Sample records for forest stand structure

  1. Stand and cohort structures of old-growth Pinus resinosa-dominated forests of northern Minnesota, USA

    Treesearch

    Shawn Fraver; Brian J. Palik

    2012-01-01

    The wide range of stand and age-cohort structures in these old-growth P. resinosa stands depicts pre-settlement forests more complex than those of the single-cohort, post-stand-replacing-fire model that has guided regional forest management. Within-stand patchiness of cohort age structures implies disturbances operating at scales smaller than...

  2. Forest structure and development: implications for forest management

    Treesearch

    Kevin L. O' Hara

    2004-01-01

    A general premise of forest managers is that modern silviculture should be based, in large part, on natural disturbance patterns and species' adaptations to these disturbances. An understanding of forest stand dynamics is therefore a prerequisite to sound forest management. This paper provides a brief overview of forest stand development, stand structures, and...

  3. Relationships between forest cutting and understory vegetation: an overview of eastern hardwood stands

    Treesearch

    Hewlette S. Crawford

    1976-01-01

    The impacts of forest cutting upon understory vegetation were evaluated for Ozark oak-hickory and Appalachian oak-pine stands. These findings were related to similar information from other eastern forest types. Production of understory vegetation is related to stand type, stand structure, stand disturbance, and site. Stand type, structure, and site operate together to...

  4. Effects of Dwarf Mistletoe on Stand Structure of Lodgepole Pine Forests 21-28 Years Post-Mountain Pine Beetle Epidemic in Central Oregon

    PubMed Central

    Agne, Michelle C.; Shaw, David C.; Woolley, Travis J.; Queijeiro-Bolaños, Mónica E.

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21–28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to influence stand structure. PMID:25221963

  5. Tree microhabitat structures as indicators of biodiversity in Douglas-fir forests of different stand ages and management histories in the Pacific Northwest, U.S.A.

    Treesearch

    Alexa K. Michel; Susanne Winter

    2009-01-01

    In this study, microhabitat structures in Douglas-fir (Pseudotsuga menziesii) forests were defined and their frequency and abundance in natural stands and stands of varying active management histories and stand ages was compared. Indicator microhabitat structures for natural forests were determined and the relationship of the abundance of...

  6. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan

    2016-08-01

    Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and height diversity through silvicultural operations might constitute an effective approach for enhancing aboveground C storage in these forests.

  7. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  8. Object-based semi-automatic approach for forest structure characterization using lidar data in heterogeneous Pinus sylvestris stands

    Treesearch

    C. Pascual; A. Garcia-Abril; L.G. Garcia-Montero; S. Martin-Fernandez; W.B. Cohen

    2008-01-01

    In this paper, we present a two-stage approach for characterizing the structure of Pinus sylvestris L. stands in forests of central Spain. The first stage was to delimit forest stands using eCognition and a digital canopy height model (DCHM) derived from lidar data. The polygons were then clustered into forest structure types based on the DCHM data...

  9. An unsupervised two-stage clustering approach for forest structure classification based on X-band InSAR data - A case study in complex temperate forest stands

    NASA Astrophysics Data System (ADS)

    Abdullahi, Sahra; Schardt, Mathias; Pretzsch, Hans

    2017-05-01

    Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data.

  10. Patterns of covariance between forest stand and canopy structure in the Pacific Northwest.

    Treesearch

    Michael A. Lefsky; Andrew T. Hudak; Warren B. Cohen; S.A. Acker

    2005-01-01

    In the past decade, LIDAR (light detection and ranging) has emerged as a powerful tool for remotely sensing forest canopy and stand structure, including the estimation of aboveground biomass and carbon storage. Numerous papers have documented the use of LIDAR measurements to predict important aspects of forest stand structure, including aboveground biomass. Other...

  11. Application of Lidar remote sensing to the estimation of forest canopy and stand structure

    NASA Astrophysics Data System (ADS)

    Lefsky, Michael Andrew

    A new remote sensing instrument, SLICER (Scanning Lidar Imager of Canopies by Echo Recovery), has been applied to the problem of remote sensing the canopy and stand structure of two groups of deciduous forests, Tulip Poplar-Oak stands in the vicinity of Annapolis, MD. and bottomland hardwood stands near Williamston, NC. The ability of the SLICER instrument to remotely sense the vertical distribution of canopy structure (Canopy Height Profile), bulk canopy transmittance, and several indices of canopy height has been successfully validated using twelve stands with coincident field and SLICER estimates of canopy structure. Principal components analysis has been applied to canopy height profiles from both field sites, and three significant factors were identified, each closely related to the amount of foliage in a recognizable layer of the forest, either understory, midstory, or overstory. The distribution of canopy structure to these layers is significantly correlated with the size and number of stems supporting them. The same layered structure was shown to apply to both field and SLICER remotely sensed canopy height profiles, and to apply to SLICER remotely sensed canopy profiles from both the bottomland hardwood stands in the coastal plain of North Carolina, and to mesic Tulip-Poplars stands in the upland coastal plain of Maryland. Linear regressions have demonstrated that canopy and stand structure are correlated to both a statistically significant and useful degree. Stand age and stem density is more highly correlated to stand height, while stand basal area and aboveground biomass are more closely related to a new measure of canopy structure, the quadratic mean canopy height. A geometric model of canopy structure has been shown to explain the differing relationships between canopy structure and stand basal area for stands of Eastern Deciduous Forest and Douglas Fir Forest.

  12. Predicting temperate forest stand types using only structural profiles from discrete return airborne lidar

    NASA Astrophysics Data System (ADS)

    Fedrigo, Melissa; Newnham, Glenn J.; Coops, Nicholas C.; Culvenor, Darius S.; Bolton, Douglas K.; Nitschke, Craig R.

    2018-02-01

    Light detection and ranging (lidar) data have been increasingly used for forest classification due to its ability to penetrate the forest canopy and provide detail about the structure of the lower strata. In this study we demonstrate forest classification approaches using airborne lidar data as inputs to random forest and linear unmixing classification algorithms. Our results demonstrated that both random forest and linear unmixing models identified a distribution of rainforest and eucalypt stands that was comparable to existing ecological vegetation class (EVC) maps based primarily on manual interpretation of high resolution aerial imagery. Rainforest stands were also identified in the region that have not previously been identified in the EVC maps. The transition between stand types was better characterised by the random forest modelling approach. In contrast, the linear unmixing model placed greater emphasis on field plots selected as endmembers which may not have captured the variability in stand structure within a single stand type. The random forest model had the highest overall accuracy (84%) and Cohen's kappa coefficient (0.62). However, the classification accuracy was only marginally better than linear unmixing. The random forest model was applied to a region in the Central Highlands of south-eastern Australia to produce maps of stand type probability, including areas of transition (the 'ecotone') between rainforest and eucalypt forest. The resulting map provided a detailed delineation of forest classes, which specifically recognised the coalescing of stand types at the landscape scale. This represents a key step towards mapping the structural and spatial complexity of these ecosystems, which is important for both their management and conservation.

  13. Object-oriented classification of forest structure from light detection and ranging data for stand mapping

    Treesearch

    Alicia A. Sullivan; Robert J. McGaughey; Hans-Erik Andersen; Peter Schiess

    2009-01-01

    Stand delineation is an important step in the process of establishing a forest inventory and provides the spatial framework for many forest management decisions. Many methods for extracting forest structure characteristics for stand delineation and other purposes have been researched in the past, primarily focusing on high-resolution imagery and satellite data. High-...

  14. The role of stand history in assessing forest impacts

    USGS Publications Warehouse

    Dale, V.H.; Doyle, T.W.

    1987-01-01

    Air pollution, harvesting practices, and natural disturbances can affect the growth of trees and forest development. To make predictions about anthropogenic impacts on forests, we need to understand how these factors affect tree growth. In this study the effect of disturbance history on tree growth and stand structure was examined by using a computer model of forest development. The model was run under the climatic conditions of east Tennessee, USA, and the results compared to stand structure and tree growth data from a yellow poplar-white oak forest. Basal area growth and forest biomass were more accurately projected when rough approximations of the thinning and fire history typical of the measured plots were included in the simulation model. Stand history can influence tree growth rates and forest structure and should be included in any attempt to assess forest impacts.

  15. Evaporation and transpiration from forests in Central Europe - relevance of patch-level studies for spatial scaling

    NASA Astrophysics Data System (ADS)

    Köstner, B.

    Spatial scaling from patch to the landscape level requires knowledge on the effects of vegetation structure on maximum surface conductances and evaporation rates. The following paper summarizes results on atmospheric, edaphic, and structural controls on forest evaporation and transpiration observed in stands of Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica). Forest canopy transpiration (Ec) was determined by tree sapflow measurements scaled to the stand level. Estimates of understory transpiration and forest floor evaporation were derived from lysimeter and chamber measurements. Strong reduction of Ec due to soil drought was only observed at a Scots pine stand when soil water content dropped below 16% v/v. Although relative responses of Ec on atmospheric conditions were similar, daily maximum rates of could differ more than 100% between forest patches of different structure (1.5-3.0mmd-1 and 2.6-6.4mmd-1 for spruce and beech, respectively). A significant decrease of Ecmax per leaf area index with increasing stand age was found for monocultures of Norway spruce, whereas no pronounced changes in were observed for beech stands. It is concluded that structural effects on Ecmax can be specified and must be considered for spatial scaling from forest stands to landscapes. Hereby, in conjunction with LAI, age-related structural parameters are important for Norway spruce stands. Although compensating effects of tree canopy layers and understory on total evaporation of forests were observed, more information is needed to quantify structure-function relationships in forests of heterogenous structure.

  16. Multi-Cohort Stand Structural Classification: Ground- and LiDAR-based Approaches for Boreal Mixedwood and Black Spruce Forest Types of Northeastern Ontario

    NASA Astrophysics Data System (ADS)

    Kuttner, Benjamin George

    Natural fire return intervals are relatively long in eastern Canadian boreal forests and often allow for the development of stands with multiple, successive cohorts of trees. Multi-cohort forest management (MCM) provides a strategy to maintain such multi-cohort stands that focuses on three broad phases of increasingly complex, post-fire stand development, termed "cohorts", and recommends different silvicultural approaches be applied to emulate different cohort types. Previous research on structural cohort typing has relied upon primarily subjective classification methods; in this thesis, I develop more comprehensive and objective methods for three common boreal mixedwood and black spruce forest types in northeastern Ontario. Additionally, I examine relationships between cohort types and stand age, productivity, and disturbance history and the utility of airborne LiDAR to retrieve ground-based classifications and to extend structural cohort typing from plot- to stand-levels. In both mixedwood and black spruce forest types, stand age and age-related deadwood features varied systematically with cohort classes in support of an age-based interpretation of increasing cohort complexity. However, correlations of stand age with cohort classes were surprisingly weak. Differences in site productivity had a significant effect on the accrual of increasingly complex multi-cohort stand structure in both forest types, especially in black spruce stands. The effects of past harvesting in predictive models of class membership were only significant when considered in isolation of age. As an age-emulation strategy, the three cohort model appeared to be poorly suited to black spruce forests where the accrual of structural complexity appeared to be more a function of site productivity than age. Airborne LiDAR data appear to be particularly useful in recovering plot-based cohort types and extending them to the stand-level. The main gradients of structural variability detected using LiDAR were similar between boreal mixedwood and black spruce forest types; the best LiDAR-based models of cohort type relied upon combinations of tree size, size heterogeneity, and tree density related variables. The methods described here to measure, classify, and predict cohort-related structural complexity assist in translating the conceptual three cohort model to a more precise, measurement-based management system. In addition, the approaches presented here to measure and classify stand structural complexity promise to significantly enhance the detail of structural information in operational forest inventories in support of a wide array of forest management and conservation applications.

  17. Characteristics of Declining Forest Stands on the Allegheny National Forest

    Treesearch

    William H. McWilliams; Robert White; Stanford L. Arner; Christopher, A. Nowak; Susan L. Stout; Susan L. Stout

    1996-01-01

    Forest stands with advanced symptoms of forest decline located on the Allegheny National Forest in northwestern Pennsylvania were studied to describe contemporary stand structure and composition, and the status of regeneration. Across all 340 stands, 12 percent of the total basal area per acre was in dead trees and 16 percent was in trees at high risk of mortality. For...

  18. Long-term monitoring of diversity and structure of two stands of an Atlantic Tropical Forest

    PubMed Central

    Carvalho, Warley Augusto Caldas; Santos, Rubens Manoel; Gastauer, Markus; Garcia, Paulo Oswaldo; Fontes, Marco Aurélio Leite; Coelho, Polyanne Aparecida; Moreira, Aline Martins; Menino, Gisele Cristina Oliveira; Oliveira-Filho, Ary Teixeira

    2017-01-01

    Abstract Background This study aimed to report the long-term monitoring of diversity and structure of the tree community in a protected semideciduous Atlantic Forest in the South of Minas Gerais State, Southeast Brazil. The study was conducted in two stands (B and C), each with 26 and 38 10 m x 30 m plots. Censuses of stand B were conducted in 2000, 2005 and 2011, and stand C in 2001, 2006 and 2011. In both stands, the most abundant and important species for biomass accumulation over the inventories were trees larger than 20 cm of diameter, which characterize advanced successional stage within the forest. New information The two surveyed stands within the studied forest presented differences in structure, diversity and species richness over the time. PMID:28848371

  19. Long-term monitoring of diversity and structure of two stands of an Atlantic Tropical Forest.

    PubMed

    Diniz, Écio Souza; Carvalho, Warley Augusto Caldas; Santos, Rubens Manoel; Gastauer, Markus; Garcia, Paulo Oswaldo; Fontes, Marco Aurélio Leite; Coelho, Polyanne Aparecida; Moreira, Aline Martins; Menino, Gisele Cristina Oliveira; Oliveira-Filho, Ary Teixeira

    2017-01-01

    This study aimed to report the long-term monitoring of diversity and structure of the tree community in a protected semideciduous Atlantic Forest in the South of Minas Gerais State, Southeast Brazil. The study was conducted in two stands (B and C), each with 26 and 38 10 m x 30 m plots. Censuses of stand B were conducted in 2000, 2005 and 2011, and stand C in 2001, 2006 and 2011. In both stands, the most abundant and important species for biomass accumulation over the inventories were trees larger than 20 cm of diameter, which characterize advanced successional stage within the forest. The two surveyed stands within the studied forest presented differences in structure, diversity and species richness over the time.

  20. Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia

    Treesearch

    Deborah K. Kennard

    2002-01-01

    Stand structure, species richness and population structures of tree species were characterized in 12 stands representing 50 y of succession following slash-and-burn agriculture in a tropical dry forest in lowland Bolivia. Estimates of tree species richness, canopy cover and basal area reached or surpassed 75% of mature forest levels in the 5-, 8-, and 23-y-old stands...

  1. Stand density, stand structure, and species composition in transition oak stands of northwestern Pennsylvania

    Treesearch

    S.L. Stout

    1991-01-01

    Transition stands, those containing species associated with both the northern hardwood and oak-hickory forest types, are important to forest diversity in northwestern Pennsylvania. These stands have high value for a variety of forest uses, including timber production, wildlife habitat, and aesthetics. Diameter distributions are characteristically stratified by species...

  2. Model for multi-stand management based on structural attributes of individual stands

    Treesearch

    G.W. Miller; J. Sullivan

    1997-01-01

    A growing interest in managing forest ecosystems calls for decision models that take into account attribute goals for large forest areas while continuing to recognize the individual stand as a basic unit of forest management. A dynamic, nonlinear forest management model is described that schedules silvicultural treatments for individual stands that are linked by multi-...

  3. Influence of Tree Species Composition and Community Structure on Carbon Density in a Subtropical Forest

    PubMed Central

    Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong

    2015-01-01

    We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting. PMID:26317523

  4. Influence of Tree Species Composition and Community Structure on Carbon Density in a Subtropical Forest.

    PubMed

    Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong

    2015-01-01

    We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting.

  5. Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar.

    PubMed

    Bolton, Douglas K; Coops, Nicholas C; Wulder, Michael A

    2013-08-01

    The structure and productivity of boreal forests are key components of the global carbon cycle and impact the resources and habitats available for species. With this research, we characterized the relationship between measurements of forest structure and satellite-derived estimates of gross primary production (GPP) over the Canadian boreal. We acquired stand level indicators of canopy cover, canopy height, and structural complexity from nearly 25,000 km of small-footprint discrete return Light Detection and Ranging (Lidar) data and compared these attributes to GPP estimates derived from the MODerate resolution Imaging Spectroradiometer (MODIS). While limited in our capacity to control for stand age, we removed recently disturbed and managed forests using information on fire history, roads, and anthropogenic change. We found that MODIS GPP was strongly linked to Lidar-derived canopy cover (r = 0.74, p < 0.01), however was only weakly related to Lidar-derived canopy height and structural complexity as these attributes are largely a function of stand age. A relationship was apparent between MODIS GPP and the maximum sampled heights derived from Lidar as growth rates and resource availability likely limit tree height in the prolonged absence of disturbance. The most structurally complex stands, as measured by the coefficient of variation of Lidar return heights, occurred where MODIS GPP was highest as productive boreal stands are expected to contain a wider range of tree heights and transition to uneven-aged structures faster than less productive stands. While MODIS GPP related near-linearly to Lidar-derived canopy cover, the weaker relationships to Lidar-derived canopy height and structural complexity highlight the importance of stand age in determining the structure of boreal forests. We conclude that an improved quantification of how both productivity and disturbance shape stand structure is needed to better understand the current state of boreal forests in Canada and how these forests are changing in response to changing climate and disturbance regimes.

  6. Stand development patterns in southern bottomland hardwoods: Management considerations and research needs

    Treesearch

    Brian R. Lockhart; James S. Meadows; John D. Hodges

    2005-01-01

    Stand development invloves changes in stand structure over time. Knowledge of stand dvelopment patterns is crucial for effective forest managment, especially of southern botomland hardwood forests. These forests contain more than 70 tree species, many of which ahve commercial timber and wildlife habitat value. In this paper, current techniques in stand development...

  7. Assessing the effects of management on forest growth across France: insights from a new functional-structural model.

    PubMed

    Guillemot, Joannès; Delpierre, Nicolas; Vallet, Patrick; François, Christophe; Martin-StPaul, Nicolas K; Soudani, Kamel; Nicolas, Manuel; Badeau, Vincent; Dufrêne, Eric

    2014-09-01

    The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional-structural model is presented and is used to assess the effects of management on forest functioning at a national scale. The stand process-based model (PBM) CASTANEA was coupled to a stand structure module (SSM) based on empirical tree-to-tree competition rules. The calibration of the SSM was based on a thorough analysis of intersite and interannual variability of competition asymmetry. The coupled CASTANEA-SSM model was evaluated across France using forest inventory data, and used to compare the effect of contrasted silvicultural practices on simulated stand carbon fluxes and growth. The asymmetry of competition varied consistently with stand productivity at both spatial and temporal scales. The modelling of the competition rules enabled efficient prediction of changes in stand structure within the CASTANEA PBM. The coupled model predicted an increase in net primary productivity (NPP) with management intensity, resulting in higher growth. This positive effect of management was found to vary at a national scale across France: the highest increases in NPP were attained in forests facing moderate to high water stress; however, the absolute effect of management on simulated stand growth remained moderate to low because stand thinning involved changes in carbon allocation at the tree scale. This modelling approach helps to identify the areas where management efforts should be concentrated in order to mitigate near-future drought impact on national forest productivity. Around a quarter of the French temperate oak and beech forests are currently in zones of high vulnerability, where management could thus mitigate the influence of climate change on forest yield.

  8. Reconstructed old-growth forest stand structure and composition of two stands on the Olympic Peninsula, Washington state

    Treesearch

    David H. Peter; Constance A. Harrington

    2010-01-01

    We reconstructed the stand structure and composition for two western Washington old-growth forest stands harvested around 1930 (named Fresca and Rail) from field and historical data. Both old-growth stands had a codominant or dominant 250-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) overstory with a few scattered older Douglas-fir....

  9. Managed forest reserves: preserving diversity

    USGS Publications Warehouse

    Tappeiner, John; Poage, Nathan; Erickson, Janet L.

    2003-01-01

    As part of the Northwest Forest Plan, large areas have been designated on many federal forests in western Oregon to provide critical habitat for plants and animals that are associated with old-growth habitat. Some of the structural characteristics often considered typical of old forests include large-diameter overstory trees, large standing and fallen dead trees, and one or more understory layers (Figure 1). However, not all of these areas are currently in old-growth conditions. Many of them contain young (<40 years), uniformly dense Douglas-fir stands that regenerated after timber harvest. The original management goal for these stands was to produce high yields of timber and associated wood products. With implementation of the Northwest Forest Plan in 1994, the management objective shifted to accelerating development of old-growth characteristics by enhancing structural and biological diversity of these areas.A major challenge today is how to promote these structural characteristics in younger stands. Researchers have been asking if lessons can be learned from the development of our current old growth and applied to management of younger stands. Dr. John Tappeiner and his university and agency research partners are helping to answer this question by examining the differences in development between old-growth and young stands in western Oregon. Understanding how the structure of these old forests developed may provide a model for management of young stands, especially when the management goal is to provide habitat for species associated with older forests.

  10. Influence of Anthropogenic Disturbances on Stand Structural Complexity in Andean Temperate Forests: Implications for Managing Key Habitat for Biodiversity.

    PubMed

    Caviedes, Julián; Ibarra, José Tomás

    2017-01-01

    Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests < 70-year post-fire event, with the presence of habitat legacies (e.g. snags and CWD), can reach a structural complexity as high as undisturbed plots. Temperate forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests.

  11. Influence of Anthropogenic Disturbances on Stand Structural Complexity in Andean Temperate Forests: Implications for Managing Key Habitat for Biodiversity

    PubMed Central

    2017-01-01

    Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests < 70-year post-fire event, with the presence of habitat legacies (e.g. snags and CWD), can reach a structural complexity as high as undisturbed plots. Temperate forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests. PMID:28068349

  12. Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data

    Treesearch

    Van R. Kane; Jonathan D. Bakker; Robert J. McGaughey; James A. Lutz; Rolf F. Gersonde; Jerry F. Franklin

    2010-01-01

    LiDAR measurements of canopy structure can be used to classify forest stands into structural stages to study spatial patterns of canopy structure, identify habitat, or plan management actions. A key assumption in this process is that differences in canopy structure based on forest age and elevation are consistent with predictions from models of stand development. Three...

  13. The importance of forest structure to biodiversity–productivity relationships

    PubMed Central

    Huth, Andreas

    2017-01-01

    While various relationships between productivity and biodiversity are found in forests, the processes underlying these relationships remain unclear and theory struggles to coherently explain them. In this work, we analyse diversity–productivity relationships through an examination of forest structure (described by basal area and tree height heterogeneity). We use a new modelling approach, called ‘forest factory’, which generates various forest stands and calculates their annual productivity (above-ground wood increment). Analysing approximately 300 000 forest stands, we find that mean forest productivity does not increase with species diversity. Instead forest structure emerges as the key variable. Similar patterns can be observed by analysing 5054 forest plots of the German National Forest Inventory. Furthermore, we group the forest stands into nine forest structure classes, in which we find increasing, decreasing, invariant and even bell-shaped relationships between productivity and diversity. In addition, we introduce a new index, called optimal species distribution, which describes the ratio of realized to the maximal possible productivity (by shuffling species identities). The optimal species distribution and forest structure indices explain the obtained productivity values quite well (R2 between 0.7 and 0.95), whereby the influence of these attributes varies within the nine forest structure classes. PMID:28280550

  14. Ecosystem management, forest health, and silviculture

    Treesearch

    Merrill R. Kaufmann; Claudia M. Regan

    1995-01-01

    Forest health issues include the effects of fire suppression and grazing on forest stands, reduction in amount of old-growth forests, stand structural changes associated with even-aged management, .changes in structure of the landscape mosaic, loss of habitat for threatened species, and the introduction of exotic species. The consequences of these impacts can be...

  15. Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery

    NASA Technical Reports Server (NTRS)

    Cohen, Warren B.; Spies, Thomas A.

    1992-01-01

    Relationships between spectral and texture variables derived from SPOT HRV 10 m panchromatic and Landsat TM 30 m multispectral data and 16 forest stand structural attributes is evaluated to determine the utility of satellite data for analysis of hemlock forests west of the Cascade Mountains crest in Oregon and Washington, USA. Texture of the HRV data was found to be strongly related to many of the stand attributes evaluated, whereas TM texture was weakly related to all attributes. Data analysis based on regression models indicates that both TM and HRV imagery should yield equally accurate estimates of forest age class and stand structure. It is concluded that the satellite data are a valuable source for estimation of the standard deviation of tree sizes, mean size and density of trees in the upper canopy layers, a structural complexity index, and stand age.

  16. Tree regeneration spatial patterns in ponderosa pine forests following stand-replacing fire: Influence of topography and neighbors

    Treesearch

    Justin P. Ziegler; Chad M. Hoffman; Paula J. Fornwalt; Carolyn H. Sieg; Michael A. Battaglia; Marin E. Chambers; Jose M. Iniguez

    2017-01-01

    Shifting fire regimes alter forest structure assembly in ponderosa pine forests and may produce structural heterogeneity following stand-replacing fire due, in part, to fine-scale variability in growing environments. We mapped tree regeneration in eighteen plots 11 to 15 years after stand-replacing fire in Colorado and South Dakota, USA. We used point pattern analyses...

  17. Monitoring stand structure in mature coastal Douglas-fir forests: effect of plot size.

    Treesearch

    Andrew Gray

    2003-01-01

    National and regional interest in the distribution and trends of forest habitat structure and diversity have placed demands on forest inventories for accurate stand-level data. a primary need in the coastal Pacific Northwest of the United States is information on the extent and rate of development of mature forest structure. The objective of this study was to evaluate...

  18. Legacy of Pre-Disturbance Spatial Pattern Determines Early Structural Diversity following Severe Disturbance in Montane Spruce Forests

    PubMed Central

    Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.

    2015-01-01

    Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations. PMID:26421726

  19. Fuel management strategies in 60-year-old douglas-fir/ponderosa pine stands in the Squamish Forest district, British Columbia

    Treesearch

    Robert W. Gray; Bruce A. Blackwell

    2008-01-01

    The restoration of dry forest ecosystems in the Squamish Forest District in the past has focused on treating stands with no prior history of selective harvest and containing a large population of remnant historical stand structure. Many 60 to 90 year old stands that date...

  20. Understanding ponderosa pine forest-grassland vegetation dynamics at Fort Valley Experimental Forest using phytolith analysis

    Treesearch

    Becky K. Kerns; Margaret M. Moore; Stephen C. Hart

    2008-01-01

    In the last century, ponderosa pine forests in the Southwest have changed from more open park-like stands of older trees to denser stands of younger, small-diameter trees. Considerable information exists regarding ponderosa pine forest fire history and recent shifts in stand structure and composition, yet quantitative studies investigating understory reference...

  1. Comparison of riparian and upland forest stand structure and fuel loads in beetle infested watersheds, southern Rocky Mountains

    Treesearch

    Kathleen A. Dwire; Robert Hubbard; Roberto Bazan

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout western North America, and thereby contributing to the heterogeneity of fuel distribution. In forested watersheds, conifer-dominated riparian forests frequently occur as narrow linear features in the landscape mosaic and contribute to...

  2. Simulating historical disturbance regimes and stand structures in old-forest ponderosa pine/Douglas-fir forests

    Treesearch

    Mike Hillis; Vick Applegate; Steve Slaughter; Michael G. Harrington; Helen Smith

    2001-01-01

    Forest Service land managers, with the collaborative assistance from research, applied a disturbance based restoration strategy to rehabilitate a greatly-altered, high risk Northern Rocky Mountain old-forest ponderosa pine-Douglas-fir stand. Age-class structure and fire history for the site have been documented in two research papers (Arno and others 1995, 1997)....

  3. Landscape effects on structure and species composition of tabonuco forests in Puerto Rico: implications for conservation

    Treesearch

    Migdalia Alvarez Ruiz; Ariel E. Lugo

    2012-01-01

    We studied the structure and species composition of nine residual forest stands of Dacryodes excelsa (tabonuco), a dominant vegetation type in the moist and wet lower montane forests of the Caribbean. The stands were scattered over three different landscapes with different degrees of anthropogenic disturbance: forested, shade coffee, and tobacco. We compared our...

  4. Forest stand structure and pattern of old-growth western hemlock/Douglas-fir and mixed-conifer forests

    Treesearch

    Malcolm North; Jiquan Chen; Brian Oakley; Bo Song; Mark Rudnicki; Andrew Gray; Jim Innes

    2004-01-01

    With fire suppression, many western forests are expected to have fewer gaps and higher stem density of shade-tolerant species as light competition becomes a more significant influence on stand pattern and composition. We compared species composition, structure, spatial pattern, and environmental factors such as light and soil moisture between two old-growth forests:...

  5. Stand-level forest structure and avian habitat: Scale dependencies in predicting occurrence in a heterogeneous forest

    USGS Publications Warehouse

    Smith, K.M.; Keeton, W.S.; Donovan, T.M.; Mitchell, B.

    2008-01-01

    We explored the role of stand-level forest structure and spatial extent of forest sampling in models of avian occurrence in northern hardwood-conifer forests for two species: black-throated blue warbler (Dendroica caerulescens) and ovenbird (Seiurus aurocapillus). We estimated site occupancy from point counts at 20 sites and characterized the forest structure at these sites at three spatial extents (0.2, 3.0, and 12.0 ha). Weight of evidence was greatest for habitat models using forest stand structure at the 12.0-ha extent and diminished only slightly at the 3.0-ha extent, a scale that was slightly larger than the average territory size of both species. Habitat models characterized at the 0.2-ha extent had low support, yet are the closest in design to those used in many of the habitat studies we reviewed. These results suggest that the role of stand-level vegetation may have been underestimated in the past, which will be of interest to land managers who use habitat models to assess the suitability of habitat for species of concern. Copyright ?? 2008 by the Society of American Foresters.

  6. Changes in stand structure and composition after restoration treatments in low elevation dry forests of northeastern Oregon.

    Treesearch

    Andrew Youngblood; Kerry L. Metlen; Kent Coe

    2006-01-01

    In many fire-dependent forests in the United States, changes occurring in the last century have resulted in overstory structures, conifer densities, down woody structure and understory plant communities that deviate from those described historically. With these changes, many forests are presumed to be unsustainable. Broad-scale treatments are proposed to promote stand...

  7. Understanding ponderosa pine forest-grassland vegetation dynamics at Fort Valley Experimental Forest using phytolith analysis (P-53)

    Treesearch

    Becky K. Kerns; Margaret M. Moore; Stephen C. Hart

    2008-01-01

    In the last century, ponderosa pine forests in the Southwest have changed from more open park-like stands of older trees to denser stands of younger, smalldiameter trees. Considerable information exists regarding ponderosa pine forest fire history and recent shifts in stand structure and composition, yet quantitative studies investigating understory reference...

  8. Development of a stand-scale forest biodiversity index based on the state forest inventory

    Treesearch

    Diego Van Den Meersschaut; Kris Vandekerkhove

    2000-01-01

    Ecological aspects are increasingly influencing silvicultural management. Estimating forest biodiversity has become one often major tools for evaluating management strategies. A stand-scale forest biodiversity index is developed, based on available data from the state forest inventory. The index combines aspects of forest structure, woody and herbal layer composition,...

  9. Assessment of a model of forest dynamics under contrasting climate and disturbance regimes in the Pacific Northwest [FORCLIM

    USGS Publications Warehouse

    Busing, Richard T.; Solomon, Allen M.

    2005-01-01

    An individual-based model of forest dynamics (FORCLIM) was tested for its ability to simulate forest composition and structure in the Pacific Northwest region of North America. Simulation results across gradients of climate and disturbance were compared to forest survey data from several vegetation zones in western Oregon. Modelled patterns of tree species composition, total basal area and stand height across climate gradients matched those in the forest survey data. However, the density of small stems (<50 cm DBH) was underestimated by the model. Thus actual size-class structure and other density-based parameters of stand structure were not simulated with high accuracy. The addition of partial-stand disturbances at moderate frequencies (<0.01 yr-1) often improved agreement between simulated and actual results. Strengths and weaknesses of the FORCLIM model in simulating forest dynamics and structure in the Pacific Northwest are discussed.

  10. Forest structure and light regimes following moderate wind storms: implications for multi-cohort management.

    PubMed

    Hanson, Jacob J; Lorimer, Craig G

    2007-07-01

    Moderate-severity disturbances appear to be common throughout much of North America, but they have received relatively little detailed study compared to catastrophic disturbances and small gap dynamics. In this study, we examined the immediate impact of moderate-intensity wind storms on stand structure, opening sizes, and light regimes in three hemlock-hardwood forests of northeastern Wisconsin. These were compared to three stands managed by single-tree and group selection, the predominant forest management system for northern hardwoods in the region. Wind storms removed an average of 41% of the stand basal area, compared to 27% removed by uneven-aged harvests, but both disturbances removed trees from a wide range of size classes. The removal of nearly half of the large trees by wind in two old-growth stands caused partial retrogression to mature forest structure, which has been hypothesized to be a major disturbance pathway in the region. Wind storms resulted in residual stand conditions that were much more heterogeneous than in managed stands. Gap sizes ranged from less than 10 m2 up to 5000 m2 in wind-disturbed stands, whereas the largest opening observed in managed stands was only 200 m2. Wind-disturbed stands had, on average, double the available solar radiation at the forest floor compared to managed stands. Solar radiation levels were also more heterogeneous in wind-disturbed stands, with six times more variability at small scales (0.1225 ha) and 15 times more variability at the whole-stand level. Modification of uneven-aged management regimes to include occasional harvests of variable intensity and spatial pattern may help avoid the decline in species diversity that tends to occur after many decades of conventional uneven-aged management. At the same time, a multi-cohort system with these properties would retain a high degree of average crown cover, promote structural heterogeneity typical of old-growth forests, and maintain dominance by late-successional species.

  11. Influences of stand structure and fuel treatments on wildfire severity at Blacks Mountain Experimental Forest, northeastern California

    Treesearch

    Julie N. Symons; Dean H. K. Fairbanks; Carl N. Skinner

    2008-01-01

    This study utilizes forest stand structures and fuel profiles to evaluate the influence of different types of silvicultural treatments on fire severity in the Blacks Mountain Experimental Forest (BMEF), located within Lassen National Forest of northeastern California. We compare the severity of fire, assessed based on tree crown and bole scorch on 100 ha experimental...

  12. Application of the Forest Vegetation Simulator in evaluating management for old-growth characteristics in southwestern mixed conifer forests

    Treesearch

    Claudia M. Regan; Wayne D. Shepperd; Robert A. Obedzinski

    1995-01-01

    We used the Forest Vegetation Simulator (FVS) and GRAFM graphics display to investigate conditions associated with the stability of an old-growth stand and to evaluate the potential for two managed stands of contrasting but representative conditions to develop structures similar to the old-growth stand. Simulations indicate that the example old-growth stand can retain...

  13. Valuation of Forest Amenities: A Macro Approach

    Treesearch

    Ronald Raunikar; Joseph Buongiorno

    2001-01-01

    A method of estimating forest amenity value based on macroeconomic growth theory is presented. It relies on the assumption that more valuable forest amenities are provided by a forest with a more natural stand structure. We construct a forest naturalness index from stand data that provides a relative measure of the forest amenity provided regionally. This naturalness...

  14. Forest stand structure of the northern spotted owl's foraging habitat.

    Treesearch

    Malcolm P. North; Jerry F. Franklin; Andrew B. Carey; Eric D. Forsman; Tom Hamer

    1999-01-01

    Although the spotted owl's close association with old growth has been extensively studied, it more difficult to identify and quantify the abundance of particular stand structures associated with preferred owl foraging sites. Old-growth forests have a suite of characteristics that distinguish them from younger forests but which also make it difficult to isolate...

  15. Effects of tree size and spatial distribution on growth of ponderosa pine forests under alternative management scenarios

    Treesearch

    C.W. Woodall; C.E. Fiedler; R.E. McRoberts

    2009-01-01

    Forest ecosystems may be actively managed toward heterogeneous stand structures to provide both economic (e.g., wood production and carbon credits) and environmental benefits (e.g., invasive pest resistance). In order to facilitate wider adoption of possibly more sustainable forest stand structures, defining growth expectations among alternative management scenarios is...

  16. Quercus stellata growth and stand characteristics in the Quercus stellata-Quercus marilandica forest type in the Cross Timbers region of Central Oklahoma

    Treesearch

    James F. Rosson

    1994-01-01

    The author reports a baseline forest survey of Central and West Oklahoma to obtain tree and stand growth rates for harvest sustainability, standing volume estimates for biomass assessments, and stand structure to provide other pertinent data for exploring management options. This report focused on the Quercus stellata-Quercus marilandica forest type in the Cross...

  17. Interactive effects of historical logging and fire exclusion on ponderosa pine forest structure in the northern Rockies.

    PubMed

    Naficy, Cameron; Sala, Anna; Keeling, Eric G; Graham, Jon; DeLuca, Thomas H

    2010-10-01

    Increased forest density resulting from decades of fire exclusion is often perceived as the leading cause of historically aberrant, severe, contemporary wildfires and insect outbreaks documented in some fire-prone forests of the western United States. Based on this notion, current U.S. forest policy directs managers to reduce stand density and restore historical conditions in fire-excluded forests to help minimize high-severity disturbances. Historical logging, however, has also caused widespread change in forest vegetation conditions, but its long-term effects on vegetation structure and composition have never been adequately quantified. We document that fire-excluded ponderosa pine forests of the northern Rocky Mountains logged prior to 1960 have much higher average stand density, greater homogeneity of stand structure, more standing dead trees and increased abundance of fire-intolerant trees than paired fire-excluded, unlogged counterparts. Notably, the magnitude of the interactive effect of fire exclusion and historical logging substantially exceeds the effects of fire exclusion alone. These differences suggest that historically logged sites are more prone to severe wildfires and insect outbreaks than unlogged, fire-excluded forests and should be considered a high priority for fuels reduction treatments. Furthermore, we propose that ponderosa pine forests with these distinct management histories likely require distinct restoration approaches. We also highlight potential long-term risks of mechanical stand manipulation in unlogged forests and emphasize the need for a long-term view of fuels management.

  18. Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities

    Treesearch

    Erik A. Lilleskov; Thomas D. Bruns; Thomas R. Horton; D. Lee Taylor; Paul Grogan

    2004-01-01

    Ectomycorrhizal fungal (EMF) communities are highly diverse at the stand level. To begin to understand what might lead to such diversity, and to improve sampling designs, we investigated the spatial structure of these communities. We used EMF community data from a number of studies carried out in seven mature and one recently fire-initiated forest stand. We applied...

  19. Effect of crown class and habitat type on climate-growth relationships of ponderosa pine and Douglas-fir

    Treesearch

    Gunnar C. Carnwath; David W. Peterson; Cara R. Nelson

    2012-01-01

    There is increasing interest in actively managing forests to increase their resilience to climate-related changes. Although forest managers rely heavily on the use of silvicultural treatments that manipulate stand structure and stand dynamics to modify responses to climate change, few studies have directly assessed the effects of stand structure or canopy position on...

  20. Variable density thinning promotes variable structural responses 14 years after treatment in the Pacific Northwest

    Treesearch

    John L. Willis; Scott D. Roberts; Constance A. Harrington

    2018-01-01

    Young stands are commonly assumed to require centuries to develop into late-successional forest habitat. This viewpoint reflects the fact that young stands often lack many of the structural features that define late-successional habitat, and that these features derive from complex stand dynamics that are difficult to mimic with forest management. Variable density...

  1. Effects of Forest Disturbances on Forest Structural Parameters Retrieval from Lidar Waveform Data

    NASA Technical Reports Server (NTRS)

    Ranson, K, Lon; Sun, G.

    2011-01-01

    The effect of forest disturbance on the lidar waveform and the forest biomass estimation was demonstrated by model simulation. The results show that the correlation between stand biomass and the lidar waveform indices changes when the stand spatial structure changes due to disturbances rather than the natural succession. This has to be considered in developing algorithms for regional or global mapping of biomass from lidar waveform data.

  2. A Conceptual Model of Riparian Forest Response to Channel Abandonment on Meandering Rivers

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Hayden, M. K.; Battles, J. J.; Piegay, H.; Dufour, S.; Fremier, A. K.

    2008-12-01

    On alluvial rivers, hydrogeomorphic regimes exert a primary control on the regeneration of pioneer riparian forest stands and thus their composition and age structure. Seasonal flow patterns provide the necessary conditions for recruitment, and channel migration drives patterns of forest stand dynamics. To date, studies of pioneer riparian forest structure have focused primarily on point bar habitats, where woody vegetation typically recruits with decadal frequency in even-aged bands parallel to the river margin. However, there are indications that other recruitment pathways exist and can be important from a population and conservation perspective. On floodplains where channel migration occurs as infrequent cutoff or avulsion events, the geometry and position of the old channel relative to the new one determines rates and patterns of sedimentation and flood frequency. These conditions provide a brief opportunity for forest recruitment, and geomorphic evolution of the former channel habitat in turn influences forest dynamics. The population implications of this alternative forest regeneration pathway depend on the temporal dynamics of channel abandonment versus the rate of lateral channel migration. Preliminary analysis indicates that the geographic scope of this ecogeomorphological process is sizable. Along the Sacramento River (CA) and Ain River (France), for example, cottonwood-dominated stands associated with abandoned channels tend to be less frequent in number (38% of all stands) but larger in area (accounting for 53% of all forest area) relative to forest stands associated with laterally migrating point bars. Dendrochronological analysis confirms that tree ages in floodplain stands corresponds to the first decade after channel abandonment. These data indicate that changes to the rate and scale of channel abandonment due to human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest dynamics.

  3. Estimating cavity tree abundance using nearest neighbor imputation methods for western Oregon and Washington forests

    Treesearch

    Hailemariam Temesgen; Tara M. Barrett; Greg Latta

    2008-01-01

    Cavity trees contribute to diverse forest structure and wildlife habitat. For a given stand, the size and density of cavity trees indicate its diversity, complexity, and suitability for wildlife habitat. Size and density of cavity trees vary with stand age, density, and structure. Using Forest Inventory and Analysis (FIA) data collected in western Oregon and western...

  4. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States.

    PubMed

    Clark, James S; Iverson, Louis; Woodall, Christopher W; Allen, Craig D; Bell, David M; Bragg, Don C; D'Amato, Anthony W; Davis, Frank W; Hersh, Michelle H; Ibanez, Ines; Jackson, Stephen T; Matthews, Stephen; Pederson, Neil; Peters, Matthew; Schwartz, Mark W; Waring, Kristen M; Zimmermann, Niklaus E

    2016-07-01

    We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate-induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought-tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance. © 2016 John Wiley & Sons Ltd.

  5. Structure and development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa forests in Minnesota, USA

    USGS Publications Warehouse

    Silver, Emily J.; D'Amato, Anthony W.; Fraver, Shawn; Palik, Brian J.; Bradford, John B.

    2013-01-01

    The structure and developmental dynamics of old-growth forests often serve as important baselines for restoration prescriptions aimed at promoting more complex structural conditions in managed forest landscapes. Nonetheless, long-term information on natural patterns of development is rare for many commercially important and ecologically widespread forest types. Moreover, the effectiveness of approaches recommended for restoring old-growth structural conditions to managed forests, such as the application of extended rotation forestry, has been little studied. This study uses several long-term datasets from old growth, extended rotation, and unmanaged second growth Pinus resinosa (red pine) forests in northern Minnesota, USA, to quantify the range of variation in structural conditions for this forest type and to evaluate the effectiveness of extended rotation forestry at promoting the development of late-successional structural conditions. Long-term tree population data from permanent plots for one of the old-growth stands and the extended rotation stands (87 and 61 years, respectively) also allowed for an examination of the long-term structural dynamics of these systems. Old-growth forests were more structurally complex than unmanaged second-growth and extended rotation red pine stands, due in large part to the significantly higher volumes of coarse woody debris (70.7 vs. 11.5 and 4.7 m3/ha, respectively) and higher snag basal area (6.9 vs. 2.9 and 0.5 m2/ha, respectively). In addition, old-growth forests, although red pine-dominated, contained a greater abundance of other species, including Pinus strobus, Abies balsamea, and Picea glauca relative to the other stand types examined. These differences between stand types largely reflect historic gap-scale disturbances within the old-growth systems and their corresponding structural and compositional legacies. Nonetheless, extended rotation thinning treatments, by accelerating advancement to larger tree diameter classes, generated diameter distributions more closely approximating those found in old growth within a shorter time frame than depicted in long-term examinations of old-growth structural development. These results suggest that extended rotation treatments may accelerate the development of old-growth structural characteristics, provided that coarse woody debris and snags are deliberately retained and created on site. These and other developmental characteristics of old-growth systems can inform forest management when objectives include the restoration of structural conditions found in late-successional forests.

  6. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.

    PubMed

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-06-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands. © 2017 by the Ecological Society of America.

  7. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics

    USGS Publications Warehouse

    Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.

    2017-01-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.

  8. Correlations among stand ages and forest strata in mixed-oak forests of southeastern Ohio

    Treesearch

    P. Charles Goebel; David M. Hix

    1997-01-01

    Many models of landscape ecosystem development, as well as of forest stand dynamics, are based upon spatial and temporal changes in the species composition and structure of various forest strata. However, few document the interrelationships among forest strata, or the response of different strata to alterations of natural disturbance regimes. To examine how...

  9. Stand, species, and individual traits impact transpiration in historically disturbed forests.

    NASA Astrophysics Data System (ADS)

    Blakely, B.; Rocha, A. V.; McLachlan, J. S.

    2017-12-01

    Historic logging disturbances have changed the structure and species composition of most Northern temperate forests. These changes impact the process of transpiration - which in turn impacts canopy surface temperature - but the links among structure, composition, and transpiration remain unclear. For this reason, ecosystem models typically use simplified structure and composition to simulate the impact of disturbances on forest transpiration. However, such simplifications ignore real variability among stands, species, and individual trees that may strongly influence transpiration across spatial and temporal scales. To capture this variability, we monitored transpiration in 48 individual trees of multiple species in both undisturbed (400+ yr) and historically logged (80 - 120 yr) forests. Using modern and historic forest surveys, we upscaled our observations to stand and regional scales to identify the key changes impacting transpiration. We extended these inferences by establishing a relationship between transpiration and measured surface temperature, linking disturbance-induced changes in structure and composition to local and regional climate. Despite greater potential evapotranspiration and basal area, undisturbed forest transpired less than disturbed (logged) forest. Transpiration was a strong predictor of surface temperature, and the canopy surface was warmer in undisturbed forest. Transpiration differences among disturbed and undisturbed forests resulted from (1) lesser transpiration and dampened seasonality in evergreen species (2) greater transpiration in younger individuals within a species, and (3) strong transpiration by large individuals. When transpiration was scaled to the stand or regional level in a simplified manner (e.g. a single transpiration rate for all deciduous individuals), the resulting estimates differed markedly from the original. Stand- species- and individual-level traits are therefore essential for understanding how transpiration and surface temperature respond to disturbance. Without consideration of such traits, current ecosystem models may struggle to capture the true impact of logging disturbances on forest transpiration.

  10. Response of birds to thinning young Douglas-fir forests

    USGS Publications Warehouse

    Hayes, John P.; Weikel, Jennifer M.; Huso, Manuela M. P.; Erickson, Janet L.

    2003-01-01

    As a result of recent fire history and decades of even-aged forest management, many coniferous forests in western Oregon are composed of young (20-50 yrs), densely stocked Douglas-fir stands. Often these stands are structurally simple - a single canopy layer with one or two overstory tree species - and have a relatively sparse understory. The lack of structural complexity in these stands may limit the availability of key habitat components for several species of vertebrates, including birds. Thinning may increase structural diversity by reducing competition among overstory trees and increasing the amount of sunlight reaching the forest floor, thereby increasing development of understory vegetation. Existing old-growth forests may have developed under lower densities than is typical of contemporary plantations. Thus, thinning also may be a tool for accelerating the development of late-successional forest conditions in some circumstances. In addition to the potential increases in structural and biological diversity, thinning frequently is used to optimize wood fiber production and to generate timber revenue.

  11. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure

    PubMed Central

    Miquelajauregui, Yosune; Cumming, Steven G.; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456

  12. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    PubMed

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  13. Forest resources of Pennsylvania

    Treesearch

    Richard H. Widmann; Richard H. Widmann

    1995-01-01

    Phis report presents an analysis of the results of the 1989 forest inventory of Pennsylvania as well as trends that habe occurred since the previous survey. Major topics include changes in forest land by ownership, forest type, and timberland component7 stand structure is charaterized by stand size, understory woody vegetation, dead trees, and changes in relative...

  14. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon

    Treesearch

    Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....

  15. Simulating Carbon cycle and phenology in complex forests using a multi-layer process based ecosystem model; evaluation and use of 3D-CMCC-Forest Ecosystem Model in a deciduous and an evergreen neighboring forests, within the area of Brasschaat (Be)

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.

    2013-12-01

    3D-CMCC-Forest Ecosystem Model is a process based model formerly developed for complex forest ecosystems to estimate growth, water and carbon cycles, phenology and competition processes on a daily/monthly time scale. The Model integrates some characteristics of the functional-structural tree models with the robustness of the light use efficiency approach. It treats different heights, ages and species as discrete classes, in competition for light (vertical structure) and space (horizontal structure). The present work evaluates the results of the recently developed daily version of 3D-CMCC-FEM for two neighboring different even aged and mono specific study cases. The former is a heterogeneous Pedunculate oak forest (Quercus robur L. ), the latter a more homogeneous Scot pine forest (Pinus sylvestris L.). The multi-layer approach has been evaluated against a series of simplified versions to determine whether the improved model complexity in canopy structure definition increases its predictive ability. Results show that a more complex structure (three height layers) should be preferable to simulate heterogeneous scenarios (Pedunculate oak stand), where heights distribution within the canopy justify the distinction in dominant, dominated and sub-dominated layers. On the contrary, it seems that using a multi-layer approach for more homogeneous stands (Scot pine stand) may be disadvantageous. Forcing the structure of an homogeneous stand to a multi-layer approach may in fact increase sources of uncertainty. On the other hand forcing complex forests to a mono layer simplified model, may cause an increase in mortality and a reduction in average DBH and Height. Compared with measured CO2 flux data, model results show good ability in estimating carbon sequestration trends, on both a monthly/seasonal and daily time scales. Moreover the model simulates quite well leaf phenology and the combined effects of the two different forest stands on CO2 fluxes.

  16. Effects of intermediate-severity disturbance on composition and structure in mixed Pinus-hardwood stands

    Treesearch

    Benjamin Trammell; Justin Hart; Callie Schweitzer; Daniel C. Dey; Michael Steinberg

    2017-01-01

    Increasingly, forest managers intend to create or maintain mixed Pinus-hardwood stands. This stand assemblage may be driven by a variety of objectives but is often motivated by the desire to enhance native forest diversity and promote resilience to perturbations. Documenting the effects of natural disturbances on species composition and stand...

  17. Structural effects of liana presence in secondary tropical dry forests using ground LiDAR

    NASA Astrophysics Data System (ADS)

    Sánchez-Azofeifa, A.; Portillo-Quintero, C.; Durán, S. M.

    2015-10-01

    Lianas, woody vines, are a key component of tropical forest because they may reduce carbon storage potential. Lianas are increasing in density and biomass in tropical forests, but it is unknown what the potential consequences of these increases are for forest dynamics. Lianas may proliferate in disturbed areas, such as regenerating forests, but little is known about the role of lianas in secondary succession. In this study, we evaluated the potential of the ground LiDAR to detect differences in the vertical structure of stands of different ages with and without lianas in tropical dry forests. Specifically, we used a terrestrial laser scanner called VEGNET to assess whether liana presence influences the vertical signature of stands of different ages, and whether successional trajectories as detected by the VEGNET could be altered by liana presence. We deployed the VEGNET ground LiDAR system in 15 secondary forests of different ages early (21 years old since land abandonment), intermediate (32-35 years old) and late stages (> 80 years old) with and without lianas. We compared laser-derived vegetation components such as Plant Area Index (PAI), plant area volume density (PAVD), and the radius of gyration (RG) across forest stands between liana and no-liana treatments. In general forest stands without lianas show a clearer distinction of vertical strata and the vertical height of accumulated PAVD. A significant increase of PAI was found from intermediate to late stages in stands without lianas, but in stands where lianas were present there was not a significant trend. This suggests that lianas may be influencing successional trajectories in secondary forests, and these effects can be captured by terrestrial laser scanners such as the VEGNET. This research contributes to estimate the potential effects of lianas in secondary dry forests and highlight the role of ground LiDAR to monitor structural changes in tropical forests due to liana presence.

  18. Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.

    PubMed

    Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie

    2008-12-01

    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.

  19. Putting out fire with gasoline: pitfalls in the silvicultural treatment of canopy fuels

    Treesearch

    Christopher R. Keyes; J. Morgan Varner

    2007-01-01

    There is little question that forest stand structure is directly related to fire behavior, and that canopy fuel structure may be altered using silvicultural methods to successfully modify forest fire behavior and reduce susceptibility to crown fire initiation and spread. Silvicultural treatments can remediate hazardous stand structures that have developed as a result...

  20. Recent changes in the estimation of standing dead tree biomass and carbon stocks in the U.S. forest inventory

    Treesearch

    Grant M. Domke; Christopher W. Woodall; James E. Smith

    2012-01-01

    Until recently, standing dead tree biomass and carbon (C) has been estimated as a function of live tree growing stock volume in the U.S. Forest Service, Forest Inventory and Analysis (FIA) Program. Traditional estimates of standing dead tree biomass/C attributes were based on merchantability standards that did not reflect density reductions or structural loss due to...

  1. Imputing forest structure attributes from stand inventory and remotely sensed data in western Oregon, USA

    Treesearch

    Andrew T. Hudak; A. Tod Haren; Nicholas L. Crookston; Robert J. Liebermann; Janet L. Ohmann

    2014-01-01

    Imputation is commonly used to assign reference stand observations to target stands based on covariate relationships to remotely sensed data to assign inventory attributes across the entire landscape. However, most remotely sensed data are collected at higher resolution than the stand inventory data often used by operational foresters. Our primary goal was to compare...

  2. Percent canopy cover and stand structure statistics from the Forest Vegetation Simulator

    Treesearch

    Nicholas L. Crookston; Albert R. Stage

    1999-01-01

    Estimates of percent canopy cover generated by the Forest Vegetation Simulator (FVS) are corrected for crown overlap using an equation presented in this paper. A comparison of the new cover estimate to some others is provided. The cover estimate is one of several describing stand structure. The structure descriptors also include major species, ranges of diameters, tree...

  3. Introduction: Forest restoration in temperate and boreal zones

    Treesearch

    Emile Gardiner; Katrine Hahn; Magnus Löf

    2003-01-01

    The past decade has witnessed an acceleration of forest restoration activities around the globe. Afforestation of former agricultural land, rehabilitation of natural forest processes and structures at the stand and landscape levels, and conversion of single-species plantations to mixed-species stands are among the prominent types of restoration practices currently...

  4. Silvicultural applications: Restoring ecological structure and process in ponderosa pine forests

    Treesearch

    Carl E. Fiedler

    1996-01-01

    A primary goal of restoration treatments in ponderosa pine (Pinus ponderosa)/fir forests is to create more open stand structures, thereby improving tree vigor and reducing vulnerability to insects, disease, and severe fire. An additional goal in some stands is to manipulate existing species composition and site conditions to favor regeneration of...

  5. LANDIS PRO: a landscape model that predicts forest composition and structure changes at regional scales

    Treesearch

    Wen J. Wang; Hong S. He; Jacob S. Fraser; Frank R. Thompson; Stephen R. Shifley; Martin A. Spetich

    2014-01-01

    LANDIS PRO predicts forest composition and structure changes incorporating species-, stand-, and landscape-scales processes at regional scales. Species-scale processes include tree growth, establishment, and mortality. Stand-scale processes contain density- and size-related resource competition that regulates self-thinning and seedling establishment. Landscapescale...

  6. An Ecological Context for Regenerating Mult-cohort, Mixed-species Red Pine Forests

    Treesearch

    Brian Palik; John Zasada

    2003-01-01

    Human disturbances have simplified the structure and composition of red pine forest, relative to historical conditions. A greater understanding of natureal disturbances and their role in generating complex stand structures, and their associated benefits, has increased interest in managing for mixed-species, multi-aged stands. We outline a conceptual approach for...

  7. Statistical properties of mean stand biomass estimators in a LIDAR-based double sampling forest survey design.

    Treesearch

    H.E. Anderson; J. Breidenbach

    2007-01-01

    Airborne laser scanning (LIDAR) can be a valuable tool in double-sampling forest survey designs. LIDAR-derived forest structure metrics are often highly correlated with important forest inventory variables, such as mean stand biomass, and LIDAR-based synthetic regression estimators have the potential to be highly efficient compared to single-stage estimators, which...

  8. Compensating effect of sap velocity for stand density leads to uniform hillslope-scale forest transpiration across a steep valley cross-section

    NASA Astrophysics Data System (ADS)

    Renner, Maik; Hassler, Sibylle; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stan; Kleidon, Axel

    2016-04-01

    Roberts (1983) found that forest transpiration is relatively uniform across different climatic conditions and suggested that forest transpiration is a conservative process compensating for environmental heterogeneity. Here we test this hypothesis at a steep valley cross-section composed of European Beech in the Attert basin in Luxemburg. We use sapflow, soil moisture, biometric and meteorological data from 6 sites along a transect to estimate site scale transpiration rates. Despite opposing hillslope orientation, different slope angles and forest stand structures, we estimated relatively similar transpiration responses to atmospheric demand and seasonal transpiration totals. This similarity is related to a negative correlation between sap velocity and site-average sapwood area. At the south facing sites with an old, even-aged stand structure and closed canopy layer, we observe significantly lower sap velocities but similar stand-average transpiration rates compared to the north-facing sites with open canopy structure, tall dominant trees and dense understorey. This suggests that plant hydraulic co-ordination allows for flexible responses to environmental conditions leading to similar transpiration rates close to the water and energy limits despite the apparent heterogeneity in exposition, stand density and soil moisture. References Roberts, J. (1983). Forest transpiration: A conservative hydrological process? Journal of Hydrology 66, 133-141.

  9. The western spruce budworm model: structure and content.

    Treesearch

    K.A. Sheehan; W.P. Kemp; J.J. Colbert; N.L. Crookston

    1989-01-01

    The Budworm Model predicts the amounts of foliage destroyed annually by the western spruce budworm, Choristoneura occidentalis Freeman, in a forest stand. The model may be used independently, or it may be linked to the Stand Prognosis Model to simulate the dynamics of forest stands. Many processes that affect budworm population dynamics are...

  10. Influence of Forest-Canopy Morphology and Relief on Spectral Characteristics of Taiga Forests

    NASA Astrophysics Data System (ADS)

    Zhirin, V. M.; Knyazeva, S. V.; Eydlina, S. P.

    2017-12-01

    The article deals with the results of a statistical analysis reflecting tendencies (trends) of the relationship between spectral characteristics of taiga forests, indicators of the morphological structure of forest canopy and illumination of the territory. The study was carried out on the example of the model forest territory of the Priangarskiy taiga region of Eastern Siberia (Krasnoyarsk krai) using historical data (forest inventory 1992, Landsat 5 TM 16.06.1989) and the digital elevation model. This article describes a method for determining the quantitative indicator of morphological structure of forest canopy based on taxation data, and the authors propose to subdivide the morphological structure into high complexity, medium complexity, and relatively simple. As a result of the research, dependences of average values of spectral brightness in near and short-wave infrared channels of a Landsat 5 TM image for dark-coniferous, light-coniferous and deciduous forests from the degree of complexity of the forest-canopy structure are received. A high level of variance and maximum brightness average values are marked in green moss (hilocominosa) dark-coniferous and various-grass (larioherbosa) dark-coniferous forests and light-coniferous forests with a complex structure of canopy. The parvifoliate forests are characterized by high values of brightness in stands with a relatively simple structure of the canopy and by a small variance in brightness of any degree of the structure of the canopy complexity. The increase in brightness for the lit slopes in comparison with shaded ones in all stands with a difficult morphological canopy structure is revealed. However, the brightness values of the lit and shaded slopes do not differ for stands with a medium complexity of the structure. It is noted that, in addition to the indicator of the forest-canopy structure, the possible impact on increasing the variance of spectral brightness for the taxation plot has a variability of the slope ratio of "microslopes" inside the forest plot if it exceeds 60%.

  11. Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests

    Treesearch

    Justin Paul Ziegler; Chad Hoffman; Michael Battaglia; William Mell

    2017-01-01

    Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures,...

  12. An analytical model of stand dynamics as a function of tree growth, mortality and recruitment: the shade tolerance-stand structure hypothesis revisited.

    PubMed

    Zavala, Miguel A; Angulo, Oscar; Bravo de la Parra, Rafael; López-Marcos, Juan C

    2007-02-07

    Light competition and interspecific differences in shade tolerance are considered key determinants of forest stand structure and dynamics. Specifically two main stand diameter distribution types as a function of shade tolerance have been proposed based on empirical observations. All-aged stands of shade tolerant species tend to have steeply descending, monotonic diameter distributions (inverse J-shaped curves). Shade intolerant species in contrast typically exhibit normal (unimodal) tree diameter distributions due to high mortality rates of smaller suppressed trees. In this study we explore the generality of this hypothesis which implies a causal relationship between light competition or shade tolerance and stand structure. For this purpose we formulate a partial differential equation system of stand dynamics as a function of individual tree growth, recruitment and mortality which allows us to explore possible individual-based mechanisms--e.g. light competition-underlying observed patterns of stand structure--e.g. unimodal or inverse J-shaped equilibrium diameter curves. We find that contrary to expectations interspecific differences in growth patterns can result alone in any of the two diameter distributions types observed in the field. In particular, slow growing species can present unimodal equilibrium curves even in the absence of light competition. Moreover, light competition and shade intolerance evaluated both at the tree growth and mortality stages did not have a significant impact on stand structure that tended to converge systematically towards an inverse J-shaped curves for most tree growth scenarios. Realistic transient stand dynamics for even aged stands of shade intolerant species (unimodal curves) were only obtained when recruitment was completely suppressed, providing further evidence on the critical role played by juvenile stages of tree development (e.g. the sampling stage) on final forest structure and composition. The results also point out the relevance of partial differential equations systems as a tool for exploring the individual-level mechanisms underpinning forest structure, particularly in relation to more complex forest simulation models that are more difficult to analyze and to interpret from a biological point of view.

  13. The evaluation of different forest structural indices to predict the stand aboveground biomass of even-aged Scotch pine (Pinus sylvestris L.) forests in Kunduz, Northern Turkey.

    PubMed

    Ercanli, İlker; Kahriman, Aydın

    2015-03-01

    We assessed the effect of stand structural diversity, including the Shannon, improved Shannon, Simpson, McIntosh, Margelef, and Berger-Parker indices, on stand aboveground biomass (AGB) and developed statistical prediction models for the stand AGB values, including stand structural diversity indices and some stand attributes. The AGB prediction model, including only stand attributes, accounted for 85 % of the total variance in AGB (R (2)) with an Akaike's information criterion (AIC) of 807.2407, Bayesian information criterion (BIC) of 809.5397, Schwarz Bayesian criterion (SBC) of 818.0426, and root mean square error (RMSE) of 38.529 Mg. After inclusion of the stand structural diversity into the model structure, considerable improvement was observed in statistical accuracy, including 97.5 % of the total variance in AGB, with an AIC of 614.1819, BIC of 617.1242, SBC of 633.0853, and RMSE of 15.8153 Mg. The predictive fitting results indicate that some indices describing the stand structural diversity can be employed as significant independent variables to predict the AGB production of the Scotch pine stand. Further, including the stand diversity indices in the AGB prediction model with the stand attributes provided important predictive contributions in estimating the total variance in AGB.

  14. Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density

    NASA Astrophysics Data System (ADS)

    Varo-Martínez, Mª Ángeles; Navarro-Cerrillo, Rafael M.; Hernández-Clemente, Rocío; Duque-Lazo, Joaquín

    2017-04-01

    Traditionally, forest-stand delineation has been assessed based on orthophotography. The application of LiDAR has improved forest management by providing high-spatial-resolution data on the vertical structure of the forest. The aim of this study was to develop and test a semi-automated algorithm for stands delineation in a plantation of Pinus sylvestris L. using LiDAR data. Three specific objectives were evaluated, i) to assess two complementary LiDAR metrics, Assmann dominant height and basal area, for the characterization of the structure of P. sylvestris Mediterranean forests based on object-oriented segmentation, ii) to evaluate the influence of the LiDAR pulse density on forest-stand delineation accuracy, and iii) to investigate the algorithmś effectiveness in the delineation of P. sylvestris stands for map prediction of Assmann dominant height and basal area. Our results show that it is possible to generate accurate P. sylvestris forest-stand segmentations using multiresolution or mean shift segmentation methods, even with low-pulse-density LiDAR - which is an important economic advantage for forest management. However, eCognition multiresolution methods provided better results than the OTB (Orfeo Tool Box) for stand delineation based on dominant height and basal area estimations. Furthermore, the influence of pulse density on the results was not statistically significant in the basal area calculations. However, there was a significant effect of pulse density on Assmann dominant height [F2,9595 = 5.69, p = 0.003].for low pulse density. We propose that the approach shown here should be considered for stand delineation in other large Pinus plantations in Mediterranean regions with similar characteristics.

  15. Effects of silvicultural management intensity on fluxes of dissolved and particulate organic matter in 27 forest sites of the Biodiversity Exploratories

    NASA Astrophysics Data System (ADS)

    Michalzik, Beate; Bischoff, Sebastian; Levia, Delphis; Schwarz, Martin; Escher, Peter; Wilcke, Wolfgang; Thieme, Lisa; Kerber, Katja; Kaupenjohann, Martin; Siemens, Jan

    2017-04-01

    In forested ecosystems, throughfall and stemflow function as key components in the cycling of water and associated biogeochemistry. Analysing annual flux data collected from 27 intensively monitored forest sites of the Biodiversity Exploratories, we found throughfall fluxes of DOC (dissolved organic carbon) linearly related (R2 = 0.40, p < 0.001) to the silvicultural management intensity indicator (SMI) developed by Schall and Ammer (2013). The SMI combines tree species, stand age and aboveground living and dead woody biomass, thereby allowing the quantifying of silvicultural management intensities of stands differing in species composition, age, silvicultural system as they convert from one stand type into another. Throughfall fluxes of particulate organic C and N (POC and PN) and dissolved N were, however independent from those forest structural metrics as well as annual C and N stemflow fluxes, which varied greatly among management intensity classes. In this context, we suggest that canopy structure metrics are more important drivers of water and matter stemflow dynamics, than structural metrics on the level of forest stands. On the other hand, leaching losses of DOC and POC from the litter layer of forests increased significantly with increasing forest management intensity. The observed relationships revealed by intensive flux monitoring are important because they allow us to link organic matter fluxes to forest metrics of larger forested areas (e.g. derived from LiDAR imagery), and hence to model and up-scale water-bound OC dynamics to the landscape level.

  16. Canopy gap characteristics of an old-growth and an adjacent second-growth beech-maple stand in north-central Ohio

    Treesearch

    David M. Hix; P. Charles Goebel; Heather L. Whitman

    2011-01-01

    The increased importance of integrating concepts of natural disturbance regimes into forest management, as well as the need to manage for complex forest structures, requires an understanding of how forest stands develop following natural disturbances. One of the primary natural disturbance types occurring in beech-maple ecosystems of the Central Hardwood Forest is...

  17. Diameter growth of trees in an uneven-aged oak forest in the Missouri Ozarks

    Treesearch

    Edward F. Loewenstein; Paul S. Johnson; Harold E. Garrett

    1997-01-01

    We tested the efficacy of even-aged stand tables for predicting diameter growth of trees in uneven-aged oak stands. The study was based on the age- and diameter-structure of the Pioneer Forest, a 156,000-acre, privately owned oak forest in the Ozark Highlands of Missouri. The forest has been managed by single-tree selection since 1954.

  18. Optical and Electronic Properties of Nano-Materials from First Principles Computation

    NASA Astrophysics Data System (ADS)

    Deslippe, Jack Richard

    This dissertation examines effects of land management on forest structure at both the stand and landscape scales. Specifically, it investigates the effect of five types of silvicultural cutting (clear-cut, improvement thinning, diameter-limited thinning from the top, diameter-limited thinning from below, and the initial cut of a shelterwood system) on forest structural diversity and carbon storage in mixed oak hardwood forests of Pennsylvania. Furthermore, it develops LiDAR (Light Detecting and Ranging) techniques to quantify forest structural diversity at a landscape level to examine forest structure, with comparisons between eco-provinces and management types. At the stand scale, it was found that structural resilience to silvicultural disturbances was greater than compositional resilience, resulting in forests that appeared to recover quickly from disturbance but were compositionally altered. More intense disturbances caused greater changes in forest structure and composition, requiring longer to return to near predisturbance conditions; however, the forest strata disturbed also influenced the disturbance severity and therefore the forest's response. This study demonstrated that silvicultural cutting may be used to increase structural diversity at the stand level (e.g., establishment cut of a shelterwood system); however, this comes at the cost of an increase in shade-tolerant regeneration to the detriment of economically and ecologically valuable mid-successional species. The long-term outcomes of partial cuts were complex and context specific, and this complexity may be useful for maintaining or increasing structural complexity at the landscape level. A variety of silvicultural techniques should be implemented to achieve management objectives of increased forest structural diversity. In terms of carbon storage at the stand scale, although the clearcutting treatment had the highest carbon periodic annual increment (cPAI) in the first 15 years post harvest, it was projected to store considerably less carbon in the long term (over 100-years) than the other treatments. The projected low carbon storage in this treatment is likely due to a shift in species composition to early successional species that store less carbon per tree. Amongst the partial cutting methods, the improvement thin was the best option with moderate timber harvest rates, moderately high cPAI in the first 15 years post-harvest and relatively high carbon storage in the long-term; however, refraining from cutting remains the best option for carbon storage if the forest is in the aggradation phase. Poor silvicultural decisions may lead to reduced carbon storage of forest stands in the long-term, reducing the effectiveness of these forest carbon sinks for climate change mitigation. To explore forest structure at the landscape level, a method to map forest canopy structure over large areas was developed using low-density topographic Light Detection And Ranging (LiDAR) data and orthographic photography collected for Pennsylvania as part of PAMAP (Pennsylvania Map Program). K-means clustering of LiDAR statistics on a grid basis was used in conjunction with multinomial logistic regression to develop a LiDAR Canopy Structure Topology (LCST). The fourteen resulting LCST types reflect vegetation top height and canopy structural complexity with a correct classification rate of 96%. This LCST provides cost-effective forest structure information by relying on remote sensing data freely available for the entire state of Pennsylvania and that could be widely utilized for forest, wildlife and landscape planning. Furthermore, the methods developed here may be adapted to map forest structure in other contexts with different LiDAR data sets. This LCST was then mapped over 20 large landscapes within Pennsylvania, and these contrasting landscapes analyzed to investigate the influence of both site and four differing land management types (non-government, Bureau of Forestry, Bureau of State Parks and Pennsylvania Game Commission) on forest structure. It was found that at the local scale both topography and land management type had significant influences over forest structure; however, combined they only explained 32% of the variation in forest structure. At the landscape scale, there were significant differences in forest landscape structure between both Bailey's eco-provinces and management types. Specifically, non-government forests showed evidence of forest structure fragmentation. These non-government forested lands contained a higher proportion of short vegetation types, higher patch density, and greater heterogeneity of neighboring patches. This within-forest fragmentation is likely to have implications for both biodiversity and ecosystem services. Together, the studies presented in this dissertation show that management has a great impact on forest structure and carbon storage at both the stand and landscape levels. Management modifies the underlying influence of the environment, resulting in the realized forest structure patterns on the landscape. Therefore managers need to consciously incorporate these considerations into their management decisions at both the stand and landscape levels. Furthermore, this dissertation shows that despite its shortcomings, topographic LiDAR can be used for landscape scale vegetation studies in addition to topographic modeling. (Abstract shortened by UMI.).

  19. Forest development and carbon dynamics after mountain pine beetle outbreaks

    Treesearch

    E. Matthew Hansen

    2014-01-01

    Mountain pine beetles periodically infest pine forests in western North America, killing many or most overstory pine stems. The surviving secondary stand structure, along with recruited seedlings, will form the future canopy. Thus, even-aged pine stands become multiaged and multistoried. The species composition of affected stands will depend on the presence of nonpines...

  20. Composition and development of reproduction in two-age Appalachian hardwood stands: 20-year results

    Treesearch

    Gary W. Miller; James N. Kochenderfer; Desta Fekedulegn

    2004-01-01

    In the early 1980s, silviculturists with the Northeastern Research Station and Monongahela National Forest envisioned that managing some Appalachian hardwood stands to promote two-age structures would be part of an effective strategy for managing multi-use forests. Two-age stands provided the light and seedbed conditions necessary for regenerating numerous desirable...

  1. Stand dynamics of mixed red alder-conifer forests of southeast Alaska.

    Treesearch

    Robert L. Deal; Paul E. Hennon; Ewa H. Orlikowska; David V. D' Amore

    2004-01-01

    Stand structure and dynamics were evaluated in mixed red alder (Alnus rubra Bong.) - conifer forests of southeast Alaska. We assessed stand development, tree density, total basal area, diameter distribution of live and dead trees, height distribution of live trees, and mean diameter of all and largest conifers in 40-year-old red alder - conifer...

  2. Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar

    NASA Technical Reports Server (NTRS)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-01-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.

  3. Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar

    NASA Astrophysics Data System (ADS)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-05-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaska’s Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30 m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broadleaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from aboveground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.

  4. Mapping of past stand-level forest disturbances and estimation of time since disturbance using simulated spaceborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Sanchez Lopez, N.; Hudak, A. T.; Boschetti, L.

    2017-12-01

    Explicit information on the location, the size or the time since disturbance (TSD) at the forest stand level complements field inventories, improves the monitoring of forest attributes and the estimation of biomass and carbon stocks. Even-aged stands display homogenous structural parameters that have often been used as a proxy of stand age. Consequently, performing object-oriented analysis on Light Detection and Ranging (LiDAR) data has potential to detect historical stand-replacing disturbances. Recent research has shown good results in the delineation of forest stands as well as in the prediction of disturbance occurrence and TSD using airborne LiDAR data. Nevertheless, the use of airborne LiDAR for systematic monitoring of forest stands is limited by the sporadic availability of data and its high cost compared to satellite instruments. NASA's forthcoming Global Ecosystem Dynamics Investigations (GEDI) mission will provide systematically data on the vertical structure of the vegetation, but its use presents some challenges compared to the common discrete-return airborne LiDAR. GEDI will be a waveform instrument, hence the summary metrics will be different to those obtained with airborne LiDAR, and the sampling configuration could limit the utility of the data, especially on heterogeneous landscapes. The potential use of GEDI data for forest characterization at the stand level would therefore depend on the predictive power of the GEDI footprint metrics, and on the density of point samples relative to forest stand size (i.e. the number of observation/footprints per stand).In this study, we assess the performance of simulated GEDI-derived metrics for stand characterization and estimation of TSD, and the point density needed to adequately identify forest stands, which translates - due to the fixed sampling configuration - into the minimum temporal interval needed to collect a sufficient number of points. The study area was located in the Clear Creek, Selway River, and Elk Creek watersheds ( 54,000 ha) within the Nez Perce-Clearwater National Forest in Idaho, where airborne LiDAR and reference maps on TSD were available. Simulated GEDI footprints and waveforms were obtained from airborne LiDAR point clouds and the results were compared to similar analysis performed with airborne LiDAR.

  5. Forest processes from stands to landscapes: exploring model forecast uncertainties using cross-scale model comparison

    Treesearch

    Michael J. Papaik; Andrew Fall; Brian Sturtevant; Daniel Kneeshaw; Christian Messier; Marie-Josee Fortin; Neal Simon

    2010-01-01

    Forest management practices conducted primarily at the stand scale result in simplified forests with regeneration problems and low structural and biological diversity. Landscape models have been used to help design management strategies to address these problems. However, there remains a great deal of uncertainty that the actual management practices result in the...

  6. Snow accumulation under various forest stand densities at Tenderfoot Creek Experimental Forest, Montana, USA

    Treesearch

    Chadwick A. Moore; Ward W. McCaughey

    1997-01-01

    Snow accumulation in forested watersheds is controlled by climate, elevation, topographic factors and vegetation structure. Conifers affect snow accumulation principally by intercepting snow with the canopy which may later be sublimated. Various tree, stand, species and canopy densities of a subalpine fir habitat (ALBANASC) in central Montana were studied to determine...

  7. Reintroducing fire in regenerated dry forests following stand-replacing wildfire.

    Treesearch

    David W. Peterson; Paul F. Hessburg; Brion Salter; Kevin M. James; Matthew C. Dahlgreen; John A. Barnes

    2007-01-01

    Prescribed fire use may be effective for increasing fire resilience in young coniferous forests by reducing surface fuels, modifying overstory stand structure, and promoting development of large trees of fire resistant species. Questions remain, however, about when and how to reintroduce fire in regenerated forests, and to what end. We studied the effects of spring...

  8. Can the functional stability of forest ecosystems be evaluated from the spatial analysis of stands? A case study from the Bialowieza Primeval Forest (Poland)

    Treesearch

    Andrzej Bobiec

    2000-01-01

    Variability of external and internal factors entails specific spatial patterns and functional dynamics of communities. The study of the oak-lime-hornbeam (Quercus robur-Tilia cordata-Carpimus) forest in the Bialowieza Primeval Forest supports the concept of silvatic unit, determining the minimal structural area. To find out if the dynamics of a stand...

  9. Initial observations on tree mortality following a severe drought in 2012 in two Indiana state forests and implications for long-term compositional dynamics

    Treesearch

    Andrew R. Meier; Mike R. Saunders

    2014-01-01

    Compositional and structural changes in response to silvicultural treatments in forest stands are well documented (e.g., Saunders and Wagner 2008), but the stochastic nature of natural disturbance events often precludes direct observation of their impacts on stand dynamics. Though the current dominance of oak-hickory forest types in the Central Hardwoods Forest region...

  10. Analysis of forest structure using thematic mapper simulator data

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Westman, W. E.; Brass, J. A.; Stephenson, N. J.; Ambrosia, V. G.; Spanner, M. A.

    1986-01-01

    The potential of Thematic Mapper Simulator (TMS) data for sensing forest structure information has been explored by principal components and feature selection techniques. In a survey of forest structural properties conducted for 123 field sites of the Sequoia National Park, the canopy closure could be well estimated (r = 0.62 to 0.69) by a variety of channel bands and band ratios, without reference to the forest type. Estimation of the basal area was less successful (r = 0.51 or less) on the average, but could be improved for certain forest types when data were stratified by floristic composition. To achieve such a stratification, individual sites were ordinated by a detrended correspondence analysis based on the canopy of dominant species. The analysis of forest structure in the Sequoia data suggests that total basal area can be best predicted in stands of lower density, and in younger even-aged managed stands.

  11. Effects of fire frequency on long-term development of an oak-hickory forest in Missouri, U.S.A.

    Treesearch

    Benjamin O. Knapp; Michael A. Hullinger; John M. Kabrick

    2017-01-01

    Repeated prescribed burning over long timescales has some predictable effects on forest structure and composition, but multi-decadal patterns of stand dynamics and successional change with different fire frequencies have rarely been described. We used longitudinal data from a prescribed burning study conducted over a 63-year period to quantify stand structure (stem...

  12. Relationships between prefire composition, fire impact, and postfire legacies in the boreal forest of Eastern Canada

    Treesearch

    Alain Leduc; Yves Bergeron; Sylvie Gauthier

    2007-01-01

    Canadian mixedwood forests have a high compositional and structural diversity. It includes both hardwood (aspen, balsam poplar, and white birch) and softwood (balsam fir, white spruce, black spruce, larch, and white cedar) species that can form pure stands or mixed stands. This heterogeneity results in a variety of vertical structural strata that can potentially...

  13. Structural characteristics of forest stands within home ranges of Mexican spotted owls in Arizona and New Mexico

    Treesearch

    Joseph L. Ganey; William M. Block; Steven H. Ackers

    2003-01-01

    As part of a set of studies evaluating home-range size and habitat use of radio-marked Mexican spotted owls (Strix occidentalis lucida), we sampled structural characteristics of forest stands within owl home ranges on two study areas in Arizona and New Mexico. Study areas were dominated by ponderosa pine (Pinus ponderosa)-Gambel...

  14. Understory vegetation response to thinning and burning restoration treatments in dry conifer forests of the eastern Cascades, USA

    Treesearch

    Erich Kyle Dodson; David W. Peterson; Richy J. Harrod

    2008-01-01

    Restoration/fuel reduction treatments are being widely used in fire-prone forests to modify stand structure, reduce risks of severe wildfire, and increase ecosystem resilience to natural disturbances. These treatments are designed to manipulate stand structure and fuels, but may also affect understory vegetation and biodiversity. In this study, we describe prescribed...

  15. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany.

    PubMed

    Dănescu, Adrian; Albrecht, Axel T; Bauhus, Jürgen

    2016-10-01

    Forest diversity-productivity relationships have been intensively investigated in recent decades. However, few studies have considered the interplay between species and structural diversity in driving productivity. We analyzed these factors using data from 52 permanent plots in southwestern Germany with more than 53,000 repeated tree measurements. We used basal area increment as a proxy for productivity and hypothesized that: (1) structural diversity would increase tree and stand productivity, (2) diversity-productivity relationships would be weaker for species diversity than for structural diversity, and (3) species diversity would also indirectly impact stand productivity via changes in size structure. We measured diversity using distance-independent indices. We fitted separate linear mixed-effects models for fir, spruce and beech at the tree level, whereas at the stand level we pooled all available data. We tested our third hypothesis using structural equation modeling. Structural and species diversity acted as direct and independent drivers of stand productivity, with structural diversity being a slightly better predictor. Structural diversity, but not species diversity, had a significant, albeit asymmetric, effect on tree productivity. The functioning of structurally diverse, mixed forests is influenced by both structural and species diversity. These sources of trait diversity contribute to increased vertical stratification and crown plasticity, which in turn diminish competitive interferences and lead to more densely packed canopies per unit area. Our research highlights the positive effects of species diversity and structural diversity on forest productivity and ecosystem dynamics.

  16. Climate and species functional traits influence maximum live tree stocking in the Lake States, USA

    Treesearch

    Mark J. Ducey; Christopher W. Woodall; Andrés Bravo-Oviedo

    2017-01-01

    Quantifying the density of live trees in forest stands and partitioning it between species or other stand components is critical for predicting forest dynamics and responses to management, as well as understanding the impacts of stand composition and structure on productivity. As plant traits such as shade tolerance have been proven to refine understanding of plant...

  17. Development, succession, and stand dynamics of upland oak forests in the Wisconsin Driftless Area: Implications for oak regeneration and management

    Treesearch

    Megan L. Buchanan; Kurt F. Kipfmueller; Anthony W. D' Amato

    2017-01-01

    Throughout the deciduous forests of the eastern United States, oak (Quercus) regeneration has declined in stands historically dominated by oak species. In the Wisconsin Driftless Area, the level of decline in oak regeneration is variable and influenced by stand structural development, historical disturbance regime, abiotic site characteristics, and...

  18. Structural Characteristics of an Old-Growth Coast Redwood Stand in Mendocino County, California

    Treesearch

    Gregory A. Giusti

    2007-01-01

    This paper compares stand characteristics of Old Growth coastal redwood stand densities and forest structure found throughout the northern tier of the range of coast redwood (Sequoia sempervirens). Tree densities are relatively low compared to commercially managed stands of coast redwood. Tree size classes distributions vary from 254cm...

  19. Disturbance, succession, and structural development of an upland hardwood forest on the Interior Low Plateau, Tennessee

    Treesearch

    Justin L. Hart; Merrit M. Cowden; Scott J. Torreano; J. Patrick R. Vestal

    2017-01-01

    We quantified species composition, stand structure, canopy disturbance history, and Quercus establishment and canopy accession patterns in an upland hardwood forest in Tennessee. The forest established in the mid-1800s and exhibited structural characteristics that were within the range of what has been reported from other late-successional forests...

  20. Canopy structure on forest lands in western Oregon: differences among forest types and stand ages

    Treesearch

    Anne C.S. McIntosh; Andrew N. Gray; Steven L. Garman

    2009-01-01

    Canopy structure is an important attribute affecting economic and ecological values of forests in the Pacific Northwest. However, canopy cover and vertical layering are rarely measured directly; they are usually inferred from other forest measurements. In this study, we quantified and compared vertical and horizontal patterns of tree canopy structure and understory...

  1. Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon

    PubMed Central

    Broadbent, Eben N.; Almeyda Zambrano, Angélica M.; Asner, Gregory P.; Soriano, Marlene; Field, Christopher B.; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I.; Dirzo, Rodolfo; Giles, Larry

    2014-01-01

    Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ13C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ13C dynamics were largely constrained by plant species composition. Foliar δ15N had a significant negative correlation with both stand age and species successional status, – most likely resulting from a large initial biomass-burning enrichment in soil 15N and 13C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession. PMID:24516525

  2. Integrating stand and soil properties to understand foliar nutrient dynamics during forest succession following slash-and-burn agriculture in the Bolivian Amazon.

    PubMed

    Broadbent, Eben N; Almeyda Zambrano, Angélica M; Asner, Gregory P; Soriano, Marlene; Field, Christopher B; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I; Dirzo, Rodolfo; Giles, Larry

    2014-01-01

    Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ(13)C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ(13)C dynamics were largely constrained by plant species composition. Foliar δ(15)N had a significant negative correlation with both stand age and species successional status, - most likely resulting from a large initial biomass-burning enrichment in soil (15)N and (13)C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession.

  3. Logging impacts on forest structure and seedling dynamics in a Prioria copaifera (Fabaceae) dominated tropical rain forest (Talamanca, Costa Rica).

    PubMed

    Valverde-Barrantes, Oscar J; Rocha, Oscar J

    2014-03-01

    The factors that determine the existence of tropical forests dominated by a single species (monodominated forests) have been the subject of debate for a long time. It has been hypothesized that the low frequency of disturbances in monodominated forests and the tolerance to shade of the monodominant species are two important factors explaining the prolonged dominance of a single species. We determined the role of these two factors by examining the effects of logging activities on the floristic composition and seedling dynamics in a Prioria copaifera dominated forest in Southeastern Costa Rica. We determined the floristic composition for trees > or = 2.5cm DBH and the associated recruitment, survival and mortality of tree canopy seedlings in two sites logged two (L-02) and 12 years (L-12) prior to sampling and an unlogged forest (ULF). Our results showed that L-02 stands had lower species richness (25 species) than the L-12 and ULF stands (49 and 46 species, respectively). As expected, we found significant logging effects on the canopy structure of the altered forests, particularly when comparing the L-02 and the ULF stands. Seedling density was higher in ULF (0.96 seedlings/ m2) than in the L-02 and L-12 stands (0.322 and 0.466 seedlings/m2, respectively). However, seedling mortality was higher in the ULF stands (54%) than in the L-02 (26%) and L-12 (15%) stands. P. macroloba in L-02 was the only species with abundant regeneration under P. copaifera in L-02 stand, where it accounted for 35% of the seedlings. Despite the reduction in seedling abundance observed after logging, P. copaifera seems to maintain large seedling populations in these forests, suggesting that this species maintains its dominance after logging disturbances. Our findings challenge the hypothesis that the regeneration of monodominant species is not likely to occur under heavily disturbed canopy conditions.

  4. How long should the fully hillside-closed forest protection be implemented on the Loess Plateau, Shaanxi, China?

    PubMed

    Hou, Lin; Hou, Sijia

    2017-01-01

    Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country's fragile and fragmented environment, the Chinese government initiated an ecological engineering project, the Natural Forest Protection Program, in seventeen provinces in China beginning in 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied nation wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems. We investigated community diversity, biomass of dominant tree species, age structures, and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi, China. Plant species richness of Pinus tabulaeformis community was significantly affected ( p  < 0.05) by forest protection and the effect attenuated with protection age. Shannon evenness index of plant species generally increased with protection age. Stands protected for 45 years had the highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon, available phosphorus and available potassium in top soil increased in protected stands less than 45 years, however decreased significantly thereafter. Long-term forest protection also decreased the content of mineral nitrogen in top soil. We found that the richness of shrubs and herbs was significantly affected by forest protection, and evenness indices of tree, shrub and herb increased inconsistently with protected ages. Forest protection created more complex age structures and tree densities with increasing age of protection. Content of soil mineral nitrogen at 0-20 cm soil depth showed a decreasing trend in stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands with greater proportions of big and medium trees. Long-term protection (>45 years) of Pinus tabulaeformis stands in southeast Loess Plateau, China, may be associated with decreasing plant species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis and soil nutrients.

  5. Silvicultural activities in Pringle Falls Experimental Forest, Central Oregon

    Treesearch

    Andrew Youngblood; Kim Johnson; Jim Schlaich; Boyd Wickman

    2004-01-01

    Pringle Falls Experimental Forest has been a center for research in ponderosa pine forests east of the crest of the Cascade Range since 1931. Long-term research facilities, sites, and future research opportunities are currently at risk from stand-replacement wildfire because of changes in stand structure resulting from past fire exclusion. At the same time, many of the...

  6. Using the Forest Vegetation Simulator to reconstruct historical stand conditions in the Colorado Front Range

    Treesearch

    Paula J. Fornwalt; Merrill R. Kaufmann; Laurie S. Huckaby; Jason M. Stoker

    2002-01-01

    Presettlement ponderosa pine/Douglas-fir forests of the Colorado Front Range were open and heterogeneous. Logging, grazing, and fire suppression over past 100 to150 years have altered stand structure by changing diameter distributions and increasing overstory density. In an effort to guide forest restoration toward presettlement conditions, we are currently using the...

  7. Red alder-conifer stands in Alaska: An example of mixed species management to enhance structural and biological complexity

    Treesearch

    Robert Deal; Ewa Orlikowska; David D’Amore; Paul Hennon

    2017-01-01

    There is worldwide interest in managing forests to improve biodiversity, enhance ecosystem services and assure long-term sustainability of forest resources. An increasingly important goal of forest management is to increase stand diversity and improve wildlife and aquatic habitat. Well-planned silvicultural systems containing a mixture of broadleaf-conifer species have...

  8. Research challenges for structural use of small-diameter round timbers

    Treesearch

    Ron Wolfe

    2000-01-01

    Forest managers have identified forest stands overstocked with small-diameter trees as a critical forest health issue. Overstocked stands are subject to attack by insects and disease and, as a result of the heavy fuel load, risk total destruction by fire. Prescribed burning is an economic tool for suppressing the growth of brush and tree seedlings, but its use is often...

  9. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests

    USGS Publications Warehouse

    Hall, S. A.; Burke, I.C.; Box, D. O.; Kaufmann, M. R.; Stoker, Jason M.

    2005-01-01

    The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires. Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from 57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should broaden to include low density forests, particularly systems where the vertical structure of the canopy is important, such as fire prone forests.

  10. Genetic consequences of selection cutting on sugar maple (Acer saccharum Marshall).

    PubMed

    Graignic, Noémie; Tremblay, Francine; Bergeron, Yves

    2016-07-01

    Selection cutting is a treatment that emulates tree-by-tree replacement for forests with uneven-age structures. It creates small openings in large areas and often generates a more homogenous forest structure (fewer large leaving trees and defective trees) that differs from old-growth forest. In this study, we evaluated whether this type of harvesting has an impact on genetic diversity of sugar maple (Acer saccharum Marshall). Genetic diversity among seedlings, saplings, and mature trees was compared between selection cut and old-growth forest stands in Québec, Canada. We found higher observed heterozygosity and a lower inbreeding coefficient in mature trees than in younger regeneration cohorts of both forest types. We detected a recent bottleneck in all stands undergoing selection cutting. Other genetic indices of diversity (allelic richness, observed and expected heterozygosity, and rare alleles) were similar between forest types. We concluded that the effect of selection cutting on the genetic diversity of sugar maple was recent and no evidence of genetic erosion was detectable in Québec stands after one harvest. However, the cumulative effect of recurring applications of selection cutting in bottlenecked stands could lead to fixation of deleterious alleles, and this highlights the need for adopting better forest management practices.

  11. [Carbon storage of forest stands in Shandong Province estimated by forestry inventory data].

    PubMed

    Li, Shi-Mei; Yang, Chuan-Qiang; Wang, Hong-Nian; Ge, Li-Qiang

    2014-08-01

    Based on the 7th forestry inventory data of Shandong Province, this paper estimated the carbon storage and carbon density of forest stands, and analyzed their distribution characteristics according to dominant tree species, age groups and forest category using the volume-derived biomass method and average-biomass method. In 2007, the total carbon storage of the forest stands was 25. 27 Tg, of which the coniferous forests, mixed conifer broad-leaved forests, and broad-leaved forests accounted for 8.6%, 2.0% and 89.4%, respectively. The carbon storage of forest age groups followed the sequence of young forests > middle-aged forests > mature forests > near-mature forests > over-mature forests. The carbon storage of young forests and middle-aged forests accounted for 69.3% of the total carbon storage. Timber forest, non-timber product forest and protection forests accounted for 37.1%, 36.3% and 24.8% of the total carbon storage, respectively. The average carbon density of forest stands in Shandong Province was 10.59 t x hm(-2), which was lower than the national average level. This phenomenon was attributed to the imperfect structure of forest types and age groups, i. e., the notably higher percentage of timber forests and non-timber product forest and the excessively higher percentage of young forests and middle-aged forest than mature forests.

  12. Bat activity in relation to fire and fire surrogate treatments in southern pine stands

    Treesearch

    Susan C. Loeb; Thomas A. Waldrop

    2008-01-01

    Forest managers often use thinning and prescribed burning to reduce the risk of wildfire and insect outbreaks. Because thinning and burning alter the structure of forest stands and may affect insect prey abundance, they may change the suitability of stands for bats. Our objective was to test the effects of thinning and burning on bat foraging and commuting activity in...

  13. Severity of a mountain pine beetle outbreak across a range of stand conditions in Fraser Experimental Forest, Colorado, United States

    Treesearch

    Anthony G. Vorster; Paul H. Evangelista; Thomas J. Stohlgren; Sunil Kumar; Charles C. Rhoades; Robert M. Hubbard; Antony S. Cheng; Kelly Elder

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks had unprecedented effects on lodgepole pine (Pinus contorta var. latifolia) in western North America. We used data from 165 forest inventory plots to analyze stand conditions that regulate lodgepole pine mortality across a wide range of stand structure and species composition at the Fraser...

  14. Drivers of aboveground wood production in a lowland tropical forest of West Africa: teasing apart the roles of tree density, tree diversity, soil phosphorus, and historical logging.

    PubMed

    Jucker, Tommaso; Sanchez, Aida Cuni; Lindsell, Jeremy A; Allen, Harriet D; Amable, Gabriel S; Coomes, David A

    2016-06-01

    Tropical forests currently play a key role in regulating the terrestrial carbon cycle and abating climate change by storing carbon in wood. However, there remains considerable uncertainty as to whether tropical forests will continue to act as carbon sinks in the face of increased pressure from expanding human activities. Consequently, understanding what drives productivity in tropical forests is critical. We used permanent forest plot data from the Gola Rainforest National Park (Sierra Leone) - one of the largest tracts of intact tropical moist forest in West Africa - to explore how (1) stand basal area and tree diversity, (2) past disturbance associated with past logging, and (3) underlying soil nutrient gradients interact to determine rates of aboveground wood production (AWP). We started by statistically modeling the diameter growth of individual trees and used these models to estimate AWP for 142 permanent forest plots. We then used structural equation modeling to explore the direct and indirect pathways which shape rates of AWP. Across the plot network, stand basal area emerged as the strongest determinant of AWP, with densely packed stands exhibiting the fastest rates of AWP. In addition to stand packing density, both tree diversity and soil phosphorus content were also positively related to productivity. By contrast, historical logging activities negatively impacted AWP through the removal of large trees, which contributed disproportionately to productivity. Understanding what determines variation in wood production across tropical forest landscapes requires accounting for multiple interacting drivers - with stand structure, tree diversity, and soil nutrients all playing a key role. Importantly, our results also indicate that logging activities can have a long-lasting impact on a forest's ability to sequester and store carbon, emphasizing the importance of safeguarding old-growth tropical forests.

  15. A tool for assessing ecological status of forest ecosystem

    NASA Astrophysics Data System (ADS)

    Rahman Kassim, Abd; Afizzul Misman, Muhammad; Azahari Faidi, Mohd; Omar, Hamdan

    2016-06-01

    Managers and policy makers are beginning to appreciate the value of ecological monitoring of artificially regenerated forest especially in urban areas. With the advent of more advance technology in precision forestry, high resolution remotely sensed data e.g. hyperspectral and LiDAR are becoming available for rapid and precise assessment of the forest condition. An assessment of ecological status of forest ecosystem was developed and tested using FRIM campus forest stand. The forest consisted of three major blocks; the old growth artificially regenerated native species forests, naturally regenerated forest and recent planted forest for commercial timber and other forest products. Our aim is to assess the ecological status and its proximity to the mature old growth artificially regenerated stand. We used airborne LiDAR, orthophoto and thirty field sampling quadrats of 20x20m for ground verification. The parameter assessments were grouped into four broad categories: a. forest community level-composition, structures, function; landscape structures-road network and forest edges. A metric of parameters and rating criteria was introduced as indicators of the forest ecological status. We applied multi-criteria assessment to categorize the ecological status of the forest stand. The paper demonstrates the application of the assessment approach using FRIM campus forest as its first case study. Its potential application to both artificially and naturally regenerated forest in the variety of Malaysian landscape is discussed

  16. Forests regenerating after clear-cutting function as habitat for bryophyte and lichen species of conservation concern.

    PubMed

    Rudolphi, Jörgen; Gustafsson, Lena

    2011-04-07

    The majority of managed forests in Fennoscandia are younger than 70 years old but yet little is known about their potential to host rare and threatened species. In this study, we examined red-listed bryophytes and lichens in 19 young stands originating from clear-cutting (30-70 years old) in the boreal region, finding 19 red-listed species (six bryophytes and 13 lichens). We used adjoining old stands, which most likely never had been clear-cut, as reference. The old stands contained significantly more species, but when taking the amount of biological legacies (i.e., remaining deciduous trees and dead wood) from the previous forest generation into account, bryophyte species number did not differ between old and young stands, and lichen number was even higher in young stands. No dispersal effect could be detected from the old to the young stands. The amount of wetlands in the surroundings was important for bryophytes, as was the area of old forest for both lichens and bryophytes. A cardinal position of young stands to the north of old stands was beneficial to red-listed bryophytes as well as lichens. We conclude that young forest plantations may function as habitat for red-listed species, but that this depends on presence of structures from the previous forest generation, and also on qualities in the surrounding landscape. Nevertheless, at repeated clear-cuttings, a successive decrease in species populations in young production stands is likely, due to increased fragmentation and reduced substrate amounts. Retention of dead wood and deciduous trees might be efficient conservation measures. Although priority needs to be given to preservation of remnant old-growth forests, we argue that young forests rich in biological legacies and located in landscapes with high amounts of old forests may have a conservation value.

  17. Forest succession in the Upper Rio Negro of Colombia and Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saldarriaga, J.G.; West, D.C.; Tharp, M.L.

    1986-11-01

    Woody vegetation from 23 forest stands along the Upper Rio Negro of Venezuela and Colombia was sampled in 1982 to examine the hypothesis that the Amazon forest has been largely undisturbed since the Pleistocene, to quantify vegetation development during different stages of succession following agricultural development, and to determine the time required for a successional stand to become a mature forest. The ubiquitousness of charcoal in the tierra firme forest indicated the presence of fire associated with extreme dry periods and human disturbances. Changes in species composition, vegetation structure, and woody biomass were studied on 19 abandoned farms and fourmore » mature forest stands. Living and dead biomass for the tress and their components was determined by regression equations developed from measurements of harvested trees. The rate of recovery of floristic composition, structure, and biomass following disturbance is relatively slow. Aboveground dead biomass remained high 14 years after the forest was disturbed by the agricultural practices. The lowest dead biomass is reached 20 years after abandonment, and the largest values are found in mature forests. Data analysis of 80-year-old stands showed that the species composition approached that of a mature forest. Approximately 140 to 200 years was required for an abandoned farm to attain the basal area and biomass values comparable to those of a mature forest. The results of this study indicate that recovery is five to seven times longer in the Upper Rio Negro than it is in other tropical areas in South America.« less

  18. [Characteristics of soil ammonia-oxidation microbial communities in different subtropical forests, China].

    PubMed

    Li, Yong-Chun; Liu, Bu-Rong; Guo, Shuai; Wu, Qi-Feng; Qin, Hua; Wu, Jia-Sen; Xu, Qiu-Fang

    2014-01-01

    To investigate the effects of different forest stands in subtropical China on the communities of soil ammonia-oxidizing microorganisms, we characterized the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and the community structure of AOA in soils under stands of broad-leaved (BF) , Chinese fir (CF) , Pinus massoniana (PF) and moso bamboo (MB) forests using real-time quantitative PCR and denaturing gradient gel electrophoresis (DGGE). The results showed that the AOA gene copy numbers (1.62 x 10(6)-1.88 x 10(7) per gram of dry soil) were significantly higher than those of AOB genes (2.41 x 10(5)-4.36 x 10(5) per gram of dry soil). Significantly higher soil AOA abundance was detected in the MB than that in the CF (P < 0.05), and the latter was significantly higher than that in the BF and PF soils (P < 0.05). There were no significant differences in the soil AOB abundance among the four forest stands. As indicated by DGGE pattern, soil AOA species varied among the four forest stands. There was a difference in the soil AOA communities between the CF and MB stands. The AOA demonstrated a competitive advantage over the AOB in the soils under these major subtropical forests. Soil pH, concentrations of soil available potassium and organic carbon as well as the forest type were the main factors that influence the variation of AOA community structure and diversity.

  19. Using Lidar and color infrared imagery to successfully measure stand characteristics on the William B. Bankhead National Forest, Alabama

    Treesearch

    Jeffrey Stephens; Luben Dimov; Callie Schweitzer; Wubishet Tadesse

    2008-01-01

    Light detection and ranging (Lidar) and color infrared imagery (CIR) were used to quantify forest structure and to distinguish deciduous from coniferous trees for selected stands on the William B. Bankhead National Forest in Alabama. Lidar bare ground and vegetation point clouds were used to determine tree heights and tree locations. Lidar accuracy was assessed by...

  20. The Forest Vegetation Simulator: A review of its structure, content, and applications

    Treesearch

    Nicholas L. Crookston; Gary E. Dixon

    2005-01-01

    The Forest Vegetation Simulator (FVS) is a distance-independent, individual-tree forest growth model widely used in the United States to support management decisionmaking. Stands are the basic projection unit, but the spatial scope can be many thousands of stands. The temporal scope is several hundred years at a resolution of 5­10 years. Projections start with a...

  1. The Sylview graphical interface to the SYLVAN STAND STRUCTURE model with examples from southern bottomland hardwood forests

    Treesearch

    David R. Larsen; Ian Scott

    2010-01-01

    In the field of forestry, the output of forest growth models provide a wealth of detailed information that can often be difficult to analyze and perceive due to presentation either as plain text summary tables or static stand visualizations. This paper describes the design and implementation of a cross-platform computer application for dynamic and interactive forest...

  2. Forest attributes and fuel loads of riparian vs. upland stands in mountain pine beetle infested watersheds, southern Rocky Mountains [Chapter 13

    Treesearch

    Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...

  3. Effects of timber harvesting on birds in the Black Hills of South Dakota and Wyoming, USA

    Treesearch

    Brian L. Dykstra; Mark A. Rumble; Lester D. Flake

    1997-01-01

    Timber harvest alters structural characteristics in ponderosa pine forests. In the Black Hills, harvested stands with 40-70% overstory canopy cover are managed as sapling/pole (3.0 - 22.9 cm dbh) or mature (> 22.9 cm dbh) stands. Changing the forest structure to two size classes has unknown effects on bird communities in this region. We counted birds in 20 harvested...

  4. Canopy rainfall partitioning across an urbanization gradient in forest structure as characterized by terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Mesta, D. C.; Van Stan, J. T., II; Yankine, S. A.; Cote, J. F.; Jarvis, M. T.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    As urbanization expands, greater forest area is shifting from natural stand structures to urban stand structures, like forest fragments and landscaped tree rows. Changes in forest canopy structure have been found to drastically alter the amount of rainwater reaching the surface. However, stormwater management models generally treat all forest structures (beyond needle versus broadleaved) similarly. This study examines the rainfall partitioning of Pinus spp. canopies along a natural-to-urban forest gradient and compares these to canopy structural measurements using terrestrial LiDAR. Throughfall and meteorological observations were also used to estimate parameters of the commonly-used Gash interception model. Preliminary findings indicate that as forest structure changed from natural, closed canopy conditions to semi-closed canopy fragments and, ultimately, to exposed urban landscaping tree rows, the interchange between throughfall and rainfall interception also changed. This shift in partitioning between throughfall and rainfall interception may be linked to intuitive parameters, like canopy closure and density, as well as more complex metrics, like the fine-scale patterning of gaps (ie, lacunarity). Thus, results indicate that not all forests of the same species should be treated the same by stormwater models. Rather, their canopy structural characteristics should be used to vary their hydrometeorological interactions.

  5. Composition and structure of hemlock-dominated riparian forests of the northern Allegheny plateau: a baseline assessment

    Treesearch

    Charles E. Williams; William J. Moriarity

    2000-01-01

    We assessed the species composition and structure of three riparian forest stands of differing ages (old-growth, late-successional, mid-successional), dominated by eastern hemlock (Tsuga canadensis Carr.), in the Allegheny National Forest of northwestern Pennsylvania.

  6. Predicted long-term effects of group selection on species composition and stand structure in northern hardwood forests

    Treesearch

    Corey R. Halpin; Craig G. Lorimer; Jacob J. Hanson; Brian J. Palik

    2017-01-01

    The group selection method can potentially increase the proportion of shade-intolerant and midtolerant tree species in forests dominated by shade-tolerant species, but previous results have been variable, and concerns have been raised about possible effects on forest fragmentation and forest structure. Limited evidence is available on these issues for forests managed...

  7. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.

    PubMed

    Moore, Georgianne W; Bond, Barbara J; Jones, Julia A; Phillips, Nathan; Meinzer, Federick C

    2004-05-01

    Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees. Overall, sapwood basal area was 21% higher in the young stand than in the old stand. In the old forest, T. heterophylla is an important co-dominant, accounting for 58% of total sapwood basal area, whereas P. menziesii is the only dominant conifer in the young stand. Angiosperms accounted for 36% of total sapwood basal area in the young stand, but only 7% in the old stand. For all factors combined, we estimated 3.27 times more water use by vegetation in the riparian area of the young stand over the measurement period. Tree age had the greatest effect on stand differences in water use, followed by differences in sapwood basal area, and finally species composition. The large differences in transpiration provide further evidence that forest management alters site water balance via elevated transpiration in vigorous young stands.

  8. Hydrological states and the resilience of deltaic forested wetlands

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2017-12-01

    The flooding regime constitutes a set of chronic disturbances that are largely responsible for ecosystem structure. However, disturbances do not always constitute stresses to plants that survive because of adaptations to flooded conditions. We examine baldcypress-water tupelo forested wetlands in the delta of the Mississippi River as a case study in mechanisms by which hydrologic change shapes wetland ecosystem change, supported by experimental evidence from remote sensing, tree-ring and other field studies, and meta-analysis across the literature. Decreased hydrologic variability caused by water control structures has reduced the frequency of flood events that increase growth of baldcypress and favor its establishment by reducing competition from other species. Hydrologic modifications that lead to semi-permanent, stagnant flooding constitute semi-permanent disturbance that prevents regeneration of any trees, reduces growth of established trees, and reduces stand density by causing mortality of some trees. However, baldcypress trees in low-density stands appear to be generally adapted for long-term survival in stagnant conditions. Thus, initial decreases in stand density after impoundment do not necessarily portend continued conversion away from forest because reduced inter-tree competition is a negative feedback on mortality. Overall, a natural hydrologic regime with high variability in riverine flooding favors denser stands with greater diversity of tree species, and the present, controlled hydrologic regime that has largely eliminated riverine flooding favors open stands. Sea-level rise will increase salinity that quickly leads to forest conversion to marsh, but will also increase stagnant, freshwater flooding further inland. These drivers of hydrologic change reduce carbon assimilation by forests, both by reduced stand-level productivity and decreased forested area.

  9. Adaptive forest management for drinking water protection under climate change

    NASA Astrophysics Data System (ADS)

    Koeck, R.; Hochbichler, E.

    2012-04-01

    Drinking water resources drawn from forested catchment areas are prominent for providing water supply on our planet. Despite the fact that source waters stemming from forested watersheds have generally lower water quality problems than those stemming from agriculturally used watersheds, it has to be guaranteed that the forest stands meet high standards regarding their water protection functionality. For fulfilling these, forest management concepts have to be applied, which are adaptive regarding the specific forest site conditions and also regarding climate change scenarios. In the past century forest management in the alpine area of Austria was mainly based on the cultivation of Norway spruce, by the way neglecting specific forest site conditions, what caused in many cases highly vulnerable mono-species forest stands. The GIS based forest hydrotope model (FoHyM) provides a framework for forest management, which defines the most crucial parameters in a spatial explicit form. FoHyM stratifies the spacious drinking water protection catchments into forest hydrotopes, being operational units for forest management. The primary information layer of FoHyM is the potential natural forest community, which reflects the specific forest site conditions regarding geology, soil types, elevation above sea level, exposition and inclination adequately and hence defines the specific forest hydrotopes. For each forest hydrotope, the adequate tree species composition and forest stand structure for drinking water protection functionality was deduced, based on the plant-sociological information base provided by FoHyM. The most important overall purpose for the related elaboration of adaptive forest management concepts and measures was the improvement of forest stand stability, which can be seen as the crucial parameter for drinking water protection. Only stable forest stands can protect the fragile soil and humus layers and hence prevent erosion process which could endanger the water resources. Forest stands which are formed by a tree species set which conforms to the potential natural forest community are more stable than the currently wide-spread mono-species Norway spruce plantations, especially in times of climate change, where e.g. bark beetle infestations threat spruce with increased intensity. FoHyM also provides the relevant ecological boundary conditions for any estimation of climate change adaptations. The adaptation of the tree species distribution within each forest hydrotope to climate change conditions was fulfilled by the integration of climate change scenarios and the estimation of the eco-physiological characteristics of related tree species. Hence it was possible to define the tree species distribution related to a specific climate change scenario for each forest hydrotope. The silvicultural concepts and measures to accomplish the defined tree species distribution and forest stand structure for each forest hydrotope were defined and elaborated by taking the specific requirements of drinking water protection areas into account, what e.g. comprised the prohibition of the clear cut technique and the application of continuous cover forest management concepts. The overall purpose of these adaptive silvicultural concepts and techniques which were based on the application of FoHyM was the improvement of the water protection functionality of forest stands within drinking water protection zones.

  10. Alabama's forests, 2000

    Treesearch

    Andrew J. Hartsell; Tony G. Johnson

    2009-01-01

    The principle findings of the seventh forest survey of Alabama (2000) and changes that have occurred since the previous surveys are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, and mortality.

  11. Alabama's Forests, 2005

    Treesearch

    Andrew J. Hartsell; Tony G. Johnson

    2009-01-01

    The principle findings of the eighth forest survey of Alabama (2005) and changes that have occurred since the previous surveys are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth removals, and mortality.

  12. Developments to the Sylvan stand structure model to describe wood quality changes in southern bottomland hardwood forests because of forest management

    Treesearch

    Ian R. Scott

    2009-01-01

    Growth models can produce a wealth of detailed information that is often very difficult to perceive because it is frequently presented either as summary tables, stand view or landscape view visualizations. We have developed new tools for use with the Sylvan model (Larsen 1994) that allow the analysis of wood-quality changes as a consequence of forest management....

  13. Diameter distribution in a Brazilian tropical dry forest domain: predictions for the stand and species.

    PubMed

    Lima, Robson B DE; Bufalino, Lina; Alves, Francisco T; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Currently, there is a lack of studies on the correct utilization of continuous distributions for dry tropical forests. Therefore, this work aims to investigate the diameter structure of a brazilian tropical dry forest and to select suitable continuous distributions by means of statistic tools for the stand and the main species. Two subsets were randomly selected from 40 plots. Diameter at base height was obtained. The following functions were tested: log-normal; gamma; Weibull 2P and Burr. The best fits were selected by Akaike's information validation criterion. Overall, the diameter distribution of the dry tropical forest was better described by negative exponential curves and positive skewness. The forest studied showed diameter distributions with decreasing probability for larger trees. This behavior was observed for both the main species and the stand. The generalization of the function fitted for the main species show that the development of individual models is needed. The Burr function showed good flexibility to describe the diameter structure of the stand and the behavior of Mimosa ophthalmocentra and Bauhinia cheilantha species. For Poincianella bracteosa, Aspidosperma pyrifolium and Myracrodum urundeuva better fitting was obtained with the log-normal function.

  14. Ground Layer Plant Species Turnover and Beta Diversity in Southern-European Old-Growth Forests

    PubMed Central

    Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo

    2014-01-01

    Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests. PMID:24748155

  15. Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests.

    PubMed

    Yuan, Zuoqiang; Ali, Arshad; Wang, Shaopeng; Gazol, Antonio; Freckleton, Robert; Wang, Xugao; Lin, Fei; Ye, Ji; Zhou, Li; Hao, Zhanqing; Loreau, Michel

    2018-07-15

    Forests play an important role in regulating the global carbon cycle. Yet, how abiotic (i.e. soil nutrients) and biotic (i.e. tree diversity, stand structure and initial biomass) factors simultaneously contribute to aboveground biomass (coarse woody) productivity, and how the relative importance of these factors changes over succession remain poorly studied. Coarse woody productivity (CWP) was estimated as the annual aboveground biomass gain of stems using 10-year census data in old growth and secondary forests (25-ha and 4.8-ha, respectively) in northeast China. Boosted regression tree (BRT) model was used to evaluate the relative contribution of multiple metrics of tree diversity (taxonomic, functional and phylogenetic diversity and trait composition as well as stand structure attributes), stand initial biomass and soil nutrients on productivity in the studied forests. Our results showed that community-weighted mean of leaf phosphorus content, initial stand biomass and soil nutrients were the three most important individual predictors for CWP in secondary forest. Instead, initial stand biomass, rather than diversity and functional trait composition (vegetation quality) was the most parsimonious predictor of CWP in old growth forest. By comparing the results from secondary and old growth forest, the summed relative contribution of trait composition and soil nutrients on productivity decreased as those of diversity indices and initial biomass increased, suggesting the stronger effect of diversity and vegetation quantity over time. Vegetation quantity, rather than diversity and soil nutrients, is the main driver of forest productivity in temperate mixed forest. Our results imply that diversity effect for productivity in natural forests may not be so important as often suggested, at least not during the later stage of forest succession. This finding suggests that as a change of the importance of different divers of productivity, the environmentally driven filtering decreases and competitively driven niche differentiation increases with forest succession. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Thinning of young Douglas-fir forests decreases density of northern flying squirrels in the Oregon Cascades

    USGS Publications Warehouse

    Manning, Tom; Hagar, Joan C.; McComb, Brenda C.

    2012-01-01

    Large-scale commercial thinning of young forests in the Pacific Northwest is currently promoted on public lands to accelerate the development of late-seral forest structure for the benefit of wildlife species such as northern spotted owls (Strix occidentalis caurina) and their prey, including the northern flying squirrel (Glaucomys sabrinus). Attempts to measure the impact of commercial thinning on northern flying squirrels have mostly addressed short-term effects (2–5 years post-thinning) and the few published studies of longer-term results have been contradictory. We measured densities of northern flying squirrels 11–13 years after thinning of young (55–65 years) Douglas-fir forest stands in the Cascade Range of Oregon, as part of the Young Stand Thinning & Diversity Study. The study includes four replicate blocks, each consisting of an unthinned control stand and one stand each of the following thinning treatments: Heavy Thin; Light Thin; and Light Thin with Gaps. Thinning decreased density of northern flying squirrels, and squirrel densities were significantly lower in heavily thinned stands than in more lightly thinned stands. Regression analysis revealed a strong positive relationship of flying squirrel density with density of large (>30 cm diameter) standing dead trees and a negative relationship with percent cover of low understory shrubs. Maintaining sufficient area and connectivity of dense, closed canopy forest is recommended as a strategy to assure that long-term goals of promoting late-seral structure do not conflict with short-term habitat requirements of this important species.

  17. Computerized algorithms for partial cuts

    Treesearch

    R.L. Ernst; S.L. Stout

    1991-01-01

    Stand density, stand structure (diameter distribution), and species composition are all changed by intermediate treatments in forest stands. To use computer stand-growth simulators to assess the effects of different treatments on stand growth and development, users must be able to duplicate silviculturally realistic treatments in the simulator. In this paper, we review...

  18. Uneven-aged management of old-growth spruce-fir forests: Cutting methods and stand structure goals for the initial entry

    Treesearch

    Robert R. Alexander; Carleton B. Edminster

    1977-01-01

    Topics discussed include: (1) cutting methods, (2) stand structure goals, which involve choosing a residual stocking level, selecting a maximum tree size, and establishing a diameter distribution using the "q" technique, and (3) harvesting and removal of trees. Examples illustrate how to determine realistic stand structures for the initial entry for...

  19. Rotated sigmoid structures in managed uneven-aged northern hardwood stands: a look at the Burr Type III distribution

    Treesearch

    Jeffrey H. Gove; Mark J. Ducey; William B. Leak; Lianjun Zhang

    2008-01-01

    Stand structures from a combined density manipulation and even- to uneven-aged conversion experiment on the Bartlett Experimental Forest (New Hampshire, USA) were examined 25 years after initial treatment for rotated sigmoidal diameter distributions. A comparison was made on these stands between two probability density functions for fitting these residual structures:...

  20. Fuel reduction treatments affect stand structure of hardwood forests in Western North Carolina and Southern Ohio, USA

    Treesearch

    Thomas A. Waldrop; Daniel A. Yaussy; Ross J. Phillips; Todd A. Hutchinson; Lucy Brudnak; Ralph E.J. Boerner

    2008-01-01

    Prescribed fire and mechanical treatments were tested at the two hardwood sites of the National Fire and Fire Surrogate Study (southern and central Appalachian regions) for impacts to stand structure. After two fires and one mechanical treatment, no treatment or treatment combination restored stand structure to historical levels. Burning alone had little impact on...

  1. Compartmentalization of pathogens in fire-injured trees

    Treesearch

    Kevin T. Smith

    2013-01-01

    Wildland fire is an episodic process that greatly influences the composition, structure, and developmental sequence of forests. Most news reports of wildland fire involves blazes fueled by slash, standing dead stems, and snags that reach into tree crowns and burn deeply into the forest floor, causing extensive tree mortality and the eventual replacement of the standing...

  2. Songbird response to experimental retention harvesting in red pine (Pinus resinosa) forests

    Treesearch

    Ryan C. Atwell; Lisa A. Schulte; Brian J. Palik

    2008-01-01

    Traditional harvesting practices frequently result in simplification of the structure and composition within managed forest stands in comparison to their natural counterparts. In particular, loss of heterogeneity within stands may pose a problem for maintaining biodiversity in perpetuity. In this study, we survey breeding bird diversity and abundance in response to...

  3. Forest Stand Canopy Structure Attribute Estimation from High Resolution Digital Airborne Imagery

    Treesearch

    Demetrios Gatziolis

    2006-01-01

    A study of forest stand canopy variable assessment using digital, airborne, multispectral imagery is presented. Variable estimation involves stem density, canopy closure, and mean crown diameter, and it is based on quantification of spatial autocorrelation among pixel digital numbers (DN) using variogram analysis and an alternative, non-parametric approach known as...

  4. Long-term (13-year) effects of repeated prescribed fires on stand structure and tree regeneration in mixed-oak forests

    Treesearch

    Todd F. Hutchinson; Daniel A. Yaussy; Robert P. Long; Joanne Rebbeck; Elaine Kennedy. Sutherland

    2012-01-01

    The survival and growth of oak advance regeneration is often limited by shade-tolerant species that are abundant in the understory of oak stands. Evidence of historic burning has prompted the use of prescribed fire as a tool to improve the competitive status of oak regeneration in mature stands. A primary shortfall of fire effects research in oak forests has been a...

  5. Stand structure in eastside old-growth ponderosa pine forests of Oregon and northern California.

    Treesearch

    Andrew Youngblood; Timothy Max; Kent Coe

    2004-01-01

    Quantitative metrics of horizontal and vertical structural attributes in eastside old-growth ponderosa pine (Pinus ponderosa P. and C. Lawson var. ponderosa) forests were measured to guide the design of restoration prescriptions. The age, size structure, and the spatial patterns were investigated in old-growth ponderosa pine forests at three...

  6. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties

    Treesearch

    Michael Palace; Michael Keller; Gregory P. Asner; Stephen Hagen; Bobby Braswell

    2008-01-01

    We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75◦ S, 48.37◦ W) in the eastern Amazon, and then compared with forest...

  7. The forgotten stage of forest succession: early-successional ecosystems on forest sites

    Treesearch

    Mark E. Swanson; Jerry F. Franklin; Robert L. Beschta; Charles M. Crisafulli; Dominick A. DellaSala; Richard L. Hutto; David B. Lindenmayer; Frederick J. Swanson

    2010-01-01

    Early-successional forest ecosystems that develop after stand-replacing or partial disturbances are diverse in species, processes, and structure. Post-disturbance ecosystems are also often rich in biological legacies, including surviving organisms and organically derived structures, such as woody debris. These legacies and postdisturbance plant communities provide...

  8. Densities of breeding birds and changes in vegetation in an alaskan boreal forest following a massive disturbance by spruce beetles

    USGS Publications Warehouse

    Matsuoka, S.M.; Handel, C.M.; Ruthrauff, D.R.

    2001-01-01

    We examined bird and plant communities among forest stands with different levels of spruce mortality following a large outbreak of spruce beetles (Dendroctonus rufipennis (Kirby)) in the Copper River Basin, Alaska. Spruce beetles avoided stands with black spruce (Picea mariana) and selectively killed larger diameter white spruce (Picea glauca), thereby altering forest structure and increasing the dominance of black spruce in the region. Alders (Alnus sp.) and crowberry (Empetrum nigrum) were more abundant in areas with heavy spruce mortality, possibly a response to the death of overstory spruce. Grasses and herbaceous plants did not proliferate as has been recorded following outbreaks in more coastal Alaskan forests. Two species closely tied to coniferous habitats, the tree-nesting Ruby-crowned Kinglet (Regulus calendula) and the red squirrel (Tamiasciurus hudsonicus), a major nest predator, were less abundant in forest stands with high spruce mortality than in low-mortality stands. Understory-nesting birds as a group were more abundant in forest stands with high levels of spruce mortality, although the response of individual bird species to tree mortality was variable. Birds breeding in stands with high spruce mortality likely benefited reproductively from lower squirrel densities and a greater abundance of shrubs to conceal nests from predators.

  9. Simulating stand climate, phenology, and photosynthesis of a forest stand with a process-based growth model.

    PubMed

    Rötzer, Thomas; Leuchner, Michael; Nunn, Angela J

    2010-07-01

    In the face of climate change and accompanying risks, forest management in Europe is becoming increasingly important. Model simulations can help to understand the reactions and feedbacks of a changing environment on tree growth. In order to simulate forest growth based on future climate change scenarios, we tested the basic processes underlying the growth model BALANCE, simulating stand climate (air temperature, photosynthetically active radiation (PAR) and precipitation), tree phenology, and photosynthesis. A mixed stand of 53- to 60-year-old Norway spruce (Picea abies) and European beech (Fagus sylvatica) in Southern Germany was used as a reference. The results show that BALANCE is able to realistically simulate air temperature gradients in a forest stand using air temperature measurements above the canopy and PAR regimes at different heights for single trees inside the canopy. Interception as a central variable for water balance of a forest stand was also estimated. Tree phenology, i.e. bud burst and leaf coloring, could be reproduced convincingly. Simulated photosynthesis rates were in accordance with measured values for beech both in the sun and the shade crown. For spruce, however, some discrepancies in the rates were obvious, probably due to changed environmental conditions after bud break. Overall, BALANCE has shown to respond to scenario simulations of a changing environment (e.g., climate change, change of forest stand structure).

  10. Forest resources of Mississippi - 1994

    Treesearch

    James F. Rosson

    2001-01-01

    The principal findings of the seventh forest survey of Mississippi and changes that have occurred since the previous survey are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, mortality, harvesting, and management activity.

  11. Forest resources of Arkansas, 1995

    Treesearch

    James F. Rosson

    2002-01-01

    The principal findings of the seventh forest survey of Arkansas and changes that have occurred since the previous survey are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, mortality, harvesting, and management activity.

  12. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate

    NASA Astrophysics Data System (ADS)

    Quesada, C. A.; Phillips, O. L.; Schwarz, M.; Czimczik, C. I.; Baker, T. R.; Patiño, S.; Fyllas, N. M.; Hodnett, M. G.; Herrera, R.; Almeida, S.; Alvarez Dávila, E.; Arneth, A.; Arroyo, L.; Chao, K. J.; Dezzeo, N.; Erwin, T.; di Fiore, A.; Higuchi, N.; Honorio Coronado, E.; Jimenez, E. M.; Killeen, T.; Lezama, A. T.; Lloyd, G.; López-González, G.; Luizão, F. J.; Malhi, Y.; Monteagudo, A.; Neill, D. A.; Núñez Vargas, P.; Paiva, R.; Peacock, J.; Peñuela, M. C.; Peña Cruz, A.; Pitman, N.; Priante Filho, N.; Prieto, A.; Ramírez, H.; Rudas, A.; Salomão, R.; Santos, A. J. B.; Schmerler, J.; Silva, N.; Silveira, M.; Vásquez, R.; Vieira, I.; Terborgh, J.; Lloyd, J.

    2012-06-01

    Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the interacting effects of soil physical and chemical properties with climate. A hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining endogenous disturbance levels, species composition, and forest productivity across the Amazon Basin.

  13. Forests Regenerating after Clear-Cutting Function as Habitat for Bryophyte and Lichen Species of Conservation Concern

    PubMed Central

    Rudolphi, Jörgen; Gustafsson, Lena

    2011-01-01

    The majority of managed forests in Fennoscandia are younger than 70 years old but yet little is known about their potential to host rare and threatened species. In this study, we examined red-listed bryophytes and lichens in 19 young stands originating from clear-cutting (30–70 years old) in the boreal region, finding 19 red-listed species (six bryophytes and 13 lichens). We used adjoining old stands, which most likely never had been clear-cut, as reference. The old stands contained significantly more species, but when taking the amount of biological legacies (i.e., remaining deciduous trees and dead wood) from the previous forest generation into account, bryophyte species number did not differ between old and young stands, and lichen number was even higher in young stands. No dispersal effect could be detected from the old to the young stands. The amount of wetlands in the surroundings was important for bryophytes, as was the area of old forest for both lichens and bryophytes. A cardinal position of young stands to the north of old stands was beneficial to red-listed bryophytes as well as lichens. We conclude that young forest plantations may function as habitat for red-listed species, but that this depends on presence of structures from the previous forest generation, and also on qualities in the surrounding landscape. Nevertheless, at repeated clear-cuttings, a successive decrease in species populations in young production stands is likely, due to increased fragmentation and reduced substrate amounts. Retention of dead wood and deciduous trees might be efficient conservation measures. Although priority needs to be given to preservation of remnant old-growth forests, we argue that young forests rich in biological legacies and located in landscapes with high amounts of old forests may have a conservation value. PMID:21490926

  14. Long-Term Impacts of Forest Ditching on Non-Aquatic Biodiversity: Conservation Perspectives for a Novel Ecosystem

    PubMed Central

    Remm, Liina; Lõhmus, Piret; Leis, Mare; Lõhmus, Asko

    2013-01-01

    Artificial drainage (ditching) is widely used to increase timber yield in northern forests. When the drainage systems are maintained, their environmental impacts are likely to accumulate over time and along accompanying management, notably after logging when new forest develops on decayed peat. Our study provides the first comprehensive documentation of long-term ditching impacts on terrestrial and arboreal biodiversity by comparing natural alder swamps and second-generation drained forests that have evolved from such swamps in Estonia. We explored species composition of four potentially drainage-sensitive taxonomic groups (vascular plants, bryophytes, lichens, and snails), abundance of species of conservation concern, and their relationships with stand structure in two-ha plots representing four management types (ranging from old growth to clearcut). We found that drainage affected plot-scale species richness only weakly but it profoundly changed assemblage composition. Bryophytes and lichens were the taxonomic groups that were most sensitive both to drainage and timber-harvesting; in closed stands they responded to changed microhabitat structure, notably impoverished tree diversity and dead-wood supply. As a result, natural old-growth plots were the most species-rich and hosted several specific species of conservation concern. Because the most influential structural changes are slow, drainage impacts may be long hidden. The results also indicated that even very old drained stands do not provide quality habitats for old-growth species of drier forest types. However, drained forests hosted many threatened species that were less site type specific, including early-successional vascular plants and snails on clearcuts and retention cuts, and bryophytes and lichens of successional and old forests. We conclude that three types of specific science-based management tools are needed to mitigate ditching effects on forest biodiversity: (i) silvicultural techniques to maintain stand structural complexity; (ii) context-dependent spatial analysis and planning of drained landscapes; and (iii) lists of focal species to monitor and guide ditching practices. PMID:23646179

  15. Long-term impacts of prescribed fire on stand structure, growth, mortality, and individual tree vigor in Pinus resinosa forests

    Treesearch

    Sawyer S. Scherer; Anthony W. D' Amato; Christel C. Kern; Brian J. Palik; Matthew B. Russell

    2016-01-01

    Prescribed fire is increasingly being viewed as a valuable tool for mitigating the ecological consequences of long-term fire suppression within fire-adapted forest ecosystems. While the use of burning treatments in northern temperate conifer forests has at times received considerable attention, the long-term (>10 years) effects on forest structure and...

  16. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 03: visualizing forest structure and fuels

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The software described in this fact sheet provides managers with tools for visualizing forest and fuels information. Computer-based landscape simulations can help visualize stand and landscape conditions and the effects of different management treatments and fuel changes over time. These visualizations can assist forest planning by considering a range of management...

  17. Seven decades of change in forest structure and composition in Pinus resinosa forests in northern Minnesota, USA: Comparing managed and unmanaged conditions

    Treesearch

    Brian D. Young; Anthony W. D' Amato; Christel C. Kern; Douglas N. Kastendick; Brian J. Palik

    2017-01-01

    An understanding of long-term patterns of forest structural and compositional development is critical for anticipating management outcomes and developing appropriate silvicultural strategies for restoring complex forest conditions. In most cases, this information comes from stand-level assessments; however, the impacts and outcomes of management and other disturbances...

  18. A comparison of stand structure and composition following selective-harvest at Byrne-Milliron Forest

    Treesearch

    Amy K. Petersen; Will Russell

    2017-01-01

    The effects of selective-harvest on forest composition and structure in the southern range of the coast redwood (Sequoia sempervirens (D. Don) Endl.) forest have not been well documented. This case study focused on the Byrne-Milliron Forest in Santa Cruz County, California where selective-harvest is currently the primary method of timber extraction...

  19. Composition, structure, and dendroecology of an old-growth Quercus forest on the tablelands of the Cumberland Plateau, USA.

    Treesearch

    Justin L. Hart; Stacy L. Clark; Scott J. Torreano; Megan L. Buchanan

    2011-01-01

    Forest reconstructions provide information on the processes that influence forest development and successional patterns. In this study, we quantified woody species composition, stand structure, and radial growth patterns of individual Quercus trees to document the processes that shaped a forest on the Cumberland Plateau in Tennessee over the past three centuries. The...

  20. Simple Runoff Control Structures Stand Test of Time

    Treesearch

    Dean M. Knighton

    1984-01-01

    Diversion terraces and detention basins constructed along the field-forest edge in the Driftless Area reduce farmland runoff and subsequent gullying in the forest below for many years. The structures are inexpensive and simple to build.

  1. Accounting for density reduction and structural loss in standing dead trees: Implications for forest biomass and carbon stock estimates in the United States

    Treesearch

    Grant M. Domke; Christopher W. Woodall; James E. Smith

    2011-01-01

    Standing dead trees are one component of forest ecosystem dead wood carbon (C) pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.'s National Greenhouse Gas Inventory. Initiated...

  2. Effects of creating two forest structures and using prescribed fire on coarse woody debris in northeastern California, USA

    Treesearch

    Fabian C. C. Uzoh; Carl N. Skinner

    2009-01-01

    Little is known about the dynamics of coarse woody debris (CWD) in forests that were originally characterized by frequent, low-moderate intensity fires. We investigated effects of prescribed burning at the Blacks Mountain Experimental Forest in northeastern California following creation of two stand structure conditions: 1) high structural diversity (HiD) that included...

  3. Forest restoration at Redwood National Park: exploring prescribed fire alternatives to second-growth management: a case study

    Treesearch

    Eamon Engber; Jason Teraoka; Phil van Mantgem

    2017-01-01

    Almost half of Redwood National Park is comprised of second-growth forests characterized by high stand density, deficient redwood composition, and low understory biodiversity. Typical structure of young redwood stands impedes the recovery of old-growth conditions, such as dominance of redwood (Sequoia sempervirens (D. Don) Endl.), distinct...

  4. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States

    Treesearch

    James S. Clark; Louis Iverson; Christopher W. Woodall; Craig D. Allen; David M. Bell; Don C. Bragg; Anthony W. D' Amato; Frank W. Davis; Michelle H. Hersh; Ines Ibanez; Stephen T. Jackson; Stephen Matthews; Neil Pederson; Matthew Peters; Mark W. Schwartz; Kristen M. Waring; Niklaus E. Zimmermann

    2016-01-01

    We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition...

  5. Management of western coniferous forest habitat for nesting accipiter hawks

    Treesearch

    Richard T. Reynolds

    1983-01-01

    Availability of nesting sites can limit accipiter populations. Because accipiters nest in dense forest stands, any alteration that opens these stands is likely to lessen their desirability as nest sites. Tree growth and the associated changes in the vegetative structure of aging nest sites limit the number of years sites will be suitable. Therefore, prospective...

  6. Thinning method and intensity influence long-term mortality trends in a red pine forest

    Treesearch

    Matthew D. Powers; Brian J. Palik; John B. Bradford; Shawn Fraver; Christopher R. Webster

    2010-01-01

    Tree mortality shapes forest development, but rising mortality can represent lost production or an adverse response to changing environmental conditions. Thinning represents a strategy for reducing mortality rates, but different thinning techniques and intensities could have varying impacts depending on how they alter stand structure. We analyzed trends in stand...

  7. Does variable-density thinning increase wind damage in conifer stands on the Olympic Peninsula?

    Treesearch

    S.D. Roberts; C.A. Harrington; K.R. Buermeyer

    2007-01-01

    Silvicultural treatments designed to enhance stand structural diversity may result in increased wind damage. The ability to avoid conditions that might lead to excessive wind damage would benefit forest managers. We analyzed wind damage following implementation of a variable-density thinning at four sites on the Olympic National Forest in northwest Washington. The...

  8. Development and quality of reproduction in two-age central Appalachian hardwoods - 10-year results

    Treesearch

    Gary W. Miller; Thomas M. Schuler

    1995-01-01

    Silvicultural practices that promote two-age stand structures have the potential to meet a wide range of forest resource goals. Such practices can overcome perceived disadvantages associated with clearcutting and still provide sustainable yields of desirable timber products and other woodland benefits. Forest managers need information on stand development following two...

  9. Modeling the effects of harvest alternatives on mitigating oak decline in a Central Hardwood Forest landscape

    Treesearch

    Wen J. Wang; Hong S. He; Martin A. Spetich; Stephen R. Shifley; Frank R. III Thompson; Jacob S. Fraser

    2013-01-01

    Oak decline is a process induced by complex interactions of predisposing factors, inciting factors, and contributing factors operating at tree, stand, and landscape scales. It has greatly altered species composition and stand structure in affected areas. Thinning, clearcutting, and group selection are widely adopted harvest alternatives for reducing forest...

  10. Tree and understory responses to variable-density thinning in western Washington.

    Treesearch

    Constance A. Harrington; Scott D. Roberts; Leslie C. Brodie

    2005-01-01

    The Olympic Habitat Development Study was initiated in 1994 to evaluate whether active management in 35- to 70-year-old stands could accelerate development of stand structures and plant and animal communities associated with late-successional forests. The study used a variable-density thinning prescription as the main tool to alter stand structure; the prescription...

  11. Arkansas’ forests, 2010

    Treesearch

    James F. Rosson; Anita K. Rose

    2015-01-01

    The principal findings of the ninth forest survey of Arkansas are presented. The survey examines trends between the 2005 and 2010 surveys. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, mortality, crown characteristics, ozone levels, and invasive species.

  12. Forest resources of east Oklahoma, 1993

    Treesearch

    James F. Rosson

    2001-01-01

    The principal findings of the sixth forest survey of east Oklahoma (1993) and changes that have occurred since the previous survey are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, mortality, harvesting, and management activity.

  13. Forest resources of east Texas, 1992

    Treesearch

    James F. Rosson

    2000-01-01

    The principal findings of the sixth forest survey of east Texas (1992) and changes that have occurred since the previous survey are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, mortality, harvesting, and management activity.

  14. The timberland and woodland resources of central and west Oklahoma, 1989

    Treesearch

    James F. Rosson

    1995-01-01

    SRS Publications Principal findings of the first forest survey of central and west Oklahoma are presented. Topics examined include forest area, forest types, stand structure, basal area, timber volume, growth, and mortality. Information is presented for timberland and woodland forests.

  15. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    NASA Astrophysics Data System (ADS)

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant below the closed canopy of even-aged, pioneer trees a climax-species-rich understorey that will build the canopy of the mature forest. This study highlights that forest structure and species composition are both relevant for understanding the temperature sensitivity of wood production.

  16. Changing stand structure and regional growth reductions in Georgia's natural pine stands

    Treesearch

    W.A. Bechtold; G.A. Ruark; F.T. Lloyd

    1991-01-01

    Forest Inventory and Analysis (FIA) data indicate reductions in the growth of naturally regenerated pines in Georgia between the two latest measurement periods (1961-1972 vs. 1972-1982). Analysis of Covariance was used to adjust stand-level basal area growth rates for differences between periods in stand age, stand density, site index, mortality, and hardwood...

  17. Early-seral stand age and forest structural changes in public and private forestlands in Western Oregon and Washington

    Treesearch

    Robert L Deal; Sharon Stanton; Matthew Betts; Zhiqiang. Yang

    2015-01-01

    Federal forests in the Pacific Northwest region have undergone exceptional changes in management over the past 20 years, and these changes have led to a reduction in regional timber production and significant changes in the management and current age structure of forests. Public lands include large areas of older forests with relatively little younger early-seral...

  18. Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests.

    PubMed

    Earles, J Mason; North, Malcolm P; Hurteau, Matthew D

    2014-06-01

    Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests. Fir-dominated stands, with higher live- and dead-wood density, had much lower carbon stability as drought and fire frequency increased compared to pine-dominated forest. Carbon instability resulted from species (i.e., fir's greater susceptibility to drought and fire) and stand (i.e., high density of smaller trees) conditions that develop in the absence of active management. Our modeling suggests restoring historic species composition and active fire regimes can significantly increase carbon stability in fire-suppressed, mixed-conifer forests. Long-term management of forest carbon should consider the relative resilience of stand structure and composition to possible increases in disturbance frequency and intensity under changing climate.

  19. Fire performance in traditional silvicultural and fire and fire surrogate treatments in Sierran mixed-conifer forests: a brief summary

    Treesearch

    Jason J. Moghaddas; Scott L. Stephens

    2007-01-01

    Mixed conifer forests cover 7.9 million acres of California’s total land base. Forest structure in these forests has been influenced by harvest practices and silvicultural systems implemented since the beginning of the California Gold Rush in 1849. Today, the role of fire in coniferous forests, both in shaping past stand structure and its ability to shape future...

  20. Quantifying forest vertical structure to determine bird habitat quality in the Greenbelt Corridor, Denton, TX

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Shiho

    This study presents the integration of light detection and range (LiDAR) and hyperspectral remote sensing to create a three-dimensional bird habitat map in the Greenbelt Corridor of the Elm Fork of the Trinity River. This map permits to examine the relationship between forest stand structure, landscape heterogeneity, and bird community composition. A biannual bird census was conducted at this site during the breeding seasons of 2009 and 2010. Census data combined with the three-dimensional map suggest that local breeding bird abundance, community structure, and spatial distribution patterns are highly influenced by vertical heterogeneity of vegetation surface. For local breeding birds, vertical heterogeneity of canopy surface within stands, connectivity to adjacent forest patches, largest forest patch index, and habitat (vegetation) types proved to be the most influential factors to determine bird community assemblages. Results also highlight the critical role of secondary forests to increase functional connectivity of forest patches. Overall, three-dimensional habitat descriptions derived from integrated LiDAR and hyperspectral data serve as a powerful bird conservation tool that shows how the distribution of bird species relates to forest composition and structure at various scales.

  1. Structural lumber from dense stands of small-diameter Douglas-fir trees.

    Treesearch

    David W. Green; Eini C. Lowell; Roland Hernandez

    2005-01-01

    Small-diameter trees growing in overstocked dense stands are often targeted for thinning to reduce fire hazard and improve forest health and ecosystem diversity. In the Pacific Northwest and Intermountain regions, Douglas-fir can be a predominant species in such stands. In this study, mechanical properties and grade yield of structural products were estimated for 2 by...

  2. Impact of fire in two old-growth montane longleaf pine stands

    Treesearch

    John S. Kush; John C. Gilbert; Crystal Lupo; Na Zhou; Becky Barlow

    2013-01-01

    The structure of longleaf pine (Pinus palustris Mill.) forests of the Southeastern United States Coastal Plains has been the focus of numerous studies. By comparison, the forests in the mountains of Alabama and Georgia are not well understood. Less than 1 percent of longleaf pine stands found in the montane portion of longleaf’s range are considered...

  3. Measuring Effective Leaf Area Index, Foliage Profile, and Stand Height in New England Forest Stands Using a Full-Waveform Ground-Based Lidar

    NASA Technical Reports Server (NTRS)

    Zhao, Feng; Yang, Xiaoyuan; Schull, Mithcell A.; Roman-Colon, Miguel O.; Yao, Tian; Wang, Zhuosen; Zhang, Qingling; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius; hide

    2011-01-01

    Effective leaf area index (LAI) retrievals from a scanning, ground-based, near-infrared (1064 nm) lidar that digitizes the full return waveform, the Echidna Validation Instrument (EVI), are in good agreement with those obtained from both hemispherical photography and the Li-Cor LAI-2000 Plant Canopy Analyzer. We conducted trials at 28 plots within six stands of hardwoods and conifers of varying height and stocking densities at Harvard Forest, Massachusetts, Bartlett Experimental Forest, New Hampshire, and Howland Experimental Forest, Maine, in July 2007. Effective LAI values retrieved by four methods, which ranged from 3.42 to 5.25 depending on the site and method, were not significantly different ( b0.1 among four methods). The LAI values also matched published values well. Foliage profiles (leaf area with height) retrieved from the lidar scans, although not independently validated, were consistent with stand structure as observed and as measured by conventional methods. Canopy mean top height, as determined from the foliage profiles, deviated from mean RH100 values obtained from the Lidar Vegetation Imaging Sensor (LVIS) airborne large-footprint lidar system at 27 plots by .0.91 m with RMSE=2.04 m, documenting the ability of the EVI to retrieve stand height. The Echidna Validation Instrument is the first realization of the Echidna lidar concept, devised by Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), for measuring forest structure using full-waveform, ground-based, scanning lidar.

  4. Late-successional forests and northern spotted owls: how effective is the Northwest Forest Plan?

    Treesearch

    Miles Hemstrom; Martin G. Raphael

    2000-01-01

    This paper describes the late-successional and old-growth forest and the northern spotted owl effectiveness monitoring plans for the Northwest Forest Plan. The effectiveness monitoring plan for late-successional and old-growth forests will track changes in forest spatial distribution, and within-stand structure and composition, and it will predict future trends.

  5. Analysis of forest naturalness and tree mortality patterns in Estonia

    Treesearch

    J.A. Stanturf

    2009-01-01

    New methods for evaluating structural properties of stands and individual tree mortality within forests are needed to enhance biodiversity assessment in forest inventories. One approach is to assess the degree of naturalness in a forest. We assessed forest naturalness by examining patterns and causes of mortality and deadwood amount and...

  6. A twelve-year comparison of stand changes in a mahogany plantation and a paired natural forest of similar ages.

    Treesearch

    S. Fu; C. Rodr¡guez Pedraza; A. E. Lugo

    1996-01-01

    we compared forest structure over a 12 yr period. 1982-1994 that include measurements before and after a servere hurricaine in two forests: a 64 yr old swietenia macrophylla tree plantantion and a paired natural forest of similar age in a subtropical wet forests

  7. Influence of forest structure and experimental green-tree retention on northern flying squirrel (Glaucomys sabrinus) abundance

    Treesearch

    Gillian L. Holloway; Winston P. Smith; Charles B. Halpern; Robert A. Gitzen; Christine C. Maguire; Stephen D. West

    2012-01-01

    In many regions of the world, forest management has shifted from practices emphasizing timber production to more sustainable harvesting that integrates ecological values, including maintenance of biodiversity, wildlife habitat, and ecological goods and services. To this end, management strategies emphasize retention of stand structures that meet the needs of forest-...

  8. Midcanopy growth following thinning in young-growth conifer forests on the Olympic Peninsula, western Washington

    Treesearch

    Emily J. Comfort; Scott D. Roberts; Constance A. Harrington

    2010-01-01

    Midcanopy layers are essential structures in "old-growth" forests on the Olympic Peninsula. Little is known about which stand and tree factors influence the ability of midcanopy trees in young-growth forests to respond to release; however, this information is important to managers interested in accelerating development of late-successional structural...

  9. The Impacts of Pine Tree Die-Off on Snow Accumulation and Distribution at Plot to Catchment Scales

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Gutmann, E. D.; Reed, D. E.; Gochis, D. J.; Brooks, P. D.

    2011-12-01

    Seasonal snow cover is a primary water source throughout much of Western North America, where insect-induced tree die-off is changing the montane landscape. Widespread mortality from insects or drought differs from well-studied cases of fire and logging in that tree mortality is not accompanied by other immediate biophysical changes. Much of the impacted landscape is a mosaic of stands of varying species, structure, management history and health overlain on complex terrain. To address the challenge of predicting the effects of forest die-off on snow water input, we quantified snow accumulation and ablation at scales ranging from individual trees, through forest stands, to nested small catchments. Our study sites in Northern Colorado and Southern Wyoming are dominated by lodgepole pine, but they include forest stands that are naturally developed, managed and clear-cut with varying mortality from Mountain Pine Beetle (MPB). Our record for winters 2010 and 2011 includes continuous meteorological data and snow depth in plots with varying MPB impact as well as stand- to catchment-scale snow surveys mid-winter and near maximal accumulation. At the plot scale, snow depth sensors in healthy stands recorded greater inputs during storms (21-42% of depth) and greater seasonal accumulation (15-40%) in canopy gaps than under trees, whereas no spatial effects of canopy geometry were observed in stands with heavy mortality. Similar patterns were observed in snow surveys near peak accumulation. At both impacted and thinned sites, spatial variability in snow depth was more closely associated with larger scale topography and changes in stand structure than with canopy cover. The role of aspect in ablation was observed to increase in impacted stands as both shading and wind attenuation decreased. Evidence of wind-controlled snow distribution was found 80-100 meters from exposed stand edges in impacted forest as compared to 10-15 meters in healthy forest. Integrating from the scale of stands to small catchments, maximal snow water equivalent (SWE) as a fraction of winter precipitation (P) ranged from 62 to 74%. Despite an expectation of decreased interception and increased snow accumulation with advanced mortality, surveys at stand and catchment scales found no significant increases in net snow water input between healthy and impacted forests. These observations suggest that the spatial scale of processes affecting net snow accumulation and ablation increase following die-off. Using data from our sites and other studies, this presentation will develop a predictive model of how interception, shading, and wind redistribution interact to control net snow water input following large-scale forest mortality.

  10. Forest structure, stand composition, and climate-growth response in montane forests of Jiuzhaigou National Nature Reserve, China.

    PubMed

    Schwartz, Mark W; Dolanc, Christopher R; Gao, Hui; Strauss, Sharon Y; Schwartz, Ari C; Williams, John N; Tang, Ya

    2013-01-01

    Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1) whether the forest appears in transition toward increased hardwood composition; 2) if conifers appear stressed by recent climate change relative to hardwoods; and 3) how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20(th) century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix) strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth.

  11. Forest Structure, Stand Composition, and Climate-Growth Response in Montane Forests of Jiuzhaigou National Nature Reserve, China

    PubMed Central

    Schwartz, Mark W.; Dolanc, Christopher R.; Gao, Hui; Strauss, Sharon Y.; Schwartz, Ari C.; Williams, John N.; Tang, Ya

    2013-01-01

    Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1) whether the forest appears in transition toward increased hardwood composition; 2) if conifers appear stressed by recent climate change relative to hardwoods; and 3) how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20th century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix) strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth. PMID:23951188

  12. Longer-term effects of selective thinning on carabid beetles and spiders in the Cascade Mountains of southern Oregon

    USGS Publications Warehouse

    Peck, R.; Niwa, C.G.

    2005-01-01

    Within late-successional forests of the Cascade Mountains of southern Oregon, abundances of carabid beetles (Carabidae) and spiders (Araneae) from pitfall traps were compared between stands thinned 16-41 years prior and nearby unthinned stands. Species richness of both taxa were moderate for coniferous forests of this region, with 12 carabid beetle species and >120 spider species collected. No differences in total abundance or species richness were found between stand types for carabid beetles, although abundances of four of the six most common species differed significantly. Pterostichus setosus, the most abundant species collected, was significantly more abundant in unthinned stands, while Omus cazieri, P. lama, and Carabus taedatus were more numerous in thinned stands. In contrast, both total spider abundance and species richness were significantly higher in thinned stands. Hunting spiders within the families Lycosidae and Gnaphosidae, and the funnel web-building Dictynidae were captured more often in thinned stands while sheet web spiders within Linyphiidae and Hahniidae were more abundant in unthinned stands. The forest floor within unthinned stands was structurally more diverse than in thinned stands, but this did not lead to greater overall abundance or diversity of either carabid beetles or spiders.

  13. Current forest conditions of older stands of the mixed mesophytic forest region on the Appalachian Plateaus Province of eastern Kentucky

    Treesearch

    James F. Jr. Rosson

    2008-01-01

    E. Lucy Braun coined the term "mixed mesophytic forest" in 1916. These forests are structurally complex and occur extensively across the Appalachian Plateaus Province. This region is considered the epicenter of highest development of the eastern deciduous forest. I used U.S. Forest Service, Forest Inventory and Analysis (FIA) data to study current forest...

  14. Changes in forest species composition and structure after stand-replacing wildfire in the mountains of southeastern Arizona

    Treesearch

    Ronald D. Quinn; Lin Wu

    2005-01-01

    A wildfire in the Chiricahua Mountains of southeastern Arizona apparently altered the long-term structure of the forest. The pre-fire canopy forest, which had not burned for 100 years, was an even mixture of Arizona pines and Rocky Mountain Douglas-firs. A decade later the new forest was numerically dominated by quaking aspen seedlings in clumps separated by persistent...

  15. Frequent Prescribed Burning as a Long-term Practice in Longleaf Pine Forests Does Not Affect Detrital Chemical Composition.

    PubMed

    Coates, T Adam; Chow, Alex T; Hagan, Donald L; Wang, G Geoff; Bridges, William C; Dozier, James H

    2017-09-01

    The O horizon, or detrital layer, of forest soils is linked to long-term forest productivity and health. Fuel reduction techniques, such as prescribed fire, can alter the thickness and composition of this essential ecosystem component. Developing an understanding of the changes in the chemical composition of forest detritus due to prescribed fire is essential for forest managers and stakeholders seeking sustainable, resilient, and productive ecosystems. In this study, we evaluated fuel quantity, fuel structure, and detrital chemical composition in longleaf pine ( Miller) forests that have been frequently burned for the last 40 yr at the Tom Yawkey Wildlife Center in Georgetown, SC. Our results suggest that frequent prescribed fire reduces forest fuel quantity ( < 0.01) and vertical structure ( = 0.01). Using pyrolysis-gas chromatography/mass spectrometry as a molecular technique to analyze detrital chemical composition, including aromatic compounds and polycyclic aromatic hydrocarbons, we found that the chemical composition of forest detritus was nearly uniform for both unburned and burned detritus. Our burning activities varied in the short term, consisting of annual dormant, annual growing, and biennial dormant season burns. Seasonal distinctions were present for fuel quantity and vertical fuel structure, but these differences were not noted for the benzene/phenol ratio. These results are significant as more managers consider burning existing longleaf stands while determining effective management practices for longleaf stands yet to be established. Managers of such stands can be confident that frequent, low-intensity, low-severity prescribed burns in longleaf pine forests do little to affect the long-term chemical composition of forest detritus. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Arkansas’ forests, 2005

    Treesearch

    James F. Rosson; Anita K. Rose

    2010-01-01

    The principal fi ndings of the eighth forest survey of Arkansas are presented. This survey marks a major change in the FIA sampling protocol from a periodic prism sample to an annualized fi xed-plot sample. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, and mortality, crown...

  17. Timber resources of East Oklahoma

    Treesearch

    Richard A. Birdsey; Dennis M. May

    1988-01-01

    Presents the principal findings of the fifth forest survey of east Oklahoma and the changes that have occurred since earlier surveys. Trends in forest area, ownership, forest type, stand structure, stocking, timber volume, growth, removals, mortality, management opportunities, and timber products output are discussed.

  18. Forest management strategy affects saproxylic beetle assemblages: A comparison of even and uneven-aged silviculture using direct and indirect sampling.

    PubMed

    Joelsson, Klara; Hjältén, Joakim; Gibb, Heloise

    2018-01-01

    Management of forest for wood production has altered ecosystem structures and processes and led to habitat loss and species extinctions, worldwide. Deadwood is a key resource supporting forest biodiversity, and commonly declines following forest management. However, different forest management methods affect dead wood differently. For example, uneven-aged silviculture maintains an age-stratified forest with ongoing dead wood production, while even-aged silviculture breaks forest continuity, leading to long periods without large trees. We asked how deadwood-dependent beetles respond to different silvicultural practices and if their responses depend on deadwood volume, and beetles preference for decay stages of deadwood. We compared beetle assemblages in five boreal forest types with different management strategies: clearcutting and thinning (both representing even-aged silviculture), selective felling (representing uneven-aged silviculture), reference and old growth forest (both uneven-aged controls without a recent history [~50 years] of management, but the latter with high conservation values). We collected beetles using window traps and by sieving the bark from experimental logs (bolts). Beetle assemblages on clear-cuts differed from all other stand types, regardless of trapping method or decay stage preference. Thinning differed from reference stands, indicating incomplete recovery after clear-cutting, while selective felling differed only from clear-cuts. In contrast to our predictions, early and late successional species responded similarly to different silvicultural practices. However, there were indications of marginal assemblage differences both between thinned stands and selective felling and between thinned and old growth stands (p = 0.10). The stand volume of early decay stage wood influenced assemblage composition of early, but not late successional species. Uneven-aged silviculture maintained species assemblages similar to those of the reference and old growth stands and might therefore be a better management option when considering biodiversity conservation.

  19. Tree Size Inequality Reduces Forest Productivity: An Analysis Combining Inventory Data for Ten European Species and a Light Competition Model.

    PubMed

    Bourdier, Thomas; Cordonnier, Thomas; Kunstler, Georges; Piedallu, Christian; Lagarrigues, Guillaume; Courbaud, Benoit

    2016-01-01

    Plant structural diversity is usually considered as beneficial for ecosystem functioning. For instance, numerous studies have reported positive species diversity-productivity relationships in plant communities. However, other aspects of structural diversity such as individual size inequality have been far less investigated. In forests, tree size inequality impacts directly tree growth and asymmetric competition, but consequences on forest productivity are still indeterminate. In addition, the effect of tree size inequality on productivity is likely to vary with species shade-tolerance, a key ecological characteristic controlling asymmetric competition and light resource acquisition. Using plot data from the French National Geographic Agency, we studied the response of stand productivity to size inequality for ten forest species differing in shade tolerance. We fitted a basal area stand production model that included abiotic factors, stand density, stand development stage and a tree size inequality index. Then, using a forest dynamics model we explored whether mechanisms of light interception and light use efficiency could explain the tree size inequality effect observed for three of the ten species studied. Size inequality negatively affected basal area increment for seven out of the ten species investigated. However, this effect was not related to the shade tolerance of these species. According to the model simulations, the negative tree size inequality effect could result both from reduced total stand light interception and reduced light use efficiency. Our results demonstrate that negative relationships between size inequality and productivity may be the rule in tree populations. The lack of effect of shade tolerance indicates compensatory mechanisms between effect on light availability and response to light availability. Such a pattern deserves further investigations for mixed forests where complementarity effects between species are involved. When studying the effect of structural diversity on ecosystem productivity, tree size inequality is a major facet that should be taken into account.

  20. Predicting forested catchment evapotranspiration and streamflow from stand sapwood area and Aridity Index

    NASA Astrophysics Data System (ADS)

    Lane, Patrick

    2016-04-01

    Estimating the water balance of ungauged catchments has been the subject of decades of research. An extension of the fundamental problem of estimating the hydrology is then understanding how do changes in catchment attributes affect the water balance component? This is a particular issue in forest hydrology where vegetation exerts such a strong influence on evapotranspiration (ET), and consequent streamflow (Q). Given the primacy of trees in the water balance, and the potential for change to species and density through logging, fire, pests and diseases and drought, methods that directly relate ET/Q to vegetation structure, species, and stand density are very powerful. Plot studies on tree water use routinely use sapwood area (SA) to calculate transpiration and upscale to the stand/catchment scale. Recent work in south eastern Australian forests have found stand-wide SA to be linearly correlated (R2 = 0.89) with long term mean annual loss (P-Q), and hence, long term mean annual catchment streamflow. Robust relationships can be built between basal area (BA), tree density and stand SA. BA and density are common forest inventory measurements. Until now, no research has related the fundamental stand attribute of SA to streamflow. The data sets include catchments that have been thinned and with varying age classes. Thus far these analyses have been for energy limited systems in wetter forest types. SA has proven to be a more robust biometric than leaf area index which varies seasonally. That long term ET/Q is correlated with vegetation conforms to the Budyko framework. Use of a downscaled (20 m) Aridity Index (AI) has shown distinct correlations with stand SA, and therefore T. Structural patterns at a the hillslope scale not only correlate with SA and T, but also with interception (I) and forest floor evaporation (Es). These correlations between AI and I and Es have given R2 > 0.8. The result of these studies suggest an ability to estimate mean annual ET fluxes at sub hillslope scale using mappable attributes (AI, forest inventory data). Advances in forest inventory techniques, including LiDAR, mean stand attributes can increasingly be mapped over large areas. If combined with process measurements, these mapped attributes provide a powerful platform for simple but robust modelling at the sub-hillslope scale, including exploring hinge points of stand vulnerability to the drier, hotter climate predicted for SE Australia where energy limited systems may face water limitation.

  1. Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula.

    PubMed

    Vilà-Cabrera, Albert; Martínez-Vilalta, Jordi; Vayreda, Jordi; Retana, Javier

    2011-06-01

    The demographic rates of tree species typically show large spatial variation across their range. Understanding the environmental factors underlying this variation is a key topic in forest ecology, with far-reaching management implications. Scots pine (Pinus sylvestris L.) covers large areas of the Northern Hemisphere, the Iberian Peninsula being its southwestern distribution limit. In recent decades, an increase in severe droughts and a densification of forests as a result of changes in forest uses have occurred in this region. Our aim was to use climate and stand structure data to explain mortality and growth patterns of Scots pine forests across the Iberian Peninsula. We used data from 2392 plots dominated by Scots pine, sampled for the National Forest Inventory of Spain. Plots were sampled from 1986 to 1996 (IFN2) and were resampled from 1997 to 2007 (IFN3), allowing for the calculation of growth and mortality rates. We fitted linear models to assess the response of growth and mortality rates to the spatial variability of climate, climatic anomalies, and forest structure. Over the period of approximately 10 years between the IFN2 and IFN3, the amount of standing dead trees increased 11-fold. Higher mortality rates were related to dryness, and growth was reduced with increasing dryness and temperature, but results also suggested that effects of climatic stressors were not restricted to dry sites only. Forest structure was strongly related to demographic rates, suggesting that stand development and competition are the main factors associated with demography. In the case of mortality, forest structure interacted with climate, suggesting that competition for water resources induces tree mortality in dry sites. A slight negative relationship was found between mortality and growth, indicating that both rates are likely to be affected by the same stress factors. Additionally, regeneration tended to be lower in plots with higher mortality. Taken together, our results suggest a large-scale self-thinning related to the recent densification of Scots pine forests. This process appears to be enhanced by dry conditions and may lead to a mismatch in forest turnover. Forest management may be an essential adaptive tool under the drier conditions predicted by most climate models.

  2. The role of red alder in riparian forest structure along headwater streams in southeastern Alaska

    USGS Publications Warehouse

    Orlikowska, E.H.; Deal, R.L.; Hennon, P.E.; Wipfli, M.S.

    2004-01-01

    We assessed the influence of red alder on tree species composition, stand density, tree size distribution, tree mortality, and potential for producing large conifers, in 38-42 yr old riparian forests along 13 headwater streams in the Maybeso and Harris watersheds on Prince of Wales Island, Alaska. Red alder ranged from 0 to 53% of the total live basal area of the stands. Tree density, basal area of live and dead trees, and mean diameter of live conifers were not significantly related to the percent of alder as a proportion of total stand live basal area within these riparian forests. The mean diameter of the 100 largest conifers per hectare (the largest trees) was similar among different sites and appeared unrelated to the amount of alder in the stands. The mean diameter of dead conifers increased slightly with increasing proportion of red alder. Most dead trees were small and died standing. Red alder was much more concentrated immediately along stream margins (within 0-1 m distance from the stream bank vs. > 1 m). The presence of red alder did not inhibit the production of large-diameter conifers, and both alder and conifers provided small woody debris for fishless headwater streams in southeastern Alaska. Red alder is an important structural component of young-growth riparian stands.

  3. Habitat use by elk (cervus elaphus) within structural stages of a managed forest of the northcentral United States

    Treesearch

    Mark A. Rumble; R. Scott Gamo

    2011-01-01

    Timber management is the most prominent land management activity in the Black Hills National Forest in the northcentral United States. Management units are stands 4-32 ha in size and are described using a hierarchal vegetative description including vegetation type, size class (age), and overstory canopy cover. For the most part, these stands are relatively homogeneous...

  4. Use of Fouler Transforms to define landscape scales of analysis for disturbances: A case study of thinned and unthinned forest stands

    Treesearch

    J. E. Lundquist; R. A. Sommerfeld

    2002-01-01

    Various disturbances such as disease and management practices cause canopy gaps that change patterns of forest stand structure. This study examined the usefulness of digital image analysis using aerial photos, Fourier Tranforms, and cluster analysis to investigate how different spatial statistics are affected by spatial scale. The specific aims were to: 1) evaluate how...

  5. Spatial Distribution of Overstory Retention Influences Resources and Growth of Longleaf Pine Seedlings

    Treesearch

    Brian Palik; Robert J. Mitchell; Stephen Pecot; Mike Battaglia; Mou Pu

    2003-01-01

    Increasingly, overstory retention is being used in forests traditionally managed for single-cohort structure. One rationale for retention is that residual stand structure better resembles the complex structure of forests after natural disturbance, helping to perpetuate ecosystem fuctions dependent on that structure. The benefits of retention come at the cost of reduced...

  6. Pine Forest Harvest Leads to Decade-Scale Alterations in Soil Fungal Communities

    NASA Astrophysics Data System (ADS)

    Boutton, T. W.; Mushinski, R. M.; Gentry, T. J.

    2016-12-01

    Forestlands provide a multitude of ecosystem services, and sustainable management is crucial to maintaining the benefits of these ecosystems. Intensive organic matter removal (OMR) of logging residues and forest litter during forest harvest may result in long-term alterations to soil properties and processes. Because fungal activity regulates essential biogeochemical processes in forestlands, changes in soil fungal community structure following OMR may translate into altered soil function. Using a replicated field experiment in southern pine forest in eastern Texas, USA, we sampled soil to a depth of 1 m to assess the impact of intensive OMR on soil fungal communities. Soils were collected from replicated (n = 3 ) loblolly pine (Pinus taeda L.) stands subjected to 3 different harvest intensities (i.e., unharvested old growth stands, bole-only harvest stands, and whole-tree harvest + forest floor removal stands) in 1997. Nearly two decades after trees were harvested and replanted, next generation sequencing of the fungal internal transcribed spacer showed the diversity and community structure of the entire fungal community was altered relative to the unharvested stands. The relative abundance of Ascomycetes increased as OMR intensity increased and was positively correlated to concurrent changes in soil pH. The community composition of fungal functional groups (e.g., ecto- and arbuscular mycorrhizal, saprophytic fungi) was also altered by OMR. The most abundant taxa, Russula exhibited significant reductions in response to increasing intensity of OMR. Results of this study illustrate a linkage between anthropogenically-induced aboveground perturbation, edaphic factors, and belowground soil fungal communities of southern pine forests. Also, these results indicate that tree harvesting effects on soil fungal communities can persist for decades post-harvest, with potential implications for soil functional characteristics.

  7. Alabama’s forests, 2010

    Treesearch

    Andrew J. Hartsell; Jason A. Cooper

    2013-01-01

    The principle findings of the ninth forest survey of Alabama (2010) and changes that have occurred since the previous surveys are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth removals, and mortality. Alabama’s contribution to the Nation’s forest resources and regional comparisons are...

  8. Seventy years of forest growth and community dynamics in an undisturbed northern hardwood forest

    Treesearch

    Jennifer Pontius; Joshua M. Halman; Paul G. Schaberg

    2016-01-01

    Long-term forest inventories provide a unique opportunity to quantify changes in forest structure and evaluate how changes compare with current stand development models. An examination of a 70 year record at the Bartlett Experimental Forest, New Hampshire, indicated that although species abundances have primarily changed as expected under natural succession, some...

  9. 77 FR 18997 - Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... uncharacteristicly high-severity wild fires, which can lead to loss of entire stands during one fire event. About 67..., fire, and wind. The purpose of the project is to restore forest health, move forests toward an uneven-aged forest structure with all age classes represented, and restore frequent, periodic surface fire as...

  10. Seeing the forest for the homogeneous trees: stand-scale resource distributions emerge from tree-scale structure

    Treesearch

    Suzanne Boyden; Rebecca Montgomery; Peter B. Reich; Brian J. Palik

    2012-01-01

    Forest ecosystem processes depend on local interactions that are modified by the spatial pattern of trees and resources. Effects of resource supplies on processes such as regeneration are increasingly well understood, yet we have few tools to compare resource heterogeneity among forests that differ in structural complexity. We used a neighborhood approach to examine...

  11. Modeling the effects of forest harvesting on landscape structure and the spatial distribution of cowbird brood parasitism

    Treesearch

    Eric J. Gustafson; Thomas R. Crow

    1994-01-01

    Timber harvesting affects both composition and structure of the landscape and has important consequences for organisms using forest habitats. A timber harvest allocation model was constructed that allows the input of specific rules to allocate forest stands for clearcutting to generate landscape patterns reflecting the "look and feel" of managed landscapes....

  12. Costs of landscape silviculture for fire and habitat management.

    Treesearch

    S. Hummel; D.E. Calkin

    2005-01-01

    In forest reserves of the U.S. Pacific Northwest, management objectives include protecting late-semi habitat structure by reducing the threat of large-scale disturbances like wildfire. We simulated how altering within- and among-stand structure with silvicultural treatments of differing intensity affected late-seral forest (LSF) structure and fire threat (FT) reduction...

  13. Kinetic Energy of Throughfall in Subtropical Forests of SE China – Effects of Tree Canopy Structure, Functional Traits, and Biodiversity

    PubMed Central

    Geißler, Christian; Nadrowski, Karin; Kühn, Peter; Baruffol, Martin; Bruelheide, Helge; Schmid, Bernhard; Scholten, Thomas

    2013-01-01

    Throughfall kinetic energy (TKE) plays an important role in soil erosion in forests. We studied TKE as a function of biodiversity, functional diversity as well as structural stand variables in a secondary subtropical broad-leaved forest in the Gutianshan National Nature Reserve (GNNR) in south-east China, a biodiversity hotspot in the northern hemisphere with more than 250 woody species present. Using a mixed model approach we could identify significant effects of all these variables on TKE: TKE increased with rarefied tree species richness and decreased with increasing proportion of needle-leaved species and increasing leaf area index (LAI). Furthermore, for average rainfall amounts TKE was decreasing with tree canopy height whereas for high rainfall amounts this was not the case. The spatial pattern of throughfall was stable across several rain events. The temporal variation of TKE decreased with rainfall intensity and increased with tree diversity. Our results show that more diverse forest stands over the season have to cope with higher cumulative raindrop energy than less diverse stands. However, the kinetic energy (KE) of one single raindrop is less predictable in diverse stands since the variability in KE is higher. This paper is the first to contribute to the understanding of the ecosystem function of soil erosion prevention in diverse subtropical forests. PMID:23457440

  14. Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.; Waide, Robert B.; Lawrence, William T.; Joyce, Armond T.

    1989-01-01

    Forest stand structure and biomass data were collected using conventional forest inventory techniques in tropical, subtropical, and warm temperate forest biomes. The feasibility of detecting tropical forest successional age class and total biomass differences using Landsat-Thematic mapper (TM) data, was evaluated. The Normalized Difference Vegetation Index (NDVI) calculated from Landsat-TM data were not significantly correlated with forest regeneration age classes in the mountain terrain of the Luquillo Experimental Forest, Puerto Rico. The low sun angle and shadows cast on steep north and west facing slopes reduced spectral reflectance values recorded by TM orbital altitude. The NDVI, calculated from low altitude aircraft scanner data, was significatly correlated with forest age classes. However, analysis of variance suggested that NDVI differences were not detectable for successional forests older than approximately 15-20 years. Also, biomass differences in young successional tropical forest were not detectable using the NDVI. The vegetation index does not appear to be a good predictor of stand structure variables (e.g., height, diameter of main stem) or total biomass in uneven age, mixed broadleaf forest. Good correlation between the vegetation index and low biomass in even age pine plantations were achieved for a warm temperate study site. The implications of the study for the use of NDVI for forest structure and biomass estimation are discussed.

  15. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 06: Guide to fuel treatments in dry forests of the Western United States: assessing forest structure and fire hazard

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2005-01-01

    The Guide to Fuel Treatments analyzes a range of potential silvicultural thinnings and surface fuel treatments for 25 representative dry-forest stands in the Western United States. The guide provides quantitative guidelines and visualization for treatment based on scientific principles identified for reducing potential crown fires. This fact sheet identifies the...

  16. Epiphytic lichen diversity and biomass in low-elevation forests of the eastern Washington Cascade range, USA.

    Treesearch

    John F. Lehmkuhl

    2004-01-01

    cover types in the eastern Washington Cascade range. Cover types represented a temperature/moisture and stand structural complexity gradient. Lichen litterfall biomass increased with increasing stand complexity and moisture. Lichen litterfall biomass was 3.42 kg/ha in open pine stands, 7.51 kg/ha in young mixed-species stands, 8.55 kg/ha in mature mixed-species stands...

  17. Relating the temporal change observed by AIRSAR to surface and canopy properties of mixed conifer and hardwood forests of northern Michigan

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; Mcdonald, Kyle; Ulaby, Fawwaz T.; Sharik, Terry

    1991-01-01

    The mixed hardwood and conifer forests of northern Michigan were overflown by a 3-frequency airborne imaging radar in Apr. and Jul. 1990. A set of 10 x 10 km test sites near the University of Michigan Biological Station at Douglas Lake and within the Hiawatha National Forest in the upper peninsula of Michigan contained training stands representing the various forest species typical of forest communities across the ecotone between the coniferous boreal forest and mid-latitude hardwood and coniferous forests. The polarimetric radar data were externally calibrated to allow interdate comparisons. The Apr. flight was prior to bud-break of deciduous species and patchy snowcover was present. The Jul. flights occurred during and 2 days after heavy rain showers, and provide a unique opportunity to examine the differences in radar backscatter attributable to intercepted precipitation. Analyses show that there are significant changes in backscattering between biophysically dissimilar forest stands on any given date and also between dates for a given forest stand. These differences in backscattering can be related to moisture properties of the forest floor and the overlying canopy and also to the quantity and organizational structure of the above-ground biomass.

  18. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala.

    PubMed

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration.

  19. Simulation Studies of the Effect of Forest Spatial Structure on InSAR Signature

    NASA Technical Reports Server (NTRS)

    Sun, Guoqing; Liu, Dawei; Ranson, K. Jon; Koetz, Benjamin

    2007-01-01

    The height of scattering phase retrieved from InSAR data is considered being correlated with the tree height and the spatial structure of the forest stand. Though some researchers have used simple backscattering models to estimate tree height from the height of scattering center, the effect of forest spatial structure on InSAR data is not well understood yet. A three-dimensional coherent radar backscattering model for forest canopies based on realistic three-dimensional scene was used to investigate the effect in this paper. The realistic spatial structure of forest canopies was established either by field measurements (stem map) or through use of forest growth model. Field measurements or a forest growth model parameterized using local environmental parameters provides information of forest species composition and tree sizes in certain growth phases. A fractal tree model (L-system) was used to simulate individual 3- D tree structure of different ages or heights. Trees were positioned in a stand in certain patterns resulting in a 3-D medium of discrete scatterers. The radar coherent backscatter model took the 3-D forest scene as input and simulates the coherent radar backscattering signature. Interferometric SAR images of 3D scenes were simulated and heights of scattering phase centers were estimated from the simulated InSAR data. The effects of tree height, crown cover, crown depth, and the spatial distribution patterns of trees on the scattering phase center were analyzed. The results will be presented in the paper.

  20. Carbon and biodiversity loss due to forest degradation – a Cambodian case study

    Treesearch

    Nophea Sasaki; Kimsun Chheng; Nobuya Mizoue

    2013-01-01

    Tropical forests are diverse in terms of stand and age structures, commercial and biodiversity values of individually trees, and dependency of local communities. Monitoring forest degradation in the tropics remains a challenge despite increasing global interests in reducing carbon emissions from deforestation and forest degradation and safeguarding...

  1. Louisiana's forests, 2013

    Treesearch

    Sonja N. Oswalt

    2016-01-01

    The principle findings of the 2013 forest survey in the State of Louisiana and changes that have occurred since previous surveysare presented. Topics examined include forest area, ownership, forest-type groups, stand structure, timber volume, growth, removals, and mortality. Emerald ash borer and invasive plants are also discussed in the context of...

  2. Ethics Considerations with Diameter Limit-Cutting

    Treesearch

    Victor L. Ford; Victor L. Ford

    2006-01-01

    High grading is a poor management practice by definition. It has serious long-term implications to stand structure and function. The use of this management technique creates some ethical dilemmas. By examining the codes of ethics for the Forest Stewards Guild, Association of Consulting Foresters, and Society of American Foresters, only the Society of American Foresters...

  3. Mississippi’s forests, 2013

    Treesearch

    Sonja N. Oswalt

    2015-01-01

    The principle findings of the 2013 forest survey in the State of Mississippi and changes that have occurred since previous surveys are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, timber volume, growth, removals, and mortality. Emerald ash borer and invasive plants are also discussed in the context of Mississippi’s...

  4. Menominee Tribal Enterprises forest regeneration efforts

    Treesearch

    Suzanne M. Beilfuss

    2002-01-01

    Menominee Tribal Enterprises (MTE) is located in northeastern Wisconsin on the Menominee Indian Reservation, which includes ten townships of mostly forested land. Past fires, windstorms, and logging all have affected the composition and structure of this forest, which brings us to why regeneration on the forest is very important. Stands are regenerated with tree...

  5. Managing ecosystems for forest health: An approach and the effects on uses and values

    Treesearch

    Chadwick D. Oliver; Dennis E. Ferguson; Alan E. Harvey; Herbert S. Malany; John M. Mandzak; Robert W. Mutch

    1994-01-01

    Forest health is most appropriately based on the scientific paradigm of dynamic, constantly changing forest ecosystems. Many forests in the Inland West now support high levels of insect infestations, disease epidemics, fire susceptibilities, and imbalances in stand structures and habitats because of natural processes and past management practices. Impending,...

  6. Stand and fuel treatments for restoring old-growth ponderosa pine forests in the interior west (Boise Basin Experimental Forest)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2007-01-01

    Fire exclusion, especially in the dry forests (i.e. those dominated or potentially dominated by ponderosa pine) has most often altered tree and shrub composition and structure and, though often overlooked in many locales, the forest floor from conditions that occurred historically (pre-1900).

  7. Species composition and stand structure of a large red spruce planting 67 years after its establishment in western North Carolina

    Treesearch

    W. Henry McNab; James H. Holbrook; Ted M. Oprean

    2010-01-01

    Red spruce (Picea rubens Michx.) is a large and long-lived species that dominated high-elevation forests of the southern Appalachians before most stands were heavily logged in the early 1900s. Restoration of spruce forests by artificial methods has been studied since the 1920s, but little information is available on characteristics of older planted...

  8. Hemlock declines rapidly with hemlock woolly adelgid infestation: impacts on the carbon cycle of the Southern Appalachian forests

    Treesearch

    April E. Nuckolls; Nina Wurzburger; Chelcy R. Ford; Ronald L. Hendrick; James M. Vose; Brian D. Kloeppel

    2008-01-01

    The recent infestation of southern Appalachian eastern hemlock stands by hemlock woolly adelgid (HWA) is expected to have dramatic and lasting effects on forest structure and function. We studied the short-term changes to the carbon cycle in a mixed stand of hemlock and hardwoods, where hemlock was declining due to either girdling or HWA infestation. We expected that...

  9. Changes in forest structure associated with oak decline in severely impacted areas of northern Arkansas

    Treesearch

    Eric Heitzman; Adrian Grell; Martin Spetich; Dale Starkey

    2007-01-01

    Four mature northern red oak (Quercus rubra L.)–white oak (Quercus alba L.) stands in the Boston Mountains of northern Arkansas were studied to describe the vegetation dynamics of forests heavily impacted by oak decline. Northern red oak was the species most susceptible to decline. Across the four stands, 51–75% of red oak density...

  10. Scale-dependent effects of landscape structure and composition on diurnal roost selection by forest bats

    Treesearch

    Roger W. Perry; Ronald E. Thill; David M. Leslie

    2008-01-01

    Forest management affects the quality and availability of roost sites for forest-dwelling bats, but information on roost selection beyond the scale of individual forest stands is limited. We evaluated effects of topography (elevation, slope, and proximity of roads and streams), forest habitat class, and landscape patch configuration on selection of summer diurnal oosts...

  11. Have changing forests conditions contributed to pollinator decline in the southeastern United States?

    Treesearch

    James L. Hanula; Scott Horn; Joseph J. O' Brien

    2015-01-01

    Two conservation goals of the early 20th century, extensive reforestation and reduced wildfire through fire exclusion, may have contributed to declining pollinator abundance as forests became denser and shrub covered. To examine how forest structure affects bees we selected 5 stands in each of 7 forest types including: cleared forest; dense young pines; thinned young...

  12. A model for managing edge effects in harvest scheduling using spatial optimization

    Treesearch

    Kai L. Ross; Sándor F. Tóth

    2016-01-01

    Actively managed forest stands can create new forest edges. If left unchecked over time and across space, forest operations such as clear-cuts can create complex networks of forest edges. Newly created edges alter the landscape and can affect many environmental factors. These altered environmental factors have a variety of impacts on forest growth and structure and can...

  13. Changes in fuelbed characteristics and resulting fire potentials after fuel reduction treatments in dry forests of the Blue Mountains, northeastern Oregon

    Treesearch

    Andrew Youngblood; Clinton S. Wright; Roger D. Ottmar; James D. McIver

    2007-01-01

    In many fire-prone forests in the United States, changes occurring in the last century have resulted in overstory structures, conifer densities, down woody structure, and fuel loads that deviate from those described historically. With these changes, forests are presumed to be unsustainable. Broad-scale treatments are proposed to reduce fuels and promote stand...

  14. Relationships between avian richness and landscape structure at multiple scales using multiple landscapes

    Treesearch

    Michael S. Mitchell; Scott H. Rutzmoser; T. Bently Wigley; Craig Loehle; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Roger W. Perry; Christopher L. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood

    2006-01-01

    Little is known about factors that structure biodiversity on landscape scales, yet current land management protocols, such as forest certification programs, place an increasing emphasis on managing for sustainable biodiversity at landscape scales. We used a replicated landscape study to evaluate relationships between forest structure and avian diversity at both stand...

  15. Vegetation response to stand structure and prescribed fire in an interior ponderosa pine ecosystem

    Treesearch

    Jianwei Zhang; Martin W. Ritchie; William W. Oliver

    2008-01-01

    A large-scale interior ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) study was conducted at the Blacks Mountain Experimental Forest in northeastern California. The primary purpose of the study was to determine the influence of structural diversity on the dynamics of interior pine forests at the landscape scale. High structural...

  16. Growth and yield considerations and implications for alternative density management objectives and approaches

    Treesearch

    David Marshall

    2013-01-01

    Density management through thinning is the most important tool foresters have to aff ect stand development and stand structure of existing stands. Reducing stand density by thinning increases the growing space and resource availability (e.g., light, water, and nutrients) for the remaining trees. Th is can result in increased average tree growth. More available site...

  17. Stand and landscape level effects of a major outbreak of spruce beetles on forest vegetation in the Copper River Basin, Alaska

    USGS Publications Warehouse

    Allen, J.L.; Wesser, S.; Markon, C.J.; Winterberger, K.C.

    2006-01-01

    From 1989 to 2003, a widespread outbreak of spruce beetles (Dendroctonus rufipennis) in the Copper River Basin, Alaska, infested over 275,000 ha of forests in the region. During 1997 and 1998, we measured forest vegetation structure and composition on one hundred and thirty-six 20-m ?? 20-m plots to assess both the immediate stand and landscape level effects of the spruce beetle infestation. A photo-interpreted vegetation and infestation map was produced using color-infrared aerial photography at a scale of 1:40,000. We used linear regression to quantify the effects of the outbreak on forest structure and composition. White spruce (Picea glauca) canopy cover and basal area of medium-to-large trees [???15 cm diameter-at-breast height (1.3 m, dbh)] were reduced linearly as the number of trees attacked by spruce beetles increased. Black spruce (Picea mariana) and small diameter white spruce (<15 cm dbh) were infrequently attacked and killed by spruce beetles. This selective attack of mature white spruce reduced structural complexity of stands to earlier stages of succession and caused mixed tree species stands to lose their white spruce and become more homogeneous in overstory composition. Using the resulting regressions, we developed a transition matrix to describe changes in vegetation types under varying levels of spruce beetle infestations, and applied the model to the vegetation map. Prior to the outbreak, our study area was composed primarily of stands of mixed white and black spruce (29% of area) and pure white spruce (25%). However, the selective attack on white spruce caused many of these stands to transition to black spruce dominated stands (73% increase in area) or shrublands (26% increase in area). The post-infestation landscape was thereby composed of more even distributions of shrubland and white, black, and mixed spruce communities (17-22% of study area). Changes in the cover and composition of understory vegetation were less evident in this study. However, stands with the highest mortality due to spruce beetles had the lowest densities of white spruce seedlings suggesting a longer forest regeneration time without an increase in seedling germination, growth, or survival. ?? 2006 Elsevier B.V. All rights reserved.

  18. Observations from old forests underestimate climate change effects on tree mortality.

    PubMed

    Luo, Yong; Chen, Han Y H

    2013-01-01

    Understanding climate change-associated tree mortality is central to linking climate change impacts and forest structure and function. However, whether temporal increases in tree mortality are attributed to climate change or stand developmental processes remains uncertain. Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same for young and old forests. Here we disentangle the effects of climate change and stand developmental processes on tree mortality. We show that both climate change and forest development processes influence temporal mortality increases, climate change-associated increases are significantly higher in young than old forests, and higher increases in younger forests are a result of their higher sensitivity to regional warming and drought. We anticipate our analysis to be a starting point for more comprehensive examinations of how forest ecosystems might respond to climate change.

  19. NEGLECTED COMPONENTS OF BIODIVERSITY: SOIL ORIBATID MITES, COMMUNITY STRUCTURE AND SOIL RECOVERY

    EPA Science Inventory

    Oribatid mites are an abundant and diverse component of soils in regional pine forests, and are valuable in characterizing the biodiversity of these forested lands. We sampled oribatid mites using soil cores and leaf litterbags, in young aggrading forest stands. Comparing these...

  20. Spatial and thematic assessment of object-based forest stand delineation using an OFA-matrix

    NASA Astrophysics Data System (ADS)

    Hernando, A.; Tiede, D.; Albrecht, F.; Lang, S.

    2012-10-01

    The delineation and classification of forest stands is a crucial aspect of forest management. Object-based image analysis (OBIA) can be used to produce detailed maps of forest stands from either orthophotos or very high resolution satellite imagery. However, measures are then required for evaluating and quantifying both the spatial and thematic accuracy of the OBIA output. In this paper we present an approach for delineating forest stands and a new Object Fate Analysis (OFA) matrix for accuracy assessment. A two-level object-based orthophoto analysis was first carried out to delineate stands on the Dehesa Boyal public land in central Spain (Avila Province). Two structural features were first created for use in class modelling, enabling good differentiation between stands: a relational tree cover cluster feature, and an arithmetic ratio shadow/tree feature. We then extended the OFA comparison approach with an OFA-matrix to enable concurrent validation of thematic and spatial accuracies. Its diagonal shows the proportion of spatial and thematic coincidence between a reference data and the corresponding classification. New parameters for Spatial Thematic Loyalty (STL), Spatial Thematic Loyalty Overall (STLOVERALL) and Maximal Interfering Object (MIO) are introduced to summarise the OFA-matrix accuracy assessment. A stands map generated by OBIA (classification data) was compared with a map of the same area produced from photo interpretation and field data (reference data). In our example the OFA-matrix results indicate good spatial and thematic accuracies (>65%) for all stand classes except for the shrub stands (31.8%), and a good STLOVERALL (69.8%). The OFA-matrix has therefore been shown to be a valid tool for OBIA accuracy assessment.

  1. Associations between regional moisture gradient, tree species dominance, and downed wood abundance

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Mills, J.

    2007-12-01

    Downed wood functions as a source of nurse logs, physical structure in streams, food, and carbon. Because downed wood is important in upland and aquatic habitats, an understanding of wood recruitment along a continuum from wet to dry landscapes is critical for both preservation of biodiversity and restoration of natural ecosystem structure and function. We assessed downed wood in public and private forests of Washington and Oregon by using a subset of the Forest Inventory and Analysis (FIA) database including 15,842 sampled conditions. Multivariate regression trees, ANOVA, and t-tests were used to discern environmental conditions most closely associated with abundance of woody debris. Of the 16 parameters included in the analysis, rainfall, forest ownership, number of damaged standing trees, and forest elevation were most indicative of woody debris abundance. The Hemlock/spruce Group, including hemlock, spruce, cedar, and white pine, most associated with wetter soils, had significantly more downed wood than 12 other forest groups. The Ponderosa Pine Group, indicative of drier sites with higher fire frequencies, included ponderosa pine, sugar pine, and incense cedar, and had significantly less downed wood volume. Overall, the amount of woody debris in either the Spruce/hemlock Group or the Ponderosa Pine Group did not change significantly as tree age increased from 5 to 350 years. Plots within the Hemlock/spruce with greater standing tree volume also had significantly greater downed wood volume. In contrast, greater downed wood volume was not associated with greater standing tree volume in the Ponderosa Pine Group. Knowledge of linkages among environmental variables and stand characteristics are useful in development of regional forest models aimed at understanding the effects of climate change and disturbance on forest succession.

  2. Forest biomass, canopy structure, and species composition relationships with multipolarization L-band synthetic aperture radar data

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    The effect of forest biomass, canopy structure, and species composition on L-band synthetic aperature radar data at 44 southern Mississippi bottomland hardwood and pine-hardwood forest sites was investigated. Cross-polarization mean digital values for pine forests were significantly correlated with green weight biomass and stand structure. Multiple linear regression with five forest structure variables provided a better integrated measure of canopy roughness and produced highly significant correlation coefficients for hardwood forests using HV/VV ratio only. Differences in biomass levels and canopy structure, including branching patterns and vertical canopy stratification, were important sources of volume scatter affecting multipolarization radar data. Standardized correction techniques and calibration of aircraft data, in addition to development of canopy models, are recommended for future investigations of forest biomass and structure using synthetic aperture radar.

  3. Sex and the single squirrel: a genetic view of forest management in the Pacific Northwest.

    Treesearch

    Sally Duncan

    2003-01-01

    Forest management throughout the world is producing simplified forests. There is growing concern that these forests maintain neither complete vertebrate communities nor conditions favorable to maintenance of genetic diversity of those vertebrate populations that do find habitat in simply structured stands. Genetics is increasingly being used as a basis for management...

  4. Shifts and future trends in the forest resources of the Central Hardwood region

    Treesearch

    Thomas L. Schmidt; William H. McWilliams

    2003-01-01

    Forests in the Central Hardwood region are undergoing change in terms of area, volume, species composition, and forest structure. These forests are dominated by deciduous species; are increasing their average stand size, volume, and age; and, are experiencing woody plant species replacement as shade intolerant species are being replaced by more shade tolerant species....

  5. Shifts and future trends in the forest resources of the Central Hardwood Region

    Treesearch

    Thomas L. Schmidt; William H. McWilliams

    2003-01-01

    Forests in the Central Hardwood region are undergoing change in terms of area, volume, species composition, and forest structure. These forests are dominated by deciduous species; are increasing their average stand size, volume, and age; and, are experiencing woody plant species replacement as shade intolerant species are being replaced by more shade tolerant species....

  6. Topographic variation in structure of mixed-conifer forests under an active-fire regime

    Treesearch

    Jamie Lydersen; Malcolm North

    2012-01-01

    Management efforts to promote forest resiliency as climate changes have often used historical forest conditions to provide general guidance for fuels reduction and forest restoration treatments. However, it has been difficult to identify what stand conditions might be fire and drought resilient because historical data and reconstruction studies are generally limited to...

  7. The effects of partial cutting practices on forest stand structure in Appalachian hardwood forests

    Treesearch

    Mary Ann Fajvan; Shawn T. Grushecky

    1997-01-01

    Eastern hardwood forests originated after catastrophic disturbances around the turn of the century and are currently an even-aged, maturing resource. The increasing value of sawlogs, especially those of particular species and quality, has prompted many forest landowners to increase their harvesting efforts. Most harvesting appears to be economically driven, focusing on...

  8. Individual legacy trees influence vertebrate wildlife diversity in commercial forests

    Treesearch

    M.J. Mazurek; William J. Zielinski

    2007-01-01

    Old-growth forests provide important structural habitat elements for many species of wildlife. These forests, however, are rare where lands are managed for timber. In commercial forests, large and old trees sometimes exist only as widely-dispersed residual or legacy trees. Legacy trees are old trees that have been spared during harvest or have survived stand-replacing...

  9. Stand Structural Controls on Evapotranspiration in Native and Invaded Tropical Montane Cloud Forest in Hawai'i

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Delay, J. K.; Asner, G. P.; Martin, R. E.; Nullet, M. A.; Huang, M.; Mudd, R. G.; Takahashi, M.

    2008-12-01

    Tropical montane cloud forests (TMCFs) in Hawai'i are important zones of water input and stores of critically important native plant and animal species. Invasion by alien tree species threatens these forests and may alter the hydrological services they provide. At two TMCF sites in Hawai'i, one within native Metrosideros polymorpha forest and the other at a site heavily invaded by Psidium cattleianum, we are conducting measurements of stand-level evapotranspiration (ET), transpiration (using sapflow techniques), energy balance, and related processes. Previously presented results showed that ET as a function of available energy was 27% higher at the invaded site than the native site, with the difference rising to 53% during dry- canopy periods. In this presentation, mechanisms for the observed higher ET rate at the invaded site are explored. The difference in measured xylem flow velocities of native and alien trees cannot explain the observed stand level ET difference. Tree basal area is lower at the invaded site than the native site, again contrary to the ET difference. However, the alien trees have much smaller stem diameters, on average, than the native trees, with little or no heartwood. Hence, the cross-sectional xylem area is much greater in the invaded stand, facilitating higher transpiration rates. These results demonstrate the importance of stand structural controls on ET and raise questions about whether higher ET is a transient feature of the succession or a persistent characteristic of invasive trees.

  10. Characteristics of gaps and natural regeneration in mature longleaf pine flatwoods ecosystems

    Treesearch

    Jennifer L. Gagnon; Eric J. Jokela; W.K. Moser; Dudley A. Huber

    2004-01-01

    Developing uneven-aged structure in mature stands of longleaf pine requires scientifically based silvicultural systems that are reliable, productive and sustainable. Understanding seedling responses to varying levels of site resource availability within forest gaps is essential for effectively converting even-aged stands to uneven-aged stands. A project was initiated...

  11. Structure Measurements of Leaf and Woody Components of Forests with Dual-Wavelength Lidar Scanning Data

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Li, Z.; Schaaf, C.; Howe, G.; Martel, J.; Hewawasam, K.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Paynter, I.; Saenz, E. J.; Wang, Z.; Woodcock, C. E.; Jupp, D. L. B.; Schaefer, M.; Newnham, G.

    2014-12-01

    Forest structure plays a critical role in the exchange of energy, carbon and water between land and atmosphere and nutrient cycle. We can provide detailed forest structure measurements of leaf and woody components with the Dual Wavelength Echidna® Lidar (DWEL), which acquires full-waveform scans at both near-infrared (NIR, 1064 nm) and shortwave infrared (SWIR, 1548 nm) wavelengths from simultaneous laser pulses. We collected DWEL scans at a broadleaf forest stand and a conifer forest stand at Harvard Forest in June 2014. Power returned from leaves is much lower than from woody materials such as trunks and branches at the SWIR wavelength due to the liquid water absorption by leaves, whereas returned power at the NIR wavelength is similar from both leaves and woody materials. We threshold a normalized difference index (NDI), defined as the difference between returned power at the two wavelengths divided by their sum, to classify each return pulse as a leaf or trunk/branch hit. We obtain leaf area index (LAI), woody area index (WAI) and vertical profiles of leaf and woody components directly from classified lidar hits without empirical wood-to-total ratios as are commonly used in optical methods of LAI estimation. Tree heights, diameter at breast height (DBH), and stem count density are the other forest structure parameters estimated from our DWEL scans. The separation of leaf and woody components in tandem with fine-scale forest structure measurements will benefit studies on carbon allocation of forest ecosystems and improve our understanding of the effects of forest structure on ecosystem functions. This research is supported by NSF grant, MRI-0923389

  12. Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A.

    Treesearch

    J.E. Smith; R. Molina; M.M.P. Huso; D.L. Luoma; D. McKay; M.A. Castellano; T. Lebel; Y. Valachovic

    2002-01-01

    Knowledge of the community structure of ectomycorrhizal fungi among successional forest age-classes is critical for conserving fungal species diversity. Hypogeous and epigeous sporocarps were collected from three replicate stands in each of three forest age-classes (young, rotation-age, and old-growth) of Douglas-fir (Pseudotsuga menziesii (Mirb.)...

  13. Forest growth along a rainfall gradient in Hawaii: Acacia koa stand structure, productivity, foliar nutrients, and water- and nutrient-use efficiencies

    Treesearch

    Robin A. Harrington; James H. Fownes; Frederick C. Meinzer; Paul G. Scowcroft

    1995-01-01

    We tested whether variation in growth of native koa (Acacia koa) forest along a rainfall gradient was attributable to differences in leaf area index (LAI) or to differences in physiological performance per unit of leaf area. Koa stands were studied on western Kauai prior to Hurricane Iniki, and ranged from 500 to 1130 m elevation and from 850 to...

  14. Carbon and nitrogen cycling in southwestern ponderosa fine forests

    Treesearch

    Stephen C. Hart; Paul C. Selmants; Sarah I. Boyle; Steven T. Overby

    2007-01-01

    Ponderosa pine forests of the southwestern United States were historically characterized by relatively open, parklike stands with a bunchgrass-dominated understory. This forest structure was maintained by frequent, low-intensity surface fires. Heavy livestock grazing, fire suppression, and favorable weather conditions following Euro-American settlement in the late 19th...

  15. Sound-mapping a coniferous forest—Perspectives for biodiversity monitoring and noise mitigation

    PubMed Central

    Fischer, Michael; Tzanopoulos, Joseph

    2018-01-01

    Acoustic diversity indices have been proposed as low-cost biodiversity monitoring tools. The acoustic diversity of a soundscape can be indicative of the richness of an acoustic community and the structural/vegetation characteristics of a habitat. There is a need to apply these methods to landscapes that are ecologically and/or economically important. We investigate the relationship between the acoustic properties of a coniferous forest with stand-age and structure. We sampled a 73 point grid in part of the UK’s largest man-made lowland coniferous plantation forest, covering a 320ha mosaic of different aged stands. Forest stands ranged from 0–85 years old providing an age-gradient. Short soundscape recordings were collected from each grid point on multiple mornings (between 6am-11am) to capture the dawn chorus. We repeated the study during July/August in 2014 and again in 2015. Five acoustic indices were calculated for a total of 889 two minute samples. Moderate relationships between acoustic diversity with forest stand-age and vegetation characteristics (canopy height; canopy cover) were observed. Ordinations suggest that as structural complexity and forest age increases, the higher frequency bands (4-10KHz) become more represented in the soundscape. A strong linear relationship was observed between distance to the nearest road and the ratio of anthropogenic noise to biological sounds within the soundscape. Similar acoustic patterns were observed in both years, though acoustic diversity was generally lower in 2014, which was likely due to differences in wind conditions between years. Our results suggest that developing these relatively low-cost acoustic monitoring methods to inform adaptive management of production landscapes, may lead to improved biodiversity monitoring. The methods may also prove useful for modelling road noise, landscape planning and noise mitigation. PMID:29320514

  16. Stand structure, fuelloads, and fire behavior in riparian and upland forests, Sierra Nevada Mountains, USA; a comparison of current and reconstructed conditions

    Treesearch

    Kip Van de Water; Malcolm North

    2011-01-01

    Fire plays an important role in shaping many Sierran coniferous forests, but longer fire return intervals and reductions in area burned have altered forest conditions. Productive, mesic riparian forests can accumulate high stem densities and fuel loads, making them susceptible to high-severity fire. Fuels treatments applied to upland forests, however, are...

  17. Long-term research on classical silvicultural approaches in the Acadian Forest: Penobscot Experimental Forest Part I

    Treesearch

    John C. Brissette; Michael R. Saunders; Laura S. Kenefic; Paul E. Sendak

    2006-01-01

    The most comprehensive study of stand dynamics in the Acadian Forest Region is an experiment by the USDA Forest Service at the Penobscot Experimental Forest (PEF) in Maine. It was established from 1952-1957 to study changes in structure, composition, and productivity from an array of silvicultural treatments. Ingrowth, accretion, and mortality of individual trees (!Y0....

  18. Developing strategies to initialize landscape-scale vegetation maps from FIA data to enhance resolution of individual species-size cohort representation in the landscape disturbance model SIMPPLLE

    Treesearch

    Jacob John Muller

    2014-01-01

    The ability of forest resource managers to understand and anticipate landscape-scale change in composition and structure relies upon an adequate characterization of the current forest composition and structure of various patches (or stands), along with the capacity of forest landscape models (FLMs) to predict patterns of growth, succession, and disturbance at multiple...

  19. Changes in stand structure and tree vigor with repeated prescribed fire in an Appalachian hardwood forest

    Treesearch

    Mary A. Arthur; Beth A. Blankenship; Angela Schörgendorfer; David L. Loftis; Heather D. Alexander

    2015-01-01

    Without large scale disturbances to alter forest structure and open the canopy, historically oak-dominated forests of the central and Appalachian hardwood regions of eastern North America are shifting to dominance by shade-tolerant, ‘mesophytic’ species. In response, prescribed fire is applied with increasing frequency and spatial extent to decrease non-oak species and...

  20. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests.

    PubMed

    Riutta, Terhi; Malhi, Yadvinder; Kho, Lip Khoon; Marthews, Toby R; Huaraca Huasco, Walter; Khoo, MinSheng; Tan, Sylvester; Turner, Edgar; Reynolds, Glen; Both, Sabine; Burslem, David F R P; Teh, Yit Arn; Vairappan, Charles S; Majalap, Noreen; Ewers, Robert M

    2018-01-24

    Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha -1  year -1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests. © 2018 John Wiley & Sons Ltd.

  1. Changes in Carbon Pool and Stand Structure of a Native Subtropical Mangrove Forest after Inter-Planting with Exotic Species Sonneratia apetala

    PubMed Central

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration. PMID:24618793

  2. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-04-01

    Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon stocks evolution after fire, making it suitable for regional simulations in boreal regions where fire regimes play a key role on ecosystem carbon balance.

  3. A stand-alone tree demography and landscape structure module for Earth system models: integration with global forest data

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-02-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  4. Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire.

    PubMed

    Wirth, C; Schulze, E-D; Schulze, W; von Stünzner-Karbe, D; Ziegler, W; Miljukova, I M; Sogatchev, A; Varlagin, A B; Panvyorov, M; Grigoriev, S; Kusnetzova, W; Siry, M; Hardes, G; Zimmermann, R; Vygodskaya, N N

    1999-10-01

    The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the "lichen" site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6-10 kg dw  m -2 after 200 years depending on stand density and fire history compared to 20 kg dw  m -2 in the "Vaccinium" type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5-1.5 and crown cover was 30-60%, whereas LAI reached 2.5 and crown cover was >100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope -0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem functions predominantly via changes in fire regimes.

  5. Response of brown-headed cowbirds and three host species to thinning treatments in low-elevation ponderosa pine forests along the northern Colorado Front Range

    USGS Publications Warehouse

    Keeley, W.H.; Germaine, Stephen S.; Stanley, Thomas R.; Spaulding, Sarah A.; Wanner, C.E.

    2013-01-01

    Thinning ponderosa pine (Pinus ponderosa) forests to achieve desired ecological conditions remains a priority in the North American west. In addition to reducing the risk of high-severity wildfires in unwanted areas, stand thinning may increase wildlife and plant diversity and provide increased opportunity for seedling recruitment. We initiated conservative (i.e. minimal removal of trees) ponderosa stand thinning treatments with the goals of reducing fire risk and improving habitat conditions for native wildlife and flora. We then compared site occupancy of brown-headed cowbirds (Molothrus ater), chipping sparrows (Spizella passerina), plumbeous vireos (Vireo plumbeus), and western wood-pewees (Contopus sordidulus) in thinned and unthinned (i.e., control) forest stands from 2007 to 2009. Survey stations located in thinned stands had 64% fewer trees/ha, 25% less canopy cover, and 23% less basal area than stations in control stands. Occupancy by all three host species was negatively associated with tree density, suggesting that these species respond favorably to forest thinning treatments in ponderosa pine forests. We also encountered plumbeous vireos more frequently in plots closer to an ecotonal (forest/grassland) edge, an association that may increase their susceptibility to edge-specialist, brood parasites like brown-headed cowbirds. Occupancy of brown-headed cowbirds was not related to forest metrics but was related to occupancy by plumbeous vireos and the other host species in aggregate, supporting previous reports on the affiliation between these species. Forest management practices that promote heterogeneity in forest stand structure may benefit songbird populations in our area, but these treatments may also confer costs associated with increased cowbird occupancy. Further research is required to understand more on the complex relationships between occupancy of cowbirds and host species, and between cowbird occupancy and realized rates of nest parasitism.

  6. Breeding birds in managed forests on public conservation lands in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Twedt, Daniel J.; Wilson, R. Randy

    2017-01-01

    Managers of public conservation lands in the Mississippi Alluvial Valley have implemented forest management strategies to improve bottomland hardwood habitat for target wildlife species. Through implementation of various silvicultural practices, forest managers have sought to attain forest structural conditions (e.g., canopy cover, basal area, etc.) within values postulated to benefit wildlife. We evaluated data from point count surveys of breeding birds on 180 silviculturally treated stands (1049 counts) that ranged from 1 to 20 years post-treatment and 134 control stands (676 counts) that had not been harvested for >20 years. Birds detected during 10-min counts were recorded within four distance classes and three time intervals. Avian diversity was greater on treated stands than on unharvested stands. Of 42 commonly detected species, six species including Prothonotary Warbler (Prothonotaria citrea) and Acadian Flycatcher (Empidonax virescens) were indicative of control stands. Similarly, six species including Indigo Bunting (Passerina cyanea) and Yellow-breasted Chat (Icteria virens) were indicative of treated stands. Using a removal model to assess probability of detection, we evaluated occupancy of bottomland forests at two spatial scales (stands and points within occupied stands). Wildlife-forestry treatment improved predictive models of species occupancy for 18 species. We found years post treatment (range = 1–20), total basal area, and overstory canopy were important species-specific predictors of occupancy, whereas variability in basal area was not. In addition, we used a removal model to estimate species-specific probability of availability for detection, and a distance model to estimate effective detection radius. We used these two estimated parameters to derive species densities and 95% confidence intervals for treated and unharvested stands. Avian densities differed between treated and control stands for 16 species, but only Common Yellowthroat (Geothlypis trichas) and Yellow-breasted Chat had greater densities on treated stands.

  7. Influence of competition and age on tree growth in structurally complex old-growth forests in northern Minnesota, USA

    Treesearch

    Tuomas Aakala; Shawn Fraver; Anthony W. D' Amato; Brian J. Palik

    2013-01-01

    Factors influencing tree growth in structurally complex forests remain poorly understood. Here we assessed the influence of competition on Pinus resinosa (n = 224) and Pinus strobus (n = 90) growth in four old-growth stands in Minnesota, using mixed effects models. A subset of trees, with...

  8. Effect of forest structural change on carbon storage in a coastal Metasequoia glyptostroboides stand.

    PubMed

    Cheng, Xiangrong; Yu, Mukui; Wu, Tonggui

    2013-01-01

    Forest structural change affects the forest's growth and the carbon storage. Two treatments, thinning (30% thinning intensity) and underplanting plus thinning, are being implemented in a coastal Metasequoia glyptostroboides forest shelterbelt in Eastern China. The vegetation carbon storage significantly increased in the underplanted and thinned treatments compared with that in the unthinned treatment (P < 0.05). The soil and litterfall carbon storage in the underplanted treatment were significantly higher than those in the unthinned treatment (P < 0.05). The total forest ecosystem carbon storage in the underplanted and thinned treatments increased by 35.3% and 26.3%, respectively, compared with that in the unthinned treatment, an increase that mainly came from the growth of vegetation aboveground. Total ecosystem carbon storage showed no significant difference between the underplanted and thinned treatments (P > 0.05). The soil light fraction organic carbon (LFOC) was significantly higher at the 0-15 cm soil layer in the thinned and underplanted stands compared with that in the unthinned stand (P < 0.05). The soil respiration of the underplanted treatment was significantly higher than that of the unthinned treatment only in July (P < 0.05). This study concludes that 30% thinning and underplanting after thinning could be more favorable to carbon sequestration for M. glyptostroboides plantations in the coastal areas of Eastern China.

  9. Mature and old-growth riparian forests: structure, dynamics, and effects on Adirondack stream habitats.

    PubMed

    Keeton, William S; Kraft, Clifford E; Warren, Dana R

    2007-04-01

    Riparian forests regulate linkages between terrestrial and aquatic ecosystems, yet relationships among riparian forest development, stand structure, and stream habitats are poorly understood in many temperate deciduous forest systems. Our research has (1) described structural attributes associated with old-growth riparian forests and (2) assessed linkages between these characteristics and in-stream habitat structure. The 19 study sites were located along predominantly first- and second-order streams in northern hardwood-conifer forests in the Adirondack Mountains of New York (U.S.A.). Sites were classified as mature forest (6 sites), mature with remnant old-growth trees (3 sites), and old-growth (10 sites). Forest-structure attributes were measured over stream channels and at varying distances from each bank. In-stream habitat features such as large woody debris (LWD), pools, and boulders were measured in each stream reach. Forest structure was examined in relation to stand age using multivariate techniques, ANOVA, and linear regression. We investigated linkages between forest structure and stream characteristics using similar methods, preceded by information-theoretic modeling (AIC). Old-growth riparian forest structure is more complex than that found in mature forests and exhibits significantly greater accumulations of aboveground tree biomass, both living and dead. In-stream LWD volumes were significantly (alpha = 0.05) greater at old-growth sites (200 m3/ha) compared to mature sites (34 m3/ha) and were strongly related to the basal area of adjacent forests. In-stream large-log densities correlated strongly with debris-dam densities. AIC models that included large-log density, debris-dam density, boulder density, and bankfull width had the most support for predicting pool density. There were higher proportions of LWD-formed pools relative to boulder-formed pools at old-growth sites as compared to mature sites. Old-growth riparian forests provide in-stream habitat features that have not been widely recognized in eastern North America, representing a potential benefit from late-successional riparian forest management and conservation. Riparian management practices (including buffer delineation and restorative silvicultural approaches) that emphasize development and maintenance of late-successional characteristics are recommended where the associated in-stream effects are desired.

  10. Plant competition, facilitation, and other overstory-understory interactions in longleaf pine ecosystems.

    Treesearch

    Timothy B. Harrington

    2006-01-01

    Many of the stand structural characteristics of longleaf pine (Pinus palustris Mill.) forests that existed prior to European colonization have been altered or lost from past disturbance histories (Frost this volume). For example, often missing are the widely spaced, large-diameter trees, the all-aged stand structure that included a vigorous cohort...

  11. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example.

    Treesearch

    J.F. Franklin; T.A. Spies; R.V. Pelt; A.B. Carey; D.A. Thornburgh; D.R. Berg; D.B. Lindenmayer; M.E. Harmon; W.S. Keeton; D.C. Shaw; K. Bible; J. Chen

    2002-01-01

    Forest managers need a comprehensive scientific understanding of natural stand development processes when designing silvicultural systems that integrate ecological and economic objectives, including a better appreciation of the nature of disturbance regimes and the biological legacies, such as live trees, snags, and logs, that they leave behind. Most conceptual forest...

  12. Validating the southern variant forest vegetation simulator height predictions on southeastern hardwoods in Kentucky and Tennessee

    Treesearch

    Bernard R. Parresol; Steven C. Stedman

    2004-01-01

    The accuracy of forest growth and yield forecasts affects the quality of forest management decisions (Rauscher et al. 2000). Users of growth and yield models want assurance that model outputs are reasonable and mimic local/regional forest structure and composition and accurately reflect the influences of stand dynamics such as competition and disturbance. As such,...

  13. Overstory response to alternative thinning treatments in young Douglas-fir forests of Western Oregon.

    Treesearch

    Liane R. Davis; Klaus J. Puettmann; Gabriel F. Tucker

    2007-01-01

    An increase in land dominated by young second-growth Douglas-fir forests in the Pacific Northwest has coincided with heightened concerns over loss of old-growth habitat. In search of options for managing young forests to provide late-successional forest structures, the Young Stand Thinning and Diversity Study was designed to test the effectiveness of modified thinning...

  14. Approximations of stand water use versus evapotranspiration from three mangrove forests in southwest Florida, USA

    USGS Publications Warehouse

    Krauss, Ken W.; Barr, Jordan G.; Engel, Victor C.; Fuentes, Jose D.; Wang, Hongqing

    2014-01-01

    Leaves from mangrove forests are often considered efficient in the use of water during photosynthesis, but less is known about whole-tree and stand-level water use strategies. Are mangrove forests as conservative in water use as experimental studies on seedlings imply? Here, we apply a simple model to estimate stand water use (S), determine the contribution of S to evapotranspiration (ET), and approximate the distribution of S versus ET over annual cycles for three mangrove forests in southwest Florida, USA. The value of S ranged from 350 to 511 mm year−1 for two mangrove forests in Rookery Bay to 872 mm year−1 for a mangrove forest along the Shark River in Everglades National Park. This represents 34–49% of ET for Rookery Bay mangroves, a rather conservative rate ofS, and 63–66% of ET for the Shark River mangroves, a less conservative rate of S. However, variability in estimates of S in mangroves is high enough to require additional study on the spatial changes related to forest structural shifts, different tidal regimes, and variable site-specific salinity concentrations in multiple mangrove forests before a true account of water use conservation strategies can be understood at the landscape scale. Evidence does suggest that large, well-developed mangrove forests have the potential to contribute considerably to the ET balance; however, regionally most mangrove forests are much smaller in stature in Florida and likely contribute less to regional water losses through stand-level transpiration.

  15. Stand Structure and Substrate Diversity as Two Major Drivers for Bryophyte Distribution in a Temperate Montane Ecosystem

    PubMed Central

    Chen, Yun; Niu, Shuai; Li, Peikun; Jia, Hongru; Wang, Hailiang; Ye, Yongzhong; Yuan, Zhiliang

    2017-01-01

    Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation. PMID:28603535

  16. Stand Structure and Substrate Diversity as Two Major Drivers for Bryophyte Distribution in a Temperate Montane Ecosystem.

    PubMed

    Chen, Yun; Niu, Shuai; Li, Peikun; Jia, Hongru; Wang, Hailiang; Ye, Yongzhong; Yuan, Zhiliang

    2017-01-01

    Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m 2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation.

  17. Longleaf pine (Pinus palustris ) Stand Dynamics: A Regional Longleaf Growth Study

    Treesearch

    Ralph S. Meldahl; John S. Kush; William D. Boyer

    1998-01-01

    Objective: Describe and model temporal changes in longleaf pine stand structure. From 1964-1967, the U.S. Forest Service established a regional longleaf pine growth study (RLGS) in the Gulf States. The original objective was to obtain a database for the development of growth and mortality predictions of naturally regenerated, even- aged longleaf pine stands. The...

  18. Composition, structure, and intra-stand spatial patterns along a disturbance severity gradient in a Quercus stand

    Treesearch

    Lauren E. Cox; Justin L. Hart; Daniel C. Dey; Callie J. Schweitzer

    2016-01-01

    Natural forest disturbances, which drive succession and development, differ in extent, severity, and return interval and range from frequent, gap-scale disturbances, to infrequent stand-replacing events. Most studies have focused on natural disturbances near the ends of the disturbance severity gradient and relatively little quantitative information is available on...

  19. A case history of all-age management

    Treesearch

    Richard M. Godman; Gilbert A. Mattson

    1992-01-01

    Single-tree selection "works" in sugar maple stands in the Lake States. This system of all-age management has been used for 31 years on the Argonne Experimental Forest. In 1953, researchers found that cutting according to basal area guides is both a convenient and effective way to regulate a stand. Later experience showed that achieving good stand structure...

  20. Manual felling time and productivity in southern forests

    Treesearch

    D. Lortz; R. Kluender; W McCoy; [and others

    1997-01-01

    Sixteen stands were harvested by either clearcut, shelterwood, group selection, or single-tree selection methods. Three of the stands had uneven-aged structure. The other 13 were typical, mature, even-aged stands. Harvest intensity (proportion of basal area removed) ranged from 0.27 to 1.00. Harvested sites were similar in slope, average diameter at breast height (d.b....

  1. Composition and structure of Pinus koraiensis mixed forest respond to spatial climatic changes.

    PubMed

    Zhang, Jingli; Zhou, Yong; Zhou, Guangsheng; Xiao, Chunwang

    2014-01-01

    Although some studies have indicated that climate changes can affect Pinus koraiensis mixed forest, the responses of composition and structure of Pinus koraiensis mixed forests to climatic changes are unknown and the key climatic factors controlling the composition and structure of Pinus koraiensis mixed forest are uncertain. Field survey was conducted in the natural Pinus koraiensis mixed forests along a latitudinal gradient and an elevational gradient in Northeast China. In order to build the mathematical models for simulating the relationships of compositional and structural attributes of the Pinus koraiensis mixed forest with climatic and non-climatic factors, stepwise linear regression analyses were performed, incorporating 14 dependent variables and the linear and quadratic components of 9 factors. All the selected new models were computed under the +2°C and +10% precipitation and +4°C and +10% precipitation scenarios. The Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month were observed to be key climatic factors controlling the stand densities and total basal areas of Pinus koraiensis mixed forest. Increased summer temperatures and precipitations strongly enhanced the stand densities and total basal areas of broadleaf trees but had little effect on Pinus koraiensis under the +2°C and +10% precipitation scenario and +4°C and +10% precipitation scenario. These results show that the Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month are key climatic factors which shape the composition and structure of Pinus koraiensis mixed forest. Although the Pinus koraiensis would persist, the current forests dominated by Pinus koraiensis in the region would all shift and become broadleaf-dominated forests due to the dramatic increase of broadleaf trees under the future global warming and increased precipitation.

  2. Investigations with large-scale forest lysimeter research of the lowlands of Northeast Germany - Results and consequences for the choice of tree species and forest management

    NASA Astrophysics Data System (ADS)

    Müller, J.

    2009-04-01

    Investigations with large-scale forest lysimeter research of the lowlands of Northeast Germany - Results and consequences for the choice of tree species and forest management Introduction At present about 28 % - i.e. 1.9 million hectares - of the Northeast German Lowlands are covered with forests. The Lowlands are among the driest and at the same time the most densely wooded regions in Germany. The low annual precipitation between 500 and 600 mm and the light sandy soils with their low water storage capacity and a high porosity lead to a limited water availability. Therefore the hydrological functions of forests play an important role in the fields of regional water budget, water supply and water distribution. Experimental sites Lysimeters are suitable measuring instruments in the fields of granular soils and loose rocks to investgate evaporation and seepage water. The usage of lysimeter of different construction has a tradition of more than 100 years in this region. To investigate the water consumption of different tree species, lysimeters were installed at Britz near Eberswalde under comparable site conditions. In the early 1970s nine large-scale lysimeters were built with an area of 100 m2 and a depth of 5 m each. In 1974 the lysimeters were planted, together with their environment, with Scots pine (Pinus sylvestris L), common beech (Fagus sylvatica L.), larch (Larix decidua L.) and Douglas-fir (Pseudotsuga menziesii [Mirb.] FRANCO) as experimental stands of 0.5 ha each according to the usual management practices. Therefore the "Large-scale lysimeters of Britz" are unparalleled in Europe. It was the initial aim of the experiment to find out the influence of the species and age of the growing stock growing on identical sandy soil under comparable weather conditions on both natural groundwater recharge and evaporation. Future forests in the north-eastern lowlands of Germany shall be mixed stands with as large a number of different species as possible. And this is also the aim of forest conversion in Land Brandenburg. The programme requires scientific attendance and foundation. In particular it shall be examined how the hydro-ecological conditions - which often are the limiting factor for forest growth in this area - would change with underplanted pine and larch and how these conditions may benefit from stand-structural and forestry measures. This is why several lysimeter stands were changed as follows: Ø Larch underplanted with beech Ø Scots pine underplanted with beech Ø Scots pine underplanted with oak Results Forests with their special hydrological properties have a substantial influence on the water budget, water supply and water distribution of entire landscapes. The tree species is of outstanding importance for deep seepage under forest stands. The sum of transpiration gives a rough overview about the water budget of the forest stand. More important for the detection of interactions between the compartments is the partitioning of the whole evaporation into individual evaporation components. Under the given precipitation and soil conditions, the course of interception and hence, the amount of seepage water depend on the crown structure in the stand. Depending on the amount of interception of the tree canopy and the duration of the leaching phase in spring, the mixed stands range between pure pine and pure beech. Making use of silvicultural methods and adequate stand treatment, forestry is able to control the water budget of landscapes.

  3. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests.

    PubMed

    Schurman, Jonathan S; Trotsiuk, Volodymyr; Bače, Radek; Čada, Vojtěch; Fraver, Shawn; Janda, Pavel; Kulakowski, Dominik; Labusova, Jana; Mikoláš, Martin; Nagel, Thomas A; Seidl, Rupert; Synek, Michal; Svobodová, Kristýna; Chaskovskyy, Oleh; Teodosiu, Marius; Svoboda, Miroslav

    2018-05-01

    Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large-scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring-based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750-2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long-term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within-stand structural variability. Reconstructed spatial patterns suggest that high small-scale structural variability has historically acted to reduce large-scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region-wide increase in disturbance susceptibility. Increasingly common high-severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events). © 2018 John Wiley & Sons Ltd.

  4. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing

    NASA Astrophysics Data System (ADS)

    Singh, Minerva; Malhi, Yadvinder; Bhagwat, Shonil

    2014-01-01

    The focus of this study is to assess the efficacy of using optical remote sensing (RS) in evaluating disparities in forest composition and aboveground biomass (AGB). The research was carried out in the East Sabah region, Malaysia, which constitutes a disturbance gradient ranging from pristine old growth forests to forests that have experienced varying levels of disturbances. Additionally, a significant proportion of the area consists of oil palm plantations. In accordance with local laws, riparian forest (RF) zones have been retained within oil palm plantations and other forest types. The RS imagery was used to assess forest stand structure and AGB. Band reflectance, vegetation indicators, and gray-level co-occurrence matrix (GLCM) consistency features were used as predictor variables in regression analysis. Results indicate that the spectral variables were limited in their effectiveness in differentiating between forest types and in calculating biomass. However, GLCM based variables illustrated strong correlations with the forest stand structures as well as with the biomass of the various forest types in the study area. The present study provides new insights into the efficacy of texture examination methods in differentiating between various land-use types (including small, isolated forest zones such as RFs) as well as their AGB stocks.

  5. Guide to fuel treatments in dry forests of the Western United States: assessing forest structure and fire hazard.

    Treesearch

    Morris C. Johnson; David L. Peterson; Crystal L. Raymond

    2007-01-01

    Guide to Fuel Treatments analyzes a range of fuel treatments for representative dry forest stands in the Western United States with overstories dominated by ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), and pinyon pine (Pinus edulis). Six silvicultural options (no thinning; thinning...

  6. Using forest inventory data to assess fisher resting habitat suitability in California.

    Treesearch

    William J. Zielinski; Richard L. Truex; Jeffrey R. Dunk; Tom Gaman

    2006-01-01

    The fisher (Martes pennanti) is a forest-dwelling carnivore whose current distribution and association with late-seral forest conditions make it vulnerable to stand-altering human activities or natural disturbances. Fishers select a variety of structures for daily resting bouts. These habitat elements, together with foraging and reproductive (denning) habitat,...

  7. Associations among breeding birds and gambel oak in Southwestern ponderosa pine forests

    Treesearch

    Stephanie Jentsch; R. William Mannan; Brett G. Dickson; William M. Block

    2008-01-01

    Ponderosa pine (Pinus ponderosa) forests with Gambel oak (Quercus gambelii) are associated with higher bird abundance and diversity than are ponderosa pine forests lacking Gambel oak. Little is known, however, about specific structural characteristics of Gambel oak trees, clumps, and stands that may be important to birds in...

  8. Accelerating the development of old-growth characteristics in second-growth northern hardwoods

    Treesearch

    Karin S. Fassnacht; Dustin R. Bronson; Brian J. Palik; Anthony W. D' Amato; Craig Lorimer; Karl J. Martin

    2015-01-01

    Active management techniques that emulate natural forest disturbance and stand development processes have the potential to enhance species diversity, structural complexity, and spatial heterogeneity in managed forests, helping to meet goals related to biodiversity, ecosystem health, and forest resilience in the face of uncertain future conditions. There are a number of...

  9. Forest thinning changes movement patterns and habitat use by Pacific marten

    Treesearch

    Katie M. Moriarty; Clinton W. Epps; William J. Zielinski

    2016-01-01

    ABSTRACT Simplifying stand structure to reduce fuel density is a high priority for forest managers; however, affects to Pacific marten (Martes caurina) movement and connectivity are unknown. We evaluated whether thinning forests to reduce fuels influenced movements of Pacific marten. We collected movement paths from 22 martens using global positioning system telemetry...

  10. Stand conditions associated with truffle abundance in western hemlock/Douglas-fir forests

    Treesearch

    Malcolm North; Joshua Greenberg

    1998-01-01

    Truffles are a staple food source for many forest small mammals yet the vegetation or soil conditions associated with truffle abundance are unknown. We examined the spatial distribution of forest structures, organic layer depth, root density, and two of the most common western North American truffles (Elaphomyces granulatus and Rhizopogon...

  11. Test of localized nanagement for reducing deer browsing in forest regeneration areas

    Treesearch

    Brad F. Miller; Tyler A. Campbell; Ben R. Laseter; W.Mark Ford; Karl V. Miller

    2010-01-01

    White-tailed deer (Odocoileus virginianus) browsing in forest regeneration sites can affect current and future stand structure and species composition. Removal of deer social units (localized management) has been proposed as a strategy to alleviate deer overbrowsing in forest systems. We conducted an experimental localized removal in a high-density...

  12. Discriminating Natural Variation from Legacies of Disturbance in Semi-Arid Forests, Southwestern USA

    NASA Astrophysics Data System (ADS)

    Swetnam, T. L.; Lynch, A. M.; Falk, D. A.; Yool, S. R.; Guertin, D. P.

    2014-12-01

    Characterizing differences in existing vegetation driven by natural variation versus disturbance legacies could become a critical component of applied forest management practice with important implications for monitoring ecologic succession and eco-hydrological interactions within the critical zone. Here we characterize variations in aerial LiDAR derived forest structure at individual tree scale in Arizona and New Mexico. Differences in structure result from both topographic and climatological variations and from natural and human related disturbances. We chose a priori undisturbed and disturbed sites that included preservation, development, logging and wildfire as exemplars. We compare two topographic indices, the topographic position index (TPI) and topographic wetness index (TWI), to two local indicators of spatial association (LISA): the Getis-Ord Gi and Anselin's Moran I. We found TPI and TWI correlate well to positive z-scores (tall trees in tall neighborhoods) in undisturbed areas and that disturbed areas are clearly defined by negative z-scores, in some cases better than what is visible from traditional orthophotography and existing GIS maps. These LISA methods also serve as a robust technique for creating like-clustered stands, i.e. common stands used in forest inventory monitoring. This research provides a significant advancement in the ability to (1) quantity variation in forest structure across topographically complex landscapes, (2) identify and map previously unrecorded disturbance locations, and (3) quantify the different impacts of disturbance within the perimeter of a stand or event at ecologically relevant scale.

  13. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China.

    PubMed

    Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin

    2013-01-01

    The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.

  14. Variation in Carbon Storage and Its Distribution by Stand Age and Forest Type in Boreal and Temperate Forests in Northeastern China

    PubMed Central

    Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J.; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin

    2013-01-01

    The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China. PMID:23977252

  15. Opposing effects of fire severity on climate feedbacks in Siberian larch forests

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Alexander, H. D.; Natali, S.; Kropp, H.; Mack, M. C.; Bunn, A. G.; Davydov, S. P.; Erb, A.; Kholodov, A. L.; Schaaf, C.; Wang, Z.; Zimov, N.; Zimov, S. A.

    2017-12-01

    Boreal larch forests in northeastern Siberia comprise nearly 25% of the continuous permafrost zone. Structural and functional changes in these ecosystems will have important climate feedbacks at regional and global scales. Like boreal ecosystems in North America, fire is an important determinant of landscape scale forest distribution, and fire regimes are intensifying as climate warms. In Siberian larch forests are dominated by a single tree species, and there is evidence that fire severity influences post-fire forest density via impacts on seedling establishment. The extent to which these effects occur, or persist, and the associated climate feedbacks are not well quantified. In this study we use forest stand inventories, in situ observations, and satellite remote sensing to examine: 1) variation in forest density within and between fire scars, and 2) changes in land surface albedo and active layer dynamics associated with forest density variation. At the landscape scale we observed declines in Landsat derived albedo as forests recovered in the first several decades after fire, though canopy cover varied widely within and between individual fire scars. Within an individual mid-successional fire scar ( 75 years) we observed canopy cover ranging from 15-90% with correspondingly large ranges of albedo during periods of snow cover, and relatively small differences in albedo during the growing season. We found an inverse relationship between canopy density and soil temperature within this fire scar; high-density low-albedo stands had cooler soils and shallower active layers, while low-density stands had warmer soils and deeper active layers. Intensive energy balance measurements at a high- and low- density site show that canopy cover alters the magnitude and timing of ground heat fluxes that affect active layer properties. Our results show that fire impacts on stand structure in Siberian larch forests affect land surface albedo and active layer dynamics in ways that may lead to opposing climate feedbacks. At effectively large scales these changes constitute positive and negative climate feedbacks, respectively. Accurate predictive understanding of terrestrial Arctic climate feedbacks requires improved knowledge regarding the ecological consequences of changing fire regimes in Siberian boreal forests.

  16. Semantic Segmentation of Forest Stands of Pure Species as a Global Optimization Problem

    NASA Astrophysics Data System (ADS)

    Dechesne, C.; Mallet, C.; Le Bris, A.; Gouet-Brunet, V.

    2017-05-01

    Forest stand delineation is a fundamental task for forest management purposes, that is still mainly manually performed through visual inspection of geospatial (very) high spatial resolution images. Stand detection has been barely addressed in the literature which has mainly focused, in forested environments, on individual tree extraction and tree species classification. From a methodological point of view, stand detection can be considered as a semantic segmentation problem. It offers two advantages. First, one can retrieve the dominant tree species per segment. Secondly, one can benefit from existing low-level tree species label maps from the literature as a basis for high-level object extraction. Thus, the semantic segmentation issue becomes a regularization issue in a weakly structured environment and can be formulated in an energetical framework. This papers aims at investigating which regularization strategies of the literature are the most adapted to delineate and classify forest stands of pure species. Both airborne lidar point clouds and multispectral very high spatial resolution images are integrated for that purpose. The local methods (such as filtering and probabilistic relaxation) are not adapted for such problem since the increase of the classification accuracy is below 5%. The global methods, based on an energy model, tend to be more efficient with an accuracy gain up to 15%. The segmentation results using such models have an accuracy ranging from 96% to 99%.

  17. Fire and stand history in two limber pine (Pinus flexilis) and Rocky Mountain bristlecone pine (Pinus aristata) stands in Colorado

    Treesearch

    Peter M. Brown; Anna W. Schoettle

    2008-01-01

    We developed fire-scar and tree-recruitment chronologies from two stands dominated by limber pine and Rocky Mountain bristlecone pine in central and northern Colorado. Population structures in both sites exhibit reverse-J patterns common in uneven-aged forests. Bristlecone pine trees were older than any other at the site or in the limber pine stand, with the oldest...

  18. Mapping spatial distribution of forest age in China

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Yao, Yitong; Wang, Xuhui; Liu, Yongwen; Piao, Shilong

    2017-03-01

    Forest stand age is a meaningful metric, which reflects the past disturbance legacy, provides guidelines for forest management practices, and is an important factor in qualifying forest carbon cycles and carbon sequestration potential. Reliable large-scale forest stand age information with high spatial resolutions, however, is difficult to obtain. In this study, we developed a top-down method to downscale the provincial statistics of national forest inventory data into 1 km stand age map using climate data and light detection and ranging-derived forest height. We find that the distribution of forest stand age in China is highly heterogeneous across the country, with a mean value of 42.6 years old. The relatively young stand age for Chinese forests is mostly due to the large proportion of newly planted forests (0-40 years old), which are more prevailing in south China. Older forests (stand age > 60 years old) are more frequently found in east Qinghai-Tibetan Plateau and the central mountain areas of west and northeast China, where human activities are less intensive. Among the 15 forest types, forests dominated by species of Taxodiaceae, with the exception of Cunninghamia lanceolata stands, have the oldest mean stand age (136 years), whereas Pinus massoniana forests are the youngest (18 years). We further identified uncertainties associated with our forest age map, which are high in west and northeast China. Our work documents the distribution of forest stand age in China at a high resolution which is useful for carbon cycle modeling and the sustainable use of China's forest resources.

  19. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.

    PubMed

    Köstner, B; Falge, E; Tenhunen, J D

    2002-06-01

    Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to reduced light interception per leaf area provides another potential explanation for reduced carbon gain in old stands of P. abies, even when hydraulic constraints increase in response to changes in canopy architecture and aging.

  20. Managed forest landscape structure and avian species richness in the southeastern US

    Treesearch

    Craig Loehle; T. Bently Wigley; Scott Rutzmoser; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Christopher J. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood

    2005-01-01

    Forest structural features at the stand scale (e.g., snags, stem density, species composition) and habitat attributes at larger spatial scales (e.g., landscape pattern, road density) can influence biological diversity and have been proposed as indicators in sustainable forestry programs. This study investigated relationships between such factors and total richness of...

  1. Bark beetles responses to stand structure and prescribed fire at Black Mountain Experimental Forest, California, USA: 5-year data

    Treesearch

    C.J. Fettig; S.R. McKelvey

    2010-01-01

    Highly effective fire suppression and selective harvesting of large-diameter, fire-tolerant tree species, such as ponderosa pine (Pinus ponderosa C. Lawson) and Jeffrey pine (P. jeffreyi Balf.), have resulted in substantial changes to the structure and composition of interior ponderosa pine forests. Mechanical thinning and the...

  2. The influence of compositional and structural diversity on forest productivity

    Treesearch

    James N. Long; John D. Shaw

    2010-01-01

    Data from ~1500 ponderosa pine (Pinus ponderosa C. Lawson) stands in the western United States were used to examine the potential influence of compositional and structural diversity on forest productivity. Relative density, height and site quality were combined in a conceptually sound expression of the relationship between growth and growing stock for ponderosa pine-...

  3. 12th Central Hardwood Forest Conference

    Treesearch

    Jeffrey W. Stringer; David L. Loftis; Michael Lacki; Thomas Barnes; Robert A. Muller

    1999-01-01

    There were 32 oral presentations, 11 abstracts, and 22 poster presentations presented at the 12th Central Hardwood Forest Conference. Presentation topics included wildlife management, nutrient dynamics, stand structure, reforestation/reclamation, timber harvesting, modeling and inventory, silviculture, disturbance effects, and genetics/tree improvement.

  4. Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: influence of tree spatial patterning

    USGS Publications Warehouse

    Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders

    2013-01-01

    Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree competition studies, in which tree spatial patterning is typically not taken into account. Our findings highlight the importance of forest structure – particularly the spatial arrangement of trees – in regulating inter-tree competition and growth in structurally diverse forests, and they provide insight into the causes and consequences of heterogeneity in this old-growth system.

  5. Fire history and landscape dynamics in a late-successional reserve in the Klamath Mountains, California, USA

    Treesearch

    Alan H. Taylor; Carl N. Skinner

    1998-01-01

    The frequency, extent, and severity of fires strongly influence development patterns of forests dominated by Douglas-fir in the Pacific Northwest. Limited data on fire history and stand structure suggest that there is geographical variation in fire regimes and that this variation contributes to regional differences in stand and landscape structure. Managers need region...

  6. Structural characteristics of late-sucessional pine-hardwood forest following recent infestation by southern pine beetle in the Georgia Piedmont, USA

    Treesearch

    Timothy B. Harrington; Mingguang Xu; M. Boyd Edwards

    2000-01-01

    At Murder Creek Research Natural Area, Georgia, USA, we compared structural characteristics of late-successional pine-hardwood stands two to three years after infestation by southern pine beetle (Dendroctonus frontalis Zimmerman) to those of adjacent noninfested stands. Death of up to eight Pinus taeda L. and P. echinata...

  7. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks

    PubMed Central

    Donato, Daniel C.; Raffa, Kenneth F.; Turner, Monica G.

    2016-01-01

    Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988. We combined extensive field data on postfire tree regeneration with a well-tested simulation model to assess susceptibility to bark beetle outbreaks over 130 y of stand development. Despite originating from the same fire event, among-stand variation in forest structure was very high and remained considerable for over a century. Thus, simulated emergence of stands susceptible to bark beetles was not temporally synchronized but was protracted by several decades, compared with stand development from spatially homogeneous regeneration. Furthermore, because of fire-mediated variability in forest structure, the habitat connectivity required to support broad-scale outbreaks and amplifying cross-scale feedbacks did not develop until well into the second century after the initial burn. We conclude that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes. PMID:27821739

  8. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks.

    PubMed

    Seidl, Rupert; Donato, Daniel C; Raffa, Kenneth F; Turner, Monica G

    2016-11-15

    Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988. We combined extensive field data on postfire tree regeneration with a well-tested simulation model to assess susceptibility to bark beetle outbreaks over 130 y of stand development. Despite originating from the same fire event, among-stand variation in forest structure was very high and remained considerable for over a century. Thus, simulated emergence of stands susceptible to bark beetles was not temporally synchronized but was protracted by several decades, compared with stand development from spatially homogeneous regeneration. Furthermore, because of fire-mediated variability in forest structure, the habitat connectivity required to support broad-scale outbreaks and amplifying cross-scale feedbacks did not develop until well into the second century after the initial burn. We conclude that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes.

  9. Comparisons between field- and LiDAR-based measures of stand structrual complexity

    Treesearch

    Van R. Kane; Robert J. McGaughey; Jonathan D. Bakker; Rolf F. Gersonde; James A. Lutz; Jerry F. Franklin

    2010-01-01

    Forest structure, as measured by the physical arrangement of trees and their crowns, is a fundamental attribute of forest ecosystems that changes as forests progress through successional stages. We examined whether LiDAR data could be used to directly assess the successional stage of forests by determining the degree to which the LiDAR data would show the same relative...

  10. Thinning and prescribed fire effects on overstory tree and snag structure in dry coniferous forests of the interior Pacific Northwest

    Treesearch

    Richy J. Harrod; David W. Peterson; Nicholas A. Povak; Erich Kyle Dodson

    2009-01-01

    Forest thinning and prescribed fires are practices used by managers to address concerns over ecosystem degradation and severe wildland fire potential in dry forests. There is some debate, however, about treatment effectiveness in meeting management objectives as well as their ecological consequences. The purpose of this study was to assess changes to forest stand...

  11. Implications of alternative field-sampling designs on Landsat-based mapping of stand age and carbon stocks in Oregon forests

    Treesearch

    Maureen V. Duane; Warren B. Cohen; John L. Campbell; Tara Hudiburg; David P. Turner; Dale Weyermann

    2010-01-01

    Empirical models relating forest attributes to remotely sensed metrics are widespread in the literature and underpin many of our efforts to map forest structure across complex landscapes. In this study we compared empirical models relating Landsat reflectance to forest age across Oregon using two alternate sets of ground data: one from a large (n ~ 1500) systematic...

  12. The long-term hydrological effect of forest stands on the stability of slopes

    NASA Astrophysics Data System (ADS)

    Bogaard, T. A.; Meng, W.; van Beek, L. P. H.

    2012-04-01

    Forest is widely known to improve slope stability as a result of mechanical and hydrological effects. While the mechanics underlying the stabilizing process of root reinforcement are well understood and quantified, the influence of forest on the occurrence of critical hydrological conditions in terms of suction or pore pressure remains uncertain. Due to seasonal and inter-annual fluctuations, the stabilizing influence of evaporation and transpiration is difficult to isolate from the overall noise of the hydrological signal. More long-term effects of forest stands on soil development are highly variable and thus difficult to observe and quantify. Often these effects are ambivalent, having potentially a stabilizing or destabilizing influence on a slope under particular conditions (e.g., more structured soils leading to both rapid infiltration and drainage). Consequently, it can be postulated that forests will hydrologically influence the magnitude-frequency distribution of landsliding, not only at the stand level but also on a regional scale through the groundwater system. The overall aim of this research is to understand and quantify the stabilizing hydrological effect of forests on potentially unstable slopes. To this end, we focus on the changes in the magnitude-frequency distribution of landsliding that arise as a result of variations in evapotranspiration losses over the life cycle of stands. Temporal variations in evapotranspiration comprise first of all the interception that can account for an important amount of evaporation from a forest, and that changes with seasonal and annual variations in the interception capacity of the canopy and forest floor. Transpiration also represents an important loss that varies over the various growth stages of a forest stand. Based on a literature review of water consumption by tree species and water balance studies of forested catchments we defined the potential transpiration for different growth stages. This information we used in a spatially distributed, physical-based, dynamical model to simulate the hydrology and resulting stability for a catchment on a daily scale. The results can be used to identify end members of the hydrological influence of forests on slope stability and the typical variations in stability associated with the various growth stages. They indicate that the influence of forest stand age on the water consumption can be significant and has clear consequences for the antecedent soil moisture condition within a slope and thus on the potential for slope destabilization. The outcome should help to understand the long-term impact of vegetation on slope hydrology and define sustainable and reliable management strategies at the scale of forest stands. Keywords: slope stability, hydrology, vegetation, long-tem effect

  13. Soil moisture in sessile oak forest gaps

    NASA Astrophysics Data System (ADS)

    Zagyvainé Kiss, Katalin Anita; Vastag, Viktor; Gribovszki, Zoltán; Kalicz, Péter

    2015-04-01

    By social demands are being promoted the aspects of the natural forest management. In forestry the concept of continuous forest has been an accepted principle also in Hungary since the last decades. The first step from even-aged stand to continuous forest can be the forest regeneration based on gap cutting, so small openings are formed in a forest due to forestry interventions. This new stand structure modifies the hydrological conditions for the regrowth. Without canopy and due to the decreasing amounts of forest litter the interception is less significant so higher amount of precipitation reaching the soil. This research focuses on soil moisture patterns caused by gaps. The spatio-temporal variability of soil water content is measured in gaps and in surrounding sessile oak (Quercus petraea) forest stand. Soil moisture was determined with manual soil moisture meter which use Time-Domain Reflectometry (TDR) technology. The three different sizes gaps (G1: 10m, G2: 20m, G3: 30m) was opened next to Sopron on the Dalos Hill in Hungary. First, it was determined that there is difference in soil moisture between forest stand and gaps. Second, it was defined that how the gap size influences the soil moisture content. To explore the short term variability of soil moisture, two 24-hour (in growing season) and a 48-hour (in dormant season) field campaign were also performed in case of the medium-sized G2 gap along two/four transects. Subdaily changes of soil moisture were performed. The measured soil moisture pattern was compared with the radiation pattern. It was found that the non-illuminated areas were wetter and in the dormant season the subdaily changes cease. According to our measurements, in the gap there is more available water than under the forest stand due to the less evaporation and interception loss. Acknowledgements: The research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and AGRARKLIMA.2 VKSZ_12-1-2013-0034.

  14. Forest lepidopteran communities are more resilient to shelterwood harvests compared to more intensive logging regimes.

    PubMed

    Summerville, Keith S

    2013-07-01

    A common measure of ecosystem resilience is the time course to recovery for a system that has been previously disturbed. The goal of this study was to assess whether forest lepidopteran communities displayed three different forms of resilience following experimental timber harvest. Specifically, I examined whether moth species assemblages returned to pre-logging composition (compositional resilience), species richness (structural resilience), and guild diversity (functional resilience) after forest management. Lepidoptera were sampled from 16 forest stands managed with one of four harvest treatments: no logging, clear-cutting, shelterwood harvests, and group selection harvests. Moths were sampled from all forest stands one year prior to harvest in 2007 and immediately postharvest in 2009-2011. Moth community composition only appeared to be resilient to timber harvest in stands managed with shelterwood methods (15% biomass removed) or in the unlogged stands within managed concession units. Both total species richness and species richness of Quercus-feeding moths also appeared to recover to a near original condition three years post-shelterwood logging. In contrast, moth assemblages in clear-cut stands and group selection stands (80% biomass removed) remained impoverished. Tests of functional resilience suggested that richness of species known to be pollinators was largely unaffected by timber management, and the number of moth species known to feed on herbaceous vegetation doubled in stands logged using group selection methods. Dietary specialists were disproportionately abundant in the unlogged stands postharvest, suggesting that species with more narrow dietary niches have the lowest resilience to timber management. These results suggest that most methods of forest management have short-term negative impacts on woody-plant-feeding Lepidoptera, but that the effects are limited to a few years when the harvest method involves shelterwood cuts. Herbaceous-feeding Lepidoptera appear to quickly colonize stands managed with group selection or clear-cutting, so loss of species richness in stands managed with either of these treatments may be less than predicted based on level of timber being removed. Recovery of moth assemblages in more highly disturbed stands will require longer time periods and techniques such as group selection harvests, where upwards of 80% of the standing bole is removed, may not be consistent with conservation goals.

  15. Treatments that enhance the decomposition of forest fuels for use in partially harvested stands in the moist forests of the northern Rocky Mountains (Priest River Experimental Forest)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2007-01-01

    The moist forests of the Rocky Mountains typically support late seral western hemlock, moist grand fir, or western redcedar forests. In addition to these species, Douglas-fir, western white pine, western larch, ponderosa pine, and lodgepole pine can occur creating a multitude of species compositions, structures, and successional stages that can be arrayed in a variety...

  16. The role of silvicultural thinning in eastern forests threatened by hemlock woolly adelgid (Adelges tsugae)

    Treesearch

    Mary Ann Fajvan

    2008-01-01

    In order to increase hemlock survivability in stands threatened by hemlock woolly adelgid (HWA), a new study is developing silvicultural thinning guidelines to reduce stand densities, reallocate resources, and increase hemlock vigor across a range of stand types and structures before HWA invasion. The 7 study areas are all geographically similar in that they regularly...

  17. Productivity of rubber-tired skidders in southern pine forests

    Treesearch

    R. Kluender; D. Lortz; W. McCoy; B. Stokes; J. Klepac

    1997-01-01

    Sixteen stands were harvested at intensities (proportion of basal area removed) ranging from 0.27 to 1.00. Logging contractors used one or two rubber-tired cable and/or grapple skidders. Harvested sites were similar in slope, tree size, and stand composition. Thirteen of the stands had even-aged structures while the other three were uneven-aged. Skidding time per cycle...

  18. The effects of thinning and similar stand treatments on fire behavior in Western forests.

    Treesearch

    Russell T. Graham; Alan E. Harvey; Theresa B. Jain; Jonalea R. Tonn

    1999-01-01

    In the West, thinning and partial cuttings are being considered for treating millions of forested acres that are overstocked and prone to wildfire. The objectives of these treatments include tree growth redistribution, tree species regulation, timber harvest, wildlife habitat improvement, and wildfire-hazard reduction. Depending on the forest type and its structure,...

  19. 25+ year changes in forest structure and tree-ring patterns in three old-growth red spruce stands in West Virginia

    Treesearch

    Eric Heitzman; Sean Doughterty; James Rentch; Steve Adams; Steve. Stephenson

    2010-01-01

    The extent of red spruce (Picea rubens) forests in West Virginia has dramatically declined from an estimated 1.5 million acres in 1865 to 30,000 acres today because of widespread logging and forest fires during the late 1800s and early 1900s.

  20. Small-diameter success stories III.

    Treesearch

    Jean Livingston

    2008-01-01

    More than 73 million acres of our national forests and millions more in public and private forestlands are in need of some form of restoration. Our forests are declining in health because of major changes over the years in forest structure and composition. However, restoration of these overstocked stands is extremely expensive. If new, economical, and value-added uses...

  1. Let's mix it up! The benefits of variable-density thinning

    Treesearch

    Connie Harrington

    2009-01-01

    Can management of 40- to 80-year- old forests on the Olympic Peninsula accelerate the development of stand structures and plant and animal communities associated with much older forests? The Olympic Habitat Development Study, a cooperative project between the Pacific Northwest Research Station and the Olympic National Forest, began in 1994 to examine this question. It...

  2. Fire and fire-suppression impacts on forest-soil carbon [Chapter 13

    Treesearch

    Deborah Page-Dumroese; Martin F. Jurgensen; Alan E. Harvey

    2003-01-01

    The potential of forest soils to sequester carbon (C) depends on many biotic and abiotic variables, such as: forest type, stand age and structure, root activity and turnover, temperature and moisture conditions, and soil physical, chemical, and biological properties (Birdsey and Lewis, Chapter 2; Johnson and Kern, Chapter 4; Pregitzer, Chapter 6; Morris and Paul,...

  3. Ponderosa pine forest restoration treatment longevity: Implications of regeneration on fire hazard

    Treesearch

    Wade T. Tinkham; Chad M. Hoffman; Seth A. Ex; Michael A. Battaglia; Jarred D. Saralecos

    2016-01-01

    Restoration of pine forests has become a priority for managers who are beginning to embrace ideas of highly heterogeneous forest structures that potentially encourages high levels of regeneration. This study utilizes stem-mapped stands to assess how simulated regeneration timing and magnitude influence longevity of reduced fire behavior by linking growth and...

  4. Restoration of tropical moist forest on bauxite mined lands in the Brazilian Amazon

    Treesearch

    John A Parrotta; Oliver H. Knowles

    1999-01-01

    We evaluated forest structure and composition in 9- to 13-year-old stands established on a bauxite-mined site at Trombetas (Pará), Brazil, using four different reforestation techniques following initial site preparation and topsoil replacement. These techniques included reliance on natural forest regeneration, mixed commercial species plantings of mostly exotic timber...

  5. Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA

    Treesearch

    John B. Bradford; Douglas N. Kastendick

    2010-01-01

    Forest managers are seeking strategies to create stands that can adapt to new climatic conditions and simultaneously help mitigate increases in atmospheric CO2. Adaptation strategies often focus on enhancing resilience by maximizing forest complexity in terms of species composition and size structure, while mitigation involves sustaining carbon...

  6. The effects of partial cutting on forest plant communities of western hemlock—Sitka spruce stands in southeast Alaska.

    Treesearch

    Robert L. Deal

    2001-01-01

    The effects of partial cutting on plant species richness, community structure, and several understory species that are important for deer forage were evaluated on 73 plots in 18 stands throughout southeast Alaska. These partially cut stands were harvested 12–96 years ago when 16- 96% of the former stand basal area was removed. The species richness and community...

  7. Pre-outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado.

    PubMed

    Mietkiewicz, Nathan; Kulakowski, Dominik; Veblen, Thomas T

    2018-03-01

    Over the past 30 years, forest disturbances have increased in size, intensity, and frequency globally, and are predicted to continue increasing due to climate change, potentially relaxing the constraints of vegetation properties on disturbance regimes. However, the consequences of the potentially declining importance of vegetation in determining future disturbance regimes are not well understood. Historically, bark beetles preferentially attack older trees and stands in later stages of development. However, as climate warming intensifies outbreaks by promoting growth of beetle populations and compromising tree defenses, smaller diameter trees and stands in early stages of development now are being affected by outbreaks. To date, no study has considered how stand age and other pre-outbreak forest conditions mediate the effects of outbreaks on surface and aerial fuel arrangements. We collected fuels data across a chronosequence of post-outbreak sites affected by spruce beetle (SB) between the 1940s and the 2010s, stratified by young (<130 yr) and old (>130 yr) post-fire stands. Canopy and surface fuel loads were calculated for each tree and stand, and available crown fuel load, crown bulk density, and canopy bulk densities were estimated. Canopy bulk density and density of live canopy individuals were reduced in all stands affected by SB, though foliage loss was proportionally greater in old stands as compared to young stands. Fine surface fuel loads in young stands were three times greater shortly (<30 yr) following outbreak as compared to young stands not affected by outbreak, after which the abundance of fine surface fuels decreased to below endemic (i.e., non-outbreak) levels. In both young and old stands, the net effect of SB outbreaks during the 20th and 21st centuries reduced total canopy fuels and increased stand-scale spatial heterogeneity of canopy fuels following outbreak. Importantly, the decrease in canopy fuels following outbreaks was greater in young post-fire stands than in older stands, suggesting that SB outbreaks may more substantially reduce risk of active crown fire when they affect stands in earlier stages of development. The current study shows that the effects of SB outbreaks on forest structure and on fuel profiles are strongly contingent on pre-outbreak conditions as determined by pre-outbreak disturbance history. © 2018 by the Ecological Society of America.

  8. Effects of growth form and functional traits on response of woody plants to clearing and fragmentation of subtropical rainforest.

    PubMed

    Kooyman, R M; Zanne, A E; Gallagher, R V; Cornwell, W; Rossetto, M; O'Connor, P; Parkes, E A; Catterall, C F; Laffan, S W; Lusk, C H

    2013-12-01

    The conservation implications of large-scale rainforest clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant species to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by species functional traits, particularly those related to dispersal. We used species occurrence data for woody plants in 46 rainforest patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical rainforest. We compiled species trait values for leaf area, seed dry mass, wood density, and maximum height and calculated species niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free-standing plants in remnant patches were quantified. Larger rainforest patches had higher species richness. Species in smaller patches were taxonomically less related than species in larger patches. Free-standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind-dispersed seeds. Connections between the patchy spatial distribution of free-standing species, larger seed sizes, and dispersal syndrome were weak. Assemblages of free-standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower species richness. The response of woody plants to clearing and fragmentation of subtropical rainforest differed between climbers and slow-growing mature-phase forest trees but not between climbers and pioneer trees. Quantifying taxonomic structure and functional diversity provides an improved basis for conservation planning and management by elucidating the effects of forest-area reduction and fragmentation. Efectos de la Forma de Crecimiento y Atributos Funcionales en la Respuesta de Plantas Leñosas al Desmonte y Fragmentación de Bosque Lluvioso Subtropical. © 2013 Society for Conservation Biology.

  9. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    USGS Publications Warehouse

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon-stock evolution after fire. This makes the model suitable for regional simulations in boreal regions where fire regimes play a key role in the ecosystem carbon balance.

  10. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-12-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon-stock evolution after fire. This makes the model suitable for regional simulations in boreal regions where fire regimes play a key role in the ecosystem carbon balance.

  11. Effect of Forest Structural Change on Carbon Storage in a Coastal Metasequoia glyptostroboides Stand

    PubMed Central

    Cheng, Xiangrong; Yu, Mukui; Wu, Tonggui

    2013-01-01

    Forest structural change affects the forest's growth and the carbon storage. Two treatments, thinning (30% thinning intensity) and underplanting plus thinning, are being implemented in a coastal Metasequoia glyptostroboides forest shelterbelt in Eastern China. The vegetation carbon storage significantly increased in the underplanted and thinned treatments compared with that in the unthinned treatment (P < 0.05). The soil and litterfall carbon storage in the underplanted treatment were significantly higher than those in the unthinned treatment (P < 0.05). The total forest ecosystem carbon storage in the underplanted and thinned treatments increased by 35.3% and 26.3%, respectively, compared with that in the unthinned treatment, an increase that mainly came from the growth of vegetation aboveground. Total ecosystem carbon storage showed no significant difference between the underplanted and thinned treatments (P > 0.05). The soil light fraction organic carbon (LFOC) was significantly higher at the 0–15 cm soil layer in the thinned and underplanted stands compared with that in the unthinned stand (P < 0.05). The soil respiration of the underplanted treatment was significantly higher than that of the unthinned treatment only in July (P < 0.05). This study concludes that 30% thinning and underplanting after thinning could be more favorable to carbon sequestration for M. glyptostroboides plantations in the coastal areas of Eastern China. PMID:24187525

  12. Using wood-based structural products as forest management tools to improve forest health, sustainability and reduce forest fuels : a research program of the USDA Forest Service under the National Fire Plan

    Treesearch

    John F. Hunt; Jerrold E. Winandy

    2002-01-01

    Currently, after logging or thinning operations much of the low value timber is either left standing or is felled and left on the ground, chipped, or burned because most North American mills are not equipped to handle this material. In many areas of Western U.S., this forest residue does not decompose if felled and it soon becomes susceptible to forest insect or...

  13. The effects of thinning intensity on snag and cavity tree abundance in an Appalachian hardwood stand

    Treesearch

    Aaron T. Graves; Mary Ann Fajvan; Gary W. Miller

    2000-01-01

    Traditional silvicultural practices focus on manipulating forest vegetation structure for commodity production. Structural features important to wildlife, such as snags, trees with decay, and cavity trees are also affected by forest management, but these effects are often not quantified. This study measured the effects of different thinning intensities (45, 60, and 75...

  14. Analyzing canopy structure in Pacific Northwest old-growth forests with a stand-scale crown model

    Treesearch

    Robert Van Pelt; Malcolm P. North

    1996-01-01

    I n forests, the canopy is the locale of critical ecosystem processes such as photosynthesis and evapotranspiration. and it provides essential habitat for a highly diverse array of animals, plants, and other organisms. Despite its importance, the structure of the canopy as a whole has had little quantitative study because limited access makes quantification difficult...

  15. Lidar Altimeter Measurements of Canopy Structure: Methods and Validation for Closed Canopy, Broadleaf Forests

    NASA Technical Reports Server (NTRS)

    Harding, D. J.; Lefsky, M. A.; Parker, G. G.; Blair, J. B.

    1999-01-01

    Lidar altimeter observations of vegetated landscapes provide a time-resolved measure of laser pulse backscatter energy from canopy surfaces and the underlying ground. Airborne lidar altimeter data was acquired using the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) for a successional sequence of four, closed-canopy, deciduous forest stands in eastern Maryland. The four stands were selected so as to include a range of canopy structures of importance to forest ecosystem function, including variation in the height and roughness of the outer-most canopy surface and the vertical organization of canopy stories and gaps. The character of the SLICER backscatter signal is described and a method is developed that accounts for occlusion of the laser energy by canopy surfaces, transforming the backscatter signal to a canopy height profile (CHP) that quantitatively represents the relative vertical distribution of canopy surface area. The transformation applies an increased weighting to the backscatter amplitude as a function of closure through the canopy and assumes a horizontally random distribution of the canopy components. SLICER CHPs, averaged over areas of overlap where lidar ground tracks intersect, are shown to be highly reproducible. CHP transects across the four stands reveal spatial variations in vegetation, at the scale of the individual 10 m diameter laser footprints, within and between stands. Averaged SLICER CHPs are compared to analogous height profile results derived from ground-based sightings to plant intercepts measured on plots within the four stands. Tbe plots were located on the segments of the lidar ground tracks from which averaged SLICER CHPs were derived, and the ground observations were acquired within two weeks of the SLICER data acquisition to minimize temporal change. The differences in canopy structure between the four stands is similarly described by the SLICER and ground-based CHP results, however a Chi-square test of similarity documents differences that are statistically significant. The differences are discussed in terms of measurement properties that define the smoothness of the resulting CHPs and Lidar Altimeter Measurements of Canopy Structure - Harding et al. canopy properties that may vertically bias the CHP representations of canopy structure. The statistical differences are most likely due to the more noisy character of the ground-based CHPs, especially high in the canopy where ground-based sightings are rare resulting in an underestimate of canopy surface area and height, and to departures from the assumption of horizontal randomness which bias the CHPs toward the observer (upward for SLICER and downward for ground-based CHPs). The results demonstrate that the SLICER observations reliably provide a measure of canopy structure that reveals ecologically interesting structural variations such as those characterizing a successional sequence of closed-canopy, broadleaf forest stands.

  16. Tree diversity promotes insect herbivory in subtropical forests of south-east China.

    PubMed

    Schuldt, Andreas; Baruffol, Martin; Böhnke, Martin; Bruelheide, Helge; Härdtle, Werner; Lang, Anne C; Nadrowski, Karin; von Oheimb, Goddert; Voigt, Winfried; Zhou, Hongzhang; Assmann, Thorsten; Fridley, Jason

    2010-07-01

    1.Insect herbivory can strongly affect ecosystem processes, and its relationship with plant diversity is a central topic in biodiversity-functioning research. However, very little is known about this relationship from complex ecosystems dominated by long-lived individuals, such as forests, especially over gradients of high plant diversity.2.We analysed insect herbivory on saplings of 10 tree and shrub species across 27 forest stands differing in age and tree species richness in an extraordinarily diverse subtropical forest ecosystem in China. We tested whether plant species richness significantly influences folivory in these highly diverse forests or whether other factors play a more important role at such high levels of phytodiversity.3.Leaf damage was assessed on 58 297 leaves of 1284 saplings at the end of the rainy season in 2008, together with structural and abiotic stand characteristics.4.Species-specific mean damage of leaf area ranged from 3% to 16%. Herbivory increased with plant species richness even after accounting for potentially confounding effects of stand characteristics, of which stand age-related aspects most clearly covaried with herbivory. Intraspecific density dependence or other abiotic factors did not significantly influence overall herbivory across forest stands.5.Synthesis.The positive herbivory-plant diversity relationship indicates that effects related to hypotheses of resource concentration, according to which a reduction in damage by specialized herbivores might be expected as host plant concentration decreases with increasing plant diversity, do not seem to be major determinants for overall herbivory levels in our phytodiverse subtropical forest ecosystem. We discuss the potential role of host specificity of dominant herbivores, which are often expected to show a high degree of specialization in many (sub)tropical forests. In the forest system we studied, a much higher impact of polyphagous species than traditionally assumed might explain the observed patterns, as these species can profit from a broad dietary mix provided by high plant diversity. Further testing is needed to experimentally verify this assumption.

  17. Altered structural development and accelerated succession from intermediate-scale wind disturbance in Quercus stands on the Cumberland Plateau, USA

    Treesearch

    Stephen D White; Justin L. Hart; Callie J. Schweitzer; Daniel C. Dey

    2015-01-01

    Natural disturbances play important roles in shaping the structure and composition of all forest ecosystems and can be used to inform silvicultural practices. Canopy disturbances are often classified along a gradient ranging from highly localized, gap-scale events to stand-replacing events. Wind storms such as downbursts, derechos, and low intensity tornadoes typically...

  18. The Use of Silviculture and Prescribed Fire to Manage Stand Structure and Fuel Profiles in a Multi-aged Lodgepole Pine Forest

    Treesearch

    Colin C. Hardy; Helen Y. Smith; Ward McCaughey

    2006-01-01

    This paper presents several components of a multi-disciplinary project designed to evaluate the ecological and biological effects of two innovative silvicultural treatments coupled with prescribed fire in an attempt to both manage fuel profiles and create two-aged stand structures in lodgepole pine. Two shelterwood silvicultural treatments were designed to replicate as...

  19. Fuel mass and stand structure after post-fire logging of a severely burned ponderosa pine forest in northeastern Oregon.

    Treesearch

    J.D. McIver; R. Ottmar

    2006-01-01

    Stand structure and downed woody fuel mass were measured in four replicate units for each of three treatments (unlogged control, commercial harvest, and fuel reduction harvest) following the 1996 Summit Wildfire in northeastern Oregon. Commercial and fuel-reduction harvest resulted in a significant decrease in tree density and tree basal areas. The total downed woody...

  20. Recent Changes in the Riparian Forest of a Large Regulated Mediterranean River: Implications for Management

    NASA Astrophysics Data System (ADS)

    González, Eduardo; González-Sanchis, María; Cabezas, Álvaro; Comín, Francisco A.; Muller, Etienne

    2010-04-01

    The structure of the floodplain forests of the Middle Ebro River (NE Spain) was examined at patch and landscape scales along a three-step chronosequence defined according to the extent of flow regulation-induced hydrogeomorphic changes, with the ultimate purpose of producing baseline information to guide through management and restoration plans. At patch scale, a total of 6,891 stems within 39 plots were registered for species, diameter and health status. The stem density, size class distribution, canopy dieback and mortality were further compared by means of non-parametric tests. At landscape scale, the temporal evolution of the area occupied by forest stands of different ages in the floodplain along the chronosequence was evaluated using four sets of aerial photographs dated in 1927, 1957, 1981 and 2003. The within-patch structure of pioneer forests (<25-30 years old) was characterized by dense and healthy populations of pioneer species ( Populus nigra, Salix alba and Tamarix spp.), but the area occupied by these forest types has progressively decreased (up to 37%) since the intensification of river regulation (ca. 1957). In contrast, non-pioneer forests (>25-30 years old) were characterized by declining and sparse P. nigra- S. alba- Tamarix spp. stands, where late-seral species such as Ulmus minor and Fraxinus angustifolia were frequent, but only as small-size stems. At landscape scale, these type of senescent forests have doubled their surface after river regulation was intensified. Populus alba only appeared in the oldest plots recorded (colonized before 1957), suggesting sexual regeneration failure during the last five decades, but usually as healthy and dense stands. Based on these findings, measures principally aimed at recovering some hydrogeomorphic dynamism are recommended to guarantee the self-sustainability of the floodplain forest ecosystem.

  1. Recent changes in the riparian forest of a large regulated Mediterranean river: implications for management.

    PubMed

    González, Eduardo; González-Sanchis, María; Cabezas, Alvaro; Comín, Francisco A; Muller, Etienne

    2010-04-01

    The structure of the floodplain forests of the Middle Ebro River (NE Spain) was examined at patch and landscape scales along a three-step chronosequence defined according to the extent of flow regulation-induced hydrogeomorphic changes, with the ultimate purpose of producing baseline information to guide through management and restoration plans. At patch scale, a total of 6,891 stems within 39 plots were registered for species, diameter and health status. The stem density, size class distribution, canopy dieback and mortality were further compared by means of non-parametric tests. At landscape scale, the temporal evolution of the area occupied by forest stands of different ages in the floodplain along the chronosequence was evaluated using four sets of aerial photographs dated in 1927, 1957, 1981 and 2003. The within-patch structure of pioneer forests (<25-30 years old) was characterized by dense and healthy populations of pioneer species (Populus nigra, Salix alba and Tamarix spp.), but the area occupied by these forest types has progressively decreased (up to 37%) since the intensification of river regulation (ca. 1957). In contrast, non-pioneer forests (>25-30 years old) were characterized by declining and sparse P. nigra-S. alba-Tamarix spp. stands, where late-seral species such as Ulmus minor and Fraxinus angustifolia were frequent, but only as small-size stems. At landscape scale, these type of senescent forests have doubled their surface after river regulation was intensified. Populus alba only appeared in the oldest plots recorded (colonized before 1957), suggesting sexual regeneration failure during the last five decades, but usually as healthy and dense stands. Based on these findings, measures principally aimed at recovering some hydrogeomorphic dynamism are recommended to guarantee the self-sustainability of the floodplain forest ecosystem.

  2. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest.

    PubMed

    Castro-Izaguirre, Nadia; Chi, Xiulian; Baruffol, Martin; Tang, Zhiyao; Ma, Keping; Schmid, Bernhard; Niklaus, Pascal A

    2016-01-01

    Research about biodiversity-productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity-productivity relationship and that this translates into increased carbon storage in long-lived woody structures. Given the high growth rates of these forests during secondary succession, our results further indicate that a forest management promoting tree diversity after disturbance may accelerate CO2 sequestration from the atmosphere and thus be relevant in a climate-change context.

  3. Spring bird migration in Mississippi Alluvial Valley forests

    USGS Publications Warehouse

    Wilson, R. Randy; Twedt, Daniel J.

    2003-01-01

    We surveyed forest songbirds during migration in bottomland hardwood forest stands and managed cottonwood (Populus deltoides) plantations in northeast Louisiana and west-central Mississippi between 24 March and 24 May 1996 and 1997. We detected more bird species in bottomland hardwood stands than in cottonwood stands. Within hardwood stands, we detected more individuals in stands subjected to uneven-aged timber harvest than in unmanaged stands. Early in migration, avian species composition was similar in both forest types, being comprised mainly of short-distance migrants. Bird species composition in these forest types became increasingly disparate as long-distance neotropical-nearctic migrants arrived. Ten bird species were characteristic of bottomland hardwood forests, whereas eight different species were characteristic of managed cottonwood plantations. Because these two forest types supported different bird communities, both forest types provide important inland stopover habitat during migration. Silvicultural management of bottomland hardwood forests that increases their understory vegetation will provide forested habitat for a more species rich and abundant population of songbirds during migration.

  4. Structure of northern spotted owl nest stands and their historical conditions on the eastern slope of the Pacific Northwest Cascades, USA.

    Treesearch

    Richard Everett; D. Schellhaas; D. Spurbeck; [and others].

    1997-01-01

    The northern spotted (Strix occidentalis caurina) uses a wide array of nesting habitat throughout its current range and successfully reproduces in a variety of stand types on the eastern slope of the Pacific Northwest Cascades. The species has the ability to utilize dynamic forest stands that continue to undergo significant changes in tree density...

  5. Forest structure, composition, and tree diversity response to a gradient of regeneration harvests in the mid-Cumberland Plateau escarpment region, USA

    Treesearch

    Callie Schweitzer; Daniel C. Dey

    2011-01-01

    Upland hardwood stands on mesic, escarpment-oriented sites on the Cumberland Plateau region of northeastern Alabama provide a myriad management opportunities. Stands are primarily managed for Quercus, but the high species diversity allows for management that targets multiple species. Stand composition is unique in that dominant species include shade tolerant species...

  6. Response of forest soil Acari to prescribed fire following stand structure manipulation in the southern Cascade Range.Can

    Treesearch

    Michael A. Camann; Nancy E. Gillette; Karen L. Lamoncha; Sylvia R. Mori

    2008-01-01

    We studied responses of Acari, especially oribatid mites, to prescribed low-intensity fire in an east side pine site in the southern Cascade Range in California. We compared oribatid population and assemblage responses to prescribed fire in stands that had been selectively logged to enhance old growth characteristics, in logged stands to minimize old growth...

  7. Simulated cavity tree dynamics under alternative timber harvest regimes

    Treesearch

    Zhaofei Fan; Stephen R Shifley; Frank R Thompson; David R Larsen

    2004-01-01

    We modeled cavity tree abundance on a landscape as a function of forest stand age classes and as a function of aggregate stand size classes.We explored the impact of five timber harvest regimes on cavity tree abundance on a 3261 ha landscape in southeast Missouri, USA, by linking the stand level cavity tree distribution model to the landscape age structure simulated by...

  8. Fire-induced changes in boreal forest canopy volume and soil organic matter from multi-temporal airborne lidar

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Cook, B.; Andersen, H. E.; Babcock, C. R.; Morton, D. C.

    2016-12-01

    Fire in boreal forests initiates a cascade of biogeochemical and biophysical processes. Over typical fire return intervals, net radiative forcing from boreal forest fires depends on the offsetting impacts of greenhouse gas emissions and post-fire changes in land surface albedo. Whether boreal forest fires warm or cool the climate over these multi-decadal intervals depends on the magnitude of fire emissions and the time scales of decomposition, albedo changes, and forest regrowth. Our understanding of vegetation and surface organic matter (SOM) changes from boreal forest fires is shaped by field measurements and moderate resolution remote sensing data. Intensive field plot measurements offer detailed data on overstory, understory, and SOM changes from fire, but sparse plot data can be difficult to extend across the heterogeneous boreal forest landscape. Conversely, satellite measurements of burn severity are spatially extensive but only provide proxy measures of fire effects. In this research, we seek to bridge the scale gap between existing intensive and extensive methods using a combination of airborne lidar data and time series of Landsat data to evaluate pre- and post-fire conditions across Alaska's Kenai Peninsula. Lidar-based estimates of pre-fire stand structure and composition were essential to characterize the loss of canopy volume from fires between 2001 and 2014, quantify transitions from live to dead standing carbon pools, and isolate vegetation recovery following fire over 1 to 13 year time scales. Results from this study demonstrate the utility of lidar for estimating pre-fire structure and species composition at the scale of individual tree crowns. Multi-temporal airborne lidar data also provide essential insights regarding the heterogeneity of canopy and SOM losses at a sub-Landsat pixel scale. Fire effects are forest-structure and species dependent with variable temporal lags in carbon release due to delayed mortality (>5 years post fire) and standing dead trees. Establishing the spatial and temporal scales of canopy structural change will aid in constraining estimates of net radiative forcing from both carbon release and albedo in the years following fire.

  9. Opportunities abound for affordable mechanical fuels treatment in dry mixed-conifer forests

    Treesearch

    Jeremy S. Fried; Theresa B. Jain

    2013-01-01

    The dry mixed-conifer forests that cover millions of acres in 12 western states experience low- to mixed-severity fire regimes; are typically heterogeneous in species composition, forest structure, and fuel dynamics; and grow quickly enough to generate concern about fuel treatment longevity. Yet compared to stands of pure ponderosa pine, there has been little research...

  10. Predicting surface fuel models and fuel metrics using lidar and CIR imagery in a dense mixed conifer forest

    Treesearch

    Marek K. Jakubowksi; Qinghua Guo; Brandon Collins; Scott Stephens; Maggi Kelly

    2013-01-01

    We compared the ability of several classification and regression algorithms to predict forest stand structure metrics and standard surface fuel models. Our study area spans a dense, topographically complex Sierra Nevada mixed-conifer forest. We used clustering, regression trees, and support vector machine algorithms to analyze high density (average 9 pulses/m

  11. Application of free selection in mixed forests of the inland northwestern United States

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2005-01-01

    Forest management objectives continue to evolve as the desires and needs of society change. The practice of silviculture has risen to the challenge by supplying silvicultural methods and systems to produce desired stand and forest structures and compositions to meet these changing objectives. For the most part, the practice of silviculture offers a robust set of...

  12. Sampling and mapping forest volume and biomass using airborne LIDARs

    Treesearch

    Erik Naesset; Terje Gobakken; Ross Nelson

    2009-01-01

    Since around 1995, extensive research efforts have been made in Scandinavia to develop airborne Light Detection and Ranging (LIDAR) as an operational tool for wall-to-wall mapping of forest stands for planning purposes. Scanning LIDAR has the ability to capture the entire three-dimensional structure of forest canopies and has therefore proved to be a very efficient...

  13. Effects of fire exclusion on forest structure and composition in unlogged ponderosa pine/Douglas-fir forests

    Treesearch

    Eric G. Keeling; Anna Sala; Thomas H. DeLuca

    2006-01-01

    Research to date on effects of fire exclusion in ponderosa pine (Pinus ponderosa) forests has been limited by narrow geographical focus, by confounding effects due to prior logging at research sites, and by uncertainty from using reconstructions of past conditions to infer changes. For the work presented here, reference stands in unlogged ponderosa...

  14. Historical harvests reduce neighboring old-growth basal area across a forest landscape

    Treesearch

    David M. Bell; Thomas A. Spies; Robert Pabst

    2017-01-01

    While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of...

  15. Restoring eastside ponderosa pine ecosystems at the Blacks Mountain Experimental Forest: a case study

    Treesearch

    Jianwei Zhang; Martin W. Ritchie

    2008-01-01

    The ecological research project of interior ponderosa pine forests at the Blacks Mountain Experimental Forest in northeastern California was initiated by an interdisciplinary team of scientists in the early 1990s. The objectives of this study were to determine the effect of stand structure, and prescribed fire on vegetation growth, resilience, and sustainability of...

  16. Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest

    Treesearch

    Michael A. Lefsky; Andrew T. Hudak; Warren B. Cohen; S. A. Acker

    2005-01-01

    Estimation of the amount of carbon stored in forests is a key challenge for understanding the global carbon cycle, one which remote sensing is expected to help address. However, carbon storage in moderate to high biomass forests is difficult to estimate with conventional optical or radar sensors. Lidar (light detection and ranging) instruments measure the vertical...

  17. Variable-retention harvesting as a silvicultural option for lodgepole pine

    Treesearch

    Christopher R. Keyes; Thomas E. Perry; Elaine K. Sutherland; David K. Wright; Joel M. Egan

    2014-01-01

    Bark beetle-induced mortality in forested landscapes of structurally uniform, even-aged lodgepole pine stands has inspired a growing interest in the potential of silvicultural treatments to enhance resilience by increasing spatial and vertical complexity. Silvicultural treatments can simulate mixed-severity disturbances that create multiaged lodgepole pine stands,...

  18. Recognizing all-aged hemlock forests

    Treesearch

    Orie L. Loucks; James Nighswander

    2000-01-01

    Eastern hemlock (Tsuga canadensis (L.) Carr.) occurs in old-growth stands sometimes over 400 years old, throughout its principal range from Nova Scotia to Wisconsin. Studies based on aging as well as diameter distributions indicate a stand structure often dominated by an initial multi-decade post-disturbance pulse of seedling establishment, followed...

  19. Modeling Coast Redwood Variable Retention Management Regimes

    Treesearch

    John-Pascal Berrill; Kevin O' Hara

    2007-01-01

    Variable retention is a flexible silvicultural system that provides forest managers with an alternative to clearcutting. While much of the standing volume is removed in one harvesting operation, residual stems are retained to provide structural complexity and wildlife habitat functions, or to accrue volume before removal during subsequent stand entries. The residual...

  20. Chapter 17: Inland Habitat Associations of Marbled Murrelets in Western Washington

    Treesearch

    Thomas E. Hamer

    1995-01-01

    Little research has been done to quantify and describe the structural characteristics of forest stands that are associated with Marbled Murrelet (Brachyramphus marmoratus) nesting in the Pacific Northwest. Vegetation measurements and murrelet surveys to determine occupancy were conducted in stands located throughout western Washington. I used...

  1. Influence of Land Cover Heterogeneity, Land-Use Change and Management on the Regional Carbon Cycle in the Upper Midwest USA as Evaluated by High-Density Observations and a Dynamic Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Bolstad, P. V.; Moorcroft, P. R.; Davis, K. J.

    2005-12-01

    The interplay between land use change, forest management and land cover variability complicates the ability to characterize regional scale (10-1000 km) exchange of carbon dioxide between the land surface and atmosphere in heterogeneous landscapes. An attempt was made to observe and model these factors and their influence on the regional carbon cycle across the upper Midwest USA. A high density of eddy-covariance carbon flux, micrometeorology, carbon dioxide mixing ratio, stand-scale biometry and canopy component flux observations have been occurring in this area as part of the Chequamegon Ecosystem-Atmosphere Study. Observations limited to sampling only dominant stands and coarse-resolution biogeochemical models limited to biome-scale parameterization neither accurately capture the variability of carbon fluxes measured by the network of eddy covariance towers nor match the regional-scale carbon flux inferred from very tall tower eddy covariance measurements and multi-site upscaling. Analysis of plot level biometric data, U.S. Forest Service Forest Inventory Analysis data and high-resolution land cover data around the tall tower revealed significant variations in vegetation type, stand age, canopy stocking and structure. Wetlands, clearcuts and recent natural disturbances occur in characteristic small non-uniformly distributed patches that aggregate to form more than 30% of the landscape. The Ecosystem Demography model, a dynamic ecosystem model that incorporates vegetation heterogeneity, canopy structure, stand age, disturbance, land use change and forest management, was parameterized with regional biometric data and meteorology, historical records of land management and high-resolution satellite land cover maps. The model will be used to examine the significance of past land use change, natural disturbance history and current forest management in explaining landscape structure and regional carbon fluxes observed in the region today.

  2. A stand-alone tree demography and landscape structure module for Earth system models: integration with inventory data from temperate and boreal forests

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-08-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  3. Standing dead tree resources in forests of the United States

    Treesearch

    Christopher W. Woodall; Karen L. Waddell; Christopher M. Oswalt; James E. Smith

    2013-01-01

    Given the importance of standing dead trees to numerous forest ecosystem attributes/ processes such as fuel loadings and wildlife habitat, the Forest Inventory and Analysis (FIA) Program of the Forest Service, U.S. Department of Agriculture, initiated a consistent nationwide inventory of standing dead trees in 1999. As the first cycle of annual standing dead tree...

  4. Fuel-reduction management alters plant composition, carbon and nitrogen pools, and soil thaw in Alaskan boreal forest

    USGS Publications Warehouse

    Melvin, April M.; Celis, Gerardo; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.; Rupp, T. Scott; Mack, Michelle C.

    2018-01-01

    Increasing wildfire activity in Alaska's boreal forests has led to greater fuel-reduction management. Management has been implemented to reduce wildfire spread, but the ecological impacts of these practices are poorly known. We quantified the effects of hand-thinning and shearblading on above- and belowground stand characteristics, plant species composition, carbon (C) and nitrogen (N) pools, and soil thaw across 19 black spruce (Picea mariana) dominated sites in interior Alaska treated 2-12 years prior to sampling. The density of deciduous tree seedlings was significantly higher in shearbladed areas compared to unmanaged forest (6.4 vs. 0.1 stems m−2), and unmanaged stands exhibited the highest mean density of conifer seedlings and layers (1.4 stems m−2). Understory plant community composition was most similar between unmanaged and thinned stands. Shearblading resulted in a near complete loss of aboveground tree biomass C pools while thinning approximately halved the C pool size (1.2 kg C m−2 compared to 3.1 kg C m−2 in unmanaged forest). Significantly smaller soil organic layer (SOL) C and N pools were observed in shearbladed stands (3.2 kg C m−2 and 116.8 g N m−2) relative to thinned (6.0 kg C m−2 and 192.2 g N m−2) and unmanaged (5.9 kg C m−2 and 178.7 g N m−2) stands. No difference in C and N pool sizes in the uppermost 10 cm of mineral soil was observed among stand types. Total C stocks for measured pools was 2.6 kg C m−2 smaller in thinned stands and 5.8 kg C m−2smaller in shearbladed stands when compared to unmanaged forest. Soil thaw depth averaged 13 cm deeper in thinned areas and 46 cm deeper in shearbladed areas relative to adjacent unmanaged stands, although variability was high across sites. Deeper soil thaw was linked to shallower SOL depth for unmanaged stands and both management types, however for any given SOL depth, thaw tended to be deeper in shearbladed areas compared to unmanaged forest. These findings indicate that fuel-reduction management alters plant community composition, C and N pools, and soil thaw depth, with consequences for ecosystem structure and function beyond those intended for fire management.

  5. Effects of intermediate-scale wind disturbance on composition, structure, and succession in Quercus stands: Implications for natural disturbance-based silviculture

    Treesearch

    M.M. Cowden; J.L. Hart; C.J. Schweitzer; D.C. Dey

    2014-01-01

    Forest disturbances are discrete events in space and time that disrupt the biophysical environment and impart lasting legacies on forest composition and structure. Disturbances are often classified along a gradient of spatial extent and magnitude that ranges from catastrophic events where most of the overstory is removed to gap-scale events that modify local...

  6. Pre-wildfire fuel reduction treatments result in more resilient forest structure a decade after wildfire

    Treesearch

    Camille Stevens-Rumann; Kristen Shive; Peter Fule; Carolyn H. Sieg

    2013-01-01

    Increasing size and severity of wildfires have led to an interest in the effectiveness of forest fuels treatments on reducing fire severity and post-wildfire fuels. Our objective was to contrast stand structure and surface fuel loadings on treated and untreated sites within the 2002 Rodeo-Chediski Fire area. Data from 140 plots on seven paired treated-untreated sites...

  7. Assessing the impact of a mountain pine beetle infestation on stand structure of lodgepole pine forests in Colorado using the Forest Inventory and Analysis Annual forest inventory

    Treesearch

    Michael T. Thompson

    2017-01-01

    The Forest Inventory and Analysis (FIA) annual inventory system began in Colorado in 2002, which coincided with the onset of a major mountain pine beetle (Dendroctonus ponderosae) epidemic. The mortality event, coupled with 11 years of annual inventory data, provided an opportunity to assess the usefulness of the FIA annual inventory system for quantifying the effects...

  8. In-stand scenic beauty of variable retention harvests and mature forests in the U.S. Pacific Northwest: the effects of basal area, density, retention pattern and down wood

    Treesearch

    R.G. Ribe

    2009-01-01

    Tensions between amenity- and timber-based economies in the U.S. and Canadian Pacific Northwest motivated a study of scenic beauty inside mature forests and timber harvests. A diverse sample of regional forests, measures of forest structure, and large, representative samples of photographs and public judges were employed to measure scenic beauty inside unharvested...

  9. Sixty-two years of change in subtropical wet forest structure and composition at El Verde, Puerto Rico

    Treesearch

    A.P. Drew; J.D. Boley; Y. Zhao; F.H. Wadsworth

    2009-01-01

    A plot established in 1943 in a subtropical wet forest at the Luquillo Experimental Forest of Puerto Rico has been assessed periodically for changes in species and size of all trees >4cm diameter. Forest dynamics on a 0.72ha plot (EV-3) at 400masl at El Verde show recovery principally from hurricanes of 1928 and 1932, timber stand improvement in 1958, and from...

  10. Response of a reptile guild to forest harvesting.

    PubMed

    Todd, Brian D; Andrews, Kimberly M

    2008-06-01

    Despite the growing concern over reptile population declines, the effects of modern industrial silviculture on reptiles have been understudied, particularly for diminutive and often overlooked species such as small-bodied snakes. We created 4 replicated forest-management landscapes to determine the response of small snakes to forest harvesting in the Coastal Plain of the southeastern United States. We divided the replicated landscapes into 4 treatments that represented a range of disturbed habitats: clearcut with coarse woody debris removed; clearcut with coarse woody debris retained; thinned pine stand; and control (unharvested second-growth planted pines). Canopy cover and ground litter were significantly reduced in clearcuts, intermediate in thinned forests, and highest in unharvested controls. Bare soil, maximum air temperatures, and understory vegetation all increased with increasing habitat disturbance. Concomitantly, we observed significantly reduced relative abundance of all 6 study species (scarletsnake[Cemophora coccinea], ring-neck snake[Diadophis punctatus], scarlet kingsnake[Lampropeltis triangulum], red-bellied snake[Storeria occipitomaculata], southeastern crowned snake[Tantilla coronata], and smooth earthsnake[Virginia valeriae]) in clearcuts compared with unharvested or thinned pine stands. In contrast, the greatest relative snake abundance occurred in thinned forest stands. Our results demonstrate that at least one form of forest harvesting is compatible with maintaining snake populations. Our results also highlight the importance of open-canopy structure and ground litter to small snakes in southeastern forests and the negative consequences of forest clearcutting for small snakes.

  11. Floristic conservation value, nested understory floras, and the development of second-growth forest.

    PubMed

    Spyreas, Greg; Matthews, Jeffrey W

    2006-08-01

    Nestedness analysis can reveal patterns of plant composition and diversity among forest patches. For nested floral assemblages, the plants occupying any one patch are a nested subset of the plants present in successively more speciose patches. Elimination of sensitive understory plants with human disturbance is one of several mechanisms hypothesized to generate nonrandom, nested floral distributions. Hypotheses explaining distributions of understory plants remain unsubstantiated across broad landscapes of varying forest types and disturbance histories. We sampled the vegetation of 51 floodplain and 55 upland forests across Illinois (USA) to examine how the diversity, composition, and nestedness of understory floras related to their overstory growth and structure (basal area), and their overall floristic conservation value (mean C). We found that plant assemblages were nested with respect to site species richness, such that rare plants indicated diverse forests. Floras were also nested with respect to site mean C and basal area (BA). However, in an opposite pattern from what we had expected, floras of high-BA stands were nested subsets of those of low-BA stands. A set of early-successional plants restricted to low-BA stands, and more importantly, the absence of a set of true forest plants in high-BA stands, accounted for this pattern. Additionally, we observed a decrease in species richness with increasing BA. These results are consistent with the hypothesis that recovery of true forest plants does not occur concurrently with overstory regeneration following massive anthropogenic disturbance. Nestedness by site mean C indicates that high conservation value (conservative) plants co-occur in highly diverse stands; these forests are assumed to be less disturbed historically. Because site mean C was uncorrelated with BA, BA-neutral disturbances such as livestock usage are suggested as accounting for between-site differences in mean C. When considered individually, conservative plants were actually more likely to be found in low-BA stands (uplands only). This suggests that floras of historically more open-canopied oak-hickory uplands are being degraded by canopy closure from increasing density of "mesophytic, nonpyrogenic" trees. It also indirectly suggests that recent moderate logging is uncorrelated with floristic conservation values.

  12. Determining stocking, forest type and stand-size class from forest inventory data

    Treesearch

    Mark H. Hansen; Jerold T. Hahn

    1992-01-01

    This paper describes the procedures used by North Central Forest Experiment Station's Forest Inventory and Analysis Work Unit (NCFIA) in determining stocking, forest type, and stand-size class. The stocking procedure assigns a portion of the stocking to individual trees measured on NCFIA 10-point field plots. Stand size and forest type are determined as functions...

  13. Relating P-band AIRSAR backscatter to forest stand parameters

    NASA Technical Reports Server (NTRS)

    Wang, Yong; Melack, John M.; Davis, Frank W.; Kasischke, Eric S.; Christensen, Norman L., Jr.

    1993-01-01

    As part of research on forest ecosystems, the Jet Propulsion Laboratory (JPL) and collaborating research teams have conducted multi-season airborne synthetic aperture radar (AIRSAR) experiments in three forest ecosystems including temperate pine forest (Duke, Forest, North Carolina), boreal forest (Bonanza Creek Experimental Forest, Alaska), and northern mixed hardwood-conifer forest (Michigan Biological Station, Michigan). The major research goals were to improve understanding of the relationships between radar backscatter and phenological variables (e.g. stand density, tree size, etc.), to improve radar backscatter models of tree canopy properties, and to develop a radar-based scheme for monitoring forest phenological changes. In September 1989, AIRSAR backscatter data were acquired over the Duke Forest. As the aboveground biomass of the loblolly pine forest stands at Duke Forest increased, the SAR backscatter at C-, L-, and P-bands increased and saturated at different biomass levels for the C-band, L-band, and P-band data. We only use the P-band backscatter data and ground measurements here to study the relationships between the backscatter and stand density, the backscatter and mean trunk dbh (diameter at breast height) of trees in the stands, and the backscatter and stand basal area.

  14. Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada, California, USA

    Treesearch

    Brandon M. Collins; Gary B. Roller

    2013-01-01

    There is considerable concern over the occurrence of stand-replacing fire in forest types historically associated with low- to moderate-severity fire. The concern is largely over whether contemporary levels of stand-replacing fire are outside the historical range of variability, and what natural forest recovery is in these forest types following stand-replacing fire....

  15. Individual tree- versus stand-level approaches to thinning: is it a choice of one or the other, or a combination of both?

    Treesearch

    Christopher A. Nowak

    1995-01-01

    Thinning guidelines have existed for most eastern hardwood forests for 20 to 30 years. While these guidelines are presented in varying degrees of detail, they generally all contain recommendations on levels of residual stand density and stand structure, along with information on crop tree requirements. Recent attempts have been made to simplify thinning guidelines by...

  16. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China's forests.

    PubMed

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-11-03

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China's forests using both the national forest inventory data (2004-2008) and our field measurements (2011-2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China.

  17. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests

    PubMed Central

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-01-01

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China’s forests using both the national forest inventory data (2004–2008) and our field measurements (2011–2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China. PMID:26525117

  18. Physiographic position, disturbance and species composition in North Carolina coastal plain forests

    Treesearch

    James G. Wyant; Ralph J. Alig; William A. Bechtold

    1991-01-01

    Relations among physiographic heterogeneity, disturbance and temporal change in forest composition were analyzed on 765 forest stands in the southern coastal plain of North Carolina. Physiographic position strongly restricted the species composition of forest stands, though broad overlap of some physiographic classes was noted. Forest stands in different physiographic...

  19. Influence of compounding fires on coast redwood regeneration and stand structure

    Treesearch

    Matthew R. Brousil; Sarah Bisbing

    2017-01-01

    Disturbance is fundamental to forest ecosystem function, but climate change will continue to increase both disturbance frequency and intensity in the future. Forests subject to increasingly frequent and intense disturbances are more likely to experience overlapping (compounding) disturbance effects. Compounding disturbances may exert unpredicted, non-additive stresses...

  20. Chapter 5: California spotted owls

    Treesearch

    S. Roberts; M. North

    2012-01-01

    California spotted owls (Strix occidentalis occidentalis) are habitat specialists that are strongly associated with late-successional forests. For nesting and roosting, they require large trees and snags embedded in a stand with a complex forest structure (Blakesley et al. 2005, Gutiérrez et al. 1992, Verner et al. 1992b). In...

  1. New England wildlife: management forested habitats

    Treesearch

    Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier

    1992-01-01

    Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...

  2. An ecosystem management strategy for Sierran mixed-conifer forests

    Treesearch

    Malcolm North; Peter Stine; Kevin O' Hara; William Zielinski; Scott Stephens

    2009-01-01

    Current Sierra Nevada forest management is often focused on strategically reducing fuels without an explicit strategy for ecological restoration across the landscape matrix. Summarizing recent scientific literature, we suggest managers produce different stand structures and densities across the landscape using topographic variables (i.e., slope shape, aspect, and slope...

  3. Estimating Rhododendron maximum L. (Ericaceae) Canopy Cover Using GPS/GIS Technology

    Treesearch

    Tyler J. Tran; Katherine J. Elliott

    2012-01-01

    In the southern Appalachians, Rhododendron maximum L. (Ericaceae) is a key evergreen understory species, often forming a subcanopy in forest stands. Little is known about the significance of R. maximum cover in relation to other forest structural variables. Only recently have studies used Global Positioning System (GPS) technology...

  4. Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study.

    PubMed

    Wieczorek, Mareike; Kruse, Stefan; Epp, Laura S; Kolmogorov, Alexei; Nikolaev, Anatoly N; Heinrich, Ingo; Jeltsch, Florian; Pestryakova, Lyudmila A; Zibulski, Romy; Herzschuh, Ulrike

    2017-09-01

    Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field- and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least ~240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning ~130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future. © 2017 by the Ecological Society of America.

  5. Effects of management on aquatic tree-hole communities in temperate forests are mediated by detritus amount and water chemistry.

    PubMed

    Gossner, Martin M; Lade, Peggy; Rohland, Anja; Sichardt, Nora; Kahl, Tiemo; Bauhus, Jürgen; Weisser, Wolfgang W; Petermann, Jana S

    2016-01-01

    Arthropod communities in water-filled tree holes may be sensitive to impacts of forest management, for example via changes in environmental conditions such as resource input. We hypothesized that increasing forest management intensity (ForMI) negatively affects arthropod abundance and richness and shifts community composition and trophic structure of tree hole communities. We predicted that this shift is caused by reduced habitat and resource availability at the forest stand scale as well as reduced tree hole size, detritus amount and changed water chemistry at the tree holes scale. We mapped 910 water-filled tree holes in two regions in Germany and studied 199 tree hole inhabiting arthropod communities. We found that increasing ForMI indeed significantly reduced arthropod abundance and richness in water-filled tree holes. The most important indirect effects of management intensity on tree hole community structure were the reduced amounts of detritus for the tree hole inhabiting organisms and changed water chemistry at the tree hole scale, both of which seem to act as a habitat filter. Although habitat availability at the forest stand scale decreased with increasing management intensity, this unexpectedly increased local arthropod abundance in individual tree holes. However, regional species richness in tree holes significantly decreased with increasing management intensity, most likely due to decreased habitat diversity. We did not find that the management-driven increase in plant diversity at the forest stand scale affected communities of individual tree holes, for example via resource availability for adults. Our results suggest that management of temperate forests has to target a number of factors at different scales to conserve diverse arthropod communities in water-filled tree holes. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  6. Stand-structural effects on Heterobasidion abietinum-related mortality following drought events in Abies pinsapo.

    PubMed

    Linares, Juan Carlos; Camarero, Jesús Julio; Bowker, Matthew A; Ochoa, Victoria; Carreira, José Antonio

    2010-12-01

    Climate change may affect tree-pathogen interactions. This possibility has important implications for drought-prone forests, where stand dynamics and disease pathogenicity are especially sensitive to climatic stress. In addition, stand structural attributes including density-dependent tree-to-tree competition may modulate the stands' resistance to drought events and pathogen outbreaks. To assess the effects of stand structure on root-rot-related mortality after severe droughts, we focused on Heterobasidion abietinum mortality in relict Spanish stands of Abies pinsapo, a drought-sensitive fir. We compared stand attributes and tree spatial patterns in three plots with H. abietinum root-rot disease and three plots without root-rot. Point-pattern analyses were used to investigate the scale and extent of mortality patterns and to test hypotheses related to the spread of the disease. Dendrochronology was used to date the year of death and to assess the association between droughts and growth decline. We applied a structural equation modelling approach to test if tree mortality occurs more rapidly than predicted by a simple distance model when trees are subjected to high tree-to-tree competition and following drought events. Contrary to expectations of drought mortality, the effect of precipitation on the year of death was strong and negative, indicating that a period of high precipitation induced an earlier tree death. Competition intensity, related to the size and density of neighbour trees, also induced an earlier tree death. The effect of distance to the disease focus was negligible except in combination with intensive competition. Our results indicate that infected trees have decreased ability to withstand drought stress, and demonstrate that tree-to-tree competition and fungal infection act as predisposing factors of forest decline and mortality.

  7. Comparing streambed light availability and canopy cover in streams with old-growth versus early-mature riparian forests in western Oregon

    Treesearch

    D.R. Warren; W.S. Keeton; H.A. Bechtold; E.J. Rosi-Marshall

    2013-01-01

    Light availability strongly influences stream primary production, water temperatures and resource availability at the base of stream food webs. In headwater streams, light is regulated primarily by the riparian forest, but few studies have evaluated the influence of riparian forest stand age and associated structural differences on light availability. In this study, we...

  8. Forest stand dynamics and sudden oak death: Mortality in mixed-evergreen forests dominated by coast live oak

    Treesearch

    L.B. Brown; B. Allen-Diaz

    2009-01-01

    Sudden oak death (SOD), caused by the recently discovered non-native invasive pathogen, Phytophthora ramorum, has already killed tens of thousands of native coast live oak and tanoak trees in California. Little is known of potential short and long term impacts of this novel plant–pathogen interaction on forest structure and composition. Coast live...

  9. Performance and population dynamics of a native understory herb differ between young and old forest stands in the Southern Appalachians

    Treesearch

    Michelle M. Jackson; Scott M. Pearson; Monica G. Turner

    2013-01-01

    Anthropogenic disturbances (e.g., logging) can strongly affect the composition and structure of forest understory herb communities, with land-use legacies often persisting for decades or even centuries. Many studies of forest plant response to land-use history have focused on species distributions and abundances, and argued broadly for either dispersal or establishment...

  10. Abundance and population structure of eastern worm snakes in forest stands with various levels of overstory tree retention

    Treesearch

    Zachary I. Felix; Yong Wang; Callie Jo Schweitzer

    2010-01-01

    In-depth analyses of a species’ response to canopy retention treatments can provide insight into reasons for observed changes in abundance. The eastern worm snake (Carphophis amoenus amoenus Say) is common in many eastern deciduous forests, yet little is known about the ecology of the species in managed forests. We examined the relationship between...

  11. A comparison of accuracy and cost of LiDAR versus stand exam data for landscape management on the Malheur National Forest

    Treesearch

    Susan Hummel; A. T. Hudak; E. H. Uebler; M. J. Falkowski; K. A. Megown

    2011-01-01

    Foresters are increasingly interested in remote sensing data because they provide an overview of landscape conditions, which is impractical with field sample data alone. Light Detection and Ranging (LiDAR) provides exceptional spatial detail of forest structure, but difficulties in processing LiDAR data have limited their application beyond the research community....

  12. Temporal and structural effects of stands on litter production in Melaleuca quinquenervia dominated wetlands of South Florida

    USDA-ARS?s Scientific Manuscript database

    Melaleuca quinquenervia (melaleuca) dominates large areas of the Florida Everglades in the southeastern USA where it has transformed sedge-dominated marshes into melaleuca forests. Despite its prevalence, very little is known about the ecology and stand dynamics of this invasive tree. We delineated...

  13. Stand structure and local distribution of Phytophthora ramorum in Oregon forests

    Treesearch

    E. Peterson; M. Botts; E. Hansen

    2009-01-01

    The Phytophthora ramorum eradication program in effect in Oregon has allowed for the rapid detection of new infection foci, typically before they develop within each stand and expand into adjacent sites. Yet despite gallant efforts, new locations that previously harbored no apparent infection have been identified each year since the original...

  14. Volume, value, and thinning: logs for the future.

    Treesearch

    Sally Duncan

    2002-01-01

    Thinning is one of our most important ways to influence tree and stand development. The objectives may include increasing the volume, size, and quality of wood produced from a forest and developing particular stand structures and characteristics for other values, such as wildlife or aesthetics.The Levels-of-Growing-Stock (LOGS) Cooperative was initiated in...

  15. Coarse woody type: A new method for analyzing coarse woody debris and forest change

    Treesearch

    C. W. Woodall; L. M. Nagel

    2006-01-01

    The species composition of both standing live and down dead trees has been used separately to determine forest stand dynamics in large-scale forest ecosystem assessments. The species composition of standing live trees has been used to indicate forest stand diversity while the species composition of down dead trees has been used to indicate wildlife habitat. To assess...

  16. Ecological indicators of forest degradation after forest fire and clear-cutting in the Siberian larch (Larix sibirica) stand of Mongolia

    Treesearch

    Y.D. Park; D.K. Lee; J.A. Stanturf; S.Y. Woo; D. Zoyo

    2009-01-01

    This study was conducted to investigate ecological indicators of forest degradation after forest fire and clear-cutting in the Siberian larch (Larix sibirica Ledeb.) stand of Mongolia. The species abundance and biodiversity indices were higher in burned and clear-cut stands than those of reference stand, but boreal understory species, such as Vaccinium vitis-idaea,...

  17. Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery

    NASA Astrophysics Data System (ADS)

    Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine

    2014-10-01

    The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.

  18. Does nitrogen and sulfur deposition affect forest productivity?

    Treesearch

    Brittany A. Johnson; Kathryn B. Piatek; Mary Beth Adams; John R. Brooks

    2010-01-01

    We studied the effects of atmospheric nitrogen and sulfur deposition on forest productivity in a 10-year-old, aggrading forest stand at the Fernow Experimental Forest in Tucker County, WV. Forest productivity was expressed as total aboveground wood biomass, which included stem and branch weight of standing live trees. Ten years after stand regeneration and treatment...

  19. Information system of forest growth and productivity by site quality type and elements of forest

    NASA Astrophysics Data System (ADS)

    Khlyustov, V.

    2012-04-01

    Information system of forest growth and productivity by site quality type and elements of forest V.K. Khlustov Head of the Forestry Department of Russian State Agrarian University named after K.A.Timiryazev doctor of agricultural sciences, professor The efficiency of forest management can be improved substantially by development and introduction of principally new models of forest growth and productivity dynamics based on regionalized site specific parameters. Therefore an innovative information system was developed. It describes the current state and gives a forecast for forest stand parameters: growth, structure, commercial and biological productivity depend on type of site quality. In contrast to existing yield tables, the new system has environmental basis: site quality type. The information system contains set of multivariate statistical models and can work at the level of individual trees or at the stand level. The system provides a graphical visualization, as well as export of the emulation results. The System is able to calculate detailed description of any forest stand based on five initial indicators: site quality type, site index, stocking, composition, and tree age by elements of the forest. The results of the model run are following parameters: average diameter and height, top height, number of trees, basal area, growing stock (total, commercial with distribution by size, firewood and residuals), live biomass (stem, bark, branches, foliage). The system also provides the distribution of mentioned above forest stand parameters by tree diameter classes. To predict the future forest stand dynamics the system require in addition the time slot only. Full set of forest parameters mention above will be provided by the System. The most conservative initial parameters (site quality type and site index) can be kept in the form of geo referenced polygons. In this case the system would need only 3 dynamic initial parameters (stocking, composition and age) to simulate forest parameters and their dynamics. The system can substitute traditional processing of forest inventory field data and provide users with detailed information on the current state of forest and give a prediction. Implementation of the proposed system in combination with high resolution remote sensing is able to increase significantly the quality of forest inventory and at the same time reduce the costs. The system is a contribution to site oriented forest management. The System is registered in the Russian State Register of Computer Programs 12.07.2011, No 2011615418.

  20. Development of a transition pathway model using three traditional variables to describe the main structural characteristics of a forest stand type, size, and density

    Treesearch

    Chad Larson

    2006-01-01

    The Central Hardwood Region is a unique forest region in the United States, encompassing 340 million acres of land, of which 100 million acres are forested (Parker 1993). The region contains one-fourth of the U.S. population, with approximately 90 percent of the land in private ownership (Parker 1993). In general, private forested lands in the Central Hardwood Region...

  1. A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure

    Treesearch

    Alan Ager; Nicole Vaillant

    2010-01-01

    We simulated fuel reduction treatments on a 16,000-ha study area in Oregon, US, to examine tradeoffs between placing fuel treatments near residential structures within an urban interface, versus treating stands in the adjacent wildlands to meet forest health and ecological restoration goals. The treatment strategies were evaluated by simulating 10,000 wildfires with...

  2. Mapping Forest Structure From Tree Clump And Opening Patterns Across Landscapes With Airborne Lidar To Study Response To Disturbances And Map Habitat

    NASA Astrophysics Data System (ADS)

    Kane, V. R.; McGaughey, R. J.; Asner, G. P.; Kane, J. T.; Churchill, D.; Vaughn, N.

    2016-12-01

    Most natural forests are structured as mosaics of tree clumps and openings. These mosaics reflect both the underlying patterns of the biophysical environment and the finer scale patterns of disturbance and regrowth. We have developed methods to quantify and map patterns of tree clumps and openings at scales from within stands to landscapes using airborne LiDAR. While many studies have used LiDAR data to identify individual trees, we also identify clumps as adjacent trees with similar heights within a stand that likely established at a similar time following a disturbance. We characterize openings by both size class and shape complexity. Spatial statistics are used to identify patterns of tree clumps and openings at the local (0.81 ha) scale, and these patterns are then mapped across entire landscapes. We use LiDAR data acquired over Sequoia National Park, California, USA, to show how forest structure varies with patterns of productivity driven by the biophysical environment. We then show how clump and opening patterns vary with different fire histories and how recent drought mortality correlates with different tree clump and opening structural mosaics. We also demonstrate that nesting sites for the California spotted owl, a species of concern, are associated with clumps of large (>32 and especially >48 m) trees but that the surrounding foraging areas consist of a heterogeneous pattern of forest structure. These methods are especially useful for studying clumps of large trees, which dominate above ground forest biomass, and the effects of disturbance on the abundance and pattern of large trees as key forest structures.

  3. A primer on stand and forest inventory designs

    Treesearch

    H. Gyde Lund; Charles E. Thomas

    1989-01-01

    Covers designs for the inventory of stands and forests in detail and with worked-out examples. For stands, random sampling, line transects, ricochet plot, systematic sampling, single plot, cluster, subjective sampling and complete enumeration are discussed. For forests inventory, the main categories are subjective sampling, inventories without prior stand mapping,...

  4. Enhancing wildlife habitat when regenerating stands

    Treesearch

    Frank R., III Thompson

    1989-01-01

    Forest regeneration cuttings affect wildlife habitat more drastically than most forest management practices because a mature forest stand is replaced by a young sapling stand. Regeneration cuttings quickly provide habitat for many wildlife species but they also influence wildlife use of the new stand and adjacent areas throughout the rotation. Retaining snags, cavity...

  5. How applicable is even-aged silviculture in the northeast?

    Treesearch

    Ralph H. Griffin

    1977-01-01

    The applicability of even-aged silviculture in the management of forest stands in the Northeast is examined through consideration of the forest stand, stand development, intermediate cuttings, and regeneration methods. It is concluded that even-aged silviculture is quite applicable in the management of forest stands in the Northeast.

  6. Bark beetles and dwarf mistletoe interact to alter downed woody material, canopy structure, and stand characteristics in northern Colorado ponderosa pine

    Treesearch

    Jennifer G. Klutsch; Russell D. Beam; William R. Jacobi; Jose F. Negron

    2014-01-01

    Due to the recent outbreaks of bark beetles in western U.S.A., research has focused on the effects of tree mortality on forest conditions, such as fuel complexes and stand structure. However, most studies have addressed outbreak populations of bark beetles only and there is a lack of information on the effect of multiple endemic, low level populations of biotic...

  7. Variation in Vegetation Structure and Soil Properties, and the Relation Between Understory Plants and Environmental Variables Under Different Phyllostachys pubescens Forests in Southeastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Changshun; Xie, Gaodi; Fan, Shaohui; Zhen, Lin

    2010-04-01

    Biodiversity maintenance and soil improvement are key sustainable forestry objectives. Research on the effects of bamboo forest management on plant diversity and soil properties are therefore necessary in bamboo-growing regions, such as southeastern China’s Shunchang County, that have not been studied from this perspective. We analyzed the effects of different Phyllostachys pubescens proportions in managed forests on vegetation structure and soil properties using pure Cunninghamia lanceolata forests as a contrast, and analyzed the relation between understory plants and environmental variables (i.e., topography, stand and soil characteristics) by canonical correspondence analysis (CCA). The forest with 80% P. pubescens and 20% hardwoods (such as Phoebe bournei, Jatropha curcas, Schima superba) maintained the highest plant diversity and best soil properties, with significantly higher plant diversity than the C. lanceolata forest, and better soil physicochemical and biological properties. The distribution of understory plants is highly related to environmental factors. Silvicultural disturbance strongly influenced the ability of different bamboo forests to maintain biodiversity and soil quality under extensive management, and the forest responses to management were consistent with the intermediate-disturbance hypothesis (i.e., diversity and soil properties were best at intermediate disturbance levels). Our results suggest that biodiversity maintenance and soil improvement are important management goals for sustainable bamboo management. To achieve those objectives, managers should balance the inputs and outputs of nutrients and protect understory plants by using appropriate fertilizer (e.g., organic fertilizer), adjusting stand structure, modifying utilization model and the harvest time, and controlling the intensity of culms and shoots harvests.

  8. Climate- and disturbance-driven changes in vegetation composition and structure limit future potential carbon storage in the Greater Yellowstone Ecosystem, USA

    NASA Astrophysics Data System (ADS)

    Henne, Paul D.; Hawbaker, Todd J.; Zhao, Feng; Huang, Chengquan; Berryman, Erin M.; Zhu, Zhiliang

    2016-04-01

    The Greater Yellowstone Ecosystem (GYE) provides unique opportunities to understand how changing climate, land use, and disturbance affect ecosystem carbon balance. The GYE is one of the largest, most intact ecosystems in the United States. However, distinct management histories on National Park, National Forest, and private lands, elevational climate gradients, and variable fire activity, have created a mosaic of stand ages and forest types. It is uncertain how greenhouse forcing may alter the carbon balance of the GYE. Whereas increasing temperatures may enhance productivity and perpetuate the GYE as a carbon sink, climate-driven increases in fire frequency may offset productivity gains by limiting biomass accumulation. We investigated how changes in fire frequency and size may affect vegetation dynamics and carbon sequestration potential in the GYE using the LANDIS-II dynamic landscape vegetation model. LANDIS-II provides sufficient spatial resolution to capture landscape-level variation in forest biomass and forest types (i.e. 90 × 90 m grid cells), but can integrate disturbance regimes and vegetation dynamics across the entire GYE (92,000 km2). We initiated our simulations with biomass and stand conditions that preceded the exceptional 1988 fire, when 16% of the GYE burned. We inferred the biomass, species abundances, and stand demographics of each model cell by combining satellite imagery with forest inventory data, and developed two fire regime scenarios from historical fire records. We developed a historic wildfire scenario with infrequent fires by excluding 1988 from our calibration of fire sizes and frequencies, and a future scenario with more frequent and larger fires by including 1988 in our calibrations. Fire frequency increased in all forest types in our future scenario, with a 152% increase in the annual forest area burned relative to observed area burned during recent decades. However, the changes in fire frequency varied among forest types, with the largest increases in lodgepole pine (Pinus contorta; 332% increase) and spruce/fir (Picea engelmannii, Abies lasiocarpa; 243% increase) stands. In model runs with the historic fire regime, average stand age and live biomass remained consistent with pre-1988 values during the 200-year simulation period; biomass increased significantly only in recently-logged areas. In contrast, a marked shift to younger stands with lower biomass occurred in the future fire scenario. Average stand age declined from 112 years to 31 years in lodgepole pine stands, and from 191 years to 65 years in spruce/fir stands, with consequent reductions in living biomass. A smaller shift in stand age was simulated for douglas-fir (Pseudotsuga menziesii) stands (i.e. 121 to 92 years). These fire-driven changes in stand age and biomass coincided with important shifts in species abundances. Specifically, lodgepole pine stands replaced large areas previously dominated by spruce and fir. Our results suggest that the potential for increasing the amount of fossil fuel emissions offset by carbon sequestration on public lands in the American West is limited by ongoing changes in disturbance regimes. Instead, land managers may need to consider strategies to adapt to climate change impacts.

  9. Stocking, Forest Type, and Stand Size Class - The Southern Forest Inventory and Analysis Unit's Calculation of Three Important Stand Descriptors

    Treesearch

    Dennis M. May

    1990-01-01

    The procedures by which the Southern Forest Inventory and Analysis unit calculates stocking from tree data collected on inventory sample plots are described in this report. Stocking is then used to ascertain two other important stand descriptors: forest type and stand size class. Inventory data for three plots from the recently completed 1989 Tennessee survey are used...

  10. Aspen Increase Soil Moisture, Nutrients, Organic Matter and Respiration in Rocky Mountain Forest Communities

    PubMed Central

    Buck, Joshua R.; St. Clair, Samuel B.

    2012-01-01

    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO3 and NH4 were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development. PMID:23285012

  11. Assessing Structure and Condition of Temperate And Tropical Forests: Fusion of Terrestrial Lidar and Airborne Multi-Angle and Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Saenz, Edward J.

    Forests provide vital ecosystem functions and services that maintain the integrity of our natural and human environment. Understanding the structural components of forests (extent, tree density, heights of multi-story canopies, biomass, etc.) provides necessary information to preserve ecosystem services. Increasingly, remote sensing resources have been used to map and monitor forests globally. However, traditional satellite and airborne multi-angle imagery only provide information about the top of the canopy and little about the forest structure and understory. In this research, we investigative the use of rapidly evolving lidar technology, and how the fusion of aerial and terrestrial lidar data can be utilized to better characterize forest stand information. We further apply a novel terrestrial lidar methodology to characterize a Hemlock Woolly Adelgid infestation in Harvard Forest, Massachusetts, and adapt a dynamic terrestrial lidar sampling scheme to identify key structural vegetation profiles of tropical rainforests in La Selva, Costa Rica.

  12. Forest Succession and Maternity Day roost selection by Myotis septentrionalis in a mesophytic hardwood forest

    USGS Publications Warehouse

    Silvis, Alexander; Ford, W. Mark; Eric R. Britzke,; Nathan R. Beane,; Joshua B. Johnson,

    2012-01-01

    Conservation of summer maternity roosts is considered critical for bat management in North America, yet many aspects of the physical and environmental factors that drive roost selection are poorly understood. We tracked 58 female northern bats (Myotis septentrionalis) to 105 roost trees of 21 species on the Fort Knox military reservation in north-central Kentucky during the summer of 2011. Sassafras (Sassafras albidum) was used as a day roost more than expected based on forest stand-level availability and accounted for 48.6% of all observed day roosts. Using logistic regression and an information theoretic approach, we were unable to reliably differentiate between sassafras and other roost species or between day roosts used during different maternity periods using models representative of individual tree metrics, site metrics, topographic location, or combinations of these factors. For northern bats, we suggest that day-roost selection is not a function of differences between individual tree species per se, but rather of forest successional patterns, stand and tree structure. Present successional trajectories may not provide this particular selected structure again without management intervention, thereby suggesting that resource managers take a relatively long retrospective view to manage current and future forest conditions for bats.

  13. Trait Variation Along a Forest Successional Gradient in Dry Tropical Forest, Florida Keys

    NASA Astrophysics Data System (ADS)

    Subedi, S.; Ross, M. S.

    2016-12-01

    In most part of South Florida tropical dry forests, the early colonized trees on disturbed uplands are mostly deciduous species cable of surviving for several years after establishment. However, trees in mature forests are generally characterized by a suite of evergreen species, most of which are completely absent in younger stands even in seedling stage. This complete transition from one functional group to another in the course of stand development suggests a distinct change in the underlying environment during the course of succession. Such change in hammock functional groups as a function of the changing environmental drivers during succession in tropical dry forests is unknown and addressing this question may help to understand which drivers of change act as filters that select for and against particular groups of species and traits. In this study, we evaluate number of important functional traits (specific leaf area, wood density, leaf d13C, leaf N:P ratio, and architectural traits such as height, crown dimensions, diameter at breast height) for woody plant species occurring along a successional gradient across three ecological scales, community, species, and individual. A significant change in the overall trait distribution across the successional gradient is found. Intraspecific trait variation within the community is increased with increase in forest age. Most of these traits have shown correlation with stand age and showed preference to a certain environment. Stand age is the most important variable explaining the distribution of community characteristics. It is found that early successional forest are mostly shaped by environmental driven processes, and as forest get older and structurally more complex, they are increasingly shaped by competitively driven processes leading to limiting similarity. This study has shown that the patterns of trait shift can be predictable and can be used to characterize habitats and stage of forest succession in dry tropical forest.

  14. Agricultural legacies in forest environments: tree communities, soil properties, and light availability.

    PubMed

    Flinn, Kathryn M; Marks, P L

    2007-03-01

    Temperate deciduous forests across much of Europe and eastern North America reflect legacies of past land use, particularly in the diversity and composition of plant communities. Intense disturbances, such as clearing forests for agriculture, may cause persistent environmental changes that continue to shape vegetation patterns as landscapes recover. We assessed the long-term consequences of agriculture for environmental conditions in central New York forests, including tree community structure and composition, soil physical and chemical properties, and light availability. To isolate the effects of agriculture, we compared 20 adjacent pairs of forests that were never cleared for agriculture (primary forests) and forests that established 85-100 years ago on plowed fields (secondary forests). Tree communities in primary and secondary forests had similar stem density, though secondary forests had 14% greater basal area. Species composition differed dramatically between the two forest types, with primary forests dominated by Acer saccharum and Fagus grandifolia and secondary forests by Acer rubrum and Pinus strobus. Primary and secondary forests showed no consistent differences in soil physical properties or in the principal gradient of soil fertility associated with soil pH. Within stands, however, soil water content and pH were more variable in primary forests. Secondary forest soils had 15% less organic matter, 16% less total carbon, and 29% less extractable phosphorus in the top 10 cm than adjacent primary stands, though the ranges of the forest types mostly overlapped. Understory light availability in primary and secondary forests was similar. These results suggest that, within 100 years, post-agricultural stands have recovered conditions comparable to less disturbed forests in many attributes, including tree size and number, soil physical properties, soil chemical properties associated with pH, and understory light availability. The principal legacies of agriculture that remain in these forests are the reduced levels of soil organic matter, carbon, and phosphorus; the spatial homogenization of soil properties; and the altered species composition of the vegetation.

  15. Social and biophysical variation in regional timber harvest regimes

    Treesearch

    Jonathan R. Thompson; Charles D. Canham; Luca Morreale; David B. Kittredge; Brett Butler

    2017-01-01

    In terms of adult tree mortality, harvesting is the most prevalent disturbance in northeastern United States forests. Previous studies have demonstrated that stand structure and tree species composition are important predictors of harvest. We extend this work to investigate how social factors further influence harvest regimes. By coupling the Forest Inventory and...

  16. Long term results of early density management of a third growth redwood stand

    Treesearch

    Lynn A. Webb; John-Pascal Berrill; James L. Lindquist

    2017-01-01

    Precommercial or early thinning of regenerating redwood forests can support management objectives including maximizing yield, forest structure restoration, and promoting carbon sequestration. We present data collected over 30 years following a precommercial thinning (PCT) in a 19 year-old naturally regenerated and planted coast redwood (Sequoia sempervirens ...

  17. Soil responses to the fire and fire surrogate study in the Sierra Nevada

    Treesearch

    Emily E.Y. Moghaddas; Scott L. Stephens

    2007-01-01

    The Fire and Fire Surrogate Study utilizes forest thinning and prescribed burning in attempt to create forest stand structures that reduce the risk of catastrophic wildfire. Replicated treatments consisting of mechanical tree harvest (commercial harvest plus mastication of submerchantable material), mechanical harvest followed by prescribed fire, prescribed fire alone...

  18. Understory structure in a 23-year-old Acacia koa forest and 2-year growth responses to silvicultural treatments

    Treesearch

    Paul G. Scowcroft; Janis E. Haraguchi; David M. Fujii

    2008-01-01

    Restoration of degraded Acacia koa forests in Hawaii often involves mechanical scarification to stimulate germination of seed buried in the soil and to suppress vegetation that competes with shade intolerant A. koa. Resulting even-age stands are gradually colonized by other plant species, but understory...

  19. Maintaining saproxylic insects in Canada's extensively managed boreal forests: a review

    Treesearch

    David W. Langor; John R. Spence; H.E. James Hammond; Joshua Jacobs; Tyler P. Cobb

    2006-01-01

    Recent work on saproxylic insect assemblages in western Canadian boreal forests has demonstrated high faunal diversity and variability, and that adequate assessment of these insects involves significant sampling and taxonomic challenges. Some major determinants of assemblage structure include tree species, degree of decay, stand age and cause of tree death. Experiments...

  20. Free selection: a silvicultural option

    Treesearch

    Russell T. Graham; Theresa B. Jain; Jonathan Sandquist

    2007-01-01

    Forest management objectives continue to evolve as the desires and needs of society change. The practice of silviculture has risen to the challenge by supplying silvicultural methods and systems to produce desired stand and forest structures and compositions to meet these changing objectives. For the most part, the practice of silviculture offers a robust set of...

  1. Novel characterization of landscape-level variability in historical vegetation structure.

    PubMed

    Collins, Brandon M; Lydersen, Jamie M; Everett, Richard G; Fry, Danny L; Stephens, Scott L

    2015-07-01

    We analyzed historical timber inventory data collected systematically across a large mixed-conifer-dominated landscape to gain insight into the interaction between disturbances and vegetation structure and composition prior to 20th century land management practices. Using records from over 20 000 trees, we quantified historical vegetation structure and composition for nine distinct vegetation groups. Our findings highlight some key aspects of forest structure under an intact disturbance regime: (1) forests were low density, with mean live basal area and tree density ranging from 8-30 m2 /ha and 25-79 trees/ha, respectively; (2) understory and overstory structure and composition varied considerably across the landscape; and (3) elevational gradients largely explained variability in forest structure over the landscape. Furthermore, the presence of large trees across most of the surveyed area suggests that extensive stand-replacing disturbances were rare in these forests. The vegetation structure and composition characteristics we quantified, along with evidence of largely elevational control on these characteristics, can provide guidance for restoration efforts in similar forests.

  2. Quantifying spatial patterns of tree groups and gaps in mixed-conifer forests: reference conditions and long-term changes following fire suppression and logging

    Treesearch

    Jamie M. Lydersen; Malcolm P. North; Eric E. Knapp; Brandon M. Collins

    2013-01-01

    Fire suppression and past logging have dramatically altered forest conditions in many areas, but changes to within-stand tree spatial patterns over time are not as well understood. The few studies available suggest that variability in tree spatial patterns is an important structural feature of forests with intact frequent fire regimes that should be incorporated in...

  3. Impact of postfire logging on soil bacterial and fungal communities and soil biogeochemistry in a mixed-conifer forest in central Oregon

    Treesearch

    Tara N. Jennings; Jane E. Smith; Kermit Cromack; Elizabeth W. Sulzman; Donaraye McKay; Bruce A. Caldwell; Sarah I. Beldin

    2012-01-01

    Postfire logging recoups the economic value of timber killed by wildfire, but whether such forest management activity supports or impedes forest recovery in stands differing in structure from historic conditions remains unclear. The aim of this study was to determine the impact of mechanical logging after wildfire on soil bacterial and fungal communities and other...

  4. Tree mortality from fire and bark beetles following early and late season prescribed fires in a Sierra Nevada mixed conifer forest

    Treesearch

    Dylan W. Schwilk; Eric E. Knapp; Scott M. Ferrenberg; Jon E. Keeley; Anthony. Caprio

    2006-01-01

    Over the last century, fire exclusion in the forests of the Sierra Nevada has allowed surface fuels to accumulate and has led to increased tree density. Stand composition has also been altered as shade tolerant tree species crowd out shade intolerant species. To restore forest structure and reduce the risk of large, intense fires, managers have increasingly used...

  5. Effect of species composition on carbon and nitrogen stocks in forest floor and mineral soil in Norway spruce and European beech mixed forests

    NASA Astrophysics Data System (ADS)

    Andivia, Enrique; Rolo, Víctor; Jonard, Mathieu; Formánek, Pavel; Ponette, Quentin

    2015-04-01

    Management of existing forests has been identified as the main strategy to enhance carbon sequestration and to mitigate the impact of climate change on forest ecosystems. In this direction, the conversion of Norway spruce monospecific stands into mixed stands by intermingling individuals of European beech is an ongoing trend in adaptive forest management strategies, especially in Central Europe. However, studies assessing the effect of changes in tree species composition on soil organic carbon (SOC) and nitrogen stocks are still scarce and there is a lack of scientific evidence supporting tree species selection as a feasible management option to mitigate the effects of predicted future climatic scenarios. We compared C and N stocks in the forest floor (litter and humus) and the top 10 cm of mineral soil in two monospecific stands of Norway spruce and European beech and in a mixed stand of both species. The effect of tree species composition on the C and N stocks and its spatial distribution was evaluated based on litterfall, root production, elevation and canopy opening, and by using a combination of modelling and geostatistical techniques. C stock was highest in the Norway spruce and the mixed stands, while N stock was highest in the mixed stand and lowest under European beech, with intermediate values in the Norway spruce stand. Each forest type showed differences in forest floor properties, suggesting that species composition is an important factor governing forest floor characteristics, including C and N stocks. The distribution of C and N stocks between forest soil layers was different for each forest type. C and N stocks were highest in the hummus layer under Norway spruce, whereas both stocks were lowest in the European beech stand. On the other hand, the mixed stand showed the highest C and N accumulation in the uppermost mineral soil layer, while the monospecific stands showed similar values. Litterfall was the main contribution to C and N stocks of the humus layer in monospecific stands. Forest floor stocks were also influenced by microelevation and canopy opening in the European beech stand and by microelevation in the Norway spruce stand. Root turnover and Norway spruce litterfall proportion directly increased C stocks in the mineral soil of the mixed stand. Additionally, N stock in the forest floor of the mixed stand was positively correlated with the Norway spruce litterfall proportion. Spatial analyses further confirmed that species composition was the main source of spatial variability of SOC stock in mixed stands. These results suggest that the admixture of individuals of European beech and Norway spruce may lead to a translocation of SOC from the forest floor to the better protected mineral soil layer, which might be beneficial for long term SOC sequestration.

  6. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests.

    PubMed

    Zhao, Jinlong; Kang, Fengfeng; Wang, Luoxin; Yu, Xiaowen; Zhao, Weihong; Song, Xiaoshuai; Zhang, Yanlei; Chen, Feng; Sun, Yu; He, Tengfei; Han, Hairong

    2014-01-01

    Patterns of biomass and carbon (C) storage distribution across Chinese pine (Pinus tabulaeformis) natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb), and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH) were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0-100 cm) were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha-1 for the young stand to 344.8 Mg·ha-1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha-1 in the middle-aged stand to 3.5 Mg·ha-1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha-1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha-1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale.

  7. Patterns of Biomass and Carbon Distribution across a Chronosequence of Chinese Pine (Pinus tabulaeformis) Forests

    PubMed Central

    Wang, Luoxin; Yu, Xiaowen; Zhao, Weihong; Song, Xiaoshuai; Zhang, Yanlei; Chen, Feng; Sun, Yu; He, Tengfei; Han, Hairong

    2014-01-01

    Patterns of biomass and carbon (C) storage distribution across Chinese pine (Pinus tabulaeformis) natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb), and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH) were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0–100 cm) were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha–1 for the young stand to 344.8 Mg·ha–1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha–1 in the middle-aged stand to 3.5 Mg·ha–1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha–1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha–1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale. PMID:24736660

  8. The importance of age-related decline in forest NPP for modeling regional carbon balances.

    PubMed

    Zaehle, Sönke; Sitch, Stephen; Prentice, I Colin; Liski, Jari; Cramer, Wolfgang; Erhard, Markus; Hickler, Thomas; Smith, Benjamin

    2006-08-01

    We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.

  9. Potential effects of forest management on surface albedo

    NASA Astrophysics Data System (ADS)

    Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.

    2012-04-01

    Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy is closed. During this period, albedo is affected for a short time by forest operations. The modelling approach allowed us to estimate the importance of ground vegetation in the stand albedo. Given that ground vegetation depends on the light reaching the forest floor, ground vegetation could act as a natural buffer to dampen changes in albedo, allowing the stand to maintain optimal leaf temperature. Consequently, accounting for only the carbon balance component of forest management ignores albedo impacts and is thus likely to yield biased estimates of the climate benefits of forest ecosystems.

  10. Lizard activity and abundance greater in burned habitat of a xeric montane forest

    USGS Publications Warehouse

    Fouts, Kevin L.; Moore, Clinton; Johnson, Kristine D.; Maerz, John C.

    2017-01-01

    Restoring the natural or historical state of ecosystems is a common objective among resource managers, but determining whether desired system responses to management actions are occurring is often protracted and challenging. For wildlife, the integration of mechanistic habitat modeling with population monitoring may provide expedited measures of management effectiveness and improve understanding of how management actions succeed or fail to recover populations. Southern Appalachia is a region of high biodiversity that has undergone dramatic change as a result of human activities such as historic logging, exotic invasions, and alteration of disturbance regimes—including reduction in application of fire. Contemporary efforts to restore fire-maintained ecosystems within southern Appalachian forests require tools to assess the effects of fire management practices on individual animal fitness and relate them to corresponding influences on species abundance. Using automated sensing equipment, we investigated the effects of burned forests on reptile habitat suitability within the western portion of Great Smoky Mountains National Park, Tennessee. Specifically, we used microclimate measurements to model northern fence lizard Sceloporus undulatus hyacinthinus diurnal activity budgets in unburned and variable burn age (3–27-y) forest stands. We estimated northern fence lizard occurrence and abundance along transects through burned and unburned forests. Burned forest stands had microclimates that resulted in longer modeled daily activity periods under most conditions during summer. S. undulatus abundance was 4.75 times greater on burned stands compared to paired unburned stands, although the relationship between burn age and abundance was not well determined. Results suggest the more open habitat structure of burned areas within these xeric pine–oak forests may benefit S. undulatus.

  11. Seasonal and spatial variability of rainfall redistribution under Scots pine and Downy oak forests in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Garcia-Estringana, Pablo; Latron, Jérôme; Molina, Antonio J.; Llorens, Pilar

    2013-04-01

    The large degree of temporal and spatial variability of throughfall input patterns may lead to significant changes in the volume of water that reach the soil in each location, and beyond in the hydrological response of forested hillslopes. To explore the role of vegetation in the temporal and spatial redistribution of rainfall in Mediterranean climatic conditions two contrasted stands were monitored. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both are located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. 100 hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover as well as biometric characteristics of the plots are also regularly measured. This work presents the first results describing the variability of throughfall beneath each forest stand and compares the persistence of temporal patterns among stands, and for the oaks stand among the leafed and the leafless period. Furthermore, canopy structure, rainfall characteristics and meteorological conditions of rainfall events are evaluated as main drivers of throughfall redistribution.

  12. Silvicultural recommendations for the management of ponderosa pine forest

    Treesearch

    Martin Alfonso Mendoza Briseno; Mary Ann Fajvan; Juan Manuel Chacon Sotelo; Alejandro Velazquez Martinez; Antonio Quinonez. Silva

    2014-01-01

    Ponderosa pines are the most important timber producing species in Mexico, and they also represent a major portion of the Usa and Canada timber production. These pines form near pure stands with simple and stable stand structure. They suffer only occasional disturbances, and they sustain a limited capacity to hold biodiversity and other senvironmental services. The...

  13. Harvest operations for density management: planning requirements, production, costs, stand damage, and recommendations

    Treesearch

    Loren D. Kellogg; Stephen J. Pilkerton

    2013-01-01

    Since the early 1990s, several studies have been undertaken to determine the planning requirements, productivity, costs, and residual stand damage of harvest operations in thinning treatments designed to promote development of complex forest structure in order to enhance ecological functioning and biological diversity. Th ese studies include the Oregon State...

  14. Growth, yield, and structure of extended rotation Pinus resinosa stands in Minnesota, USA

    Treesearch

    Anthony W. D' Amato; Brian J. Palik; Christel C. Kern

    2010-01-01

    Extended rotations are increasingly used to meet ecological objectives on forestland; however, information about long-term growth and yield of these systems is lacking for most forests in North America. Additionally, long-term growth responses to repeated thinnings in older stands have received little attention. We addressed these needs by examining the growth and...

  15. Long-term structural change in uneven-aged northern hardwoods

    Treesearch

    William B. Leak

    1996-01-01

    The diameter distributions of 10 previously unmanaged northern hardwood stands on the Bartlett Experimental Forest in New Hampshire were analyzed to determine changes over a 35 yr period since a single cutting by the diameter-limit or single-tree selection methods. The diameter distribution of an uncut old-growth stand (the Bowl) provided a comparison. The cuttings...

  16. Responses of Tree Growths to Tree Size, Competition, and Topographic Conditions in Sierra Nevada Forests Using Bi-temporal Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Su, Y.; Tao, S.; Guo, Q.

    2016-12-01

    Trees in the Sierra Nevada (SN) forests are experiencing rapid changes due to human disturbances and climatic changes. An improved monitoring of tree growth and understanding of how tree growth responses to different impact factors, such as tree competition, forest density, topographic and hydrologic conditions, are urgently needed in tree growth modeling. Traditional tree growth modeling mainly relied on field survey, which was highly time-consuming and labor-intensive. Airborne Light detection and ranging System (ALS) is increasingly used in forest survey, due to its high efficiency and accuracy in three-dimensional tree structure delineation and terrain characterization. This study successfully detected individual tree growth in height (ΔH), crown area (ΔA), and crown volume (ΔV) over a five-year period (2007-2012) using bi-temporal ALS data in two conifer forest areas in SN. We further analyzed their responses to original tree size, competition indices, forest structure indices, and topographic environmental parameters at individual tree and forest stand scales. Our results indicated ΔH was strongly sensitive to topographic wetness index; whereas ΔA and ΔV were highly responsive to forest density and original tree sizes. These ALS based findings in ΔH were consistent with field measurements. Our study demonstrated the promising potential of using bi-temporal ALS data in forest growth measurements and analysis. A more comprehensive study over a longer temporal period and a wider range of forest stands would give better insights into tree growth in the SN, and provide useful guides for forest growth monitoring, modeling, and management.

  17. Regional processes in mangrove ecosystems: Spatial scaling relationships, biomass, and turnover rates following catastrophic disturbance

    USGS Publications Warehouse

    Ward, G.A.; Smith, T. J.; Whelan, K.R.T.; Doyle, T.W.

    2006-01-01

    Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a -1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration. ?? Springer 2006.

  18. Effects of biotic feedback and harvest management on boreal forest fire activity under climate change.

    PubMed

    Krawchuk, Meg A; Cumming, Steve G

    2011-01-01

    Predictions of future fire activity over Canada's boreal forests have primarily been generated from climate data following assumptions that direct effects of weather will stand alone in contributing to changes in burning. However, this assumption needs explicit testing. First, areas recently burned can be less likely to burn again in the near term, and this endogenous regulation suggests the potential for self-limiting, negative biotic feedback to regional climate-driven increases in fire. Second, forest harvest is ongoing, and resulting changes in vegetation structure have been shown to affect fire activity. Consequently, we tested the assumption that fire activity will be driven by changes in fire weather without regulation by biotic feedback or regional harvest-driven changes in vegetation structure in the mixedwood boreal forest of Alberta, Canada, using a simulation experiment that includes the interaction of fire, stand dynamics, climate change, and clear cut harvest management. We found that climate change projected with fire weather indices calculated from the Canadian Regional Climate Model increased fire activity, as expected, and our simulations established evidence that the magnitude of regional increase in fire was sufficient to generate negative feedback to subsequent fire activity. We illustrate a 39% (1.39-fold) increase in fire initiation and 47% (1.47-fold) increase in area burned when climate and stand dynamics were included in simulations, yet 48% (1.48-fold) and 61% (1.61-fold) increases, respectively, when climate was considered alone. Thus, although biotic feedbacks reduced burned area estimates in important ways, they were secondary to the direct effect of climate on fire. We then show that ongoing harvest management in this region changed landscape composition in a way that led to reduced fire activity, even in the context of climate change. Although forest harvesting resulted in decreased regional fire activity when compared to unharvested conditions, forest composition and age structure was shifted substantially, illustrating a trade-off between management goals to minimize fire and conservation goals to emulate natural disturbance.

  19. Maximizing Conservation and Production with Intensive Forest Management: It's All About Location

    NASA Astrophysics Data System (ADS)

    Tittler, Rebecca; Filotas, Élise; Kroese, Jasmin; Messier, Christian

    2015-11-01

    Functional zoning has been suggested as a way to balance the needs of a viable forest industry with those of healthy ecosystems. Under this system, part of the forest is set aside for protected areas, counterbalanced by intensive and extensive management of the rest of the forest. Studies indicate this may provide adequate timber while minimizing road construction and favoring the development of large mature and old stands. However, it is unclear how the spatial arrangement of intensive management areas may affect the success of this zoning. Should these areas be agglomerated or dispersed throughout the forest landscape? Should managers prioritize (a) proximity to existing roads, (b) distance from protected areas, or (c) site-specific productivity? We use a spatially explicit landscape simulation model to examine the effects of different spatial scenarios on landscape structure, connectivity for native forest wildlife, stand diversity, harvest volume, and road construction: (1) random placement of intensive management areas, and (2-8) all possible combinations of rules (a)-(c). Results favor the agglomeration of intensive management areas. For most wildlife species, connectivity was the highest when intensive management was far from the protected areas. This scenario also resulted in relatively high harvest volumes. Maximizing distance of intensive management areas from protected areas may therefore be the best way to maximize the benefits of intensive management areas while minimizing their potentially negative effects on forest structure and biodiversity.

  20. Changing spatial patterns of stand-replacing fire in California conifer forests

    Treesearch

    Jens T. Stevens; Brandon M. Collins; Jay D. Miller; Malcolm P. North; Scott L. Stephens

    2017-01-01

    Stand-replacing fire has profound ecological impacts in conifer forests, yet there is continued uncertainty over how best to describe the scale of stand-replacing effects within individual fires, and how these effects are changing over time. In forests where regeneration following stand-replacing fire depends on seed dispersal from surviving trees, the size and shape...

  1. Stand size, stand distribution, and rotation lengths for forest wildlife

    Treesearch

    Steven E. Backs; Russel R. Titus

    1989-01-01

    The key to managing forest wildlife is providing diverse habitats. Stand size, stand distribution, and rotation length determine how diverse habitats will be. Since the tenure of private forest owners is generally shorter than prescribed rotations, rotation recommendations serve more as guides to the amount and intensity of cutting needed to maintain desired habitat....

  2. Stand hazard rating for central Idaho forests

    Treesearch

    Robert Steele; Ralph E. Williams; Julie C. Weatherby; Elizabeth D. Reinhardt; James T. Hoffman; R. W. Thier

    1996-01-01

    Growing concern over sustainability of central ldaho forests has created a need to assess the health of forest stands on a relative basis. A stand hazard rating was developed as a composite of 11 individual ratings to compare the health hazards of different stands. The composite rating includes Douglas-fir beetle, mountain pine beetle, western pine beetle, spruce...

  3. Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest structure

    NASA Astrophysics Data System (ADS)

    Kotchenova, Svetlana Y.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Davis, Anthony B.; Dubayah, Ralph; Myneni, Ranga B.

    2003-08-01

    Large footprint waveform-recording laser altimeters (lidars) have demonstrated a potential for accurate remote sensing of forest biomass and structure, important for regional and global climate studies. Currently, radiative transfer analyses of lidar data are based on the simplifying assumption that only single scattering contributes to the return signal, which may lead to errors in the modeling of the lower portions of recorded waveforms in the near-infrared spectrum. In this study we apply time-dependent stochastic radiative transfer (RT) theory to model the propagation of lidar pulses through forest canopies. A time-dependent stochastic RT equation is formulated and solved numerically. Such an approach describes multiple scattering events, allows for realistic representation of forest structure including foliage clumping and gaps, simulates off-nadir and multiangular observations, and has the potential to provide better approximations of return waveforms. The model was tested with field data from two conifer forest stands (southern old jack pine and southern old black spruce) in central Canada and two closed canopy deciduous forest stands (with overstory dominated by tulip poplar) in eastern Maryland. Model-simulated signals were compared with waveforms recorded by the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) over these regions. Model simulations show good agreement with SLICER signals having a slow decay of the waveform. The analysis of the effects of multiple scattering shows that multiply scattered photons magnify the amplitude of the reflected signal, especially that originating from the lower portions of the canopy.

  4. Vegetation types, dominant compositions, woody plant diversity and stand structure in Trishna Wildlife Sanctuary of Northeast India.

    PubMed

    Majumdar, Koushik; Datta, B K

    2015-03-01

    Present study was carried out to assess the vegetation types, diversity and phytosociological status of woody plants in Trishna Wildlife Sanctuary of Tripura, Northeast India. Vegetation data was derived by 25 line transects (10 m wide and 500 m length, each 0.5 ha size). All woody species at >10 cm gbh (Girth at Breast Height) within each plots were measured and counted. A total of six forest types were classified by cluster analysis using Importance Value Index (IVI) of 289 woody species. Species diversity, forest structure and woody community associations were evaluated and discussed. One way ANOVA revealed significant differences in all species diversity measures and stand structure along the forest types. Distribution of stem density at ten different gbh classes showed reverse J-shaped curves. Population status of woody plants was also examined through grouping of all individuals into four population age stages viz. sapling (<30 cm gbh), adult (> or = 30 - <120 cm gbh), mature (>120 - 210 cm gbh) and old (> or =210 cm). To observe dominant composition and species population trend, IVI of top ten dominant species from all forest types were tabulated. The present study suggested that Trishna Wildlife Sanctuary is an important habitat in Tripura from floristic point of view and it should be conserved on priority basis for remaining wildlife endurances and monitor for forest livelihoods products for sustainable biodiversity conservation in this region.

  5. Forest volume-to-biomass models and estimates of mass for live and standing dead trees of U.S. forests.

    Treesearch

    James E. Smith; Linda S. Heath; Jennifer C. Jenkins

    2003-01-01

    Includes methods and equations for nationally consistent estimates of tree-mass density at the stand level (Mg/ha) as predicted by growing-stock volumes reported by the USDA Forest Service for forests of the conterminous United States. Developed for use in FORCARB, a carbon budget model for U.S. forests, the equations also are useful for converting plot-, stand- and...

  6. Sampling and modeling visual component dynamics of forested areas

    Treesearch

    Victor A. Rudis

    1990-01-01

    A scaling device and sample design have been employed to assess vegetative screening of forested stands as part of an extensive forest inventory.Referenced in a poster presentation are results from East Texas pine and oak-pine stands and Alabama forested areas.Refinements for optimizing measures to distinguish differences in scenic beauty, disturbances, and stand...

  7. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems

    USGS Publications Warehouse

    D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn; Palik, Brian J.

    2013-01-01

    Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (>50 yrs) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forest systems.

  8. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems.

    PubMed

    D'Amato, Anthony W; Bradford, John B; Fraver, Shawn; Palik, Brian J

    2013-12-01

    Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (> 50 years) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forests.

  9. Thinning and burning result in low-level invasion by nonnative plants but neutral effects on natives.

    PubMed

    Nelson, Cara R; Halpern, Charles B; Agee, James K

    2008-04-01

    Many historically fire-adapted forests are now highly susceptible to damage from insects, pathogens, and stand-replacing fires. As a result, managers are employing treatments to reduce fuel loadings and to restore the structure, species, and processes that characterized these forests prior to widespread fire suppression, logging, and grazing. However, the consequences of these activities for understory plant communities are not well understood. We examined the effects of thinning and prescribed fire on plant composition and diversity in Pinus ponderosa forests of eastern Washington (USA). Data on abundance and richness of native and nonnative plants were collected in 70 stands in the Colville, Okanogan, and Wenatchee National Forests. Stands represented one of four treatments: thinning, burning, thinning followed by burning, or control; treatments had been conducted 3-19 years before sampling. Multi-response permutation procedures revealed no significant effect of thinning or burning on understory plant composition. Similarly, there were no significant differences among treatments in cover or richness of native plants. In contrast, nonnative plants showed small, but highly significant, increases in cover and richness in response to both thinning and burning. In the combined treatment, cover of nonnative plants averaged 2% (5% of total plant cover) but did not exceed 7% (16% of total cover) at any site. Cover and richness of nonnative herbs showed small increases with intensity of disturbance and time since treatment. Nonnative plants were significantly less abundant in treated stands than on adjacent roadsides or skid trails, and cover within these potential source areas explained little of the variation in abundance within treated stands. Although thinning and burning may promote invasion of nonnative plants in these forests, our data suggest that their abundance is limited and relatively stable on most sites.

  10. Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida

    USGS Publications Warehouse

    Coronado-Molina, C.; Day, J.W.; Reyes, E.; Perez, B.C.

    2004-01-01

    The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems haa??1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B ?? Xa??0.5083). The allometric equation for each tree component was highly significant (p<0.0001), with all r2 values greater than 0.90. The allometric relationship was used to estimate total aboveground biomass that ranged from 7.9 to 23.2 ton haa??1. Rhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.

  11. Canopy transpiration for two Japanese cypress forests with contrasting structures

    NASA Astrophysics Data System (ADS)

    Tsuruta, K.; Komatsu, H.; Kume, T.; Shinohara, Y.; Otsuki, K.

    2012-12-01

    Canopy transpiration (EC) could have large variations among stands with different structures. To evaluate a difference in EC between stands with different structures for Japanese cypress, we observed EC using the sap flow technique in two stands with contrasting structures (age was 19 year and 99 year, mean diameter at breast height was 13.5 cm and 44.6 cm, stem density was 2100 trees ha-1 and 350 trees ha-1, respectively) for 5 months under the same meteorological condition. The mean stand sap flux density (JS) for measurement period and stand sapwood area (AS_stand) for the old stand (0.43 m3 m-2 day-1 and 15.2 m2 ha-1) were lower than those for the young stand (0.62 m3 m-2 day-1 and 20.4 m2 ha-1) by 31.1 % and 25.4 %, respectively. EC is calculated as a product of JS and AS_stand. Therefore the EC in the old stand was lower than that in the young stand by 50 %. We calculated the contribution of the reference JS for a given meteorological conditions (JSref) and the response of JS to the meteorological conditions (JSresp) in the two stands, and examined which is a primary factor for the difference of EC between the two studied stands. The JSresp for the young stand were not considerably different from that for the old stand, whereas JSref for the young stand was greater than that for the old stand. This indicates that JSref (not JSresp) was the primary cause for the difference of EC between the two stands. Further studies observing EC from stands with various structures are needed to generalize our conclusions.

  12. Mapping forest structure and composition from low-density LiDAR for informed forest, fuel, and fire management at Eglin Air Force Base, Florida, USA

    Treesearch

    Andrew T. Hudak; Benjamin C. Bright; Scott M. Pokswinski; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Carine Klauberg; Carlos A. Silva

    2016-01-01

    Eglin Air Force Base (AFB) in Florida, in the United States, conserves a large reservoir of native longleaf pine (Pinus palustris Mill.) stands that land managers maintain by using frequent fires. We predicted tree density, basal area, and dominant tree species from 195 forest inventory plots, low-density airborne LiDAR, and Landsat data available across the entirety...

  13. Variability in snowpack accumulation and ablation associated with mountain pine beetle infestation in western forests

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.

    2010-12-01

    Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and ablation as a function of vegetation, topography and fine-scale climate variability, with preliminary results presented at the meeting.

  14. Turbulent Structures in a Pine Forest with a Deep and Sparse Trunk Space: Stand and Edge Regions

    NASA Astrophysics Data System (ADS)

    Dupont, Sylvain; Irvine, Mark R.; Bonnefond, Jean-Marc; Lamaud, Eric; Brunet, Yves

    2012-05-01

    Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may affect canopy-atmosphere exchanges through its action on the development of turbulent structures. Here we investigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterized by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the results of large-eddy simulations are used and analyzed together. In stand conditions, far from the edge, canopy-top structures appear strongly damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, autocorrelation and spectral analyses are not quite appropriate to characterize the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange region, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addition to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite direction and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.

  15. Method of determining forest production from remotely sensed forest parameters

    DOEpatents

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  16. Quantitative analysis of American woodcock nest and brood habitat

    USGS Publications Warehouse

    Bourgeois, A.; Keppie, Daniel M.; Owen, Ray B.

    1977-01-01

    Sixteen nest and 19 brood sites of American woodcock (Philohela minoI) were examined in northern lower Michigan between 15 April and 15 June 1974 to determine habitat structure associated with these sites. Woodcock hens utilized young, second-growth forest stands which were similar in species composition for both nesting and brood rearing. A multi-varIate discriminant function analysis revealed a significant (P< 0.05) difference, however, in habitat structure. Nest habitat was characterized by lower tree density (2176 trees/ha) and basal area (8.6 m2/ha), by being close to forest openings (7 m) and by being situated on dry, relatively well drained sites. In contrast, woodcock broods were located in sites that had nearly twice the tree density (3934 trees/hal and basal area (16.5 m2/ha), was located over twice as far from forest openings (18 m) and generally occurred on damp sites, near (8 m) standing water. Importance of the habitat features to the species and possible management implications are discussed.

  17. [Landscape quality evaluation and vertical structure optimization of natural broadleaf forest].

    PubMed

    Ouyang, Xun-zhi; Liao, Wei-ming; Peng, Shi-kui

    2007-06-01

    Taking the natural broadleaf forest in Wuyuan County of Jiangxi Province as study object, a total of 30 representative photos of near-view landscapes and related information were collected. The scenic beauty values were acquired by public judgment method, and the relationship models of scenic beauty values and landscape elements were established by using multiple mathematical model. The results showed that the main elements affecting the near-view landscape quality of natural broadleaf forest were the trunk form, stand density, undergrowth coverage and height, natural pruning, and color richness, with the partial correlation coefficients being 0.4482-0.7724, which were significant or very significant by t-test. The multiple correlation coefficient of the model reached 0.9508, showing very significant by F test (F = 36.11). Straight trunk, better natural pruning and rich color did well, while the super-high or low stand density and undergrowth coverage and height did harm to the scenic beauty. Several management measures for the vertical structure optimization of these landscape elements were put forward.

  18. Structure, production and resource use in some old-growth spruce/fir forests in the front range of the Rocky Mountains, USA

    USGS Publications Warehouse

    Binkley, Dan; Olsson, U.; Rochelle, R.; Stohlgren, T.; Nikolov, N.

    2003-01-01

    Old-growth forests of Engelmann spruce (Picea engelmannii Parry ex. Engelm.) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) dominate much of the landscape of the Rocky Mountains. We characterized the structure, biomass and production of 18 old-growth (200-450-year-old) spruce/fir forests in Rocky Mountain National Park, Colorado, as well as the stand-level supply and use of light and nitrogen. Stands were chosen to span a broad range of elevation, aspect, and topography. Aboveground tree biomass in these old-growth forests averaged 253 Mg/ha (range 130-488 Mg/ha), with aboveground net primary production of 3700 kg ha-1 yr-1 (range from 2700 to 5200 kg ha-1 yr-1). Within stands, trees >35 cm in diameter accounted for 70% of aboveground biomass, but trees <35 cm contributed 70% of the production of woody biomass. Differences in slope and aspect among sites resulted in a range of incoming light from 58 to 74 TJ ha-1 yr-1, and tree canopies intercepted an average of 71% of incoming light (range 50-90%). Aboveground net primary production (ANPP) of trees did not relate to the supply of light or N, but ANPP correlated strongly with the amount of light and N used (r2 = 0.45-0.54, P < 0.01). Uptake of 1 kg of N was associated with about 260 kg of ANPP, and one TJ of intercepted shortwave radiation produced about 78 kg of ANPP. Across these old-growth stands, stands with greater biomass showed higher rates of both ANPP and resource use; variation in aboveground biomass was associated with 24% of the variation in N use (P = 0.04), 44% of the light use (P = 0.003), and 45% of the ANPP (P = 0.002). ?? 2002 Elsevier Science B.V. All rights reserved.

  19. Madrean pine-oak forest in Arizona: altered fire regimes, altered communities

    Treesearch

    Andrew M. Barton

    2005-01-01

    In Madrean pine-oak forests in the Chiricahua Mountains, surface fire favors pines, which exhibit high top-survival, but resprouting allows oaks to rebound during inter-fire periods. These patterns plus age structure and radial growth data suggest that frequent presettlement surface fire maintained open stands, promoted a high pine:oak ratio, and excluded less fire...

  20. Spatial continuity of tree attributes in bottomland hardwood forests in the Southeastern United States

    Treesearch

    Luben D. Dimov; Jim L. Chambers; Brian Roy Lockhart

    2005-01-01

    Sustainable forest management and conservation require understanding of underlying basic structural and competitive relationships. To gain insight into these relationships, we analyzed spatial continuity of tree basal area (BA) and crown projection area (CPA) on twelve 0.64-ha plots in four mixed bottomland hardwood stands in Louisiana, Arkansas, and Mississippi....

  1. Thermal conductivity of some common forest fuels

    Treesearch

    G.M. Byram; W.L. Fons

    1952-01-01

    This study was designed to obtain thermal conductivity of som common forest fuels which hitherto had defied such efforts because of their shape, size, or structure. Dry leaves and decayed. wood (punk) were modified so that conductivity measurements could be made by a thin plate uni-directional heat flow calibration stand, Resultss of these measurements are compatible...

  2. Songbird response to alternative forest density management in young Douglas-fir stands

    Treesearch

    Joan C. Hagar

    2013-01-01

    Th inning has been increasingly used in the Pacifi c Northwest to restore structural and biological diversity to densely-stocked young- to mid-aged forests that have been previously intensively managed for timber production. In the short term, thinning promotes development of understory vegetation, which in turn can increase habitat diversity for wildlife, particularly...

  3. Timber Production and Markets

    Treesearch

    Jeffrey P. Prestemon; Brian C. Murray

    2003-01-01

    Timber production has been the foundation of active forest management for over a century. The science and economics of forest management were developed 1.50 years ago, but for years, the focus was on activity at the stand level, with very little attention to market phenomena such as price behavior, demand factors, substitution, and market structure. That has changed as...

  4. Fuel supply structure of wood-fired power plants in the Northeast: Loggers' perspectives

    Treesearch

    Neil K. Huyler; Neil K. Huyler

    1989-01-01

    A study of loggers' perceptions of the impact of large biomass demand centers on the forest resource base in the Northeast indicated that most loggers strongly believe that the post-harvest stand has improved. However, the impact of whole-tree chipping on the forest resource base was not made clear from the loggers' survey.

  5. Disturbance history and stand dynamics in secondary and old-growth forests of the Southern Appalachain Mountains, USA

    Treesearch

    Sarah M. Butler; Alan S. White; Katherine J. Elliott; Robert S. Seymour

    2014-01-01

    Understanding the patterns of past disturbance allows further insight into the complex composition, structure, and function of current and future forests, which is increasingly important in a world where disturbance characteristics are changing. Our objectives were to define disturbance causes, rates (percent disturbance per decade), magnitudes and frequency (time...

  6. Stand Structure and Yield in the Tabonuco Forest of Puerto Rico

    Treesearch

    C. B. Briscoe; F. H. Wadsworth

    1970-01-01

    Permanent plots were establised beginning in 1943 to study growth in the Tabonuco forest type in Puerto Rico. Initially, the most common species were Dacryodes excelsa; Euterpe globosa, 11%; Sloanea berteriana, 7%; Cordia borinquensis, 4%; and Manilkara bidentata, 4%. Species diversity was less than in mainland British Guiana. For canopy species the relation of overall...

  7. Impacts of wildfire recency and frequency on an Appalachian oak forest

    Treesearch

    Melissa A. Thomas-Van Gundy; Katharina U. Wood; James S. Rentch

    2015-01-01

    Cabwaylingo State Forest in southern West Virginia has experienced numerous anthropogenic wildfires over the past 36 years. In this case study, we assessed the relationship between fire frequency and recency and stand composition and structure, with emphasis on oak and its competitors. Frequent and recent fire was significantly correlated with reduced red maple...

  8. Detrital carbon pools in temperate forests: magnitude and potential for landscape-scale assessment

    Treesearch

    John B. Bradford; Peter Weishampel; Marie-Louise Smith; Randall Kolka; Richard A. Birdsey; Scott V. Ollinger; Michael G. Ryan

    2009-01-01

    Reliably estimating carbon storage and cycling in detrital biomass is an obstacle to carbon accounting. We examined carbon pools and fluxes in three small temperate forest landscapes to assess the magnitude of carbon stored in detrital biomass and determine whether detrital carbon storage is related to stand structural properties (leaf area, aboveground biomass,...

  9. Attributes of standing dead trees in forests of the United States

    Treesearch

    Christopher W. Woodall; James E. Smith; Patrick D. Miles

    2009-01-01

    Standing dead trees in forests of the United States serve as wildlife habitat, a fuel loading component, and carbon stocks. Although standing dead trees are a vital component of forest ecosystems, information regarding this resource across the Nation is lacking. The first annual inventory of standing dead trees across the United States was initiated in 1999, resulting...

  10. How fast will trees die? A transition matrix model of ash decline in forest stands infested by emerald ash borer

    Treesearch

    Kathleen S. Knight; Robert P. Long; Joanne Rebbeck; Annemarie Smith; Kamal Gandhi; Daniel A. Herms

    2008-01-01

    We recorded Fraxinus spp. tree health and other forest stand characteristics for 68 plots in 21 EAB-infested forest stands in Michigan and Ohio in 2005 and 2007. Fraxinus spp. were a dominant component of these stands, with more than 900 ash trees (including Fraxinus americana, Fraxinus pennsylvanica, Fraxinus profunda...

  11. The zero inflation of standing dead tree carbon stocks

    Treesearch

    Christopher W. Woodall; David W. MacFarlane

    2012-01-01

    Given the importance of standing dead trees in numerous forest ecosystem attributes/processes such as carbon (C) stocks, the USDA Forest Service’s Forest Inventory and Analysis (FIA) program began consistent nationwide sampling of standing dead trees in 1999. Modeled estimates of standing dead tree C stocks are currently used as the official C stock estimates for the...

  12. The relative density of forests in the United States

    Treesearch

    Christopher W. Woodall; Charles H. Perry; Patrick D. Miles

    2006-01-01

    A relative stand density assessment technique, using the mean specific gravity of all trees in a stand to predict its maximum stand density index (SDI) and subsequently its relative stand density (current SDI divided by maximum SDI), was used to estimate the relative density of forests across the United States using a national-scale forest inventory. Live tree biomass...

  13. [Vertical variation in stoichiometric relationships of soil carbon, nitrogen and phosphorus in five forest types in the Maoershan region, Northeast China.

    PubMed

    Zhang, Tai Dong; Wang, Chuan Kuan; Zhang, Quan Zhi

    2017-10-01

    Five forests under diverse site conditions but under identical climate in the Maoershan region of Northeast China were sampled for measuring contents of soil carbon (C), nitrogen (N), and phosphorus (P), soil bulk density, and soil thickness by soil profile horizons. The stands included two plantations (i.e., Pinus koraiensis and Larix gmelinii plantations) and three broadleaved forests (i.e., Quercus mongolica stand, Populus davidiana Betula platyphylla mixed stand, and hardwood stand). Our aim was to examine vertical distribution of the content, density, and stoichio metry of soil C, N and P for the five forest types. The results showed that the contents and densities of soil C, N and P differed significantly among the forest types, with the maxima of the soil C and N at both O and A horizons occurring in the hardwood stand. The contents of C and N decreased significantly with increasing soil depth in all the stands. P content decreased significantly only in the broadleaved stands, and P content had no significant difference among different soil layers in the coniferous stands. The soil C/N at the A horizon, N/P at the O horizon, and the C/P at A and B horizons were significantly different among the forest types. The soil C and N linearly correlated significantly across all the forest types without significant differences in the slopes and intercepts, and the soil N and P, or the soil C and P correlated significantly only in the broadleaved stands. This result suggested that the C-N coupling relationship tended to converge across the forest types, and the N-P and C-P relationships varied with forest types.

  14. Satellite-based prediction of rainfall interception by tropical forest stands of a human-dominated landscape in Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Nieschulze, Jens; Erasmi, Stefan; Dietz, Johannes; Hölscher, Dirk

    2009-01-01

    SummaryRainforest conversion to other land use types drastically alters the hydrological cycle in which changes in rainfall interception contribute significantly to the observed differences. However, little is known about the effects of more gradual changes in forest structure and at regional scales. We studied land use types ranging from natural forest over selectively-logged forest to cacao agroforest in a lower montane region in Central Sulawesi, Indonesia, and tested the suitability of high-resolution optical satellite imagery for modeling observed interception patterns. Investigated characteristics indicating canopy structure were mean and standard deviation of reflectance values, local maxima, and self-similarity measures based on the grey level co-occurrence matrix and geostatistical variogram analysis. Previously studied and published rainfall interception data comprised twelve plots and median values per land use type ranged from 30% in natural forest to 18% in cacao agroforests. A linear regression model with local maxima, mean contrast and normalized digital vegetation index (NDVI) as regressors was able to explain more than 84% ( Radj2) of the variation encountered in the data. Other investigated characteristics did not prove significant in the regression analysis. The model yielded stable results with respect to cross-validation and also produced realistic values and spatial patterns when applied at the landscape level (783.6 ha). High values of interception were rare and localized in natural forest stands distant to villages, whereas low interception characterized the intensively used sites close to settlements. We conclude that forest use intensity significantly reduced rainfall interception and satellite image analysis can successfully be applied for its regional prediction, and most forest in the study region has already been subject to human-induced structural changes.

  15. An integrated analysis of the effects of past land use on forest herb colonization at the landscape scale

    USGS Publications Warehouse

    Verheyen, K.; Guntenspergen, Glenn R.; Biesbrouck, B.; Hermy, M.

    2003-01-01

    A framework that summarizes the direct and indirect effects of past land use on forest herb recolonization is proposed, and used to analyse the colonization patterns of forest understorey herbaceous species in a 360-ha mixed forest, grassland and arable landscape in the Dijle river valley (central Belgium).Fine-scale distribution maps were constructed for 14 species. The species were mapped in 15 946 forest plots and outside forests (along parcel margins) in 5188 plots. Forest stands varied in age between 1 and more than 224 years. Detailed land-use history data were combined with the species distribution maps to identify species-specific colonization sources and to calculate colonization distances.The six most frequent species were selected for more detailed statistical analysis.Logistic regression models indicated that species frequency in forest parcels was a function of secondary forest age, distance from the nearest colonization source and their interaction. Similar age and distance effects were found within hedgerows.In 199 forest stands, data about soils, canopy structure and the cover of competitive species were collected. The relative importance of habitat quality and spatio-temporal isolation for the colonization of the forest herb species was quantified using structural equation modelling (SEM), within the framework proposed for the effects of past land use.The results of the SEM indicate that, except for the better colonizing species, the measured habitat quality variables are of minor importance in explaining colonization patterns, compared with the combination of secondary forest age and distance from colonization sources.Our results suggest the existence of a two-stage colonization process in which diaspore availability determines the initial pattern, which is affected by environmental sorting at later stages.

  16. The intrinsic periodic fluctuation of forest: a theoretical model based on diffusion equation

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Lin, G., Sr.

    2015-12-01

    Most forest dynamic models predict the stable state of size structure as well as the total basal area and biomass in mature forest, the variation of forest stands are mainly driven by environmental factors after the equilibrium has been reached. However, although the predicted power-law size-frequency distribution does exist in analysis of many forest inventory data sets, the estimated distribution exponents are always shifting between -2 and -4, and has a positive correlation with the mean value of DBH. This regular pattern can not be explained by the effects of stochastic disturbances on forest stands. Here, we adopted the partial differential equation (PDE) approach to deduce the systematic behavior of an ideal forest, by solving the diffusion equation under the restricted condition of invariable resource occupation, a periodic solution was gotten to meet the variable performance of forest size structure while the former models with stable performance were just a special case of the periodic solution when the fluctuation frequency equals zero. In our results, the number of individuals in each size class was the function of individual growth rate(G), mortality(M), size(D) and time(T), by borrowing the conclusion of allometric theory on these parameters, the results perfectly reflected the observed "exponent-mean DBH" relationship and also gave a logically complete description to the time varying form of forest size-frequency distribution. Our model implies that the total biomass of a forest can never reach a stable equilibrium state even in the absence of disturbances and climate regime shift, we propose the idea of intrinsic fluctuation property of forest and hope to provide a new perspective on forest dynamics and carbon cycle research.

  17. Mapping Plant Diversity and Composition Across North Carolina Piedmont Forest Landscapes Using Lidar-Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hakkenberg, Christopher R.

    Forest modification, from local stress to global change, has given rise to efforts to model, map, and monitor critical properties of forest communities like structure, composition, and diversity. Predictive models based on data from spatially-nested field plots and LiDAR-hyperspectral remote sensing systems are one particularly effective means towards the otherwise prohibitively resource-intensive task of consistently characterizing forest community dynamics at landscape scales. However, to date, most predictive models fail to account for actual (rather than idealized) species and community distributions, are unsuccessful in predicting understory components in structurally and taxonomically heterogeneous forests, and may suffer from diminished predictive accuracy due to incongruity in scale and precision between field plot samples, remotely-sensed data, and target biota of varying size and density. This three-part study addresses these and other concerns in the modeling and mapping of emergent properties of forest communities by shifting the scope of prediction from the individual or taxon to the whole stand or community. It is, after all, at the stand scale where emergent properties like functional processes, biodiversity, and habitat aggregate and manifest. In the first study, I explore the relationship between forest structure (a proxy for successional demographics and resource competition) and tree species diversity in the North Carolina Piedmont, highlighting the empirical basis and potential for utilizing forest structure from LiDAR in predictive models of tree species diversity. I then extend these conclusions to map landscape pattern in multi-scale vascular plant diversity as well as turnover in community-continua at varying compositional resolutions in a North Carolina Piedmont landscape using remotely-sensed LiDAR-hyperspectral estimates of topography, canopy structure, and foliar biochemistry. Recognizing that the distinction between correlation and causation mirrors that between knowledge and understanding, all three studies distinguish between prediction of pattern and inference of process. Thus, in addition to advancing mapping methodologies relevant to a range of forest ecosystem management and monitoring applications, all three studies are noteworthy for assessing the ecological relationship between environmental predictors and emergent landscape patterns in plant composition and diversity in North Carolina Piedmont forests.

  18. The magnitude of interannual variability of ecosystem photosynthetic capacity is controled by stand age and biodiversity

    NASA Astrophysics Data System (ADS)

    Musavi, Talie; Migliavacca, Mirco; Mahecha, Miguel D.; Reichstein, Markus; Kattge, Jens; Wirth, Christian; Black, T. Andrew; Janssens, Ivan; Knohl, Alexander; Loustau, Denis; Roupsard, Olivier; Varlagin, Andrej; Rambal, Serge; Cescatti, Alessandro; Gianelle, Damiano; Kondo, Hiroaki; Tamrakar, Rijan

    2017-04-01

    Gross primary productivity, GPP, the total uptake of carbon dioxide (CO2) by ecosystems via photosynthesis, is the largest flux in the global carbon cycle. The photosynthetic capacity at light saturation (GPPsat) is a fundamental ecosystem functional property and its interannual variability (IAV) is propagated to the net ecosystem exchange of CO2. In this contribution we made use of a variety of data streams consisting of ecosystem-atmosphere CO2 fluxes measured at eddy covariance flux sites with more than 4 years of data, the GPPsat derived at the different sites, information about climate (temperature, precipitation, and water availability index - WAI), biodiversity information and species richness, stand age, and plant traits, nutrient availability indexes derived from field campaigns, ancillary databases, and the literature. We also used data about forest structure derived from satellite products. Sites were selected according to the availability of eddy covariance flux measurements for at least 4 years, information about stand age, canopy cover, canopy height, and species abundance. The resulting global database consisted of 50 sites with different vegetation types across different climatic regions. Considering the importance of the understanding of IAV in CO2 fluxes to improve the predictive capacity of the global carbon cycle we analyzed a range of alternative hypotheses and potential drivers of the magnitude of IAV in GPPsat in forest ecosystems. The results show that the IAV in GPPsat within sites is driven by climate (i.e. fluctuations in air temperature and soil water availability), but the magnitude of IAV in GPPsat is related to ecosystem structure, and more in details to stand age and biodiversity (R2=0.55, p<0.0001). We conclude that irrespective of forest type the IAV of GPPsat in older and more diverse forests is dampened, and is higher in younger forests with few dominant species.

  19. New Method for Determining the Relative Stand Density of Forest Inventory Plots

    Treesearch

    Christopher W. Woodall; Patrick D. Miles

    2006-01-01

    Determining the relative density of Forest Inventory and Analysis plots is complicated by the various species and tree size combinations in the Nation?s forested ecosystems. Stand density index (SDI), although developed for use in even-aged monocultures, has been used for stand density assessment in largescale forest inventories. To improve application of SDI in uneven...

  20. Light intensity related to stand density in mature stands of the western white pine type

    Treesearch

    C. A. Wellner

    1948-01-01

    Where tolerance of forest trees or subordinate vegetation is a factor in management, the forester needs a simple field method of Estimating or forecasting light intensities in forest stands. The following article describes a method developed for estimating light intensity beneath the canopy in western white pine forests which may have application in other types.

Top