control the decomposition rate, in which mean annual temperature and annual actual evapotranspiration are dominant and mean annual precipitation is subordinate. Initial C/N and N/P ratios were demonstrated to be important factors of regulating litter decomposition rate. Decomposition process may apparently be divided into two phases controlled by different factors. In our study, 0.75 years is believed to be the dividing line of the two phases. The fact that decomposition rates of DHS litters were slower than those of local litters may have been resulted from the acclimation of local decomposer communities to extraneous substrate. ?? 2008 Springer Science+Business Media B.V.
Mantilla-Paredes, Andrea J; Cardona, Gladys I; Peña-Venegas, Clara P; Murcia, Uriel; Rodríguez, Mariana; Zambrano, Maria M
2009-12-01
Potentially nitrogen-fixing microaerobic and aerobic bacteria were isolated from several Colombian Amazon soils (forest, pastures and chagras) and two landscapes (floodable and non floodable areas). The abundance and distribution of bacteria were evaluated, as well as their relationship with soil physical and chemical characteristics. Landscape had a direct influence on the abundance of the microaerobic bacteria, with higher numbers in forest and pasture soils in non-floodable zones. The aerobic isolates (N=51) were grouped into 19 morphologies, with the highest numbers found in forest soil in floodable zones. A higher number of aerobic morphologies was shared among forest sites (Nonmetric Multidimensional Scaling and Analysis of Similarity p<0.05), and 40% of the distribution was explained by lime percentage and Al concentration.
Norris, Daniel H; Kraichak, Ekaphan; Risk, Allen C; Lucas, Diane; Allard, Dorothy J; Rosengren, Frida; Clark, Theresa A; Fenton, Nicole; Tessler, Michael; Phephu, Nonkululo; Lennette, Evelyne T
2017-01-01
A survey of the understory bryophytes in the Nectandra Cloud Forest Preserve yielded 1083 specimens distributed among 55 families, represented by 74 genera of mosses, 75 genera of liverworts and 3 of hornworts. We studied and analyzed the bryophytic distribution on six types of substrates: 1) corticolous, 2) epiphyllous, 3) saxicolous, 4) terricolous, 5) aquatic and 6) lignicolous. The richness and composition of bryophyte genera are compared to those of other previous bryophyte surveys from 4 other sites with different oceanic exposures, climatic and geographic conditions in Costa Rica. This is a report of the first extensive general survey of bryophytes at the Nectandra Reserve, a premontane cloud forest located on the Atlantic slope of Costa Rica, an area much less studied compared to the Monteverde cloud forest on the Pacific slope.
Adaptive forest management for drinking water protection under climate change
NASA Astrophysics Data System (ADS)
Koeck, R.; Hochbichler, E.
2012-04-01
Drinking water resources drawn from forested catchment areas are prominent for providing water supply on our planet. Despite the fact that source waters stemming from forested watersheds have generally lower water quality problems than those stemming from agriculturally used watersheds, it has to be guaranteed that the forest stands meet high standards regarding their water protection functionality. For fulfilling these, forest management concepts have to be applied, which are adaptive regarding the specific forest site conditions and also regarding climate change scenarios. In the past century forest management in the alpine area of Austria was mainly based on the cultivation of Norway spruce, by the way neglecting specific forest site conditions, what caused in many cases highly vulnerable mono-species forest stands. The GIS based forest hydrotope model (FoHyM) provides a framework for forest management, which defines the most crucial parameters in a spatial explicit form. FoHyM stratifies the spacious drinking water protection catchments into forest hydrotopes, being operational units for forest management. The primary information layer of FoHyM is the potential natural forest community, which reflects the specific forest site conditions regarding geology, soil types, elevation above sea level, exposition and inclination adequately and hence defines the specific forest hydrotopes. For each forest hydrotope, the adequate tree species composition and forest stand structure for drinking water protection functionality was deduced, based on the plant-sociological information base provided by FoHyM. The most important overall purpose for the related elaboration of adaptive forest management concepts and measures was the improvement of forest stand stability, which can be seen as the crucial parameter for drinking water protection. Only stable forest stands can protect the fragile soil and humus layers and hence prevent erosion process which could endanger the water resources. Forest stands which are formed by a tree species set which conforms to the potential natural forest community are more stable than the currently wide-spread mono-species Norway spruce plantations, especially in times of climate change, where e.g. bark beetle infestations threat spruce with increased intensity. FoHyM also provides the relevant ecological boundary conditions for any estimation of climate change adaptations. The adaptation of the tree species distribution within each forest hydrotope to climate change conditions was fulfilled by the integration of climate change scenarios and the estimation of the eco-physiological characteristics of related tree species. Hence it was possible to define the tree species distribution related to a specific climate change scenario for each forest hydrotope. The silvicultural concepts and measures to accomplish the defined tree species distribution and forest stand structure for each forest hydrotope were defined and elaborated by taking the specific requirements of drinking water protection areas into account, what e.g. comprised the prohibition of the clear cut technique and the application of continuous cover forest management concepts. The overall purpose of these adaptive silvicultural concepts and techniques which were based on the application of FoHyM was the improvement of the water protection functionality of forest stands within drinking water protection zones.
Interacting Factors Driving a Major Loss of Large Trees with Cavities in a Forest Ecosystem
Lindenmayer, David B.; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E.; Franklin, Jerry F.; Laurance, William F.; Stein, John A. R.; Gibbons, Philip
2012-01-01
Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia – forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006–2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57–100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide. PMID:23071486
Silver, Emily J.; D'Amato, Anthony W.; Fraver, Shawn; Palik, Brian J.; Bradford, John B.
2013-01-01
The structure and developmental dynamics of old-growth forests often serve as important baselines for restoration prescriptions aimed at promoting more complex structural conditions in managed forest landscapes. Nonetheless, long-term information on natural patterns of development is rare for many commercially important and ecologically widespread forest types. Moreover, the effectiveness of approaches recommended for restoring old-growth structural conditions to managed forests, such as the application of extended rotation forestry, has been little studied. This study uses several long-term datasets from old growth, extended rotation, and unmanaged second growth Pinus resinosa (red pine) forests in northern Minnesota, USA, to quantify the range of variation in structural conditions for this forest type and to evaluate the effectiveness of extended rotation forestry at promoting the development of late-successional structural conditions. Long-term tree population data from permanent plots for one of the old-growth stands and the extended rotation stands (87 and 61 years, respectively) also allowed for an examination of the long-term structural dynamics of these systems. Old-growth forests were more structurally complex than unmanaged second-growth and extended rotation red pine stands, due in large part to the significantly higher volumes of coarse woody debris (70.7 vs. 11.5 and 4.7 m3/ha, respectively) and higher snag basal area (6.9 vs. 2.9 and 0.5 m2/ha, respectively). In addition, old-growth forests, although red pine-dominated, contained a greater abundance of other species, including Pinus strobus, Abies balsamea, and Picea glauca relative to the other stand types examined. These differences between stand types largely reflect historic gap-scale disturbances within the old-growth systems and their corresponding structural and compositional legacies. Nonetheless, extended rotation thinning treatments, by accelerating advancement to larger tree diameter classes, generated diameter distributions more closely approximating those found in old growth within a shorter time frame than depicted in long-term examinations of old-growth structural development. These results suggest that extended rotation treatments may accelerate the development of old-growth structural characteristics, provided that coarse woody debris and snags are deliberately retained and created on site. These and other developmental characteristics of old-growth systems can inform forest management when objectives include the restoration of structural conditions found in late-successional forests.
NASA Astrophysics Data System (ADS)
Kato, H.
2015-12-01
We investigated the transfer of canopy-intercepted radiocesium to the forest floor during 3 years following the Fukushima Daiichi Nuclear Power Plant accident. The cesium-137 (Cs-137) contents in throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (Japanese oak with red pine). We also measured the ambient dose rate (ADR) at different heights in the forest using a survey meter and a portable Ge gamma-ray detector. Total Cs-137 deposition flux from the canopy to forest floor for the mature cedar, young cedar, and the mixed broad-leaved stands were 166 kBq/m2, 174 kBq/m2, and 60 kBq/m2, respectively. These values correspond to 38%, 40% and 13% of total atmospheric input after the accident. The ambient dose rate in forest exhibited height dependency and its vertical distribution varied with forest type and stand age. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the height of dose measurement and forest type. The ambient dose rate at the canopy (approx. 10 m-height) decreased faster than that expected from physical decay of the two radiocesium isotopes, whereas those at the forest floor varied between the three forest stands. The radiocesium deposition via throughfall seemed to increase ambient dose rate during the first 200 days after the accident, however there was no clear relationship between litterfall and ambient dose rate since 400 days after the accident. These data suggested that the ambient dose rate in forest environment varied both spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor. However, further monitoring investigation and analysis are required to determine the effect of litterfall on long-term trend of ambient dose rate in forest environments.
Pourmokhtarian, Afshin; Driscoll, Charles T.; Campbell, John L.; Hayhoe, Katharine; Stoner, Anne M. K.; Adams, Mary Beth; Burns, Douglas; Fernandez, Ivan; Mitchell, Myron J.; Shanley, James B.
2017-01-01
A cross-site analysis was conducted on seven diverse, forested watersheds in the northeastern United States to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four atmosphere–ocean general circulation models (AOGCMs; CCSM4, HadGEM2-CC, MIROC5, and MRI-CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET-BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern United States are anticipated to increase evapotranspiration across all sites, although invoking CO2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce-fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snow packs, longer growing seasons, and associated water deficits. Considering future CO2effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a challenge to water resource management in the northeastern United States. Our analyses suggest that dominant vegetation type and soil type are important attributes in determining future hydrological responses to climate change.
Pourmokhtarian, Afshin; Driscoll, Charles T; Campbell, John L; Hayhoe, Katharine; Stoner, Anne M K; Adams, Mary Beth; Burns, Douglas; Fernandez, Ivan; Mitchell, Myron J; Shanley, James B
2017-02-01
A cross-site analysis was conducted on seven diverse, forested watersheds in the northeastern United States to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four atmosphere-ocean general circulation models (AOGCMs; CCSM4, HadGEM2-CC, MIROC5, and MRI-CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET-BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern United States are anticipated to increase evapotranspiration across all sites, although invoking CO 2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce-fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snow packs, longer growing seasons, and associated water deficits. Considering future CO 2 effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a challenge to water resource management in the northeastern United States. Our analyses suggest that dominant vegetation type and soil type are important attributes in determining future hydrological responses to climate change. © 2016 John Wiley & Sons Ltd.
C.C. Grier; K.M. Lee; N.M. [and others] Nadkarni
1989-01-01
Data on net primary biological productivity of United States forests are summarized by geographic region. Site factors influencing productivity are reviewed. This paper is a review of existing literature in the productivity of various forest regions of the United States, the influence of site factors on forest productivity, and the impact of various...
Forest operations and water quality in the south
Johnny M. Grace
2005-01-01
Southern forests, which rely on intensive management practices, are some of the most productive forests in the U.S. Intensive forest management utilizes forest operations, such as site preparation, fertilization, thinning, and harvesting, to increase site productivity and reduce rotation time. These operations are essential to meet the ever-increasing demands for...
Ozone concentration characteristics at a high-elevation forest site
G. Wooldridge; K. Zeller; R. Musselman
1997-01-01
Atmospheric ozone concentrations have been monitored at a subalpine forest ecosystem site, 3180m above mean sea level (msl), and at a 2680m msl forest-steppe ecotone site 15km to the southeast. Ozone concentrations were monitored at three heights above the ground on a 30m tower at the higher elevation site, and on a 10m tower in a large meadow downwind of this site....
Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A.; Poorter, Lourens; Bongers, Frans
2015-01-01
Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a ‘Community-Weighted Mean’ plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters. PMID:25919023
Morante-Filho, José Carlos; Faria, Deborah; Mariano-Neto, Eduardo; Rhodes, Jonathan
2015-01-01
Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.
Morante-Filho, José Carlos; Rhodes, Jonathan
2015-01-01
Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist. PMID:26083245
NASA Astrophysics Data System (ADS)
Li, Q.; Wu, H.; Yu, Y.; Sun, A.; Luo, Y.
2017-12-01
Reconstructing patterns of past vegetation change on a large-scale facilitates a better understanding of the interactions and feedbacks between climate change and the terrestrial biosphere. In addition, reducing the uncertainty in predictions of vegetation change under global warming highlights the importance of reconstructing vegetation patterns during past warming intervals. Here, we present a quantitative regional vegetation reconstruction for China during three intervals: Last Glacial Maximum (LGM, 18±2 14C kyr B.P.), early Holocene (8.5±0.5 14C kyr B.P.), and mid-Holocene (6±0.5 14C kyr B.P.). The biomization method, based on 249 pollen records, was used for the reconstructions. The results demonstrate that during the LGM, steppe and desert expanded eastwards and southwards, reaching the present-day temperate deciduous forest (TEDE) zone, and dominated northern China. In contrast, the forest in Eastern China underwent a substantial southwards retreat and the percentage of forest-type sites was at a minimum. In addition, the warm mixed forest (WAMF) and TEDE shifted southwards of 10° N relative to the present-day, and tropical seasonal rain forest (TSFO) was almost absent. At the same time, the forest-steppe boundary shifted southwards to near the middle and lower reaches of Yangtze River. For the early Holocene and mid-Holocene, the TSFO, WAMF, and TEDE shifted northwards by 2-5° relative to today, and the percentage of forest sites increased and reached a maximum in the mid-Holocene. The slight expansion of forest from the early Holocene to the mid-Holocene caused the forest-steppe boundary to shift northwestwards to near the present-day 300 mm isohyet by the mid-Holocene. Our results also indicate that climatic warming since the LGM, which strengthened the East Asian summer monsoon, favored the development of forest in China. This is potentially an important finding for evaluating the possible response of forest in China to future global warming.
De Steven, Diane; Faulkner, Stephen; Keeland, Bobby D.; Baldwin, Michael; McCoy, John W.; Hughes, Steven C.
2015-01-01
In the Mississippi River Alluvial Valley (MAV), complete alteration of river-floodplain hydrology allowed for widespreadconversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs haveattempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (afforestation)and local hydrologic enhancement on reclaimed croplands. Early assessments identified factors that influenced whetherplanting plus tree colonization could establish an overstory community similar to natural bottomland forests. The extentto which afforested sites develop typical understory vegetation has not been evaluated, yet understory composition may beindicative of restored site conditions. As part of a broad study quantifying the ecosystem services gained from restorationefforts, understory vegetation was compared between 37 afforested sites and 26 mature forest sites. Differences in vegetationattributes for species growth forms, wetland indicator classes, and native status were tested with univariate analyses;floristic composition data were analyzed by multivariate techniques. Understory vegetation of restoration sites was generallyhydrophytic, but species composition differed from that of mature bottomland forest because of young successional age anddiffering responses of plant growth forms. Attribute and floristic variation among restoration sites was related to variationin canopy development and local wetness conditions, which in turn reflected both intrinsic site features and outcomes ofrestoration practices. Thus, understory vegetation is a useful indicator of functional progress in floodplain forest restoration.
Vojtkó, András; Farkas, Tünde; Szabó, Anna; Havadtői, Krisztina; Vojtkó, Anna E.; Tölgyesi, Csaba; Cseh, Viktória; Erdős, László; Maák, István Elek; Keppel, Gunnar
2017-01-01
Background and aims Dolines are small- to large-sized bowl-shaped depressions of karst surfaces. They may constitute important microrefugia, as thermal inversion often maintains cooler conditions within them. This study aimed to identify the effects of large- (macroclimate) and small-scale (slope aspect and vegetation type) environmental factors on cool-adapted plants in karst dolines of East-Central Europe. We also evaluated the potential of these dolines to be microrefugia that mitigate the effects of climate change on cool-adapted plants in both forest and grassland ecosystems. Methods We compared surveys of plant species composition that were made between 2007 and 2015 in 21 dolines distributed across four mountain ranges (sites) in Hungary and Romania. We examined the effects of environmental factors on the distribution and number of cool-adapted plants on three scales: (1) regional (all sites); (2) within sites and; (3) within dolines. Generalized linear models and non-parametric tests were used for the analyses. Key Results Macroclimate, vegetation type and aspect were all significant predictors of the diversity of cool-adapted plants. More cool-adapted plants were recorded in the coolest site, with only few found in the warmest site. At the warmest site, the distribution of cool-adapted plants was restricted to the deepest parts of dolines. Within sites of intermediate temperature and humidity, the effect of vegetation type and aspect on the diversity of cool-adapted plants was often significant, with more taxa being found in grasslands (versus forests) and on north-facing slopes (versus south-facing slopes). Conclusions There is large variation in the number and spatial distribution of cool-adapted plants in karst dolines, which is related to large- and small-scale environmental factors. Both macro- and microrefugia are therefore likely to play important roles in facilitating the persistence of cool-adapted plants under global warming. PMID:28025290
Bátori, Zoltán; Vojtkó, András; Farkas, Tünde; Szabó, Anna; Havadtői, Krisztina; Vojtkó, Anna E; Tölgyesi, Csaba; Cseh, Viktória; Erdős, László; Maák, István Elek; Keppel, Gunnar
2017-01-01
Dolines are small- to large-sized bowl-shaped depressions of karst surfaces. They may constitute important microrefugia, as thermal inversion often maintains cooler conditions within them. This study aimed to identify the effects of large- (macroclimate) and small-scale (slope aspect and vegetation type) environmental factors on cool-adapted plants in karst dolines of East-Central Europe. We also evaluated the potential of these dolines to be microrefugia that mitigate the effects of climate change on cool-adapted plants in both forest and grassland ecosystems. We compared surveys of plant species composition that were made between 2007 and 2015 in 21 dolines distributed across four mountain ranges (sites) in Hungary and Romania. We examined the effects of environmental factors on the distribution and number of cool-adapted plants on three scales: (1) regional (all sites); (2) within sites and; (3) within dolines. Generalized linear models and non-parametric tests were used for the analyses. Macroclimate, vegetation type and aspect were all significant predictors of the diversity of cool-adapted plants. More cool-adapted plants were recorded in the coolest site, with only few found in the warmest site. At the warmest site, the distribution of cool-adapted plants was restricted to the deepest parts of dolines. Within sites of intermediate temperature and humidity, the effect of vegetation type and aspect on the diversity of cool-adapted plants was often significant, with more taxa being found in grasslands (versus forests) and on north-facing slopes (versus south-facing slopes). There is large variation in the number and spatial distribution of cool-adapted plants in karst dolines, which is related to large- and small-scale environmental factors. Both macro- and microrefugia are therefore likely to play important roles in facilitating the persistence of cool-adapted plants under global warming. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Estimating daily forest carbon fluxes using a combination of ground and remotely sensed data
NASA Astrophysics Data System (ADS)
Chirici, Gherardo; Chiesi, Marta; Corona, Piermaria; Salvati, Riccardo; Papale, Dario; Fibbi, Luca; Sirca, Costantino; Spano, Donatella; Duce, Pierpaolo; Marras, Serena; Matteucci, Giorgio; Cescatti, Alessandro; Maselli, Fabio
2016-02-01
Several studies have demonstrated that Monteith's approach can efficiently predict forest gross primary production (GPP), while the modeling of net ecosystem production (NEP) is more critical, requiring the additional simulation of forest respirations. The NEP of different forest ecosystems in Italy was currently simulated by the use of a remote sensing driven parametric model (modified C-Fix) and a biogeochemical model (BIOME-BGC). The outputs of the two models, which simulate forests in quasi-equilibrium conditions, are combined to estimate the carbon fluxes of actual conditions using information regarding the existing woody biomass. The estimates derived from the methodology have been tested against daily reference GPP and NEP data collected through the eddy correlation technique at five study sites in Italy. The first test concerned the theoretical validity of the simulation approach at both annual and daily time scales and was performed using optimal model drivers (i.e., collected or calibrated over the site measurements). Next, the test was repeated to assess the operational applicability of the methodology, which was driven by spatially extended data sets (i.e., data derived from existing wall-to-wall digital maps). A good estimation accuracy was generally obtained for GPP and NEP when using optimal model drivers. The use of spatially extended data sets worsens the accuracy to a varying degree, which is properly characterized. The model drivers with the most influence on the flux modeling strategy are, in increasing order of importance, forest type, soil features, meteorology, and forest woody biomass (growing stock volume).
Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa.
Moore, Sam; Adu-Bredu, Stephen; Duah-Gyamfi, Akwasi; Addo-Danso, Shalom D; Ibrahim, Forzia; Mbou, Armel T; de Grandcourt, Agnès; Valentini, Riccardo; Nicolini, Giacomo; Djagbletey, Gloria; Owusu-Afriyie, Kennedy; Gvozdevaite, Agne; Oliveras, Imma; Ruiz-Jaen, Maria C; Malhi, Yadvinder
2018-02-01
Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi-deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%-50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity-allocation-turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics. © 2017 John Wiley & Sons Ltd.
[A site index model for Larix principis-rupprechtii plantation in Saihanba, north China].
Wang, Dong-zhi; Zhang, Dong-yan; Jiang, Feng-ling; Bai, Ye; Zhang, Zhi-dong; Huang, Xuan-rui
2015-11-01
It is often difficult to estimate site indices for different types of plantation by using an ordinary site index model. The objective of this paper was to establish a site index model for plantations in varied site conditions, and assess the site qualities. In this study, a nonlinear mixed site index model was constructed based on data from the second class forest resources inventory and 173 temporary sample plots. The results showed that the main limiting factors for height growth of Larix principis-rupprechtii were elevation, slope, soil thickness and soil type. A linear regression model was constructed for the main constraining site factors and dominant tree height, with the coefficient of determination being 0.912, and the baseline age of Larix principis-rupprechtii determined as 20 years. The nonlinear mixed site index model parameters for the main site types were estimated (R2 > 0.85, the error between the predicted value and the actual value was in the range of -0.43 to 0.45, with an average root mean squared error (RMSE) in the range of 0.907 to 1.148). The estimation error between the predicted value and the actual value of dominant tree height for the main site types was in the confidence interval of [-0.95, 0.95]. The site quality of the high altitude-shady-sandy loam-medium soil layer was the highest and that of low altitude-sunny-sandy loam-medium soil layer was the lowest, while the other two sites were moderate.
Craig, Matthew E; Turner, Benjamin L; Liang, Chao; Clay, Keith; Johnson, Daniel J; Phillips, Richard P
2018-03-24
Forest soils store large amounts of carbon (C) and nitrogen (N), yet how predicted shifts in forest composition will impact long-term C and N persistence remains poorly understood. A recent hypothesis predicts that soils under trees associated with arbuscular mycorrhizas (AM) store less C than soils dominated by trees associated with ectomycorrhizas (ECM), due to slower decomposition in ECM-dominated forests. However, an incipient hypothesis predicts that systems with rapid decomposition-e.g. most AM-dominated forests-enhance soil organic matter (SOM) stabilization by accelerating the production of microbial residues. To address these contrasting predictions, we quantified soil C and N to 1 m depth across gradients of ECM-dominance in three temperate forests. By focusing on sites where AM- and ECM-plants co-occur, our analysis controls for climatic factors that covary with mycorrhizal dominance across broad scales. We found that while ECM stands contain more SOM in topsoil, AM stands contain more SOM when subsoil to 1 m depth is included. Biomarkers and soil fractionations reveal that these patterns are driven by an accumulation of microbial residues in AM-dominated soils. Collectively, our results support emerging theory on SOM formation, demonstrate the importance of subsurface soils in mediating plant effects on soil C and N, and indicate that shifts in the mycorrhizal composition of temperate forests may alter the stabilization of SOM. © 2018 John Wiley & Sons Ltd.
Pereira de Sousa, José Roberto; Carvalho-Filho, Fernando da Silva; Juen, Leandro; Esposito, Maria Cristina
2016-01-01
The present study was conducted in five different phytogeographic zones of the Brazilian state of Maranhão, three of which (the Amazon Forest, Cerrado, and Palm Groves) are more heterogeneous, whereas the other two (Marshlands and Mangroves) are more homogeneous. In each zone, nine sites were visited for the collection of necrophagous flies using bait traps in 2010, 2011, and 2012. The calliphorid and sarcophagid communities observed at each site were compared in terms of species richness, composition, and abundance. The more heterogeneous zones had higher species richness, except in the case of the sarcophagids in the forest habitats. The calliphorids Chloroprocta idioidea (Robineau- Desvoidy, 1830), Mesembrinella bicolor (Fabricius, 1805), Hemilucilia semidiaphana (Rondani, 1850) and Lucilia eximia (Wiedemann, 1819) were more closely associated with the Cerrado, Palm Grove and Amazon Forest zones, and Chrysomya megacephala (Fabricius, 194) with the Mangrove. In the sarcophagids, Peckia (Euboettcheria) subducta (Lopes, 1935) and P. (Pattonella) palidipilosa (Curran & Walley, 1934) were associated with the Amazon Forest, and P. (Sarcodexia) lambens (Wiedemann, 1830) and Tricharaea (Sarcophagula) occidua (Fabricius, 1794) with the Palm Grove and Cerrado zones. In the calliphorids, the greatest dissimilarity was recorded between the Amazon Forest and the Mangrove and Lowland grassland zones. In the sarcophagids, by contrast, the greatest dissimilarities were recorded between the Amazon Forest and all the other four zones. In general, then, the phytogeographic zones with the highest environmental heterogeneity were characterized by the greatest species richness and abundance of necrophagous flies. PMID:27798664
A Pilot Sampling Design for Estimating Outdoor Recreation Site Visits on the National Forests
Stanley J. Zarnoch; S.M. Kocis; H. Ken Cordell; D.B.K. English
2002-01-01
A pilot sampling design is described for estimating site visits to National Forest System lands. The three-stage sampling design consisted of national forest ranger districts, site days within ranger districts, and last-exiting recreation visitors within site days. Stratification was used at both the primary and secondary stages. Ranger districts were stratified based...
Population dynamics of introduced rodents in Hawaii Volcanoes National Park 1986-1990
Scheffler, Pamela Y.; Foote, D.; Forbes-Perry, Charlotte; Schlappa, K.; Stone, Charles P.
2012-01-01
We determined seasonal and geographical distribution patterns for four species of introduced rodents in Hawai‘i Volcanoes National Park from 1986-1990. We surveyed black rats (Rattus rattus), Polynesian rats (R. exulans), Norway rats (R. norvegicus) and house mice (Mus musculus) along an elevation gradient ranging from 90–1,820 m above sea level in five different sites using baited snap traps. Rodent community structure differed by elevation: there were more mice at montane sites and more Polynesian rats in the lowlands. We found that breeding occurred throughout the year for all species at all sites but that seasonal peaks in reproductive activity were common. Reproduction tended to be more common in the summer months at higher elevation sites and in the winter months at lower elevations. Rodents of all species were more abundant in our study in the winter than in the summer, but the differences were not significant. The overall sex ratio did not vary from a 1:1 ratio, but seasonally there were differences in sex ratio which varied with species and site. We calculated the minimum distance traveled from an assessment line and found that larger-bodied species traveled longer average distances. Pelage color in black rats was darkest in wet forest which may have adaptive value. Black and Polynesian rats were widespread in almost all habitat types, whereas mice were limited to dry and mesic sites; Norway rats were the rarest component of our sampling and found only in wet montane forest (‘Ōla‘a Forest).
NASA Astrophysics Data System (ADS)
O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.
2014-12-01
Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James A. Burger; J. Galbraith; T. Fox
2005-06-08
The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorialmore » in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these sites, we developed a cost-effective method for partitioning total soil carbon to pedogenic carbon and geogenic carbon in mine soils. We are in the process of evaluating the accuracy and precision of the proposed carbon partitioning technique for which we are designing an experiment with carefully constructed mine soil samples. In a second effort, as part of a mined land reforestation project for carbon sequestration in southwestern Virginia we implemented the first phase of the carbon monitoring protocol that was recently delivered to DOE.« less
Guzmán-Mendoza, Rafael; Castaño-Meneses, Gabriela; Nuñez-Palenius, Hector Gordon
2016-06-01
Ants have been considered useful for bioindication because of their ecological characteristics. Nonetheless, among the characteristics of a bioindicator group, there must be a consistent and replicable response to disturbance. In this sense, divergent reactions have been found, even between taxons narrowly related. The objective of this work was to compare the diversity of the ant communities in three different temperate forests with different levels of disturbance, and to correlate their abundance and diversity of species, with that found in other arthropod communities of the same forests. The work was carried out in three municipalities in the North of the State of Mexico, where three types of different forests were identified by their degree of disturbance. These types include: 1) primary forest (PF), with typical species of a conserved forest; 2) mixed forest (MF), with species of a conserved forest and a reforestation effort; and 3) reforested forest (RF), with species used in reforestation efforts and indicative of disturbance. In each sample, an area of 2 500 m2 was selected. Each area had 16 pitfalls apiece and they were placed 10 m away from each other. Samples were collected twice; one from February through March 2009 (dry season) and another from August through September 2010 (rainy season), which produced a total of 192 traps. Obtained specimens were identified at the most taxonomically specific level. All data captured was transformed to √n + 0.5 and diversity index levels of Shannon and Simpson were calculated, as well as richness of species for ants, beetles, grasshoppers, true bugs, and spiders. The values of richness, diversity, and abundance were correlated with the Pearson coefficient, and to evaluate possible causal relationships between these, a path analysis was performed. Results suggested an important influence of the site over ant communities, and values of richness, abundance and diversity were correlated with the communities of spiders, beetles, grasshoppers and true bugs, but not for all the sites studied. Responses to environmental changes are not only on the numeric proportions of abundance, richness and diversity, but also in the indirect and casual ecological interactions. Finally, the data seems to indicate that the responses of the ants to the environmental changes are not necessarily reflected on other organisms’ communities, so the ants’ role as bioindicators can be limited.
Variation in streamwater quality in an Urban Headwater Stream in the Southern Appalachians
Barton D. Clinton; James M. Vose
2006-01-01
We examined the influence of a forested landscape on the quality of water in a stream originating on an urban landscape and flowing through National Forest lands. Sample sites included an urban stream (URB), a site on the same stream but within a National Forest (FOR) and 2 km downstream from the URB site, and a small, undisturbed, forested reference tributary of the...
Long-term monitoring sites and trends at the Marcell Experimental Forest. Chapter 2.
Stephen D. Sebestyen; Carrie Dorrance; Donna M. Olson; Elon S. Verry; Randall K. Kolka; Art E. Elling; Richard Kyllander
2011-01-01
The MEF is one of few long-term research programs on the hydrology and ecology of undrained peatlands in boreal forests. No other site in the Experimental Forest and Range Network of the Forest Service and few sites around the globe have studied the hydrology and biogeochemistry of peatland watersheds with the intensity or longevity as on the MEF. In this chapter, we...
Peter E. Koestner; Karen A. Koestner; Daniel G. Neary
2012-01-01
The Sierra Ancha International Cooperative Program on Assessment and Monitoring of Air Pollution Effects on Forests study site or (SAEF-ICP II) is part of an international network of cooperative forest monitoring sites spread throughout Europe and the United States. The United Nations Economic Commission for Europe established the ICP II network in 1985 to monitor long...
Contrasting Patterns of Damage and Recovery in Logged Amazon Forests From Small Footprint LiDAR Data
NASA Technical Reports Server (NTRS)
Morton, D. C.; Keller, M.; Cook, B. D.; Hunter, Maria; Sales, Marcio; Spinelli, L.; Victoria, D.; Andersen, H.-E.; Saleska, S.
2012-01-01
Tropical forests ecosystems respond dynamically to climate variability and disturbances on time scales of minutes to millennia. To date, our knowledge of disturbance and recovery processes in tropical forests is derived almost exclusively from networks of forest inventory plots. These plots typically sample small areas (less than or equal to 1 ha) in conservation units that are protected from logging and fire. Amazon forests with frequent disturbances from human activity remain under-studied. Ongoing negotiations on REDD+ (Reducing Emissions from Deforestation and Forest Degradation plus enhancing forest carbon stocks) have placed additional emphasis on identifying degraded forests and quantifying changing carbon stocks in both degraded and intact tropical forests. We evaluated patterns of forest disturbance and recovery at four -1000 ha sites in the Brazilian Amazon using small footprint LiDAR data and coincident field measurements. Large area coverage with airborne LiDAR data in 2011-2012 included logged and unmanaged areas in Cotriguacu (Mato Grosso), Fiona do Jamari (Rondonia), and Floresta Estadual do Antimary (Acre), and unmanaged forest within Reserva Ducke (Amazonas). Logging infrastructure (skid trails, log decks, and roads) was identified using LiDAR returns from understory vegetation and validated based on field data. At each logged site, canopy gaps from logging activity and LiDAR metrics of canopy heights were used to quantify differences in forest structure between logged and unlogged areas. Contrasting patterns of harvesting operations and canopy damages at the three logged sites reflect different levels of pre-harvest planning (i.e., informal logging compared to state or national logging concessions), harvest intensity, and site conditions. Finally, we used multi-temporal LiDAR data from two sites, Reserva Ducke (2009, 2012) and Antimary (2010, 2011), to evaluate gap phase dynamics in unmanaged forest areas. The rates and patterns of canopy gap formation at these sites illustrate potential issues for separating logging damages from natural forest disturbances over longer time scales. Multi-temporal airborne LiDAR data and coincident field measurements provide complementary perspectives on disturbance and recovery processes in intact and degraded Amazon forests. Compared to forest inventory plots, the large size of each individual site permitted analyses of landscape-scale processes that would require extremely high investments to study using traditional forest inventory methods.
A comparison of models for estimating potential evapotranspiration for Florida land cover types
Douglas, Ellen M.; Jacobs, Jennifer M.; Sumner, David M.; Ray, Ram L.
2013-01-01
We analyzed observed daily evapotranspiration (DET) at 18 sites having measured DET and ancillary climate data and then used these data to compare the performance of three common methods for estimating potential evapotranspiration (PET): the Turc method (Tc), the Priestley-Taylor method (PT) and the Penman-Monteith method (PM). The sites were distributed throughout the State of Florida and represent a variety of land cover types: open water (3), marshland (4), grassland/pasture (4), citrus (2) and forest (5). Not surprisingly, the highest DET values occurred at the open water sites, ranging from an average of 3.3 mm d-1 in the winter to 5.3 mm d-1 in the spring. DET at the marsh sites was also high, ranging from 2.7 mm d-1 in winter to 4.4 mm d-1 in summer. The lowest DET occurred in the winter and fall seasons at the grass sites (1.3 mm d-1 and 2.0 mm d-1, respectively) and at the forested sites (1.8 mm d-1 and 2.3 mm d-1, respectively). The performance of the three methods when applied to conditions close to PET (Bowen ratio ≤ 1) was used to judge relative merit. Under such PET conditions, annually aggregated Tc and PT methods perform comparably and outperform the PM method, possibly due to the sensitivity of the PM method to the limited transferability of previously determined model parameters. At a daily scale, the PT performance appears to be superior to the other two methods for estimating PET for a variety of land covers in Florida.
Ponette-González, A G; Weathers, K C; Curran, L M
2010-10-01
In tropical regions, the effects of land-cover change on nutrient and pollutant inputs to ecosystems remain poorly documented and may be pronounced, especially in montane areas exposed to elevated atmospheric deposition. We examined atmospheric deposition and canopy interactions of sulfate-sulfur (SO4(2-)-S), chloride (Cl-), and nitrate-nitrogen (NO(3-)-N) in three extensive tropical montane land-cover types: clearings, forest, and coffee agroforest. Bulk and fog deposition to clearings was measured as well as throughfall (water that falls through plant canopies) ion fluxes in seven forest and five coffee sites. Sampling was conducted from 2005 to 2008 across two regions in the Sierra Madre Oriental, Veracruz, Mexico. Annual throughfall fluxes to forest and coffee sites ranged over 6-27 kg SO4(2-)-S/ha, 12-69 kg Cl-/ha, and 2-6 kg NO(3-)-N/ha. Sulfate-S in forest and coffee throughfall was higher or similar to bulk S deposition measured in clearings. Throughfall Cl- inputs, however, were consistently higher than Cl- amounts deposited to cleared areas, with net Cl- fluxes enhanced in evergreen coffee relative to semi-deciduous forest plots. Compared to bulk nitrate-N deposition, forest and coffee canopies retained 1-4 kg NO(3-)-N/ha annually, reducing NO(3-)-N inputs to soils. Overall, throughfall fluxes were similar to values reported for Neotropical sites influenced by anthropogenic emissions, while bulk S and N deposition were nine- and eightfold greater, respectively, than background wet deposition rates for remote tropical areas. Our results demonstrate that land-cover type significantly alters the magnitude and spatial distribution of atmospheric inputs to tropical ecosystems, primarily through canopy-induced changes in fog and dry deposition. However, we found that land cover interacts with topography and climate in significant ways to produce spatially heterogeneous patterns of anion fluxes, and that these factors can converge to create deposition hotspots. For land managers, this finding suggests that there is potential to identify species and ecosystems at risk of excess and increasing deposition in montane watersheds undergoing rapid transformation. Our data further indicate that montane ecosystems are vulnerable to air pollution impacts in this and similar tropical regions downwind of urban, industrial, and agricultural emission sources.
Recovery of Methane Consumption by Secondary Forests in the Amazon River Basin
NASA Astrophysics Data System (ADS)
Webster, K. D.; Meredith, L. K.; Piccini, W.; Pedrinho, A.; Nüsslein, K.; Van Haren, J. L. M.; Camargo, P. B. D.; Mui, T. S.; Saleska, S. R.
2017-12-01
Methane (CH4) is a major greenhouse gas in Earth's atmosphere and its atmospheric global mole fraction has roughly doubled since the start of the industrial revolution. The tropics are thought to be a major CH4 emitter, with the Amazon River Basin estimated to contribute 7 % of the annual flux to the atmosphere. The Amazon has experienced extensive land use change during the past 30 years, but we lack an understanding of the qualitative and quantitative effects of land use change on CH4 flux from the Amazon and the associated reasons. To illuminate the factors controlling CH4 flux across land use gradients in the Amazon we measured the CH4 fluxes and will measure the associated stable isotopic composition from pastures, primary forests, and secondary forests, at Ariquemes (Western Amazon, more deforested), and Santarem (Eastern Amazon, less deforested), Brazil. The sites near Santarem were sampled in June of 2016 and the sites near Ariquemes were sampled in March and April of 2017, both at the end of the wet season. Little difference was observed between land use types in Santarem with each land use type slightly consuming atmospheric CH4. However, pasture fluxes at Ariquemes were higher (+520 μg-C m-2 hr-1) than in primary (0 μg-C m-2 hr-1) and secondary forests (-20 μg-C m-2 hr-1; p = 6*10-4). CH4 flux from individual Santarem sites was not correlated with environmental variables. CH4 flux from Airquemes was correlated with several parameters across all samples including soil temperature (p = 7*10-4), and soil humidity (p = 0.02). Despite the fact that pastures experienced higher soil temperatures than forest soils this appears to be a low predictor of CH4 flux from these environments as it was seen at both Santarem and Ariquemes. The analysis of the stable isotopic composition of CH4 from these chambers will aid in understanding the competing processes of microbial CH4 consumption and production in these soils and why pastures may become CH4 sources and secondary forests are able to regain the function as a CH4 sink in some instances. Support: NSF, FAPESP-Biota, CNPq, CAPES.
NASA Astrophysics Data System (ADS)
Contreras, L.; Pross, J.; Bijl, P. K.; O'Hara, R. B.; Raine, J. I.; Sluijs, A.; Brinkhuis, H.
2014-01-01
Reconstructing the early Paleogene climate dynamics of terrestrial settings in the high southern latitudes is important to assess the role of high-latitude physical and biogeochemical processes in the global climate system. However, whereas a number of high-quality Paleogene climate records has become available for the marine realm of the high southern latitudes over the recent past, the long-term evolution of coeval terrestrial climates and ecosystems is yet poorly known. We here explore the climate and vegetation dynamics on Tasmania from the middle Paleocene to the early Eocene (60.7-54.2 Ma) based on a sporomorph record from Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau. Our results show that three distinctly different vegetation types thrived on Tasmania under a high-precipitation regime during the middle Paleocene to early Eocene, with each type representing different temperature conditions: (i) warm-temperate forests dominated by gymnosperms that were dominant during the middle and late Paleocene; (ii) cool-temperate forests dominated by southern beech (Nothofagus) and araucarians across the middle/late Paleocene transition interval (~59.5 to ~59.0 Ma); and (iii) paratropical forests rich in ferns that were established during and in the wake of the Paleocene-Eocene Thermal Maximum (PETM). The transient establishment of cool-temperate forests lacking any frost-sensitive elements (i.e., palms and cycads) across the middle/late Paleocene transition interval indicates markedly cooler conditions, with the occurrence of frosts in winter, on Tasmania during that time. The integration of our sporomorph data with previously published TEX86-based sea-surface temperatures from ODP Site 1172 documents that the vegetation dynamics on Tasmania were closely linked with the temperature evolution in the Tasman sector of the Southwest Pacific region. Moreover, the comparison of our season-specific climate estimates for the sporomorph assemblages from ODP Site 1172 with the TEX86L- and TEX86H-based temperature data suggests a warm-season bias of both calibrations for the early Paleogene of the high southern latitudes.
NASA Astrophysics Data System (ADS)
Contreras, L.; Pross, J.; Bijl, P. K.; O'Hara, R. B.; Raine, J. I.; Sluijs, A.; Brinkhuis, H.
2014-07-01
Reconstructing the early Palaeogene climate dynamics of terrestrial settings in the high southern latitudes is important to assess the role of high-latitude physical and biogeochemical processes in the global climate system. However, whereas a number of high-quality Palaeogene climate records has become available for the marine realm of the high southern latitudes over the recent past, the long-term evolution of coeval terrestrial climates and ecosystems is yet poorly known. We here explore the climate and vegetation dynamics on Tasmania from the middle Palaeocene to the early Eocene (60.7-54.2 Ma) based on a sporomorph record from Ocean Drilling Program (ODP) Site 1172 on the East Tasman Plateau. Our results show that three distinctly different vegetation types thrived on Tasmania under a high-precipitation regime during the middle Palaeocene to early Eocene, with each type representing different temperature conditions: (i) warm-temperate forests dominated by gymnosperms that were dominant during the middle and late Palaeocene (excluding the middle/late Palaeocene transition); (ii) cool-temperate forests dominated by southern beech (Nothofagus) and araucarians that transiently prevailed across the middle/late Palaeocene transition interval (~ 59.5 to ~ 59.0 Ma); and (iii) paratropical forests rich in ferns that were established during and in the wake of the Palaeocene-Eocene Thermal Maximum (PETM). The transient establishment of cool-temperate forests lacking any frost-sensitive elements (i.e. palms and cycads) across the middle/late Palaeocene transition interval indicates markedly cooler conditions, with the occurrence of frosts in winter, on Tasmania during that time. The integration of our sporomorph data with previously published TEX86-based sea-surface temperatures from ODP Site 1172 documents that the vegetation dynamics on Tasmania were closely linked with the temperature evolution in the Tasman sector of the Southwest Pacific region. Moreover, the comparison of our season-specific climate estimates for the sporomorph assemblages from ODP Site 1172 with the TEX86L- and TEX86H-based temperature data suggests a warm bias of both calibrations for the early Palaeogene of the high southern latitudes.
Identifying tropical dry forests extent and succession via the use of machine learning techniques
NASA Astrophysics Data System (ADS)
Li, Wei; Cao, Sen; Campos-Vargas, Carlos; Sanchez-Azofeifa, Arturo
2017-12-01
Information on ecosystem services as a function of the successional stage for secondary tropical dry forests (TDFs) is scarce and limited. Secondary TDFs succession is defined as regrowth following a complete forest clearance for cattle growth or agriculture activities. In the context of large conservation initiatives, the identification of the extent, structure and composition of secondary TDFs can serve as key elements to estimate the effectiveness of such activities. As such, in this study we evaluate the use of a Hyperspectral MAPper (HyMap) dataset and a waveform LIDAR dataset for characterization of different levels of intra-secondary forests stages at the Santa Rosa National Park (SRNP) Environmental Monitoring Super Site located in Costa Rica. Specifically, a multi-task learning based machine learning classifier (MLC-MTL) is employed on the first shortwave infrared (SWIR1) of HyMap in order to identify the variability of aboveground biomass of secondary TDFs along a successional gradient. Our paper recognizes that the process of ecological succession is not deterministic but a combination of transitional forests types along a stochastic path that depends on ecological, edaphic, land use, and micro-meteorological conditions, and our results provide a new way to obtain the spatial distribution of three main types of TDFs successional stages.
NASA Astrophysics Data System (ADS)
Perez-Quezada, J. F.; Brito, C. E.; Valdés, A.; Urrutia, P.
2016-12-01
Few studies have reported the effects of deforestation on carbon stocks and greenhouse gas balance in the temperate forests of the southern hemisphere. In some areas of southern Chile, after clear-cut or forest fires occurs a proliferation of Sphagnum moss, generating an anthropogenic type of peatland. We measured the effects of this change on the carbon stocks and the greenhouse gas balance, starting in 2013. Carbon stocks were measured in >30 plots on each site; ecosystem CO2 fluxes were measured continuously using eddy covariance stations; CH4 and N2O fluxes were measured monthly using closed chambers and cavity ring-down spectroscopy technology. Total ecosystem carbon stock was 1,523 Mg ha-1 in the forest and 130 Mg ha-1 in the peatland, representing a 91% difference. Both land use types were found to act as sinks of CO2 (NEE=-1094.2 and -31.9 g CO2 m-2 year-¹ for the forest and peatland, respectively); CH4 was mainly captured in the forest and peatland soils, generating balances of -0.70 and -0.12 g CH₄ m-2 year-¹. N2O fluxes were extremely low, so were considered as null. These results indicate that the greenhouse gas balance moved from -1134.6 to -38.8 g CO2-eq m-2 year-1 when land use changed from forest to anthropogenic peatland. These results provide evidence of the importance of preserving old-growth forests in southern Chile.
Forest Soil Disturbance Monitoring Protocol: Volume I: Rapid assessment
Deborah S. Page-Dumroese; Ann M. Abbott; Thomas M. Rice
2009-01-01
This volume of the Forest Soil Disturbance Monitoring Protocol (FSDMP) describes how to monitor forest sites before and after ground disturbing management activities for physical attributes that could influence site resilience and long-term sustainability. The attributes describe surface conditions that affect site sustainability and hydrologic function. Monitoring the...
NASA Astrophysics Data System (ADS)
Yoon, S.; Won, M.; Jang, K.; Lim, J.
2016-12-01
As there has been a recent increase in the case of forest fires in North Korea descending southward through the De-Militarized Zone (DMZ), ensuring proper response to such events has been a challenge. Therefore, in order to respond and manage these forest fires appropriately, an improvement in the forest fire predictability through integration of mountain weather information observed at the most optimal site is necessary. This study is a proactive case in which a spatial analysis and an on-site assessment method were developed for selecting an optimum site for a mountain weather observation in national forest. For spatial analysis, the class 1 and 2 forest fire danger areas for the past 10 years, accessibility maximum 100m, Automatic Weather Station (AWS) redundancy within 2.5km, and mountain terrains higher than 200m were analyzed. A final overlay analysis was performed to select the candidates for the field assessment. The sites selected through spatial analysis were quantitatively evaluated based on the optimal meteorological environment, forest and hiking trail accessibility, AWS redundancy, and supply of wireless communication and solar powered electricity. The sites with total score of 70 and higher were accepted as adequate. At the final selected sites, an AMOS was established, and integration of mountain and Korea Meteorological Administration (KMA) weather data improved the forest fire predictability in South Korea by 10%. Given these study results, we expect that establishing an automatic mountain meteorology observation station at the optimal sites in inaccessible area and integrating mountain weather data will improve the predictability of forest fires.
Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest
NASA Technical Reports Server (NTRS)
Ussler, William, III; Chanton, Jeffrey P.; Kelley, Cheryl A.; Martens, Christopher S.
1994-01-01
A set of continuous, high-resolution atmospheric radon (Rn-222) concentration time series and radon soil flux measurements were acquired during the summer of 1990 at a micrometeorological tower site 13 km northwest of Schefferville, Quebec, Canada. The tower was located in a dry upland, open-canopy lichen-spruce woodland. For the period July 23 to August 1, 1990, the mean radon soil flux was 41.1 +/- 4.8 Bq m(exp -2)/h. Radon surface flux from the two end-member forest floor cover types (lichen mat and bare soil) were 38.8 +/- 5.1 and 61.8 +/- 15.6 Bq m(exp -2)/h, respectively. Average total forest canopy resistances computed using a simple 'flux box' model for radon exchange between the forest canopy and the overlying atmosphere range from 0.47 +/- 0.24 s cm(exp -1) to 2.65 +/- 1.61 cm(exp -1) for daytime hours (0900-1700 LT) and from 3.44 +/- 0.91 s cm(exp -1) to 10.55 +/- 7.16 s cm(exp -1) for nighttime hours (2000-0600) for the period July 23 to August 6, 1990. Continuous radon profiling of canopy atmospheres is a suitable approach for determining rates of biosphere/atmosphere trace gas exchange for remote field sites where daily equipment maintenance is not possible. where daily equipment maintenance is not possible.
Root controls on soil microbial community structure in forest soils.
Brant, Justin B; Myrold, David D; Sulzman, Elizabeth W
2006-07-01
We assessed microbial community composition as a function of altered above- and belowground inputs to soil in forest ecosystems of Oregon, Pennsylvania, and Hungary as part of a larger Detritus Input and Removal Treatment (DIRT) experiment. DIRT plots, which include root trenching, aboveground litter exclusion, and doubling of litter inputs, have been established in forested ecosystems in the US and Europe that vary with respect to dominant tree species, soil C content, N deposition rate, and soil type. This study used phospholipid fatty-acid (PLFA) analysis to examine changes in the soil microbial community size and composition in the mineral soil (0-10 cm) as a result of the DIRT treatments. At all sites, the PLFA profiles from the plots without roots were significantly different from all other treatments. PLFA analysis showed that the rootless plots generally contained larger quantities of actinomycete biomarkers and lower amounts of fungal biomarkers. At one of the sites in an old-growth coniferous forest, seasonal changes in PLFA profiles were also examined. Seasonal differences in soil microbial community composition were greater than treatment differences. Throughout the year, treatments without roots continued to have a different microbial community composition than the treatments with roots, although the specific PLFA biomarkers responsible for these differences varied by season. These data provide direct evidence that root C inputs exert a large control on microbial community composition in the three forested ecosystems studied.
Carbon and water fluxes above a cacao plantation in Sulawesi, Indonesia
NASA Astrophysics Data System (ADS)
Falk, U.; Ibrom, A.
2003-04-01
The investigation of interactions between biosphere and atmosphere of the major land use types of the tropical rain forest margin area in South East Asia and quantification of the impact that land use change from undisturbed primary rain forest to pasture has on these interactions is task of subprogramme B1 within the DFG-funded project STORMA (Stability of Rain Forest Margins). In order to fulfill the projects tasks the different major land use types have to be investigated and each ecosystem characterized one by one and compared to a reference site in an undisturbed primary rain forest, to see the changes in the atmosphere-biospheric interactions, i. e. in water and carbon household, with land use change and thus the impact on regional climate. One of the major land use types in the valleys around the Lore Lindu National Park on Sulawesi are Cacao plantations, Theobroma cacao. A site in the Palolo valley near the village Nopu was chosen as research site since the area there is covered with small Cacao fields which form to one big area of Cacao and matches the requirements of the applied research approach. Since Cacao trees need to be shaded especially when younger, shadow trees had been planted and trees of the former forest had been left standing to serve as wind breaks and sun shades. The plantations in Nopu, Palolo valley, consist not only of fields of cultivated Cacao, but also serve as environment and home to the farmers and their families. The whole area of Cacao plantation is interspersed with wooden farm houses, which are also sources of carbon dioxide due to cooking or small power plants etc. and thus have to be taken into account when looking at the carbon household of this specific ecosystem. An estimation of the components of the carbon and water household and the contribution of the humans living within this environment to the carbon household of Cacao plantations of this ecosystem is subject of this presentation. From December 2001 until April 2002 and June 2002 until now eddy-covariance measurements have been performed above a Cacao plantation in Nopu measuring time series of water vapour, CO2, air temperature, three-dimensional wind vector, photosyntetic active radiation and the surface temperature of the Cacao canopy at 10 Hz. Additionally, net radiation balance and soil heat fluxes have been measured. In order to assess the carbon input caused by the humans living in the ecosystem, a mapping of the site area has been carried out, including investigations of consumption of fire wood and use of machines, like generators for example. In order to obtain the energy balance equation of the canopy surface, also the radiation balance and the heat flux into the canopy have to be evaluated.
NASA Astrophysics Data System (ADS)
McFarlane, K. J.; Torn, M. S.; Hanson, P. J.; Swanston, C.; Guilderson, T. P.; Porras, R. C.
2009-12-01
Forest soils represent a significant pool for C sequestration and storage, but the factors controlling soil C cycling are not well constrained. We used density fractionation and radiocarbon measurements to assess differences in soil C cycling amongst four eastern deciduous forests that are part of the AmeriFlux Network and vary in climate, soil type, parent material, and soil ecology. We collected mineral soil from 0-5 cm and 5-15 cm depth at Harvard Forest (HAF) in central Massachusetts, Bartlett Experimental Forest (BEF) in New Hampshire, the University of Michigan Biological Station (UMBS), and Baskett Wildlife Recreation and Education Area in the Missouri Ozarks (MOZ). Deeper soil samples have been collected (to 75 cm in some cases) for future analysis. We fractionated soil samples by density into free light (unprotected SOM), occluded light (physically protected SOM), and dense (mineral-protected) fractions using sodium polytungstate (1.65 g ml-1), measured C concentration and radiocarbon in bulk soil and fractions, and used a three-pool steady-state model to determine radiocarbon-based turnover times for fractions. The northeastern sites, HAF and BEF, had higher bulk soil C (65 and 40 g C kg soil-1, respectively) than did MOZ or UMBS (20 and 10 g C kg soil-1). Bulk soil radiocarbon values (Δ14C) decreased with depth and were lower at northeastern sites than Midwestern sites (36, 8, 113, and 65 ‰ for 0-5 cm at HF, BEF, MOZ, and UMBS, respectively). Soil C distribution amongst fractions was similar at HAF, BEF, and MOZ with the unprotected free light fraction containing about 40% of bulk soil C for 0-5 cm and 20% of bulk soil C for 5-15 cm. At these three sites, the physically protected occluded light fraction contained about 10% of bulk soil C, with the mineral-protected dense fraction containing the remaining 50-70%. In contrast, UMBS, the site with the sandiest soil, had a greater portion of bulk soil C recovered in the unprotected free light fraction and very little C recovered in the occluded light fraction. Radiocarbon-based SOM turnover times for the sites suggest that soil carbon pools in all three fractions turn over much more quickly at MOZ, the warmest site, than at the other sites. In addition, turnover times for free and occluded light fractions were slower at UMBS and BEF, the coolest sites, than at HAF and MOZ. These results suggest that soil type and climate interact to control soil organic matter cycling. Specifically, soil organic matter decomposition is slower in cooler than in warmer climates and there is more physically protected C in soils of finer texture, at least at the scale encompassed by our study. Acknowledgments This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231.
Is there a better metric than site index to indicate the productivity of forested lands?
Maria E. Blanco Martin; Michael Hoppus; Andrew Lister; James A. Westfall
2009-01-01
The Forest Service, U.S. Department of Agriculture's Forest Inventory and Analysis (FIA) program selects site trees for each plot that are used to measure site productivity. The ability of a site to produce wood volume is indicated indirectly by comparing total tree height with tree age. This comparison assumes that the rate of height growth is strongly related to...
Gavito, Mayra E; Pérez-Castillo, Daniel; González-Monterrubio, César F; Vieyra-Hernández, Teresa; Martínez-Trujillo, Miguel
2008-12-01
We conducted this study to explore limitations for the establishment of mycorrhizal associations in disturbed areas of the tropical dry ecosystem in the Chamela region of Jalisco, Mexico. Specifically, we: (1) assessed the diversity and composition of arbuscular mycorrhizal fungal (AMF) communities through spore morphospecies identification in three common land uses (primary forest, secondary forest, and pasture), (2) tested the inoculum potential of the AMF communities and the effect of water stress on the establishment of mycorrhizal associations in seedlings of various plant species, and (3) explored the importance of AMF community composition on early seedling development. Soil and root samples were taken from 15 random points in each of three plots established in two primary forests, two 26-year-old secondary forests, and two 26-year-old pastures. We expected that because of soil degradation and management, pastures would have the lowest and primary forests the highest AMF species richness. We found evidence for changes in AMF species composition due to land use and for higher morphospecies richness in primary forests than in secondary forests and pastures. We expected also that water stress limited plant and mycorrhizal development and that plants and AMF communities from secondary forests and pastures would be less affected by (better adapted to) water stress than those from the primary forest. We found that although all plant species showed biomass reductions under water stress, only some of the plant species had lower mycorrhizal development under water stress, and this was regardless of the AMF community inoculated. The third hypothesis was that plant species common to all land use types would respond similarly to all AMF communities, whereas plant species found mainly in one land use type would grow better when inoculated with the AMF community of that specific land use type. All plant species were however equally responsive to the three AMF communities inoculated, indicating that all plants established functionally compatible AMF in each community, with no preferences. The results suggest that early seedling growth and mycorrhizal development in secondary forests and pastures is not likely limited by diversity, quantity, or quality of mycorrhizal propagules but by the high temperature and water stress conditions prevailing at those sites.
NASA Astrophysics Data System (ADS)
Crivelli, A. J.; Grillas, P.; Lacaze, B.
1995-05-01
The floodplain of the river Strymon at Kerkini (northern Greece) was transformed into an irrigation reservoir by the construction of a dam in 1932 and subsequently enlarged in 1982. The aims of this study were to quantify the changes occurring in the various habitat types following raising of the waterlevel and to assess the stability of the plant communities present at this Ramsar site. The current hydrological regime, which has been stable since 1986, is typified by an increase in mean annual reservoir level of 2.2 m and by an increase in the annual range in level of 1.3 m. Landsat (1980, 1981, 1984, 1986, and 1988) and SPOT (1990) satellite images show a decrease in the area of grassland and shallow water areas, the very rapid disappearance of reedbeds, the appearance of beds of Nymphaea and the disappearance of half the forest area. The flooded forest, dominated by Salix alba, is a key habitat contributing to the biological richness of this wetland of international importance. The decrease in the forested area will continue because of the death of standing trees, the absence of regeneration under the new regime, the felling of trees and grazing. Management could be undertaken to ensure the survival of forested habitat and reedbeds at Kerkini, but this would require that the authorities take into account nature conservation and the protected status of the site and not raise the water level again.
Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix
2011-01-01
Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.
Effects of thinning on scatter-hoarding by rodents in temperate forest.
Zhang, Yifeng; Yu, Jing; Sichilima, Alfred M; Wang, Weirui; Lu, Jiqi
2016-05-01
Deforestation and thinning are human activities that can destabilize the forest ecological system and, consequently, impact significantly on habitat and behavior of forest-dwelling animals. This hypothesis was tested in Yugong in the Mount Taihangshan area by comparing the tracks of tagged seeds of Armeniaca sibirica. in sites of unthinned and thinned forests. Our results showed that: (i) the diversity of vegetation and rodents drastically reduced in sites with thinned forests, compared to unthinned sites; (ii) the amount of both removed and scatter-hoarded seeds significantly declined in sites with thinned forests, compared with the unthinned sites; (iii) there was no significant difference observed in the distance of seed dispersal between the thinned and unthinned areas; and (iv) the thinning did not show a significant change to the model of cache size. These results suggested that the thinning of forests negatively influenced the species richness and food-hoarding behavior of rodents. In addition, the results indicated that the weakened scattered-hoarding might be disadvantageous to seedling recruitment and forest restoration. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
Etienne, David; Ruffaldi, Pascale; Ritz, Frederic; Dupouey, Jean Luc; Dambrine, Etienne
2010-05-01
Recent archaeological surveys and ecological investigations in large "ancient" forests have shown that these areas had been often cultivated during the Roman or Medieval periods, and that this former land use is still deeply influencing present soil properties and plant biodiversity. This new perspective has boosted the research for sediment archives describing the state of forests across the archaeological and historical periods, especially in low altitude forest. Closed depressions (CD) or small hollows (over 30 000 CDs) are found in many silty plains of North-Western Europe (north-eastern France, Luxemburg and Belgium). They are defined as small (100 to 400 m²) closed wetlands, mostly supplied by rainwater. Their origin is debated. Recent coring campaigns in CDs of Lorraine (north-eastern France), 3 to 5 meters thick sediment cores were retrieved. It opened the way for palynological and pedological reconstruction of former landscapes. Here we present a sediment analysis of four peaty CDs (Assenoncourt, Römersberg, Sarrebourg and St Jean), located in different low altitude beech (Fagus) and oak (Quercus) forests, on silty clay soils, 50km from Nancy. As the oldest available map (Naudins, dated from 1728 to 1739) indicated forest boundaries similar to the present ones, these forests were considered as ancient forests. The sedimentation begins during the second Iron Age or Roman period. By this time, pollen analyses show an open landscape (70% of Non Arboreal Pollen), composed mostly by grassland (Plantago major/media, Poaceae and Asteraceae) and cropland (Cerealia-type, Centaurea cyanus). Around the 5th century AD, coinciding with the collapse of the Roman Empire, the pollen sequences describe rapid afforestation by Betula and Corylus, and later Carpinus forest. From the 8th century AD, Carpinus decreases in favour of Quercus which may reflect an anthropogenic clearing. From the 10th to the 14th century AD, croplands expand again with cultivation of hemp (Cannabis-type) and rye (Secale-type). From the 15th to the 19th century AD, pollen diagrams are similar at three sites and differ from the fourth. At Assenoncourt, St Jean and Römersberg, the contribution of Quercus, Carpinus and Fagus remains almost constant: 40%, 10% and 10%. This pattern may be related to short rotation forestry management applied in order to provide fuel wood to the local salt industry. At the fourth site (Sarrebourg), pollen assemblage varies with successive Quercus and Carpinus phases, following a natural sylvicultural evolution. Finally, the present-day forest extension took place during the 19th century with the replacement of wood by coal in the salt industry and the recent collapse of this salt industry during the 20th century. This study confirms, in the context of low altitude forests with heavy soils, what had been observed on shallow calcareous soils of the Lorrain plateau. Most of our state forests, that were thought to be "very ancient" or "immemorial" forest, have been managed for agriculture in the deep past. Because agriculture lands were often limed, fertilized, and eroded, this former agriculture use may to a large extent explain present soil properties and, as a consequence, present biodiversity.
Fire Impact on Phytomass and Carbon Emissions in the Forests of Siberia
NASA Astrophysics Data System (ADS)
Ivanova, Galina A.; Zhila, Sergei V.; Ivanov, Valery A.; Kovaleva, Nataly M.; Kukavskaya, Elena A.; Platonova, Irina A.; Conard, Susan G.
2014-05-01
Siberian boreal forests contribute considerably to the global carbon budget, since they take up vast areas, accumulate large amount of carbon, and are sensitive to climatic changes. Fire is the main forest disturbance factor, covering up to millions of hectares of boreal forests annually, of which the majority is in Siberia. Carbon emissions released from phytomass burning influence atmospheric chemistry and global carbon cycling. Changing climate and land use influence the number and intensity of wildfires, forest state, and productivity, as well as global carbon balance. Fire effects on forest overstory, subcanopy woody layer, and ground vegetation phytomass were estimated on sites in light-conifer forests of the Central Siberia as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). This study focuses on collecting quantitative data and modeling the influence of fires of varying intensity on fire emissions, carbon budget, and ecosystem processes in coniferous stands. Fires have a profound impact on forest-atmospheric carbon exchange and transform forests from carbon sinks to carbon sources lasting long after the time of burning. Our long-term experiments allowed us to identify vegetation succession patterns in taiga Scots pine stands after fires of known behavior. Estimating fire contributions to the carbon budget requires consideration of many factors, including vegetation type and fire type and intensity. Carbon emissions were found to depend on fire intensity and weather. In the first several years after fire, the above-ground phytomass appeared to be strongly controlled by fire intensity. However, the influence of burning intensity on organic matter accumulation was found to decrease with time.
AmeriFlux CA-NS6 UCI-1989 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS6 UCI-1989 burn site. Site Description - The UCI-1989 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS2 UCI-1930 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS2 UCI-1930 burn site. Site Description - The UCI-1930 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS3 UCI-1964 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS3 UCI-1964 burn site. Site Description - The UCI-1964 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS7 UCI-1998 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS7 UCI-1998 burn site. Site Description - The UCI-1998 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS8 UCI-2003 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS8 UCI-2003 burn site. Site Description - The UCI-2003 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS5 UCI-1981 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS5 UCI-1981 burn site. Site Description - The UCI-1981 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS4 UCI-1964 burn site wet
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS4 UCI-1964 burn site wet. Site Description - The UCI-1964 wet site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
AmeriFlux CA-NS1 UCI-1850 burn site
Goulden, Mike [University of California - Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-NS1 UCI-1850 burn site. Site Description - The UCI-1850 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.
Nitrous oxide fluxes from forest floor, tree stems and canopies of boreal tree species during spring
NASA Astrophysics Data System (ADS)
Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari
2017-04-01
Boreal forests are considered as small sources of atmospheric nitrous oxide (N2O) due to microbial N2O production in the soils. Recent evidence shows that trees may play an important role in N2O exchange of forest ecosystems by offering pathways for soil produced N2O to the atmosphere. To confirm magnitude, variability and the origin of the tree mediated N2O emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured forest floor, tree stem and shoot N2O exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in Southern Finland (61˚ 51´N, 24˚ 17´E, 181 a.s.l.). The fluxes were measured in silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation cover and forest structure. The aim was to study the vertical profile of N2O fluxes at stem level and to observe temporal changes in N2O fluxes over the beginning of the growing season. The N2O exchange was determined using the static chamber technique and gas chromatographic analyses. Scaffold towers were used for measurements at multiple stem heights and at the canopy level. Overall, the N2O fluxes from the forest floor and trees at both sites were very small and close to the detection limit. The measured trees mainly emitted N2O from their stems and shoots, while the forest floor acted as a sink of N2O at the paludified site and as a small source of N2O at the mineral soil site. Stem emissions from all the trees at both sites were on average below 0.5 μg N2O m-2 of stem area h-1, and the shoot emissions varied between 0.2 and 0.5 ng N2O m-2 g-1 dry biomass. When the N2O fluxes were scaled up to the whole forest ecosystem, based on the tree biomass and stand density, the N2O emissions from birch and spruce trees at the paludified site were 1.4 and 2.2 mg N2O ha-1 h-1, respectively, while the forest floor was a sink of -6.1 mg N2O ha-1 h-1. At the mineral soil site the upscaled N2O emissions from birch trees and forest floor were 3.6 and 8.9 mg N2O ha-1 h-1, respectively, indicating that the emissions from trees significantly contribute to the N2O emissions from boreal forests. The results also indicate that tree canopies contributed up to 89% of the whole-tree N2O emissions. Our findings demonstrate that we urgently need more studies focusing on leaf-level N2O exchange in forest ecosystems. Acknowledgement This research was financially supported by the National Programme for Sustainability I (LO1415), Czech Science Foundation (17-18112Y), ENVIMET (CZ.1.07/2.3.00/20.0246) , Emil Aaltonen Foundation, Academy of Finland Research Fellow projects (292699, 263858, 288494), The Academy of Finland Centre of Excellence (projects 1118615, 272041), and ICOS-Finland (281255). We thank Hyytiälä SMEAR II station staff and Marek Jakubik for technical support.
Assessment of carbon pools in production forest, Pahang, Malaysia
NASA Astrophysics Data System (ADS)
Azian, M.; Nizam, M. S.; Samsudin, M.; Ismail, P.
2016-11-01
Forest is one of the main sources of carbon stock. Forest plays a key role in sustainable management by providing different aspects of forest ecosystem such as source of timber products, provide of clean water, food sources, etc. A study was conducted to assess carbon pools in selected production forest of Pahang, Malaysia. There are five main types of carbon pools that are recognized available in the forest, i.e. aboveground biomass (AGB), belowground biomass (BGB), deadwood, litter and soil; that these components of carbon pools can accumulate and release carbon into the atmosphere. Five sites with different years of logging period representing status of the forest were selected (i.e. before logging (PU), immediate after logging (P0), after 10 (P10), 20 (P20) and 30 (P30) years of logging). Twenty plots of 0.25 ha (50 m × 50 m) each were established with a total sampling area of 1.0 ha at each site. All trees with ≥10 cm diameter at breast height (dbh) were tagged, identified and measured. Soil at 0-30 cm, litter and dead wood were sampled and collected in every each of sub-plots to determine and assess carbon stocks within sites. The results indicated that AGB carbon had highest portion of carbon compared to soil, BGB, deadwood and litter, which comprised about 63% of the total carbon pools. It was followed by soil and BGB that comprised about 22% and 13%, respectively. Deadwood and litter contributes the same percentage which is about 1%. In terms of status of the forest, AGB contained the highest carbon which is range from 110.49 tC ha-1 to 164.49 tC ha-1 compared with soil (33.72 tC ha-1 to 68.51 tC ha-1), BGB tC ha-1 to 34 tC ha-1), deadwood (1.57 tC ha-1 to 5.55 tC ha-1) and litter (1.42 tC ha-1 to 2.19 tC ha-1). Results from this study will be very helpful as baseline of carbon storage in different status of forest from before harvesting to logged-over forest and the impact of harvesting on the carbon stock in Pahang and Peninsular Malaysia as a whole.
NASA Astrophysics Data System (ADS)
Fessenden, J. E.; Randerson, J. T.; Schuur, E.; Zimov, S.
2002-12-01
Stable carbon isotope ratios of carbon dioxide and leaf organic matter were measured in boreal forests of varying age and fire severity in Siberia and Alaska. This study focused on moderate and extreme severity burn sites in neighboring Alaskan forests ranging from 2 years to 160 years and Siberian forests ranging from 1 year to 200 years. The Alaskan forests were composed primarily of black spruce (Picea Mariana) and quaking aspen (Populus tremuloides) with a shift in species dominance from aspen to spruce approximately 50 years after fire disturbance. The Siberian forests were composed of Dahurian larch (Larix gmelinii). The understory species are the same in both Siberia and Alaska: dwarf birch (Betula nana), willow (Salix alaxensis), blueberry (Vaccinium ovalifolium), cranberry (Vaccinium vitis-idaea), and various moss and lichen species. Our aim was to determine how disturbance influenced local and regional carbon isotopic ratios in organic pools and fluxes. Samples of organic δ13C in whole leaf tissue were collected from the dominant species of each forest. δ13CO2 and [CO2] were measured on soil cuvette- and canopy-CO2 to determine the isotopic ratio of soil and ecosystem respiration, respectively. Plant functional type primarily controlled the organic δ13C composition, and changes in abundance of different plant functional types with time since fire lead to patterns of 13C-enrichment with increased forest age. Successional stage and species composition trajectory dictated the composition of heterotrophic respiration with more 13C-enriched values found in dry/cold coniferous areas. Burn severity and successional state largely determined the distribution and abundance of plant functional types which dictated the δ13C values of organic pools and fluxes in the ecosystems. These results suggest that fire severity and frequency changes the carbon isotope composition of ecosystems and biosphere-atmosphere fluxes in ways that are predictable at local and regional scales by changing species composition and regrowth patterns.
pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils.
Stempfhuber, Barbara; Engel, Marion; Fischer, Doreen; Neskovic-Prit, Ganna; Wubet, Tesfaye; Schöning, Ingo; Gubry-Rangin, Cécile; Kublik, Susanne; Schloter-Hai, Brigitte; Rattei, Thomas; Welzl, Gerhard; Nicol, Graeme W; Schrumpf, Marion; Buscot, Francois; Prosser, James I; Schloter, Michael
2015-05-01
In this study, we investigated the impact of soil pH on the diversity and abundance of archaeal ammonia oxidizers in 27 different forest soils across Germany. DNA was extracted from topsoil samples, the amoA gene, encoding ammonia monooxygenase, was amplified; and the amplicons were sequenced using a 454-based pyrosequencing approach. As expected, the ratio of archaeal (AOA) to bacterial (AOB) ammonia oxidizers' amoA genes increased sharply with decreasing soil pH. The diversity of AOA differed significantly between sites with ultra-acidic soil pH (<3.5) and sites with higher pH values. The major OTUs from soil samples with low pH could be detected at each site with a soil pH <3.5 but not at sites with pH >4.5, regardless of geographic position and vegetation. These OTUs could be related to the Nitrosotalea group 1.1 and the Nitrososphaera subcluster 7.2, respectively, and showed significant similarities to OTUs described from other acidic environments. Conversely, none of the major OTUs typical of sites with a soil pH >4.6 could be found in the ultra- and extreme acidic soils. Based on a comparison with the amoA gene sequence data from a previous study performed on agricultural soils, we could clearly show that the development of AOA communities in soils with ultra-acidic pH (<3.5) is mainly triggered by soil pH and is not influenced significantly by the type of land use, the soil type, or the geographic position of the site, which was observed for sites with acido-neutral soil pH.
The use of Forest Service experimental forests and ranges for long-term research on invasive species
Ralph Holiday Crawford; Gary W. Miller
2010-01-01
The 81 experimental forests and ranges (EFRs) research sites make the U.S. Department of Agriculture (USDA), Forest Service unique among land management agencies. The EFRs were established for conducting applied research that serves as a basis for managing forests and rangelands. Most EFR research sites have long histories of experimentation and research that provide...
Daniel A. Yaussy
2000-01-01
Two individual-tree growth simulators are used to predict the growth and mortality on a 30-year-old forest site and an 80-year-old forest site in eastern Kentucky. The empirical growth and yield model (NE-TWIGS) was developed to simulate short-term (
AmeriFlux US-MMS Morgan Monroe State Forest
Philip, Rich [Indiana Univ., Bloomington, IN (United States); Novick, Kim [Indiana Univ., Bloomington, IN (United States)
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-MMS Morgan Monroe State Forest. Site Description - Owned by the Indiana Department of Natural Resources (IDNR), the Morgan Monroe State Forest, the site's namesake, is operated thanks to the long-term agreement between Indiana University and IDNR. The first settlers cleared the surrounding ridges for farming, but were largely unsuccessful. The state of Indiana purchased the land in 1929, creating the Morgan Monroe State Forest. Many of the trees in the tower footprint are 60-80 years old, surviving selective logging that ended over the past 10 years. Today, the forest is a secondary successional broadleaf forest within the maple-beech to oak hickory transition zone of the eastern deciduous forest.
Understory vegetation and site factors : implications for a managed Wisconsin landscape
K.D. Brosofske; J. Chen; Thomas R. Crow
2001-01-01
We investigated relationships between edaphic and environmental factors (soil, forest floor, topography, and canopy) and understory vegetation (composition, richness, and Shannon-Wiener diversity index, H')among 77 plots representing seven major patch types comprising a landscape in northern Wisconsin that has a long history of human management. Sampled patch...
Nizami, Syed Moazzam; Yiping, Zhang; Zheng, Zheng; Zhiyun, Lu; Guoping, Yang; Liqing, Sha
2017-03-01
Very old natural forests comprising the species of Fagaceae (Lithocarpus xylocarpus, Castanopsis wattii, Lithocarpus hancei) have been prevailing since years in the Ailaoshan Mountain Nature Reserve (AMNR) SW China. Within these forest trees, density is quite variable. We studied the forest structure, stand dynamics and carbon density at two different sites to know the main factors which drives carbon sequestration process in old forests by considering the following questions: How much is the carbon density in these forest trees of different DBH (diameter at breast height)? How much carbon potential possessed by dominant species of these forests? How vegetation carbon is distributed in these forests? Which species shows high carbon sequestration? What are the physiochemical properties of soil in these forests? Five-year (2005-2010) tree growth data from permanently established plots in the AMNR was analysed for species composition, density, stem diameter (DBH), height and carbon (C) density both in aboveground and belowground vegetation biomass. Our study indicated that among two comparative sites, overall 54 species of 16 different families were present. The stem density, height, C density and soil properties varied significantly with time among the sites showing uneven distribution across the forests. Among the dominant species, L. xylocarpus represents 30% of the total carbon on site 1 while C. wattii represents 50% of the total carbon on site 2. The average C density ranged from 176.35 to 243.97 t C ha -1 . The study emphasized that there is generous degree to expand the carbon stocking in this AMNR through scientific management gearing towards conservation of old trees and planting of potentially high carbon sequestering species on good site quality areas.
36 CFR 261.16 - Developed recreation sites.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Developed recreation sites. 261.16 Section 261.16 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE..., or using a fire outside of a fire ring provided by the Forest Service for such purpose or outside of...
Influence of Soil and Topography on Willow Oak Sites
William R. Beaufait
1956-01-01
Southern foresters and forest landowners are often faced with the necessity of estimating the productive capacity of their hardwood sites. The Southern Forest Experiment Station is developing techniques for using soil and topographic characteristics to predict site index (average height of dominants at age 50 years ) for many commercially important southern hardwood...