Sample records for forest tree canopy

  1. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    PubMed

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  2. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest

    PubMed Central

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916

  3. Calibration and Validation of Landsat Tree Cover in the Taiga-Tundra Ecotone

    NASA Technical Reports Server (NTRS)

    Montesano, Paul Mannix; Neigh, Christopher S. R.; Sexton, Joseph; Feng, Min; Channan, Saurabh; Ranson, Kenneth J.; Townshend, John R.

    2016-01-01

    Monitoring current forest characteristics in the taiga-tundra ecotone (TTE) at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover greater than 80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010) by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.

  4. Tree canopy types constrain plant distributions in ponderosa pine-Gambel oak forests, northern Arizona

    Treesearch

    Scott R. Abella

    2009-01-01

    Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...

  5. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000-2014

    NASA Astrophysics Data System (ADS)

    Potapov, P.; Siddiqui, B. N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; Hansen, M. C.

    2017-10-01

    A novel approach for satellite-based comprehensive national tree cover change assessment was developed and applied in Bangladesh, a country where trees outside of forests play an important role in the national economy and carbon sequestration. Tree cover change area was quantified using the integration of wall-to-wall Landsat-based mapping with a higher spatial resolution sample-based assessment. The total national tree canopy cover area was estimated as 3165 500 ± 186 600 ha in the year 2000, with trees outside forests making up 54% of total canopy cover. Total tree canopy cover increased by 135 700 (± 116 600) ha (4.3%) during the 2000-2014 time interval. Bangladesh exhibits a national tree cover dynamic where net change is rather small, but gross dynamics significant and variable by forest type. Despite the overall gain in tree cover, results revealed the ongoing clearing of natural forests, especially within the Chittagong hill tracts. While forests decreased their tree cover area by 83 600 ha, the trees outside forests (including tree plantations, village woodlots, and agroforestry) increased their canopy area by 219 300 ha. Our results demonstrated method capability to quantify tree canopy cover dynamics within a fine-scale agricultural landscape. Our approach for comprehensive monitoring of tree canopy cover may be recommended for operational implementation in Bangladesh and other countries with significant tree cover outside of forests.

  6. Spatial contagiousness of canopy disturbance in tropical rain forest: an individual-tree-based test.

    PubMed

    Jansen, Patrick A; van der Meer, Peter J; Bongers, Frans

    2008-12-01

    Spatial contagiousness of canopy dynamics-the tendency of canopy disturbances to occur nearby existing canopy openings due to an elevated risk of tree fall around gaps-has been demonstrated in many temperate-zone forests, but only inferentially for tropical forests. Hypothesized mechanisms increasing the risk of tree fall around tropical forest gaps are (1) increased tree exposure to wind around gaps, (2) reduced stability of trees alongside gaps due to crown asymmetry, or (3) reduced tree health around gaps due to damage from prior disturbances. One hypothesized consequence of elevated disturbance levels around gaps would be that gap-edge zones offer relatively favorable prospects for seedling recruitment, growth, and survival. We tested whether disturbance levels are indeed elevated around natural canopy gaps in a neotropical rain forest in French Guiana, and more so as gaps are larger. We followed the fate of 5660 trees >10 cm stem diameter over five years across 12 ha of old-growth forest and analyzed the risk and magnitude of canopy disturbance events in relation to tree diameter and the proximity and size of natural canopy gaps. We found that the cumulative incidence of disturbance over the five-year survey was not significantly elevated around preexisting gaps, and only weakly related to gap size. Also, neither the risk nor the magnitude of canopy disturbances increased significantly with the proximity of gaps. Moreover, canopy disturbance risk around gaps was independent of gap size, while the magnitude of disturbance events around gaps was weakly related to gap size. Tree size was the major driver of disturbance risk as well as magnitude. We did find an elevated incidence of disturbance inside preexisting gaps, but this "repeat disturbance" was due to an elevated disturbance risk inside gaps, not around gaps. Overall, we found no strong evidence for canopy dynamics in this rain forest being spatially contagious. Our findings are consistent with the traditional view of tropical rain forests as mosaics of patches with predictable regeneration cycles.

  7. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.

    2005-01-01

    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogsmore » were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.« less

  8. Estimating average tree crown size using spatial information from Ikonos and QuickBird images: Across-sensor and across-site comparisons

    Treesearch

    Conghe Song; Matthew B. Dickinson; Lihong Su; Su Zhang; Daniel Yaussey

    2010-01-01

    The forest canopy is the medium for energy, mass, and momentum exchanges between the forest ecosystem and the atmosphere. Tree crown size is a critical aspect of canopy structure that significantly influences these biophysical processes in the canopy. Tree crown size is also strongly related to other canopy structural parameters, such as tree height, diameter at breast...

  9. Difficulties with estimating city-wide urban forest cover change from national, remotely-sensed tree canopy maps

    Treesearch

    Jeffrey T. Walton

    2008-01-01

    Two datasets of percent urban tree canopy cover were compared. The first dataset was based on a 1991 AVHRR forest density map. The second was the US Geological Survey's National Land Cover Database (NLCD) 2001 sub-pixel tree canopy. A comparison of these two tree canopy layers was conducted in 36 census designated places of western New York State. Reference data...

  10. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  11. Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions.

    PubMed

    Brienen, Roel J W; Zuidema, Pieter A; Martínez-Ramos, Miguel

    2010-06-01

    Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees--those that have not attained the canopy--are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests.

  12. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds

    NASA Astrophysics Data System (ADS)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-08-01

    Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.

  13. A GIS-based tool for estimating tree canopy cover on fixed-radius plots using high-resolution aerial imagery

    Treesearch

    Sara A. Goeking; Greg C. Liknes; Erik Lindblom; John Chase; Dennis M. Jacobs; Robert. Benton

    2012-01-01

    Recent changes to the Forest Inventory and Analysis (FIA) Program's definition of forest land precipitated the development of a geographic information system (GIS)-based tool for efficiently estimating tree canopy cover for all FIA plots. The FIA definition of forest land has shifted from a density-related criterion based on stocking to a 10 percent tree canopy...

  14. Canopy soil bacterial communities altered by severing host tree limbs

    PubMed Central

    Dangerfield, Cody R.; Nadkarni, Nalini M.

    2017-01-01

    Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities. PMID:28894646

  15. Canopy soil bacterial communities altered by severing host tree limbs.

    PubMed

    Dangerfield, Cody R; Nadkarni, Nalini M; Brazelton, William J

    2017-01-01

    Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  16. A stem-map model for predicting tree canopy cover of Forest Inventory and Analysis (FIA) plots

    Treesearch

    Chris Toney; John D. Shaw; Mark D. Nelson

    2009-01-01

    Tree canopy cover is an important stand characteristic that affects understory light, fuel moisture, decomposition rates, wind speed, and wildlife habitat. Canopy cover also is a component of most definitions of forest land used by US and international agencies. The USDA Forest Service Forest Inventory and Analysis (FIA) Program currently does not provide a national...

  17. A Regional Simulation to Explore Impacts of Resource Use and Constraints

    DTIC Science & Technology

    2007-03-01

    mountaintops. (10) Deciduous Forest - This class is composed of forests, which contain at least 75% deciduous trees in the canopy, deciduous ... trees , pine plantations, and evergreen woodlands. (12) Mixed Forest - This class includes forests with mixed deciduous /coniferous canopies, natural...reflective surfaces. Classification of forested wetlands dominated by deciduous trees is probably more accurate than that in areas with 104

  18. Gainesville's urban forest canopy cover

    Treesearch

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Ecosystem benefits from trees are linked directly to the amount of healthy urban forest canopy cover. Urban forest cover is dynamic and changes over time due to factors such as urban development, windstorms, tree removals, and growth. The amount of a city's canopy cover depends on its land use, climate, and people's preferences. This fact sheet examines how...

  19. Drought-induced changes in Amazon forest structure from repeat airborne lidar

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Leitold, V.; Longo, M.; Keller, M.; dos-Santos, M. N.; Scaranello, M. A., Sr.

    2017-12-01

    Drought events in tropical forests, including the 2015-2016 El Niño, may reduce net primary productivity and increase canopy tree mortality, thereby altering the short and long-term net carbon balance of tropical forests. Given the broad extent of drought impacts, forest inventory plots or eddy flux towers may not capture regional variability in forest response to drought. Here, we analyzed repeat airborne lidar data to evaluate canopy turnover from branch and tree fall before (2013-2014) and during (2014-2016) the recent El Niño drought in the eastern and central Brazilian Amazon. Coincident field surveys for a 16-ha subset of the lidar coverage provided complementary information to classify turnover areas by mechanism (branch, multiple branch, tree fall, multiple tree fall) and estimate the total coarse woody debris volume from canopy and understory tree mortality. Annualized rates of canopy turnover increased by 50%, on average, during the drought period in both intact and fragmented forests near Santarém, Pará. Turnover increased uniformly across all size classes, and there was limited evidence that taller trees contributed a greater proportion of turnover events in any size class in 2014-2016 compared to 2013-2014. This short-term increase in canopy turnover differs from findings in multi-year rainfall exclusion experiments that large trees were more sensitive to drought impacts. Field measurements confirmed the separability of the smallest (single branch) and largest damage classes (multiple tree falls), but single tree and multiple branch fall events generated similar coarse woody debris production and lidar-derived changes in canopy volume. Large-scale sampling possible with repeat airborne lidar data also captured strong local and regional gradients in canopy turnover. Differences in slope partially explained the north-south gradient in canopy turnover dynamics near Santarém, with larger increases in turnover on flatter terrain. Regional variability in canopy turnover in response to drought conditions highlights the need for a mechanistic representation of branch and tree fall dynamics in ecosystem models to resolve changes in net carbon balance from the increase in coarse woody debris production and reorganization of canopy light environments during drought years.

  20. Canopy gaps and dead tree dynamics: poking holes in the forest.

    Treesearch

    Sally Duncan

    2002-01-01

    When large trees die, individually or in clumps, gaps are opened in the forest canopy. A shifting mosaic of patches, from small single-tree gaps to very large gaps caused by wildlife, is a natural part of the development of composition and structure in mature forests. Gaps increase the diversity of forests across the landscape and present local environments that...

  1. Tree Death Leading To Ecosystem Renewal? Forecasting Carbon Storage As Eastern Forests Age

    NASA Astrophysics Data System (ADS)

    Curtis, P.; Gough, C. M.; Bohrer, G.; Nadelhoffer, K. J.; Ivanov, V. Y.

    2013-12-01

    The future trajectory of North American carbon (C) stocks remains uncertain as a subset of maturing trees die in mixed deciduous forests of the U.S. Midwest and East transitioning from early to middle and late succession. We are studying disturbance-structure-function relationships of aging forests in northern Michigan using long-term ecological and meteorological C cycling studies, a large-scale disturbance experiment, a 200-year forest chronosequence, and flux comparisons across three tower sites. We find that ecosystem responses to mortality are characterized by several processes that affect structure-function relationships and alter the way ecosystem functioning interacts with meteorological forcing. We subjected 39 ha of forest to moderate experimental disturbance, similar to that of age-related or climatically induced tree mortality. We found that the mortality of a third of all canopy trees minimally altered the balance between forest C uptake and release, as growth-limiting light and nitrogen resources were rapidly reallocated from dead and dying trees to undisturbed trees. Although disturbance-induced mortality increased soil N mineralization rates, nitrification, and denitrification, N exports from soils remained low. Upper canopy gap formation and a rise in structural complexity allowed increased photosynthetic contribution of sub-canopy vegetation to compensate for the death of canopy dominant trees. However, we found large differences between the transpirational response of maples and oaks to VPD and soil moisture, which led to relative declines in maple transpiration post-disturbance. These hydrologic differences may affect a species' ability to compete for resources following such a disturbance. Changes to canopy structure had a relatively small effect on roughness length and the turbulence forcing of fluxes from the canopy. We currently are studying how tree mortality driven changes in canopy structure affects within-canopy resource distribution and subsequent changes in leaf morphological, physiological and biochemical traits, how disturbance severity relates to the magnitude of C storage resilience, the impacts of clouds and aerosols on surface diffuse light and how they interact with canopy structure to modify C uptake, and how these processes change overall C assimilation given different forest age and disturbance histories. Along a conceptual continuum from structural to functional attributes, our results show that leaf area distribution and its heterogeneity, canopy light, water and nutrient use efficiency, canopy roughness length and turbulent mixing of canopy air, and the coupling between soil moisture and canopy density, all change with successional and disturbance processes and affect ecosystem C fluxes. Patchy mortality and related increases in structural complexity could, against expectations, enhance the C storage of some forests. Our finding that increases in canopy structural complexity improve resource-use efficiency provides a mechanism for maintaining high rates of C storage in aging forests.

  2. Survival of tree seedligns across space and time: estimates from long-term count data

    Treesearch

    Brian Beckage; Michael Lavina; James S. Clark

    2005-01-01

    Tree diversity in forests may be maintained by variability in seedling recruitment. Although forest ecologists have emphasized the importance of canopy gaps in generating spatial variability that might promote tree regeneration, the effects of canopy gaps on seedling recruitment may be offset by dense forest understories.Large annual...

  3. Forest-atmosphere BVOC exchange in diverse and structurally complex canopies: 1-D modeling of a mid-successional forest in northern Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Alexander M.; Cheng, Susan J.; Ashworth, Kirsti

    Foliar emissions of biogenic volatile organic compounds (BVOC)dimportant precursors of tropospheric ozone and secondary organic aerosolsdvary widely by vegetation type. Modeling studies to date typi-cally represent the canopy as a single dominant tree type or a blend of tree types, yet many forests are diverse with trees of varying height. To assess the sensitivity of biogenic emissions to tree height vari-ation, we compare two 1-D canopy model simulations in which BVOC emission potentials are homo-geneous or heterogeneous with canopy depth. The heterogeneous canopy emulates the mid-successional forest at the University of Michigan Biological Station (UMBS). In this case, high-isoprene-emitting fo-liagemore » (e.g., aspen and oak) is constrained to the upper canopy, where higher sunlight availability increases the light-dependent isoprene emission, leading to 34% more isoprene and its oxidation products as compared to the homogeneous simulation. Isoprene declines from aspen mortality are 10% larger when heterogeneity is considered. Overall, our results highlight the importance of adequately representing complexities of forest canopy structure when simulating light-dependent BVOC emissions and chemistry.« less

  4. Testing a ground-based canopy model using the wind river canopy crane

    Treesearch

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  5. Frankia and Alnus rubra canopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen.

    PubMed

    Kennedy, Peter G; Schouboe, Jesse L; Rogers, Rachel H; Weber, Marjorie G; Nadkarni, Nalini M

    2010-02-01

    The ecological importance of microbial symbioses in terrestrial soils is widely recognized, but their role in soils that accumulate in forest canopies is almost entirely unknown. To address this gap, this study investigated the Frankia-Alnus rubra symbiosis in canopy and forest floor roots at Olympic National Park, WA, USA. Sixteen mature A. rubra trees were surveyed and Frankia genetic diversity in canopy and forest floor nodules was assessed with sequence-based nifH analyses. A seedling bioassay experiment was conducted to determine Frankia propagule availability in canopy and forest floor soils. Total soil nitrogen from both environments was also quantified. Nodules were present in the canopies of nine of the 16 trees sampled. Across the study area, Frankia canopy and forest floor assemblages were similar, with both habitats containing the same two genotypes. The composition of forest floor and canopy genotypes on the same tree was not always identical, however, suggesting that dispersal was not a strictly local phenomenon. Frankia seedling colonization was similar in canopy soils regardless of the presence of nodules as well as in forest floor soils, indicating that dispersal was not likely to be a major limiting factor. The total soil nitrogen of canopy soils was higher than that of forest floor soils, but the presence of Frankia nodules in canopy soils did not significantly alter soil nitrogen levels. Overall, this study indicates that the Frankia-A. rubra symbiosis is similar in canopy and forest floor environments. Because canopy roots are exposed to different environmental conditions within very small spatial areas and because those areas can be easily manipulated (e.g., fertilizer or watering treatments), they present microbial ecologists with a unique arena to examine root-microbe interactions.

  6. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance

    Treesearch

    Elizabeth A. Freeman; Gretchen G. Moisen; John W. Coulston; Barry T. (Ty) Wilson

    2015-01-01

    As part of the development of the 2011 National Land Cover Database (NLCD) tree canopy cover layer, a pilot project was launched to test the use of high-resolution photography coupled with extensive ancillary data to map the distribution of tree canopy cover over four study regions in the conterminous US. Two stochastic modeling techniques, random forests (RF...

  7. Prospects for quantifying structure, floristic composition and species richness of tropical forests

    USGS Publications Warehouse

    Gillespie, T.W.; Brock, J.; Wright, C.W.

    2004-01-01

    Airborne spectral and light detection and ranging (lidar) sensors have been used to quantify biophysical characteristics of tropical forests. Lidar sensors have provided high-resolution data on forest height, canopy topography, volume, and gap size; and provided estimates on number of strata in a forest, successional status of forests, and above-ground biomass. Spectral sensors have provided data on vegetation types, foliar biochemistry content of forest canopies, tree and canopy phenology, and spectral signatures for selected tree species. A number of advances are theoretically possible with individual and combined spectral and lidar sensors for the study of forest structure, floristic composition and species richness. Delineating individual canopies of over-storey trees with small footprint lidar and discrimination of tree architectural types with waveform distributions is possible and would provide scientists with a new method to study tropical forest structure. Combined spectral and lidar data can be used to identify selected tree species and identify the successional status of tropical forest fragments in order to rank forest patches by levels of species richness. It should be possible in the near future to quantify selected patterns of tropical forests at a higher resolution than can currently be undertaken in the field or from space. ?? 2004 Taylor and Francis Ltd.

  8. Drying of Floodplain Forests Associated with Water-Level Decline in the Apalachicola River, Florida - Interim Results, 2006

    USGS Publications Warehouse

    Darst, Melanie R.; Light, Helen M.

    2007-01-01

    Floodplain forests of the Apalachicola River, Florida, are drier in composition today (2006) than they were before 1954, and drying is expected to continue for at least the next 50 years. Drier forest composition is probably caused by water-level declines that occurred as a result of physical changes in the main channel after 1954 and decreased flows in spring and summer months since the 1970s. Forest plots sampled from 2004 to 2006 were compared to forests sampled in the late 1970s (1976-79) using a Floodplain Index (FI) based on species dominance weighted by the Floodplain Species Category, a value that represents the tolerance of tree species to inundation and saturation in the floodplain and consequently, the typical historic floodplain habitat for that species. Two types of analyses were used to determine forest changes over time: replicate plot analysis comparing present (2004-06) canopy composition to late 1970s canopy composition at the same locations, and analyses comparing the composition of size classes of trees on plots in late 1970s and in present forests. An example of a size class analysis would be a comparison of the composition of the entire canopy (all trees greater than 7.5 cm (centimeter) diameter at breast height (dbh)) to the composition of the large canopy tree size class (greater than or equal to 25 cm dbh) at one location. The entire canopy, which has a mixture of both young and old trees, is probably indicative of more recent hydrologic conditions than the large canopy, which is assumed to have fewer young trees. Change in forest composition from the pre-1954 period to approximately 2050 was estimated by combining results from three analyses. The composition of pre-1954 forests was represented by the large canopy size class sampled in the late 1970s. The average FI for canopy trees was 3.0 percent drier than the average FI for the large canopy tree size class, indicating that the late 1970s forests were 3.0 percent drier than pre-1954 forests. The change from the late 1970s to the present was based on replicate plot analysis. The composition of 71 replicate plots sampled from 2004 to 2006 averaged 4.4 percent drier than forests sampled in the late 1970s. The potential composition of future forests (2050 or later) was estimated from the composition of the present subcanopy tree size class (less than 7.5 cm and greater than or equal to 2.5 cm dbh), which contains the greatest percentage of young trees and is indicative of recent hydrologic conditions. Subcanopy trees are the driest size class in present forests, with FIs averaging 31.0 percent drier than FIs for all canopy trees. Based on results from all three sets of data, present floodplain forests average 7.4 percent drier in composition than pre-1954 forests and have the potential to become at least 31.0 percent drier in the future. An overall total change in floodplain forests to an average composition 38.4 percent drier than pre-1954 forests is expected within approximately 50 years. The greatest effects of water-level decline have occurred in tupelo-cypress swamps where forest composition has become at least 8.8 percent drier in 2004-06 than in pre-1954 years. This change indicates that a net loss of swamps has already occurred in the Apalachicola River floodplain, and further losses are expected to continue over the next 50 years. Drying of floodplain forests will result in some low bottomland hardwood forests changing in composition to high bottomland hardwood forests. The composition of high bottomland hardwoods will also change, although periodic flooding is still occurring and will continue to limit most of the floodplain to bottomland hardwood species that are adapted to at least short periods of inundation and saturation.

  9. Abundance of Green Tree Frogs and Insects in Artificial Canopy Gaps in a Bottomland Hardwood Forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Scott; Hanula, James, L.; Ulyshen, Michael D.

    2005-04-01

    ABSTRACT - We found more green tree frogs ( Hyla cinerea) n canopv gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopv gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat Flies were the most commonlv collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  10. The symbiotic relationship between dominant canopy trees and soil microbes affects the nitrogen source utilization of co-existing understory trees

    NASA Astrophysics Data System (ADS)

    Iwaoka, C.; Hyodo, F.; Taniguchi, T.; Shi, W.; Du, S.; Yamanaka, N.; Tateno, R.

    2017-12-01

    The symbiotic relationship between dominant canopy trees and soil microbes such as mycorrhiza or nitrogen (N) fixer are important determinants of soil N dynamics of a forest. However, it is not known how and to what extent the symbiotic relationship of dominant canopy trees with soil microbes affect the N source of co-existing trees in forest. We measured the δ15N of surface soils (0-10 cm), leaves, and roots of the dominant canopy trees and common understory trees in an arbuscular mycorrhizal N-fixing black locust (Robinia pseudoacacia) plantation and an ectomycorrhizal oak (Quercus liaotungensis) natural forest in a China dryland. We also analyzed the soil dissolved N content in soil extracts and absorbed by ion exchange resin, and soil ammonia-oxidizer abundance using real-time PCR. The δ15N of soil and leaves were higher in the black locust forest than in the oak forest, although the δ15N of fine roots was similar in the two forests, in co-existing understory trees as well as dominant canopy trees. Accordingly, the δ15N of leaves was similar to or higher than that of fine roots in the black locust forest, whereas it was consistently lower than that of fine roots in the oak forest. In the black locust forest, the soil dissolved organic N and ammonium N contents were less abundant but the nitrate N contents in soils and absorbed by the ion exchange resin and ammonia-oxidizer abundance were greater, due to N fixation or less uptake of organic N from arbuscular mycorrhiza. In contrast, the soil dissolved organic N and ammonium N contents were more abundant in the oak forest, whereas the N content featured very low nitrate, due to ectomycorrhizal ability to access organic N. These results suggest that the main N source is nitrate N in the black locust forest, but dissolved organic N or ammonium N in the oak forest. N fixation or high N loss due to high N availability would cause high δ15N in soil and leaves in black locust forest. On the other hand, low soil N availability in the oak forest may make 15N fractionation more active in roots via mycorrhizal association, resulting in higher δ15N in fine roots than in leaves. In conclusion, the symbiotic relationship between dominant canopy trees and soil microbes affected the N source of not only the dominant trees but also co-existing understory trees via the control of soil N dynamics.

  11. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest

    Treesearch

    Scott Horn; James L. Hanula; Michael D. Ulyshen; John C. Kilgo

    2005-01-01

    We found more green tree frogs (Hyla cinera) in canopy gaps than in closed canopy forest. Of the 331 gree ntree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data...

  12. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    NASA Astrophysics Data System (ADS)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-07-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplaying effects of environmental factors and disturbance legacies on forest canopy structure across landscapes are practically unexplored. We used high-fidelity airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistently with previous work linking deep peat to stunted tree growth. Gap Size Frequency Distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and informal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced; the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and the peat deph gradient within the old-growth tropical peat swamp. This relationship breaks down after selective logging, with canopy structural recovery being modulated by environmental conditions.

  13. Detecting tree-fall gap disturbances in tropical rain forests with airborne lidar

    NASA Astrophysics Data System (ADS)

    Espirito-Santo, F. D. B.; Saatchi, S.; Keller, M.

    2017-12-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of tree-fall gap disturbances in natural forests of tropical forests using a novel combination of forest inventory and airborne lidar data. We quantify gap size frequency distribution along vertical and horizontal dimensions in ten Neotropical forest canopies distributed across gradients of climate and landscapes using airborne lidar measurements. We assessed all canopy openings related to each class of tree height which yields a three dimensional structure of the distribution of canopy gaps. Gap frequency distributions from lidar CHM data vary markedly with minimum gap size thresholds, but we found that natural forest disturbances (tree-fall gaps) follow a power-law distribution with narrow range of power-law exponents (-1.2 to -1.3). These power-law exponents from gap frequency distributions provide insights into how natural forest disturbances are distributed over tropical forest landscape.

  14. Tree leaf trade-offs are stronger for sub-canopy trees: leaf traits reveal little about growth rates in canopy trees.

    PubMed

    Wills, Jarrah; Herbohn, John; Hu, Jing; Sohel, Shawkat; Baynes, Jack; Firn, Jennifer

    2018-06-01

    Can morphological plant functional traits predict demographic rates (e.g., growth) within plant communities as diverse as tropical forests? This is one of the most important next-step questions in trait-based ecology and particularly for global reforestation efforts. Due to the diversity of tropical tree species and their longevity, it is difficult to predict their performance prior to reforestation efforts. In this study, we investigate if simple leaf traits are predictors of the more complex ecological process of plant growth in regenerating selectively logged natural forest within the Wet Tropics (WTs) bioregion of Australia. This study used a rich historical data set to quantify tree growth within plots located at Danbulla National Park and State Forest on the Atherton Tableland. Leaf traits were collected from trees that have exhibited fast or slow growth over the last ~50 yr of measurement. Leaf traits were found to be poor predictors of tree growth for trees that have entered the canopy; however, for sub-canopy trees, leaf traits had a stronger association with growth rates. Leaf phosphorus concentrations were the strongest predictor of Periodic Annual Increment (PAI) for trees growing within the sub-canopy, with trees with higher leaf phosphorus levels showing a higher PAI. Sub-canopy tree leaves also exhibited stronger trade-offs between leaf traits and adhere to theoretical predictions more so than for canopy trees. We suggest that, in order for leaf traits to be more applicable to reforestation, size dependence of traits and growth relationships need to be more carefully considered, particularly when reforestation practitioners assign mean trait values to tropical tree species from multiple canopy strata. © 2018 by the Ecological Society of America.

  15. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    NASA Astrophysics Data System (ADS)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our understanding of tropical peat swamp ecology and provide important insights for managers aiming to restore degraded forests.

  16. Building capacity for providing canopy cover and canopy height at FIA plot locations using high-resolution imagery and leaf-off LiDAR

    Treesearch

    Rachel Riemann; Jarlath O' Neil-Dunne; Greg C. Liknes

    2012-01-01

    Tree canopy cover and canopy height information are essential for estimating volume, biomass, and carbon; defining forest cover; and characterizing wildlife habitat. The amount of tree canopy cover also influences water quality and quantity in both rural and urban settings. Tree canopy cover and canopy height are currently collected at FIA plots either in the field or...

  17. Canopy structure on forest lands in western Oregon: differences among forest types and stand ages

    Treesearch

    Anne C.S. McIntosh; Andrew N. Gray; Steven L. Garman

    2009-01-01

    Canopy structure is an important attribute affecting economic and ecological values of forests in the Pacific Northwest. However, canopy cover and vertical layering are rarely measured directly; they are usually inferred from other forest measurements. In this study, we quantified and compared vertical and horizontal patterns of tree canopy structure and understory...

  18. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties

    Treesearch

    Michael Palace; Michael Keller; Gregory P. Asner; Stephen Hagen; Bobby Braswell

    2008-01-01

    We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75◦ S, 48.37◦ W) in the eastern Amazon, and then compared with forest...

  19. [Functional diversity characteristics of canopy tree species of Jianfengling tropical montane rainforest on Hainan Island, China.

    PubMed

    Xu, Ge Xi; Shi, Zuo Min; Tang, Jing Chao; Liu, Shun; Ma, Fan Qiang; Xu, Han; Liu, Shi Rong; Li, Yi de

    2016-11-18

    Based on three 1-hm 2 plots of Jianfengling tropical montane rainforest on Hainan Island, 11 commom used functional traits of canopy trees were measured. After combining with topographical factors and trees census data of these three plots, we compared the impacts of weighted species abundance on two functional dispersion indices, mean pairwise distance (MPD) and mean nearest taxon distance (MNTD), by using single- and multi-dimensional traits, respectively. The relationship between functional richness of the forest canopies and species abundance was analyzed. We used a null model approach to explore the variations in standardized size effects of MPD and MNTD, which were weighted by species abundance and eliminated the influences of species richness diffe-rences among communities, and assessed functional diversity patterns of the forest canopies and their responses to local habitat heterogeneity at community's level. The results showed that variation in MPD was greatly dependent on the dimensionalities of functional traits as well as species abundance. The correlations between weighted and non-weighted MPD based on different dimensional traits were relatively weak (R=0.359-0.628). On the contrary, functional traits and species abundance had relatively weak effects on MNTD, which brought stronger correlations between weighted and non-weighted MNTD based on different dimensional traits (R=0.746-0.820). Functional dispersion of the forest canopies were generally overestimated when using non-weighted MPD and MNTD. Functional richness of the forest canopies showed an exponential relationship with species abundance (F=128.20; R 2 =0.632; AIC=97.72; P<0.001), which might exist a species abundance threshold value. Patterns of functional diversity of the forest canopies based on different dimensional functional traits and their habitat responses showed variations in some degree. Forest canopies in the valley usually had relatively stronger biological competition, and functional diversity was higher than expected functional diversity randomized by null model, which indicated dispersed distribution of functional traits among canopy tree species in this habitat. However, the functional diversity of the forest canopies tended to be close or lower than randomization in the other habitat types, which demonstrated random or clustered distribution of the functional traits among canopy tree species.

  20. Modelisation de l'architecture des forets pour ameliorer la teledetection des attributs forestiers

    NASA Astrophysics Data System (ADS)

    Cote, Jean-Francois

    The quality of indirect measurements of canopy structure, from in situ and satellite remote sensing, is based on knowledge of vegetation canopy architecture. Technological advances in ground-based, airborne or satellite remote sensing can now significantly improve the effectiveness of measurement programs on forest resources. The structure of vegetation canopy describes the position, orientation, size and shape of elements of the canopy. The complexity of the canopy in forest environments greatly limits our ability to characterize forest structural attributes. Architectural models have been developed to help the interpretation of canopy structural measurements by remote sensing. Recently, the terrestrial LiDAR systems, or TLiDAR (Terrestrial Light Detection and Ranging), are used to gather information on the structure of individual trees or forest stands. The TLiDAR allows the extraction of 3D structural information under the canopy at the centimetre scale. The methodology proposed in my Ph.D. thesis is a strategy to overcome the weakness in the structural sampling of vegetation cover. The main objective of the Ph.D. is to develop an architectural model of vegetation canopy, called L-Architect (LiDAR data to vegetation Architecture), and to focus on the ability to document forest sites and to get information on canopy structure from remote sensing tools. Specifically, L-Architect reconstructs the architecture of individual conifer trees from TLiDAR data. Quantitative evaluation of L-Architect consisted to investigate (i) the structural consistency of the reconstructed trees and (ii) the radiative coherence by the inclusion of reconstructed trees in a 3D radiative transfer model. Then, a methodology was developed to quasi-automatically reconstruct the structure of individual trees from an optimization algorithm using TLiDAR data and allometric relationships. L-Architect thus provides an explicit link between the range measurements of TLiDAR and structural attributes of individual trees. L-Architect has finally been applied to model the architecture of forest canopy for better characterization of vertical and horizontal structure with airborne LiDAR data. This project provides a mean to answer requests of detailed canopy architectural data, difficult to obtain, to reproduce a variety of forest covers. Because of the importance of architectural models, L-Architect provides a significant contribution for improving the capacity of parameters' inversion in vegetation cover for optical and lidar remote sensing. Mots-cles: modelisation architecturale, lidar terrestre, couvert forestier, parametres structuraux, teledetection.

  1. Global patterns and determinants of forest canopy height.

    PubMed

    Tao, Shengli; Guo, Qinghua; Li, Chao; Wang, Zhiheng; Fang, Jingyun

    2016-12-01

    Forest canopy height is an important indicator of forest biomass, species diversity, and other ecosystem functions; however, the climatic determinants that underlie its global patterns have not been fully explored. Using satellite LiDAR-derived forest canopy heights and field measurements of the world's giant trees, combined with climate indices, we evaluated the global patterns and determinants of forest canopy height. The mean canopy height was highest in tropical regions, but tall forests (>50 m) occur at various latitudes. Water availability, quantified by the difference between annual precipitation and annual potential evapotranspiration (P-PET), was the best predictor of global forest canopy height, which supports the hydraulic limitation hypothesis. However, in striking contrast with previous studies, the canopy height exhibited a hump-shaped curve along a gradient of P-PET: it initially increased, then peaked at approximately 680 mm of P-PET, and finally declined, which suggests that excessive water supply negatively affects the canopy height. This trend held true across continents and forest types, and it was also validated using forest inventory data from China and the United States. Our findings provide new insights into the climatic controls of the world's giant trees and have important implications for forest management and improvement of forest growth models. © 2016 by the Ecological Society of America.

  2. Microsite controls on tree seedling establishment in conifer forest canopy gaps

    Treesearch

    Andrew N. Gray; Thomas A. Spies

    1997-01-01

    Tree seedling establishment and growth were studied in experimental canopy gaps to assess the effect of heterogeneity of regeneration microsites within and among gaps in mature conifer forests. Seedlings were studied for two years in closed-canopy areas and in recently created gaps ranging in size from 40 to 2000 m2 in four stands of mature (90-...

  3. i-Tree: Tools to assess and manage structure, function, and value of community forests

    NASA Astrophysics Data System (ADS)

    Hirabayashi, S.; Nowak, D.; Endreny, T. A.; Kroll, C.; Maco, S.

    2011-12-01

    Trees in urban communities can mitigate many adverse effects associated with anthropogenic activities and climate change (e.g. urban heat island, greenhouse gas, air pollution, and floods). To protect environmental and human health, managers need to make informed decisions regarding urban forest management practices. Here we present the i-Tree suite of software tools (www.itreetools.org) developed by the USDA Forest Service and their cooperators. This software suite can help urban forest managers assess and manage the structure, function, and value of urban tree populations regardless of community size or technical capacity. i-Tree is a state-of-the-art, peer-reviewed Windows GUI- or Web-based software that is freely available, supported, and continuously refined by the USDA Forest Service and their cooperators. Two major features of i-Tree are 1) to analyze current canopy structures and identify potential planting spots, and 2) to estimate the environmental benefits provided by the trees, such as carbon storage and sequestration, energy conservation, air pollution removal, and storm water reduction. To cover diverse forest topologies, various tools were developed within the i-Tree suite: i-Tree Design for points (individual trees), i-Tree Streets for lines (street trees), and i-Tree Eco, Vue, and Canopy (in the order of complexity) for areas (community trees). Once the forest structure is identified with these tools, ecosystem services provided by trees can be estimated with common models and protocols, and reports in the form of texts, charts, and figures are then created for users. Since i-Tree was developed with a client/server architecture, nationwide data in the US such as location-related parameters, weather, streamflow, and air pollution data are stored in the server and retrieved to a user's computer at run-time. Freely available remote-sensed images (e.g. NLCD and Google maps) are also employed to estimate tree canopy characteristics. As the demand for i-Tree grows internationally, environmental databases from more countries will be coupled with the software suite. Two more i-Tree applications, i-Tree Forecast and i-Tree Landscape are now under development. i-Tree Forecast simulates canopy structures for up to 100 years based on planting and mortality rates and adds capabilities for other i-Tree applications to estimate the benefits of future canopy scenarios. While most i-Tree applications employ a spatially lumped approach, i-Tree landscape employs a spatially distributed approach that allows users to map changes in canopy cover and ecosystem services through time and space. These new i-Tree tools provide an advanced platform for urban managers to assess the impact of current and future urban forests. i-Tree allows managers to promote effective urban forest management and sound arboricultural practices by providing information for advocacy and planning, baseline data for making informed decisions, and standardization for comparisons with other communities.

  4. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees.

    Treesearch

    Frederick C. Meinzer; Shelley A. James; Guillermo Goldstein

    2004-01-01

    In large trees the daily onset of transpiration causes water to be withdrawn from internal storage compartments resulting in lags between changes in transpiration and sap flow at the base of the tree. We measured time courses of sap flow, hydraulic resistance, plant water potential and stomatal resistance in co-occuring tropical forest canopy trees with trunk diameters...

  5. Marine Riparian Vegetation Communities of Puget Sound

    DTIC Science & Technology

    2007-02-01

    species . In areas of frequent disturbance, early successional trees , such as red alder and maple, dominated coastal forests. Douglas fir is currently...sea level to the mountain tops), forest types are broken into zones, represented by the dominant canopy ( tree ) species , or cli- max community, with...Within each zone, there is also vertical stratification of vegetation types, including dominant canopy tree species , understory trees and shrubs, and

  6. Composition and structure of an old-growth floodplain forest of the lower Kaskaskia River

    Treesearch

    John B. Taft

    2003-01-01

    Compositional and structural properties of canopy, shrub/sapling, and ground-cover strata were measured within an old-growth floodplain forest bordering the lower Kaskaskia River in southwestern Illinois. Basal area for trees was estimated at 31.8 m²/ha, tree density was 398 trees/ha with 27 species recorded in the canopy stratum. The dominant tree species...

  7. Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions

    PubMed Central

    Zuidema, Pieter A.; Martínez-Ramos, Miguel

    2009-01-01

    Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees—those that have not attained the canopy—are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests. Electronic supplementary material The online version of this article (doi:10.1007/s00442-009-1540-5) contains supplementary material, which is available to authorized users. PMID:20033820

  8. Light environment under Rhododendron maximum thickets and estimated carbon gain of regenerating forest tree seedlings

    Treesearch

    T.T. Lei; E.T. Nilsen; S.W. Semones

    2006-01-01

    Canopy tree recruitment is inhibited by evergreen shrubs in many forests. In the southern Appalachian mountains of the USA, thickets of Rhododendron maximum L. restrict dominant canopy tree seedling survival and persistence. Using R. maximum as a model system, we examined available light under the thickets and the photosynthetic...

  9. Seven-year responses of trees to experimental hurricane effects in a tropical rainforest, Puerto Rico

    Treesearch

    Jess K. Zimmerman; James Aaron Hogan; Aaron B. Shiels; John E. Bithorn; Samuel Matta Carmona; Nicholas Brokaw

    2014-01-01

    We experimentally manipulated key components of severe hurricane disturbance, canopy openness and detritus deposition, to determine the independent and interactive effects of these components on tree recruitment, forest structure, and diversity in a wet tropical forest in the Luquillo Experimental Forest, Puerto Rico. Canopy openness was increased by trimming branches...

  10. A preliminary report on the measurements of forest canopies with C-band radar scatterometer at NASA/NSTL

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1985-01-01

    This paper presents preliminary results of C-band radar scatterometer measurements of forest canopies of southeastern forests in the vicinity of NASA/NSTL. The results are as follows: (1) the radar backscattering coefficients (BSC) of deciduous forests such as oak, maple, blackgum, and cypress are higher than those of coniferous forests such as slash pine plantation and natural pine; (2) at a large incidence angle, where polarization effect is significant, and by ranging measurement, the VV polarization BSC obtain peak value at the first few meters from the canopy top and decrease rather quickly, while the HH polarization BSC obtain peak value at longer distances from the canopy top and decrease rather slowly through the canopy; and (3) using the active radar calibrator for tree canopy attenuation measurement of a dense and a sparse live oak, it is found that the tree canopies with higher attenuations have higher BSC for all three polarizations, with VV polarization containing the largest differential (2.2 dB).

  11. Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; North, Malcolm P.; Lutz, James A.; Churchill, Derek J.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Kane, Jonathan T.; Brooks, Matthew L.

    2014-01-01

    Mosaics of tree clumps and openings are characteristic of forests dominated by frequent, low- and moderate-severity fires. When restoring these fire-suppressed forests, managers often try to reproduce these structures to increase ecosystem resilience. We examined unburned and burned forest structures for 1937 0.81 ha sample areas in Yosemite National Park, USA. We estimated severity for fires from 1984 to 2010 using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR) and measured openings and canopy clumps in five height strata using airborne LiDAR data. Because our study area lacked concurrent field data, we identified methods to allow structural analysis using LiDAR data alone. We found three spatial structures, canopy-gap, clump-open, and open, that differed in spatial arrangement and proportion of canopy and openings. As fire severity increased, the total area in canopy decreased while the number of clumps increased, creating a patchwork of openings and multistory tree clumps. The presence of openings > 0.3 ha, an approximate minimum gap size needed to favor shade-intolerant pine regeneration, increased rapidly with loss of canopy area. The range and variation of structures for a given fire severity were specific to each forest type. Low- to moderate-severity fires best replicated the historic clump-opening patterns that were common in forests with frequent fire regimes. Our results suggest that managers consider the following goals for their forest restoration: 1) reduce total canopy cover by breaking up large contiguous areas into variable-sized tree clumps and scattered large individual trees; 2) create a range of opening sizes and shapes, including ~ 50% of the open area in gaps > 0.3 ha; 3) create multistory clumps in addition to single story clumps; 4) retain historic densities of large trees; and 5) vary treatments to include canopy-gap, clump-open, and open mosaics across project areas to mimic the range of patterns found for each forest type in our study.

  12. The role of forest floor and trees to the ecosystem scale methane budget of boreal forests

    NASA Astrophysics Data System (ADS)

    Pihlatie, Mari; Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Urban, Otmar; Machacova, Katerina

    2016-04-01

    Boreal forests are considered as a sink of atmospheric methane (CH4) due to the activity of CH4 oxidizing bacteria (methanotrophs) in the soil. This soil CH4 sink is especially strong for upland forest soils, whereas forests growing on organic soils may act as small sources due to the domination of CH4 production by methanogens in the anaerobic parts of the soil. The role of trees to the ecosystem-scale CH4 fluxes has until recently been neglected due to the perception that trees do not contribute to the CH4 exchange, and also due to difficulties in measuring the CH4 exchange from trees. Findings of aerobic CH4 formation in plants and emissions from tree-stems in temperate and tropical forests during the past decade demonstrate that our understanding of CH4 cycling in forest ecosystems is not complete. Especially the role of forest canopies still remain unresolved, and very little is known of CH4 fluxes from trees in boreal region. We measured the CH4 exchange of tree-stems and tree-canopies from pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pubescens, Betula pendula) trees growing in Southern Finland (SMEAR II station) on varying soil conditions, from upland mineral soils to paludified soil. We compared the CH4 fluxes from trees to forest-floor CH4 exchange, both measured by static chambers, and to CH4 fluxes measured above the forest canopy by a flux gradient technique. We link the CH4 fluxes from trees and forest floor to physiological activity of the trees, such as transpiration, sap-flow, CO2 net ecosystem exchange (NEE), soil properties such as temperature and moisture, and to the presence of CH4 producing methanogens and CH4 oxidizing methanotrophs in trees or soil. The above canopy CH4 flux measurements show that the whole forest ecosystem was a small source of CH4 over extended periods in the spring and summer 2012, 2014 and 2015. Throughout the 2013-2014 measurements, the forest floor was in total a net sink of CH4, with variation between high CH4 uptake in the dominating dry upland areas and high emissions from the few wet spots of the forest. All the studied tree species emitted small amounts of CH4 from the stems and shoots, with emission rates depending on the season, tree species and soil conditions. Especially, CH4 emissions from birch canopies were high and can therefore contribute significantly to the ecosystem-scale CH4 fluxes. Processes behind the canopy and stem CH4emission remain unresolved, however, ongoing analysis of the methanogens and methanotrophs within the plant-soil systems will reveal whether CH4 production or consumption is of microbial origin. Also, comparison of the CH4 fluxes from trees and forest floor to sap-flow, transpiration, and NEE as well as soil parameters will help to explain the seasonality and mechanisms involved in the CH4 emissions.

  13. A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests.

    PubMed

    Ibáñez, Beatriz; Gómez-Aparicio, Lorena; Stoll, Peter; Ávila, José M; Pérez-Ramos, Ignacio M; Marañón, Teodoro

    2015-01-01

    In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species' relative abundance and canopy trees' health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into open systems with lower tree cover. Adult canopy decline would therefore represent an additional factor threatening the recruitment of Quercus forests worldwide.

  14. Differential effects of understory and overstory gaps on tree regeneration

    Treesearch

    Brian Beckage; Brian D. Kloppel; J. Alan Yenkley; Sharon F. Taylor; David C. Coleman

    2008-01-01

    Gaps in the forest canopy can increase the diversity of tree regeneration. Understory shrubs also compete with tree seedlings for limited resources and may depress tree recruitment We compared effects of shrub removal and canopy windthrow gups on seedling recruitment and understory resource levels. Shrub removal, with the canopy left intact, was associated with...

  15. Relating FIA data to habitat classifications via tree-based models of canopy cover

    Treesearch

    Mark D. Nelson; Brian G. Tavernia; Chris Toney; Brian F. Walters

    2012-01-01

    Wildlife species-habitat matrices are used to relate lists of species with abundance of their habitats. The Forest Inventory and Analysis Program provides data on forest composition and structure, but these attributes may not correspond directly with definitions of wildlife habitats. We used FIA tree data and tree crown diameter models to estimate canopy cover, from...

  16. The resilience of upland-oak forest canopy trees to chronic and acute precipitation manipulations

    Treesearch

    Paul J. Hanson; Timothy J. Tschaplinski; Stand D. Wullschleger; Donald e. Todd; Robert M. Auge

    2007-01-01

    Abstract—Implications of chronic (±33 percent) and acute (-100 percent) precipitation change were evaluated for trees of upland-oak forests of the eastern United States. Chronic manipulations have been conducted since 1993, and acute manipulations of dominant canopy trees (Quercus prinus; Liriodendron tulipifera) were initiated in 2003. Through 12...

  17. Characterizing the canopy gap structure of a disturbed forest using Fourier transform

    Treesearch

    R. A. Sommerfeld; J. E. Lundquist; J. Smith

    2000-01-01

    Diseases and other small-scale disturbances alter spatial patterns of heterogeneity in forests by killing trees. Canopy gaps caused by tree death are a common feature of forests. Because gaps are caused by different disturbances acting at different times and places, operationally determining the locations of gap edges is often difficult. In this study, digital image...

  18. Canopy rainfall partitioning across an urbanization gradient in forest structure as characterized by terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Mesta, D. C.; Van Stan, J. T., II; Yankine, S. A.; Cote, J. F.; Jarvis, M. T.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    As urbanization expands, greater forest area is shifting from natural stand structures to urban stand structures, like forest fragments and landscaped tree rows. Changes in forest canopy structure have been found to drastically alter the amount of rainwater reaching the surface. However, stormwater management models generally treat all forest structures (beyond needle versus broadleaved) similarly. This study examines the rainfall partitioning of Pinus spp. canopies along a natural-to-urban forest gradient and compares these to canopy structural measurements using terrestrial LiDAR. Throughfall and meteorological observations were also used to estimate parameters of the commonly-used Gash interception model. Preliminary findings indicate that as forest structure changed from natural, closed canopy conditions to semi-closed canopy fragments and, ultimately, to exposed urban landscaping tree rows, the interchange between throughfall and rainfall interception also changed. This shift in partitioning between throughfall and rainfall interception may be linked to intuitive parameters, like canopy closure and density, as well as more complex metrics, like the fine-scale patterning of gaps (ie, lacunarity). Thus, results indicate that not all forests of the same species should be treated the same by stormwater models. Rather, their canopy structural characteristics should be used to vary their hydrometeorological interactions.

  19. [Changes of Forest Canopy Spectral Reflectance with Seasons in Lang Ya Mountains].

    PubMed

    Li, Wei-tao; Peng, Dao-li; Zhang, Yan; Wu, Jian; Chen, Tai-sheng

    2015-08-01

    The physiological mechanism and ecological structure of forest trees can change with the changes of years. In a certain extent, the changes were expressed through the canopy spectral features. The mastery of changing rules about spectral characteristics of trees over the years is benefit to remote sensing interpretation and provide scientific basis for the classification of different trees. The study adopted high-resolution spectrometer to measure the canopy spectral characteristics for seven major deciduous trees and seven evergreen trees to gain the spectrum curve of four different ages and calculate the first derivative curve. The analysis of changing rules about spectral characteristics of different deciduous trees and evergreen trees and the comparison of changes about spectrum of various trees in the visible and infrared band could find the best year and best band for identification of trees. The results showed that the canopy spectral reflectance of deciduous and evergreen trees increases with the increase of age. And the spectral changes of two species were most obvious in the near infrared band.

  20. Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes

    NASA Astrophysics Data System (ADS)

    Meyer, Victoria; Saatchi, Sassan; Clark, David B.; Keller, Michael; Vincent, Grégoire; Ferraz, António; Espírito-Santo, Fernando; d'Oliveira, Marcus V. N.; Kaki, Dahlia; Chave, Jérôme

    2018-06-01

    Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (˜ 25-30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA-AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.

  1. El Niño drought increased canopy turnover in Amazon forests.

    PubMed

    Leitold, Veronika; Morton, Douglas C; Longo, Marcos; Dos-Santos, Maiza Nara; Keller, Michael; Scaranello, Marcos

    2018-03-25

    Amazon droughts, including the 2015-2016 El Niño, may reduce forest net primary productivity and increase canopy tree mortality, thereby altering both the short- and the long-term net forest carbon balance. Given the broad extent of drought impacts, inventory plots or eddy flux towers may not capture regional variability in forest response to drought. We used multi-temporal airborne Lidar data and field measurements of coarse woody debris to estimate patterns of canopy turnover and associated carbon losses in intact and fragmented forests in the central Brazilian Amazon between 2013-2014 and 2014-2016. Average annualized canopy turnover rates increased by 65% during the drought period in both intact and fragmented forests. The average size and height of turnover events was similar for both time intervals, in contrast to expectations that the 2015-2016 El Niño drought would disproportionally affect large trees. Lidar-biomass relationships between canopy turnover and field measurements of coarse woody debris were modest (R 2  ≈ 0.3), given similar coarse woody debris production and Lidar-derived changes in canopy volume from single tree and multiple branch fall events. Our findings suggest that El Niño conditions accelerated canopy turnover in central Amazon forests, increasing coarse woody debris production by 62% to 1.22 Mg C ha -1  yr -1 in drought years . No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  2. Progressive forest canopy water loss during the 2012-2015 California drought.

    PubMed

    Asner, Gregory P; Brodrick, Philip G; Anderson, Christopher B; Vaughn, Nicholas; Knapp, David E; Martin, Roberta E

    2016-01-12

    The 2012-2015 drought has left California with severely reduced snowpack, soil moisture, ground water, and reservoir stocks, but the impact of this estimated millennial-scale event on forest health is unknown. We used airborne laser-guided spectroscopy and satellite-based models to assess losses in canopy water content of California's forests between 2011 and 2015. Approximately 10.6 million ha of forest containing up to 888 million large trees experienced measurable loss in canopy water content during this drought period. Severe canopy water losses of greater than 30% occurred over 1 million ha, affecting up to 58 million large trees. Our measurements exclude forests affected by fire between 2011 and 2015. If drought conditions continue or reoccur, even with temporary reprieves such as El Niño, we predict substantial future forest change.

  3. Combining multiple isotopes and metagenomic to delineate the role of tree canopy nitrification in European forests along nitrogen deposition and climate gradients

    NASA Astrophysics Data System (ADS)

    Guerrieri, R.; Avila, A.; Barceló, A.; Elustondo, D.; Hellstein, S.; Magnani, F.; Mattana, S.; Matteucci, G.; Merilä, P.; Michalski, G. M.; Nicolas, M.; Vanguelova, E.; Verstraeten, A.; Waldner, P.; Watanabe, M.; Penuelas, J.; Mencuccini, M.

    2017-12-01

    Forest canopies influence our climate through carbon, water and energy exchanges with the atmosphere. However, less investigated is whether and how tree canopies change the chemical composition of precipitation, with important implications on forest nutrient cycling. Recently, we provided for the first time isotopic evidence that biological nitrification in tree canopies was responsible for significant changes in the amount of nitrate from rainfall to throughfall across two UK forests at high nitrogen (N) deposition [1]. This finding strongly suggested that bacteria and/or Archaea species of the phyllosphere are responsible for transforming atmospheric N before it reaches the soil. Despite microbial epiphytes representing an important component of tree canopies, attention has been mostly directed to their role as pathogens, while we still do not know whether and how they affect nutrient cycling. Our study aims to 1) characterize microbial communities harboured in tree canopies for two of the most dominant species in Europe (Fagus sylvatica L. and Pinus sylvestris L.) using metagenomic techniques, 2) quantify the functional genes related to nitrification but also to denitrification and N fixation, and 3) estimate the contribution of NO3 derived from biological canopy nitrification vs. atmospheric NO3 input by using δ15N, δ18O and δ17O of NO3in forest water. We considered i) twelve sites included in the EU ICP long term intensive forest monitoring network, chosen along a climate and nitrogen deposition gradient, spanning from Fennoscandia to the Mediterranean and ii) a manipulation experiment where N mist treatments were carried out either to the soil or over tree canopies. We will present preliminary results regarding microbial diversity in the phyllosphere, water (rainfall and throughfall) and soil samples over the gradient. Furthermore, we will report differences between the two investigated tree species for the phyllosphere core microbiome in terms of relative abundance of bacterial and Archaea classes and those species related to N cycling. Finally we will assess whether there are differences among tree species and sites in the number of functional genes related to N cycling and how they are related to the N deposition and/or climate. [1] Guerrieri et al. 2015 Global Change and Biology 21 (12): 4613-4626.

  4. A comparison of three methods for measuring local urban tree canopy cover

    Treesearch

    Kristen L. King; Dexter H. Locke

    2013-01-01

    Measurements of urban tree canopy cover are crucial for managing urban forests and required for the quantification of the benefits provided by trees. These types of data are increasingly used to secure funding and justify large-scale planting programs in urban areas. Comparisons of tree canopy measurement methods have been conducted before, but a rapidly evolving set...

  5. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance

    Treesearch

    E. Freeman; G. Moisen; J. Coulston; B. Wilson

    2014-01-01

    Random forests (RF) and stochastic gradient boosting (SGB), both involving an ensemble of classification and regression trees, are compared for modeling tree canopy cover for the 2011 National Land Cover Database (NLCD). The objectives of this study were twofold. First, sensitivity of RF and SGB to choices in tuning parameters was explored. Second, performance of the...

  6. Challenges to estimating tree height via LiDAR in closed-canopy forest: a parable from western Oregon

    Treesearch

    Demetrios Gatziolis; Jeremy S. Fried; Vicente S. Monleon

    2010-01-01

    We examine the accuracy of tree height estimates obtained via light detection and ranging (LiDAR) in a temperate rainforest characterized by complex terrain, steep slopes, and high canopy cover. The evaluation was based on precise top and base locations for > 1,000 trees in 45 plots distributed across three forest types, a dense network of ground elevation...

  7. Forest canopy structural properties. Chapter 14

    Treesearch

    Marie-Louise Smith; Jeanne Anderson; Matthew Fladeland

    2008-01-01

    The forest canopy is the interface between the land and the atmosphere, fixing atmospheric carbon into biomass and releasing oxygen and water. The arrangement of individual trees, differences in species morphology, the availability of light and soil nutrients, and many other factors determine canopy structure. Overviews of approaches for basic measurements of canopy...

  8. Forest tree species clssification based on airborne hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Dian, Yuanyong; Li, Zengyuan; Pang, Yong

    2013-10-01

    Forest precision classification products were the basic data for surveying of forest resource, updating forest subplot information, logging and design of forest. However, due to the diversity of stand structure, complexity of the forest growth environment, it's difficult to discriminate forest tree species using multi-spectral image. The airborne hyperspectral images can achieve the high spatial and spectral resolution imagery of forest canopy, so it will good for tree species level classification. The aim of this paper was to test the effective of combining spatial and spectral features in airborne hyper-spectral image classification. The CASI hyper spectral image data were acquired from Liangshui natural reserves area. Firstly, we use the MNF (minimum noise fraction) transform method for to reduce the hyperspectral image dimensionality and highlighting variation. And secondly, we use the grey level co-occurrence matrix (GLCM) to extract the texture features of forest tree canopy from the hyper-spectral image, and thirdly we fused the texture and the spectral features of forest canopy to classify the trees species using support vector machine (SVM) with different kernel functions. The results showed that when using the SVM classifier, MNF and texture-based features combined with linear kernel function can achieve the best overall accuracy which was 85.92%. It was also confirm that combine the spatial and spectral information can improve the accuracy of tree species classification.

  9. Whole-tree canopy enclosures: why cage a tree?

    Treesearch

    Jerome F. Grant; Abdul Hakeem; Paris L. Lambdin; Gregory J. Wiggins; Rusty J. Rhea

    2011-01-01

    The use of whole-tree canopy enclosures (i.e., cages) is not a typical approach to assessing biological parameters and interactions in a forest setting. However, the successful application of this technology may enable researchers to better understand certain types of tree/organismal interactions.

  10. Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy Height.

    PubMed

    Xu, Peipei; Zhou, Tao; Yi, Chuixiang; Luo, Hui; Zhao, Xiang; Fang, Wei; Gao, Shan; Liu, Xia

    2018-06-13

    Global climate change is leading to an increase in the frequency, intensity, and duration of drought events, which can affect the functioning of forest ecosystems. Because human activities such as afforestation and forest attributes such as canopy height may exhibit considerable spatial differences, such differences may alter the recovery paths of drought-impacted forests. To accurately assess how climate affects forest recovery, a quantitative evaluation on the effects of forest attributes and their possible interaction with the intensity of water stress is required. Here, forest recovery following extreme drought events was analyzed for Yunnan Province, southwest China. The variation in the recovery of forests with different water availability and canopy heights was quantitatively assessed at the regional scale by using canopy height data based on light detection and ranging (LiDAR) measurements, enhanced vegetation index data, and standardized precipitation evapotranspiration index (SPEI) data. Our results indicated that forest recovery was affected by water availability and canopy height. Based on the enhanced vegetation index measures, shorter trees were more likely to recover than taller ones after drought. Further analyses demonstrated that the effect of canopy height on recovery rates after drought also depends on water availability—the effect of canopy height on recovery diminished as water availability increased after drought. Additional analyses revealed that when the water availability exceeded a threshold (SPEI > 0.85), no significant difference in the recovery was found between short and tall trees ( p > 0.05). In the context of global climate change, future climate scenarios of RCP2.6 and RCP8.5 showed more frequent water stress in Yunnan by the end of the 21st century. In summary, our results indicated that canopy height casts an important influence on forest recovery and tall trees have greater vulnerability and risk to dieback and mortality from drought. These results may have broad implications for policies and practices of forest management.

  11. Forest Trees in Human Modified Landscapes: Ecological and Genetic Drivers of Recruitment Failure in Dysoxylum malabaricum (Meliaceae)

    PubMed Central

    Ismail, Sascha A.; Ghazoul, Jaboury; Ravikanth, Gudasalamani; Kushalappa, Cheppudira G.; Uma Shaanker, Ramanan; Kettle, Chris J.

    2014-01-01

    Tropical agro-forest landscapes are global priority areas for biodiversity conservation. Little is known about the ability of these landscapes to sustain large late successional forest trees upon which much forest biodiversity depends. These landscapes are subject to fragmentation and additional habitat degradation which may limit tree recruitment and thus compromise numerous ecosystem services including carbon storage and timber production. Dysoxylum malabaricum is a large canopy tree species in the Meliaceae, a family including many important tropical timber trees. This species is found in highly fragmented forest patches within a complex agro-forest landscape of the Western Ghats biodiversity hot spot, South India. In this paper we combined a molecular assessment of inbreeding with ecological and demographic data to explore the multiple threats to recruitment of this tree species. An evaluation of inbreeding, using eleven microsatellite loci in 297 nursery-reared seedlings collected form low and high density forest patches embedded in an agro-forest matrix, shows that mating between related individuals in low density patches leads to reduced seedling performance. By quantifying habitat degradation and tree recruitment within these forest patches we show that increasing canopy openness and the increased abundance of pioneer tree species lead to a general decline in the suitability of forest patches for the recruitment of D. malabaricum. We conclude that elevated inbreeding due to reduced adult tree density coupled with increased degradation of forest patches, limit the recruitment of this rare late successional tree species. Management strategies which maintain canopy cover and enhance local densities of adult trees in agro-forest mosaics will be required to ensure D. malabaricum persists in these landscapes. Our study highlights the need for a holistic understanding of the incipient processes that threaten populations of many important and rare tropical tree species in human dominated agro-forest landscapes. PMID:24558500

  12. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone

    Treesearch

    David W. Peterson; Peter B. Reich

    2008-01-01

    Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...

  13. Does Rhododendron maximum L. (Ericaceae) Reduce the Availibility of Resources Above and Belowground for Canopy Tree Seedlings?

    Treesearch

    E.T. Nilsen; B.D. Clinton; T.T. Lei; O.K. Miller; S.W. Semones; J.F. Walker

    2000-01-01

    Subcanopy shrubs and perennial herbs inhibit recruitment of canopy trees in forests around the world. Although this phenomenon is widespread, and can have significant effects on community dynamics, the mechanisms of inhibition are not well understood. In the southern Appalachian region, Rhododendron maximum inhibits the recruitment of canopy trees...

  14. Web-FACE: a new canopy free-air CO2 enrichment system for tall trees in mature forests.

    PubMed

    Pepin, Steeve; Körner, Christian

    2002-09-01

    The long-term responses of forests to atmospheric CO2 enrichment have been difficult to determine experimentally given the large scale and complex structure of their canopy. We have developed a CO2 exposure system that uses the free-air CO2 enrichment (FACE) approach but was designed for tall canopy trees. The system consists of a CO2-release system installed within the crown of adult trees using a 45-m tower crane, a CO2 monitoring system and an automated regulation system. Pure CO2 gas is released from a network of small tubes woven into the forest canopy (web-FACE), and CO2 is emitted from small laser-punched holes. The set point CO2 concentration ([CO2]) of 500 µmol mol(-1) is controlled by a pulse-width modulation routine that adjusts the rate of CO2 injection as a function of measured [CO2] in the canopy. CO2 consumption for the enrichment of 14 tall canopy trees was about 2 tons per day over the whole growing season. The seasonal daytime mean CO2 concentration was 520 µmol mol(-1). One-minute averages of CO2 measurements conducted at canopy height in the center of the CO2-enriched zone were within ±20% and ±10% of the target concentration for 76% and 47% of the exposure time, respectively. Despite the size of the canopy and the windy site conditions, performance values correspond to about 75% of that reported for conventional forest FACE with the added advantage of a much simpler and less intrusive infrastructure. Stable carbon isotope signals captured by 80 Bermuda grass (Cynodon dactylon) seedlings distributed within the canopy of treated and control tree districts showed a clearly delineated area, with some nearby individuals having been exposed to a gradient of [CO2], which is seen as added value. Time-integrated values of [CO2] derived from the C isotope composition of C. dactylon leaves indicated a mean (±SD) concentration of 513±63 µmol mol(-1) in the web-FACE canopy area. In view of the size of the forest and the rough natural canopy, web-FACE is a most promising avenue towards natural forest experiments, which are greatly needed.

  15. Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest

    Treesearch

    Andrew N. Gray; Thomas A. Spies; Robert J. Pabst

    2012-01-01

    Canopy gaps created by tree mortality can affect the speed and trajectory of vegetation growth. Species’ population dynamics, and spatial heterogeneity in mature forests. Most studies focus on plant development within gaps, yet gaps also affect the mortality and growth of surrounding trees, which influence shading and root encroachment into gaps and determine whether,...

  16. Multiresolution quantification of deciduousness in West-Central African forests

    NASA Astrophysics Data System (ADS)

    Viennois, G.; Barbier, N.; Fabre, I.; Couteron, P.

    2013-11-01

    The characterization of leaf phenology in tropical forests is of major importance for forest typology as well as to improve our understanding of earth-atmosphere-climate interactions or biogeochemical cycles. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West-Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data were averaged over the wet and dry seasons to provide a data set of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye) and high (SPOT-5) spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry-season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in West-Central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and carbon-cycle applications.

  17. Changes in composition, structure and aboveground biomass over seventy-six years (1930-2006) in the Black Rock Forest, Hudson Highlands, southeastern New York State.

    PubMed

    Schuster, W S F; Griffin, K L; Roth, H; Turnbull, M H; Whitehead, D; Tissue, D T

    2008-04-01

    We sought to quantify changes in tree species composition, forest structure and aboveground forest biomass (AGB) over 76 years (1930-2006) in the deciduous Black Rock Forest in southeastern New York, USA. We used data from periodic forest inventories, published floras and a set of eight long-term plots, along with species-specific allometric equations to estimate AGB and carbon content. Between the early 1930s and 2000, three species were extirpated from the forest (American elm (Ulmus americana L.), paper birch (Betula papyrifera Marsh.) and black spruce (Picea mariana (nigra) (Mill.) BSP)) and seven species invaded the forest (non-natives tree-of-heaven (Ailanthus altissima (Mill.) Swingle) and white poplar (Populus alba L.) and native, generally southerly distributed, southern catalpa (Catalpa bignonioides Walt.), cockspur hawthorn (Crataegus crus-galli L.), red mulberry (Morus rubra L.), eastern cottonwood (Populus deltoides Bartr.) and slippery elm (Ulmus rubra Muhl.)). Forest canopy was dominated by red oak and chestnut oak, but the understory tree community changed substantially from mixed oak-maple to red maple-black birch. Density decreased from an average of 1500 to 735 trees ha(-1), whereas basal area doubled from less than 15 m(2) ha(-1) to almost 30 m(2) ha(-1) by 2000. Forest-wide mean AGB from inventory data increased from about 71 Mg ha(-1) in 1930 to about 145 Mg ha(-1) in 1985, and mean AGB on the long-term plots increased from 75 Mg ha(-1) in 1936 to 218 Mg ha(-1) in 1998. Over 76 years, red oak (Quercus rubra L.) canopy trees stored carbon at about twice the rate of similar-sized canopy trees of other species. However, there has been a significant loss of live tree biomass as a result of canopy tree mortality since 1999. Important constraints on long-term biomass increment have included insect outbreaks and droughts.

  18. Sustainable development and use of ecosystems with non-forest trees

    USDA-ARS?s Scientific Manuscript database

    Non-forest trees are components of managed ecosystems including orchards and agroforestry systems and natural ecosystems such as savannas and riparian corridors. Each of these ecosystems includes trees but does not have a complete tree canopy or spatial extent necessary to create a true forest ecosy...

  19. Comparing alternative tree canopy cover estimates derived from digital aerial photography and field-based assessments

    Treesearch

    Tracey S. Frescino; Gretchen G. Moisen

    2012-01-01

    A spatially-explicit representation of live tree canopy cover, such as the National Land Cover Dataset (NLCD) percent tree canopy cover layer, is a valuable tool for many applications, such as defining forest land, delineating wildlife habitat, estimating carbon, and modeling fire risk and behavior. These layers are generated by predictive models wherein their accuracy...

  20. What's scale got to do with it? Models for urban tree canopy

    Treesearch

    Dexter H. Locke; Shawn M. Landry; Morgan Grove; Rinku Roy Chowdhury

    2016-01-01

    The uneven provisioning of ecosystem services has important policy implications; yet the spatial heterogeneity of tree canopy remains understudied. Private residential lands are important to the future of Philadelphia’s urban forest because a majority of the existing and possible tree canopy is located on residential land uses. This article examines the spatial...

  1. Prediction of forest canopy and surface fuels from Lidar and satellite time series data in a bark beetle-affected forest

    USGS Publications Warehouse

    Bright, Benjamin C.; Hudak, Andrew T.; Meddens, Arjan J.H.; Hawbaker, Todd J.; Briggs, Jenny S.; Kennedy, Robert E.

    2017-01-01

    Wildfire behavior depends on the type, quantity, and condition of fuels, and the effect that bark beetle outbreaks have on fuels is a topic of current research and debate. Remote sensing can provide estimates of fuels across landscapes, although few studies have estimated surface fuels from remote sensing data. Here we predicted and mapped field-measured canopy and surface fuels from light detection and ranging (lidar) and Landsat time series explanatory variables via random forest (RF) modeling across a coniferous montane forest in Colorado, USA, which was affected by mountain pine beetles (Dendroctonus ponderosae Hopkins) approximately six years prior. We examined relationships between mapped fuels and the severity of tree mortality with correlation tests. RF models explained 59%, 48%, 35%, and 70% of the variation in available canopy fuel, canopy bulk density, canopy base height, and canopy height, respectively (percent root-mean-square error (%RMSE) = 12–54%). Surface fuels were predicted less accurately, with models explaining 24%, 28%, 32%, and 30% of the variation in litter and duff, 1 to 100-h, 1000-h, and total surface fuels, respectively (%RMSE = 37–98%). Fuel metrics were negatively correlated with the severity of tree mortality, except canopy base height, which increased with greater tree mortality. Our results showed how bark beetle-caused tree mortality significantly reduced canopy fuels in our study area. We demonstrated that lidar and Landsat time series data contain substantial information about canopy and surface fuels and can be used for large-scale efforts to monitor and map fuel loads for fire behavior modeling at a landscape scale.

  2. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia

    PubMed Central

    Singh, Minerva; Evans, Damian; Coomes, David A.; Friess, Daniel A.; Suy Tan, Boun; Samean Nin, Chan

    2016-01-01

    This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual trees, and the top of the canopy height (TCH). Two different statistical approaches, log-log ordinary least squares (OLS) and support vector regression (SVR), were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha). Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS). Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests. PMID:27176218

  3. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia.

    PubMed

    Singh, Minerva; Evans, Damian; Coomes, David A; Friess, Daniel A; Suy Tan, Boun; Samean Nin, Chan

    2016-01-01

    This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual trees, and the top of the canopy height (TCH). Two different statistical approaches, log-log ordinary least squares (OLS) and support vector regression (SVR), were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha). Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS). Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests.

  4. Extracting forest canopy structure from spatial information of high resolution optical imagery: tree crown size versus leaf area index

    Treesearch

    C. Song; M.B. Dickinson

    2008-01-01

    Leaves are the primary interface where energy, water and carbon exchanges occur between the forest ecosystems and the atmosphere. Leaf area index (LAI) is a measure of the amount of leaf area in a stand, and the tree crown size characterizes how leaves are clumped in the canopy. Both LAI and tree crown size are of essential ecological and management value. There is a...

  5. Understory and small trees contribute importantly to stemflow of a lower montane cloud forest

    NASA Astrophysics Data System (ADS)

    González Martínez, T. M.; Wiliams-Linera, G.; Holwerda, F.

    2016-12-01

    Stemflow (Sf) measurements in rainforests and montane forests dominated by large trees rarely include the understory and small trees. In the present study, contributions of woody understory (> 1 m height and < 5 cm DBH), small trees (5 < DBH < 10 cm) and upper canopy trees (> 10 cm DBH) to overall Sf of a lower montane cloud forest in central Veracruz, Mexico, were quantified. Incident precipitation (P), Sf volume and vegetation structure were measured. Subsequently, stemflow funneling ratios (SFR) were calculated, and allometric relationships between tree basal area and Sf volume were used to scale up measurements from individual trees to the stand level. Additionally, two other common methods to calculate areal Sf were used for comparative purposes. Understory woody plants, small trees and upper canopy trees represented 96, 2 and 2 %, respectively, of the total density. Upper canopy trees had the lowest SFRs (1.6 ± 0.5 on average), while the lower understory (> 1 m and < 2 m height) had the highest (36.1 ± 6.4). Small trees and upper understory (> 2 m) presented similar SFRs (22.9 ± 5.4 and 20.2 ± 3.9, respectively). Different scaling methods yielded very similar results for all but the upper understory. Overall areal Sf during the study period was 19 mm (3.8 % of rainfall), to which the understory contributed 66.3 % (12.6 mm), small trees 12.6 % (2.4 mm) and upper canopy trees 21.1 % (4.0 mm). Our results suggest that woody understory vegetation and small trees can have an important role in Sf generation of tall humid tropical forests, provided that the density of plants in these groups is high enough.

  6. Evidence for substantial forestry canopy processing of nitrogen deposition using isotopic tracer experiments in low deposition conditions

    NASA Astrophysics Data System (ADS)

    Ferraretto, Daniele; Heal, Kate

    2017-04-01

    Temperate forest ecosystems are significant sinks for nitrogen deposition (Ndep) yielding benefits such as protection of waterbodies from eutrophication and enhanced sequestration of atmospheric CO2. Previous studies have shown evidence of biological nitrification and Ndep processing and retention in forest canopies. However, this was reported only at sites with high environmental or experimentally enhanced rates of Ndep (˜18 kg N ha-1 y-1) and has not yet been demonstrated in low Ndep environments. We have used bulk field hydrochemical measurements and labelled isotopic experiments to assess canopy processing in a lower Ndep environment (˜7 kg N ha-1 year-1) at a Sitka spruce plantation in Perthshire, Scotland, representing the dominant tree species (24%) in woodlands in Great Britain. Analysis of 4.5 years of measured N fluxes in rainfall (RF) and fogwater onto the canopy and throughfall (TF) and stemflow (SF) below the canopy suggests strong transformation and uptake of Ndep in the forest canopy. Annual canopy Ndep uptake was ˜4.7 kg N ha-1 year-1, representing 60-76% of annual Ndep. To validate these plot-scale results and track N uptake within the forest canopy in different seasons, double 15N-labelled NH4NO3 (98%) solution was sprayed in summer and winter onto the canopy of three trees at the measurement site. RF, TF and SF samples have been collected and analysed for 15NH4 and 15NO3. Comparing the amount of labelled N recovered under the sample trees with the measured δ15N signal is expected to provide further evidence of the role of forest canopies in actively processing and retaining atmospheric N deposition.

  7. Unsupervised individual tree crown detection in high-resolution satellite imagery

    DOE PAGES

    Skurikhin, Alexei N.; McDowell, Nate G.; Middleton, Richard S.

    2016-01-26

    Rapidly and accurately detecting individual tree crowns in satellite imagery is a critical need for monitoring and characterizing forest resources. We present a two-stage semiautomated approach for detecting individual tree crowns using high spatial resolution (0.6 m) satellite imagery. First, active contours are used to recognize tree canopy areas in a normalized difference vegetation index image. Given the image areas corresponding to tree canopies, we then identify individual tree crowns as local extrema points in the Laplacian of Gaussian scale-space pyramid. The approach simultaneously detects tree crown centers and estimates tree crown sizes, parameters critical to multiple ecosystem models. Asmore » a demonstration, we used a ground validated, 0.6 m resolution QuickBird image of a sparse forest site. The two-stage approach produced a tree count estimate with an accuracy of 78% for a naturally regenerating forest with irregularly spaced trees, a success rate equivalent to or better than existing approaches. In addition, our approach detects tree canopy areas and individual tree crowns in an unsupervised manner and helps identify overlapping crowns. Furthermore, the method also demonstrates significant potential for further improvement.« less

  8. Unsupervised individual tree crown detection in high-resolution satellite imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skurikhin, Alexei N.; McDowell, Nate G.; Middleton, Richard S.

    Rapidly and accurately detecting individual tree crowns in satellite imagery is a critical need for monitoring and characterizing forest resources. We present a two-stage semiautomated approach for detecting individual tree crowns using high spatial resolution (0.6 m) satellite imagery. First, active contours are used to recognize tree canopy areas in a normalized difference vegetation index image. Given the image areas corresponding to tree canopies, we then identify individual tree crowns as local extrema points in the Laplacian of Gaussian scale-space pyramid. The approach simultaneously detects tree crown centers and estimates tree crown sizes, parameters critical to multiple ecosystem models. Asmore » a demonstration, we used a ground validated, 0.6 m resolution QuickBird image of a sparse forest site. The two-stage approach produced a tree count estimate with an accuracy of 78% for a naturally regenerating forest with irregularly spaced trees, a success rate equivalent to or better than existing approaches. In addition, our approach detects tree canopy areas and individual tree crowns in an unsupervised manner and helps identify overlapping crowns. Furthermore, the method also demonstrates significant potential for further improvement.« less

  9. Multiresolution quantification of deciduousness in West Central African forests

    NASA Astrophysics Data System (ADS)

    Viennois, G.; Barbier, N.; Fabre, I.; Couteron, P.

    2013-04-01

    The characterization of leaf phenology in tropical forests is of major importance and improves our understanding of earth-atmosphere-climate interactions. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data were averaged over the wet and dry seasons to provide a dataset of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye) and high (SPOT-5) spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in west central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and carbon-cycle applications.

  10. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests.

    PubMed

    Joly, François-Xavier; Milcu, Alexandru; Scherer-Lorenzen, Michael; Jean, Loreline-Katia; Bussotti, Filippo; Dawud, Seid Muhie; Müller, Sandra; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Vesterdal, Lars; Hättenschwiler, Stephan

    2017-05-01

    Different tree species influence litter decomposition directly through species-specific litter traits, and indirectly through distinct modifications of the local decomposition environment. Whether these indirect effects on decomposition are influenced by tree species diversity is presently not clear. We addressed this question by studying the decomposition of two common substrates, cellulose paper and wood sticks, in a total of 209 forest stands of varying tree species diversity across six major forest types at the scale of Europe. Tree species richness showed a weak but positive correlation with the decomposition of cellulose but not with that of wood. Surprisingly, macroclimate had only a minor effect on cellulose decomposition and no effect on wood decomposition despite the wide range in climatic conditions among sites from Mediterranean to boreal forests. Instead, forest canopy density and stand-specific litter traits affected the decomposition of both substrates, with a particularly clear negative effect of the proportion of evergreen tree litter. Our study suggests that species richness and composition of tree canopies modify decomposition indirectly through changes in microenvironmental conditions. These canopy-induced differences in the local decomposition environment control decomposition to a greater extent than continental-scale differences in macroclimatic conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Induced spatial heterogeneity in forest canopies: responses of small mammals.

    Treesearch

    A.B. Carey

    2001-01-01

    We hypothesized that creating a mosaic of interspersed patches of different densities of canopy trees in a second-growth Douglas-fir (Pseudotsuga menziesiz) forest would accelerate development of biocomplexity (diversity in ecosystem structure, composition, and processes) by promoting spatial heterogeneity in understory, midstory, and canopy,...

  12. Opportunities and challenges to conserve water on the landscape in snow-dominated forests: The quest for the radiative minima and more...

    NASA Astrophysics Data System (ADS)

    Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.

    2012-12-01

    In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity, but the exact configuration will be highly spatially variable. Development of management strategies to conserve water on the landscape to enhance forest and riparian health in a changing climate must also rigorously evaluate the effects of canopy thinning and specific hydrometeorological conditions on net radiation, turbulent fluxes, and snow interception processes.

  13. Investigating the Relationships between Canopy Characteristics and Snow Depth Distribution at Fine Scales: Preliminary Results from the SnowEX TLS Campaign

    NASA Astrophysics Data System (ADS)

    Glenn, N. F.; Uhlmann, Z.; Spaete, L.; Tennant, C.; Hiemstra, C. A.; McNamara, J.

    2017-12-01

    Predicting changes in forested seasonal snowpacks under altered climate scenarios is one of the most pressing hydrologic challenges facing today's society. Airborne- and satellite-based remote sensing methods hold the potential to transform measurements of terrestrial water stores in snowpack, improve process representations of snowpack accumulation and ablation, and to generate high quality predictions that inform potential strategies to better manage water resources. While the effects of forest on snowpack are well documented, many of the fine-scale processes influenced by the forest-canopy are not directly accounted for because most snow models don't explicitly represent canopy structure and canopy heterogeneity. This study investigates the influence of forest canopy on snowpack distribution at fine scales and quantifies the influence of canopy heterogeneity on snowpack accumulation and ablation processes. We use terrestrial laser scanning (TLS) data collected during the SnowEX campaign to discover how the relationships between canopy and snow distributions change across scales. Our sample scales range from individual trees to patches of trees across the Grand Mesa, CO, SnowEx site.

  14. Explaining biomass growth of tropical canopy trees: the importance of sapwood.

    PubMed

    van der Sande, Masha T; Zuidema, Pieter A; Sterck, Frank

    2015-04-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass growth for 43 tropical canopy trees belonging to four species, in a moist forest in Bolivia. Biomass growth varied strongly among trees, between 17.3 and 367.3 kg year(-1), with an average of 105.4 kg year(-1). We found that variation in biomass growth was chiefly explained by a positive effect of SA, and not by tree size or other traits examined. SA itself was positively associated with sapwood growth, sapwood lifespan and basal area. We speculate that SA positively affects the growth of individual trees mainly by increasing water storage, thus securing water supply to the crown. These positive roles of sapwood on growth apparently offset the increased respiration costs incurred by more sapwood. This is one of the first individual-based studies to show that variation in sapwood traits-and not crown traits-explains variation in growth among tropical canopy trees. Accurate predictions of C dynamics in tropical forests require similar studies on biomass growth of individual trees as well as studies evaluating the dual effect of sapwood (water provision vs. respiratory costs) on tropical tree growth.

  15. Case study: Rainfall partitioning across a natural-to-urban forest gradient during an extreme rain event

    NASA Astrophysics Data System (ADS)

    Akin, B. H.; Van Stan, J. T., II; Cote, J. F.; Jarvis, M. T.; Underwood, J.; Friesen, J.; Hildebrandt, A.; Maldonado, G.

    2017-12-01

    Trees' partitioning of rainfall is an important first process along the rainfall-to-runoff pathway that has economically significant influences on urban stormwater management. However, important knowledge gaps exist regarding (1) its role during extreme storms and (2) how this role changes as forest structure is altered by urbanization. Little research has been conducted on canopy rainfall partitioning during large, intense storms, likely because canopy water storage is rapidly overwhelmed (i.e., 1-3 mm) by short duration events exceeding, for example, 80 mm of rainfall. However, canopy structure controls more than just storage; it also affects the time for rain to drain to the surface (becoming throughfall) and the micrometeorological conditions that drive wet canopy evaporation. In fact, observations from an example extreme ( 100 mm with maximum 5-minute intensities exceeding 55 mm/h) storm across a urban-to-natural gradient in pine forests in southeast Georgia (USA), show that storm intensities were differentially dampened by 33% (tree row), 28% (forest fragment), and 17% (natural forests). In addition, maximum wet canopy evaporation rates were higher for the exposed tree row (0.18 mm/h) than for the partially-enclosed fragment canopy (0.14 mm/h) and the closed canopy natural forest site (0.11). This resulted in interception percentages decreasing from urban-to-natural stand structures (25% to 16%). A synoptic analysis of the extreme storm in this case study also shows that the mesoscale meteorological conditions that developed the heavy rainfall is expected to occur more often with projected climate changes.

  16. From open to closed canopy: A century of change in Douglas-fir forest, Orcas Island, Washington

    USGS Publications Warehouse

    Peterson, D.L.; Hammer, R.D.

    2001-01-01

    During the past century, forest structure on south-facing slopes of Mount Constitution, Orcas Island, Washington, has changed from open-grown Douglas-fir (Pseudotsuga menziesii) mixed with prairie to primarily closed canopy forest. Density of open-grown Douglas-fir was approximately 7 stems/ha in the 19th century, while current density of trees in closed-canopy mature forest is 426 stems/ha. Trees occur at intermediate densities in areas of transition from savanna-like stands to closed canopy. Analysis of fire scars indicates that at least seven fires have occurred on Mount Constitution since 1736, but only one fire has occurred since 1893, which suggests that the recent increase in stem density has been caused primarily by fire exclusion. The high stem densities currently found in this landscape put the relict (120-350+ years old) Douglas-fir at risk from contemporary fires, which would likely be high-intensity crown fires. Given the transition of forests on Orcas Island during the 20th century to closed canopy structure, undisturbed open-grown coniferous forest is now extremely rare in the San Juan Islands.

  17. Fine-scale habitat use by orang-utans in a disturbed peat swamp forest, central Kalimantan, and implications for conservation management.

    PubMed

    Morrogh-Bernard, Helen C; Husson, Simon J; Harsanto, Fransiskus A; Chivers, David J

    2014-01-01

    This study was conducted to see how orang-utans (Pongo pygmaeus wurmbii) were coping with fine-scale habitat disturbance in a selectively logged peat swamp forest in Central Kalimantan, Borneo. Seven habitat classes were defined, and orang-utans were found to use all of these, but were selective in their preference for certain classes over others. Overall, the tall forest classes (≥20 m) were preferred. They were preferred for feeding, irrespective of canopy connectivity, whereas classes with a connected canopy (canopy cover ≥75%), irrespective of canopy height, were preferred for resting and nesting, suggesting that tall trees are preferred for feeding and connected canopy for security and protection. The smaller forest classes (≤10 m high) were least preferred and were used mainly for travelling from patch to patch. Thus, selective logging is demonstrated here to be compatible with orang-utan survival as long as large food trees and patches of primary forest remain. Logged forest, therefore, should not automatically be designated as 'degraded'. These findings have important implications for forest management, forest classification and the designation of protected areas for orang-utan conservation.

  18. Disturbance, life history traits, and dynamics in an old-growth forest landscape of southeastern Europe.

    PubMed

    Nagel, Thomas A; Svoboda, Miroslav; Kobal, Milan

    2014-06-01

    Much of our understanding of natural forest dynamics in the temperate region of Europe is based on observational studies in old-growth remnants that have emphasized small-scale gap dynamics and equilibrium stand structure and composition. Relatively little attention has been given to the role of infrequent disturbance events in forest dynamics. In this study, we analyzed dendroecological data from four stands and three windthrow patches in an old-growth landscape in the Dinaric Mountains of Bosnia and Herzegovina to examine disturbance history, tree life history traits, and compositional dynamics. Over all stands, most decades during the past 340 years experienced less than 10% canopy loss, yet each stand showed evidence of periodic intermediate-severity disturbances that removed > 40% of the canopy, some of which were synchronized over the study area landscape. Analysis of radial growth patterns indicated several life history differences among the dominant canopy trees; beech was markedly older than fir, while growth patterns of dead and dying trees suggested that fir was able to tolerate longer periods of suppressed growth in shade. Maple had the fastest radial growth and accessed the canopy primarily through rapid early growth in canopy gaps, whereas most beech and fir experienced a period of suppressed growth prior to canopy accession. Peaks in disturbance were roughly linked to increased recruitment, but mainly of shade-tolerant beech and fir; less tolerant species (i.e., maple, ash, and elm) recruited successfully on some of the windthown sites where advance regeneration of beech and fir was less abundant. The results challenge the traditional notions of stability in temperate old-growth forests of Europe and highlight the nonequilibrial nature of canopy composition due to unique histories of disturbance and tree life history differences. These findings provide valuable information for developing natural disturbance-based silvicultural systems, as well as insight into maintaining less shade-tolerant, but valuable broadleaved trees in temperate forests of Europe.

  19. Reconstruction of forest geometries from terrestrial laser scanning point clouds for canopy radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Bremer, Magnus; Schmidtner, Korbinian; Rutzinger, Martin

    2015-04-01

    The architecture of forest canopies is a key parameter for forest ecological issues helping to model the variability of wood biomass and foliage in space and time. In order to understand the nature of subpixel effects of optical space-borne sensors with coarse spatial resolution, hypothetical 3D canopy models are widely used for the simulation of radiative transfer in forests. Thereby, radiation is traced through the atmosphere and canopy geometries until it reaches the optical sensor. For a realistic simulation scene we decompose terrestrial laser scanning point cloud data of leaf-off larch forest plots in the Austrian Alps and reconstruct detailed model ready input data for radiative transfer simulations. The point clouds are pre-classified into primitive classes using Principle Component Analysis (PCA) using scale adapted radius neighbourhoods. Elongated point structures are extracted as tree trunks. The tree trunks are used as seeds for a Dijkstra-growing procedure, in order to obtain single tree segmentation in the interlinked canopies. For the optimized reconstruction of branching architectures as vector models, point cloud skeletonisation is used in combination with an iterative Dijkstra-growing and by applying distance constraints. This allows conducting a hierarchical reconstruction preferring the tree trunk and higher order branches and avoiding over-skeletonization effects. Based on the reconstructed branching architectures, larch needles are modelled based on the hierarchical level of branches and the geometrical openness of the canopy. For radiative transfer simulations, branch architectures are used as mesh geometries representing branches as cylindrical pipes. Needles are either used as meshes or as voxel-turbids. The presented workflow allows an automatic classification and single tree segmentation in interlinked canopies. The iterative Dijkstra-growing using distance constraints generated realistic reconstruction results. As the mesh representation of branches proved to be sufficient for the simulation approach, the modelling of huge amounts of needles is much more efficient in voxel-turbid representation.

  20. Assessing alternative measures of tree canopy cover: Photo-interpreted NAIP and ground-based estimates

    Treesearch

    Chris Toney; Greg Liknes; Andy Lister; Dacia Meneguzzo

    2012-01-01

    In preparation for the development of the National Land Cover Database (NLCD) 2011 tree canopy cover layer, a pilot project for research and method development was completed in 2010 by the USDA Forest Service Forest Inventory and Analysis (FIA) program and Remote Sensing Applications Center (RSAC).This paper explores one of several topics investigated during the NLCD...

  1. Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest

    Treesearch

    Christel C. Kern; Rebecca A. Montgomery; Peter B. Reich; Terry F. Strong

    2013-01-01

    The Gap Partitioning Hypothesis (GPH) posits that gaps create heterogeneity in resources crucial for tree regeneration in closed-canopy forests, allowing trees with contrasting strategies to coexist along resource gradients. Few studies have examined gap partitioning of temperate, ground-layer vascular plants. We used a ground-layer plant community of a temperate...

  2. Growing Canopy on a College Campus: Understanding Urban Forest Change through Archival Records and Aerial Photography.

    PubMed

    Roman, Lara A; Fristensky, Jason P; Eisenman, Theodore S; Greenfield, Eric J; Lundgren, Robert E; Cerwinka, Chloe E; Hewitt, David A; Welsh, Caitlin C

    2017-12-01

    Many municipalities are setting ambitious tree canopy cover goals to increase the extent of their urban forests. A historical perspective on urban forest development can help cities strategize how to establish and achieve appropriate tree cover targets. To understand how long-term urban forest change occurs, we examined the history of trees on an urban college campus: the University of Pennsylvania in Philadelphia, PA. Using a mixed methods approach, including qualitative assessments of archival records (1870-2017), complemented by quantitative analysis of tree cover from aerial imagery (1970-2012), our analysis revealed drastic canopy cover increase in the late 20th and early 21st centuries along with the principle mechanisms of that change. We organized the historical narrative into periods reflecting campus planting actions and management approaches; these periods are also connected to broader urban greening and city planning movements, such as City Beautiful and urban sustainability. University faculty in botany, landscape architecture, and urban design contributed to the design of campus green spaces, developed comprehensive landscape plans, and advocated for campus trees. A 1977 Landscape Development Plan was particularly influential, setting forth design principles and planting recommendations that enabled the dramatic canopy cover gains we observed, and continue to guide landscape management today. Our results indicate that increasing urban tree cover requires generational time scales and systematic management coupled with a clear urban design vision and long-term commitments. With the campus as a microcosm of broader trends in urban forest development, we conclude with a discussion of implications for municipal tree cover planning.

  3. Growing Canopy on a College Campus: Understanding Urban Forest Change through Archival Records and Aerial Photography

    NASA Astrophysics Data System (ADS)

    Roman, Lara A.; Fristensky, Jason P.; Eisenman, Theodore S.; Greenfield, Eric J.; Lundgren, Robert E.; Cerwinka, Chloe E.; Hewitt, David A.; Welsh, Caitlin C.

    2017-12-01

    Many municipalities are setting ambitious tree canopy cover goals to increase the extent of their urban forests. A historical perspective on urban forest development can help cities strategize how to establish and achieve appropriate tree cover targets. To understand how long-term urban forest change occurs, we examined the history of trees on an urban college campus: the University of Pennsylvania in Philadelphia, PA. Using a mixed methods approach, including qualitative assessments of archival records (1870-2017), complemented by quantitative analysis of tree cover from aerial imagery (1970-2012), our analysis revealed drastic canopy cover increase in the late 20th and early 21st centuries along with the principle mechanisms of that change. We organized the historical narrative into periods reflecting campus planting actions and management approaches; these periods are also connected to broader urban greening and city planning movements, such as City Beautiful and urban sustainability. University faculty in botany, landscape architecture, and urban design contributed to the design of campus green spaces, developed comprehensive landscape plans, and advocated for campus trees. A 1977 Landscape Development Plan was particularly influential, setting forth design principles and planting recommendations that enabled the dramatic canopy cover gains we observed, and continue to guide landscape management today. Our results indicate that increasing urban tree cover requires generational time scales and systematic management coupled with a clear urban design vision and long-term commitments. With the campus as a microcosm of broader trends in urban forest development, we conclude with a discussion of implications for municipal tree cover planning.

  4. Using Remote Sensing Technologies to Quantify the Effects of Beech Bark Disease on the Structure, Composition, and Function of a Late-Successional Forest

    NASA Astrophysics Data System (ADS)

    Stuart-Haëntjens, E. J.; Ricart, R. D.; Fahey, R. T.; Fotis, A. T.; Gough, C. M.

    2016-12-01

    Ecological theory maintains that as forests age, the rate at which carbon (C) is stored declines because C released through organic matter decomposition offsets declining C sequestration in new vegetative growth. Recent observational studies are challenging this long-held hypothesis, with limited evidence suggesting higher-than-expected rates in late-successional forests could be, counterintuitively, tied to canopy structural changes associated with low intensity tree mortality. As forests age, canopy structural complexity may increase when old trees die and form upper canopy gaps that release subcanopy vegetation. This provides one explanation for observations of sustained high production in old forests. Recent studies have found that this increased structural complexity and resource-use efficiency maintain C storage in mid-successional deciduous forests; whether a similar mechanism extends to late-successional forests is unknown. We will present how a slow, moderate disturbance affects the structure and C sequestration of late-successional forests. Our study site is a forest recently infected by Beech Bark Disease (BBD), which will result in the eventual mortality of American beech trees in this late successional forest in Northern Michigan, at the University of Michigan Biological Station. American Beech, Hemlock, Sugar Maple, and White Pine dominate the landscape, with American Beech making up 30% of the canopy trees on average. At the plot scale American Beech is distributed heterogeneously, comprising 1% to 60% of total plot basal area, making it possible to examine the interplay between disturbance severity, canopy structural change, and primary production resilience in this forest. Within each of the 13 plots, species and stem diameter were collected in 1992, 1994, 2014, and 2016, with future remeasurements planned. We will discuss how ground-based lidar coupled with airborne spectral (IR and RGB) imagery are being used to track canopy BBD-related structural changes over time and space, and to link structural changes with late-successional primary production. Our hypothesis is that, up to a presently unknown disturbance threshold, moderate disturbance from BBD sustains primary production in this late successional forest by partially, but not fully, rewinding ecological succession.

  5. Assessing urban forest effects and values, Chicago's urban forest

    Treesearch

    David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Jack C. Stevens; Cherie Leblanc Fisher

    2010-01-01

    An analysis of trees in Chicago, IL, reveals that this city has about 3,585,000 trees with canopies that cover 17.2 percent of the area. The most common tree species are white ash, mulberry species, green ash, and tree-of-heaven. Chicago's urban forest currently stores about 716,000 tons of carbon...

  6. Hydrological and biogeochemical variation of stemflow from live, stressed, and dead codominant deciduous canopy trees

    NASA Astrophysics Data System (ADS)

    Frost, E. E.; Levia, D. F.

    2011-12-01

    Stemflow, a critical localized point source of both water and nutrients in forested ecosystems, was examined as a function of species and mortality in a mid-Atlantic deciduous forest. Thirty trees across two species, Fagus grandifolia [American beech] and Liriodendron tulipifera [yellow poplar], and three mortality classes, live, stressed, and dead, were sampled and analyzed on an event basis for one year. Significant interspecific differences in volume and nutrient content of stemflow were found that were attributable to differences in canopy structure between the species. Funneling ratios across all three mortality classes were significantly different for F. grandifolia and between dead and live/stressed classes for L. tulipifera. Stemflow volumes from the dead trees of both species were a fraction of that from live and stressed trees. This was attributable to increased relative water storage capacities, canopy crown position, and the lack of surface area contributing to stemflow generation in upper canopy. Concentrations of nutrients in stemflow from dead trees were significantly higher than those found in both live and stressed stems for most nutrients analyzed. Enrichment ratios from dead stems were generally lower given the reduced volumes observed. Given the multi-decadal impact of standing dead trees in forest ecosystems and the uncertainty of changes in morality patterns in forests, additional research is warranted to further quantify the hydrobiochemical impact of stemflow from dying stems over their entire lifecycle.

  7. The effect of canopy closure on chimpanzee nest abundance in Lagoas de Cufada National Park, Guinea-Bissau.

    PubMed

    Sousa, Joana; Casanova, Catarina; Barata, André V; Sousa, Cláudia

    2014-04-01

    The present study aimed to gather baseline information about chimpanzee nesting and density in Lagoas de Cufada Natural Park (LCNP), in Guinea-Bissau. Old and narrow trails were followed to estimate chimpanzee density through marked-nest counts and to test the effect of canopy closure (woodland savannah, forest with a sparse canopy, and forest with a dense canopy) on nest distribution. Chimpanzee abundance was estimated at 0.79 nest builders/km(2), the lowest among the areas of Guinea-Bissau with currently studied chimpanzee populations. Our data suggest that sub-humid forest with a dense canopy accounts for significantly higher chimpanzee nest abundance (1.50 nests/km of trail) than sub-humid forest with a sparse canopy (0.49 nests/km of trail) or woodland savannah (0.30 nests/km of trail). Dense-canopy forests play an important role in chimpanzee nesting in the patchy and highly humanized landscape of LCNP. The tree species most frequently used for nesting are Dialium guineense (46%) and Elaeis guineensis (28%). E. guineensis contain nests built higher in the canopy, while D. guineense contain nests built at lower heights. Nests observed during baseline sampling and replications suggest seasonal variations in the tree species used for nest building.

  8. Exotic weeds and fluctuating microclimate can constrain native plant regeneration in urban forest restoration.

    PubMed

    Wallace, K J; Laughlin, Daniel C; Clarkson, Bruce D

    2017-06-01

    Restoring forest structure and composition is an important component of urban land management, but we lack clear understanding of the mechanisms driving restoration success. Here we studied two indicators of restoration success in temperate rainforests: native tree regeneration and epiphyte colonization. We hypothesized that ecosystem properties such as forest canopy openness, abundance of exotic herbaceous weeds, and the microclimate directly affect the density and diversity of native tree seedlings and epiphytes. Relationships between environmental conditions and the plant community were investigated in 27 restored urban forests spanning 3-70 years in age and in unrestored and remnant urban forests. We used structural equation modelling to determine the direct and indirect drivers of native tree regeneration and epiphyte colonization in the restored forests. Compared to remnant forest, unrestored forest had fewer native canopy tree species, significantly more light reaching the forest floor annually, and higher exotic weed cover. Additionally, epiphyte density was lower and native tree regeneration density was marginally lower in the unrestored forests. In restored forests, light availability was reduced to levels found in remnant forests within 20 years of restoration planting, followed shortly thereafter by declines in herbaceous exotic weeds and reduced fluctuation of relative humidity and soil temperatures. Contrary to expectations, canopy openness was only an indirect driver of tree regeneration and epiphyte colonization, but it directly regulated weed cover and microclimatic fluctuations, both of which directly drove the density and richness of regeneration and epiphyte colonization. Epiphyte density and diversity were also positively related to forest basal area, as large trees provide physical habitat for colonization. These results imply that ecosystem properties change predictably after initial restoration plantings, and that reaching critical thresholds in some ecosystem properties makes conditions suitable for the regeneration of late successional species, which is vital for restoration success and long-term ecosystem sustainability. Abiotic and biotic conditions that promote tree regeneration and epiphyte colonization will likely be present in forests with a basal area ≥27 m 2 /ha. We recommend that urban forest restoration plantings be designed to promote rapid canopy closure to reduce light availability, suppress herbaceous weeds, and stabilize the microclimate. © 2017 by the Ecological Society of America.

  9. A Black Swan and Sub-continental Scale Dynamics in Humid, Late-Holocene Broadleaf Forests

    NASA Astrophysics Data System (ADS)

    Pederson, N.; Dyer, J.; McEwan, R.; Hessl, A. E.; Mock, C. J.; Orwig, D.; Rieder, H. E.; Cook, B. I.

    2012-12-01

    In humid regions with dense broadleaf-dominated forests where gap-dynamics is the prevailing disturbance regime, paleoecological evidence shows regional-scale changes in forest composition associated with climatic change. To investigate the potential for regional events in late-Holocene forests, we use tree-ring data from 76 populations covering 840,000 km2 and 5.3k tree recruitment dates spanning 1.4 million km2 in the eastern US to investigate the occurrence of simultaneous forest dynamics across a humid region. We compare regional forest dynamics with an independent set of annually-resolved tree ring record of hydroclimate to examine whether climate dynamics might drive forest dynamics in this humid region. In forests where light availability is an important limitation for tree recruitment, we document a pulse of tree recruitment during the mid- to late-1600s across the eastern US. This pulse, which can be inferred as large-scale canopy opening, occurred during an era that multiple proxies indicate as extended drought between two intense pluvial. Principal component analysis of the 76 populations indicates a step-change increase in average ring width during the late-1770s resembling a potential canopy accession event over 42,800 km2 of the southeastern US. Growth-release analysis of populations loading strongly on this eigenvector indicates severe canopy disturbance from 1775-1779 that peaked in 1776. The 1776 event follows a period with extended droughts and severe large-scale frost event. We hypothesize these climatic events lead to elevated tree mortality in the late-1770s and canopy accession for understory trees. Superposed epoch analysis reveals that spikes of elevated canopy disturbance from 1685-1850 CE are significantly associated with drought. Extreme value theory statistics indicates the 1776 event lies beyond the 99.9 quantile and nearly 7 sigmas above the 1685-1850 mean rate of disturbance. The time-series of canopy disturbance from 1685-1850 is so poorly described by a Gaussian distribution that it can be considered 'heavy tailed'. Preliminary results show that disturbance events that affect >3-5% of the trees in our dataset occur approximately every 200 years. The most extreme rates (>5%) occur approximately every 500-1000 years. These statistics indicate that the 1775-1779 heavy-tail event can also be considered a 'Black Swan', the rare event that has the potential to alter a system's trajectory further than common events. Our results challenge traditional views regarding characteristic disturbance regime in humid temperate forests, and speak to the importance of punctuated climatic events in shaping forest structure for centuries. Such an understanding is critical given the potential of more frequent extreme climatic events in the future.

  10. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.

    2013-01-01

    While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.

  11. Canopy structure of tropical and sub-tropical rain forests in relation to conifer dominance analysed with a portable LIDAR system

    PubMed Central

    Aiba, Shin-ichiro; Akutsu, Kosuke; Onoda, Yusuke

    2013-01-01

    Background and Aims Globally, conifer dominance is restricted to nutient-poor habitats in colder, drier or waterlogged environments, probably due to competition with angiosperms. Analysis of canopy structure is important for understanding the mechanism of plant coexistence in relation to competition for light. Most conifers are shade intolerant, and often have narrow, deep, conical crowns. In this study it is predicted that conifer-admixed forests have less distinct upper canopies and more undulating canopy surfaces than angiosperm-dominated forests. Methods By using a ground-based, portable light detection and ranging (LIDAR) system, canopy structure was quantified for old-growth evergreen rainforests with varying dominance of conifers along altitudinal gradients (200–3100 m a.s.l.) on tropical and sub-tropical mountains (Mount Kinabalu, Malaysian Borneo and Yakushima Island, Japan) that have different conifer floras. Key Results Conifers dominated at higher elevations on both mountains (Podocarpaceae and Araucariaceae on Kinabalu and Cupressaceae and Pinaceae on Yakushima), but conifer dominance also varied with soil/substrate conditions on Kinabalu. Conifer dominance was associated with the existence of large-diameter conifers. Forests with higher conifer dominance showed a canopy height profile (CHP) more skewed towards the understorey on both Kinabalu and Yakushima. In contrast, angiosperm-dominated forests had a CHP skewed towards upper canopy, except for lowland dipterocarp forests and a sub-alpine scrub dominated by small-leaved Leptospermum recurvum (Myrtaceae) on Kinabalu. Forests with a less dense upper canopy had more undulating outer canopy surfaces. Mixed conifer–angiosperm forests on Yakushima and dipterocarp forests on Kinabalu showed similar canopy structures. Conclusions The results generally supported the prediction, suggesting that lower growth of angiosperm trees (except L. recurvum on Kinabalu) in cold and nutrient-poor environments results in a sparser upper canopy, which allows shade-intolerant conifers to co-occur with angiosperm trees either as emergents or as codominants in the open canopy. PMID:24197751

  12. Canopy structure of tropical and sub-tropical rain forests in relation to conifer dominance analysed with a portable LIDAR system.

    PubMed

    Aiba, Shin-ichiro; Akutsu, Kosuke; Onoda, Yusuke

    2013-12-01

    Globally, conifer dominance is restricted to nutient-poor habitats in colder, drier or waterlogged environments, probably due to competition with angiosperms. Analysis of canopy structure is important for understanding the mechanism of plant coexistence in relation to competition for light. Most conifers are shade intolerant, and often have narrow, deep, conical crowns. In this study it is predicted that conifer-admixed forests have less distinct upper canopies and more undulating canopy surfaces than angiosperm-dominated forests. By using a ground-based, portable light detection and ranging (LIDAR) system, canopy structure was quantified for old-growth evergreen rainforests with varying dominance of conifers along altitudinal gradients (200-3100 m a.s.l.) on tropical and sub-tropical mountains (Mount Kinabalu, Malaysian Borneo and Yakushima Island, Japan) that have different conifer floras. Conifers dominated at higher elevations on both mountains (Podocarpaceae and Araucariaceae on Kinabalu and Cupressaceae and Pinaceae on Yakushima), but conifer dominance also varied with soil/substrate conditions on Kinabalu. Conifer dominance was associated with the existence of large-diameter conifers. Forests with higher conifer dominance showed a canopy height profile (CHP) more skewed towards the understorey on both Kinabalu and Yakushima. In contrast, angiosperm-dominated forests had a CHP skewed towards upper canopy, except for lowland dipterocarp forests and a sub-alpine scrub dominated by small-leaved Leptospermum recurvum (Myrtaceae) on Kinabalu. Forests with a less dense upper canopy had more undulating outer canopy surfaces. Mixed conifer-angiosperm forests on Yakushima and dipterocarp forests on Kinabalu showed similar canopy structures. The results generally supported the prediction, suggesting that lower growth of angiosperm trees (except L. recurvum on Kinabalu) in cold and nutrient-poor environments results in a sparser upper canopy, which allows shade-intolerant conifers to co-occur with angiosperm trees either as emergents or as codominants in the open canopy.

  13. Non-timber forest products: alternative multiple-uses for sustainable forest management

    Treesearch

    James L. Chamberlain; Mary Predny

    2003-01-01

    Forests of the southern United States are the source of a great diversity of flora, much of which is gathered for non-timber forest products (NTFPs). These products are made from resources that grow under the forest canopy as trees, herbs, shrubs, vines, moss and even lichen. They occur naturally in forests or may be cultivated under the forest canopy or in...

  14. Distribution of Carbon Uptake Capacity of Plant Functional Groups Across the Canopy Gradient in Old-Growth Tropical Wet Forest in Costa Rica

    NASA Astrophysics Data System (ADS)

    Oberbauer, S. F.; Cruz, H. O.; Ryan, M. G.; Clark, D. B.; Clark, D. A.; Olivas, P.

    2004-12-01

    Because of the difficulties of accessing leaves within tree crowns, little is known about the photosynthetic capacity of different functional groups within tropical rain forest canopies. To address this deficiency, we measured photosynthetic capacity (Amax) in situ along vertical transects through old-growth forest canopy using a mobile walkup tower at the La Selva Biological Station in Costa Rica. We asked: What groups are responsible for most C-fixation and at what height in the canopy does most C-fixation occur? Photosynthesis (using a LI-COR Li-6400) and total leaf area were measured for all vascular plant species encountered within the tower footprint (4.6 m2). Plants were grouped into trees, palms, ferns, lianas, epiphytes, herbs, Pentaclethra macroloba (the dominant canopy tree), and vines. Amax values differed among functional groups. The ranking of Amax among the groups was trees > P. macroloba > palms > lianas > vines > epiphytes > herbs > ferns. Trees and P. macroloba had the highest photosynthetic rates, but the maximum rates occur at different heights. Amax of P. macroloba increases with canopy height to a maximum 10.3 \\mumol m-2 s-1 at 17.5 m. Amax of trees increases with canopy height (r2 = 0.77) and attains the highest Amax at 32.5 m (10.6 \\mumol m-2 s-1). Palms and lianas presented similar patterns of Amax. However, lianas reach the canopy top whereas palms are shorter and were not observed above 27.5 m. The maximum photosynthetic rates for both groups were: lianas 9.2 \\mumol m-2 s-1 at 27.5 m and palms 9.6 \\mumol m-2 s-1 at 17.5 m. By scaling the functional group Amax values with their leaf area, we estimated that most of the photosynthetic capacity occurs between 17.5 m and 37.5 m and is attributed mainly to trees, followed by P. macroloba and then lianas.

  15. Enhanced light use efficiency as a mechanism for forest carbon storage resilience following disturbance

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Hardiman, B. S.; Bohrer, G.; Maurer, K.; Nave, L. E.; Vogel, C. S.; Curtis, P.; University of Michigan Biological Station Forest Ecosystem STudy (FEST) Team

    2011-12-01

    Disturbances to forests such as those caused by herbivory, wind, pathogens, and age-related mortality may subtly alter canopy structure, with variable consequences for carbon (C) cycling. Forest C storage resilience following disturbance in which only a fraction of the canopy is defoliated may depend upon canopy structural shifts that compensate for lost leaf area by improving the efficiency of light-use by the altered canopy. In a forest at the University of Michigan Biological Station that is regionally representative of the northern Great Lakes, we initiated an experiment that examines forest C storage following subtle canopy disturbance. The Forest Accelerated Succession ExperimenT (FASET), in which >6,700 aspen and birch trees (~35 % LAI) were stem girdled within a 39 ha area, is investigating how C storage changes as Great Lakes forests broadly undergo a transition in which early successional canopy trees die and give way to an assemblage of later successional canopy dominants. The experiment employs a suite of paired C cycling measurements within separate treatment and control meteorological flux tower footprints. Forest carbon storage, quantified as annual net ecosystem production (NEP) and net primary production (NPP), was resilient to partial canopy defoliation, with rapid structural changes improving canopy light-use efficiency (LUE). Declining aspen and birch leaf area was offset by new foliar growth from later successional species already present in the canopy; however, the distribution of foliage within the canopy became more heterogeneous following disturbance as patchy aspen and birch mortality produced gaps and the vertical structure of the forest diversified. These canopy structural alterations prompted by small-scale patchy disturbance may have permitted deeper light penetration into the canopy, decreasing the fraction of absorbed photosynthetically active radiation (PAR) while increasing the efficiency in which absorbed light was used to drive canopy C uptake. The result was little change in forest C storage in the first several years following disturbance. We conclude that forest C storage resilience depends not only on replacement of lost leaf area, but also on shifts in forest structure that permit greater efficiency of light-use to drive C storage. These findings suggest that structural changes in the canopy should be considered in addition to trajectories of leaf area recovery when predicting the extent and duration of disturbance-related shifts in forest C storage.

  16. Individual tree detection from Unmanned Aerial Vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest

    Treesearch

    Midhun Mohan; Carlos Alberto Silva; Carine Klauberg; Prahlad Jat; Glenn Catts; Adrian Cardil; Andrew Thomas Hudak; Mahendra Dia

    2017-01-01

    Advances in Unmanned Aerial Vehicle (UAV) technology and data processing capabilities have made it feasible to obtain high-resolution imagery and three dimensional (3D) data which can be used for forest monitoring and assessing tree attributes. This study evaluates the applicability of low consumer grade cameras attached to UAVs and structure-from-motion (SfM)...

  17. A long-term study of tree seedling recruitment in Southern Appalachian forests: the effects of canopy gaps and shrub understories

    Treesearch

    Brian Beckage; James S. Clark; Barton D. Clinton; Bruce L. Haines

    2000-01-01

    We examined the importance of intermediate-sized gaps and a dense shrub layer on tree seedling recruitment in a Southern Appalachian deciduous forest. We created 12 canopy gaps under two contrasting understory conditions: 6 gaps were dominated by the dense, shade-producing shrub, Rhododendron maximum L., while the remaining gaps were relatively open...

  18. Axial and radial water transport and internal water storage in tropical forest canopy trees.

    Treesearch

    Shelley A. James; Frederick C. Meinzer; Guillermo Goldstein; David Woodruff; Timothy Jones; Teresa Restom; Monica Mejia; Michael Clearwater; Paula Campanello

    2003-01-01

    Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single...

  19. Components of ecosystem evaporation in a temperate coniferous rainforest, with canopy transpiration scaled using sapwood density.

    PubMed

    Barbour, M M; Hunt, J E; Walcroft, A S; Rogers, G N D; McSeveny, T M; Whitehead, D

    2005-02-01

    Here we develop and test a method to scale sap velocity measurements from individual trees to canopy transpiration (E(c)) in a low-productivity, old-growth rainforest dominated by the conifer Dacrydium cupressinum. Further, E(c) as a component of the ecosystem water balance is quantified in relation to forest floor evaporation rates and measurements of ecosystem evaporation using eddy covariance (E(eco)) in conditions when the canopy was dry and partly wet. Thermal dissipation probes were used to measure sap velocity of individual trees, and scaled to transpiration at the canopy level by dividing trees into classes based on sapwood density and canopy position (sheltered or exposed). When compared with ecosystem eddy covariance measurements, E(c) accounted for 51% of E(eco) on dry days, and 22% of E(eco) on wet days. Low transpiration rates, and significant contributions to E(eco) from wet canopy evaporation and understorey transpiration (35%) and forest floor evaporation (25%), were attributable to the unique characteristics of the forest: in particular, high rainfall, low leaf area index, low stomatal conductance and low productivity associated with severe nutrient limitation.

  20. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.

    PubMed

    Shirima, Deo D; Pfeifer, Marion; Platts, Philip J; Totland, Ørjan; Moe, Stein R

    2015-01-01

    We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental gradients and disturbance in African forests and woodlands.

  1. Restoration of temperate savannas and woodlands

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  2. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa

    USGS Publications Warehouse

    Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-01-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.

  3. Vines and canopy contact: a route for snake predation on parrot nests.

    Treesearch

    SUSAN E. KOENIG; JOSEPH M. WUNDERLE; ERNESTO C. ENKERLINHOEFLICH

    2007-01-01

    Ornithologists have hypothesized that some tropical forest birds avoid snake predation by nesting in isolated trees that do not have vines and canopy contact with neighbouring trees. Here we review two complementary studies that support this hypothesis by demonstrating (1) that an abundance of vines and an interlocking canopy characterized Jamaican Black-billed Parrot...

  4. Non-timber forest products enterprises in the south: perceived distribution and implications for sustainable forest management

    Treesearch

    J.L. Chamberlain; M. Predny

    2003-01-01

    Forests of the southern United States are the source of a great diversity of flora, much of which is gathered to produce non-timber forest products (NTFPs). These products are made from resources that grow under the forest canopy as trees, herbs, shrubs, vines, moss and even lichen. They occur naturally in forests or may be cultivated under the forest canopy or in...

  5. Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees

    Treesearch

    Sybil G. Gotsch; Erika L. Geiger; Augusto C. Franco; Guillermo Goldstein; Frederick C. Meinzer; William A. Hoffmann

    2010-01-01

    Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to...

  6. Forest service contributions to the national land cover database (NLCD): Tree Canopy Cover Production

    Treesearch

    Bonnie Ruefenacht; Robert Benton; Vicky Johnson; Tanushree Biswas; Craig Baker; Mark Finco; Kevin Megown; John Coulston; Ken Winterberger; Mark Riley

    2015-01-01

    A tree canopy cover (TCC) layer is one of three elements in the National Land Cover Database (NLCD) 2011 suite of nationwide geospatial data layers. In 2010, the USDA Forest Service (USFS) committed to creating the TCC layer as a member of the Multi-Resolution Land Cover (MRLC) consortium. A general methodology for creating the TCC layer was reported at the 2012 FIA...

  7. Stand conditions associated with tree regeneration in sierran mixed-conifer forests.

    Treesearch

    Andrew N. Gray; Harold S.J. Zald; Ruth A. Kern; Malcolm North

    2005-01-01

    Fire suppression has significantly increased canopy cover, litter depth, and stem density in many western forests, altering microsite conditions that affect tree seedling establishment. We conducted studies in a mixed-conifer forest in the Sierra Nevada, California, to determine relationships between established understory trees and microsite quality, and to examine...

  8. Analyzing the uncertainties in use of forest-derived biomass equations for open-grown trees in agricultural land

    Treesearch

    Xinhua Zhou; Michele M. Schoeneberger; James R. Brandle; Tala N. Awada; Jianmin Chu; Derrel L. Martin; Jihong Li; Yuqiang Li; Carl W. Mize

    2014-01-01

    Quantifying carbon in agroforestry trees requires biomass equations that capture the growth differences (e.g., tree specific gravity and architecture) created in the more open canopies of agroforestry plantings compared with those generally encountered in forests. Whereas forest-derived equations are available, equations for open-grown trees are not. Data from...

  9. Biodiversity Meets the Atmosphere: A Global View of Forest Canopies

    Treesearch

    C. M. P. Ozanne; D. Anhuf; S. L. Boulter; M. Keller; R. L. Kitching; C. Korner; F. C. Meinzer; A. W. Mitchell; T. Nakashizuka; P. L. Silva Dias; N. E. Stork; S. J. Wright; M Yoshimura

    2003-01-01

    The forest canopy is the functional interface between 90% of Earth’s terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change...

  10. Use of the forest canopy by bats.

    Treesearch

    L. Wunder; A.B. Carey

    1994-01-01

    Of the 15 species of bats in the Pacific Northwest, 11 are known to make regular use of the forest canopy for roosting, foraging, and reproduction. This paper reviews roosting requirements, foraging, and the importance of landscape-scale factors to canopy using species in the Northwest. Many northwest bats use several different types of tree roosts. Common roosting...

  11. Field guide to red tree vole nests

    Treesearch

    Damon B. Lesmeister; James K. Swingle

    2017-01-01

    Surveys for red tree vole (Arborimus longicaudus) nests require tree climbing because the species is a highly specialized arboreal rodent that live in the tree canopy of coniferous forests in western Oregon and northwestern California. Tree voles are associated with old coniferous forest (≥80 years old) that are structurally complex, but are often...

  12. Modeling of forest canopy BRDF using DIRSIG

    NASA Astrophysics Data System (ADS)

    Rengarajan, Rajagopalan; Schott, John R.

    2016-05-01

    The characterization and temporal analysis of multispectral and hyperspectral data to extract the biophysical information of the Earth's surface can be significantly improved by understanding its aniosotropic reflectance properties, which are best described by a Bi-directional Reflectance Distribution Function (BRDF). The advancements in the field of remote sensing techniques and instrumentation have made hyperspectral BRDF measurements in the field possible using sophisticated goniometers. However, natural surfaces such as forest canopies impose limitations on both the data collection techniques, as well as, the range of illumination angles that can be collected from the field. These limitations can be mitigated by measuring BRDF in a virtual environment. This paper presents an approach to model the spectral BRDF of a forest canopy using the Digital Image and Remote Sensing Image Generation (DIRSIG) model. A synthetic forest canopy scene is constructed by modeling the 3D geometries of different tree species using OnyxTree software. The field collected spectra from the Harvard forest is used to represent the optical properties of the tree elements. The canopy radiative transfer is estimated using the DIRSIG model for specific view and illumination angles to generate BRDF measurements. A full hemispherical BRDF is generated by fitting the measured BRDF to a semi-empirical BRDF model. The results from fitting the model to the measurement indicates a root mean square error of less than 5% (2 reflectance units) relative to the forest's reflectance in the VIS-NIR-SWIR region. The process can be easily extended to generate a spectral BRDF library for various biomes.

  13. (abstract) Characterization of Tree Water Status and Dielectric Constant Changes of North American Boreal Forests in Combination with Synthetic Aperture Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Zimmerman, R.; Way, J. B.

    1994-01-01

    The occurrence and magnitude of temporal and spatial tree water status changes in the boreal environment were studied in a floodplain forest in Alaska and in four forest types of Central Canada. Under limited water supply conditions from the rooted soil zone in early spring (freeze/thaw transition) and during summer, trees show declining water potentials. Coincidental change in tree water potential, tree transpiration and tree dielectric constant had been observed in previous studies performed in Mediterranean ecotones. If radar is sensitive to chances in tree water status as reflected through changes in dielectric constant, then radar remote sensing could be used to monitor the water status of forests. The SAR imagery is examined to determine the response of the radar backscatter to the ground based observations of the water status of forest canopies. Comparisons are made between stands and also along the large North-South gradient between sites. Data from SAR are used to examine the radar response to canopy physiological state as related to vegetation freeze/thaw and growing season length.

  14. Physical attributes of some clouds amid a forest ecosystem's trees

    USGS Publications Warehouse

    DeFelice, Thomas P.

    2002-01-01

    Cloud or fog water collected by forest canopies of any elevation could represent significant sources of required moisture and nutrients for forest ecosystems, human consumption, and as an alternative source of water for agriculture and domestic use. The physical characteristics of fogs and other clouds have been well studied, and this information can be useful to water balance or canopy–cloud interaction model verification and to calibration or training of satellite-borne sensors to recognize atmospheric attributes, such as optical thickness, albedo, and cloud properties. These studies have taken place above-canopy or within canopy clearings and rarely amid the canopy. Simultaneous physical and chemical characteristics of clouds amid and above the trees of a mountain forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the physical characteristics of the cloud portions amid the trees. The characteristic cloud amid the trees (including cloud and precipitation periods) contained 250 droplet/cm3 with a mean diameter of 9.5 μm and liquid water content (LWC) of 0.11 g m−3. The cloud droplets exhibited a bimodal distribution with modes at about 2 and 8 μm and a mean diameter near 5 μm during precipitation-free periods, whereas the concurrent above-canopy cloud droplets had a unimodal distribution with a mode near 6 μm and a mean diameter of 6 μm. The horizontal cloud water flux is nonlinearly related to the rate of collection onto that surface amid the trees, especially for the Atmospheric Sciences Research Center (ASRC) sampling device, whereas it is linear when the forward scattering spectrometer probe (FSSP) are is used. These findings suggest that statements about the effects clouds have on surfaces they encounter, which are based on above-canopy or canopy-clearing data, can be misleading, if not erroneous.

  15. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest.

    PubMed

    Inoue, Yuta; Ichie, Tomoaki; Kenzo, Tanaka; Yoneyama, Aogu; Kumagai, Tomo'omi; Nakashizuka, Tohru

    2017-10-01

    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf water relations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Tree density and permafrost thaw depth influence water limitations on stomatal conductance in Siberian Arctic boreal forests

    NASA Astrophysics Data System (ADS)

    Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.

    2017-12-01

    Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.

  17. Exploring links between greenspace and sudden unexpected death: A spatial analysis.

    PubMed

    Wu, Jianyong; Rappazzo, Kristen M; Simpson, Ross J; Joodi, Golsa; Pursell, Irion W; Mounsey, J Paul; Cascio, Wayne E; Jackson, Laura E

    2018-04-01

    Greenspace has been increasingly recognized as having numerous health benefits. However, its effects are unknown concerning sudden unexpected death (SUD), commonly referred to as sudden cardiac death, which constitutes a large proportion of mortality in the United States. Because greenspace can promote physical activity, reduce stress and buffer air pollutants, it may have beneficial effects for people at risk of SUD, such as those with heart disease, hypertension, and diabetes mellitus. Using several spatial techniques, this study explored the relationship between SUD and greenspace. We adjudicated 396 SUD cases that occurred from March 2013 to February 2015 among reports from emergency medical services (EMS) that attended out-of-hospital deaths in Wake County (central North Carolina, USA). We measured multiple greenspace metrics in each census tract, including the percentages of forest, grassland, average tree canopy, tree canopy diversity, near-road tree canopy and greenway density. The associations between SUD incidence and these greenspace metrics were examined using Poisson regression (non-spatial) and Bayesian spatial models. The results from both models indicated that SUD incidence was inversely associated with both greenway density (adjusted risk ratio [RR] = 0.82, 95% credible/ confidence interval [CI]: 0.69-0.97) and the percentage of forest (adjusted RR = 0.90, 95% CI: 0.81-0.99). These results suggest that increases in greenway density by 1 km/km 2 and in forest by 10% were associated with a decrease in SUD risk of 18% and 10%, respectively. The inverse relationship was not observed between SUD incidence and other metrics, including grassland, average tree canopy, near-road tree canopy and tree canopy diversity. This study implies that greenspace, specifically greenways and forest, may have beneficial effects for people at risk of SUD. Further studies are needed to investigate potential causal relationships between greenspace and SUD, and potential mechanisms such as promoting physical activity and reducing stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest

    PubMed Central

    Wang, Yunsheng; Weinacker, Holger; Koch, Barbara

    2008-01-01

    A procedure for both vertical canopy structure analysis and 3D single tree modelling based on Lidar point cloud is presented in this paper. The whole area of research is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tree canopy layers and the height ranges of the layers are detected according to a statistical analysis of the height distribution probability of the normalized raw points. For the 3D modelling of individual trees, individual trees are detected and delineated not only from the top canopy layer but also from the sub canopy layer. The normalized points are resampled into a local voxel space. A series of horizontal 2D projection images at the different height levels are then generated respect to the voxel space. Tree crown regions are detected from the projection images. Individual trees are then extracted by means of a pre-order forest traversal process through all the tree crown regions at the different height levels. Finally, 3D tree crown models of the extracted individual trees are reconstructed. With further analyses on the 3D models of individual tree crowns, important parameters such as crown height range, crown volume and crown contours at the different height levels can be derived. PMID:27879916

  19. Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment

    PubMed Central

    Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351

  20. Restoration of temperate savannas and woodlands [Chapter 11

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  1. Models for estimation and simulation of crown and canopy cover

    Treesearch

    John D. Shaw

    2005-01-01

    Crown width measurements collected during Forest Inventory and Analysis and Forest Health Monitoring surveys are being used to develop individual tree crown width models and plot-level canopy cover models for species and forest types in the Intermountain West. Several model applications are considered in the development process, including remote sensing of plot...

  2. Assessing urban forest effects and values, Philladelphia's urban forest

    Treesearch

    David J. Nowak; Robert E., III Hoehn; Daniel E. Crane; Jack C. Stevens; Jeffrey T. Walton

    2007-01-01

    An analysis of trees in Philadelphia reveals that this city has about 2.1 million trees with canopies that cover 15.7 percent of the area. The most common tree species are black cherry, crabapple, and tree of heaven. The urban forest currently stores about 530,000 tons of carbon valued at $9.8 million. In addition, these trees remove about 16,100 tons of carbon per...

  3. Forest fire in the central Himalaya: climate and recovery of trees

    NASA Astrophysics Data System (ADS)

    Sharma, Subrat; Rikhari, H. C.

    A forest fire event is influenced by climatic conditions and is supported by accumulation of fuel on forest floor. After forest fire, photosynthetically active solar radiation was reduced due to accumulation of ash and dust particles in atmosphere. Post-fire impacts on Quercus leucotrichophora, Rhododendron arboreum and Lyonia ovalifolia in a broadleaf forest were analysed after a wild fire. Bark depth damage was greatest for L. ovalifolia and least for Q. leucotrichophora. Regeneration of saplings was observed for all the tree species through sprouting. Epicormic recovery was observed for the trees of all the species. Young trees of Q. leucotrichophora (<40 cm circumference at breast height) were susceptible to fire as evident by the lack of sprouting. Under-canopy tree species have a high potential for recovery as evident by greater length and diameter of shoots and numbers of buds and leaves per shoot than canopy species. Leaf area, leaf moisture and specific leaf area were greater in the deciduous species, with few exceptions, than in evergreen species.

  4. Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest

    Treesearch

    T. Rambo; M. North

    2009-01-01

    Restoring Sierra Nevada mixed-conifer forests after a century of fire suppression has become an important management priority as fuel reduction thinning has been mandated by the Healthy Forests Restoration Act. However, in mechanically thinned stands there is little information on the effects of different patterns and densities of live-tree retention on forest canopy...

  5. Breeding season concerns and response to forest management: Can forest management produce more breeding birds? Ornitologia Neotropical

    Treesearch

    J.L. Larkin; P.B. Wood; T.J. Boves; J. Sheehan; D.A. Buehler

    2012-01-01

    Cerulean Warblers (Setophaga cerulea), one of the fastest declining avian species in North America, are associated with heterogeneous canopies in mature hardwood forests. However, the age of most second and third-growth forests in eastern North American is not sufficient for natural tree mortality to maintain structurally diverse canopies. Previous research suggests...

  6. Vegetation correlates of gibbon density in the peat-swamp forest of the Sabangau catchment, Central Kalimantan, Indonesia.

    PubMed

    Hamard, Marie; Cheyne, Susan M; Nijman, Vincent

    2010-06-01

    Understanding the complex relationship between primates and their habitats is essential for effective conservation plans. Peat-swamp forest has recently been recognized as an important habitat for the Southern Bornean gibbon (Hylobates albibarbis), but information is scarce on the factors that link gibbon density to characteristics of this unique ecosystem. Our aims in this study were firstly to estimate gibbon density in different forest subtypes in a newly protected, secondary peat-swamp forest in the Sabangau Catchment, Indonesia, and secondly to identify which vegetation characteristics correlate with gibbon density. Data collection was conducted in a 37.1 km(2) area, using auditory sampling methods and vegetation "speed plotting". Gibbon densities varied between survey sites from 1.39 to 3.92 groups/km(2). Canopy cover, tree height, density of large trees and food availability were significantly correlated with gibbon density, identifying the preservation of tall trees and good canopy cover as a conservation priority for the gibbon population in the Sabangau forest. This survey indicates that selective logging, which specifically targets large trees and disrupts canopy cover, is likely to have adverse effects on gibbon populations in peat-swamp forests, and calls for greater protection of these little-studied ecosystems. (c) 2010 Wiley-Liss, Inc.

  7. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA

    USGS Publications Warehouse

    Sankey, Temuulen T.; Donager, Jonathon; McVay, Jason L.; Sankey, Joel B.

    2017-01-01

    Forest vegetation classification and structure measurements are fundamental steps for planning, monitoring, and evaluating large-scale forest changes including restoration treatments. High spatial and spectral resolution remote sensing data are critically needed to classify vegetation and measure their 3-dimensional (3D) canopy structure at the level of individual species. Here we test high-resolution lidar, hyperspectral, and multispectral data collected from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone environment to represent a gradient of vegetation and topography in northern Arizona, U.S.A. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signatures, but different canopy sizes. The lidar data provides estimates of individual tree height (R2 = 0.90; RMSE = 2.3 m) and crown diameter (R2 = 0.72; RMSE = 0.71 m) as well as total tree canopy cover (R2 = 0.87; RMSE = 9.5%) and tree density (R2 = 0.77; RMSE = 0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22 and 50% and 1–3.5 trees/cell, respectively. The lidar data also produces highly accurate digital elevation model (DEM) (R2 = 0.92; RMSE = 0.75 m). In comparison, 3D data derived from the multispectral data via structure-from-motion produced lower correlations with field-measured variables, especially in dense and structurally complex forests. The lidar, hyperspectral, and multispectral sensors, and the methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring landscapes undergoing large-scale changes such as the forests in the southwestern U.S.A.

  8. Three-dimensional feature extraction and geometric mappings for improved parameter estimation in forested terrain using airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Lee, Heezin

    Scanning laser ranging technology is well suited for measuring point-to-point distances because of its ability to generate small beam divergences. As a result, many of the laser pulses emitted from airborne light detection and ranging (LiDAR) systems are able to reach the ground underneath tree canopies through small (10 cm scale) gaps in the foliage. Using high pulse rate lasers and fast optical scanners, airborne LiDAR systems can provide both high spatial resolution and canopy penetration, and these data have become more widely available in recent years for use in environmental and forestry applications. The small-footprint, discrete-return Airborne Laser Swath Mapping (ALSM) system at the University of Florida (UF) is used to directly measure ground surface elevations and the three-dimensional (3D) distribution of the vegetative material above the soil surface. Field of view geometric mappings are explored to find optical gaps inside forests. First, a method is developed to detect walking trails in natural forests that are obscured from above by the canopy. Several features are derived from the ALSM data and used to constrain the search space and infer the location of trails. Second, a robust and simple procedure for estimating intercepted photosynthetically active radiation (IPAR), which is an important measure of forest timber productivity and of daylight visibility in forested terrain, is presented. Simple scope functions that isolate the relevant LiDAR reflections between observer locations and the sun are defined and shown to give good agreement between the LiDAR-derived estimates and values of IPAR measured in situ. A conical scope function with an angular divergence from the centerline of +/-7° provided the best agreement with the in situ measurements. This scope function yielded remarkably consistent IPAR estimates for different pine species and growing conditions. The developed idea could be extended, through potential future work, to characterize the spatial distribution of attenuation of GPS (L-band) microwave signals and of detectability from the sky for military personnel operating in forested terrain. Measuring individual trees can provide valuable information about forests, and airborne LiDAR sensors have been recently used to identify individual trees and measure structural tree parameters. Past results, however, have been mixed because of reliance on interpolated (image) versions of the LiDAR measurements and search methods that do not adapt to variations in canopies. In this work, an adaptive clustering method is developed using 3D airborne LiDAR data acquired over two distinctly different managed pine forests in North-Central Florida, USA. A critical issue in isolating individual trees is determining the appropriate size of the moving window (search radius) when locating seed points. The proposed approach works directly on the 3D "cloud" of LiDAR points and adapts to irregular canopy sizes. The region growing step yields collectively exhaustive sets in an initial segmentation of tree canopies. An agglomerative clustering step is then used to merge clusters that represent parts of whole canopies using the locally varying height distribution. The overall tree detection accuracy achieved is 95.1% with no significant bias. The tree detection enables subsequent estimation of tree height and vertical crown length to an accuracy of better than 0.8 m and 1.5 m, respectively. Lastly, a compact representation of the different geometric characteristics of the segmented LiDAR points is introduced using spin images as a new tool that can potentially help tree detection in complex natural forests.

  9. Canopy treatment influences growth of replacement tree species in Fraxinus nigra forests threatened by the emerald ash borer in Minnesota, USA

    Treesearch

    Christopher E. Looney; Anthony W. D' Amato; Brian J. Palik; Robert A. Slesak

    2017-01-01

    Fraxinus nigra Marsh. (black ash), a dominant tree species of wetland forests in northern Minnesota, USA, is imperiled by the invasive insect emerald ash borer (EAB; Agrilus planipennis Fairmaire, 1888). Regeneration of associated tree species is generally low in F. nigra forests and could be impacted...

  10. A framework for adapting urban forests to climate change

    Treesearch

    Leslie Brandt; Abigail Derby Lewis; Robert Fahey; Lydia Scott; Lindsay Darling; Chris Swanston

    2016-01-01

    Planting urban trees and expanding urban forest canopy cover are often considered key strategies for reducing climate change impacts in urban areas. However, urban trees and forests can also be vulnerable to climate change through shifts in tree habitat suitability, changes in pests and diseases, and changes in extreme weather events. We developed a three-step...

  11. Canopy Gap Characteristics and Drought Influences in Oak Forests of the Coweeta Basin

    Treesearch

    B.D. Clinton; L.R. Boring

    1993-01-01

    Canopy gaps in southern Appalachian mixed-Quercus forests were characterized to assess the impact of the 1985-l988 record drought on patterns of tree mortality in relation to topographic variables and changes in overstory composition. Using permanent transects, we sampled 68 canopy gaps within the Coweeta Basin. Among l-5 yr old gaps, the most...

  12. Three-dimensional estimates of tree canopies: Scaling from high-resolution UAV data to satellite observations

    NASA Astrophysics Data System (ADS)

    Sankey, T.; Donald, J.; McVay, J.

    2015-12-01

    High resolution remote sensing images and datasets are typically acquired at a large cost, which poses big a challenge for many scientists. Northern Arizona University recently acquired a custom-engineered, cutting-edge UAV and we can now generate our own images with the instrument. The UAV has a unique capability to carry a large payload including a hyperspectral sensor, which images the Earth surface in over 350 spectral bands at 5 cm resolution, and a lidar scanner, which images the land surface and vegetation in 3-dimensions. Both sensors represent the newest available technology with very high resolution, precision, and accuracy. Using the UAV sensors, we are monitoring the effects of regional forest restoration treatment efforts. Individual tree canopy width and height are measured in the field and via the UAV sensors. The high-resolution UAV images are then used to segment individual tree canopies and to derive 3-dimensional estimates. The UAV image-derived variables are then correlated to the field-based measurements and scaled to satellite-derived tree canopy measurements. The relationships between the field-based and UAV-derived estimates are then extrapolated to a larger area to scale the tree canopy dimensions and to estimate tree density within restored and control forest sites.

  13. Comparison of modeled backscatter with SAR data at P-band

    NASA Technical Reports Server (NTRS)

    Wang, Yong; Davis, Frank W.; Melack, John M.

    1992-01-01

    In recent years several analytical models were developed to predict microwave scattering by trees and forest canopies. These models contribute to the understanding of radar backscatter over forested regions to the extent that they capture the basic interactions between microwave radiation and tree canopies, understories, and ground layers as functions of incidence angle, wavelength, and polarization. The Santa Barbara microwave model backscatter model for woodland (i.e. with discontinuous tree canopies) combines a single-tree backscatter model and a gap probability model. Comparison of model predictions with synthetic aperture radar (SAR) data and L-band (lambda = 0.235 m) is promising, but much work is still needed to test the validity of model predictions at other wavelengths. The validity of the model predictions at P-band (lambda = 0.68 m) for woodland stands at our Mt. Shasta test site was tested.

  14. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa.

    PubMed

    Chamagne, Juliette; Paine, C E Timothy; Schoolmaster, Donald R; Stejskal, Robert; Volarřík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-09-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory. © 2016 by the Ecological Society of America.

  15. Assessing urban forest effects and values, New York City's urban forest

    Treesearch

    David J. Nowak; Robert E., III Hoehn; Daniel E. Crane; Jack C. Stevens; Jeffrey T. Walton

    2007-01-01

    An analysis of trees in New York City reveals that this city has about 5.2 million trees with canopies that cover 20.9 percent of the area. The most common tree species are tree of heaven, black cherry, and sweetgum. The urban forest currently stores about 1.35 million tons of carbon valued at $24.9 million. In addition, these trees remove about 42,300 tons of carbon...

  16. Response of a boreal forest to canopy opening: assessing vertical and lateral tree growth with multi-temporal lidar data.

    PubMed

    Vepakomma, Udayalakshmi; St-Onge, Benoit; Kneeshaw, Daniel

    2011-01-01

    Fine-scale height-growth response of boreal trees to canopy openings is difficult to measure from the ground, and there are important limitations in using stereophotogrammetry in defining gaps and determining individual crowns and height. However, precise knowledge on height growth response to different openings is critical for refining partial harvesting techniques. In this study, we question whether conifers and hardwoods respond equally in terms of sapling growth or lateral growth to openings. We also ask to what distance gaps affect tree growth into the forest. We use multi-temporal lidar to characterize tree/sapling height and lateral growth responses over five years to canopy openings and high resolution images to identify conifers and hardwoods. Species-class-wise height-growth patterns of trees/saplings in various neighborhood contexts were determined across a 6-km matrix of Canadian boreal mixed deciduous coniferous forests. We then use statistical techniques to probe how these growth responses vary by spatial location with respect to the gap edge. Results confirm that both mechanisms of gap closure contribute to the closing of canopies at a rate of 1.2% per annum. Evidence also shows that both hardwood and conifer gap edge trees have a similar lateral growth (average of 22 cm/yr) and similar rates of height growth irrespective of their location and initial height. Height growth of all saplings, however, was strongly dependent on their position within the gap and the size of the gap. Results suggest that hardwood and softwood saplings in gaps have greatest growth rates at distances of 0.5-2 m and 1.5-4 m from the gap edge and in openings smaller than 800 m2 and 250 m2, respectively. Gap effects on the height growth of trees in the intact forest were evident up to 30 m and 20 m from gap edges for hardwood and softwood overstory trees, respectively. Our results thus suggest that foresters should consider silvicultural techniques that create many small openings in mixed coniferous deciduous boreal forests to maximize the growth response of both residual and regenerating trees.

  17. Snow accumulation under various forest stand densities at Tenderfoot Creek Experimental Forest, Montana, USA

    Treesearch

    Chadwick A. Moore; Ward W. McCaughey

    1997-01-01

    Snow accumulation in forested watersheds is controlled by climate, elevation, topographic factors and vegetation structure. Conifers affect snow accumulation principally by intercepting snow with the canopy which may later be sublimated. Various tree, stand, species and canopy densities of a subalpine fir habitat (ALBANASC) in central Montana were studied to determine...

  18. Rainfall Interception by Hardwood Forest Litter in the Southern Appalachians

    Treesearch

    J.D. Helvey

    1964-01-01

    The portion of rainfall over forest cover which does not reach mineral soil can be separated into the parts evaporated from the canopy and from the litter. Canopy interception loss is usually estimated by subtracting the sum of throughfall (water falling through tree crowns) and stemflow (water running down stems) from rainfall measured in forest openings (Hamilton...

  19. Canopy tree species drive local heterogeneity in soil nitrogen availability in a lowland tropical forest

    NASA Astrophysics Data System (ADS)

    Osborne, B. B.; Nasto, M.; Asner, G. P.; Balzotti, C.; Cleveland, C. C.; Taylor, P.; Townsend, A. R.; Porder, S.

    2016-12-01

    The high phylogenetic and functional diversity of tree species in lowland tropical forests make field-based investigations of organismal influences on soil nutrient cycling challenging. Here, we used remotely-detected canopy nitrogen (N) data from the Carnegie Airborne Observatory to identify and characterize ¼ ha plots of a mature forest with either high or low canopy N on the Osa Peninsula in Costa Rica. Specifically we were interested in mechanisms by which foliar N might influence soil N, or the reverse. A non-dimensional scaling analysis suggested that high and low canopy N plots differ in their emergent (≥40 cm DBH) tree communities, though there were few putative N fixers in any of the plots. We found litterfall mass was similar beneath all canopies. However, mean DOC solubility of litter was 0.40% of dry biomass in low canopy N plots compared to 0.26% in high N plots. Additionally, litter leachate C:N was twice as high in litter from the low canopy N plots (61±1.4) compared with litter from the high N plots (30±1.4). We found strong positive correlations between canopy N and concentrations of soil KCl-extractable soil NO3- and net nitrification and net N mineralization rates (N=5; P<0.0001 in all cases). Under high canopy N, mean NO3-N concentrations were roughly an order of magnitude higher than beneath low N canopies (2.7±0.39 and 0.19±0.05, respectively). We hypothesize that differences in litter chemistry lead to differences in leachate quality that promote high soil N under canopies with high foliar N. Our findings suggest that remote sensing of foliar characteristics may offer an effective way to study spatial patterns in soil biogeochemistry in diverse tropical forests.

  20. Taxonomic identity determines N2 fixation by canopy trees across lowland tropical forests.

    PubMed

    Wurzburger, Nina; Hedin, Lars O

    2016-01-01

    Legumes capable of fixing atmospheric N2 are abundant and diverse in many tropical forests, but the factors determining ecological patterns in fixation are unresolved. A long-standing idea is that fixation depends on soil nutrients (N, P or Mo), but recent evidence shows that fixation may also differ among N2-fixing species. We sampled canopy-height trees across five species and one species group of N2-fixers along a landscape P gradient, and manipulated P and Mo to seedlings in a shadehouse. Our results identify taxonomy as the major determinant of fixation, with P (and possibly Mo) only influencing fixation following tree-fall disturbances. While 44% of trees did not fix N2, other trees fixed at high rates, with two species functioning as superfixers across the landscape. Our results raise the possibility that fixation is determined by biodiversity, evolutionary history and species-specific traits (tree growth rate, canopy stature and response to disturbance) in the tropical biome. © 2015 John Wiley & Sons Ltd/CNRS.

  1. Differential Impact of Passive versus Active Irrigation on Urban Forests in Semiarid Regions

    NASA Astrophysics Data System (ADS)

    Luketich, A. M.; Papuga, S. A.; Crimmins, M.

    2017-12-01

    The network of trees within a city provides a variety of ecosystem services such as flood mitigation and reduced heat island effects. To maintain these `urban forests' in semiarid cities, the use of scarce water resources for irrigation is often necessary. Rainwater harvesting has been widely adopted in Tucson, AZ as a sustainable water source for trees, but the effects of passive water harvesting versus active irrigation on tree canopy productivity and microclimate is largely unquantified. We hypothesize that regardless of whether trees are passively or actively irrigated, deep soil moisture will be elevated compared to natural conditions; however, we expect that increased deep soil moisture conditions will be more frequent using active irrigation. Additionally, we hypothesize that similar to natural settings, urban trees will need access deep soil moisture for transpiration. Therefore, we expect that actively irrigated trees will have more periods of transpiration than passively irrigated trees and that this will result in elevated and sustained phenological activity. We also expect that this difference will translate to more ecosystem services for a longer portion of the year in actively irrigated urban forests. Here, we compare key ecohydrological indicators of passive and active irrigation systems at two sites in Tucson, AZ. Our measurements include soil moisture, transpiration, air temperature, soil temperature, below- and within- canopy temperatures, and canopy phenology. Our first year of results suggest there are differences in transpiration, canopy greening and microclimate between the two irrigation techniques and that the magnitude of these differences are highly seasonal. This research can help to improve understanding of the practices and function of green infrastructure in semiarid cities and inform models that attempt to aggregate the influence of these urban forests for understanding watershed management strategies.

  2. Assessing urban forest effects and values, Minneapolis' urban forest

    Treesearch

    David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Jack C. Stevens; Jeffrey T. Walton

    2006-01-01

    An analysis of trees in Minneapolis, MN, reveals that the city has about 979,000 trees with canopies that cover 26.4 percent of the area. The most common tree species are green ash, American elm, and boxelder. The urban forest currently stores about 250,000 tons of carbon valued at $4.6 million. In addition, these trees remove about 8,900 tons of carbon per year ($164,...

  3. Assessing urban forest effects and values, Casper's urban forest

    Treesearch

    David J. Nowak; Robert E., III Hoehn; Daniel E. Crane; Jack C. Stevens; Jeffrey T. Walton

    2006-01-01

    An analysis of trees in Casper, WY reveals that this city has about 123,000 trees with canopies that cover 8.9 percent of the area. The most common tree species are plains cottonwood, blue spruce, and American elm. The urban forest currently store about 37,000 tons of carbon valued at $689,000. In addition, these trees remove about 1,200 tons of carbon per year ($22,...

  4. Assessing urban forest effects and values: Toronto's urban forest

    Treesearch

    David J. Nowak; Robert E. III Hoehn; Allison R. Bodine; Eric J. Greenfield; Alexis Ellis; Theodore A. Endreny; Yang Yang; Tian Zhou; Ruthanne Henry

    2013-01-01

    An analysis of trees in Toronto, Ontario, reveals that this city has about 10.2 million trees with a tree and shrub canopy that covers approximately 26.6 percent of the city. The most common tree species are eastern white-cedar, sugar maple, and Norway maple. The urban forest currently stores an estimated 1.1 million metric tons of carbon valued at CAD$25.0 million. In...

  5. Assessing urban forest effects and values, San Francisco's urban forest

    Treesearch

    David J. Nowak; Robert E., III Hoehn; Daniel E. Crane; Jack C. Stevens; Jeffrey T. Walton

    2007-01-01

    An analysis of trees in San Francisco, CA reveals that this city has about 669,000 trees with canopies that cover 11.9 percent of the area. The most common tree species are blue gum eucalyptus, Monterey pine, and Monterey cypress. The urban forest currently stores about 196,000 tons of carbon valued at $3.6 million. In addition, these trees remove about 5,200 tons of...

  6. Primary and Secondary Controls on Measurements of Forest Height Using Large-Footprint Lidar at the Hubbard Brook LTER

    NASA Technical Reports Server (NTRS)

    Knox, Robert G.; Blair, J. Bryan; Schwarz, Paul A.; Hofton, Michelle A.; Dubayah, Ralph; Smith, David E. (Technical Monitor)

    2000-01-01

    On September 26, 1999, we mapped canopy structure over 90% of the Hubbard Brook Experimental Forest in White Mountain National Forest, New Hampshire, using the Laser Vegetation Imaging Sensor (LVIS). This airborne instrument was configured to emulate data expected from the Vegetation Canopy Lidar (VCL) space mission. We compared above ground heights of the tallest surfaces detected by lidar with average forest canopy heights estimated from tree-based measurements in or near 346 0.05 ha plots (made in autumn of 1997 and 1998). Vegetation heights had by far the predominant influence on lidar top heights, but with this large data set we were able to measure two significant secondary effects: those of steepness or slope of the underlying terrain and of tree crown form. The size of the slope effect was intermediate between that expected from models of homogeneous canopy layers and for solitary tree crowns. The first detected surfaces were also proportionately taller for plots with more basal area in broad leaved northern hardwoods than for mostly coniferous plots. We expected this because of the contrast between the shapes of cumulative distributions of surface area for elliptical or hemi-elliptical tree crowns and those for conical crowns. Correcting for these secondary effects, when appropriate data are available for calibration, may improve vegetation structure estimates in regional studies using VCL or similar lidar data sources.

  7. National forest cover monitoring in mainland South and Southeast Asia: method development and capacity building

    NASA Astrophysics Data System (ADS)

    Tyukavina, A.; Potapov, P.; Hansen, M.; Talero, Y.; Turubanova, S.; Pickering, J.; Pickens, A. H.; Quyen, N. H.; Spirovska Kono, M.

    2017-12-01

    Timely forest monitoring data produced following good practice guidance are required for national reporting on greenhouse gas emissions, national forest resource assessments, and monitoring for REDD+ projects. Remote sensing provides a cost-efficient supplement to national forest inventories, and is often the single viable source of data on forest extent for countries still in the process of establishing field-based inventories. Operational forest monitoring using remotely sensed data requires technical capacity to store, process, and analyze high volumes of satellite imagery. The University of Maryland Global Land Analysis and Discovery (UMD GLAD) lab possesses such technical capacity and is seeking to transfer it to national agencies responsible for forest reporting, national academic institutions, and NGOs. Our projects in South and Southeast Asia include regional forest monitoring in the lower Mekong region in support of the Regional Land Cover Monitoring System (funded by the NASA SERVIR program) and building capacity for forest monitoring in Nepal, Bangladesh, Vietnam, Cambodia, Laos, and Thailand (funded by the SilvaCarbon program). Our forest monitoring approach is a regional scale adaptation of methods developed for the global analysis (Hansen et al. 2013). The methodology to track large-scale clearing of natural forests (e.g. in Brazil and Indonesia) is well established; however, the methods for small-scale disturbance mapping and tree cover rotation assessment are still in development. In Bangladesh our mapping of tree cover change between 2000-2014 revealed that 54% of the tree canopy cover was outside forests, and the majority of canopy changes were smaller than 0.1 ha. Landsat's 30-m resolution was therefore insufficient to monitor changes in tree cover. By using a probability sample of high resolution (circa 1 m) imagery we were able to quantify change in tree canopy cover outside forests (including village woodlots, tree plantations and agroforestry) and in different forest types. Our result shows that while the net tree cover change in Bangladesh is rather small, the gross dynamics are significant and can vary by forest type.

  8. An assessment of canopy stratification and tree species diversity following clearcutting in Central Appalachian hardwoods

    Treesearch

    Mark Benjamin Brashears; Mary Ann Fajvan; Thomas M. Schuler

    2004-01-01

    On high quality growing sites in West Virginia, shade intolerant tree species have increased in importance in third-generation forests following clearcutting. We investigated the effect of tree species canopy position on the Shannon-Weiner Diversity Index (H'), Pielou's evenness index (0, and species richness (S) using a chronosequence of 13 clearcuts. Two to...

  9. Climate response of five oak species in the eastern deciduous forest of the southern Appalachain Mountains, USA

    Treesearch

    James H Speer; Henry D Grission-Mayer; Kenneth H Orivs; Cathryn H: Greenberg

    2009-01-01

    The climatic response of trees that occupy closed canopy forests in the eastern United States (US) is important to understanding the possible trajectory these forests may lake in response to a warming climate. Our study examined tree rings of 664 trees from five oak species (white (Querclus alba L), black (Quercus "velutina Lam...

  10. Canopy structure and tree condition of young, mature, and old-growth Douglas-fir/hardwood forests

    Treesearch

    B.B. Bingham; J.O. Sawyer

    1992-01-01

    Sixty-two Douglas-fir/hardwood stands ranging from 40 to 560 years old were used to characterize the density; diameter, and height class distributions of canopy hardwoods and conifers in young (40 -100 yr), mature (101 - 200 yr) and old-growth (>200 yr) forests. The crown, bole, disease, disturbance, and cavity conditions of canopy conifers and hardwoods were...

  11. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest

    NASA Astrophysics Data System (ADS)

    Fotis, A. T.; Curtis, P.

    2016-12-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in four co-dominant species (Acer rubrum, Fagus grandifolia, Pinus strobus and Quercus rubra) at different heights in plots with similar leaf area index (LAI) but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaves of F. grandifolia, Q. rubra, and P. strobus shifted towards sun-acclimation phenotypes with increasing canopy complexity while leaves of A. rubrum became more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further acclimation by increasing Narea and reducing Chlmass as LMA increased, while P. strobus showed no change in Narea and Chlmass with increasing LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy.

  12. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico.

    PubMed

    Calderón-Cortés, Nancy; Escalera-Vázquez, Luis H; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60-98% of standing dead trees and 23-59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057-0.066 trees/m 2 ) than in riparian forests (0.022 and 0.027 trees/m 2 ), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01-0.09 trees/m 2 ) than in larger class sizes (0-0.02 trees/m 2 ). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  13. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico

    PubMed Central

    Escalera-Vázquez, Luis H.; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60–98% of standing dead trees and 23–59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057–0.066 trees/m2) than in riparian forests (0.022 and 0.027 trees/m2), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01–0.09 trees/m2) than in larger class sizes (0–0.02 trees/m2). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil. PMID:29785342

  14. Modeling Diurnal and Seasonal 3D Light Profiles in Amazon Forests

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Rubio, J.; Gastellu-Etchegorry, J.; Cook, B. D.; Hunter, M. O.; Yin, T.; Nagol, J. R.; Keller, M. M.

    2013-12-01

    The complex horizontal and vertical structure in tropical forests generates a diversity of light environments for canopy and understory trees. These 3D light profiles are dynamic on diurnal and seasonal time scales based on changes in solar illumination and the fraction of diffuse light. Understanding this variability is critical for improving ecosystem models and interpreting optical and LiDAR remote sensing data from tropical forests. Here, we initialized the Discrete Anisotropic Radiative Transfer (DART) model using dense airborne LiDAR data (>20 returns m2) from three forest sites in the central and eastern Amazon. Forest scenes derived from airborne LiDAR data were tested using modeled and observed large-footprint LiDAR data from the ICESat-GLAS sensor. Next, diurnal and seasonal profiles of photosynthetically active radiation (PAR) for each forest site were simulated under clear sky and cloudy conditions using DART. Incident PAR was summarized for canopy, understory, and ground levels. Our study illustrates the importance of realistic canopy models for accurate representation of LiDAR and optical radiative transfer. In particular, canopy rugosity and ground topography information from airborne LiDAR data provided critical 3D information that cannot be recreated using stem maps and allometric relationships for crown dimensions. The spatial arrangement of canopy trees altered PAR availability, even for dominant individuals, compared to downwelling measurements from nearby eddy flux towers. Pseudo-realistic branch and leaf architecture was also essential for recreating multiple scattering within canopies at near-infrared wavelengths commonly used for LiDAR remote sensing and quantifying PAR attenuation from shading within and between canopies. These findings point to the need for more spatial information on forest structure to improve the representation of light availability in models of tropical forest productivity.

  15. Tree species effects on topsoil properties in an old tropical plantation

    NASA Astrophysics Data System (ADS)

    Bauters, Marijn; Boeckx, Pascal; Ampoorter, Evy; Verbeeck, Hans; Döetterl, Sebastian; Baert, Geert; Verheyen, Kris

    2016-04-01

    Forest biogeochemistry is strongly linked to the functional strategies of the tree community and the topsoil. Research has long documented that tree species affect soil properties in forests. Our current understanding on this interaction is mainly based on common garden experiments in temperate forest and needs to be extended to other ecosystems if we want to understand this interaction in natural forests worldwide. Using a 77-year-old tropical experimental plantation from central Africa, we examined the relationship between canopy and litter chemical traits and topsoil properties. By the current diversity in this site, the unique setup allowed us to extend the current knowledge from temperate and simplified systems to near-natural tropical forests, and thus bridge the gap between planted monocultures in common gardens, and correlative studies in natural systems. We linked the species-specific leaf and litter chemical traits to the topsoil cation composition, acidity, pH and soil organic matter. We found that average canopy trait values were a better predictor for the topsoil than the litter chemistry. Canopy base cation content positively affected topsoil pH and negatively affected acidity. These, in turn strongly determined the soil organic carbon contents of the topsoil, which ranged a tree-fold in the experiment.

  16. [Microbial community and its activities in canopy- and understory humus of two montane forest types in Ailao Mountains, Northwest China].

    PubMed

    Liu, Yong-jie; Liu, Wen-yao; Chen, Lin; Zhang, Han-bo; Wang, Gao-sheng

    2010-09-01

    Mid-montane moist evergreen broadleaved forest (MMF) and top-montane dwarf mossy forest (DMF) are the two major natural forest types in subtropical mountainous area of Ailao Mountains, Northwest China. In this paper, a comparative study was made on the microbial composition, quantity, biochemical activity, metabolic activity, and their seasonal dynamics in the canopy- and understory humus of the two forest types. The composition, quantity, and metabolic activity of the microbes in the canopy humus of dominant tree species in MMF and DMF were also analyzed. In the canopy humus of the two forest types, the amounts of fungi and actinomycetes, microbial biomass C and N, and intensities of nitrogen fixation and cellulose decomposition were significantly higher than those in understory humus. Meanwhile, the amount of cellulose-decomposing microbes (ACDM), cellulose decomposition intensity, microbial biomass C and N, and metabolic activity in the canopy humus of MMF were significantly higher than those of DMF. The amounts of bacteria, fungi, and aerobic nitrogen-fixing bacteria (ANFB) and the metabolic activity in the canopy humus of MMF and DMF were significantly higher in wet season than in dry season, while a contradictory trend was observed on the amount of actinomycetes. No significant difference was observed on the amount of ACDM between wet season and dry season. For the two forest types, the amounts of microbes and their biochemical activities in canopy humus had a larger seasonal variation range than those in understory humus. There was a significant difference in the amounts of the microbes in canopy humus among the dominant tree species in MMF and DMF, especially in wet season. The microbes in canopy humus played important roles in maintaining the biodiversity of epiphytes in the canopy, and in supplying the needed nutrients for the vigorous growth of the epiphytes.

  17. An estimate of the number of tropical tree species

    Treesearch

    J. W. Ferry Slik; Victor Arroyo-Rodriguez; Shin-Ichiro and others Aiba

    2015-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fishers alpha and an approximate pantropical stem...

  18. Beneath the veil: Plant growth form influences the strength of species richness-productivity relationships in forests

    USGS Publications Warehouse

    Oberle, B.; Grace, J.B.; Chase, J.M.

    2009-01-01

    Aim: Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness-productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location: We analysed 231 plots ranging from 34.0?? to 48.3?? N latitude and from 75.0?? to 124.2?? W longitude in the United States. Methods: We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light-blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results: Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions: The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species richness is under multivariate control. ?? 2009 Blackwell Publishing.

  19. Assessing urban forest effects and values: Morgantown's Urban Forest

    Treesearch

    David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Jack C. Stevens; Jonathan Cumming; Sandhya Mohen; Anne Buckelew. Cumming

    2012-01-01

    An analysis of the community forest in Morgantown, WV, was undertaken in 2004 to characterize the structural and functional attributes of this forest resource. The assessment revealed that this city has about 658,000 trees with canopies that cover 35.5 percent of the area. The most common tree species are sugar maple, black cherry, and hawthorn. The urban forest...

  20. Botanical and ecological basis for the resilience of Antillean dry forests

    Treesearch

    A.E. Lugo; E. Medina; J. Carlos Trejo Torres; E. Helmer

    2006-01-01

    Dry forest environments limit the number of species that can survive there. Antillean dry forests have low floristic diversity and stature, high density of small and medium-sized trees, and are among the least conserved of the tropical forests. Their canopies are smooth with no emergent trees and have high species dominance. Antillean dry forests occur mostly on...

  1. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Jupp, David L. B.

    1990-01-01

    Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.

  2. Simulation Studies of the Effect of Forest Spatial Structure on InSAR Signature

    NASA Technical Reports Server (NTRS)

    Sun, Guoqing; Liu, Dawei; Ranson, K. Jon; Koetz, Benjamin

    2007-01-01

    The height of scattering phase retrieved from InSAR data is considered being correlated with the tree height and the spatial structure of the forest stand. Though some researchers have used simple backscattering models to estimate tree height from the height of scattering center, the effect of forest spatial structure on InSAR data is not well understood yet. A three-dimensional coherent radar backscattering model for forest canopies based on realistic three-dimensional scene was used to investigate the effect in this paper. The realistic spatial structure of forest canopies was established either by field measurements (stem map) or through use of forest growth model. Field measurements or a forest growth model parameterized using local environmental parameters provides information of forest species composition and tree sizes in certain growth phases. A fractal tree model (L-system) was used to simulate individual 3- D tree structure of different ages or heights. Trees were positioned in a stand in certain patterns resulting in a 3-D medium of discrete scatterers. The radar coherent backscatter model took the 3-D forest scene as input and simulates the coherent radar backscattering signature. Interferometric SAR images of 3D scenes were simulated and heights of scattering phase centers were estimated from the simulated InSAR data. The effects of tree height, crown cover, crown depth, and the spatial distribution patterns of trees on the scattering phase center were analyzed. The results will be presented in the paper.

  3. Regeneration in bottomland forest canopy gaps 6 years after variable retention harvests to enhance wildlife habitat

    Treesearch

    Daniel J. Twedt; Scott G. Somershoe

    2013-01-01

    To promote desired forest conditions that enhance wildlife habitat in bottomland forests, managers prescribed and implemented variable-retention harvest, a.k.a. wildlife forestry, in four stands on Tensas River National Wildlife Refuge, LA. These treatments created canopy openings (gaps) within which managers sought to regenerate shade-intolerant trees. Six years after...

  4. Centennial impacts of fragmentation on the canopy structure of tropical montane forest

    Treesearch

    Nicholas Vaughn; Greg Asner; Christian Giardina

    2014-01-01

    Fragmentation poses one of the greatest threats to tropical forests with short-term changes to the structure of forest canopies affecting microclimate, tree mortality, and growth. Yet the long-term effects of fragmentation are poorly understood because (1) most effects require many decades to materialize, but long-term studies are very rare, (2) the effects of edges on...

  5. Modeling spatial and temporal dynamics of wind flow and potential fire behavior following a mountain pine beetle outbreak in a lodgepole pine forest

    Treesearch

    Chad M. Hoffman; Rodman Linn; Russell Parsons; Carolyn Sieg; Judith Winterkamp

    2015-01-01

    Patches of live, dead, and dying trees resulting from bark beetle-caused mortality alter spatial and temporal variability in the canopy and surface fuel complex through changes in the foliar moisture content of attacked trees and through the redistribution of canopy fuels. The resulting heterogeneous fuels complexes alter within-canopy wind flow, wind fluctuations, and...

  6. Assessing urban forest effects and values, Washington, D.C.'s urban forest

    Treesearch

    David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Jack C. Stevens; Jeffrey T. Walton

    2006-01-01

    An analysis of trees in Washington, D.C. reveals that this city has about 1,928,000 trees with canopies that cover 28.6 percent of the area. The most common tree species are American beech, red maple, and boxelder. The urban forest currently store about 526,000 tons of carbon valued at $9.7 million. In addition, these trees remove about 16,200 tons of carbon per year...

  7. The Forest Canopy as a Temporally and Spatially Dynamic Ecosystem: Preliminary Results of Biomass Scaling and Habitat Use from a Case Study in Large Eastern White Pines (Pinus Strobus)

    NASA Astrophysics Data System (ADS)

    Martin, J.; Laughlin, M. M.; Olson, E.

    2017-12-01

    Canopy processes can be viewed at many scales and through many lenses. Fundamentally, we may wish to start by treating each canopy as a unique surface, an ecosystem unto itself. By doing so, we can may make some important observations that greatly influence our ability to scale canopies to landscape, regional and global scales. This work summarizes an ongoing endeavor to quantify various canopy level processes on individual old and large Eastern white pine trees (Pinus strobus). Our work shows that these canopies contain complex structures that vary with height and as the tree ages. This phenomenon complicates the allometric scaling of these large trees using standard methods, but detailed measurements from within the canopy provided a method to constrain scaling equations. We also quantified how these canopies change and respond to canopy disturbance, and documented disproportionate variation of growth compared to the lower stem as the trees develop. Additionally, the complex shape and surface area allow these canopies to act like ecosystems themselves; despite being relatively young and more commonplace when compared to the more notable canopies of the tropics and the Pacific Northwestern US. The white pines of these relatively simple, near boreal forests appear to house various species including many lichens. The lichen species can cover significant portions of the canopy surface area (which may be only 25 to 50 years old) and are a sizable source of potential nitrogen additions to the soils below, as well as a modulator to hydrologic cycles by holding significant amounts of precipitation. Lastly, the combined complex surface area and focused verticality offers important habitat to numerous animal species, some of which are quite surprising.

  8. Assessing urban forest effects and values, Scranton's urban forest

    Treesearch

    David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Jack C. Stevens; Vincent Cotrone

    2010-01-01

    An analysis of trees in the urbanized portion of Scranton, PA, reveals that this area has about 1.2 million trees with canopies that cover 22.0 percent of the area. The most common tree species are red maple, gray birch, black cherry, northern red oak, and quaking aspen. Scranton's urban forest currently store about 93,300 tons of carbon valued at $1.9 million. In...

  9. Xylem vulnerability curves of canopy branches of mature trees from Caxiuana and Tapajos National Forests, Para, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Thomas; Moorcroft, Paul

    Raw data for xylem vulnerability curves measured on upper canopy branches of mature trees from the Caxiuana and Tapajos National Forests, Para, Brazil. Tapajos samples were harvested from km67 transects, which is nearby the decommissioned throughfall-exclusion, drought-experiment plots. Caxiuana samples were harvested from trees growing in the throughfall-exclusion, drought-experiment plots. Data were collected in 2011 and 2012. Dataset includes: date of measurement, site ID, plot ID, tree ID (species, tree tag #), xylem pressure, percent loss of conductivity. Air injection method was used. Data reference: Powell et al. (2017) Differences in xylem cavitation resistance and leaf hydraulic traits explain differencesmore » in drought tolerance among mature Amazon rainforest trees. Global Change Biology.« less

  10. Houston’s Urban Forest, 2015

    Treesearch

    David J. Nowak; Allison R. Bodine; Robert E. Hoehn; Christopher B. Edgar; Gretchen Riley; Dudley R. Hartel; Kerry J. Dooley; Sharon M. Stanton; Mark A. Hatfield; Thomas J. Brandeis; Tonya W. Lister

    2017-01-01

    An analysis of the urban forest in Houston, Texas, reveals that this area has an estimated 33.3 million live trees with tree canopy that covers 18.4 percent of the city. Roughly 19.2 million of the city’s trees are located on private lands. The most common tree species are yaupon, Chinese tallowtree, Chinese privet, Japanese privet, and sugarberry. Trees in Houston...

  11. Regional Estimates of Drought-Induced Tree Canopy Loss across Texas

    NASA Astrophysics Data System (ADS)

    Schwantes, A.; Swenson, J. J.; González-Roglich, M.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.

    2015-12-01

    The severe drought of 2011 killed millions of trees across the state of Texas. Drought-induced tree-mortality can have significant impacts to carbon cycling, regional biophysics, and community composition. We quantified canopy cover loss across the state using remotely sensed imagery from before and after the drought at multiple scales. First, we classified ~200 orthophotos (1-m spatial resolution) from the National Agriculture Imagery Program, using a supervised maximum likelihood classification. Area of canopy cover loss in these classifications was highly correlated (R2 = 0.8) with ground estimates of canopy cover loss, measured in 74 plots across 15 different sites in Texas. These 1-m orthophoto classifications were then used to calibrate and validate coarser scale (30-m) Landsat imagery to create wall-to-wall tree canopy cover loss maps across the state of Texas. We quantified percent dead and live canopy within each pixel of Landsat to create continuous maps of dead and live tree cover, using two approaches: (1) a zero-inflated beta distribution model and (2) a random forest algorithm. Widespread canopy loss occurred across all the major natural systems of Texas, with the Edwards Plateau region most affected. In this region, on average, 10% of the forested area was lost due to the 2011 drought. We also identified climatic thresholds that controlled the spatial distribution of tree canopy loss across the state. However, surprisingly, there were many local hot spots of canopy loss, suggesting that not only climatic factors could explain the spatial patterns of canopy loss, but rather other factors related to soil, landscape, management, and stand density also likely played a role. As increases in extreme droughts are predicted to occur with climate change, it will become important to define methods that can detect associated drought-induced tree mortality across large regions. These maps could then be used (1) to quantify impacts to carbon cycling and regional biophysics, (2) to better understand the spatiotemporal dynamics of tree mortality, and (3) to calibrate and/or validate mortality algorithms in regional models.

  12. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.

    PubMed

    Köstner, B; Falge, E; Tenhunen, J D

    2002-06-01

    Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to reduced light interception per leaf area provides another potential explanation for reduced carbon gain in old stands of P. abies, even when hydraulic constraints increase in response to changes in canopy architecture and aging.

  13. [Effect of thinning intensities on fruiting regularities of Quercus liaotungensis forests in Huang-long and Qiaoshan mountains.

    PubMed

    Huang, Cai Zhi; Zhang, Wen Hui; Li, Gang; Yu, Shi Chuan; You, Jian Jian

    2016-11-18

    In order to clarify the impact of thinning intensities on fruiting regularity of Quercus liaotungensis forests, we took the Q. liaotungensis half-mature forests in Huanglong and Qiaoshan mountains on south of the Loess Plateau as the object of study, which were under close-to-natural management of different thinning intensities (CK, 10%, 20% and 30%). An analysis was made on stand density and percent of seed trees, seed number of sample tree and unit area, seed spatial distributions, seed characteristics of the Q. liaotungensis forests after 5 years of thinning. The results showed that, percent of seed trees, seed number per sample tree and percent of developed seeds of Q. liaotungensis forests increased with the increasing intensity, and showed a pattern of 30%>20%>10%>CK. Seed number per area reached the maximum number under 20% thinning, and showed a pattern of 20%>30%>CK>10%. From the seed spatial distribution in the canopy, the upper accounted for 73.6%, while the lower had 26.4%. The sunny side of canopy layer set relatively the most fruits of 65.8%, shady side only had 34.2%. Under thinning, further improving was geater under lower canopy than under upper canopy and so was on shady side than on sunny side. The seed long diameter, seed short diameter and 1000-seed mass of Q. liaotungensis forests increased with the increasing intensity, which reached the maximum under 30% thinning. 10% thinning did not significantly impact Q. liaotungensis fruiting, the thinning intensity of 20% was most conducive to the seed quantity and quality improvement of Q. liaotungensis, while the thinning intensity of 30% did not improve the fruiting, and lowered the total number of seeds. It was proposed that 20% thinning should be chosen (canopy density of 0.7) to effectively improve fruiting and quality of Q. liaotungensis.

  14. The feasibility of using a universal Random Forest model to map tree height across different locations and vegetation types

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Jin, S.; Gao, S.; Hu, T.; Liu, J.; Xue, B. L.

    2017-12-01

    Tree height is an important forest structure parameter for understanding forest ecosystem and improving the accuracy of global carbon stock quantification. Light detection and ranging (LiDAR) can provide accurate tree height measurements, but its use in large-scale tree height mapping is limited by the spatial availability. Random Forest (RF) has been one of the most commonly used algorithms for mapping large-scale tree height through the fusion of LiDAR and other remotely sensed datasets. However, how the variances in vegetation types, geolocations and spatial scales of different study sites influence the RF results is still a question that needs to be addressed. In this study, we selected 16 study sites across four vegetation types in United States (U.S.) fully covered by airborne LiDAR data, and the area of each site was 100 km2. The LiDAR-derived canopy height models (CHMs) were used as the ground truth to train the RF algorithm to predict canopy height from other remotely sensed variables, such as Landsat TM imagery, terrain information and climate surfaces. To address the abovementioned question, 22 models were run under different combinations of vegetation types, geolocations and spatial scales. The results show that the RF model trained at one specific location or vegetation type cannot be used to predict tree height in other locations or vegetation types. However, by training the RF model using samples from all locations and vegetation types, a universal model can be achieved for predicting canopy height across different locations and vegetation types. Moreover, the number of training samples and the targeted spatial resolution of the canopy height product have noticeable influence on the RF prediction accuracy.

  15. The influence of anthropogenic edge effects on primate populations and their habitat in a fragmented rainforest in Costa Rica.

    PubMed

    Bolt, Laura M; Schreier, Amy L; Voss, Kristofor A; Sheehan, Elizabeth A; Barrickman, Nancy L; Pryor, Nathaniel P; Barton, Matthew C

    2018-05-01

    When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.

  16. Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought

    USGS Publications Warehouse

    Martin, Roberta E.; Asner, Gregory P.; Francis, Emily; Ambrose, Anthony; Baxter, Wendy; Das, Adrian J.; Vaughn, Nicolas R.; Paz-Kagan, Tarin; Dawson, Todd E.; Nydick, Koren R.; Stephenson, Nathan L.

    2018-01-01

    California experienced severe drought from 2012 to 2016, and there were visible changes in the forest canopy throughout the State. In 2014, unprecedented foliage dieback was recorded in giant sequoia (Sequoiadendron giganteum) trees in Sequoia National Park, in the southern California Sierra Nevada mountains. Although visible changes in sequoia canopies can be recorded, biochemical and physiological responses to drought stress in giant sequoia canopies are not well understood. Ground-based measurements provide insight into the mechanisms of drought responses in trees, but are often limited to few individuals, especially in trees of tall stature such as giant sequoia. Recent studies demonstrate that remotely measured forest canopy water content (CWC) is a general indicator of canopy response to drought, but the underpinning leaf- to canopy-level causes of observed variation in CWC remain poorly understood. We combined field and airborne remote sensing measurements taken in 2015 and 2016 to assess the biophysical responses of giant sequoias to drought. In 49 study trees, CWC was related to leaf water potential, but not to the other foliar traits, suggesting that changes in CWC were made at whole-canopy rather than leaf scales. We found a non-random, spatially varying pattern in mapped CWC, with lower CWC values at lower elevation and along the outer edges of the groves. This pattern was also observed in empirical measurements of foliage dieback from the ground, and in mapped CWC across multiple sequoia groves in this region, supporting the hypothesis that drought stress is expressed in canopy-level changes in giant sequoias. The fact that we can clearly detect a relationship between CWC and foliage dieback, even without taking into account prior variability or new leaf growth, strongly suggests that remotely sensed CWC, and changes in CWC, are a useful measure of water stress in giant sequoia, and valuable for assessing and managing these iconic forests in drought.

  17. Canopy disturbance and tree recruitment over two centuries in a managed longleaf pine landscape

    Treesearch

    Neil Pederson; J. Morgan Varner; Brian J. Palik

    2008-01-01

    Disturbance history was reconstructed across an 11300 ha managed longleaf pine (Pinus palustris Mill.) landscape in southwestern Georgia, USA. Our specific objectives were to: (i) determine forest age structure; (ii) reconstruct disturbance history through the relationship between canopy disturbance, tree recruitment and growth; and (iii) explore the...

  18. The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data

    Treesearch

    Michael J. Falkowski; Alistair M.S. Smith; Paul E. Gessler; Andrew T. Hudak; Lee A. Vierling; Jeffrey S. Evans

    2008-01-01

    Individual tree detection algorithms can provide accurate measurements of individual tree locations, crown diameters (from aerial photography and light detection and ranging (lidar) data), and tree heights (from lidar data). However, to be useful for forest management goals relating to timber harvest, carbon accounting, and ecological processes, there is a need to...

  19. The urban forests of Philadelphia

    Treesearch

    David J. Nowak; Allison R. Bodine; Robert Hoehn; Alexis Ellis; Sarah C. Low; Lara A. Roman; Jason G. Henning; Emily Stephan; Tom Taggert; Ted Endreny

    2016-01-01

    An analysis of the urban forest in Philadelphia, Pennsylvania, reveals that this city has an estimated 2.9 million trees (encompassing all woody plants greater than 1 inch diameter at breast height [d.b.h]) with tree canopy that covers 20 percent of the city. The most common tree species are spicebush, black cherry, ash, tree-of-heaven, and boxelder, but the most...

  20. Austin's Urban Forest, 2014

    Treesearch

    David J. Nowak; Allison R. Bodine; Robert E. Hoehn; Christopher B. Edgar; Dudley R. Hartel; Tonya W. Lister; Thomas J. Brandeis

    2016-01-01

    An analysis of the urban forest in Austin, Texas, reveals that this area has an estimated 33.8 million trees with tree canopy that covers 30.8 percent of the city. The most common tree species are Ashe juniper, cedar elm, live oak, sugarberry, and Texas persimmon. Trees in Austin currently store about 1.9 million tons of carbon (7.0 million tons of carbon dioxide [CO...

  1. The forest carnivores: marten and fisher

    Treesearch

    William J. Zielinski

    2014-01-01

    Martens and fishers, as predators, perform important functions that help sustain the integrity of ecosystems. Both species occur primarily in mature forest environments that are characterized by dense canopy, large-diameter trees, a diverse understory community, and abundant standing and downed dead trees. Martens occur in the upper montane forests, where the threat of...

  2. Relative importance of different secondary successional pathways in an Alaskan boreal forest

    Treesearch

    Thomas A. Kurkowski; Daniel H. Mann; T. Scott Rupp; David L. Verbyla

    2008-01-01

    Postfire succession in the Alaskan boreal forest follows several different pathways, the most common being self-replacement and species-dominance relay. In self-replacement, canopy-dominant tree species replace themselves as the postfire dominants. It implies a relatively unchanging forest composition through time maintained by trees segregated within their respective...

  3. The water balance components of Mediterranean pine trees on a steep mountain slope during two hydrologically contrasting years

    NASA Astrophysics Data System (ADS)

    Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek W.; Christou, Andreas; Camera, Corrado; Djuma, Hakan

    2018-07-01

    Pines in semi-arid mountain environments manage to survive and thrive despite the limited soil water, due to shallow soil depths, and overall water scarcity. This study aims to develop a method for computing soil evaporation, bedrock water uptake and transpiration from a natural, open forest, based on sap flow (Heat Ratio Method), soil moisture and meteorological observations. The water balance of individual trees was conceptualized with a geometric approach, using canopy projected areas and Voronoi (Thiesen) polygons. The canopy approach assumes that the tree's root area extent is equal to its canopy projected area, while the Voronoi approach assumes that the tree roots exploit the open area that is closer to the tree than to any other tree. The methodology was applied in an open Pinus brutia forest (68% canopy cover) in Cyprus, characterized by steep slopes and fractured bedrock, during two hydrologically contrasting years (2015 wet, 2016 dry). Sap flow sensors, soil moisture sensors, throughfall and stemflow gauges were installed on and around eight trees. Rainfall was 507 mm in 2015 and 359 mm in 2016. According to the canopy approach, the sum of tree transpiration and soil evaporation exceeded the throughfall in both years, which implies that the trees' bedrock water uptake exceeds the surface runoff and drainage losses. This indicated that trees extend their roots beyond the canopy-projected areas and the use of the Voronoi polygons captures this effect. According to the stand scale water balance, average throughfall during the two years was 81% of the rainfall. Transpiration was 61% of the rainfall in 2015, but only 32% in 2016. On the contrary, the soil evaporation fraction increased from 26% in 2015 to 35% in the dry year of 2016. The contribution of bedrock water to tree transpiration was 77% of rainfall in 2015 and 66% in 2016. During the summer months, trees relied 100% on the uptake of water from the fractured bedrock to cover their transpiration needs. Average monthly transpiration areas ranged between 0.1 mm d-1 in October 2016 and 1.7 mm d-1 in April 2015. This study shows that bedrock uptake could be an essential water balance component of semi-arid, mountainous pine forests and should be accounted for in hydrologic models.

  4. Viability of forest floor and canopy seed banks in Pinus contorta var. latifolia (Pinaceae) forests after a mountain pine beetle outbreak.

    PubMed

    Teste, François P; Lieffers, Victor J; Landhäusser, Simon M

    2011-04-01

    Seed banks are important for the natural regeneration of many forest species. Most of the seed bank of serotinous lodgepole pine is found in the canopy, but after an outbreak of mountain pine beetle (MPB), a considerable forest-floor seed bank develops through the falling of canopy cones. After large-scale mortality of pine stands from MPB, however, the viability of seeds in both the canopy and the forest-floor cone bank is uncertain. We sampled cones in five stands 3 yr after MPB (3y-MPB); five stands 6 yr after MPB (6y-MPB); and 10 stands 9 yr after MPB (9y-MPB), in central British Columbia, Canada. Seeds were extracted and viability tested using germination techniques. Forest-floor cones had seed with high germination capacity (GC): 82% for embedded (partly buried) closed cones vs. 45% for buried partly open cones. For canopy cones, GC steeply declined about 15 yr after cone maturation and by 25 yr, GC was 50%, compared with 98% in the first year. In the 3y- and 6y-MPB stands, seeds from cones that were 7 to 9 yr old had similar GC on dead and living trees; however, seeds from the dead trees had lower vigor than seeds from living trees. We demonstrate for the first time that a serotinous pine can form a viable soil seed bank by cone burial, which may facilitate natural regeneration if a secondary disturbance occurs. Seeds contained in 15-yr-old cones showed a steep decline in viability, which could limit regeneration if there is a long delay before a secondary disturbance.

  5. Persistent effects of a severe drought on Amazonian forest canopy.

    PubMed

    Saatchi, Sassan; Asefi-Najafabady, Salvi; Malhi, Yadvinder; Aragão, Luiz E O C; Anderson, Liana O; Myneni, Ranga B; Nemani, Ramakrishna

    2013-01-08

    Recent Amazonian droughts have drawn attention to the vulnerability of tropical forests to climate perturbations. Satellite and in situ observations have shown an increase in fire occurrence during drought years and tree mortality following severe droughts, but to date there has been no assessment of long-term impacts of these droughts across landscapes in Amazonia. Here, we use satellite microwave observations of rainfall and canopy backscatter to show that more than 70 million hectares of forest in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy structure and moisture. Remarkably, and despite the gradual recovery in total rainfall in subsequent years, the decrease in canopy backscatter persisted until the next major drought, in 2010. The decline in backscatter is attributed to changes in structure and water content associated with the forest upper canopy. The persistence of low backscatter supports the slow recovery (>4 y) of forest canopy structure after the severe drought in 2005. The result suggests that the occurrence of droughts in Amazonia at 5-10 y frequency may lead to persistent alteration of the forest canopy.

  6. Growing the urban forest: tree performance in response to biotic and abiotic land management

    Treesearch

    Emily E. Oldfield; Alexander J. Felson; D. S. Novem Auyeung; Thomas W. Crowther; Nancy F. Sonti; Yoshiki Harada; Daniel S. Maynard; Noah W. Sokol; Mark S. Ashton; Robert J. Warren; Richard A. Hallett; Mark A. Bradford

    2015-01-01

    Forests are vital components of the urban landscape because they provide ecosystem services such as carbon sequestration, storm-water mitigation, and air-quality improvement. To enhance these services, cities are investing in programs to create urban forests. A major unknown, however, is whether planted trees will grow into the mature, closed-canopied forest on which...

  7. Methodology Investigation Characterization of Test Environment.

    DTIC Science & Technology

    1979-08-01

    canopy trees may be briefly deciduous, especially when flowering . Number of tree species is very large. Canopy: Trees 145 to 180 feet (45 to 55 m) tall...rooted palms are abundant. Shrub layer: Dwarf palms 5 to 8 feet (1.5 to 2.5 m) tall with undi- vided leaves usually abundant. Giant herbs with banana ...forest cover for agricultural purposes, corn and banana culture. These sites are now either abandoned or poorly maintained; in either case, tree

  8. Analysis of ecological thresholds in a temperate forest undergoing dieback

    PubMed Central

    Newton, Adrian C.; Cantarello, Elena; Evans, Paul M.

    2017-01-01

    Positive feedbacks in drivers of degradation can cause threshold responses in natural ecosystems. Though threshold responses have received much attention in studies of aquatic ecosystems, they have been neglected in terrestrial systems, such as forests, where the long time-scales required for monitoring have impeded research. In this study we explored the role of positive feedbacks in a temperate forest that has been monitored for 50 years and is undergoing dieback, largely as a result of death of the canopy dominant species (Fagus sylvatica, beech). Statistical analyses showed strong non-linear losses in basal area for some plots, while others showed relatively gradual change. Beech seedling density was positively related to canopy openness, but a similar relationship was not observed for saplings, suggesting a feedback whereby mortality in areas with high canopy openness was elevated. We combined this observation with empirical data on size- and growth-mediated mortality of trees to produce an individual-based model of forest dynamics. We used this model to simulate changes in the structure of the forest over 100 years under scenarios with different juvenile and mature mortality probabilities, as well as a positive feedback between seedling and mature tree mortality. This model produced declines in forest basal area when critical juvenile and mature mortality probabilities were exceeded. Feedbacks in juvenile mortality caused a greater reduction in basal area relative to scenarios with no feedback. Non-linear, concave declines of basal area occurred only when mature tree mortality was 3–5 times higher than rates observed in the field. Our results indicate that the longevity of trees may help to buffer forests against environmental change and that the maintenance of old, large trees may aid the resilience of forest stands. In addition, our work suggests that dieback of forests may be avoidable providing pressures on mature and juvenile trees do not pass critical thresholds. PMID:29240842

  9. Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies.

    PubMed

    Maguire, Dorothy Y; Robert, Katleen; Brochu, Kristen; Larrivée, Maxim; Buddle, Christopher M; Wheeler, Terry A

    2014-02-01

    Forest canopies support high arthropod biodiversity, but in temperate canopies, little is known about the spatial distribution of these arthropods. This is an important first step toward understanding ecological roles of insects in temperate canopies. The objective of this study was to assess differences in the species composition of two dominant and diverse taxa (Diptera and Coleoptera) along a vertical gradient in temperate deciduous forest canopies. Five sugar maple trees from each of three deciduous forest sites in southern Quebec were sampled using a combination of window and trunk traps placed in three vertical strata (understory, mid-canopy, and upper-canopy) for three sampling periods throughout the summer. Coleoptera species richness and abundance did not differ between canopy heights, but more specimens and species of Diptera were collected in the upper-canopy. Community composition of Coleoptera and Diptera varied significantly by trap height. Window traps collected more specimens and species of Coleoptera than trunk traps, although both trap types should be used to maximize representation of the entire Coleoptera community. There were no differences in abundance, diversity, or composition of Diptera collected between trap types. Our data confirm the relevance of sampling all strata in a forest when studying canopy arthropod biodiversity.

  10. The potential of the tree water potential.

    PubMed

    Steppe, Kathy

    2018-06-12

    Non-invasive quantification of tree water potential is one of the grand challenges for assessing the fate of trees and forests in the coming decades. Tree water potential is a robust and direct indicator of tree water status and is preferably used to track how trees, forests and vegetation in general respond to changes in climate and drought. In this issue of Tree Physiology, Dietrich et al. (2018) predict the daily canopy water potential of mature temperate trees from tree water deficit derived from stem diameter variation measurements.

  11. Individual tree crown delineation using localized contour tree method and airborne LiDAR data in coniferous forests

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Yu, Bailang; Wu, Qiusheng; Huang, Yan; Chen, Zuoqi; Wu, Jianping

    2016-10-01

    Individual tree crown delineation is of great importance for forest inventory and management. The increasing availability of high-resolution airborne light detection and ranging (LiDAR) data makes it possible to delineate the crown structure of individual trees and deduce their geometric properties with high accuracy. In this study, we developed an automated segmentation method that is able to fully utilize high-resolution LiDAR data for detecting, extracting, and characterizing individual tree crowns with a multitude of geometric and topological properties. The proposed approach captures topological structure of forest and quantifies topological relationships of tree crowns by using a graph theory-based localized contour tree method, and finally segments individual tree crowns by analogy of recognizing hills from a topographic map. This approach consists of five key technical components: (1) derivation of canopy height model from airborne LiDAR data; (2) generation of contours based on the canopy height model; (3) extraction of hierarchical structures of tree crowns using the localized contour tree method; (4) delineation of individual tree crowns by segmenting hierarchical crown structure; and (5) calculation of geometric and topological properties of individual trees. We applied our new method to the Medicine Bow National Forest in the southwest of Laramie, Wyoming and the HJ Andrews Experimental Forest in the central portion of the Cascade Range of Oregon, U.S. The results reveal that the overall accuracy of individual tree crown delineation for the two study areas achieved 94.21% and 75.07%, respectively. Our method holds great potential for segmenting individual tree crowns under various forest conditions. Furthermore, the geometric and topological attributes derived from our method provide comprehensive and essential information for forest management.

  12. Using laser altimetry-based segmentation to refine automated tree identification in managed forests of the Black Hills, South Dakota

    Treesearch

    Eric Rowell; Carl Selelstad; Lee Vierling; Lloyd Queen; Wayne Sheppard

    2006-01-01

    The success of a local maximum (LM) tree detection algorithm for detecting individual trees from lidar data depends on stand conditions that are often highly variable. A laser height variance and percent canopy cover (PCC) classification is used to segment the landscape by stand condition prior to stem detection. We test the performance of the LM algorithm using canopy...

  13. Assessing urban forest effects and values, Los Angeles' urban forest

    Treesearch

    David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Lorraine Weller; Antonio Davila

    2011-01-01

    An analysis of trees in Los Angeles, CA, reveals that this area has about 6 million trees with tree and shrub canopies that cover 24.9 percent of the city. The most common tree species are Italian cypress, scrub oak, laurel sumac, Mexican fan palm, and Indian laurel, Trees in Los Angeles currently store about 1.3 million tons of carbon (4.7 million tons CO2...

  14. Canopy arthropod responses to experimental canopy opening and debris deposition in a tropical rainforest subject to hurricanes

    Treesearch

    Timothy D. Schowalter; Michael R. Willig; Steven J. Presley

    2014-01-01

    We analyzed responses of canopy arthropods on seven representative early and late successional overstory and understory tree species to a canopy trimming experiment designed to separate effects of canopy opening and debris pulse (resulting from hurricane disturbance) in a tropical rainforest ecosystem at the Luquillo Experimental Forest Long-Term Ecological Research (...

  15. Green Mansions: The Evergreen Forests of the Pacific Northwest.

    ERIC Educational Resources Information Center

    Philipek, Frances; Smith, Shelley; Brook, Richard

    2000-01-01

    Explores the ecosystem in Pacific Northwest Coastal America and investigates land management issues. Discusses the impact of canopy trees on temperature and the forest itself. Explains fungi's relationship with trees and presents activities on stream flow, wood, volcanoes, and plants for the classroom. (YDS)

  16. Seedling survival and growth of three forest tree species: The role of spatial heterogeneity

    Treesearch

    Brian Beckage; James S. Clark

    2003-01-01

    Spatial heterogeneity in microenvironments may provide unique regeneration niches for trees and may promote forest diversity. We examined how heterogeneity in understory cover, mineral nutrients, and moisture and their interactions with canopy gaps contribute to the coexistence of three common, co-occuring tree species. We measured survival and height growth of 1080...

  17. Survival and ecophysiology of tree seedlings during El Nino drought in a tropical moist forest in Panama

    Treesearch

    Betinna M.J. Engelbrecht; S. Joseph Wright; Diane De Steven

    2002-01-01

    In tropical forests, severe droughts caused by El Nino events may strongly influence the water relations of tree seedlings and thereby increase their mortality. Data on known-aged seedlings of three common shade-tolerant canopy tree species (Trichilia tuberculata, Tetragastris panamensis and Quararibea asterolepis) in a Panamanian...

  18. Remotely sensed predictors of conifer tree mortality during severe drought

    NASA Astrophysics Data System (ADS)

    Brodrick, P. G.; Asner, G. P.

    2017-11-01

    Widespread, drought-induced forest mortality has been documented on every forested continent over the last two decades, yet early pre-mortality indicators of tree death remain poorly understood. Remotely sensed physiological-based measures offer a means for large-scale analysis to understand and predict drought-induced mortality. Here, we use laser-guided imaging spectroscopy from multiple years of aerial surveys to assess the impact of sustained canopy water loss on tree mortality. We analyze both gross canopy mortality in 2016 and the change in mortality between 2015 and 2016 in millions of sampled conifer forest locations throughout the Sierra Nevada mountains in California. On average, sustained water loss and gross mortality are strongly related, and year-to-year water loss within the drought indicates subsequent mortality. Both relationships are consistent after controlling for location and tree community composition, suggesting that these metrics may serve as indicators of mortality during a drought.

  19. Physiological and foliar symptom response of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ozone under differing site conditions

    Treesearch

    M. Schaub; J.M. Skelly; J.W. Zhang; J.A. Ferdinand; J.E. Savage; R.E. Stevenson; D.D. Davis; K.C. Steiner

    2005-01-01

    The crowns of five canopy dominant black cherry ( Prunus serotina Ehrh.), five white ash ( Fraxinus americana L.), and six red maple ( Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania....

  20. Monitoring tree health with a dual-wavelength terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Hancock, S.

    2013-12-01

    Steven Hancock1, Rachel Gaulton1, Mark Danson2 1School of Civil Engineering and Geosciences, Newcastle University, UK, steven.hancock@ncl.ac.uk, rachel.gaulton@ncl.ac.uk 2 School of Environment and Life Sciences, University of Salford, UK, F.M.Danson@salford.ac.uk Forests are a vital part of the Earth's carbon cycle and drive interactions between the land and atmosphere. Accurate and repeatable measurement of forests is essential for understanding the Earth system. Terrestrial laser scanning can be a powerful tool for characterising forests. However, there are a number of issues that have yet to be resolved. Commercial laser scanners are optimised for measuring buildings and other hard targets. Vegetation canopies are complex and porous, confounding standard interpretation techniques. Commercial systems struggle with partial hits and cannot distinguish leaf from wood (Danson et al 2007). A new generation of terrestrial laser scanners, optimised for vegetation measurement, are in development. The Salford Advanced Laser Canopy Analyser (SALCA, Gaulton et al 2013) aims to overcome these issues using full-waveform analysis and two wavelengths (1064 nm and 1545 nm), allowing the characterisation of a porous canopy, the identification of leaf and wood and derivation of information on leaf biochemistry. Gaulton et al (2013) showed that SALCA is capable of measuring the Equivalent Water Thickness (EWT) of individual leaves in laboratory conditions. In this study, the method was applied to complete tree canopies. A controlled experiment simulating a small 'forest' of potted broadleaved (Tilia cordata) and coniferous trees (Pinus nigra) was established and groups subjected to different moisture stresses over a one month period. Trees were repeatedly scanned by SALCA and regular measurements were made of leaf EWT, stomatal conductance, chlorophyll content, spectral properties (using an ASD field spectroradiometer) and, for a limited number of trees, leaf area (by destructive harvesting). Trees were arranged so that some were clearly visible to the scanner and could be analysed individually (a best case scenario) whilst others were grouped to form a denser, more realistic canopy (a worse case scenario). A method was developed to simultaneously extract canopy structure (leaf area, tree height and clumping) and leaf biochemistry (EWT) from the laser scanner data. These results were compared to ground to assess their accuracy. References Danson, F. M., Hetherington D., Morsdorf F., Koetz B., Allgower B., 2007. Forest canopy gap fraction from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 4, 157-160. Gaulton R., Danson F. M., Ramirez F. A., Gunawan O., 2013. The potential of dual-wavelength laser scanning for estimating vegetation moisture content. Remote Sensing of Environment, 132, 32-39.

  1. Time series data of a broadleaved secondary forest in Japan as affected by deer and mass mortality of oak trees.

    PubMed

    Itô, Hiroki

    2017-01-01

    Abandonment of broadleaved secondary forests that have been used for various purposes may cause the loss of biodiversity. Some of these forests suffer from diseases such as Japanese oak wilt. An increasing number of deer also impact some of them. Monitoring and recording the status of such forests is important for their proper management. This data set provides a concrete example of temporal changes in a temperate broadleaved secondary forest. The forest has been damaged by mass mortality of oak trees caused by Japanese oak wilt disease. In addition, the forest has been under foraging pressure by sika deer ( Cervus nippon Temminck). The data set can provide information on how such a forest has changed in species composition of the canopy and sub-canopy layers and in species occurrence in the understory layer.

  2. Natural migration rates of trees: Global terrestrial carbon cycle implications. Book chapter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, A.M.

    The paper discusses the forest-ecological processes which constrain the rate of response by forests to rapid future environmental change. It establishes a minimum response time by natural tree populations which invade alien landscapes and reach the status of a mature, closed canopy forest when maximum carbon storage is realized. It considers rare long-distance and frequent short-distance seed transport, seedling and tree establishment, sequential tree and stand maturation, and spread between newly established colonies.

  3. UAV hyperspectral and lidar data analysis for vegetation applications

    NASA Astrophysics Data System (ADS)

    Sankey, Temuulen; Sankey, Joel; Donager, Jonathon

    2017-04-01

    High spatial and spectral resolution remote sensing data are critically needed to classify forest vegetation and measure their structure at the level of individual species and canopies. Here we test high-resolution lidar and hyperspectral data from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone with a gradient of vegetation and topography in northern Arizona, USA. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signature, but different canopy sizes. The lidar data provides estimates of individual tree height (R2=0.90; RMSE=2.3m) and crown diameter (R2=0.72; RMSE=0.71m) as well as total tree canopy cover (R2=0.87; RMSE=9.5%) and tree density (R2=0.77; RMSE=0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22-50% and 1-3.5 trees/cell, respectively. The lidar data also produces high accuracy DEM (R2=0.95; RMSE=0.43m). The lidar and hyperspectral sensors and methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring ecosystem changes.

  4. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.

    PubMed

    Chmura, Daniel J; Tjoelker, Mark G

    2008-05-01

    Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.

  5. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy.

    PubMed

    Baldeck, Claire A; Asner, Gregory P; Martin, Robin E; Anderson, Christopher B; Knapp, David E; Kellner, James R; Wright, S Joseph

    2015-01-01

    Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods--binary support vector machine (SVM) and biased SVM--for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer's accuracies of 94-97% for the three focal species, and field validation of the predicted crown objects indicated that these had user's accuracies of 94-100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems.

  6. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy

    PubMed Central

    Baldeck, Claire A.; Asner, Gregory P.; Martin, Robin E.; Anderson, Christopher B.; Knapp, David E.; Kellner, James R.; Wright, S. Joseph

    2015-01-01

    Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods—binary support vector machine (SVM) and biased SVM—for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer’s accuracies of 94–97% for the three focal species, and field validation of the predicted crown objects indicated that these had user’s accuracies of 94–100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems. PMID:26153693

  7. Forest disturbance spurs growth of modeling and technology

    NASA Astrophysics Data System (ADS)

    Bohrer, G.; Matheny, A. M.; Mirfenderesgi, G.; Morin, T. H.; Rey Sanchez, A. C.; Gough, C. M.; Vogel, C. S.; Nadelhoffer, K. J.; Curtis, P.

    2016-12-01

    As new opportunities for scientific exploration open, needs for data generate a drive for innovative developments of new research tools. The Forest Accelerated Succession ExperimenT (FASET) was enacted in 2007, continuous flux observations at the University of Michigan Biological Station (UMBS) since 2000. FASET is a large-scale ecological experiment testing the immediate and intermediate term effects of disturbance, and eventually, the role of succession and community composition on forest flux dynamics. Decades-long tree-level observations in the UMBS forest, combined with the long term flux observations allowed us to match the bottom-up accumulated response of individual trees with the top-down whole-plot response measured from the flux tower. However, data describing tree-level canopy structure and hydrological response over an entire plot were not readily available. Unintentionally, FASET became both a motivation and a test-bed for new research tools and approaches. We expanded the operation and analysis approach for a portable canopy LiDARfor 3-D measurements meter-scale canopy structure. We matched canopy LiDAR measurements with root measurements from ground penetrating radar. To study the hydrological effects of the disturbance, we instrumented a large number of trees with Granier-style sap flux sensors. We further developed an approach to use frequency domain reflectometry sensors for continuous measurements of tree water content. We developed an approach to combine plot census, allometry and sap-flux observations in a bottom-up fashion to compare with plot-level EC transpiration rates. We found that while the transpirational water demand in the disturbance plot increased, overall evapotranspiration decreased. This decrease, however, is not uniform across species. A new individual-plant to ecosystem scale hydrodynamic model (FETCH2) demonstrates how specific traits translate to intra-daily differences in plot-level transpiration dynamics.

  8. Satellite Image-based Estimates of Snow Water Equivalence in Restored Ponderosa Pine Forests in Northern Arizona

    NASA Astrophysics Data System (ADS)

    Sankey, T.; Springer, A. E.; O'Donnell, F. C.; Donald, J.; McVay, J.; Masek Lopez, S.

    2014-12-01

    The U.S. Forest Service plans to conduct forest restoration treatments through the Four Forest Restoration Initiative (4FRI) on hundreds of thousands of acres of ponderosa pine forest in northern Arizona over the next 20 years with the goals of reducing wildfire hazard and improving forest health. The 4FRI's key objective is to thin and burn the forests to create within-stand openings that "promote snowpack accumulation and retention which benefit groundwater recharge and watershed processes at the fine (1 to 10 acres) scale". However, little is known about how these openings created by restoration treatments affect snow water equivalence (SWE) and soil moisture, which are key parts of the water balance that greatly influence water availability for healthy trees and for downstream water users in the Sonoran Desert. We have examined forest canopy cover by calculating a Normalized Difference Vegetation Index (NDVI), a key indicator of green vegetation cover, using Landsat satellite data. We have then compared NDVI between treatments at our study sites in northern Arizona and have found statistically significant differences in tree canopy cover between treatments. The control units have significantly greater forest canopy cover than the treated units. The thinned units also have significantly greater tree canopy cover than the thin-and-burn units. Winter season Landsat images have also been analyzed to calculate Normalized Difference Snow Index (NDSI), a key indicator of snow water equivalence and snow accumulation at the treated and untreated forests. The NDSI values from these dates are examined to determine if snow accumulation and snow water equivalence vary between treatments at our study sites. NDSI is significantly greater at the treated units than the control units. In particular, the thinned forest units have significantly greater snow cover than the control units. Our results indicate that forest restoration treatments result in increased snow pack accumulation and this increase can be efficiently estimated at a landscape scale using satellite data.

  9. Tree traits and canopy closure data from an experiment with 34 planted species native to Sabah, Borneo

    PubMed Central

    Gustafsson, Malin; Gustafsson, Lena; Alloysius, David; Falck, Jan; Yap, Sauwai; Karlsson, Anders; Ilstedt, Ulrik

    2016-01-01

    The data presented in this paper is supporting the research article “Life history traits predict the response to increased light among 33 tropical rainforest tree species” [3]. We show basic growth and survival data collected over the 6 years duration of the experiment, as well as data from traits inventories covering 12 tree traits collected prior to and after a canopy reduction treatment in 2013. Further, we also include canopy closure and forest light environment data from measurements with hemispherical photographs before and after the treatment. PMID:26900591

  10. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest.

    PubMed

    Fotis, Alexander T; Curtis, Peter S

    2017-10-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Oil road effects on the anuran community of a high canopy tank bromeliad (Aechmea zebrina) in the upper Amazon basin, Ecuador.

    PubMed

    McCracken, Shawn F; Forstner, Michael R J

    2014-01-01

    Tropical forest canopies are among the most species-rich terrestrial habitats on earth and one of the remaining relatively unexplored biotic frontiers. Epiphytic bromeliads provide microhabitat for a high diversity of organisms in tropical forest canopies and are considered a keystone resource. A number of amphibians inhabit these phytotelmata, yet their ecological role and status in forest canopies remains unknown. For this study, anurans were collected from an upper canopy tank bromeliad (Aechmea zebrina) at ∼20-45 m (x¯ = 33 m) above the forest floor. Bromeliads were sampled from trees located near trails in undisturbed primary rainforest and oil access roads in the Yasuní Biosphere Reserve of Amazonian Ecuador. We collected 95 anurans representing 10 species from 160 bromeliads in 32 trees. We used generalized linear mixed models to assess the effects of disturbance and habitat factors on the occupancy and abundance of anurans collected. Bromeliads in forest along oil roads had a lower occupancy and abundance of anurans than those in undisturbed forest, a somewhat unexpected result due to the intactness and quality of forest adjacent to the roads. Recorded habitat variables had no relationship with occupancy or abundance of anurans, and did not differ significantly between treatments. Our findings reveal that even the minimal footprint of natural resource extraction operations, primarily roads, in rainforest environments can have significant negative impacts on the unique upper canopy anuran community. Based on these results, we recommend that natural resource development treat rainforest habitat as an offshore system where roads are not used, employ industry best practice guidelines, and current access roads be protected from colonization and further deforestation.

  12. Oil Road Effects on the Anuran Community of a High Canopy Tank Bromeliad (Aechmea zebrina) in the Upper Amazon Basin, Ecuador

    PubMed Central

    McCracken, Shawn F.; Forstner, Michael R. J.

    2014-01-01

    Tropical forest canopies are among the most species-rich terrestrial habitats on earth and one of the remaining relatively unexplored biotic frontiers. Epiphytic bromeliads provide microhabitat for a high diversity of organisms in tropical forest canopies and are considered a keystone resource. A number of amphibians inhabit these phytotelmata, yet their ecological role and status in forest canopies remains unknown. For this study, anurans were collected from an upper canopy tank bromeliad (Aechmea zebrina) at ∼20–45 m (x¯ = 33 m) above the forest floor. Bromeliads were sampled from trees located near trails in undisturbed primary rainforest and oil access roads in the Yasuní Biosphere Reserve of Amazonian Ecuador. We collected 95 anurans representing 10 species from 160 bromeliads in 32 trees. We used generalized linear mixed models to assess the effects of disturbance and habitat factors on the occupancy and abundance of anurans collected. Bromeliads in forest along oil roads had a lower occupancy and abundance of anurans than those in undisturbed forest, a somewhat unexpected result due to the intactness and quality of forest adjacent to the roads. Recorded habitat variables had no relationship with occupancy or abundance of anurans, and did not differ significantly between treatments. Our findings reveal that even the minimal footprint of natural resource extraction operations, primarily roads, in rainforest environments can have significant negative impacts on the unique upper canopy anuran community. Based on these results, we recommend that natural resource development treat rainforest habitat as an offshore system where roads are not used, employ industry best practice guidelines, and current access roads be protected from colonization and further deforestation. PMID:24416414

  13. Influence of stocking, site quality, stand age, low-severity canopy disturbance, and forest composition on sub-boreal aspen mixedwood carbon stocks

    USGS Publications Warehouse

    Reinikainen, Michael; D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Low-severity canopy disturbance presumably influences forest carbon dynamics during the course of stand development, yet the topic has received relatively little attention. This is surprising because of the frequent occurrence of such events and the potential for both the severity and frequency of disturbances to increase as a result of climate change. We investigated the impacts of low-severity canopy disturbance and average insect defoliation on forest carbon stocks and rates of carbon sequestration in mature aspen mixedwood forests of varying stand age (ranging from 61 to 85 years), overstory composition, stocking level, and site quality. Stocking level and site quality positively affected the average annual aboveground tree carbon increment (CAAI), while stocking level, site quality, and stand age positively affected tree carbon stocks (CTREE) and total ecosystem carbon stocks (CTOTAL). Cumulative canopy disturbance (DIST) was reconstructed using dendroecological methods over a 29-year period. DIST was negatively and significantly related to soil carbon (CSOIL), and it was negatively, albeit marginally, related to CTOTAL. Minima in the annual aboveground carbon increment of trees (CAI) occurred at sites during defoliation of aspen (Populus tremuloides Michx.) by forest tent caterpillar (Malacosoma disstria Hubner), and minima were more extreme at sites dominated by trembling aspen than sites mixed with conifers. At sites defoliated by forest tent caterpillar in the early 2000s, increased sequestration by the softwood component (Abies balsamea (L.) Mill. and Picea glauca (Moench) Voss) compensated for overall decreases in CAI by 17% on average. These results underscore the importance of accounting for low-severity canopy disturbance events when developing regional forest carbon models and argue for the restoration and maintenance of historically important conifer species within aspen mixedwoods to enhance stand-level resilience to disturbance agents and maintain site-level carbon stocks.

  14. Legacy of Pre-Disturbance Spatial Pattern Determines Early Structural Diversity following Severe Disturbance in Montane Spruce Forests

    PubMed Central

    Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.

    2015-01-01

    Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations. PMID:26421726

  15. Infrasonic wind noise under a deciduous tree canopy.

    PubMed

    Webster, Jeremy; Raspet, Richard

    2015-05-01

    In a recent paper, the infrasonic wind noise measured at the floor of a pine forest was predicted from the measured wind velocity spectrum and profile within and above the trees [Raspet and Webster, J. Acoust. Soc. Am. 137, 651-659 (2015)]. This research studies the measured and predicted wind noise under a deciduous forest with and without leaves. A calculation of the turbulence-shear interaction pressures above the canopy predicts the low frequency peak in the wind noise spectrum. The calculated turbulence-turbulence interaction pressure due to the turbulence field near the ground predicts the measured wind noise spectrum in the higher frequency region. The low frequency peak displays little dependence on whether the trees have leaves or not. The high frequency contribution with leaves is approximately an order of magnitude smaller than the contribution without leaves. Wind noise levels with leaves are very similar to the wind noise levels in the pine forest. The calculated turbulence-shear contribution from the wind within the canopy is shown to be negligible in comparison to the turbulence-turbulence contribution in both cases. In addition, the effect of taller forests and smaller roughness lengths than those of the test forest on the turbulence-shear interaction is simulated based on measured meteorological parameters.

  16. Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling

    Treesearch

    Robert M. Hubbard; Charles C. Rhoades; Kelly Elder; Jose Negron

    2013-01-01

    The recent mountain pine beetle outbreak in North American lodgepole pine forests demonstrates the importance of insect related disturbances in changing forest structure and ecosystem processes. Phloem feeding by beetles disrupts transport of photosynthate from tree canopies and fungi introduced to the tree's vascular system by the bark beetles inhibit water...

  17. Persistent effects of a severe drought on Amazonian forest canopy

    PubMed Central

    Saatchi, Sassan; Asefi-Najafabady, Salvi; Malhi, Yadvinder; Aragão, Luiz E. O. C.; Anderson, Liana O.; Myneni, Ranga B.; Nemani, Ramakrishna

    2013-01-01

    Recent Amazonian droughts have drawn attention to the vulnerability of tropical forests to climate perturbations. Satellite and in situ observations have shown an increase in fire occurrence during drought years and tree mortality following severe droughts, but to date there has been no assessment of long-term impacts of these droughts across landscapes in Amazonia. Here, we use satellite microwave observations of rainfall and canopy backscatter to show that more than 70 million hectares of forest in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy structure and moisture. Remarkably, and despite the gradual recovery in total rainfall in subsequent years, the decrease in canopy backscatter persisted until the next major drought, in 2010. The decline in backscatter is attributed to changes in structure and water content associated with the forest upper canopy. The persistence of low backscatter supports the slow recovery (>4 y) of forest canopy structure after the severe drought in 2005. The result suggests that the occurrence of droughts in Amazonia at 5–10 y frequency may lead to persistent alteration of the forest canopy. PMID:23267086

  18. Acute and long-term effects of irradiation on pine (Pinus silvestris) strands post-Chernobyl.

    PubMed

    Arkhipov, N P; Kuchma, N D; Askbrant, S; Pasternak, P S; Musica, V V

    1994-12-11

    The effect of ionizing irradiation on the viability of pine stands after the fallout from the damaged nuclear energy plant at Chernobyl (ChNPP) was shown within the territory of the 10-km zone. During the period 1986-1991, irradiated and damaged forest stands, so-called 'red forest', located in this area were systematically classified by observation. Mortality rate, re-establishment, development of tree canopies, reproduction anomalies and stand viability were shown to be dependent on absorbed irradiation dose, on the age of the stand and on forest composition. For pine stands in the acutely affected zone, doses of more than 60 Gy resulted in a massive mortality and no regeneration of pine trees since 1987. The injured trees had burned or had dried-up. The drying process was accelerated by a massive production of pathogenic insects invading the dying trees. Specifically, irradiation doses of 10-60 Gy, 1-10 Gy and 0.1-1 Gy caused high, medium and low injury to the forest stands, respectively. Doses of less than 0.1 Gy did not cause any visible damage to the trees. In 1987, repair processes were displayed by the tree canopies and practically the entire viability of the forest stands had recovered except for trees in the acute and highly affected zones. The young forest was reestablished in the same place as the perished trees and new pine saplings were planted on the reclaimed areas.

  19. [The changes of forest canopy spectral reflectance with seasons in Xiaoxing'anling].

    PubMed

    Xu, Guang-Cai; Pang, Yong; Li, Zeng-Yuan; Zhao, Kai-Rui; Liu, Lu-Xia

    2013-12-01

    The ASD FieldSpec portable spectrometer was adopted to collect canopy reflectance spectrum data of the 9 main tree species in study area by a long-term observation to get the data of the four seasons Then the smoothed reflectance curve and the first derivation curve from 350 to 1400 nm and several commonly used vegetation spectral characteristic parameters were generated to analyse seasonal change characteristics and variation of the 9 tree species in visible and near-infrared band and to explore the best band characteristics and period for species identification. The results showed that different trees had different and rather unique spectral features during the four seasons. The spectral characteristics of the deciduous trees have regular changes with the cycle of the seasons, whereas those of the evergreen tree species have no significant changes in one year. As well changes in the spectral characteristics could effectively reflect forest phenology changes, and it is proposed that the optimal strategy for tree species classification may be the integration and analysis of multi-seasonal spectral data. Evergreen trees and deciduous trees in the winter have obvious differences in the canopy spectral characteristics and the best single-season remote sensing data for tree species recognition is in summer.

  20. HYDRAULIC REDISTRIBUTION OF SOIL WATER BY ROOTS IN FORESTS OF THE PACIFIC NORTHWEST

    EPA Science Inventory

    One aspect of structural complexity of forest canopies is the root system structure belowground, which influences patterns of soil water utilization by trees. Deeply rooted trees and other plants can hydraulically lift water via their roots from several m below the soil surface ...

  1. Disturbance severity and canopy position control the radial growth response of maple trees (Acer spp.) in forests of northwest Ohio impacted by emerald ash borer (Agrilus planipennis)

    Treesearch

    K.C. Costilow; Kathleen Knight; Charles Flower

    2017-01-01

    Key message. Radial growth of silver and red maples was investigated across three forests in northwest Ohio following the outbreak of the invasive emerald ash borer. The growth response of maples was driven by an advancement in canopy class and disturbance severity. Context. Forest disturbances resulting in species-specific diffuse mortality cause shifts in aboveground...

  2. Repeated prescribed fires alter gap-phase regeneration in mixed-oak forests

    Treesearch

    Todd F. Hutchinson; Robert P. Long; Joanne Rebbeck; Elaine Kennedy Sutherland; Daniel A. Yaussy

    2012-01-01

    Oak dominance is declining in the central hardwoods region, as canopy oaks are being replaced by shade-tolerant trees that are abundant in the understory of mature stands. Although prescribed fire can reduce understory density, oak seedlings often fail to show increased vigor after fire, as the canopy remains intact. In this study, we examine the response of tree...

  3. COVER: A user's guide to the CANOPY and SHRUBS extension of the Stand Prognosis Model

    Treesearch

    Melinda Moeur

    1985-01-01

    The COVER model predicts vertical and horizontal tree canopy closure, tree foliage biomass, and the probability of occurrence, height, and cover of shrubs in forest stands. This paper documents use of the COVER program, an adjunct to the Stand Prognosis Model. Preparation of input, interpretation of output, program control, model characteristics, and example...

  4. A comparison of bird species composition and abundance between late- and mid-seral ponderosa pine forests

    Treesearch

    T. Luke George; Steve Zack; William F. Jr. Laudenslayer

    2005-01-01

    We compared the relative abundance of bird species between two ponderosa pine (Pinus ponderosa) forests in northeastern California: one with a canopy of large old-growth trees present (Blacks Mountain Experimental Forest, BMEF) and the other with large trees essentially absent (Goosenest Adaptive Management Area, GAMA). We surveyed 24 units at BMEF...

  5. A tool to determine crown and plot canopy transparency for forest inventory and analysis phase 3 plots using digital photographs

    Treesearch

    Matthew F. Winn; Philip A. Araman

    2012-01-01

    The USDA Forest Service Forest Inventory and Analysis (FIA) program collects crown foliage transparency estimates for individual trees on Phase 3 (P3) inventory plots. The FIA crown foliage estimate is obtained from a pair of perpendicular side views of the tree. Researchers with the USDA Forest Service Southern Research Station have developed a computer program that...

  6. Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia

    Treesearch

    Deborah K. Kennard

    2002-01-01

    Stand structure, species richness and population structures of tree species were characterized in 12 stands representing 50 y of succession following slash-and-burn agriculture in a tropical dry forest in lowland Bolivia. Estimates of tree species richness, canopy cover and basal area reached or surpassed 75% of mature forest levels in the 5-, 8-, and 23-y-old stands...

  7. Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest.

    PubMed

    Santiago, Louis S; Kitajima, Kaoru; Wright, S Joseph; Mulkey, Stephen S

    2004-05-01

    We investigated leaf physiological traits of dominant canopy trees in four lowland Panamanian forests with contrasting mean annual precipitation (1,800, 2,300, 3,100 and 3,500 mm). There was near complete turn-over of dominant canopy tree species among sites, resulting in greater dominance of evergreen species with long-lived leaves as precipitation increased. Mean structural and physiological traits changed along this gradient as predicted by cost-benefit theories of leaf life span. Nitrogen content per unit mass (Nmass) and light- and CO2-saturated photosynthetic rates per unit mass (Pmass) of upper canopy leaves decreased with annual precipitation, and these changes were partially explained by increasing leaf thickness and decreasing specific leaf area (SLA). Comparison of 1,800 mm and 3,100 mm sites, where canopy access was available through the use of construction cranes, revealed an association among extended leaf longevity, greater structural defense, higher midday leaf water potential, and lower Pmass, Nmass, and SLA at wetter sites. Shorter leaf life spans and more enriched foliar delta15N values in drier sites suggest greater resorption and re-metabolism of leaf N in drier forest. Greater dominance of short-lived leaves with relatively high Pmass in drier sites reflects a strategy to maximize photosynthesis when water is available and to minimize water loss and respiration costs during rainless periods. Overall, our study links coordinated change in leaf functional traits that affect productivity and nutrient cycling to seasonality in lowland tropical forests. Copyright 2004 Springer-Verlag

  8. Estimating the Longwave Radiation Underneath the Forest Canopy in Snow-dominated Setting

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Kumar, M.; Link, T. E.

    2017-12-01

    Forest canopies alter incoming longwave radiation at the land surface, thus influencing snow cover energetics. The snow surface receives longwave radiation from the sky as well as from surrounding vegetation. The longwave radiation from trees is determined by its skin temperature, which shows significant heterogeneity depending on its position and morphometric attributes. Here our goal is to derive an effective tree temperature that can be used to estimate the longwave radiation received by the land surface pixel. To this end, we implement these three steps: 1) derive a relation between tree trunk surface temperature and the incident longwave radiation, shortwave radiation, and air temperature; 2) develop an inverse model to calculate the effective temperature by establishing a relationship between the effective temperature and the actual tree temperature; and 3) estimate the effective temperature using widely measured variables, such as solar radiation and forest density. Data used to derive aforementioned relations were obtained at the University of Idaho Experimental Forest, in northern Idaho. Tree skin temperature, incoming longwave radiation, solar radiation received by the tree surface, and air temperature were measured at an isolated tree and a tree within a homogeneous forest stand. Longwave radiation received by the land surface and the sky view factors were also measured at the same two locations. The calculated effective temperature was then compared with the measured tree trunk surface temperature. Additional longwave radiation measurements with pyrgeometer arrays were conducted under forests with different densities to evaluate the relationship between effective temperature and forest density. Our preliminary results show that when exposed to direct shortwave radiation, the tree surface temperature shows a significant difference from the air temperature. Under cloudy or shaded conditions, the tree surface temperature closely follows the air temperature. The effective tree temperature follows the air temperature in a dense forest stand, although it is significantly larger than the air temperature near the isolated tree. This discrepancy motivates us to explore ways to represent the effective tree temperature for stands with different densities.

  9. The hydraulic limitation hypothesis revisited.

    PubMed

    Ryan, Michael G; Phillips, Nathan; Bond, Barbara J

    2006-03-01

    We proposed the hydraulic limitation hypothesis (HLH) as a mechanism to explain universal patterns in tree height, and tree and stand biomass growth: height growth slows down as trees grow taller, maximum height is lower for trees of the same species on resource-poor sites and annual wood production declines after canopy closure for even-aged forests. Our review of 51 studies that measured one or more of the components necessary for testing the hypothesis showed that taller trees differ physiologically from shorter, younger trees. Stomatal conductance to water vapour (g(s)), photosynthesis (A) and leaf-specific hydraulic conductance (K L) are often, but not always, lower in taller trees. Additionally, leaf mass per area is often greater in taller trees, and leaf area:sapwood area ratio changes with tree height. We conclude that hydraulic limitation of gas exchange with increasing tree size is common, but not universal. Where hydraulic limitations to A do occur, no evidence supports the original expectation that hydraulic limitation of carbon assimilation is sufficient to explain observed declines in wood production. Any limit to height or height growth does not appear to be related to the so-called age-related decline in wood production of forests after canopy closure. Future work on this problem should explicitly link leaf or canopy gas exchange with tree and stand growth, and consider a more fundamental assumption: whether tree biomass growth is limited by carbon availability.

  10. Summary of a Workshop on Plant Canopy Structure, 27-30 April 1981, Oak Ridge, Tennessee.

    DTIC Science & Technology

    1982-08-01

    relating canopy structure to amounts of water-conducting tissue have mostly been tried for woody trees and shrubs in which sapwood area is used as...Forest Service. 20 pp. Grier, C. C. and R. H. Waring. 1974. Conifer foliage mass related to sapwood area . Forest Sci. 20:205-206. Hallg, F., R. A. A...Plant Canopy Struc- ture was held at Oak Ridge, Tenn. Over 30 individuals representing a broad range of disciplines and specific areas of expertise were

  11. Leaf angle, tree species, and the functioning of broadleaf deciduous forest ecosystems

    NASA Astrophysics Data System (ADS)

    McNeil, B. E.; Brzostek, E. R.; Fahey, R. T.; King, C. J.; Flamenco, E. A.; Rescorl, S.; Erazo, D.; Heimerl, T.

    2016-12-01

    The effects of temperate forests on the global cycles of carbon, water, and energy depends strongly on how individual tree species adjust to the novel environmental conditions of the Anthropocene. Here, we seek to identify and understand ecological variability in one important component of tree canopies, the inclination angles of leaves. Leaf angle has important effects on forest albedo, photosynthesis, and evapotranspiration, but there is relatively little data to constrain the many models that include (or perhaps should include) this essential aspect of canopy architecture. We employ a relatively new technique for using an electronic protractor to measure leaf angles from leveled digital photographs. From a suite of observation platforms (e.g. UAVs, eddy flux towers, old fire towers) in Connecticut, Indiana, Maryland, Michigan, Pennsylvania, and West Virginia, USA, we have measured leaf angles periodically throughout the 2014, 2015, and 2016 growing seasons. Based on over 25,000 measurements taken from 15 tree species, we find highly significant differences in mean leaf angle by canopy position, tree species, location, and observation date. In addition to replicating findings where upper-canopy sun leaves are more vertical than lower-canopy shade leaves, our analysis on sun leaves also finds other ecologically meaningful differences. For instance, we find that the mesic, shade tolerant sugar maple had significantly more horizontal leaf angles than drought-resistant species such as white oak. Species also appear to have unique patterns of leaf angle phenology, with most species tending toward more vertical leaf angles during droughty conditions later in the year. We discuss these empirical results in light of an emerging theoretical framework that positions leaf angle as a functional trait. Like leaf traits such as %N or SLA, we suggest that leaf angle is an essential part of the adaptive resource strategy of each tree species. Finally, by linking our leaf angle data to new observations of spatial and temporal variations in near infrared reflectance measured from UAV, airborne, and satellite sensors, we highlight how species-specific patterns of leaf angle phenology could provide a new mechanism to better constrain model predictions of energy, water, and carbon fluxes from temperate forests.

  12. Pre-outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado.

    PubMed

    Mietkiewicz, Nathan; Kulakowski, Dominik; Veblen, Thomas T

    2018-03-01

    Over the past 30 years, forest disturbances have increased in size, intensity, and frequency globally, and are predicted to continue increasing due to climate change, potentially relaxing the constraints of vegetation properties on disturbance regimes. However, the consequences of the potentially declining importance of vegetation in determining future disturbance regimes are not well understood. Historically, bark beetles preferentially attack older trees and stands in later stages of development. However, as climate warming intensifies outbreaks by promoting growth of beetle populations and compromising tree defenses, smaller diameter trees and stands in early stages of development now are being affected by outbreaks. To date, no study has considered how stand age and other pre-outbreak forest conditions mediate the effects of outbreaks on surface and aerial fuel arrangements. We collected fuels data across a chronosequence of post-outbreak sites affected by spruce beetle (SB) between the 1940s and the 2010s, stratified by young (<130 yr) and old (>130 yr) post-fire stands. Canopy and surface fuel loads were calculated for each tree and stand, and available crown fuel load, crown bulk density, and canopy bulk densities were estimated. Canopy bulk density and density of live canopy individuals were reduced in all stands affected by SB, though foliage loss was proportionally greater in old stands as compared to young stands. Fine surface fuel loads in young stands were three times greater shortly (<30 yr) following outbreak as compared to young stands not affected by outbreak, after which the abundance of fine surface fuels decreased to below endemic (i.e., non-outbreak) levels. In both young and old stands, the net effect of SB outbreaks during the 20th and 21st centuries reduced total canopy fuels and increased stand-scale spatial heterogeneity of canopy fuels following outbreak. Importantly, the decrease in canopy fuels following outbreaks was greater in young post-fire stands than in older stands, suggesting that SB outbreaks may more substantially reduce risk of active crown fire when they affect stands in earlier stages of development. The current study shows that the effects of SB outbreaks on forest structure and on fuel profiles are strongly contingent on pre-outbreak conditions as determined by pre-outbreak disturbance history. © 2018 by the Ecological Society of America.

  13. Spatial and temporal variability of canopy microclimate in a Sierra Nevada riparian forest

    Treesearch

    T. Rambo; M. North

    2008-01-01

    Past riparian microclimate studies have measured changes horizontally from streams, but not vertically through the forest canopy. We recorded temperature and relative humidity for a year along a two-dimensional grid of 24 data-loggers arrayed up to 40 m height in four trees 2 - 30 m slope distance from a perennial second order stream in...

  14. Percent canopy cover and stand structure statistics from the Forest Vegetation Simulator

    Treesearch

    Nicholas L. Crookston; Albert R. Stage

    1999-01-01

    Estimates of percent canopy cover generated by the Forest Vegetation Simulator (FVS) are corrected for crown overlap using an equation presented in this paper. A comparison of the new cover estimate to some others is provided. The cover estimate is one of several describing stand structure. The structure descriptors also include major species, ranges of diameters, tree...

  15. Predicting nitrogen flux along a vertical canopy gradient in a mixed conifer forest stand of the San Bernardino Mountains in California

    Treesearch

    Michael J. Arbaugh; Andrzej Bytnerowicz; Mark E. Fenn

    1998-01-01

    A 3-year study of nitrogenous (N) air pollution deposition to ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) seedlings along a mature tree vertical canopy gradient was conducted in the mixed conifer forest of the San Bernardino Mountains of southern California. Concentrations of nitric acid vapor (HNO3), particulate nitrate...

  16. Seedling mortality in Hawaiian rain forest: The role of small-scale physical disturbance

    USGS Publications Warehouse

    Drake, D.R.; Pratt, L.W.

    2001-01-01

    Most montane rain forests on the island of Hawaii consist of a closed canopy formed by Cibotium spp. tree ferns beneath an open canopy of emergent Metrosideros polymorpha trees. We used artificial seedlings to assess the extent to which physical disturbance caused by the senescing fronds of tree ferns and the activities of feral pigs might limit tree regeneration. Artificial seedlings were established terrestrially (N = 300) or epiphytically (N = 300) on tree fern stems. Half of the seedlings on each substrate were in an exclosure lacking feral pigs and half were in forest with pigs present. After one year, the percentage of seedlings damaged was significantly greater among terrestrial seedlings (25.7%) than epiphytic seedlings (11.3%). Significantly more terrestrial seedlings were damaged in the presence of pigs (31.3%) than in the absence of pigs (20.0%). Senescing fronds of tree ferns were responsible for 60.3 percent of the damaged seedlings. Physical disturbance is potentially a major cause of seedling mortality and may reduce the expected half-life of a seedling cohort to less than two years.

  17. Tree fern trunks facilitate seedling regeneration in a productive lowland temperate rain forest.

    PubMed

    Gaxiola, Aurora; Burrows, Larry E; Coomes, David A

    2008-03-01

    Seedling regeneration on forest floors is often impaired by competition with established plants. In some lowland temperate rain forests, tree fern trunks provide safe sites on which tree species establish, and grow large enough to take root in the ground and persist. Here we explore the competitive and facilitative effects of two tree fern species, Cyathea smithii and Dicksonia squarrosa, on the epiphytic regeneration of tree species in nutrient-rich alluvial forests in New Zealand. The difficulties that seedlings have in establishing on vertical tree fern trunks were indicated by the following observations. First, seedling abundance was greatest on the oldest sections of tree fern trunks, near the base, suggesting that trunks gradually recruited more and more seedlings over time, but many sections of trunk were devoid of seedlings, indicating the difficulty of establishment on a vertical surface. Second, most seedlings were from small-seeded species, presumably because smaller seeds can easily lodge on tree fern trunks. Deer browsing damage was observed on 73% of epiphytic seedlings growing within 2 m of the ground, whereas few seedlings above that height were browsed. This suggests that tree ferns provide refugia from introduced deer, and may slow the decline in population size of deer-preferred species. We reasoned that tree ferns would compete with epiphytic seedlings for light, because below the tree fern canopy photosynthetically active radiation (PAR) was about 1% of above-canopy PAR. Frond removal almost tripled %PAR on the forest floor, leading to a significant increase in the height growth rate (HGR) of seedlings planted on the forest floor, but having no effects on the HGRs of epiphytic seedlings. Our study shows evidence of direct facilitative interactions by tree ferns during seedling establishment in plant communities associated with nutrient-rich soils.

  18. Response of Demographic Rates of Tropical Trees to Light Availability: Can Position-Based Competition Indices Replace Information from Canopy Census Data?

    PubMed Central

    Grote, Steffi; Condit, Richard; Hubbell, Stephen; Wirth, Christian; Rüger, Nadja

    2013-01-01

    For trees in tropical forests, competition for light is thought to be a central process that offers opportunities for niche differentiation through light gradient partitioning. In previous studies, a canopy index based on three-dimensional canopy census data has been shown to be a good predictor of species-specific demographic rates across the entire tree community on Barro Colorado Island, Panama, and has allowed quantifying between-species variation in light response. However, almost all other forest census plots lack data on the canopy structure. Hence, this study aims at assessing whether position-based neighborhood competition indices can replace information from canopy census data and produce similar estimates of the interspecific variation of light responses. We used inventory data from the census plot at Barro Colorado Island and calculated neighborhood competition indices with varying relative effects of the size and distance of neighboring trees. Among these indices, we selected the one that was most strongly correlated with the canopy index. We then compared outcomes of hierarchical Bayesian models for species-specific recruitment and growth rates including either the canopy index or the selected neighborhood competition index as predictor. Mean posterior estimates of light response parameters were highly correlated between models (r>0.85) and indicated that most species regenerate and grow better in higher light. Both light estimation approaches consistently found that the interspecific variation of light response was larger for recruitment than for growth rates. However, the classification of species into different groups of light response, e.g. weaker than linear (decelerating) vs. stronger than linear (accelerating) differed between approaches. These results imply that while the classification into light response groups might be biased when using neighborhood competition indices, they may be useful for determining species rankings and between-species variation of light response and therefore enable large comparative studies between different forest census plots. PMID:24324723

  19. Accuracy Assessment of Crown Delineation Methods for the Individual Trees Using LIDAR Data

    NASA Astrophysics Data System (ADS)

    Chang, K. T.; Lin, C.; Lin, Y. C.; Liu, J. K.

    2016-06-01

    Forest canopy density and height are used as variables in a number of environmental applications, including the estimation of biomass, forest extent and condition, and biodiversity. The airborne Light Detection and Ranging (LiDAR) is very useful to estimate forest canopy parameters according to the generated canopy height models (CHMs). The purpose of this work is to introduce an algorithm to delineate crown parameters, e.g. tree height and crown radii based on the generated rasterized CHMs. And accuracy assessment for the extraction of volumetric parameters of a single tree is also performed via manual measurement using corresponding aerial photo pairs. A LiDAR dataset of a golf course acquired by Leica ALS70-HP is used in this study. Two algorithms, i.e. a traditional one with the subtraction of a digital elevation model (DEM) from a digital surface model (DSM), and a pit-free approach are conducted to generate the CHMs firstly. Then two algorithms, a multilevel morphological active-contour (MMAC) and a variable window filter (VWF), are implemented and used in this study for individual tree delineation. Finally, experimental results of two automatic estimation methods for individual trees can be evaluated with manually measured stand-level parameters, i.e. tree height and crown diameter. The resulting CHM generated by a simple subtraction is full of empty pixels (called "pits") that will give vital impact on subsequent analysis for individual tree delineation. The experimental results indicated that if more individual trees can be extracted, tree crown shape will became more completely in the CHM data after the pit-free process.

  20. Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests

    PubMed Central

    Bartholomeus, Harm

    2018-01-01

    Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs) equipped with digital cameras have attracted much attention from the forestry community as potential tools for forest inventories and forest monitoring. This research fills a knowledge gap about the viability and dissimilarities of using these technologies for measuring the top of canopy structure in tropical forests. In an empirical study with data acquired in a Guyanese tropical forest, we assessed the differences between top of canopy models (TCMs) derived from TLS measurements and from UAV imagery, processed using structure from motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS and UAVs. UAV TCMs overestimate canopy height in gap areas and often fail to represent smaller gaps altogether. Secondly, it was demonstrated that forest change caused by logging can be detected by both TLS and UAV TCMs, although it is better depicted by the TLS. Thirdly, this research shows that both TLS and UAV TCMs are sensitive to the small variations in sensor positions during data collection. TCMs rendered from UAV data acquired over the same area at different moments are more similar (RMSE 0.11–0.63 m for tree height, and 0.14–3.05 m for gap areas) than those rendered from TLS data (RMSE 0.21–1.21 m for trees, and 1.02–2.48 m for gaps). This study provides support for a more informed decision for choosing between TLS and UAV TCMs to assess top of canopy in a tropical forest by advancing our understanding on: (i) how these technologies capture the top of the canopy, (ii) why their ability to reproduce the same model varies over repeated surveying sessions and (iii) general considerations such as the area coverage, costs, fieldwork time and processing requirements needed. PMID:29503719

  1. Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests.

    PubMed

    Roşca, Sabina; Suomalainen, Juha; Bartholomeus, Harm; Herold, Martin

    2018-04-06

    Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs) equipped with digital cameras have attracted much attention from the forestry community as potential tools for forest inventories and forest monitoring. This research fills a knowledge gap about the viability and dissimilarities of using these technologies for measuring the top of canopy structure in tropical forests. In an empirical study with data acquired in a Guyanese tropical forest, we assessed the differences between top of canopy models (TCMs) derived from TLS measurements and from UAV imagery, processed using structure from motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS and UAVs. UAV TCMs overestimate canopy height in gap areas and often fail to represent smaller gaps altogether. Secondly, it was demonstrated that forest change caused by logging can be detected by both TLS and UAV TCMs, although it is better depicted by the TLS. Thirdly, this research shows that both TLS and UAV TCMs are sensitive to the small variations in sensor positions during data collection. TCMs rendered from UAV data acquired over the same area at different moments are more similar (RMSE 0.11-0.63 m for tree height, and 0.14-3.05 m for gap areas) than those rendered from TLS data (RMSE 0.21-1.21 m for trees, and 1.02-2.48 m for gaps). This study provides support for a more informed decision for choosing between TLS and UAV TCMs to assess top of canopy in a tropical forest by advancing our understanding on: (i) how these technologies capture the top of the canopy, (ii) why their ability to reproduce the same model varies over repeated surveying sessions and (iii) general considerations such as the area coverage, costs, fieldwork time and processing requirements needed.

  2. Classification of Snowfall Events and Their Effect on Canopy Interception Efficiency in a Temperate Montane Forest.

    NASA Astrophysics Data System (ADS)

    Roth, T. R.; Nolin, A. W.

    2015-12-01

    Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.

  3. A correlation analysis of percent canopy closure versus TMS spectral response for selected forest sites in the San Juan National Forest, Colorado

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1983-01-01

    The correlation of canopy closure with the signal response of individual thematic mapper simulator (TMS) bands for selected forest sites in the San Juan National Forest, Colorado was investigated. Ground truth consisted of a photointerpreted determination of percent canopy closure of 0 to 100 percent for 32 sites. The sites selected were situated on plateaus at an elevation of approximately 3 km with slope or = 10 percent. The predominant tree species were ponderosa pine and aspen. The mean TMS response per band per site was calculated from data acquired by aircraft during mid-September, 1981. A correlation analysis of TMS response vs. canopy closure resulted in the following correlation coefficients for bands 1 through 7, respectively: -0.757, -0.663, -0.666, -0.088, -0.797, -0.763. Two model regressions were applied to the TMS data set to create a map of predicted percent forest canopy closure for the study area. Results indicated percent predictive accuracies of 71, 74, and 57 for percent canopy closure classes of 0-25, 25-75, and 75-100, respectively.

  4. The structure, function and value of urban forests in California communities

    Treesearch

    E. Gregory McPherson; Qingfu Xiao; Natalie S. van Doorn; John de Goede; Jacquelyn Bjorkman; Allan Hollander; Ryan M. Boynton; James F. Quinn; James H. Thorne

    2017-01-01

    This study used tree data from field plots in urban areas to describe forest structure in urban areas throughout California. The plot data were used with numerical models to calculate several ecosystem services produced by trees. A series of transfer functions were calculated to scale-up results from the plots to the landscape using urban tree canopy (UTC) mapped at 1-...

  5. Quantifying climate-growth relationships at the stand level in a mature mixed-species conifer forest.

    PubMed

    Teets, Aaron; Fraver, Shawn; Weiskittel, Aaron R; Hollinger, David Y

    2018-03-11

    A range of environmental factors regulate tree growth; however, climate is generally thought to most strongly influence year-to-year variability in growth. Numerous dendrochronological (tree-ring) studies have identified climate factors that influence year-to-year variability in growth for given tree species and location. However, traditional dendrochronology methods have limitations that prevent them from adequately assessing stand-level (as opposed to species-level) growth. We argue that stand-level growth analyses provide a more meaningful assessment of forest response to climate fluctuations, as well as the management options that may be employed to sustain forest productivity. Working in a mature, mixed-species stand at the Howland Research Forest of central Maine, USA, we used two alternatives to traditional dendrochronological analyses by (1) selecting trees for coring using a stratified (by size and species), random sampling method that ensures a representative sample of the stand, and (2) converting ring widths to biomass increments, which once summed, produced a representation of stand-level growth, while maintaining species identities or canopy position if needed. We then tested the relative influence of seasonal climate variables on year-to-year variability in the biomass increment using generalized least squares regression, while accounting for temporal autocorrelation. Our results indicate that stand-level growth responded most strongly to previous summer and current spring climate variables, resulting from a combination of individualistic climate responses occurring at the species- and canopy-position level. Our climate models were better fit to stand-level biomass increment than to species-level or canopy-position summaries. The relative growth responses (i.e., percent change) predicted from the most influential climate variables indicate stand-level growth varies less from to year-to-year than species-level or canopy-position growth responses. By assessing stand-level growth response to climate, we provide an alternative perspective on climate-growth relationships of forests, improving our understanding of forest growth dynamics under a fluctuating climate. © 2018 John Wiley & Sons Ltd.

  6. Tropical secondary forest management influences frugivorous bat composition, abundance and fruit consumption in Chiapas, Mexico.

    PubMed

    Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo

    2013-01-01

    Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H') was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests' structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.

  7. Incidence of Craesus castaneae (Hymenoptera: Tenthredinidae) on Chestnut Seedlings Planted in the Daniel Boone National Forest, Kentucky

    Treesearch

    Cornelia C. Pinchot; Scott E. Schlarbaum; Arnold M. Saxton; Stacy L. Clark; Callie J. Schweitzer; David R. Smith; Alex. Mangini; Frederick V. Hebard

    2011-01-01

    American chestnut [Castanea dentate (Marshall) Borkhausen, Fagales: Fagaceae] was a dominant forest tree in the eastern forests of the U.S. until it was eliminated as a canopy tree species by 2 exotic pathogens. Ink disease, a root rot caused by Phytophthora cinnamomi Rands (Pythiales: Pythiaceae), began to destroy chestnut populations on bottomland and poorly-drained...

  8. Post-fire tree establishment and early cohort development in conifer forests of the western Cascades of Oregon, USA

    Treesearch

    Alan J. Tepley; Frederick J. Swanson; Thomas A. Spies

    2014-01-01

    Early-seral ecosystems make important contributions to regional biodiversity by supporting high abundance and diversity of many plant and animal species that are otherwise rare or absent from closed-canopy forests. Therefore, the period of post-fire tree establishment is a key stage in forest stand and ecosystem development that can be viewed in the context of...

  9. Cover of tall trees best predicts California spotted owl habitat

    Treesearch

    Malcolm P. North; Jonathan T. Kane; Van R. Kane; Gregory P. Asner; William Berigan; Derek J. Churchill; Scott Conway; R.J. Gutiérrez; Sean Jeronimo; John Keane; Alexander Koltunov; Tina Mark; Monika Moskal; Thomas Munton; Zachary Peery; Carlos Ramirez; Rahel Sollmann; Angela White; Sheila Whitmore

    2017-01-01

    Restoration of western dry forests in the USA often focuses on reducing fuel loads. In the range of the spotted owl, these treatments may reduce canopy cover and tree density, which could reduce preferred habitat conditions for the owl and other sensitive species. In particular, high canopy cover (≥70%) has been widely reported to be an important feature of spotted owl...

  10. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    PubMed

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  11. WET AND DRY SEASON ECOSYSTEM LEVEL FLUXES OF ISOPRENE AND MONOTERPENES FROM A SOUTHEAST ASIAN SECONDARY FOREST AND RUBBER TREE PLANTATION

    EPA Science Inventory

    Canopy scale fluxes of isoprene and monoterpenes were investigated in both wet and dry seasons above a rubber tree (Hevea brasiliensis)/secondary tropical forest in the Yunnan province of southwestern China. Drought conditions were unusually high during the dry season experiment....

  12. Unexpected high diversity of galling insects in the Amazonian upper canopy: the savanna out there.

    PubMed

    Julião, Genimar R; Venticinque, Eduardo M; Fernandes, G Wilson; Price, Peter W

    2014-01-01

    A relatively large number of studies reassert the strong relationship between galling insect diversity and extreme hydric and thermal status in some habitats, and an overall pattern of a greater number of galling species in the understory of scleromorphic vegetation. We compared galling insect diversity in the forest canopy and its relationship with tree richness among upland terra firme, várzea, and igapó floodplains in Amazonia, Brazil. The soils of these forest types have highly different hydric and nutritional status. Overall, we examined the upper layer of 1,091 tree crowns. Galling species richness and abundance were higher in terra firme forests compared to várzea and igapó forests. GLM-ANCOVA models revealed that the number of tree species sampled in each forest type was determinant in the gall-forming insect diversity. The ratio between galling insect richness and number of tree species sampled (GIR/TSS ratio) was higher in the terra firme forest and in seasonally flooded igapó, while the várzea presented the lowest GIR/TSS ratio. In this study, we recorded unprecedented values of galling species diversity and abundance per sampling point. The GIR/TSS ratio from várzea was approximately 2.5 times higher than the highest value of this ratio ever reported in the literature. Based on this fact, we ascertained that várzea and igapó floodplain forests (with lower GIA and GIR), together with the speciose terra firme galling community emerge as the gall diversity apex landscape among all biogeographic regions already investigated. Contrary to expectation, our results also support the "harsh environment hypothesis", and unveil the Amazonian upper canopy as similar to Mediterranean vegetation habitats, hygrothermically stressed environments with leaf temperature at lethal limits and high levels of leaf sclerophylly.

  13. Tropical Secondary Forest Management Influences Frugivorous Bat Composition, Abundance and Fruit Consumption in Chiapas, Mexico

    PubMed Central

    Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo

    2013-01-01

    Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H’) was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests’ structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats. PMID:24147029

  14. Variation in woody plant mortality and dieback from severe drought among soils, plant groups, and species within a northern Arizona ecotone.

    PubMed

    Koepke, Dan F; Kolb, Thomas E; Adams, Henry D

    2010-08-01

    Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest-woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest-woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.

  15. Comparison of Stem Map Developed from Crown Geometry Allometry Linked Census Data to Airborne and Terrestrial Lidar at Harvard Forest, MA

    NASA Astrophysics Data System (ADS)

    Sullivan, F.; Palace, M. W.; Ducey, M. J.; David, O.; Cook, B. D.; Lepine, L. C.

    2014-12-01

    Harvard Forest in Petersham, MA, USA is the location of one of the temperate forest plots established by the Center for Tropical Forest Science (CTFS) as a joint effort with Harvard Forest and the Smithsonian Institute's Forest Global Earth Observatory (ForestGEO) to characterize ecosystem processes and forest dynamics. Census of a 35 ha plot on Prospect Hill was completed during the winter of 2014 by researchers at Harvard Forest. Census data were collected according to CTFS protocol; measured variables included species, stem diameter, and relative X-Y locations. Airborne lidar data were collected over the censused plot using the high spatial resolution Goddard LiDAR, Hyperspectral, and Thermal sensor package (G-LiHT) during June 2012. As part of a separate study, 39 variable radius plots (VRPs) were randomly located and sampled within and throughout the Prospect Hill CTFS/ForestGEO plot during September and October 2013. On VRPs, biometric properties of trees were sampled, including species, stem diameter, total height, crown base height, crown radii, and relative location to plot centers using a 20 Basal Area Factor prism. In addition, a terrestrial-based lidar scanner was used to collect one lidar scan at plot center for 38 of the 39 VRPs. Leveraging allometric equations of crown geometry and tree height developed from 374 trees and 16 different species sampled on 39 VRPs, a 3-dimensional stem map will be created using the Harvard Forest ForestGEO Prospect Hill census. Vertical and horizontal structure of 3d field-based stem maps will be compared to terrestrial and airborne lidar scan data. Furthermore, to assess the quality of allometric equations, a 2d canopy height raster of the field-based stem map will be compared to a G-LiHT derived canopy height model for the 35 ha census plot. Our automated crown delineation methods will be applied to the 2d representation of the census stem map and the G-LiHT canopy height model. For future work related to this study, high quality field-based stem maps with species and crown geometry information will allow for better comparisons and interpretations of individual tree spectra from the G-LiHT hyperspectral sensor as estimated by automated crown delineation of the G-LiHT lidar canopy height model.

  16. Canopy disturbance intervals, early growth rates, and canopy accession trends of oak-dominated old-growth forests

    Treesearch

    James S. Rentch; Ray R., Jr. Hicks

    2003-01-01

    Using a radial growth averaging technique, changes in growth rates of overstory oaks were used to quantify canopy disturbance events at five old-growth sites. On average, at least one canopy disturbance occurred on these sites every 3 years; larger multiple-tree disturbances occurred every 17 years. Although there was some variation by site and by historical period,...

  17. On Wind Forces in the Forest-Edge Region During Extreme-Gust Passages and Their Implications for Damage Patterns

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2018-03-01

    A damage pattern that is occasionally found after a period of strong winds shows an area of damaged trees inside a forest stand behind an intact stripe of trees directly at the windward edge. In an effort to understand the mechanism leading to this damage pattern, wind loading in the forest-edge region during passages of extreme gusts with different characteristics are investigated using a scaled forest model in the wind tunnel. The interaction of a transient extreme gust with the stationary atmospheric boundary layer (ABL) as a background flow at the forest edge leads to the formation of a vortex at the top of the canopy. This vortex intensifies when travelling downstream and subsequently deflects high-momentum air from above the canopy downwards resulting in increased wind loading on the tree crowns. Under such conditions, the decrease in wind loading in the streamwise direction can be relatively weak compared to stationary ABL approach flows. The resistance of trees with streamwise distance from the forest edge, however, is the result of adaptive growth to wind loading under stationary flow conditions and shows a rapid decline within two to three tree heights behind the windward edge. For some of the extreme gusts realized, an exceedance of the wind loading over the resistance of the trees is found at approximately three tree heights behind the forest edge, suggesting that the damage pattern described above can be caused by the interaction of a transient extreme gust with the stationary ABL flow.

  18. Canopy closure exerts weak controls on understory dynamics: a 30-year study of overstory-understory interactions

    Treesearch

    C.B. Halpern; J.A. Lutz

    2013-01-01

    Stem exclusion and understory reinitiation are commonly described, but poorly understood, stages of forest development. It is assumed that overstory trees exert strong controls on understory herbs and shrubs during the transition from open- to closed-canopy forests, but long-term observations of this process are rare. We use long-term data from 188 plots to explore...

  19. Simulation of Longwave Enhancement beneath Montane and Boreal Forests in CLM4.5

    NASA Astrophysics Data System (ADS)

    Todt, M.; Rutter, N.; Fletcher, C. G.; Wake, L. M.; Loranty, M. M.

    2017-12-01

    CMIP5 models have been shown to underestimate both trend and variability in northern hemisphere spring snow cover extent. A substantial fraction of this area is covered by boreal forests, in which the snow energy balance is dominated by radiation. Forest coverage impacts the surface radiation budget by shading the ground and enhancing longwave radiation. Longwave enhancement in boreal forests is a potential mechanism that contributes to uncertainty in snowmelt modelling, however, its impact on snowmelt in global land models has not been analysed yet. This study assesses the simulation of sub-canopy longwave radiation and longwave enhancement by CLM4.5, the land component of the NCAR Community Earth System Model, in which boreal forests are represented by three plant functional types (PFT): evergreen needleleaf trees (ENT), deciduous needleleaf trees (DNT), and deciduous broadleaf trees (DBT). Simulation of sub-canopy longwave enhancement is evaluated at boreal forest sites covering the three boreal PFT in CLM4.5 to assess the dependence of simulation errors on meteorological forcing, vegetation type and vegetation density. ENT are evaluated over a total of six snowmelt seasons in Swiss alpine and subalpine forests, as well as a single season at a Finnish arctic site with varying vegetation density. A Swedish artic site features varying vegetation density for DBT for a single winter, and two sites in Eastern Siberia are included covering a total of four snowmelt seasons in DNT forests. CLM4.5 overestimates the diurnal range of sub-canopy longwave radiation and consequently longwave enhancement, overestimating daytime values and underestimating nighttime values. Simulation errors result mainly from clear sky conditions, due to high absorption of shortwave radiation during daytime and radiative cooling during nighttime. Using recent improvements to the canopy parameterisations of SNOWPACK as a guideline, CLM4.5 simulations of sub-canopy longwave radiation improved through the implementation of a heat mass parameterisation, i.e. including thermal inertia due to biomass. However, this improvement does not substantially reduce the amplitude of the diurnal cycle, a result also found during the development of SNOWPACK.

  20. Assessing and Correcting Topographic Effects on Forest Canopy Height Retrieval Using Airborne LiDAR Data

    PubMed Central

    Duan, Zhugeng; Zhao, Dan; Zeng, Yuan; Zhao, Yujin; Wu, Bingfang; Zhu, Jianjun

    2015-01-01

    Topography affects forest canopy height retrieval based on airborne Light Detection and Ranging (LiDAR) data a lot. This paper proposes a method for correcting deviations caused by topography based on individual tree crown segmentation. The point cloud of an individual tree was extracted according to crown boundaries of isolated individual trees from digital orthophoto maps (DOMs). Normalized canopy height was calculated by subtracting the elevation of centres of gravity from the elevation of point cloud. First, individual tree crown boundaries are obtained by carrying out segmentation on the DOM. Second, point clouds of the individual trees are extracted based on the boundaries. Third, precise DEM is derived from the point cloud which is classified by a multi-scale curvature classification algorithm. Finally, a height weighted correction method is applied to correct the topological effects. The method is applied to LiDAR data acquired in South China, and its effectiveness is tested using 41 field survey plots. The results show that the terrain impacts the canopy height of individual trees in that the downslope side of the tree trunk is elevated and the upslope side is depressed. This further affects the extraction of the location and crown of individual trees. A strong correlation was detected between the slope gradient and the proportions of returns with height differences more than 0.3, 0.5 and 0.8 m in the total returns, with coefficient of determination R2 of 0.83, 0.76, and 0.60 (n = 41), respectively. PMID:26016907

  1. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.

    PubMed

    Stevens-Rumann, Camille; Morgan, Penelope

    2016-09-01

    Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics. © 2016 by the Ecological Society of America.

  2. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR

    PubMed Central

    Bartholomeus, Harm M.; Kooistra, Lammert

    2017-01-01

    In recent years, LIght Detection And Ranging (LiDAR) and especially Terrestrial Laser Scanning (TLS) systems have shown the potential to revolutionise forest structural characterisation by providing unprecedented 3D data. However, manned Airborne Laser Scanning (ALS) requires costly campaigns and produces relatively low point density, while TLS is labour intense and time demanding. Unmanned Aerial Vehicle (UAV)-borne laser scanning can be the way in between. In this study, we present first results and experiences with the RIEGL RiCOPTER with VUX®-1UAV ALS system and compare it with the well tested RIEGL VZ-400 TLS system. We scanned the same forest plots with both systems over the course of two days. We derived Digital Terrain Models (DTMs), Digital Surface Models (DSMs) and finally Canopy Height Models (CHMs) from the resulting point clouds. ALS CHMs were on average 11.5 cm higher in five plots with different canopy conditions. This showed that TLS could not always detect the top of canopy. Moreover, we extracted trunk segments of 58 trees for ALS and TLS simultaneously, of which 39 could be used to model Diameter at Breast Height (DBH). ALS DBH showed a high agreement with TLS DBH with a correlation coefficient of 0.98 and root mean square error of 4.24 cm. We conclude that RiCOPTER has the potential to perform comparable to TLS for estimating forest canopy height and DBH under the studied forest conditions. Further research should be directed to testing UAV-borne LiDAR for explicit 3D modelling of whole trees to estimate tree volume and subsequently Above-Ground Biomass (AGB). PMID:29039755

  3. Comparing RIEGL RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR.

    PubMed

    Brede, Benjamin; Lau, Alvaro; Bartholomeus, Harm M; Kooistra, Lammert

    2017-10-17

    In recent years, LIght Detection And Ranging (LiDAR) and especially Terrestrial Laser Scanning (TLS) systems have shown the potential to revolutionise forest structural characterisation by providing unprecedented 3D data. However, manned Airborne Laser Scanning (ALS) requires costly campaigns and produces relatively low point density, while TLS is labour intense and time demanding. Unmanned Aerial Vehicle (UAV)-borne laser scanning can be the way in between. In this study, we present first results and experiences with the RIEGL RiCOPTER with VUX ® -1UAV ALS system and compare it with the well tested RIEGL VZ-400 TLS system. We scanned the same forest plots with both systems over the course of two days. We derived Digital Terrain Model (DTMs), Digital Surface Model (DSMs) and finally Canopy Height Model (CHMs) from the resulting point clouds. ALS CHMs were on average 11.5 c m higher in five plots with different canopy conditions. This showed that TLS could not always detect the top of canopy. Moreover, we extracted trunk segments of 58 trees for ALS and TLS simultaneously, of which 39 could be used to model Diameter at Breast Height (DBH). ALS DBH showed a high agreement with TLS DBH with a correlation coefficient of 0.98 and root mean square error of 4.24 c m . We conclude that RiCOPTER has the potential to perform comparable to TLS for estimating forest canopy height and DBH under the studied forest conditions. Further research should be directed to testing UAV-borne LiDAR for explicit 3D modelling of whole trees to estimate tree volume and subsequently Above-Ground Biomass (AGB).

  4. Forest on the edge: Seasonal cloud forest in Oman creates its own ecological niche

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Anke; Eltahir, Elfatih A. B.

    2006-06-01

    Cloud forests usually grow in the moist tropics where water is not a limiting factor to plant growth. Here, for the first time, we describe the hydrology of a water limited seasonal cloud forest in the Dhofar mountains of Oman. This ecosystem is under significant stress from camels feeding on tree canopies. The Dhofar forests are the remnants of a moist vegetation belt, which once spread across the Arabian Peninsula. According to our investigation the process of cloud immersion during the summer season creates within this desert a niche for moist woodland vegetation. Woodland vegetation survives in this ecosystem, sustained through enhanced capture of cloud water by their canopies (horizontal precipitation). Degraded land lacks this additional water source, which inhibits re-establishment of trees. Our modeling results suggest that cattle feeding may lead to irreversible destruction of one of the most diverse ecosystems in Arabia.

  5. Brooklyn's urban forest

    Treesearch

    David J. Nowak; Daniel E. Crane; Jack C. Stevens; Myriam Ibarra

    2002-01-01

    An assessment of trees in Brooklyn, New York, reveal that this borough has approximately 610,000 trees with canopies that cover 11.4 percent of the area. The most common trees are estimated to be tree of heaven, white mulberry, black locust, Norway maple and black cherry. Brooklyn's trees currently store approximately 172,000 metric tons of carbon with an...

  6. Effects of gap size, duration of daylight, and presence of leaf litter on forest regeneration

    Treesearch

    G. Andrew Bartholomay; Todd W. Bowersox

    2003-01-01

    Selection systems are used to manage multi-cohort forest stands by removing individual and/or groups of trees to create 0.01- to 1.0-ha openings in the canopy. Inherent in the selection system are the dual roles of tending the residual trees and regenerating a new cohort of tree seedlings. Research of silvicultural selection systems has historically focused on the...

  7. [The research on bidirectional reflectance computer simulation of forest canopy at pixel scale].

    PubMed

    Song, Jin-Ling; Wang, Jin-Di; Shuai, Yan-Min; Xiao, Zhi-Qiang

    2009-08-01

    Computer simulation is based on computer graphics to generate the realistic 3D structure scene of vegetation, and to simulate the canopy regime using radiosity method. In the present paper, the authors expand the computer simulation model to simulate forest canopy bidirectional reflectance at pixel scale. But usually, the trees are complex structures, which are tall and have many branches. So there is almost a need for hundreds of thousands or even millions of facets to built up the realistic structure scene for the forest It is difficult for the radiosity method to compute so many facets. In order to make the radiosity method to simulate the forest scene at pixel scale, in the authors' research, the authors proposed one idea to simplify the structure of forest crowns, and abstract the crowns to ellipsoids. And based on the optical characteristics of the tree component and the characteristics of the internal energy transmission of photon in real crown, the authors valued the optical characteristics of ellipsoid surface facets. In the computer simulation of the forest, with the idea of geometrical optics model, the gap model is considered to get the forest canopy bidirectional reflectance at pixel scale. Comparing the computer simulation results with the GOMS model, and Multi-angle Imaging SpectroRadiometer (MISR) multi-angle remote sensing data, the simulation results are in agreement with the GOMS simulation result and MISR BRF. But there are also some problems to be solved. So the authors can conclude that the study has important value for the application of multi-angle remote sensing and the inversion of vegetation canopy structure parameters.

  8. Water use in forest canopy black cherry trees and its relationship to leaf gas exchange and environment

    Treesearch

    B. J. Joyce; K. C. Steiner; J. M. Skelly

    1996-01-01

    Models of canopy gas exchange are needed to connect leaf-level measurement to higher scales. Because of the correspondence between leaf gas exchange and water use, it may be possible to predict variation in leaf gas exchange at the canopy level by monitoring rates of branch water use.

  9. Comparing helicopter-borne profiling radar with airborne laser scanner data for forest structure estimation.

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Hollaus, Markus; Pfeifer, Norbert; Chen, Yuwei; Karjalainen, Mika; Hakala, Teemu; Hyyppä, Juha; Wagner, Wolfgang

    2017-04-01

    Forests are complex ecosystems that show substantial variation with respect to climate, management regime, stand history, disturbance, and needs of local communities. The dynamic processes of growth and disturbance are reflected in the structural components of forests that include the canopy vertical structure and geometry (e.g. size, height, and form), tree position and species diversity. Current remote-sensing systems to measure forest structural attributes include passive optical sensors and active sensors. The technological capabilities of active remote sensing like the ability to penetrate the vegetation and provide information about its vertical structure has promoted an extensive use of LiDAR (Light Detection And Ranging) and radar (RAdio Detection And Ranging) system over the last 20 years. LiDAR measurements from aircraft (airborne laser scanning, ALS) currently represents the primary data source for three-dimensional information on forest vertical structure. Contrary, despite the potential of radar remote sensing, their use is not yet established in forest monitoring. In order to better understand the interaction of pulsed radar with the forest canopy, and to increase the feasibility of this system, the Finnish Geospatial Research Institute has developed a helicopter-borne profiling radar system, called TomoRadar. TomoRadar is capable of recording a canopy-penetrating profile of forests. To georeference the radar measurements the system was equipped with a global navigation satellite system and an inertial measurement unit with a centimeter level accuracy of the flight trajectory. The TomoRadar operates at Ku-band, (wave lengths λ 1.5cm) with two separated parabolic antennas providing co- and cross-polarization modes. The purpose of this work is to investigate the capability of the TomoRadar system, for estimating the forest vertical profile, terrain topography and tree height. We analysed 600 m TomoRadar crosspolarized (i.e. horizontal - vertical) profile, acquired in October 2016 over a boreal test site in Evo, Finland. The intensity of the reflected backscatter energy was used to measure the height canopy distribution within an individual footprint. As the intensity of the backscatter energy from the ground is exceeding the intensity from vegetation, the estimation of canopy height and the forest structure were based on i) a threshold between canopy and ground and ii) a peak analysis of the backscattering profile. ALS data collected simultaneously was used to validate the TomoRadar results (i.e. canopy height) and to obtain elevation ground truth. The first results show a high agreement between ALS and TomoRadar derived canopy heights. The derived knowledge about the energy distribution within the canopy height profile leads to an increased understanding of the interactions between the radar signal and the forest canopy and will support optimization of future radar systems with respect to forest structure observation.

  10. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds.

    PubMed

    Hamraz, Hamid; Contreras, Marco A; Zhang, Jun

    2017-07-28

    Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.

  11. Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Ryu, Y.; Ustin, S.; Baldocchi, D. D.

    2009-12-01

    B15: Remote Characterization of Vegetation Structure: Including Research to Inform the Planned NASA DESDynI and ESA BIOMASS Missions Title: Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations Hideki Kobayashi, Youngryel Ryu, Susan Ustin, and Dennis Baldocchi Abstract Accurate evaluations of radiation environments of visible, near infrared, and thermal infrared wavebands in forest canopies are important to estimate energy, water, and carbon fluxes. Californian oak woodlands are sparse and highly clumped so that radiation environments are extremely heterogeneous spatially. The heterogeneity of radiation environments also varies with wavebands which depend on scattering and emission properties. So far, most of modeling studies have been performed in one dimensional radiative transfer models with (or without) clumping effect in the forest canopies. While some studies have been performed by using three dimensional radiative transfer models, several issues are still unresolved. For example, some 3D models calculate the radiation field with individual tree basis, and radiation interactions among trees are not considered. This interaction could be important in the highly scattering waveband such as near infrared. The objective of this study is to quantify the radiation field in the oak woodland. We developed a three dimensional radiative transfer model, which includes the thermal waveband. Soil/canopy energy balances and canopy physiology models, CANOAK, are incorporated in the radiative transfer model to simulate the diurnal patterns of thermal radiation fields and canopy physiology. Airborne LiDAR and canopy gap data measured by the several methods (digital photographs and plant canopy analyzer) were used to constrain the forest structures such as tree positions, crown sizes and leaf area density. Modeling results were tested by a traversing radiometer system that measured incoming photosynthetically active radiation and net radiation at forest floor and spatial variations in canopy reflectances taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). In this study, we show how the model with available measurements can reproduce the spatially heterogeneous radiation environments in the oak woodland.

  12. Impact of Canopy Coupling on Canopy Average Stomatal Conductance Across Seven Tree Species in Northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Samanta, S.; Ahl, D. E.; Burrows, S. S.; Gower, S. T.

    2001-12-01

    Land use changes over the last century in northern Wisconsin have resulted in a heterogeneous landscape composed of the following four main forest types: northern hardwoods, northern conifer, aspen/fir, and forested wetland. Based on sap flux measurements, aspen/fir has twice the canopy transpiration of northern hardwoods. In addition, daily transpiration was only explained by daily average vapor pressure deficit across the cover types. The objective of this study was to determine if canopy average stomatal conductance could be used to explain the species effects on tree transpiration. Our first hypothesis is that across all of the species, stomatal conductance will respond to vapor pressure deficit so as to maintain a minimum leaf water potential to prevent catostrophic cavitiation. The consequence of this hypothesis is that among species and individuals there is a proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. Our second hypothesis is that species that do not follow the proportionality deviate because the canopies are decoupled from the atmosphere. To test our two hypotheses we calculated canopy average stomatal conductance from sap flux measurements using an inversion of the Penman-Monteith equation. We estimated the canopy coupling using a leaf energy budget model that requires leaf transpiration and canopy aerodynamic conductance. We optimized the parameters of the aerodynamic conductance model using a Monte Carlo technique across six parameters. We determined the optimal model for each species by selecting parameter sets that resulted in the proportionality of our first hypothesis. We then tested the optimal energy budget models of each species by comparing leaf temperature and leaf width predicted by the models to measurements of each tree species. In red pine, sugar maple, and trembling aspen trees under high canopy coupling conditions, we found the hypothesized proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. In addition, the canopy conductance of trembling aspen was twice as high as sugar maple and the aspen trees showed much more variability.

  13. Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Appalachian forest in the USA

    Treesearch

    S.B. McLaughlin; S.D. Wullschleger; G. Sun; M. Nosal

    2007-01-01

    Documentation of the degree and direction of effects of ozone on transpiration of canopies of mature forest trees is critically needed to model ozone effects on forest water use and growth in a warmer future climate.Patterns of sap flow in stems and soil moisture in the rooting zones of mature trees, coupled with late-season...

  14. NLCD tree canopy cover (TCC) maps of the contiguous United States and coastal Alaska

    Treesearch

    Robert Benton; Bonnie Ruefenacht; Vicky Johnson; Tanushree Biswas; Craig Baker; Mark Finco; Kevin Megown; John Coulston; Ken Winterberger; Mark Riley

    2015-01-01

    A tree canopy cover (TCC) map is one of three elements in the National Land Cover Database (NLCD) 2011 suite of nationwide geospatial data layers. In 2010, the USDA Forest Service (USFS) committed to creating the TCC layer as a member of the Multi-Resolution Land Cover (MRLC) consortium. A general methodology for creating the TCC layer was reported at the 2012 FIA...

  15. The structure of tropical forests and sphere packings

    PubMed Central

    Jahn, Markus Wilhelm; Dobner, Hans-Jürgen; Wiegand, Thorsten; Huth, Andreas

    2015-01-01

    The search for simple principles underlying the complex architecture of ecological communities such as forests still challenges ecological theorists. We use tree diameter distributions—fundamental for deriving other forest attributes—to describe the structure of tropical forests. Here we argue that tree diameter distributions of natural tropical forests can be explained by stochastic packing of tree crowns representing a forest crown packing system: a method usually used in physics or chemistry. We demonstrate that tree diameter distributions emerge accurately from a surprisingly simple set of principles that include site-specific tree allometries, random placement of trees, competition for space, and mortality. The simple static model also successfully predicted the canopy structure, revealing that most trees in our two studied forests grow up to 30–50 m in height and that the highest packing density of about 60% is reached between the 25- and 40-m height layer. Our approach is an important step toward identifying a minimal set of processes responsible for generating the spatial structure of tropical forests. PMID:26598678

  16. The impact of forest structure and light utilization on carbon cycling in tropical forests

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Longo, M.; Leitold, V.; Keller, M. M.

    2015-12-01

    Light competition is a fundamental organizing principle of forest ecosystems, and interactions between forest structure and light availability provide an important constraint on forest productivity. Tropical forests maintain a dense, multi-layered canopy, based in part on abundant diffuse light reaching the forest understory. Climate-driven changes in light availability, such as more direct illumination during drought conditions, therefore alter the potential productivity of forest ecosystems during such events. Here, we used multi-temporal airborne lidar data over a range of Amazon forest conditions to explore the influence of forest structure on gross primary productivity (GPP). Our analysis combined lidar-based observations of canopy illumination and turnover in the Ecosystem Demography model (ED, version 2.2). The ED model was updated to specifically account for regional differences in canopy and understory illumination using lidar-derived measures of canopy light environments. Model simulations considered the influence of forest structure on GPP over seasonal to decadal time scales, including feedbacks from differential productivity between illuminated and shaded canopy trees on mortality rates and forest composition. Finally, we constructed simple scenarios with varying diffuse and direct illumination to evaluate the potential for novel plant-climate interactions under scenarios of climate change. Collectively, the lidar observations and model simulations underscore the need to account for spatial heterogeneity in the vertical structure of tropical forests to constrain estimates of tropical forest productivity under current and future climate conditions.

  17. Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest

    USGS Publications Warehouse

    Keller, Adrienne B.; Reed, Sasha C.; Townsend, Alan R.; Cleveland, Cory C.

    2013-01-01

    Tropical rain forests are known for their high biological diversity, but the effects of plant diversity on important ecosystem processes in this biome remain unclear. Interspecies differences in both the demand for nutrients and in foliar and litter nutrient concentrations could drive variations in both the pool sizes and fluxes of important belowground resources, yet our understanding of the effects and importance of aboveground heterogeneity on belowground biogeochemistry is poor, especially in the species-rich forests of the wet tropics. To investigate the effects of individual tree species on belowground biogeochemical processes, we used both field and laboratory studies to examine how carbon (C), nitrogen (N), and phosphorus (P) cycles vary under nine different canopy tree species – including three legume and six non-legume species – that vary in foliar nutrient concentrations in a wet tropical forest in southwestern Costa Rica. We found significant differences in belowground C, N and P cycling under different canopy tree species: total C, N and P pools in standing litter varied by species, as did total soil and microbial C and N pools. Rates of soil extracellular acid phosphatase activity also varied significantly among species and functional groups, with higher rates of phosphatase activity under legumes. In addition, across all tree species, phosphatase activity was significantly positively correlated with litter N/P ratios, suggesting a tight coupling between relative N and P inputs and resource allocation to P acquisition. Overall, our results suggest the importance of aboveground plant community composition in promoting belowground biogeochemical heterogeneity at relatively small spatial scales.

  18. Reduced dry season transpiration is coupled with shallow soil water use in tropical montane forest trees.

    PubMed

    Muñoz-Villers, Lyssette E; Holwerda, Friso; Alvarado-Barrientos, M Susana; Geissert, Daniel R; Dawson, Todd E

    2018-06-25

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF ecohydrology remain poorly understood. To investigate functional responses of TMCF trees to reduced water availability, we conducted a study during the 2014 dry season in the lower altitudinal limit of TMCF in central Veracruz, Mexico. Temporal variations of transpiration, depth of water uptake and tree water sources were examined for three dominant, brevi-deciduous species using micrometeorological, sap flow and soil moisture measurements, in combination with oxygen and hydrogen stable isotope composition of rainfall, tree xylem, soil and stream water. Over the course of the dry season, reductions in crown conductance and transpiration were observed in canopy species (43 and 34%, respectively) and mid-story trees (23 and 8%), as atmospheric demand increased and soil moisture decreased. Canopy species consistently showed more depleted isotope values compared to mid-story trees. However, MixSIAR Bayesian model results showed that the evaporated (enriched) soil water pool was the main source for trees despite reduced soil moisture. Additionally, while increases in tree water uptake from deeper to shallower soil water sources occurred, concomitant decreases in transpiration were observed as the dry season progressed. A larger reduction in deep soil water use was observed for canopy species (from 79 ± 19 to 24 ± 20%) compared to mid-story trees (from 12 ± 17 to 10 ± 12%). The increase in shallower soil water sources may reflect a trade-off between water and nutrient requirements in this forest.

  19. Habitat management for red tree voles in Douglas-fir forests.

    Treesearch

    M.H. Huff; R.S. Holthausen; K.B. Aubry

    1992-01-01

    The relations between arboreal rodents and trees causes the animals to be particularly sensitive to the effects of timber harvesting.Among arboreal rodents,we consider the redtree vole to be the most vulnerable to local extinctions resulting from the loss or fragmentation of old-growth Douglas-fir forests. Redtree voles are nocturnal,canopy dwelling, and difficult to...

  20. Some observations on precipitation measurement on forested experimental watersheds

    Treesearch

    Raymond E. Leonard; Kenneth G. Reinhart

    1963-01-01

    Measurement of precipitation on forested experimental watersheds presents difficulties other than those associated with access to and from the gages in all kinds of weather. For instance, the tree canopy must be cleared above the gage. The accepted practice of keeping an unobstructed sky view of 45" around the gage involves considerable tree cutting. On a level...

  1. Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species.

    PubMed

    De Guzman, Mark E; Santiago, Louis S; Schnitzer, Stefan A; Álvarez-Cansino, Leonor

    2017-10-01

    In tropical forest canopies, it is critical for upper shoots to efficiently provide water to leaves for physiological function while safely preventing loss of hydraulic conductivity due to cavitation during periods of soil water deficit or high evaporative demand. We compared hydraulic physiology of upper canopy trees and lianas in a seasonally dry tropical forest to test whether trade-offs between safety and efficiency of water transport shape differences in hydraulic function between these two major tropical woody growth forms. We found that lianas showed greater maximum stem-specific hydraulic conductivity than trees, but lost hydraulic conductivity at less negative water potentials than trees, resulting in a negative correlation and trade-off between safety and efficiency of water transport. Lianas also exhibited greater diurnal changes in leaf water potential than trees. The magnitude of diurnal water potential change was negatively correlated with sapwood capacitance, indicating that lianas are highly reliant on conducting capability to maintain leaf water status, whereas trees relied more on stored water in stems to maintain leaf water status. Leaf nitrogen concentration was related to maximum leaf-specific hydraulic conductivity only for lianas suggesting that greater water transport capacity is more tied to leaf processes in lianas compared to trees. Our results are consistent with a trade-off between safety and efficiency of water transport and may have implications for increasing liana abundance in neotropical forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.

    PubMed

    Coble, Adam P; Cavaleri, Molly A

    2014-02-01

    Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness × density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet resolved. For decades, the light environment was assumed to be the most influential driver of within-canopy variation in LMA, yet recent evidence has shown hydrostatic gradients to be more important in upper canopy positions, especially in tall evergreen trees in temperate and tropical forests. The aim of this study was to disentangle the importance of various environmental drivers on vertical LMA gradients in a mature sugar maple (Acer saccharum Marshall) forest. We compared LMA, leaf density and leaf thickness relationships with height, light and predawn leaf water potential (ΨPre) within a closed and an exposed canopy to assess leaf morphological traits at similar heights but different light conditions. Contrary to our expectations and recent findings in the literature, we found strong evidence that light was the primary driver of vertical gradients in leaf morphology. At similar heights (13-23 m), LMA was greater within the exposed canopy than the closed canopy, and light had a stronger influence over LMA compared with ΨPre. Light also had a stronger influence over both leaf thickness and density compared with ΨPre; however, the increase in LMA within both canopy types was primarily due to increasing leaf thickness with increasing light availability. This study provides strong evidence that canopy structure and crown exposure, in addition to height, should be considered as a parameter for determining vertical patterns in LMA and modeling canopy function.

  3. Atmospheric deposition in coniferous and deciduous tree stands in Poland

    NASA Astrophysics Data System (ADS)

    Kowalska, Anna; Astel, Aleksander; Boczoń, Andrzej; Polkowska, Żaneta

    2016-05-01

    The objective of this study was to assess the transformation of precipitation in terms of quantity and chemical composition following contact with the crown layer in tree stands with varied species composition, to investigate the effect of four predominant forest-forming species (pine, spruce, beech, and oak) on the amount and composition of precipitation reaching forest soils, and to determine the sources of pollution in atmospheric precipitation in forest areas in Poland. The amount and chemical composition (pH, electric conductivity, alkalinity, and chloride, nitrate, sulfate, phosphate, ammonium, calcium, magnesium, sodium, potassium, iron aluminum, manganese, zinc, copper, total nitrogen, and dissolved organic carbon contents) of atmospheric (bulk, BP) and throughfall (TF) precipitation were studied from January to December 2010 on twelve forest monitoring plots representative of Polish conditions. The study results provided the basis for the determination of the fluxes of pollutants in the forest areas of Poland and allowed the comparison of such fluxes with values provided in the literature for European forest areas. The transformation of precipitation in the canopy was compared for different tree stands. The fluxes of substances in an open field and under canopy were influenced by the location of the plot, including the regional meteorological conditions (precipitation amounts), vicinity of the sea (effect of marine aerosols), and local level of anthropogenic pollution. Differences between the plots were higher in TF than in BP. The impact of the vegetation cover on the chemical composition of precipitation depended on the region of the country and dominant species in a given tree stand. Coniferous species tended to cause acidification of precipitation, whereas deciduous species increased the pH of TF. Pine and oak stands enriched precipitation with components that leached from the canopy (potassium, manganese, magnesium) to a higher degree than spruce and beech stands.

  4. Hydrology, vegetation, and soils of riverine and tidal floodplain forests of the lower Suwannee River, Florida, and potential impacts of flow reductions

    USGS Publications Warehouse

    Light, Helen M.; Darst, Melanie R.; Lewis, Lori J.; Howell, David A.

    2002-01-01

    A study relating hydrologic conditions, soils, and vegetation of floodplain forests to river flow was conducted in the lower Suwannee River, Florida, from 1996 to 2000. The study was done by the U.S. Geological Survey in cooperation with the Suwannee River Water Management District to help determine the minimum flows and levels required for wetlands protection. The study area included forests within the 10-year floodplain of the Suwannee River from its confluence with the Santa Fe River to the tree line (lower limit of forests) near the Gulf of Mexico, and covered 18,600 hectares (ha) of forests, 75 percent of which were wetlands and 25 percent uplands. The floodplain was divided into three reaches, riverine, upper tidal, and lower tidal, based on changes in hydrology, vegetation, and soils with proximity to the coast. The Suwannee River is the second largest river in Florida in terms of average discharge. Median flow at the confluence of the Suwannee and Santa Fe Rivers is approximately 181 cubic meters per second (m3/s) or 6,480 cubic feet per second (ft3/s) (1933-99). At the upper end of the riverine reach, river stages are unaffected by tides and have a typical annual range of 4.1 meters (m). Tides affect river stages at low and medium flows in the upper tidal reach, and at all flows in the lower tidal reach. Median tidal range at the mouth of the Suwannee River is about 1 m. Salinity of river water in the lower tidal reach increases with decreasing flow and proximity to the Gulf of Mexico. Vertically averaged salinity in the river near the tree line is typically about 5 parts per thousand at medium flow. Land-surface elevation and topographic relief in the floodplain decrease with proximity to the coast. Elevations range from 4.1 to 7.3 m above sea level at the most upstream riverine transect and from 0.3 to 1.3 m above sea level on lower tidal transects. Surface soils in the riverine reach are predominantly mineral and dry soon after floods recede except in swamps. Surface soils in upper and lower tidal reaches are predominantly organic, saturated mucks. In the downstream part of the lower tidal reach, conductivities of surface soils are high enough (greater than 4 milli-mhos per centimeter) to exclude many tree species that are intolerant of salinity. Species richness of canopy and subcanopy plants in wetland forests in the lower Suwannee River is high compared to other river floodplains in North America. A total of 77 tree, shrub, and woody vine species were identified in the canopy and subcanopy of floodplain wetland forests (n = 8,376). Fourteen specific forest types were mapped using digitized aerial photographs, defined from vegetative sampling, and described in terms of plant species composition. For discussion purposes, some specific wetland types were combined, resulting in three general wetland forest types for each reach. Riverine high bottomland hardwoods have higher canopy species richness than all other forest types (40-42 species), with Quercus virginiana the most important canopy tree by basal area. The canopy composition of riverine low bottomland hardwoods is dominated by five species with Quercus laurifolia the most important by basal area. Riverine swamps occur in the lowest and wettest areas with Taxodium distichum the most important canopy species by basal area. Upper tidal bottomland hardwoods are differentiated from riverine forests by the presence of Sabal palmetto in the canopy. Upper tidal mixed forests and swamps are differentiated from riverine forests, in part, by the presence of Fraxinus profunda in the canopy. Nyssa aquatica, the most important canopy species by basal area in upper tidal swamps, is absent from most forests in the lower tidal reach where its distribution is probably restricted by salinity. Hydric hammocks, a wetland type that is rare outside of Florida, are found in the lower tidal reach and are flooded every 1-2 years by either storm surge or river floods. Lowe

  5. High-Resolution Forest Canopy Height Estimation in an African Blue Carbon Ecosystem

    NASA Technical Reports Server (NTRS)

    Lagomasino, David; Fatoyinbo, Temilola; Lee, Seung-Kuk; Simard, Marc

    2015-01-01

    Mangrove forests are one of the most productive and carbon dense ecosystems that are only found at tidally inundated coastal areas. Forest canopy height is an important measure for modeling carbon and biomass dynamics, as well as land cover change. By taking advantage of the flat terrain and dense canopy cover, the present study derived digital surface models (DSMs) using stereophotogrammetric techniques on high-resolution spaceborne imagery (HRSI) for southern Mozambique. A mean-weighted ground surface elevation factor was subtracted from the HRSI DSM to accurately estimate the canopy height in mangrove forests in southern Mozambique. The mean and H100 tree height measured in both the field and with the digital canopy model provided the most accurate results with a vertical error of 1.18-1.84 m, respectively. Distinct patterns were identified in the HRSI canopy height map that could not be discerned from coarse shuttle radar topography mission canopy maps even though the mode and distribution of canopy heights were similar over the same area. Through further investigation, HRSI DSMs have the potential of providing a new type of three-dimensional dataset that could serve as calibration/validation data for other DSMs generated from spaceborne datasets with much larger global coverage. HSRI DSMs could be used in lieu of Lidar acquisitions for canopy height and forest biomass estimation, and be combined with passive optical data to improve land cover classifications.

  6. Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar.

    PubMed

    Bolton, Douglas K; Coops, Nicholas C; Wulder, Michael A

    2013-08-01

    The structure and productivity of boreal forests are key components of the global carbon cycle and impact the resources and habitats available for species. With this research, we characterized the relationship between measurements of forest structure and satellite-derived estimates of gross primary production (GPP) over the Canadian boreal. We acquired stand level indicators of canopy cover, canopy height, and structural complexity from nearly 25,000 km of small-footprint discrete return Light Detection and Ranging (Lidar) data and compared these attributes to GPP estimates derived from the MODerate resolution Imaging Spectroradiometer (MODIS). While limited in our capacity to control for stand age, we removed recently disturbed and managed forests using information on fire history, roads, and anthropogenic change. We found that MODIS GPP was strongly linked to Lidar-derived canopy cover (r = 0.74, p < 0.01), however was only weakly related to Lidar-derived canopy height and structural complexity as these attributes are largely a function of stand age. A relationship was apparent between MODIS GPP and the maximum sampled heights derived from Lidar as growth rates and resource availability likely limit tree height in the prolonged absence of disturbance. The most structurally complex stands, as measured by the coefficient of variation of Lidar return heights, occurred where MODIS GPP was highest as productive boreal stands are expected to contain a wider range of tree heights and transition to uneven-aged structures faster than less productive stands. While MODIS GPP related near-linearly to Lidar-derived canopy cover, the weaker relationships to Lidar-derived canopy height and structural complexity highlight the importance of stand age in determining the structure of boreal forests. We conclude that an improved quantification of how both productivity and disturbance shape stand structure is needed to better understand the current state of boreal forests in Canada and how these forests are changing in response to changing climate and disturbance regimes.

  7. Evaluating Uncertainties in Sap Flux Scaled Estimates of Forest Transpiration, Canopy Conductance and Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ward, E. J.; Bell, D. M.; Clark, J. S.; Kim, H.; Oren, R.

    2009-12-01

    Thermal dissipation probes (TDPs) are a common method for estimating forest transpiration and canopy conductance from sap flux rates in trees, but their implementation is plagued by uncertainties arising from missing data and variability in the diameter and canopy position of trees, as well as sapwood conductivity within individual trees. Uncertainties in estimates of canopy conductance also translate into uncertainties in carbon assimilation in models such as the Canopy Conductance Constrained Carbon Assimilation (4CA) model that combine physiological and environmental data to estimate photosynthetic rates. We developed a method to propagate these uncertainties in the scaling and imputation of TDP data to estimates of canopy transpiration and conductance using a state-space Jarvis-type conductance model in a hierarchical Bayesian framework. This presentation will focus on the impact of these uncertainties on estimates of water and carbon fluxes using 4CA and data from the Duke Free Air Carbon Enrichment (FACE) project, which incorporates both elevated carbon dioxide and soil nitrogen treatments. We will also address the response of canopy conductance to vapor pressure deficit, incident radiation and soil moisture, as well as the effect of treatment-related stand structure differences in scaling TDP measurements. Preliminary results indicate that in 2006, a year of normal precipitation (1127 mm), canopy transpiration increased in elevated carbon dioxide ~8% on a ground area basis. In 2007, a year with a pronounced drought (800 mm precipitation), this increase was only present in the combined carbon dioxide and fertilization treatment. The seasonal dynamics of water and carbon fluxes will be discussed in detail.

  8. The Legacy of Episodic Climatic Events in Shaping Temperate, Broadleaf Forests

    NASA Technical Reports Server (NTRS)

    Pederson, Neil; Dyer, James M.; McEwan, Ryan W.; Hessl, Amy E.; Mock, Cary J.; Orwig, David A.; Rieder, Harald E.; Cook, Benjamin I.

    2015-01-01

    In humid, broadleaf-dominated forests where gap dynamics and partial canopy mortality appears to dominate the disturbance regime at local scales, paleoecological evidence shows alteration at regional-scales associated with climatic change. Yet, little evidence of these broad-scale events exists in extant forests. To evaluate the potential for the occurrence of large-scale disturbance, we used 76 tree-ring collections spanning approx. 840 000 sq km and 5327 tree recruitment dates spanning approx. 1.4 million sq km across the humid eastern United States. Rotated principal component analysis indicated a common growth pattern of a simultaneous reduction in competition in 22 populations across 61 000 km2. Growth-release analysis of these populations reveals an intense and coherent canopy disturbance from 1775 to 1780, peaking in 1776. The resulting time series of canopy disturbance is so poorly described by a Gaussian distribution that it can be described as ''heavy tailed,'' with most of the years from 1775 to 1780 comprising the heavy-tail portion of the distribution. Historical documents provide no evidence that hurricanes or ice storms triggered the 1775-1780 event. Instead, we identify a significant relationship between prior drought and years with elevated rates of disturbance with an intense drought occurring from 1772 to 1775. We further find that years with high rates of canopy disturbance have a propensity to create larger canopy gaps indicating repeated opportunities for rapid change in species composition beyond the landscape scale. Evidence of elevated, regional-scale disturbance reveals how rare events can potentially alter system trajectory: a substantial portion of old-growth forests examined here originated or were substantially altered more than two centuries ago following events lasting just a few years. Our recruitment data, comprised of at least 21 species and several shade-intolerant species, document a pulse of tree recruitment at the subcontinental scale during the late-1600s suggesting that this event was severe enough to open large canopy gaps. These disturbances and their climatic drivers support the hypothesis that punctuated, episodic, climatic events impart a legacy in broadleaf-dominated forests centuries after their occurrence. Given projections of future drought, these results also reveal the potential for abrupt, meso- to large-scale forest change in broadleaf-dominated forests over future decades.

  9. Foliar ozone injury on different-sized Prumus serotina Ehrh. trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredericksen, T.S.; Skelly, J.M.; Steiner, K.C.

    1995-06-01

    Black cherry (Prunus serotina Ehrh.) is a common tree species in the eastern U.S. that is highly sensitive to ozone relative to other associated deciduous tree species. Because of difficulties in conducting exposure-response experiments on large trees, air pollution studies have often utilized seedlings and extrapolated the results to predict the potential response of larger forest trees. However, physiological differences between seedlings and mature forest trees may alter responses to air pollutants. A comparative study of seedling, sapling, and canopy black cherry trees was conducted to determine the response of different-sized trees to known ozone exposures and amounts of ozonemore » uptake. Apparent foliar sensitivity to ozone, observed as a dark adaxial leaf stipple, decreased with increasing tree size. An average of 46% of seedling leaf area was symptomatic by early September, compared to 15% - 20% for saplings and canopy trees. In addition to visible symptoms, seedlings also appeared to have greater rates of early leaf abscission than larger trees. Greater sensitivity (i.e., foliar symptoms) per unit exposure with decreasing tree size was closely correlated with rates of stomatal conductance. However, after accounting for differences in stomatal conductance, sensitivity appeared to increase with tree size.« less

  10. Use of ground-based radiometers for L-Band Freeze/Thaw retrieval in a boreal forest site

    NASA Astrophysics Data System (ADS)

    Roy, A.; Sonnentag, O.; Derksen, C.; Toose, P.; Pappas, C.; Mavrovic, A.; El Amine, M.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Barr, A.; Black, T. A.

    2017-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of the seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitutes an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. Recently, new L-Band satellite-derived F/T information has become available. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the ground surface to the satellite signal remains challenging. Here we present results from an ongoing campaign with two L-Band surface-based radiometers (SBR) installed on a micrometeorological tower at the Southern Old Black Spruce site (53.99°N / 105.12°W) in central Saskatchewan. One radiometer unit is installed on top of the tower viewing the multi-layer vegetation canopy from above. A second radiometer unit is installed within the multi-layer canopy, viewing the understory and the ground surface only. The objectives of our study are to (i) disentangle the L-Band F/T signal contribution of boreal forest overstory from the combined understory and ground surface contribution, and (ii) link the L-Band F/T signal to related boreal forest structural and functional characteristics. Analysis of these radiometer measurements made from September to November 2016 shows that when the ground surface is thawed, the main contributor to both radiometer signals is soil moisture. The Pearson correlation coefficient between brightness temperature (TB) at vertical polarization (V-pol) and soil permittivity is 0.79 for the radiometer above the canopy and 0.74 for the radiometer below the canopy. Under cold conditions when the soil was thawed (snow insulation) and the trees were frozen (below 0°C), TB at V-pol is negatively correlated with tree permittivity. The freezing tree contribution to the L-Band signal is however confirmed with L-Band coaxial probe measurements that show significant changes in tree L-Band permittivity when the tree temperature falls below 0 °C. This study will help develop freeze/thaw product and ecosystemic processes in boreal forest from satellite based remote sensing.

  11. Taxonomy, Traits, and Environment Determine Isoprenoid Emission from an Evergreen Tropical forest.

    NASA Astrophysics Data System (ADS)

    Taylor, T.; Alves, E. G.; Tota, J.; Oliveira Junior, R. C.; Camargo, P. B. D.; Saleska, S. R.

    2016-12-01

    Volatile isoprenoid emissions from the leaves of tropical forest trees significantly affects atmospheric chemistry, aerosols, and cloud dynamics, as well as the physiology of the emitting leaves. Emission is associated with plant tolerance to heat and drought stress. Despite a potentially central role of isoprenoid emissions in tropical forest-climate interactions, we have a poor understanding of the relationship between emissions and ecological axes of forest function. We used a custom instrument to quantify leaf isoprenoid emission rates from over 200 leaves and 80 trees at a site in the eastern Brazilian Amazon. We related standardized leaf emission capacity (EC: leaf emission rate at 1000 PAR) to tree taxonomy, height, light environment, wood traits, and leaf traits. Taxonomy was the strongest predictor of EC, and non-emitters could be found throughout the canopy. But we found that environment and leaf carbon economics constrained the upper bound of EC. For example, the relationship between EC and specific leaf area (SLA; fresh leaf area / dry mass) is described by an envelope with a decreasing upper bound on EC as SLA increases (quantile regression: 85th quantile, p<0.01). That result suggests a limitation on emissions related to leaf carbon investment strategies. EC was highest in the mid-canopy, and in leaves growing under less direct light. While inferences of ecosystem emissions focus on environmental conditions in the canopy, our results suggest that sub-canopy leaves are more responsive. This work is allowing us to develop an ecological understanding of isoprenoid emissions from forests, the basis for a predictive model of emissions that depends on both environmental factors and biological emission capacity that is grounded in plant traits and phylogeny.

  12. Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Molotch, Noah P.; Barnard, David M.; Burns, Sean P.; Painter, Thomas H.

    2016-09-01

    The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.

  13. Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees.

    Treesearch

    F.C. Meinzer; S.A. James; G. Goldstein; D. Woodruff

    2003-01-01

    The present study examines the manner in which several whole-tree water transport properties scale with species specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole-tree...

  14. Thirty-two years of change in an old-growth Ohio beech-maple forest.

    PubMed

    Runkle, James R

    2013-05-01

    Old-growth forests dominated by understory-tolerant tree species are among forest types most likely to be in equilibrium. However, documentation of the degree to which they are in equilibrium over decades-long time periods is lacking. Changes in climate, pathogens, and land use all are likely to impact stand characteristics and species composition, even in these forests. Here, 32 years of vegetation changes in an old-growth beech (Fagus grandifolia)-sugar maple (Acer saccharum) forest in Hueston Woods, southwest Ohio, USA, are summarized. These changes involve canopy composition and structure, turnover in snags, and development of vegetation in treefall gaps. Stand basal area and canopy density have changed little in 32 years. However, beech has decreased in canopy importance (49% to 32%) while sugar maple has increased (32% to 47%). Annual mortality was about 1.3% throughout the study period. Mortality rates increased with stem size, but the fraction of larger stems increased due to ingrowth from smaller size classes. Beech was represented by more very large stems than small canopy stems: over time, death of those larger stems with inadequate replacement has caused the decrease in beech importance. Sugar maple was represented by more small canopy stems whose growth has increased its importance. The changes in beech and sugar maple relative importance are hypothesized to be due to forest fragmentation mostly from the early 1800s with some possible additional effects associated with the formation of the state park. Snag densities (12-16 snags/ha) and formation rates (1-3 snags.ha(-1).yr(-1)) remained consistent. The treefall gaps previously studied are closing, with a few, large stems remaining. Death of gap border trees occurs consistently enough to favor species able to combine growth in gaps and survival in the understory.

  15. Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions.

    PubMed

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available.

  16. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    PubMed Central

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  17. Structure of a forested urban park: implications for strategic management.

    PubMed

    Millward, Andrew A; Sabir, Senna

    2010-11-01

    Informed management of urban parks can provide optimal conditions for tree establishment and growth and thus maximize the ecological and aesthetic benefits that trees provide. This study assesses the structure, and its implications for function, of the urban forest in Allan Gardens, a 6.1 ha downtown park in the City of Toronto, Canada, using the Street Tree Resource Analysis Tool for Urban Forest Managers (STRATUM). Our goal is to present a framework for collection and analysis of baseline data that can inform a management strategy that would serve to protect and enhance this significant natural asset. We found that Allan Garden's tree population, while species rich (43), is dominated by maple (Acer spp.) (48% of all park trees), making it reliant on very few species for the majority of its ecological and aesthetic benefits and raising disease and pest-related concerns. Age profiles (using size as a proxy) showed a dominance of older trees with an inadequate number of individuals in the young to early middle age cohort necessary for short- to medium-term replacement. Because leaf area represents the single-most important contributor to urban tree benefits modelling, we calculated it separately for every park tree, using hemispheric photography, to document current canopy condition. These empirical measurements were lower than estimates produced by STRATUM, especially when trees were in decline and lacked full canopies, highlighting the importance of individual tree condition in determining leaf area and hence overall forest benefits. Stewardship of natural spaces within cities demands access to accurate and timely resource-specific data. Our work provides an uncomplicated approach to the acquisition and interpretation of these data in the context of a forested urban park. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Belowground carbon trade among tall trees in a temperate forest.

    PubMed

    Klein, Tamir; Siegwolf, Rolf T W; Körner, Christian

    2016-04-15

    Forest trees compete for light and soil resources, but photoassimilates, once produced in the foliage, are not considered to be exchanged between individuals. Applying stable carbon isotope labeling at the canopy scale, we show that carbon assimilated by 40-meter-tall spruce is traded over to neighboring beech, larch, and pine via overlapping root spheres. Isotope mixing signals indicate that the interspecific, bidirectional transfer, assisted by common ectomycorrhiza networks, accounted for 40% of the fine root carbon (about 280 kilograms per hectare per year tree-to-tree transfer). Although competition for resources is commonly considered as the dominant tree-to-tree interaction in forests, trees may interact in more complex ways, including substantial carbon exchange. Copyright © 2016, American Association for the Advancement of Science.

  19. Remote analysis of biological invasion and biogeochemical change

    PubMed Central

    Asner, Gregory P.; Vitousek, Peter M.

    2005-01-01

    We used airborne imaging spectroscopy and photon transport modeling to determine how biological invasion altered the chemistry of forest canopies across a Hawaiian montane rain forest landscape. The nitrogen-fixing tree Myrica faya doubled canopy nitrogen concentrations and water content as it replaced native forest, whereas the understory herb Hedychium gardnerianum reduced nitrogen concentrations in the forest overstory and substantially increased aboveground water content. This remote sensing approach indicates the geographic extent, intensity, and biogeochemical impacts of two distinct invaders; its wider application could enhance the role of remote sensing in ecosystem analysis and management. PMID:15761055

  20. Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models

    NASA Astrophysics Data System (ADS)

    Alexander, Cici; Korstjens, Amanda H.; Hill, Ross A.

    2018-03-01

    Tree or canopy height is an important attribute for carbon stock estimation, forest management and habitat quality assessment. Airborne Laser Scanning (ALS) based on Light Detection and Ranging (LiDAR) has advantages over other remote sensing techniques for describing the structure of forests. However, sloped terrain can be challenging for accurate estimation of tree locations and heights based on a Canopy Height Model (CHM) generated from ALS data; a CHM is a height-normalised Digital Surface Model (DSM) obtained by subtracting a Digital Terrain Model (DTM) from a DSM. On sloped terrain, points at the same elevation on a tree crown appear to increase in height in the downhill direction, based on the ground elevations at these points. A point will be incorrectly identified as the treetop by individual tree crown (ITC) recognition algorithms if its height is greater than that of the actual treetop in the CHM, which will be recorded as the tree height. In this study, the influence of terrain slope and crown characteristics on the detection of treetops and estimation of tree heights is assessed using ALS data in a tropical forest with complex terrain (i.e. micro-topography) and tree crown characteristics. Locations and heights of 11,442 trees based on a DSM are compared with those based on a CHM. The horizontal (DH) and vertical displacements (DV) increase with terrain slope (r = 0.47 and r = 0.54 respectively, p < 0.001). The overestimations in tree height are up to 16.6 m on slopes greater than 50° in our study area in Sumatra. The errors in locations (DH) and tree heights (DV) are modelled for trees with conical and spherical tree crowns. For a spherical tree crown, DH can be modelled as R sin θ, and DV as R (sec θ - 1). In this study, a model is developed for an idealised conical tree crown, DV = R (tan θ - tan ψ), where R is the crown radius, and θ and ψ are terrain and crown angles respectively. It is shown that errors occur only when terrain angle exceeds the crown angle, with the horizontal displacement equal to the crown radius. Errors in location are seen to be greater for spherical than conical trees on slopes where crown angles of conical trees are less than the terrain angle. The results are especially relevant for biomass and carbon stock estimations in tropical forests where there are trees with large crown radii on slopes.

  1. Origin of the Hawaiian rainforest ecosystem and its evolution in long-term primary succession

    NASA Astrophysics Data System (ADS)

    Mueller-Dombois, D.; Boehmer, H. J.

    2013-02-01

    Born among volcanoes in the north central Pacific about 4 million years ago, the Hawaiian rainforest became assembled from spores of algae, fungi, lichens, bryophytes, ferns and from seeds of about 275 flowering plants that over the millenia evolved into ca. 1000 endemic species. Outstanding among the forest builders were the tree ferns (Cibotium spp.) and the 'Ōhi'a lehua trees (Metrosideros spp.), which still dominate the Hawaiian rainforest ecosystem today. The structure of this forest is simple. The canopy in closed mature rainforests is dominated by cohorts of Metrosideros polymorpha and the undergrowth by tree fern species of Cibotium. When a new lava flow cuts through this forest, kipuka are formed, i.e. islands of remnant vegetation. On the new volcanic substrate, the assemblage of plant life-forms is similar as during the evolution of this system. In open juvenile forests, a mat-forming fern, the uluhe fern (Dicranopteris lineraris) becomes established. It inhibits further regeneration of the dominant 'Ōhi'a tree, thereby reinforcing the cohort structure of the canopy guild. In the later part of its life cycle, the canopy guild breaks down often in synchrony. The trigger is hypothesized to be a climatic perturbation. After that disturbance the forest becomes reestablished in about 30-40 yr. As the volcanic surfaces age, they go from a mesotrophic to a eutrophic phase, reaching a biophilic nutrient climax by about 1-25 K yr. Thereafter, a regressive oligotrophic phase follows; the soils become exhausted of nutrients. The shield volcanoes break down. Marginally, forest habitats change into bogs and stream ecosystems. The broader 'Ōhi'a rainforest redeveloping in the more dissected landscapes of the older islands looses stature, often forming large gaps that are invaded by the aluminum tolerant uluhe fern. The 'Ōhi'a trees still thrive on soils rejuvenated from landslides and from Asian dust on the oldest (5 million year old) island Kaua'i but their stature and living biomass is greatly diminished.

  2. The rise of the mediocre forest: why chronically stressed trees may better survive extreme episodic climate variability

    Treesearch

    Steven G. McNulty; Johnny L. Boggs; Ge Sun

    2014-01-01

    Anthropogenic climate change is a relatively new phenomenon, largely occurring over the past 150 years, and much of the discussion on climate change impacts to forests has focused on long-term shifts in temperature and precipitation. However, individual trees respond to the much shorter impacts of climate variability. Historically, fast growing, fully canopied, non-...

  3. Spatial distribution and succession of epiphytes on Tsuga heterophylla (western hemlock) in an old-growth Douglas-fir forest

    Treesearch

    Betsy Lyons; Nalini M. Nadkarni; Malcolm P. North

    2000-01-01

    We examined the distribution and abundance of nonvascular epiphytes on western hemlock trees in an oldgrowth coniferous forest focusing on patterns of epiphyte distribution at different spatial scales, epiphyte abundance amongst trees differing in size, and crown structures associated with epiphyte abundance. Total epiphyte cover was greatest in four canopy...

  4. Relating forest attributes with area- and tree-based light detection and ranging metrics for western Oregon

    Treesearch

    Michael E. Goerndt; Vincente J. Monleon; Hailemariam. Temesgen

    2010-01-01

    Three sets of linear models were developed to predict several forest attributes, using stand-level and single-tree remote sensing (STRS) light detection and ranging (LiDAR) metrics as predictor variables. The first used only area-level metrics (ALM) associated with first-return height distribution, percentage of cover, and canopy transparency. The second alternative...

  5. The influence of tree morphology on stemflow in a redwood region second-growth forest

    Treesearch

    Elias Steinbuck

    2002-01-01

    Abstract - Stemflow is the portion of rainfall which, having been intercepted by the forest canopy, reaches the ground by running down the stems of trees. Stemflow volumes from coast redwood, Douglas-fir, and tanoak were collected from January 2000 to April 2001 in the Caspar Creek Watershed in Mendocino County, California. Average funneling ratios reveal a greater...

  6. Assessing the US Urban Forest Resources

    Treesearch

    David J. Nowak; Mary H. Noble; Susan M. Sisinni; John F. Dwyer

    2001-01-01

    Urban areas in the conterminous United States doubled in size between 1969 and 1994, and currently cover 3.5 percent of the total land area and contain more than 75 percent of the US population. Urban areas contain approximately 3.8 billion trees with an average tree canopy cover of 27 percent. The extent and variation of urban forests across the 48 states are explored...

  7. Impacts of removing Chinese privet from riparian forests on plant communities and tree growth five years later

    Treesearch

    Jacob R. Hudson; James L. Hanula; Scott Horn

    2014-01-01

    An invasive shrub, Chinese privet (Ligustrum sinense Lour.), was removed from heavily infested riparian forests in the Georgia Piedmont in 2005 by mulching machine or chainsaw felling. Subsequent herbicide treatment eliminated almost all privet by 2007. Recovery of plant communities, return of Chinese privet, and canopy tree growth were measured on...

  8. Lidar observed seasonal variation of vertical canopy structure in the Amazon evergreen forests

    NASA Astrophysics Data System (ADS)

    Tang, H.; Dubayah, R.

    2017-12-01

    Both light and water are important environmental factors governing tree growth. Responses of tropical forests to their changes are complicated and can vary substantially across different spatial and temporal scales. Of particular interest is the dry-season greening-up of Amazon forests, a phenomenon undergoing considerable debates whether it is real or a "light illusion" caused by artifacts of passive optical remote sensing techniques. Here we analyze seasonal dynamic patterns of vertical canopy structure in the Amazon forests using lidar observations from NASA's Ice, Cloud, and and land Elevation Satellite (ICESat). We found that the net greening of canopy layer coincides with the wet-to-dry transition period, and its net browning occurs mostly at the late dry season. The understory also shows a seasonal cycle, but with an opposite variation to canopy and minimal correlation to seasonal variations in rainfall or radiation. Our results further suggest a potential interaction between canopy layers in the light regime that can optimize the growth of Amazon forests during the dry season. This light regime variability that exists in both spatial and temporal domains can better reveal the dry-season greening-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  9. Tree-mycorrhizal associations detected remotely from canopy spectral properties.

    PubMed

    Fisher, Joshua B; Sweeney, Sean; Brzostek, Edward R; Evans, Tom P; Johnson, Daniel J; Myers, Jonathan A; Bourg, Norman A; Wolf, Amy T; Howe, Robert W; Phillips, Richard P

    2016-07-01

    A central challenge in global ecology is the identification of key functional processes in ecosystems that scale, but do not require, data for individual species across landscapes. Given that nearly all tree species form symbiotic relationships with one of two types of mycorrhizal fungi - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - and that AM- and ECM-dominated forests often have distinct nutrient economies, the detection and mapping of mycorrhizae over large areas could provide valuable insights about fundamental ecosystem processes such as nutrient cycling, species interactions, and overall forest productivity. We explored remotely sensed tree canopy spectral properties to detect underlying mycorrhizal association across a gradient of AM- and ECM-dominated forest plots. Statistical mining of reflectance and reflectance derivatives across moderate/high-resolution Landsat data revealed distinctly unique phenological signals that differentiated AM and ECM associations. This approach was trained and validated against measurements of tree species and mycorrhizal association across ~130 000 trees throughout the temperate United States. We were able to predict 77% of the variation in mycorrhizal association distribution within the forest plots (P < 0.001). The implications for this work move us toward mapping mycorrhizal association globally and advancing our understanding of biogeochemical cycling and other ecosystem processes. © 2016 John Wiley & Sons Ltd.

  10. Predictions of Tropical Forest Biomass and Biomass Growth Based on Stand Height or Canopy Area Are Improved by Landsat-Scale Phenology across Puerto Rico and the U.S. Virgin Islands

    Treesearch

    David Gwenzi; Eileen Helmer; Xiaolin Zhu; Michael Lefsky; Humfredo Marcano-Vega

    2017-01-01

    Remotely-sensed estimates of forest biomass are usually based on various measurements of canopy height, area, volume or texture, as derived from LiDAR, radar or fine spatial resolution imagery. These measurements are then calibrated to estimates of stand biomass that are primarily based on tree stem diameters. Although humid tropical...

  11. Vegetation and Ecological Characteristics of Mixed-Conifer and Red Fir Forests at the Teakettle Experimental Forest

    Treesearch

    Malcolm North; Brian Oakley; Jiquan Chen; Heather Erickson; Andrew Gray; Antonio Izzo; Dale Johnson; Siyan Ma; Jim Marra; Marc Meyer; Kathryn Purcell; Tom Rambo; Dave Rizzo; Brent Roath; Tim Schowalter

    2002-01-01

    Detailed analysis of mixed-conifer and red fir forests were made from extensive, large vegetation sampling, systematically conducted throughout the Teakettle Experimental Forest. Mixed conifer is characterized by distinct patch conditions of closed-canopy tree clusters, persistent gaps and shrub thickets. This heterogeneous spatial structure provides contrasting...

  12. Structure of the Epiphyte Community in a Tropical Montane Forest in SW China

    PubMed Central

    Zhao, Mingxu; Geekiyanage, Nalaka; Xu, Jianchu; Khin, Myo Myo; Nurdiana, Dian Ridwan; Paudel, Ekananda; Harrison, Rhett Daniel

    2015-01-01

    Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height), while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest. PMID:25856457

  13. An application of the lottery competition model to a montane rainforest community of two canopy trees, ohia (Metrosideros polymorpha) and koa (Acacia koa) on Mauna Loa, Hawaii

    USGS Publications Warehouse

    Hatfield, J.S.; Link, W.A.; Dawson, D.K.; Lindquist, E.L.

    1992-01-01

    This rainforest occurs on Mauna Loa at 1500-2000 m elevation. Earthwatch volunteers, studying the habitat of 8 native forest bird species (3 endangered), identified 2382 living canopy trees, and 99 dead trees, on 68 study plots, 400 m2 each. Ohia made up 88% of the canopy; koa was 12%. The two-species lottery competition model, a stochastic model in which coexistence of species results from variation in recruitment and death rates, predicts a quadratic-beta distribution for the proportion of space occupied by one species. A discrete version was fit to the live tree data and a likelihood ratio test (p=0.02) was used to test if the mean death rates were equal. This test was corroborated by a contingency table analysis (p=0.03) based on dead trees. Parameter estimates from the two analyses were similar.

  14. Arboreal nests of Phenacomys longgicaudus in Oregon.

    Treesearch

    A.M. Gillesberg; A.B. Carey

    1991-01-01

    Searching felled trees proved effective for finding nests of Phenacomys longicaudus; 117 nests were found in 50 trees. Nests were located throughout the live crowns, but were concentrated in the lower two-thirds of the canopy. Abundance of nests increased with tree size; old-growth forests provide optimum habitat.

  15. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure.

    PubMed

    Tang, Hao; Dubayah, Ralph

    2017-03-07

    Light-regime variability is an important limiting factor constraining tree growth in tropical forests. However, there is considerable debate about whether radiation-induced green-up during the dry season is real, or an apparent artifact of the remote-sensing techniques used to infer seasonal changes in canopy leaf area. Direct and widespread observations of vertical canopy structures that drive radiation regimes have been largely absent. Here we analyze seasonal dynamic patterns between the canopy and understory layers in Amazon evergreen forests using observations of vertical canopy structure from a spaceborne lidar. We discovered that net leaf flushing of the canopy layer mainly occurs in early dry season, and is followed by net abscission in late dry season that coincides with increasing leaf area of the understory layer. Our observations of understory development from lidar either weakly respond to or are not correlated to seasonal variations in precipitation or insolation, but are strongly related to the seasonal structural dynamics of the canopy layer. We hypothesize that understory growth is driven by increased light gaps caused by seasonal variations of the canopy. This light-regime variability that exists in both spatial and temporal domains can better reveal the drought-induced green-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  16. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    PubMed

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high-resolution remote sensing can predict a large percentage of variance in species richness and potentially provide a framework to map and predict alpha diversity among trees in diverse tropical forests.

  17. Spatial heterogeneity of radiocesium in the soil of a broadleaved deciduous forest: the marked role of stemflow

    NASA Astrophysics Data System (ADS)

    Levia, Delphis; Imamura, Naohiro; Toriyama, Jumpei; Kobayashi, Masahiro; Nanko, Kazuki

    2017-04-01

    This project amplifies our understanding of the transport of Cs-137 via stemflow in a konara oak forest by examining the spatial distribution of Cs-137 in the soil in both proximal (near-trunk) and distal ( > 1 m form tree trunk) stem areas. We report the Cs-137 concentrations and stocks for twenty-four soil samples harvested from the proximal and distal stem areas around individual trees in a radioactively contaminated konara oak forest in east-central Honshu, Japan. Preferential flowpaths of stemflow on the tree trunk and its point of infiltration into the forest floor was observed by conducting a dye tracer experiment. Experimental results showed that Cs-137 concentrations and stocks were higher in the soils of the proximal stem area as compared to the distal stem area when they corresponded with the preferential flowpaths of stemflow. Moreover, there was a significant relationship between the canopy projection area of individual trees and average soil Cs-137 concentrations and stocks, despite some canopy overlap among even trees. Our findings demonstrate that the spatial patterning of Cs-137 concentrations and stocks in the soil of the proximal stem area are governed (at least partially) by the preferential flowpaths of stemflow along the tree trunk. [Note: This presentation is currently under peer-review for journal publication.

  18. Natural cavities used by wood ducks in north-central Minnesota

    USGS Publications Warehouse

    Gilmer, D.S.; Ball, I.J.; Cowardin, L.M.; Mathisen, J.

    1978-01-01

    Radio telemetry was used to locate 31 wood duck (Aix sponsa) nest cavity sites in 16 forest stands. Stands were of 2 types: (1) mature (mean = 107 years) northern hardwoods (10 nest sites), and (2) mature (mean = 68 years) quaking aspen (Populus tremuloides) (21 nest sites). Aspen was the most important cavity-producing tree used by wood ducks and accounted for 57 percent of 28 cavities inspected. In stands used by wood ducks, the average density of suitable cavities was about 4 per hectare. Trees containing nests were closer to water areas (P < 0.05) and the nearest forest canopy openings (P < 0.01) than was a random sample of trees from the same stands. A significant (P < 0.005) relationship existed between the orientation of the cavity entrance and the nearest canopy opening. Potential wood duck cavities usually were clustered within a stand rather than randomly distributed. Selection of trees by woodpeckers for nest hole construction probably influenced the availability of cavities used by wood ducks. A plan for managing forests to benefit wood ducks and other wildlife dependent on old-growth timber is discussed.

  19. the Role of Species, Structure, and Biochemical Traits in the Spatial Distribution of a Woodland Community

    NASA Astrophysics Data System (ADS)

    Adeline, K.; Ustin, S.; Roth, K. L.; Huesca Martinez, M.; Schaaf, C.; Baldocchi, D. D.; Gastellu-Etchegorry, J. P.

    2015-12-01

    The assessment of canopy biochemical diversity is critical for monitoring ecological and physiological functioning and for mapping vegetation change dynamics in relation to environmental resources. For example in oak woodland savannas, these dynamics are mainly driven by water constraints. Inversion using radiative transfer theory is one method for estimating canopy biochemistry. However, this approach generally only considers relatively simple scenarios to model the canopy due to the difficulty in encompassing stand heterogeneity with spatial and temporal consistency. In this research, we compared 3 modeling strategies for estimating canopy biochemistry variables (i.e. chlorophyll, carotenoids, water, dry matter) by coupling of the PROSPECT (leaf level) and DART (canopy level) models : i) a simple forest representation made of ellipsoid trees, and two representations taking into account the tree species and structural composition, and the landscape spatial pattern, using (ii) geometric tree crown shapes and iii) detailed tree crown and wood structure retrieved from terrestrial lidar acquisitions. AVIRIS 18m remote sensing data are up-scaled to simulate HyspIRI 30m images. Both spatial resolutions are validated by measurements acquired during 2013-2014 field campaigns (cover/tree inventory, LAI, leaf sampling, optical measures). The results outline the trade-off between accurate and abstract canopy modeling for inversion purposes and may provide perspectives to assess the impact of the California drought with multi-temporal monitoring of canopy biochemistry traits.

  20. Analysis of laser altimeter waveforms for forested ecosystems of Central Florida

    NASA Astrophysics Data System (ADS)

    Weishampel, John F.; Harding, David J.; Boutet, Jeffry C., Jr.; Drake, Jason B.

    1997-07-01

    An experimental profiling airborne laser altimeter system developed at NASA's Goddard Space Flight Center was used to acquire vertical canopy data from several ecosystem types from The Nature Conservancy's Disney Wilderness Preserve, near Kissimmee, Florida. This laser altimeter, besides providing submeter accuracy of tree height, captures a profile of data which relates to the magnitude of reflectivity of the laser pulse as it penetrates different elevations of the forest canopy. This complete time varying amplitude of the return signal of the laser pulse, between the first (i.e., the canopy top) and last (i.e., the ground) returns, yields a waveform which is related to canopy architecture, specifically the nadir-projected vertical distribution of the surface of canopy components (i.e., foliage, twigs, and branches). Selected profile returns from representative covertypes (e.g., pine flatwoods, bayhead, and cypress wetland) were compared with ground truthed forest composition (i.e., species and size class distribution) and structural (i.e., canopy height, canopy closure, crown depth) measures to help understand how these properties contribute to variation in the altimeter waveform.

  1. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  2. Impacts of a spring heat wave on canopy processes in a northern hardwood forest.

    PubMed

    Filewod, Ben; Thomas, Sean C

    2014-02-01

    Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.

  3. Branching out to residential lands: Missions and strategies of five tree distribution programs in the U.S.

    Treesearch

    Vi D. Nguyen; Lara A. Roman; Dexter H. Locke; Sarah K. Mincey; Jessica R. Sanders; Erica Smith Fichman; Mike Duran-Mitchell; Sarah Lumban Tobing

    2017-01-01

    Residential lands constitute a major component of existing and possible tree canopy in many cities in the United States. To expand the urban forest on these lands, some municipalities and nonprofit organizations have launched residential yard tree distribution programs, also known as tree giveaway programs. This paper describes the operations of five tree distribution...

  4. Simulating stand climate, phenology, and photosynthesis of a forest stand with a process-based growth model.

    PubMed

    Rötzer, Thomas; Leuchner, Michael; Nunn, Angela J

    2010-07-01

    In the face of climate change and accompanying risks, forest management in Europe is becoming increasingly important. Model simulations can help to understand the reactions and feedbacks of a changing environment on tree growth. In order to simulate forest growth based on future climate change scenarios, we tested the basic processes underlying the growth model BALANCE, simulating stand climate (air temperature, photosynthetically active radiation (PAR) and precipitation), tree phenology, and photosynthesis. A mixed stand of 53- to 60-year-old Norway spruce (Picea abies) and European beech (Fagus sylvatica) in Southern Germany was used as a reference. The results show that BALANCE is able to realistically simulate air temperature gradients in a forest stand using air temperature measurements above the canopy and PAR regimes at different heights for single trees inside the canopy. Interception as a central variable for water balance of a forest stand was also estimated. Tree phenology, i.e. bud burst and leaf coloring, could be reproduced convincingly. Simulated photosynthesis rates were in accordance with measured values for beech both in the sun and the shade crown. For spruce, however, some discrepancies in the rates were obvious, probably due to changed environmental conditions after bud break. Overall, BALANCE has shown to respond to scenario simulations of a changing environment (e.g., climate change, change of forest stand structure).

  5. Fast demographic traits promote high diversification rates of Amazonian trees

    PubMed Central

    Baker, Timothy R; Pennington, R Toby; Magallon, Susana; Gloor, Emanuel; Laurance, William F; Alexiades, Miguel; Alvarez, Esteban; Araujo, Alejandro; Arets, Eric J M M; Aymard, Gerardo; de Oliveira, Atila Alves; Amaral, Iêda; Arroyo, Luzmila; Bonal, Damien; Brienen, Roel J W; Chave, Jerome; Dexter, Kyle G; Di Fiore, Anthony; Eler, Eduardo; Feldpausch, Ted R; Ferreira, Leandro; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje; Higuchi, Niro; Honorio, Eurídice; Huamantupa, Isau; Killeen, Tim J; Laurance, Susan; Leaño, Claudio; Lewis, Simon L; Malhi, Yadvinder; Marimon, Beatriz Schwantes; Marimon Junior, Ben Hur; Monteagudo Mendoza, Abel; Neill, David; Peñuela-Mora, Maria Cristina; Pitman, Nigel; Prieto, Adriana; Quesada, Carlos A; Ramírez, Fredy; Ramírez Angulo, Hirma; Rudas, Agustin; Ruschel, Ademir R; Salomão, Rafael P; de Andrade, Ana Segalin; Silva, J Natalino M; Silveira, Marcos; Simon, Marcelo F; Spironello, Wilson; ter Steege, Hans; Terborgh, John; Toledo, Marisol; Torres-Lezama, Armando; Vasquez, Rodolfo; Vieira, Ima Célia Guimarães; Vilanova, Emilio; Vos, Vincent A; Phillips, Oliver L; Wiens, John

    2014-01-01

    The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits – short turnover times – are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests. PMID:24589190

  6. Urban trees and forests of the Chicago region

    Treesearch

    David J. Nowak; Robert E. III Hoehn; Allison R. Bodine; Daniel E. Crane; John F. Dwyer; Veta Bonnewell; Gary Watson

    2013-01-01

    An analysis of trees in the Chicago region of Illinois reveals that this area has about 157,142,000 trees with tree and shrub canopy that covers 21.0 percent of the region. The most common tree species are European buckthorn, green ash, boxelder, black cherry, and American elm. Trees in the Chicago region currently store about 16.9 million tons of carbon (61.9 million...

  7. Tree root dynamics in montane and sub-alpine mixed forest patches.

    PubMed

    Wang, Y; Kim, J H; Mao, Z; Ramel, M; Pailler, F; Perez, J; Rey, H; Tron, S; Jourdan, C; Stokes, A

    2018-02-28

    The structure of heterogeneous forests has consequences for their biophysical environment. Variations in the local climate significantly affect tree physiological processes. We hypothesize that forest structure also alters tree root elongation and longevity through temporal and spatial variations in soil temperature and water potential. We installed rhizotrons in paired vegetation communities of closed forest (tree islands) and open patches (canopy gaps), along a soil temperature gradient (elevations of 1400, 1700 and 2000 m) in a heterogeneous mixed forest. We measured the number of growing tree roots, elongation and mortality every month over 4 years. The results showed that the mean daily root elongation rate (RER) was not correlated with soil water potential but was significantly and positively correlated with soil temperature between 0 and 8 °C only. The RER peaked in spring, and a smaller peak was usually observed in the autumn. Root longevity was dependent on altitude and the season in which roots were initiated, and root diameter was a significant factor explaining much of the variability observed. The finest roots usually grew faster and had a higher risk of mortality in gaps than in closed forest. At 2000 m, the finest roots had a higher risk of mortality compared with the lower altitudes. The RER was largely driven by soil temperature and was lower in cold soils. At the treeline, ephemeral fine roots were more numerous, probably in order to compensate for the shorter growing season. Differences in soil climate and root dynamics between gaps and closed forest were marked at 1400 and 1700 m, but not at 2000 m, where canopy cover was more sparse. Therefore, heterogeneous forest structure and situation play a significant role in determining root demography in temperate, montane forests, mostly through impacts on soil temperature.

  8. Short-term effects of light quality on leaf gas exchange and hydraulic properties of silver birch (Betula pendula).

    PubMed

    Niglas, Aigar; Papp, Kaisa; Sekiewicz, Maciej; Sellin, Arne

    2017-09-01

    Leaves have to acclimatize to heterogeneous radiation fields inside forest canopies in order to efficiently exploit diverse light conditions. Short-term effects of light quality on photosynthetic gas exchange, leaf water use and hydraulic traits were studied on Betula pendula Roth shoots cut from upper and lower thirds of the canopy of 39- to 35-year-old trees growing in natural forest stand, and illuminated with white, red or blue light in the laboratory. Photosynthetic machinery of the leaves developed in different spectral conditions acclimated differently with respect to incident light spectrum: the stimulating effect of complete visible spectrum (white light) on net photosynthesis is more pronounced in upper-canopy layers. Upper-canopy leaves exhibit less water saving behaviour, which may be beneficial for the fast-growing pioneer species on a daily basis. Lower-canopy leaves have lower stomatal conductance resulting in more efficient water use. Spectral gradients existing within natural forest stands represent signals for the fine-tuning of stomatal conductance and tree water relations to afford lavish water use in sun foliage and enhance leaf water-use efficiency in shade foliage sustaining greater hydraulic limitations. Higher sensitivity of hydraulic conductance of shade leaves to blue light probably contributes to the efficient use of short duration sunflecks by lower-canopy leaves. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Variation in crown light utilization characteristics among tropical canopy trees.

    PubMed

    Kitajima, Kaoru; Mulkey, Stephen S; Wright, S Joseph

    2005-02-01

    Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.

  10. Human and biophysical legacies shape contemporary urban forests: A literature synthesis

    Treesearch

    Lara A. Roman; Hamil Pearsall; Theodore S. Eisenman; Tenley M. Conway; Robert T. Fahey; Shawn Landry; Jess Vogt; Natalie S. van Doorn; J. Morgan Grove; Dexter H. Locke; Adrina C. Bardekjian; John J. Battles; Mary L. Cadenasso; Cecil C. Konijnendijk van den Bosch; Meghan Avolio; Adam Berland; G. Darrel Jenerette; Sarah K. Mincey; Diane E. Pataki; Christina Staudhammer

    2018-01-01

    Understanding how urban forests developed their current patterns of tree canopy cover, species composition, and diversity requires an appreciation of historical legacy effects. However, analyses of current urban forest characteristics are often limited to contemporary socioeconomic factors, overlooking the role of history. The institutions, human communities, and...

  11. Plant competition and the implications for tropical forest carbon dynamics

    NASA Astrophysics Data System (ADS)

    Schnitzer, Stefan

    2016-04-01

    Tropical forests store more than one third of all terrestrial carbon and account for over one third of terrestrial net primary productivity, and thus they are a critical component of the global carbon cycle. Nearly all of the aboveground carbon in tropical forests is held in tree biomass, and long-term carbon fluxes are balanced largely by tree growth and tree death. Therefore, the vast majority of research on tropical forest carbon dynamics has focused on the growth and mortality of canopy trees. By contrast, lianas (woody vines) contribute little biomass relative to trees. However, competition between lianas (woody vines) and trees may result in forest-wide carbon loss if lianas fail to accumulate the carbon that they displace in trees. We tested this hypotheses using a series of large-scale liana-removal studies in the Republic of Panama. We found that lianas limited tree growth and increased tree mortality, thus significantly reducing carbon accumulation in trees. Lianas themselves, however, did not compensate for the carbon that they displaced in trees. Lianas lower the capacity of tropical forests to uptake and store carbon, and the recently observed increases in liana abundance in neotropical forests will likely result in further reductions of carbon uptake.

  12. Unexpected High Diversity of Galling Insects in the Amazonian Upper Canopy: The Savanna Out There

    PubMed Central

    Julião, Genimar R.; Venticinque, Eduardo M.; Fernandes, G. Wilson; Price, Peter W.

    2014-01-01

    A relatively large number of studies reassert the strong relationship between galling insect diversity and extreme hydric and thermal status in some habitats, and an overall pattern of a greater number of galling species in the understory of scleromorphic vegetation. We compared galling insect diversity in the forest canopy and its relationship with tree richness among upland terra firme, várzea, and igapó floodplains in Amazonia, Brazil. The soils of these forest types have highly different hydric and nutritional status. Overall, we examined the upper layer of 1,091 tree crowns. Galling species richness and abundance were higher in terra firme forests compared to várzea and igapó forests. GLM-ANCOVA models revealed that the number of tree species sampled in each forest type was determinant in the gall-forming insect diversity. The ratio between galling insect richness and number of tree species sampled (GIR/TSS ratio) was higher in the terra firme forest and in seasonally flooded igapó, while the várzea presented the lowest GIR/TSS ratio. In this study, we recorded unprecedented values of galling species diversity and abundance per sampling point. The GIR/TSS ratio from várzea was approximately 2.5 times higher than the highest value of this ratio ever reported in the literature. Based on this fact, we ascertained that várzea and igapó floodplain forests (with lower GIA and GIR), together with the speciose terra firme galling community emerge as the gall diversity apex landscape among all biogeographic regions already investigated. Contrary to expectation, our results also support the “harsh environment hypothesis”, and unveil the Amazonian upper canopy as similar to Mediterranean vegetation habitats, hygrothermically stressed environments with leaf temperature at lethal limits and high levels of leaf sclerophylly. PMID:25551769

  13. Light accelerates plant responses to warming.

    PubMed

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; De Schrijver, An; Coomes, David A; Hermy, Martin; Vangansbeke, Pieter; Verheyen, Kris

    2015-08-17

    Competition for light has profound effects on plant performance in virtually all terrestrial ecosystems. Nowhere is this more evident than in forests, where trees create environmental heterogeneity that shapes the dynamics of forest-floor communities(1-3). Observational evidence suggests that biotic responses to both anthropogenic global warming and nitrogen pollution may be attenuated by the shading effects of trees and shrubs(4-9). Here we show experimentally that tree shade is slowing down changes in below-canopy communities due to warming. We manipulated levels of photosynthetically active radiation, temperature and nitrogen, alone and in combination, in a temperate forest understorey over a 3-year period, and monitored the composition of the understorey community. Light addition, but not nitrogen enrichment, accelerated directional plant community responses to warming, increasing the dominance of warmth-preferring taxa over cold-tolerant plants (a process described as thermophilization(6,10-12)). Tall, competitive plants took greatest advantage of the combination of elevated temperature and light. Warming of the forest floor did not result in strong community thermophilization unless light was also increased. Our findings suggest that the maintenance of locally closed canopy conditions could reduce, at least temporarily, warming-induced changes in forest floor plant communities.

  14. Coming down from the trees: Is terrestrial activity in Bornean orangutans natural or disturbance driven?

    PubMed Central

    Ancrenaz, Marc; Sollmann, Rahel; Meijaard, Erik; Hearn, Andrew J.; Ross, Joanna; Samejima, Hiromitsu; Loken, Brent; Cheyne, Susan M.; Stark, Danica J.; Gardner, Penny C.; Goossens, Benoit; Mohamed, Azlan; Bohm, Torsten; Matsuda, Ikki; Nakabayasi, Miyabi; Lee, Shan Khee; Bernard, Henry; Brodie, Jedediah; Wich, Serge; Fredriksson, Gabriella; Hanya, Goro; Harrison, Mark E.; Kanamori, Tomoko; Kretzschmar, Petra; Macdonald, David W.; Riger, Peter; Spehar, Stephanie; Ambu, Laurentius N.; Wilting, Andreas

    2014-01-01

    The orangutan is the world's largest arboreal mammal, and images of the red ape moving through the tropical forest canopy symbolise its typical arboreal behaviour. Records of terrestrial behaviour are scarce and often associated with habitat disturbance. We conducted a large-scale species-level analysis of ground-based camera-trapping data to evaluate the extent to which Bornean orangutans Pongo pygmaeus come down from the trees to travel terrestrially, and whether they are indeed forced to the ground primarily by anthropogenic forest disturbances. Although the degree of forest disturbance and canopy gap size influenced terrestriality, orangutans were recorded on the ground as frequently in heavily degraded habitats as in primary forests. Furthermore, all age-sex classes were recorded on the ground (flanged males more often). This suggests that terrestrial locomotion is part of the Bornean orangutan's natural behavioural repertoire to a much greater extent than previously thought, and is only modified by habitat disturbance. The capacity of orangutans to come down from the trees may increase their ability to cope with at least smaller-scale forest fragmentation, and to cross moderately open spaces in mosaic landscapes, although the extent of this versatility remains to be investigated. PMID:24526001

  15. A Pine Is a Pine and a Spruce Is a Spruce--The Effect of Tree Species and Stand Age on Epiphytic Lichen Communities.

    PubMed

    Bäcklund, Sofia; Jönsson, Mari; Strengbom, Joachim; Frisch, Andreas; Thor, Göran

    2016-01-01

    With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden.

  16. A Pine Is a Pine and a Spruce Is a Spruce – The Effect of Tree Species and Stand Age on Epiphytic Lichen Communities

    PubMed Central

    Bäcklund, Sofia; Jönsson, Mari; Strengbom, Joachim; Frisch, Andreas; Thor, Göran

    2016-01-01

    With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden. PMID:26799558

  17. Transpirational water use and its regulation in the mountainous terrain of S. Korea

    NASA Astrophysics Data System (ADS)

    Otieno Dennis, O.; Eunyoung, J.; Sinkyu, K.; Tenhunen, J. D.

    2009-12-01

    Quantifying water use by forests growing on complex mountainous terrain is difficult and understanding of controls on water use by these forests a challenge. Yet mountains are crucial as water towers and better understanding of their hydrology and ecology is critical for sustainable management. Consequently, there is a growing need for new research approaches designed with attention to the particular needs and constraints of large-scale studies and that have the potential to generate reliable and accurate data. The use of a combination of different sapflow-measurement techniques provides a unique opportunity to monitor water use by the understory and canopy forest tree species at micro-scale, allowing for accurate estimation of total forest water use. The obtained data, in conjunction with intensively measured climatic variables, allow for better understanding and interpretation of transpiration results. A research initiative under the International Training Group: Complex Terrain and Ecological Heterogeneity (TERRECO) seeks to address pertinent issues related to forest water use and production in complex terrain. Stem Heat balance (SHB) and Heat Dissipation techniques have been employed to measure sapflow in the understory woody plants and tree branches and on stems of canopy trees respectively. Measurements have been stratified to account for differences in tree sizes and species diversity. To better understand the data, we are intensively monitoring soil moisture at 5, 10 and 30 cm depths, in addition to a range of micrometeorology sensors that have been set up below, within and above the canopy. These measurements have been planned, taking into account altitudinal/elevation gradient, aspect and within site differences in species composition and tree sizes and to generate data for large-scale modeling of the entire catchment. A total of 70 trees from 9 species growing in six different locations at varying elevations and aspects are being monitored. Peak daily water use by trees during mid summer amounts to 45 kg d-1 but varies significantly with sapwood area. Within a species, there is a consistent relationship between tree size (DBH) and sapwood area irrespective of elevation. We have also established a common trend in the relationship between wood density and sap flux density (Js) that transcends the boundaries of species differences. These initial findings are critical for our planned upscaling of water use by the forest catchment. In addition to soil moisture, vapor pressure deficit (VPD) and light play a crucial regulatory role on forest water use. We are at the stage of establishing a common link that brings together micrometeorology and transpiration that will allow for large scale modeling of forest water use.

  18. Seasonality on the rainfall partitioning of a fast-growing tree plantation under Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    molina, antonio; llorens, pilar; biel, carme

    2014-05-01

    Studies on rainfall interception in fast-growing tree plantations are less numerous than those in natural forests. Trees in these plantations are regularly distributed, and the canopy cover is clumped but changes quickly, resulting on high variability in the volume and composition of water that reach the soil. In addition, irrigation supply is normally required in semiarid areas to get optimal wood production; consequently, knowing rainfall interception and its yearly evolution is crucial to manage the irrigation scheme properly. This work studies the rainfall partitioning seasonality in a cherry tree (Prunus avium) plantation orientated to timber production under Mediterranean conditions. The monitoring design started on March 2012 and consists of a set of 58 throughfall tipping buckets randomly distributed (based on a 1x1 m2 grid) in a plot of 128 m2 with 8 trees. Stemflow is measured in all the trees with 2 tipping buckets and 6 accumulative collectors. Canopy cover is regularly measured throughout the study period, in leaf and leafless periods, by mean of sky-orientated photographs taken 50 cm above the center of each tipping bucket. Others tree biometrics are also measured such as diameter and leaf area index. Meteorological conditions are measured at 2 m above the forest cover. This work presents the first analyses describing the rainfall partitioning and its dependency on canopy cover, distance to tree and meteorological conditions. The modified Gash' model for rainfall interception in dispersed vegetation is also preliminary evaluated.

  19. A tree canopy height delineation method based on Morphological Reconstruction—Open Crown Decomposition

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Jing, L.; Li, Y.; Tang, Y.; Li, H.; Lin, Q.

    2016-04-01

    For the purpose of forest management, high resolution LIDAR and optical remote sensing imageries are used for treetop detection, tree crown delineation, and classification. The purpose of this study is to develop a self-adjusted dominant scales calculation method and a new crown horizontal cutting method of tree canopy height model (CHM) to detect and delineate tree crowns from LIDAR, under the hypothesis that a treetop is radiometric or altitudinal maximum and tree crowns consist of multi-scale branches. The major concept of the method is to develop an automatic selecting strategy of feature scale on CHM, and a multi-scale morphological reconstruction-open crown decomposition (MRCD) to get morphological multi-scale features of CHM by: cutting CHM from treetop to the ground; analysing and refining the dominant multiple scales with differential horizontal profiles to get treetops; segmenting LiDAR CHM using watershed a segmentation approach marked with MRCD treetops. This method has solved the problems of false detection of CHM side-surface extracted by the traditional morphological opening canopy segment (MOCS) method. The novel MRCD delineates more accurate and quantitative multi-scale features of CHM, and enables more accurate detection and segmentation of treetops and crown. Besides, the MRCD method can also be extended to high optical remote sensing tree crown extraction. In an experiment on aerial LiDAR CHM of a forest of multi-scale tree crowns, the proposed method yielded high-quality tree crown maps.

  20. Impacts of Alien Tree Invasion on Evapotranspiration in Tropical Montane Cloud Forest in Hawai'i

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Asner, G. P.; Martin, R. E.; Nullet, M. M.; Huang, M.; Delay, J. K.; Mudd, R. G.; Takahashi, M.

    2007-12-01

    Hawaiian tropical montane cloud forests (TMCFs) are ecologically and hydrologically valuable zones. TMCFs in Hawai'i serve as refugia for the remaining intact native terrestrial plant and animal ecosystems, and are major sources of hydrologic input to surface water and groundwater systems. Invasion of alien tree species, with obvious effects on the ecological integrity of TMCFs, also threatens to impact the hydrological services these forests provide. Much speculation has been made about the hydrological effects of replacing native forest tree species with alien trees in Hawai'i, but until now no measurements have been made to test these assertions. We established two study sites, each equipped with eddy covariance and other micrometeorological instrumentation, one within native Metrosideros polymorpha forest and the other at a site heavily invaded by Psidium cattleianum, in the cloud forest zone of Hawai'i Volcanoes National Park. We are conducting measurements of stand-level evapotranspiration, transpiration (using sapflow techniques), energy balance, throughfall, stemflow, and soil moisture at each site. Preliminary analysis of these measurements shows that the fraction of available energy used for evapotranspiration (ET Fraction) at the native site is much higher for wet canopy conditions. The ET Fraction at the native site has an annual cycle corresponding to the annual cycle in leaf area. Deviations from the annual cycle are more closely related to variations in canopy wetness than to variations in soil moisture. Overall, ET as a function of available energy is 27% higher at the invaded site than the native site. The difference in ET between the two sites is especially pronounced during dry canopy periods, during which the ET Fraction is 53% higher at the invaded site than the native site. Sapflow measurements using heat balance collars show that leaf-area-specific transpiration is much greater in invasive P. cattleianum trees than in remnant native M. polymorpha trees at the invaded site. These results indicate that the P. cattleianum invasion is altering the hydrological cycle of the TMCF where it is found, with potential significant negative consequences for island water supply.

  1. Roost networks of northern myotis (Myotis septentrionalis) in a managed landscape

    USGS Publications Warehouse

    Johnson, J.B.; Mark, Ford W.; Edwards, J.W.

    2012-01-01

    Maternity groups of many bat species conform to fission-fusion models and movements among diurnal roost trees and individual bats belonging to these groups use networks of roost trees. Forest disturbances may alter roost networks and characteristics of roost trees. Therefore, at the Fernow Experimental Forest in West Virginia, we examined roost tree networks of northern myotis (Myotis septentrionalis) in forest stands subjected to prescribed fire and in unmanipulated control treatments in 2008 and 2009. Northern myotis formed social groups whose roost areas and roost tree networks overlapped to some extent. Roost tree networks largely resembled scale-free network models, as 61% had a single central node roost tree. In control treatments, central node roost trees were in early stages of decay and surrounded by greater basal area than other trees within the networks. In prescribed fire treatments, central node roost trees were small in diameter, low in the forest canopy, and surrounded by low basal area compared to other trees in networks. Our results indicate that forest disturbances, including prescribed fire, can affect availability and distribution of roosts within roost tree networks. ?? 2011 Elsevier B.V.

  2. Reading the Leaves’ Palm: Leaf Traits and Herbivory along the Microclimatic Gradient of Forest Layers

    PubMed Central

    Entling, Martin H.; Mantilla-Contreras, Jasmin

    2017-01-01

    Microclimate in different positions on a host plant has strong direct effects on herbivores. But little is known about indirect effects due to changes of leaf traits. We hypothesized that herbivory increases from upper canopy to lower canopy and understory due to a combination of direct and indirect pathways. Furthermore, we hypothesized that herbivory in the understory differs between tree species in accordance with their leaf traits. We investigated herbivory by leaf chewing insects along the vertical gradient of mixed deciduous forest stands on the broad-leaved tree species Fagus sylvatica L. (European beech) with study sites located along a 140 km long transect. Additionally, we studied juvenile Acer pseudoplatanus L. (sycamore maple) and Carpinus betulus L. (hornbeam) individuals within the understory as a reference of leaf traits in the same microclimate. Lowest levels of herbivory were observed in upper canopies, where temperatures were highest. Temperature was the best predictor for insect herbivory across forest layers in our study. However, the direction was opposite to the generally known positive relationship. Herbivory also varied between the three tree species with lowest levels for F. sylvatica. Leaf carbon content was highest for F. sylvatica and probably indicates higher amounts of phenolic defense compounds. We conclude that the effect of temperature must have been indirect, whereby the expected higher herbivory was suppressed due to unfavorable leaf traits (lower nitrogen content, higher toughness and carbon content) of upper canopy leaves compared to the understory. PMID:28099483

  3. [Vertical distribution of fuels in Pinus yunnanensis forest and related affecting factors].

    PubMed

    Wang, San; Niu, Shu-Kui; Li, De; Wang, Jing-Hua; Chen, Feng; Sun, Wu

    2013-02-01

    In order to understand the effects of fuel loadings spatial distribution on forest fire kinds and behaviors, the canopy fuels and floor fuels of Pinus yunnanensis forests with different canopy density, diameter at breast height (DBH), tree height, and stand age and at different altitude, slope grade, position, and aspect in Southwest China were taken as test objects, with the fuel loadings and their spatial distribution characteristics at different vertical layers compared and the fire behaviors in different stands analyzed. The relationships between the fuel loadings and the environmental factors were also analyzed by canonical correspondence analysis (CCA). In different stands, there existed significant differences in the vertical distribution of fuels. Pinus yunnanensis-Qak-Syzygium aromaticum, Pinus yunnanensis-oak, and Pinus yunnanensis forests were likely to occur floor fire but not crown fire, while Pinus yunnanensis-Platycladus orientalis, Pinus yunnanensis-Keteleeria fortune, and Keteleeria fortune-Pinus yunnanensis were not only inclined to occur floor fire, but also, the floor fire could be easily transformed into crown fire. The crown fuels were mainly affected by the stand age, altitude, DBH, and tree height, while the floor fuels were mainly by the canopy density, slope grade, altitude, and stand age.

  4. Major losses of nutrients following a severe drought in a boreal forest.

    PubMed

    Houle, Daniel; Lajoie, Geneviève; Duchesne, Louis

    2016-11-28

    Because of global warming, the frequency and severity of droughts are expected to increase, which will have an impact on forest ecosystem health worldwide 1 . Although the impact of drought on tree growth and mortality is being increasingly documented 2-4 , very little is known about the impact on nutrient cycling in forest ecosystems. Here, based on long-term monitoring data, we report nutrient fluxes in a boreal forest before, during and following a severe drought in July 2012. During and shortly after the drought, we observed high throughfall (rain collected below the canopy) concentrations of nutrient base cations (potassium, calcium and magnesium), chlorine, phosphorus and dissolved organic carbon (DOC), differing by one to two orders of magnitude relative to the long-term normal, and resulting in important canopy losses. The high throughfall fluxes had repercussions in the soil solution at a depth of 30 cm, leading to high DOC, chlorine and potassium concentrations. The net potassium losses (atmospheric deposition minus leaching losses) following the drought were especially important, being the equivalent of nearly 20 years of net losses under 'normal' conditions. Our data show that droughts have unexpected impacts on nutrient cycling through impacts on tree canopy and soils and may lead to important episodes of potassium losses from boreal forest ecosystems. The potassium losses associated with drought will add to those originating from tree harvesting and from forest fires and insect outbreaks 5-7 (with the last two being expected to increase in the future as a result of climate change), and may contribute to reduced potassium availability in boreal forests in a warming world.

  5. Trade-off between light availability and soil fertility determine refugial conditions for the relict light-demanding species in lowland forests

    NASA Astrophysics Data System (ADS)

    Kiedrzyński, Marcin; Kurowski, Józef Krzysztof; Kiedrzyńska, Edyta

    2017-11-01

    Identifying potential refugial habitats in the face of rapid environmental change is a challenge faced by scientists and nature conservation managers. Relict populations and refugial habitats are the model objects in those studies. Based on the example of Actaea europaea from Central Poland, we analyse the habitat factors influencing relict populations of continental, light-demanding species in lowland forests and examine which habitats of studied species corresponding most closely to ancient vegetation. Our results indicate that the current refugial habitats of Actaea europaea include not only communities which are very similar to ancient open forest but also forests with a closed canopy. Although the populations are influenced by nitrogen and light availability, the co-occurrence of these two factors in forest communities is limited by dense canopy formation by hornbeam and beech trees on fertile soils and in more humid conditions. Our findings indicate that the future survival of relict, light-demanding communities in lowland forests requires low-intensity disturbances to be performed in tree-stands, according to techniques, which imitate traditional forests management.

  6. Tree seedlings respond to both light and soil nutrients in a Patagonian evergreen-deciduous forest.

    PubMed

    Promis, Alvaro; Allen, Robert B

    2017-01-01

    Seedlings of co-occurring species vary in their response to resource availability and this has implications for the conservation and management of forests. Differential shade-tolerance is thought to influence seedling performance in mixed Nothofagus betuloides-Nothofagus pumilio forests of Patagonia. However, these species also vary in their soil nutrient requirements. To determine the effects of light and soil nutrient resources on small seedlings we examined responses to an experimental reduction in canopy tree root competition through root trenching and restricting soil nutrient depletion through the addition of fertilizer. To understand the effect of light these treatments were undertaken in small canopy gaps and nearby beneath undisturbed canopy with lower light levels. Seedling diameter growth was greater for N. pumilio and height growth was greater for N. betuloides. Overall, diameter and height growth were greater in canopy gaps than beneath undisturbed canopy. Such growths were also greater with fertilizer and root trenching treatments, even beneath undisturbed canopy. Seedling survival was lower under such treatments, potentially reflecting thinning facilitated by resource induced growth. Finally, above-ground biomass did not vary among species although the less shade tolerant N. pumilio had higher below-ground biomass and root to shoot biomass ratio than the more shade tolerant N. betuloides. Above- and below-ground biomass were higher in canopy gaps so that the root to shoot biomass ratio was similar to that beneath undisturbed canopy. Above-ground biomass was also higher with fertilizer and root trenching treatments and that lowered the root to shoot biomass ratio. Restricting soil nutrient depletion allowed seedlings of both species to focus their responses above-ground. Our results support a view that soil nutrient resources, as well as the more commonly studied light resources, are important to seedlings of Nothofagus species occurring on infertile soils.

  7. Management guidelines for enhancing Cerulean Warbler breeding habitat in Appalachian hardwood forests

    USGS Publications Warehouse

    Wood, Petra; Sheehan, James; Keyser, Patrick D.; Buehler, David A.; Larkin, Jeff; Rodewald, Amanda D.; Stoleson, Scott H.; Wigley, T. Bently; Mizel, Jeremy; Boves, Than J.; George, Greg; Bakermans, Marja H.; Beachy, Tiffany A.; Evans, Andrea; McDermott, Molly E.; Newell, Felicity L.; Perkins, Kelly A.; White, Matt

    2013-01-01

    The Cerulean Warbler (Setophaga cerulea) is a migratory songbird that breeds in mature deciduous forests of eastern North America. Cerulean Warblers (hereafter, ceruleans) require heavily forested landscapes for nesting and, within Appalachian forests, primarily occur on ridge tops and steep, upper slopes. They are generally associated with oakdominated (Quercus spp.) stands that contain gaps in the forest canopy, that have large diameter trees (>16 inches diameter breast height (dbh)), and that have well-developed understory-and upper-canopy layers. Ceruleans primarily use the midand upper-canopy where they glean insects from the surface of leaves and conceal their open cup nests. Because they are severely declining across much of their range (Fig. 1), habitat management is a high priority. Management for this species can also improve conditions for a number of other wildlife species that depend on the same structure.

  8. Investigation of Techniques for Inventorying Forested Regions. Volume 1: Reflectance Modeling and Empirical Multispectral Analysis of Forest Canopy Components

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. G.; Malila, W. A.

    1977-01-01

    The author has identified the following significant results. Effects of vegetation density on overall canopy reflectance differed dramatically, depending on spectral band, base material, and vegetation type. For example, reflectance changes caused by variations in vegetation density were hardly apparant for a simulated burned surface in LANDSAT band 5, while large changes occurred in band 7. When increasing densities of tree overstory were placed over understories, intermediate to dense overstories effectively masked the understories and dominated the spectral signatures. Dramatic changes in reflectance occurred for canopies placed on a number of varying topographic positions. Such changes were seen to result in the spectral overlap of some nonforested with densely forested situations.

  9. Community heterogeneity of Early Pennsylvanian peat mires

    USGS Publications Warehouse

    Gastaldo, Robert A.; Stevanovic-Walls, I. M.; Ware, W.N.; Greb, S.F.

    2004-01-01

    Reconstructions of Pennsylvanian coal swamps are some of the most common images of late Paleozoic terrestrial ecosystems. All reconstructions to date are based on data from either time-averaged permineralized peats or single-site collections. An erect, in situ Early Pennsylvanian forest preserved above the Blue Creek Coal, Black Warrior Basin, Alabama, was sampled in 17 localities over an area of >0.5 km2, resulting in the first temporally and spatially constrained Pennsylvanian mire data set. This three-tiered forest was heterogeneous. Lycopsid and calamitean trees composed the canopy, and lepidodendrids, Lepidophloios, and sigillarians grew together at most sites. More juvenile than mature lycopsid biomass occurs in the forest-floor litter, indicating a mixed-age, multicohort canopy. Pteridophytes (tree fern) and pteridosperms (seed fern) dominated as understory shrubs, whereas sphenophyllaleans, pteridophytes, and pteridosperms composed the ground-cover and liana tier. The proportion of canopy, understory, and ground-cover biomass varied across the forest. Low proportions of ground-cover and liana taxa existed where canopy fossils accounted for >60% of the litter. There is a distinct spatial clustering of sites with more or less understory (or ground cover) where canopy contribution was <60%. Where canopy biomass was low (<50%), understory shrubs contributed more biomass, indicative of light interception and/or competition strategies. Sphenopteris pottsvillea, a ubiquitous ground-cover plant, is abundant in all sites except one, where pteridosperm creepers and lianas dominate the litter, interpreted to indicate total suppression of other ground-cover growth. Ecological wet-dry gradients identified in other Pennsylvanian swamps do not exist in the Blue Creek mire, with the interpreted wettest (Lepidophloios), driest (Sigillaria), and intermediate (Lepidodendron sensu latu) taxa coexisting in most assemblages. ?? 2004 Geological Society of America.

  10. Changes in Mauna Kea Dry Forest Structure 2000-2014

    USGS Publications Warehouse

    Banko, Paul C.; Brinck, Kevin W.

    2014-01-01

    Changes in the structure of the subalpine vegetation of Palila Critical Habitat on the southwestern slope of Mauna Kea Volcano, Hawai‘i, were analyzed using 12 metrics of change in māmane (Sophora chrysophylla) and naio (Myoporum sandwicense) trees surveyed on plots in 2000 and 2014. These two dominant species were analyzed separately, and changes in their structure indicated changes in the forest’s health. There was a significant increase in māmane minimum crown height (indicating a higher ungulate “browse line”), canopy area, canopy volume, percentage of trees with ungulate damage, and percentage of dead trees. No significant changes were observed in māmane maximum crown height, proportion of plots with trees, sapling density, proportion of plots with saplings, or the height distribution of trees. The only significant positive change was for māmane tree density. Significantly negative changes were observed for naio minimum crown height, tree height, canopy area, canopy volume, and percentage of dead trees. No significant changes were observed in naio tree density, proportion of plots with trees, proportion of plots with saplings, or percentage of trees with ungulate damage. Significantly positive changes were observed in naio sapling density and the height distribution of trees. There was also a significant increase in the proportion of māmane vs. naio trees in the survey area. The survey methods did not allow us to distinguish among potential factors driving these changes for metrics other than the percentage of trees with ungulate damage. Continued ungulate browsing and prolonged drought are likely the factors contributing most to the observed changes in vegetation, but tree disease or insect infestation of māmane, or naio, and competition from alien grasses and other weeds could also be causing or exacerbating the impacts to the forest. Although māmane tree density has increased since 2000, this study also demonstrates that efforts by managers to remove sheep (Ovis spp.) from Palila Critical Habitat have not overcome the ability of sheep to continue to damage māmane trees and impede restoration of the vegetation.

  11. A multi-sensor lidar, multi-spectral and multi-angular approach for mapping canopy height in boreal forest regions

    USGS Publications Warehouse

    Selkowitz, David J.; Green, Gordon; Peterson, Birgit E.; Wylie, Bruce

    2012-01-01

    Spatially explicit representations of vegetation canopy height over large regions are necessary for a wide variety of inventory, monitoring, and modeling activities. Although airborne lidar data has been successfully used to develop vegetation canopy height maps in many regions, for vast, sparsely populated regions such as the boreal forest biome, airborne lidar is not widely available. An alternative approach to canopy height mapping in areas where airborne lidar data is limited is to use spaceborne lidar measurements in combination with multi-angular and multi-spectral remote sensing data to produce comprehensive canopy height maps for the entire region. This study uses spaceborne lidar data from the Geosciences Laser Altimeter System (GLAS) as training data for regression tree models that incorporate multi-angular and multi-spectral data from the Multi-Angle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging SpectroRadiometer (MODIS) to map vegetation canopy height across a 1,300,000 km2 swath of boreal forest in Interior Alaska. Results are compared to in situ height measurements as well as airborne lidar data. Although many of the GLAS-derived canopy height estimates are inaccurate, applying a series of filters incorporating both data associated with the GLAS shots as well as ancillary data such as land cover can identify the majority of height estimates with significant errors, resulting in a filtered dataset with much higher accuracy. Results from the regression tree models indicate that late winter MISR imagery acquired under snow-covered conditions is effective for mapping canopy heights ranging from 5 to 15 m, which includes the vast majority of forests in the region. It appears that neither MISR nor MODIS imagery acquired during the growing season is effective for canopy height mapping, although including summer multi-spectral MODIS data along with winter MISR imagery does appear to provide a slight increase in the accuracy of resulting height maps. The finding that winter, snow-covered MISR imagery can be used to map canopy height is important because clear sky days are nearly three times as common during the late winter period as during the growing season. The increased odds of acquiring cloud-free imagery during the target acquisition period make regularly updated forest height inventories for Interior Alaska much more feasible. A major advantage of the GLAS–MISR–MODIS canopy height mapping methodology described here is that this approach uses only data that is freely available worldwide, making the approach potentially applicable across the entire circumpolar boreal forest region.

  12. The Detection and Characterization of Urbanization, Industrialization, and Longwall Mining Impacts on Forest Ecosystems Through the Use of GiS and Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Pfeil-McCullough, Erin Kathleen

    Urbanization has far reaching and significant effects on forest ecosystems, directly through urban development and indirectly through supportive processes such as coal mining and agriculture. Urban processes modify the landscape leading to altered hillslope hydrology, increased disturbance, and the introduction of non-native forest pathogens. This dissertation addresses several challenges in our ability to detect these urbanization impacts on forests via geospatial analyses. The role of forests in urban hydrological processes has been extensively studied, but the impacts of urbanized hydrology on forests remain poorly examined. This dissertation documented impacts to hydrology and forests at variety of temporal and spatial scales: 1) A geospatial comparison of the historic and contemporary forests of Allegheny County, Pennsylvania revealed substantial shifts in tree species, but less change in the species soil moisture preference. These results document additional evidence that increased heterogeneity in urban soil moisture alters forest structure. 2) To examine soil moisture changes, impacts of longwall mine subsidence were assessed by using a Landsat based canopy moisture index and hot spot analysis tools at the forest patch scale. Declines in forest canopy moisture were detected over longwall mines as mining progressed through time, and results contradicted assumptions that the hydrological impacts overlying LMS recover within 4-5 years following subsidence of undermined land. 3) Utilizing a landslide susceptibility model (SINMAP), increases in landslide susceptibility were predicted in Pittsburgh, PA based on several scenarios of ash tree loss to the emerald ash borer (EAB), a bark beetle that rapidly kills ash trees. This model provides a tool to predict changes in landslide susceptibility following tree loss, increasing the understanding of urban forest function and its role in slope stability. Detecting how urbanized hydrology impacts forest health, function, and development is fundamental to sustaining the services forests provide. Results from this dissertation will ultimately allow improvements in the management and protection of both trees and water resources in urban systems and beyond.

  13. Physical and chemical properties of soils under some wild Pistachio (Pistacia atlantica Desf) canopies in a semi-arid ecosystem, southwestern Iran.

    NASA Astrophysics Data System (ADS)

    Owliaie, Hamidreza

    2010-05-01

    Pistacia atlantica Desf. is one of the most important wild species in Zagros forests which is of high economical and environmental value. Sustainability of these forests primarily depends on soil quality and water availability. Study the relationships between trees and soil is one of the basic factors in management and planning of forests. Hence, this study was undertaken with the objective of assessing the effect of tree species on soil physical and chemical properties in a semi-arid region (Kohgilouye Province) in the southwestern part of Iran. The experimental design was a factorial 4×2 (4 depths and 2 distances) in a randomized complete block design with six replications. Soil samples (0-20, 20-40, 40-60 and 60-80 cm depth) were taken from beneath the tree crowns and adjacent open areas. Soil samples were analyzed for physical and chemical properties. The results showed that wild pistachio canopy increased mostly organic carbon, hydraulic conductivity, total N, SP, available K+, P (olsen), EC, EDTA extractable Fe2+ and Mn2+, while bulk density, CCE and DTPA extractable Cu2+ were decreased. Pistachio canopy had no significant effect on soil texture, Zn2+ and pH.

  14. Direct uptake of canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina.

    PubMed

    Steppe, Kathy; Vandegehuchte, Maurits W; Van de Wal, Bart A E; Hoste, Pieter; Guyot, Adrien; Lovelock, Catherine E; Lockington, David A

    2018-03-17

    Mangrove forests depend on a dense structure of sufficiently large trees to fulfil their essential functions as providers of food and wood for animals and people, CO2 sinks and protection from storms. Growth of these forests is known to be dependent on the salinity of soil water, but the influence of foliar uptake of rainwater as a freshwater source, additional to soil water, has hardly been investigated. Under field conditions in Australia, stem diameter variation, sap flow and stem water potential of the grey mangrove (Avicennia marina (Forssk.) Vierh.) were simultaneously measured during alternating dry and rainy periods. We found that sap flow in A. marina was reversed, from canopy to roots, during and shortly after rainfall events. Simultaneously, stem diameters rapidly increased with growth rates up to 70 μm h-1, which is about 25-75 times the normal growth rate reported in temperate trees. A mechanistic tree model was applied to provide evidence that A. marina trees take up water through their leaves, and that this water contributes to turgor-driven stem growth. Our results indicate that direct uptake of freshwater by the canopy during rainfall supports mangrove tree growth and serve as a call to consider this water uptake pathway if we aspire to correctly assess influences of changing rainfall patterns on mangrove tree growth.

  15. Analyzing the edge effects in a Brazilian seasonally dry tropical forest.

    PubMed

    Arruda, D M; Eisenlohr, P V

    2016-02-01

    Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  16. Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India.

    PubMed

    Nath, Cheryl D; Dattaraja, H S; Suresh, H S; Joshi, N V; Sukumar, R

    2006-12-01

    Tree diameter growth is sensitive to environmental fluctuations and tropical dry forests experience high seasonal and inter-annual environmental variation. Tree growth rates in a large permanent plot at Mudumalai, southern India, were examined for the influences of rainfall and three intrinsic factors (size, species and growth form) during three 4-year intervals over the period 1988-2000. Most trees had lowest growth during the second interval when rainfall was lowest, and skewness and kurtosis of growth distributions were reduced during this interval. Tree diameter generally explained less than 10% of growth variation and had less influence on growth than species identity or time interval. Intraspecific variation was high, yet species identity accounted for up to 16% of growth variation in the community. There were no consistent differences between canopy and understory tree growth rates; however, a few subgroups of species may potentially represent canopy and understory growth guilds. Environmentally-induced temporal variations in growth generally did not reduce the odds of subsequent survival. Growth rates appear to be strongly influenced by species identity and environmental variability in the Mudumalai dry forest. Understanding and predicting vegetation dynamics in the dry tropics thus also requires information on temporal variability in local climate.

  17. 75 FR 55599 - Little River National Wildlife Refuge, McCurtain County, OK; Revised Comprehensive Conservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... hardwood forests. The Refuge is approximately 96 percent forested with small areas of open water, shrub... buttonbush shrub swamps. The canopy trees are roughly 50-70 years old with scattered patches of much older...

  18. Effects of Rhododendron maximum thickest on tree seed dispersal, seedling morphology, and survivorship

    Treesearch

    Thomas T. Lei; Shawn W. Semones; John F. Walker; Barton D. Clinton; Erik T. Nilsen

    2002-01-01

    In the southern Appalachian forests, the regeneration of canopy trees is severely inhibited by Rhododendron maximum L., an evergreen understory shrub producing dense rhickets. While light availability is a major cause, other factors may also contribute to the absence of tree seedlings under R. maximum. We examined the effects of...

  19. Young Forests and Farming Practices Can Benefit Wildlife.

    Treesearch

    Katie Greenberg; Kendrick Weeks; Gordon Warburton

    2015-01-01

    There’s a tendency to think of the hardwood forests of the South as pristine, undisturbed, and unchanging places that provide habitat for diverse animal and plant species. Indeed, having large blocks of mature forest is important for many wildlife species. The leafy tree canopy, tall trunks, hard mast, dead trees with holes, cool and shady micro-environment, and thick...

  20. Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest.

    PubMed

    Pollastrini, Martina; Nogales, Ana Garcia; Benavides, Raquel; Bonal, Damien; Finer, Leena; Fotelli, Mariangela; Gessler, Arthur; Grossiord, Charlotte; Radoglou, Kalliopi; Strasser, Reto J; Bussotti, Filippo

    2017-02-01

    An assemblage of tree species with different crown properties creates heterogeneous environments at the canopy level. Changes of functional leaf traits are expected, especially those related to light interception and photosynthesis. Chlorophyll a fluorescence (ChlF) properties in dark-adapted leaves, specific leaf area, leaf nitrogen content (N) and carbon isotope composition (δ13C) were measured on Picea abies (L.) H.Karst., Pinus sylvestris L. and Betula pendula Roth. in monospecific and mixed boreal forests in Europe, in order to test whether they were affected by stand species richness and composition. Photosynthetic efficiency, assessed by induced emission of leaf ChlF, was positively influenced in B. pendula by species richness, whereas P. abies showed higher photosynthetic efficiency in monospecific stands. Pinus sylvestris had different responses when it coexisted with P. abies or B. pendula. The presence of B. pendula, but not of P. abies, in the forest had a positive effect on the efficiency of photosynthetic electron transport and N in P. sylvestris needles, and the photosynthetic responses were positively correlated with an increase of leaf δ13C. These effects on P. sylvestris may be related to high light availability at the canopy level due to the less dense canopy of B. pendula. The different light requirements of coexisting species was the most important factor affecting the distribution of foliage in the canopy, driving the physiological responses of the mixed species. Future research directions claim to enhance the informative potential of the methods to analyse the responses of pure and mixed forests to environmental factors, including a broader set of plant species' functional traits and physiological responses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The shifting nature of vegetation controls on peak snowpack with varying slope and aspect

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Broxton, P. D.; Brooks, P. D.

    2012-12-01

    The controls on peak seasonal snowpack are known to shift between forested and open environments as well as with slope and aspect. Peak snowpack is predicted well by interception models under uniformly dense canopy, while topography, wind and radiation are strong predictors in open areas. However, many basins have complex mosaics of forest canopy and small gaps, where snowpack controls involve complex interactions among climate, topography and forest structure. In this presentation we use a new fully distributed tree-scale model to investigate vegetation controls on snowpack for a range of slope and aspect, and we evaluate the energy balance in forest canopy and gap environments. The model is informed by airborne LiDAR and ground-based observations of climate, vegetation and snowpack. It represents interception, snow distribution by wind, latent and sensible heat fluxes, and radiative fluxes above and below the canopy at a grid scale of 1 m square on an hourly time step. First, the model is minimally calibrated using continuous records of snow depth and snow water equivalent (SWE). Next, the model is evaluated using distributed observations at peak accumulation. Finally, the domain is synthetically altered to introduce ranges of slope and aspect. Northerly aspects accumulate greater peak SWE than southerly aspects (e.g. 275 mm vs. 250 mm at a slope of 28 %) but show lower spatial variability (e. g. CV = 0.14 vs. CV = 0.17 at slope of 28 %). On northerly aspects, most of the snowpack remains shaded by vegetation, whereas on southerly aspects the northern portions of gaps and southern forest edges receive direct insolation during late winter. This difference in net radiation makes peak SWE in forest gaps and adjacent forest edges more sensitive to topography than SWE in areas under dense canopy. Tree-scale modeling of snow dynamics over synthetic terrain offers extensive possibilities to test interactions among vegetation and topographic controls.

  2. Quantification and identification of lightning damage in tropical forests.

    PubMed

    Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo

    2017-07-01

    Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the prevalence of communications towers worldwide, the lightning detection system described here could be implemented in diverse forest types. Data from multiple systems would provide an outstanding opportunity for comparative research on the ecological effects of lightning. Such comparative data are increasingly important given expected increases in lightning frequency with climatic change.

  3. Assessing urban forest effects and values: Douglas County, Kansas

    Treesearch

    David J. Nowak; Allison R. Bodine; Robert E. Hoehn; Alexis Ellis; Kim Bomberger; Daniel E. Crane; Theodore A. Endreny; Thomas Taggert; Emily. Stephan

    2014-01-01

    An analysis of trees in Douglas County, Kansas, reveals that this area has about 14,164,000 trees with tree and shrub canopy that covers 25.2 percent of the county. The most common tree species are American elm, northern hackberry, eastern redcedar, Osage-orange, and honeylocust. Trees in Douglas County currently store about 1.7 million tons of carbon (6.4 million tons...

  4. Assessing urban forest effects and values: the greater Kansas City region

    Treesearch

    David J. Nowak; Allison R. Bodine; Robert E. III Hoehn; Daniel E. Crane; Alexis Ellis; Theodore A. Endreny; Yang Yang; Tom Jacobs; Kassie Shelton

    2013-01-01

    An analysis of trees in the greater Kansas City region of Missouri and Kansas reveals that this area has about 249,450,000 trees with tree and shrub canopy that covers 28.3 percent of the region. The most common tree species are American elm, northern hackberry, Osage-orange, honeylocust, and eastern redcedar. Trees in the greater Kansas City region currently store...

  5. A numerical study of atmospheric perturbations induced by heat from a wildland fire: sensitivity to vertical canopy structure and heat source strength

    Treesearch

    Michael T. Kiefer; Shiyuan Zhong; Warren E. Heilman; Joseph J. Charney; Xindi Bian

    2018-01-01

    An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is...

  6. Kinetic energy of throughfall in a highly diverse forest ecosystem in the humid subtropics

    NASA Astrophysics Data System (ADS)

    Geißler, Christian; Kühn, Peter; Scholten, Thomas

    2010-05-01

    After decades of research it is generally accepted that vegetation is a key factor in controlling soil erosion. Therefore, in ecosystems where erosion is a serious problem, afforestation is a common measure against erosion. Most of the studies in the last decades focused on agricultural systems and less attention was paid to natural systems. To understand the mechanisms preventing soil erosion in natural systems the processes have to be studied in detail and gradually. The first step and central research question is on how the canopies of the tree layer alter the properties of rainfall and generate throughfall. Kinetic energy is a widely used parameter to estimate the erosion potential of open field rainfall and throughfall. In the past, numerous studies have shown that vegetation of a certain height enhances the kinetic energy under the canopy (Chapman 1948, Mosley 1982, Vis 1986, Hall & Calder 1993, Nanko et al. 2006, Nanko et al. 2008) in relation to open field rainfall. This is mainly due to a shift in the drop size distribution to less but larger drops possessing a higher amount of kinetic energy. In vital forest ecosystems lower vegetation (shrubs, herbs) as well as a continuous litter layer protects the forest soil from the impact of large drops. The influence of biodiversity, specific forest stands or single species in this process system is still in discussion. In the present study calibrated splash cups (after Ellison 1947, Geißler et al. under review) have been used to detect differences in kinetic energy on the scale of specific species and on the scale of forest stands of contrasting age and biodiversity in a natural forest ecosystem. The splash cups have been calibrated experimentally using a laser disdrometer. The results show that the kinetic energy of throughfall produced by the tree layer increases with the age of the specific forest stand. The average throughfall kinetic energy (J m-2) is about 2.6 times higher in forests than under open field conditions. Most of the energy is supposed to be absorbed by shrubs, herbs and the litter layer. For some species in the shrub and herb layer throughfall drops are crucial for seed dispersal (Nakanishi 2002). A higher kinetic energy of throughfall should be advantageous for seed dispersal and probably support biodiversity. Further, it is shown that the variability of kinetic energy in forests varies among the age of the forest stand which can be related to the forest structure. In our case there is a high variability in young forests (< 30 years) due to selective logging (some older trees were left out) and gaps in the tree layer. Old forests (> 80 years) also have a high variability in kinetic energy. There, external influences like snow and wind break result in a fragmentary tree layer which allows less erosive rainfall to reach the forest floor. Medium aged forests are more homogenous regarding canopy closure or tree heights. Generally, the variability of kinetic energy in forests is increasing with the amount of rainfall. Moreover, it is shown that the kinetic energy of throughfall is species specific. For the investigated tree species the values range between 24.41 J m-2 mm-1 (Daphniphyllum oldhamii) and 33.24 J m-2 mm-1 (Schima superba) while the concurrent rainfall in the open field has an average kinetic energy of 6.75 J m-2 mm-1. Leaf size and canopy architecture are supposed to be two of the controlling variables for specific species. These results give implications for afforestation measures and are important input variables for modeling of erosion processes. Chapman, G., 1948. Size of raindrops and their striking force at the soil surface in a Red Pine plantation. Transactions - American Geophysical Union, 29: 664-670. Ellison, W.D., 1947. Soil Erosion Studies - Part II. Agricultural Engineering, 28: 197-201. Geißler, C., Kühn, P., Böhnke, M., Bruelheide, H., Shi, X., Scholten, T., under review: Measuring splash erosion potential under vegetation using sand-filled splash cups. Hall, R.L., Calder, I.R., 1993. Drop size modification by forest canopies: measurements using a disdrometer. Journal of Geophysical Research (D10), 98: 18465-18470. Mosley, M.P., 1982. The effect of a New Zealand beech forest canopy on the kinetic energy of water drops and on surface erosion. Earth Surface Processes and Landforms, 7: 103-107. Nakanishi, H., 2002. Splash dispersal by raindrops. Ecological research, 17: 663-671. Nanko, K., Hotta, N., Suzuki, M., 2006. Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. Journal of Hydrology, 329: 422-431. Nanko, K., Mizugaki, S., Onda, Y., 2008. Estimation of soil splash detachment rates on the forest floor of an unmanaged Japanese cypress plantation based on field measurements of throughfall drop sizes and velocities. Catena, 72: 348-361. Vis, M., 1986. Interception, drop size distribution and rainfall kinetic energy in four Columbian forest ecosystems. Earth Surface Processes and Landforms, 11: 591-603.

  7. Does the precipitation redistribution of the canopy sense in the moisture pattern of the forest litter?

    NASA Astrophysics Data System (ADS)

    Zagyvai-Kiss, Katalin Anita; Kalicz, Péter; Csáfordi, Péter; Kucsara, Mihály; Gribovszki, Zoltán

    2013-04-01

    Precipitation is trapped and temporarily stored by the surfaces of forest crown (canopy interception) and forest litter (litter interception). The stemflow and throughfall reach the litter, thus theoretically the litter moisture content depends on these parts of precipitation. Nowadays the moisture pattern of the forest floor, both spatial and temporal scale, have growing respect for the forestry. The transition to the continuous cover forestry induce much higher variability compared to the even aged, more-less homogeneous, monocultural stands. The gap cutting is one of the key methods in the Hungarian forestry. There is an active discussion among the forest professionals how to determine the optimal gap size to maintain the optimal conditions for the seedlings. Among the open questions is how to modify surrounding trees the moisture pattern of the forest floor in the gap? In the early steps of a multidisciplinary project we processed some available data, to estimate the spatial dependency between the water content of forest litter and the spatial pattern of the canopy represented by the tree trunk. The maximum water content depends on dry weight of litter, thus we also analysed that parameter. Data were measured in three different forest ecosystems: a middle age beech (Fagus sylvatica), a sessile oak (Quercus petraea) and a spruce (Picea abies) stand. The study site (Hidegvíz Valley Research Cathcment) is located in Sopron Hills at the eastern border of the Alps. Litter samples were collected under each stand (occasionally 10-10 pieces from 40?40 cm area) and locations of the samples and neighbouring trees were mapped. We determined dry weight and the water content of litter in laboratory. The relationship between water content and the distance of tree trunks in case of spruce and oak stands were not significant and in case of the beech stand was weakly significant. Climate change effects can influence significantly forest floor moisture content, therefore this factor has also taken into account. Acknowledgement: The research was financially supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and TÁMOP-4.2.2.A-11/1/KONV-2012-0013 joint EU-national research projects.

  8. Canopy gaps decrease microbial densities and disease risk for a shade-intolerant tree species

    Treesearch

    Kurt O. Reinhart; Alejandro A. Royo; Stacie A. Kageyama; Keith. Clay

    2010-01-01

    Canopy disturbances such as windthrowevents have obvious impacts on forest structure and composition aboveground, but changes in soil microbial communities and the consequences of these changes are less understood.We characterized the densities of a soil-borne pathogenic oomycete (Pythium) and a common saprotrophic zygomycete (Mortierella...

  9. Object-Based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Montesano, P. M.; Nelson, R.

    2011-01-01

    The circumpolar taiga tundra ecotone was delineated using an image-segmentation-based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 to 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation procedure was used to group pixels representing similar tree cover into polygonal features (segmentation objects) that form the map of the transition zone. Each polygon represents an area much larger than the 500 m MODIS pixel and characterizes the patterns of sparse forest patches on a regional scale. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values from5 to 20%, or (2) mean adjusted TCC values greater than 5% but with a standard deviation less than 5% were used to identify the ecotone. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1 degree longitudinal interval in North America and Eurasia, (2) Landsat-derived Canadian proportion of forest cover for Canada, and (3) with canopy cover estimates extracted from airborne profiling lidar data that transected 1238 of the TCC polygons. The adjusted TCC from MODIS VCF shows, on average, less than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. A comparison of the 1238 TCC polygons with profiling lidar measurements yielded an overall accuracy of 67.7%.

  10. Kinetic Energy of Throughfall in Subtropical Forests of SE China – Effects of Tree Canopy Structure, Functional Traits, and Biodiversity

    PubMed Central

    Geißler, Christian; Nadrowski, Karin; Kühn, Peter; Baruffol, Martin; Bruelheide, Helge; Schmid, Bernhard; Scholten, Thomas

    2013-01-01

    Throughfall kinetic energy (TKE) plays an important role in soil erosion in forests. We studied TKE as a function of biodiversity, functional diversity as well as structural stand variables in a secondary subtropical broad-leaved forest in the Gutianshan National Nature Reserve (GNNR) in south-east China, a biodiversity hotspot in the northern hemisphere with more than 250 woody species present. Using a mixed model approach we could identify significant effects of all these variables on TKE: TKE increased with rarefied tree species richness and decreased with increasing proportion of needle-leaved species and increasing leaf area index (LAI). Furthermore, for average rainfall amounts TKE was decreasing with tree canopy height whereas for high rainfall amounts this was not the case. The spatial pattern of throughfall was stable across several rain events. The temporal variation of TKE decreased with rainfall intensity and increased with tree diversity. Our results show that more diverse forest stands over the season have to cope with higher cumulative raindrop energy than less diverse stands. However, the kinetic energy (KE) of one single raindrop is less predictable in diverse stands since the variability in KE is higher. This paper is the first to contribute to the understanding of the ecosystem function of soil erosion prevention in diverse subtropical forests. PMID:23457440

  11. Competition for light between individual trees lowers reference canopy stomatal conductance: Results from a model

    NASA Astrophysics Data System (ADS)

    Loranty, Michael M.; Mackay, D. Scott; Ewers, Brent E.; Traver, Elizabeth; Kruger, Eric L.

    2010-12-01

    We have used an ecosystem model, TREES (Terrestrial Regional Ecosystem Exchange Simulator), to test the hypothesis that competition for light limits reference canopy stomatal conductance (GSref; conductance at 1 kPa vapor pressure deficit) for individual tree crowns. Sap flux (JS) data was collected at an aspen-dominated unmanaged early successional site, and at a sugar maple dominated midsuccessional site managed for timber production. Using a Monte Carlo approach, JS scaled canopy transpiration (EC) estimates were used to parameterize two versions of the model for each tree individually; a control model treated trees as isolated individuals, and a modified version incorporated the shading effects of neighboring individuals on incident radiation. Agreement between simulated and observed EC was better for maple than for aspen using the control model. Accounting for canopy heterogeneity using a three-dimensional canopy representation had minimal effects on estimates of GSref or model performance for individual maples. At the Aspen site the modified model resulted in improved EC estimates, particularly for trees with lower GSref and more shading by neighboring individuals. Our results imply a link between photosynthetic capacity, as mediated by competitive light environment, and GSref. We conclude that accounting for the effects of canopy heterogeneity on incident radiation improves modeled estimates of canopy carbon and water fluxes, especially for shade intolerant species. Furthermore our results imply a link between ecosystem structure and function that may be exploited to elucidate the impacts of forest structural heterogeneity on ecosystem fluxes of carbon and water via LiDAR remote sensing.

  12. New datasets for quantifying snow-vegetation-atmosphere interactions in boreal birch and conifer forests

    NASA Astrophysics Data System (ADS)

    Reid, T. D.; Essery, R.; Rutter, N.; Huntley, B.; Baxter, R.; Holden, R.; King, M.; Hancock, S.; Carle, J.

    2012-12-01

    Boreal forests exert a strong influence on weather and climate by modifying the surface energy and radiation balance. However, global climate and numerical weather prediction models use forest parameter values from simple look-up tables or maps that are derived from limited satellite data, on large grid scales. In reality, Arctic landscapes are inherently heterogeneous, with highly variable land cover types and structures on a variety of spatial scales. There is value in collecting detailed field data for different areas of vegetation cover, to assess the accuracy of large-scale assumptions. To address these issues, a consortium of researchers funded by the UK's Natural Environment Research Council have collected extensive data on radiation, meteorology, snow cover and canopy structure at two contrasting Arctic forest sites. The chosen study sites were an area of boreal birch forest near Abisko, Sweden in March/April 2011 and mixed conifer forest at Sodankylä, Finland in March/April 2012. At both sites, arrays comprising ten shortwave pyranometers and four longwave pyrgeometers were deployed for periods of up to 50 days, under forest plots of varying canopy structures and densities. In addition, downwelling longwave irradiance and global and diffuse shortwave irradiances were recorded at nearby open sites representing the top-of-canopy conditions. Meteorological data were recorded at all sub-canopy and open sites using automatic weather stations. Over the same periods, tree skin temperatures were measured on selected trees using contact thermocouples, infrared thermocouples and thermal imagery. Canopy structure was accurately quantified through manual surveys, extensive hemispherical photography and terrestrial laser scans of every study plot. Sub-canopy snow depth and snow water equivalent were measured on fine-scale grids at each study plot. Regular site maintenance ensured a high quality dataset covering the important Arctic spring period. The data have several applications, for example in forest ecology, canopy radiative transfer models, snow hydrological modelling, and land surface schemes, for a variety of canopy types from sparse, leafless birch to dense pine and spruce. The work also allows the comparison of modern, highly detailed methods such as laser scanning and thermal imagery with older, well-established data collection methods. By combining these data with airborne and satellite remote sensing data, snow-vegetation-atmosphere interactions could be estimated over a wide area of the heterogeneous boreal landscape. This could improve estimates of crucial parameters such as land surface albedo on the grid scales required for global or regional weather and climate models.

  13. Investigating the relationship between tree heights derived from SIBBORK forest model and remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Feliciano, E. A.; Armstrong, A. H.; Sun, G.; Montesano, P.; Ranson, K.

    2017-12-01

    Tree heights are one of the most commonly used remote sensing parameters to measure biomass of a forest. In this project, we investigate the relationship between remotely sensed tree heights (e.g. G-LiHT lidar and commercially available high resolution satellite imagery, HRSI) and the SIBBORK modeled tree heights. G-LiHT is a portable, airborne imaging system that simultaneously maps the composition, structure, and function of terrestrial ecosystems using lidar, imaging spectroscopy and thermal mapping. Ground elevation and canopy height models were generated using the lidar data acquired in 2012. A digital surface model was also generated using the HRSI technique from the commercially available WorldView data in 2016. The HRSI derived height and biomass products are available at the plot (10x10m) level. For this study, we parameterized the SIBBORK individual-based gap model for Howland forest, Maine. The parameterization was calibrated using field data for the study site and results show that the simulated forest reproduces the structural complexity of Howland old growth forest, based on comparisons of key variables including, aboveground biomass, forest height and basal area. Furthermore carbon cycle and ecosystem observational capabilities will be enhanced over the next 6 years via the launch of two LiDAR (NASA's GEDI and ICESAT 2) and two SAR (NASA's ISRO NiSAR and ESA's Biomass) systems. Our aim is to present the comparison of canopy height models obtained with SIBBORK forest model and remote sensing techniques, highlighting the synergy between individual-based forest modeling and high-resolution remote sensing.

  14. Soil respiration patterns in root gaps 27 years after small scale experimental disturbance in Pinus contorta forests

    NASA Astrophysics Data System (ADS)

    Baker, S.; Berryman, E.; Hawbaker, T. J.; Ewers, B. E.

    2015-12-01

    While much attention has been focused on large scale forest disturbances such as fire, harvesting, drought and insect attacks, small scale forest disturbances that create gaps in forest canopies and below ground root and mycorrhizal networks may accumulate to impact regional scale carbon budgets. In a lodgepole pine (Pinus contorta) forest near Fox Park, WY, clusters of 15 and 30 trees were removed in 1988 to assess the effect of tree gap disturbance on fine root density and nitrogen transformation. Twenty seven years later the gaps remain with limited regeneration present only in the center of the 30 tree plots, beyond the influence of roots from adjacent intact trees. Soil respiration was measured in the summer of 2015 to assess the influence of these disturbances on carbon cycling in Pinus contorta forests. Positions at the centers of experimental disturbances were found to have the lowest respiration rates (mean 2.45 μmol C/m2/s, standard error 0.17 C/m2/s), control plots in the undisturbed forest were highest (mean 4.15 μmol C/m2/s, standard error 0.63 C/m2/s), and positions near the margin of the disturbance were intermediate (mean 3.7 μmol C/m2/s, standard error 0.34 C/m2/s). Fine root densities, soil nitrogen, and microclimate changes were also measured and played an important role in respiration rates of disturbed plots. This demonstrates that a long-term effect on carbon cycling occurs when gaps are created in the canopy and root network of lodgepole forests.

  15. Disturbance severity and net primary production resilience of a Great Lakes forest ecosystem

    NASA Astrophysics Data System (ADS)

    Goodrich-Stuart, E. J.; Fahey, R.; De La Cruz, A.; Gough, C. M.

    2013-12-01

    As many Eastern deciduous forests of North America transition from early to mid-succession, the future of regional terrestrial carbon (C) storage is uncertain. The gradual, patchy senescence of early-successional trees accompanying this transition is comparable in severity to moderate disturbances such as silvicultural thinnings or insect outbreaks. While stand-replacing disturbance causes forests to temporarily become C sources, more moderate disturbances may inflict little to no decline in C sequestration. Identifying the disturbance severity at which net primary production (NPP) declines and the underlying mechanisms that drive forest C storage resistance to disturbance is increasingly important as moderate disturbances increase in frequency and extent across the region. The Forest Accelerated Succession ExperimenT (FASET) at the University of Michigan Biological Station subjected 39 ha of forest to moderate disturbance in 2008 by advancing age-related tree mortality through the stem girdling of early successional aspen and birch. Stand-scale disturbance severity, expressed as relative basal area of girdled aspen and birch, was 39% but plot-scale severity varied substantially within the experimental area (9 to 66% in 0.1 ha plots) because of the heterogeneous distribution of aspen and birch. We used this disturbance severity gradient to examine: 1) the relationship between NPP resilience and disturbance severity; 2) the disturbance severity at which NPP resilience prompts a shift in dominance from canopy to subcanopy vegetation; 3) how NPP resilience relates to disturbance-driven changes in resource-use efficiency, and 4) how disturbance severity shapes emerging forest communities We found that NPP is highly resilient to low to moderate levels of disturbance, but that production declines once a higher disturbance threshold is exceeded. Several complementary mechanisms, including canopy structural reorganization and the reallocation of growth-limiting light and nitrogen resources, appear to maintain NPP up to the disturbance severity threshold. Our results suggest that both canopy and subcanopy trees reacted rapidly to compensate for canopy tree mortality, but at higher disturbance severities, subcanopy trees provided an important buffer in support of NPP resilience. Our data also suggests a larger increase in the growth rate of red maples (Acer rubrum) following disturbance than subcanopy red oak (Quercus rubra) and white pine (Pinus strobus), as well as a greater contribution to overall plot-level production in more severely disturbed plots. These findings demonstrate that some forests can tolerate substantial disturbance without a reduction in NPP, suggesting that the relationship between disturbance severity and declining production may be non-linear. This result has important implications for the region's C cycle, suggesting that moderate disturbances may not cause a decline in forest C sequestration but may actually stimulate new growth to maintain NPP.

  16. Historical harvests reduce neighboring old-growth basal area across a forest landscape.

    PubMed

    Bell, David M; Spies, Thomas A; Pabst, Robert

    2017-07-01

    While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of neighboring old-growth forests to assess the magnitude and scale of harvest edge influence in a forest landscape of western Oregon, USA. We used lidar data and forest plot measurements to construct 30-m resolution live tree basal area maps in lower and middle elevation mature and old-growth forests. We assessed how edge influence on total, upper canopy, and lower canopy basal area varied across this forest landscape as a function of harvest characteristics (i.e., harvest size and age) and topographic conditions in the unharvested area. Upper canopy, lower canopy, and total basal area increased with distance from harvest edge and elevation. Forests within 75 m of harvest edges (20% of unharvested forests) had 4% to 6% less live tree basal area compared with forest interiors. An interaction between distance from harvest edge and elevation indicated that elevation altered edge influence in this landscape. We observed a positive edge influence at low elevations (<800 m) and a negative edge influence at moderate to high elevations (>800 m). Surprisingly, we found no or weak effects of harvest age (13-60 yr) and harvest area (0.2-110 ha) on surrounding unharvested forest basal area, implying that edge influence was relatively insensitive to the scale of disturbance and multi-decadal recovery processes. Our study indicates that the edge influence of past clearcutting on the structure of neighboring uncut old-growth forests is widespread and persistent. These indirect and diffuse legacies of historical timber harvests complicate forest management decision-making in old-growth forest landscapes by broadening the traditional view of stand boundaries. Furthermore, the consequences of forest harvesting may reach across ownership boundaries, highlighting complex governance issues surrounding landscape management of old-growth forests. © 2017 by the Ecological Society of America.

  17. Canopy tree species determine herb layer biomass and species composition on a reclaimed mine spoil heap.

    PubMed

    Rawlik, Mateusz; Kasprowicz, Marek; Jagodziński, Andrzej M; Kaźmierowski, Cezary; Łukowiak, Remigiusz; Grzebisz, Witold

    2018-09-01

    According facilitative models of succession, trees are great forest ecosystem engineers. The strength of tree stand influences on habitat were tested in rather homogenous conditions where heterogeneity of site condition was not an important influence. We hypothesized that canopy composition affects total aboveground vascular herb layer biomass (THB) and species composition of herb layer plant biomass (SCHB) more significantly than primary soil fertility or slope exposure. The study was conducted in 227 randomly selected research plots in seven types of forest stands: pure with Alnus glutinosa, Betula pendula, Pinus sylvestris, Quercus petraea and Robinia pseudoacacia, and mixed with dominance of Acer pseudoplatanus or Betula pendula located on hilltop and northern, eastern, western, and southern slopes on a reclaimed, afforested post-mining spoil heap of the Bełchatów Brown Coal Mine (Poland). Generalized linear models (GLZ) showed that tree stand species were the best predictors of THB. Non-parametric variance tests showed significantly higher (nearly four times) THB under canopies of A. glutinosa, R. pseudoacacia, B. pendula and Q. petraea, compared to the lowest THB found under canopies of P. sylvestris and mixed with A. pseudoplatanus. Redundancy Analysis (RDA) showed that SCHB was significantly differentiated along gradients of light-nutrient herb layer species requirements. RDA and non-parametric variance tests showed that SCHB under canopies of A. glutinosa, R. pseudoacacia and mixed with A. pseudoplatanus had large shares of nitrophilous ruderal species (32%, 31% and 11%, respectively), whereas SCHB under B. pendula, Q. petraea, mixed with B. pendula and P. sylvestris were dominated by light-demanding meadow (49%, 51%, 51% and 36%, respectively) and Poaceae species. The results indicated the dominant role of tree stand composition in habitat-forming processes, and although primary site properties had minor importance, they were also modified by tree stand species. Copyright © 2018. Published by Elsevier B.V.

  18. Estimating Leaf Water Potential of Giant Sequoia Trees from Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Francis, E. J.; Asner, G. P.

    2015-12-01

    Recent drought-induced forest dieback events have motivated research on the mechanisms of tree survival and mortality during drought. Leaf water potential, a measure of the force exerted by the evaporation of water from the leaf surface, is an indicator of plant water stress and can help predict tree mortality in response to drought. Scientists have traditionally measured water potentials on a tree-by-tree basis, but have not been able to produce maps of tree water potential at the scale of a whole forest, leaving forest managers unaware of forest drought stress patterns and their ecosystem-level consequences. Imaging spectroscopy, a technique for remote measurement of chemical properties, has been used to successfully estimate leaf water potentials in wheat and maize crops and pinyon-pine and juniper trees, but these estimates have never been scaled to the canopy level. We used hyperspectral reflectance data collected by the Carnegie Airborne Observatory (CAO) to map leaf water potentials of giant sequoia trees (Sequoiadendron giganteum) in an 800-hectare grove in Sequoia National Park. During the current severe drought in California, we measured predawn and midday leaf water potentials of 48 giant sequoia trees, using the pressure bomb method on treetop foliage samples collected with tree-climbing techniques. The CAO collected hyperspectral reflectance data at 1-meter resolution from the same grove within 1-2 weeks of the tree-level measurements. A partial least squares regression was used to correlate reflectance data extracted from the 48 focal trees with their water potentials, producing a model that predicts water potential of giant sequoia trees. Results show that giant sequoia trees can be mapped in the imagery with a classification accuracy of 0.94, and we predicted the water potential of the mapped trees to assess 1) similarities and differences between a leaf water potential map and a canopy water content map produced from airborne hyperspectral data, 2) spatial variability in leaf water potentials and, 3) relationships between water potential and tree leaf area, topography, and surrounding tree density. These results will help forest managers plan prescribed burns to maintain the health of giant sequoia trees during drought.

  19. Radiation and water use efficiencies of two coniferous forest canopies

    NASA Astrophysics Data System (ADS)

    Lamaud, E.; Brunet, Y.; Berbigier, P.

    1996-12-01

    Two experiments were performed in a confierous forest (maritime pine) in the southwest of France, one in 1994 and the other in 1995. Two sites were chosen, differing by age, height and structure of the trees, as well as the nature of the understorey. In both cases measurements of turbulent fluxes were made at two levels above and within the forest canopy, using sonic anemometers and open-path infrared CO 2-H 2O analysers. The flux differences derived from the two measurement levels allowed the Radiation and Water Use Efficiencies (RUE and WUE, respectively) to be evaluated for both canopy crowns. The results are based on the analysis of about ten days from each experiment. For both campaigns RUE is significantly larger during cloudy conditions when the fraction of diffuse radiation ( {Q id}/{Q i}) increases. An empirical linear relation between RUE and {Q id}/{Q i} is established for each site, with a smaller intercept and a larger slope for the older forest. In clear conditions ( {Q id}/{Q i} < 0.4 ), RUE is about 30 % lower for this forest. Tree photosynthesis, estimated as the net CO 2 flux of the foliated layer F c, appears poorly correlated (r 2 < 0.4) with transpiration (net water vapour flux E). This is shown to result from strong variations in the atmospheric saturation deficit D during both campaigns. At both sites WUE turns out to be a hyperbolic function of D ( {Fc}/{E} = {-k}/{D}). The coefficient k is 50 % larger for the younger forest. This is in agreement with the values obtained for RUE, and indicates that photosynthetic rates decrease with the age of the trees.

  20. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-derived Dissolved Organic Matter (Tree-DOM) in an Epiphyte-laden Oak-cedar Forest.

    NASA Astrophysics Data System (ADS)

    Whitetree, A.; Van Stan, J. T., II; Wagner, S.; Guillemette, F.; Lewis, J.; Silva, L.; Stubbins, A.

    2017-12-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched compared to rainfall and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with FDOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g-C m-2 yr-1) compared well to other yields along the rainfall-to- discharge flow pathway, exceeding DOM yields from some river watersheds.

  1. Disentangling factors that control the vulnerability of forests to catastrophic wind damage

    NASA Astrophysics Data System (ADS)

    Dracup, E.; Taylor, A.; MacLean, D.; Boulanger, Y.

    2017-12-01

    Wind is an important driver of forest dynamics along North America's north-eastern coastal forests, but also damages many commercially managed forests which society relies as an important source of wood fiber. Although the influence of wind on north-eastern forests is well recognized, knowledge of factors predisposing trees to wind damage is less known, especially in the context of large, powerful wind storm events. This is of particular concern as climate change is expected to alter the frequency and severity of strong wind storms affecting this region. On 29 September 2003, Hurricane Juan made landfall over Nova Scotia, Canada as a Category 2 hurricane with sustained winds of 158 km/h, and gusts of up to 185 km/h. Hurricane Juan variously damaged a swath of over 600,000 ha of forest. The damaged forest area was surveyed using aerial photography and LandSAT imagery and categorized according to level of wind damage sustained (none, low, moderate, severe) at a resolution of 15 x 15 m square cells. We used Random Forest to analyze and compare level of wind damage in each cell with a myriad of abiotic (exposure, depth to water table, soil composition, etc.) and biotic (tree species composition, canopy closure, canopy height, etc.) factors known or expected to predispose trees to windthrow. From our analysis, we identified topographic exposure, precipitation, and maximum gust speed as the top predictors of windthrow during Hurricane Juan. To our surprise, forest stand factors, such as tree species composition and height, had minimal effects on level of windthrow. These results can be used to construct predictive risk maps which can help society to assess the vulnerability of forests to future wind storm events.

  2. Detection of upward and downward Solar-induced chlorophyll fluorescence emissions at the forest floor in a cool-temperate deciduous broadleaf forest in Japan

    NASA Astrophysics Data System (ADS)

    Kato, T.; Tsujimoto, K.; Nasahara, K. N.; Akitsu, T.; Murayama, S.; Noda, H.; Muraoka, H.

    2016-12-01

    Strong representation of Sun-Induced Fluorescence (SIF) for the ecosystem-level photosynthesis activity has been confirmed by satellite studies [Frankenberg et al., 2011; Joiner et al., 2013] and by field studies [Porcar-Castell, 2011, Yang et al., 2015]. However, the lack of taking care of SIF emission below the tree canopy top may underestimate the contribution of sub-canopy and the understory species to total ecosystem CO2dynamics. To examine the potential contribution of SIF emission from lower part of tree ecosystem to total ecosystem SIF emission, the downward SIF from tree canopy and upward SIF from understory were calculated from the spectrum data in a cool temperate forest in in central Japan (36°08'N, 137°25'E, 1420 masl) as well as the upward SIF from canopy top, and the fractional ratios among them are compared on half-hourly and daily bases from 2006 to 2007. The top canopy is dominated by Oak and Birches, and the sub-canopy layer and shrub layers are dominated by Acer, Hydrangea and Viburnum species. The understory is dominated by an evergreen dwarf bamboo Sasa senanensis, and covered partially by the seedlings of oak and maple, and herbaceous species [Muraoka and Koizumi, 2005]. The SIF was estimated from the spectrums of downward and upward irradiances measured at two heights of 18m and 2m above ground by HemiSpherical Spectro-Radiometer, consisting of the spectroradiometer (MS700, Eko inc., Tokyo, Japan) with the FWHM of 10 nm and wavelength interval of 3.3 nm. The SIF around 760nm (O2-A band) was calculated according to the Fraunhofer Line Depth principle with additional arrangements. Our preliminary results show that the SIF emission intensity was kept in the order as canopy upward > canopy downward > understory upward for most of growing season, except for short spring time between snow melt and canopy greening because of the evergreen Sasa bamboo grass at the forest floor. On the other hand, the relative intensities among three SIF emissions seem to change diurnally and seasonally. The temporal changes in these relative SIF emissions would be showed to understand the contributions of ecosystem vertical layers to total SIF emissions, only top layer SIF emission of which is considered by satellites and field observations in previous studies, and to ecosystem photosynthesis (GPP) in this presentation.

  3. Striving for balance: maintaining marten habitat while reducing fuels

    Treesearch

    John Kirkland; Katie Moriarty

    2016-01-01

    Martens are small forest carnivores associated with dense, mature forests. These important indicators of a forest’s biodiversity are vulnerable to management activities that open the forest canopy or remove downed debris. Many fuel reduction treatment do just that: dense stands of trees are thinned to minimize fire hazard and future fire severity. Until recently, the...

  4. Forest water contamination

    Treesearch

    Roger M. Rowell

    2006-01-01

    Forests play a key role in cleaning water. Precipitation is “'filtered” through the tree canopy and filtered again throuph the organic matter on the forest floor. The water then seeps into the subsurface to replenish the ground water. Approximately 80% of the freshwater in the United States originates in the 650 million acres (265 million hectares) of forest that...

  5. Flooding and profuse flowering result in high litterfall in novel Spathodea campanulata forests in northern Puerto Rico

    Treesearch

    Oscar J. Abelleira Martinez

    2011-01-01

    The African tulip tree, Spathodea campanulata, dominates many post-agricultural secondary forests in the moist tropics. Some consider these novel forests have no ecological value, yet they appear to restore ecosystem processes on degraded sites. This study describes the litterfall mass and seasonality, canopy phenology, and microclimate of S. campanulata forests on...

  6. Light intensity related to stand density in mature stands of the western white pine type

    Treesearch

    C. A. Wellner

    1948-01-01

    Where tolerance of forest trees or subordinate vegetation is a factor in management, the forester needs a simple field method of Estimating or forecasting light intensities in forest stands. The following article describes a method developed for estimating light intensity beneath the canopy in western white pine forests which may have application in other types.

  7. Quantifying the missing link between forest albedo and productivity in the boreal zone

    NASA Astrophysics Data System (ADS)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-11-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest density (i.e., basal area) to increase albedo may be limited compared to the effect of favoring broadleaved species.

  8. The Use of Sun Elevation Angle for Stereogrammetric Boreal Forest Height in Open Canopies

    NASA Technical Reports Server (NTRS)

    Montesano, Paul M.; Neigh, Christopher; Sun, Guoqing; Duncanson, Laura Innice; Van Den Hoek, Jamon; Ranson, Kenneth Jon

    2017-01-01

    Stereogrammetry applied to globally available high resolution spaceborne imagery (HRSI; less than 5 m spatial resolution) yields fine-scaled digital surface models (DSMs) of elevation. These DSMs may represent elevations that range from the ground to the vegetation canopy surface, are produced from stereoscopic image pairs (stereo pairs) that have a variety of acquisition characteristics, and have been coupled with lidar data of forest structure and ground surface elevation to examine forest height. This work explores surface elevations from HRSI DSMs derived from two types of acquisitions in open canopy forests. We (1) apply an automated mass-production stereogrammetry workflow to along-track HRSI stereo pairs, (2) identify multiple spatially coincident DSMs whose stereo pairs were acquired under different solar geometry, (3) vertically co-register these DSMs using coincident spaceborne lidar footprints (from ICESat-GLAS) as reference, and(4) examine differences in surface elevations between the reference lidar and the co-registered HRSI DSMs associated with two general types of acquisitions (DSM types) from different sun elevation angles. We find that these DSM types, distinguished by sun elevation angle at the time of stereo pair acquisition, are associated with different surface elevations estimated from automated stereogrammetry in open canopy forests. For DSM values with corresponding reference ground surface elevation from spaceborne lidar footprints in open canopy northern Siberian Larix forests with slopes less than10, our results show that HRSI DSM acquired with sun elevation angles greater than 35deg and less than 25deg (during snow-free conditions) produced characteristic and consistently distinct distributions of elevation differences from reference lidar. The former include DSMs of near-ground surfaces with root mean square errors less than 0.68 m relative to lidar. The latter, particularly those with angles less than 10deg, show distributions with larger differences from lidar that are associated with open canopy forests whose vegetation surface elevations are captured. Terrain aspect did not have a strong effect on the distribution of vegetation surfaces. Using the two DSM types together, the distribution of DSM-differenced heights in forests (6.0 m, sigma = 1.4 m) was consistent with the distribution of plot-level mean tree heights (6.5m, sigma = 1.2 m). We conclude that the variation in sun elevation angle at time of stereo pair acquisition can create illumination conditions conducive for capturing elevations of surfaces either near the ground or associated with vegetation canopy. Knowledge of HRSI acquisition solar geometry and snow cover can be used to understand and combine stereogrammetric surface elevation estimates to co-register rand difference overlapping DSMs, providing a means to map forest height at fine scales, resolving the vertical structure of groups of trees from spaceborne platforms in open canopy forests.

  9. 76 FR 63719 - Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition To List a Distinct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... species at that time. On October 28, 2008, we published a 90-day finding for the dusky tree vole in the... that live in conifer forests and spend almost all of their time in the tree canopy. Tree voles rarely... tree vole as a subspecies, the more recent research on tree vole genetics and analyses attempting to...

  10. Influence of Crown Biomass Estimators and Distribution on Canopy Fuel Characteristics in Ponderosa Pine Stands of the Black Hills

    Treesearch

    Tara Keyser; Frederick Smith

    2009-01-01

    Two determinants of crown fire hazard are canopy bulk density (CBD) and canopy base height (CBH). The Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) is a model that predicts CBD and CBH. Currently, FFE-FVS accounts for neither geographic variation in tree allometries nor the nonuniform distribution of crown mass when one is estimating CBH and CBD...

  11. Evaluation of four methods for estimating leaf area of isolated trees

    Treesearch

    P.J. Peper; E.G. McPherson

    2003-01-01

    The accurate modeling of the physiological and functional processes of urban forests requires information on the leaf area of urban tree species. Several non-destructive, indirect leaf area sampling methods have shown good performance for homogenous canopies. These methods have not been evaluated for use in urban settings where trees are typically isolated and...

  12. Homeowner interactions with residential trees in urban areas

    Treesearch

    Jana Dilley; Kathleen L. Wolf

    2013-01-01

    Urban forests are a critical element in sustainable urban areas because of the many environmental, economic, and social benefits that city trees provide. In order to increase canopy cover in urban areas, residential homeowners, who collectively own the majority of the land in most cities, need to engage in planting and retaining trees on their properties. This...

  13. Estimating Chemical Exchange between Atmospheric Deposition and Forest Canopy in Guizhou, China.

    PubMed

    Li, Wei; Gao, Fang; Liao, Xueqin

    2013-01-01

    To evaluate the effects of atmospheric deposition on forest ecosystems, wet-only precipitation and throughfall samples were collected in two forest types (Masson pine [ Lamb.] forests and mixed conifer and broadleaf forests) in the Longli forest in the Guizhou province of southwestern China for a period of 21 successive months from April 2007 to December 2008. The pH and chemical components of precipitation and throughfall were analyzed. In addition, the canopy budget model was applied to distinguish between in-canopy and atmospheric sources of chemical compounds. Canopy leaching and total potentially acidifying deposition fluxes were calculated. The results showed that the average pH and the concentration of ions in throughfall were higher than those in precipitation, with the exception of the NH concentration. Dry deposition of S and N accumulated more in Masson pine forests than in mixed conifer and broadleaf forests. Canopy leaching was the most significant source of base cations in forest throughfall, which was higher in the mixed forests than in the coniferous forests. Anions in throughfall deposition in Masson pine forests exceeded those in the mixed forests. Higher total potentially acidifying deposition fluxes reflected the more effective amounts of acid delivered to Masson pine forests compared with mixed conifer and broadleaf forests. In addition, acid deposition induced the leaching and loss of nutrient ions such as Mg, K, and Ca. Although the trees of the studied areas have not shown any symptoms of cation loss, a potentially harmful influence was engendered by atmospheric deposition in the two forest types in the Longli area. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States

    NASA Astrophysics Data System (ADS)

    Storck, Pascal; Lettenmaier, Dennis P.; Bolton, Susan M.

    2002-11-01

    The results of a 3 year field study to observe the processes controlling snow interception by forest canopies and under canopy snow accumulation and ablation in mountain maritime climates are reported. The field study was further intended to provide data to develop and test models of forest canopy effects on beneath-canopy snowpack accumulation and melt and the plot and stand scales. Weighing lysimeters, cut-tree experiments, and manual snow surveys were deployed at a site in the Umpqua National Forest, Oregon (elevation 1200 m). A unique design for a weighing lysimeter was employed that allowed continuous measurements of snowpack evolution beneath a forest canopy to be taken at a scale unaffected by variability in canopy throughfall. Continuous observations of snowpack evolution in large clearings were made coincidentally with the canopy measurements. Large differences in snow accumulation and ablation were observed at sites beneath the forest canopy and in large clearings. These differences were not well described by simple relationships between the sites. Over the study period, approximately 60% of snowfall was intercepted by the canopy (up to a maximum of about 40 mm water equivalent). Instantaneous sublimation rates exceeded 0.5 mm per hour for short periods. However, apparent average sublimation from the intercepted snow was less than 1 mm per day and totaled approximately 100 mm per winter season. Approximately 72 and 28% of the remaining intercepted snow was removed as meltwater drip and large snow masses, respectively. Observed differences in snow interception rate and maximum snow interception capacity between Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and lodgepole pine (Pinus contorta) were minimal.

  15. Identification of Lightning Gaps in Mangrove Forests Using Airborne LIDAR Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    2006-12-01

    Mangrove forests are highly dynamic ecosystems and change frequently due to tropical storms, frost, and lightning. These factors can cause gaps in mangrove forests by damaging trees. Compared to gaps generated by storms and frost, gaps caused by lightning strikes are small, ranging from 50 to 300 m2. However, these small gaps may play a critical role in mangrove forest dynamics because of the frequent occurrence of lightning in tropical areas. It has been hypothesized that the turnover of mangrove forests is mainly due to the death and regeneration of trees in lightning gaps. However, there is a lack of data for gap occurrence in mangrove forests to verify this hypothesis. It is impractical to measure gaps through a field survey on a large scale because of the logistic difficulties of muddy mangrove forests. Airborne light detection and ranging (LIDAR) technology is an effective alternative because it provides direct measurements of ground and canopy elevations remotely. This study developed a method to identify lightning gaps in mangrove forests in terms of LIDAR measurements. First, LIDAR points are classified into vegetation and ground measurements using the progressive morphological filter. Second, a digital canopy model (DCM) is generated by subtracting a digital terrain model (DTM) from a digital surface model (DSM). The DSM is generated by interpolating raw LIDAR measurements, and DTM is produced by interpolating ground measurements. Third, a black top-hat mathematical morphological transformation is used to identify canopy gaps. Comparison of identified gap polygons with raw LIDAR measurements and field surveys shows that the proposed method identifies lightning gaps in mangrove forests successfully. The area of lightning gaps in mangrove forests in Everglades National Park is about 3% of total forest area, which verifies that lightning gaps play a critical role in mangrove forest turnover.

  16. Environment vs. Plant Ontogeny: Arthropod Herbivory Patterns on European Beech Leaves along the Vertical Gradient of Temperate Forests in Central Germany

    PubMed Central

    Mantilla-Contreras, Jasmin

    2018-01-01

    Environmental and leaf trait effects on herbivory are supposed to vary among different feeding guilds. Herbivores also show variability in their preferences for plant ontogenetic stages. Along the vertical forest gradient, environmental conditions change, and trees represent juvenile and adult individuals in the understorey and canopy, respectively. This study was conducted in ten forests sites in Central Germany for the enrichment of canopy research in temperate forests. Arthropod herbivory of different feeding traces was surveyed on leaves of Fagus sylvatica Linnaeus (European beech; Fagaceae) in three strata. Effects of microclimate, leaf traits, and plant ontogenetic stage were analyzed as determining parameters for herbivory. The highest herbivory was caused by exophagous feeding traces. Herbivore attack levels varied along the vertical forest gradient for most feeding traces with distinct patterns. If differences of herbivory levels were present, they only occurred between juvenile and adult F. sylvatica individuals, but not between the lower and upper canopy. In contrast, differences of microclimate and important leaf traits were present between the lower and upper canopy. In conclusion, the plant ontogenetic stage had a stronger effect on herbivory than microclimate or leaf traits along the vertical forest gradient. PMID:29373542

  17. Water availability predicts forest canopy height at the global scale.

    PubMed

    Klein, Tamir; Randin, Christophe; Körner, Christian

    2015-12-01

    The tendency of trees to grow taller with increasing water availability is common knowledge. Yet a robust, universal relationship between the spatial distribution of water availability and forest canopy height (H) is lacking. Here, we created a global water availability map by calculating an annual budget as the difference between precipitation (P) and potential evapotranspiration (PET) at a 1-km spatial resolution, and in turn correlated it with a global H map of the same resolution. Across forested areas over the globe, Hmean increased with P-PET, roughly: Hmean (m) = 19.3 + 0.077*(P-PET). Maximum forest canopy height also increased gradually from ~ 5 to ~ 50 m, saturating at ~ 45 m for P-PET > 500 mm. Forests were far from their maximum height potential in cold, boreal regions and in disturbed areas. The strong association between forest height and P-PET provides a useful tool when studying future forest dynamics under climate change, and in quantifying anthropogenic forest disturbance. © 2015 John Wiley & Sons Ltd/CNRS.

  18. Reducing Uncertainty in Transpiration Estimation in Wet Tropical Forests and Upscaling Sap Flux Measurements in Complex Heterogeneous Systems

    NASA Astrophysics Data System (ADS)

    Moore, G. W.; Aparecido, L. M. T.; Jaimes, A.

    2017-12-01

    High tree species and functional diversity, complex age and stand structure, deeper active sapwood, and potential factors that reduce transpiration, such as frequent cloud cover and wet leaves are inherent in wet tropical forests. In face of these unique challenges, advancements are needed for optimizing in situ measurement strategies to reduce uncertainties, in particular, within-tree and among-tree variation. Over a five-year period, we instrumented 44 trees with heat dissipation sap flow sensors within a premontane wet tropical rainforest in Costa Rica (5000 mm MAP). Sensors were systematically apportioned among overstory, midstory, and suppressed trees. In a subset of dominant trees, radial profiles across the full range of active xylem were fitted as deep as 16 cm. Given high diversity, few instrumented trees belonged to the same species, genus, or even family. Leaf surfaces were wet 20-80% of daylight hours from the top to bottom of the canopy, respectively. As a result, transpiration was suppressed, even after accounting for lower vapor pressure deficit (<0.5 kPa) and reduced solar radiation (<500 W m-1). To the contrary, the driest month on record resulted in higher, not lower transpiration. We identified multiple functional types according to patterns in dry season water use for the period February to April, 2016 using Random Forest analysis to discriminate groups with unique temporal responses. These efforts are critical for improving global land surface models that increasingly partition canopy components within complex heterogeneous systems, and for improved accuracy of transpiration estimates in tropical forests.

  19. Origin of the Hawaiian rainforest and its transition states in long-term primary succession

    NASA Astrophysics Data System (ADS)

    Mueller-Dombois, D.; Boehmer, H. J.

    2013-07-01

    This paper addresses the question of transition states in the Hawaiian rainforest ecosystem with emphasis on their initial developments. Born among volcanoes in the north central Pacific about 4 million years ago, the Hawaiian rainforest became assembled from spores of algae, fungi, lichens, bryophytes, ferns and from seeds of about 275 flowering plants that over the millennia evolved into ca. 1000 endemic species. Outstanding among the forest builders were the tree ferns (Cibotium spp.) and the 'ōhi'a lehua trees (Metrosideros spp.), which still dominate the Hawaiian rainforest ecosystem today. The structure of this forest is simple. The canopy in closed mature rainforests is dominated by cohorts of Metrosideros polymorpha and the undergrowth by tree fern species of Cibotium. When a new lava flow cuts through this forest, kipuka are formed, i.e., islands of remnant vegetation. On the new volcanic substrate, the assemblage of plant life forms is similar to the assemblage during the evolution of this system. In open juvenile forests, a mat-forming fern, the uluhe fern (Dicranopteris linearis), becomes established. It inhibits further regeneration of the dominant 'ōhi'a tree, thereby reinforcing the cohort structure of the canopy guild. In the later part of its life cycle, the canopy guild breaks down often in synchrony. The trigger is hypothesized to be a climatic perturbation. After the disturbance, the forest becomes reestablished in about 30-40 yr. As the volcanic surfaces age, they go from a mesotrophic to a eutrophic phase, reaching a biophilic nutrient climax by about 1-25 K yr. Thereafter, a regressive oligotrophic phase follows; the soils become exhausted of nutrients. The shield volcanoes break down. Marginally, forest habitats change into bogs and stream ecosystems. The broader 'ōhi'a rainforest redeveloping in the more dissected landscapes of the older islands loses stature, often forming large gaps that are invaded by the aluminum tolerant uluhe fern. The 'ōhi'a trees still thrive on soils rejuvenated from landslides and from Asian dust on the oldest (5 million years old) island Kaua'i but their stature and living biomass is greatly diminished.

  20. Climate and Edaphic Controls on Humid Tropical Forest Tree Height

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Saatchi, S. S.; Xu, L.

    2014-12-01

    Uncertainty in the magnitude and spatial variations of forest carbon density in tropical regions is due to under sampling of forest structure from inventory plots and the lack of regional allometry to estimate the carbon density from structure. Here we quantify the variation of tropical forest structure by using more than 2.5 million measurements of canopy height from systematic sampling of Geoscience Laser Altimeter System (GLAS) satellite observations between 2004 to 2008 and examine the climate and edaphic variables influencing the variations. We used top canopy height of GLAS footprints (~ 0.25 ha) to grid the statistical mean and 90 percentile of samples at 0.5 degrees to capture the regional variability of large trees in tropics. GLAS heights were also aggregated based on a stratification of tropical regions using soil, elevation, and forest types. Both approaches provided consistent patterns of statistically dominant large trees and the least heterogeneity, both as strong drivers of distribution of high biomass forests. Statistical models accounting for spatial autocorrelation suggest that climate, soil and spatial features together can explain more than 60% of the variations in observed tree height information, while climate-only variables explains about one third of the first-order changes in tree height. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as organic matters, all present independent but statistically significant relationships to tree height variations. The results confirm other landscape and regional studies that soil fertility, geology and climate may jointly control a majority of the regional variations of forest structure in pan-tropics and influencing both biomass stocks and dynamics. Consequently, other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.

  1. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest.

    PubMed

    Vertessy, R A; Benyon, R G; O'Sullivan, S K; Gribben, P R

    1995-09-01

    We examined relationships between stem diameter, sapwood area, leaf area and transpiration in a 15-year-old mountain ash (Eucalyptus regnans F. Muell.) forest containing silver wattle (Acacia dealbata Link.) as a suppressed overstory species and mountain hickory (Acacia frigescens J.H. Willis) as an understory species. Stem diameter explained 93% of the variation in leaf area, 96% of the variation in sapwood area and 88% of the variation in mean daily spring transpiration in 19 mountain ash trees. In seven silver wattle trees, stem diameter explained 87% of the variation in sapwood area but was a poor predictor of the other variables. When transpiration measurements from individual trees were scaled up to a plot basis, using stem diameter values for 164 mountain ash trees and 124 silver wattle trees, mean daily spring transpiration rates of the two species were 2.3 and 0.6 mm day(-1), respectively. The leaf area index of the plot was estimated directly by destructive sampling, and indirectly with an LAI-2000 plant canopy analyzer and by hemispherical canopy photography. All three methods gave similar results.

  2. Trap height affects capture of lady beetles (Coleoptera: Coccinellidae) in pecan orchards

    USDA-ARS?s Scientific Manuscript database

    There is scarce information regarding the vertical stratification of predaceous Coccinellidae in tall trees. Although numerous studies have been done in orchards and forests, very few studies have assessed the occurrence of predaceous Coccinellidae high in tree canopies. The objective of this stud...

  3. Mapping canopy defoliation by herbivorous insects at the individual tree level using bi-temporal airborne imaging spectroscopy and LiDAR measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; Dennison, Philip E.; Zhao, Feng

    Defoliation by herbivorous insects is a widespread forest disturbance driver, affecting global forest health and ecosystem dynamics. Additionally, compared with time- and labor-intensive field surveys, remote sensing provides the only realistic approach to mapping canopy defoliation by herbivorous insects over large spatial and temporal scales. However, the spectral and structural signatures of defoliation by insects at the individual tree level have not been well studied. Additionally, the predictive power of spectral and structural metrics for mapping canopy defoliation has seldom been compared. These critical knowledge gaps prevent us from consistently detecting and mapping canopy defoliation by herbivorous insects across multiplemore » scales. During the peak of a gypsy moth outbreak in Long Island, New York in summer 2016, we leveraged bi-temporal airborne imaging spectroscopy (IS, i.e., hyperspectral imaging) and LiDAR measurements at 1m spatial resolution to explore the spectral and structural signatures of canopy defoliation in a mixed oak-pine forest. We determined that red edge and near-infrared spectral regions within the IS data were most sensitive to crown-scale defoliation severity. LiDAR measurements including B70 (i.e., 70th bincentile height), intensity skewness, and kurtosis were effectively able to detect structural changes caused by herbivorous insects. In addition to canopy leaf loss, increased exposure of understory and non-photosynthetic materials contributed to the detected spectral and structural signatures. Comparing the ability of individual sensors to map canopy defoliation, the LiDAR-only Ordinary Least-Square (OLS) model performed better than the IS-only model (Adj. R-squared = 0.77, RMSE = 15.37% vs. Adj. R- squared = 0.63, RMSE = 19.11%). The IS+LiDAR model improved on performance of the individual sensors (Adj. R-squared = 0.81, RMSE = 14.46%). Our study improves our understanding of spectral and structural signatures of defoliation by herbivorous insects and presents a novel approach for mapping insect defoliation at the individual tree level. Furthermore, with the current and next generation of spaceborne sensors (e.g., WorldView-3, Landsat, Sentinel-2, HyspIRI, and GEDI), higher accuracy and frequent monitoring of insect defoliation may become more feasible across a range of spatial scales, which are critical for ecological research and management of forest resources including the economic consequences of forest insect infestations (e.g., reduced growth and increased mortality), as well as for informing and testing of carbon cycle models.« less

  4. Mapping canopy defoliation by herbivorous insects at the individual tree level using bi-temporal airborne imaging spectroscopy and LiDAR measurements

    DOE PAGES

    Meng, Ran; Dennison, Philip E.; Zhao, Feng; ...

    2018-06-19

    Defoliation by herbivorous insects is a widespread forest disturbance driver, affecting global forest health and ecosystem dynamics. Additionally, compared with time- and labor-intensive field surveys, remote sensing provides the only realistic approach to mapping canopy defoliation by herbivorous insects over large spatial and temporal scales. However, the spectral and structural signatures of defoliation by insects at the individual tree level have not been well studied. Additionally, the predictive power of spectral and structural metrics for mapping canopy defoliation has seldom been compared. These critical knowledge gaps prevent us from consistently detecting and mapping canopy defoliation by herbivorous insects across multiplemore » scales. During the peak of a gypsy moth outbreak in Long Island, New York in summer 2016, we leveraged bi-temporal airborne imaging spectroscopy (IS, i.e., hyperspectral imaging) and LiDAR measurements at 1m spatial resolution to explore the spectral and structural signatures of canopy defoliation in a mixed oak-pine forest. We determined that red edge and near-infrared spectral regions within the IS data were most sensitive to crown-scale defoliation severity. LiDAR measurements including B70 (i.e., 70th bincentile height), intensity skewness, and kurtosis were effectively able to detect structural changes caused by herbivorous insects. In addition to canopy leaf loss, increased exposure of understory and non-photosynthetic materials contributed to the detected spectral and structural signatures. Comparing the ability of individual sensors to map canopy defoliation, the LiDAR-only Ordinary Least-Square (OLS) model performed better than the IS-only model (Adj. R-squared = 0.77, RMSE = 15.37% vs. Adj. R- squared = 0.63, RMSE = 19.11%). The IS+LiDAR model improved on performance of the individual sensors (Adj. R-squared = 0.81, RMSE = 14.46%). Our study improves our understanding of spectral and structural signatures of defoliation by herbivorous insects and presents a novel approach for mapping insect defoliation at the individual tree level. Furthermore, with the current and next generation of spaceborne sensors (e.g., WorldView-3, Landsat, Sentinel-2, HyspIRI, and GEDI), higher accuracy and frequent monitoring of insect defoliation may become more feasible across a range of spatial scales, which are critical for ecological research and management of forest resources including the economic consequences of forest insect infestations (e.g., reduced growth and increased mortality), as well as for informing and testing of carbon cycle models.« less

  5. Simulated transient thermal infrared emissions of forest canopies during rainfall events

    NASA Astrophysics Data System (ADS)

    Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.

    2017-05-01

    We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.

  6. Effects of experimental canopy manipulation on amphibian egg deposition

    Treesearch

    Zachary I. Felix; Yong Wang; Callie J. Schweitzer

    2010-01-01

    Although effects of forest management on amphibians are relatively well studied, few studies have examined how these practices affect egg deposition by adults, which can impact population recruitment. We quantified the effects of 4 canopy tree-retention treatments on amphibian oviposition patterns in clusters of 60-L aquatic mesocosms located in each treatment. We also...

  7. Estimating forest canopy bulk density using six indirect methods

    Treesearch

    Robert E. Keane; Elizabeth D. Reinhardt; Joe Scott; Kathy Gray; James Reardon

    2005-01-01

    Canopy bulk density (CBD) is an important crown characteristic needed to predict crown fire spread, yet it is difficult to measure in the field. Presented here is a comprehensive research effort to evaluate six indirect sampling techniques for estimating CBD. As reference data, detailed crown fuel biomass measurements were taken on each tree within fixed-area plots...

  8. Gap-phase regeneration inlongleaf pine wiregrass ecosystems

    Treesearch

    D.G. Brockway; K.W. Outcalt

    1998-01-01

    Naturally regenerated seedlings of longleaf pine are typically observed to cluster in the center of tree fall canopy gaps and be encircled by a wide zone from which they are generally excluded. Twelve representative canopy gaps distributed across 600 ha of a naturally regenerated uneven-agedlongleaf pine forest in the sandhills of north central Florida were examined to...

  9. A survey of hymenopteran parasitoids of forest macrolepidoptera in the Central Appalachians

    Treesearch

    T. R. Petrice; J. S. Strazanac; L. Butler

    2004-01-01

    In 1995 and 1996, we conducted a study of the hymenopteran parasitoids of macrolepidopteran larvae in the George Washington National Forest (GWNF), Augusta County, Virginia, and the Monongahela National Forest (MNF), Pocahontas County, West Virginia. Macrolepidopteran larvae were collected from canopy foliage and from under canvas bands placed around tree boles. A...

  10. Western spruce budworm defoliation effects on forest structure and potential fire behavior.

    Treesearch

    S. Hummel; J.K. Agee

    2003-01-01

    Forest composition and structure on the eastern slope of the Cascade Mountains have been influenced by decades of fire exclusion. Multilayered canopies and high numbers of shade-tolerant true fir trees interact with western spruce budworm to alter forest structure and to affect potential fire behavior and effects. We compared...

  11. Seeing the trees for the forest: mapping vegetation biodiversity in coastal Oregon forests.

    Treesearch

    Sally. Duncan

    2003-01-01

    In order to address policy issues relating to biodiversity, productivity, and sustainability, we need detailed understanding of forest vegetation at broad geographic and time scales. Most existing maps developed from satellite imagery describe only general characteristics of the upper canopy. Detailed vegetation data are available from regional grids of field plots,...

  12. Pennsylvania's Forest 2004

    Treesearch

    William H. McWilliams; Seth P. Cassell; Carol L. Alerich; Brett J. Butler; Michael L. Hoppus; Stephen B. Horsley; Andrew J. Lister; Tonya W. Lister; Randall S. Morin; Charles H. Perry; James A. Westfall; Eric H. Wharton; Christopher W. Woodall

    2007-01-01

    Pennsylvania's forest-land base is stable, covering 16.6 million acres or 58 percent of the land area. Sawtimber volume totals 88.9 billion board feet, an average of about 5,000 board feet per acre. Currently, only half of the forest land that should have advance tree seedling and sapling regeneration is adequately stocked with high-canopy species, and only one-...

  13. Are Temperate Canopy Spiders Tree-Species Specific?

    PubMed Central

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood. PMID:24586251

  14. Are temperate canopy spiders tree-species specific?

    PubMed

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

  15. Improving Measurement of Forest Structural Parameters by Co-Registering of High Resolution Aerial Imagery and Low Density LiDAR Data

    PubMed Central

    Huang, Huabing; Gong, Peng; Cheng, Xiao; Clinton, Nick; Li, Zengyuan

    2009-01-01

    Forest structural parameters, such as tree height and crown width, are indispensable for evaluating forest biomass or forest volume. LiDAR is a revolutionary technology for measurement of forest structural parameters, however, the accuracy of crown width extraction is not satisfactory when using a low density LiDAR, especially in high canopy cover forest. We used high resolution aerial imagery with a low density LiDAR system to overcome this shortcoming. A morphological filtering was used to generate a DEM (Digital Elevation Model) and a CHM (Canopy Height Model) from LiDAR data. The LiDAR camera image is matched to the aerial image with an automated keypoints search algorithm. As a result, a high registration accuracy of 0.5 pixels was obtained. A local maximum filter, watershed segmentation, and object-oriented image segmentation are used to obtain tree height and crown width. Results indicate that the camera data collected by the integrated LiDAR system plays an important role in registration with aerial imagery. The synthesis with aerial imagery increases the accuracy of forest structural parameter extraction when compared to only using the low density LiDAR data. PMID:22573971

  16. Simulating imaging spectrometer data of a mixed old-growth forest: A parameterization of a 3D radiative transfer model based on airborne and terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Schneider, F. D.; Leiterer, R.; Morsdorf, F.; Gastellu-Etchegorry, J.; Lauret, N.; Pfeifer, N.; Schaepman, M. E.

    2013-12-01

    Remote sensing offers unique potential to study forest ecosystems by providing spatially and temporally distributed information that can be linked with key biophysical and biochemical variables. The estimation of biochemical constituents of leaves from remotely sensed data is of high interest revealing insight on photosynthetic processes, plant health, plant functional types, and speciation. However, the scaling of observations at the canopy level to the leaf level or vice versa is not trivial due to the structural complexity of forests. Thus, a common solution for scaling spectral information is the use of physically-based radiative transfer models. The discrete anisotropic radiative transfer model (DART), being one of the most complete coupled canopy-atmosphere 3D radiative transfer models, was parameterized based on airborne and in-situ measurements. At-sensor radiances were simulated and compared with measurements from an airborne imaging spectrometer. The study was performed on the Laegern site, a temperate mixed forest characterized by steep slopes, a heterogeneous spectral background, and deciduous and coniferous trees at different development stages (dominated by beech trees; 47°28'42.0' N, 8°21'51.8' E, 682 m asl, Switzerland). It is one of the few studies conducted on an old-growth forest. Particularly the 3D modeling of the complex canopy architecture is crucial to model the interaction of photons with the vegetation canopy and its background. Thus, we developed two forest reconstruction approaches: 1) based on a voxel grid, and 2) based on individual tree detection. Both methods are transferable to various forest ecosystems and applicable at scales between plot and landscape. Our results show that the newly developed voxel grid approach is favorable over a parameterization based on individual trees. In comparison to the actual imaging spectrometer data, the simulated images exhibit very similar spatial patterns, whereas absolute radiance values are partially differing depending on the respective wavelength. We conclude that our proposed method provides a representation of the 3D radiative regime within old-growth forests that is suitable for simulating most spectral and spatial features of imaging spectrometer data. It indicates the potential of simulating future Earth observation missions, such as ESA's Sentinel-2. However, the high spectral variability of leaf optical properties among species has to be addressed in future radiative transfer modeling. The results further reveal that research emphasis has to be put on the accurate parameterization of small-scale structures, such as the clumping of needles into shoots or the distribution of leaf angles.

  17. Nitrous oxide fluxes from forest floor, tree stems and canopies of boreal tree species during spring

    NASA Astrophysics Data System (ADS)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2017-04-01

    Boreal forests are considered as small sources of atmospheric nitrous oxide (N2O) due to microbial N2O production in the soils. Recent evidence shows that trees may play an important role in N2O exchange of forest ecosystems by offering pathways for soil produced N2O to the atmosphere. To confirm magnitude, variability and the origin of the tree mediated N2O emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured forest floor, tree stem and shoot N2O exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in Southern Finland (61˚ 51´N, 24˚ 17´E, 181 a.s.l.). The fluxes were measured in silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation cover and forest structure. The aim was to study the vertical profile of N2O fluxes at stem level and to observe temporal changes in N2O fluxes over the beginning of the growing season. The N2O exchange was determined using the static chamber technique and gas chromatographic analyses. Scaffold towers were used for measurements at multiple stem heights and at the canopy level. Overall, the N2O fluxes from the forest floor and trees at both sites were very small and close to the detection limit. The measured trees mainly emitted N2O from their stems and shoots, while the forest floor acted as a sink of N2O at the paludified site and as a small source of N2O at the mineral soil site. Stem emissions from all the trees at both sites were on average below 0.5 μg N2O m-2 of stem area h-1, and the shoot emissions varied between 0.2 and 0.5 ng N2O m-2 g-1 dry biomass. When the N2O fluxes were scaled up to the whole forest ecosystem, based on the tree biomass and stand density, the N2O emissions from birch and spruce trees at the paludified site were 1.4 and 2.2 mg N2O ha-1 h-1, respectively, while the forest floor was a sink of -6.1 mg N2O ha-1 h-1. At the mineral soil site the upscaled N2O emissions from birch trees and forest floor were 3.6 and 8.9 mg N2O ha-1 h-1, respectively, indicating that the emissions from trees significantly contribute to the N2O emissions from boreal forests. The results also indicate that tree canopies contributed up to 89% of the whole-tree N2O emissions. Our findings demonstrate that we urgently need more studies focusing on leaf-level N2O exchange in forest ecosystems. Acknowledgement This research was financially supported by the National Programme for Sustainability I (LO1415), Czech Science Foundation (17-18112Y), ENVIMET (CZ.1.07/2.3.00/20.0246) , Emil Aaltonen Foundation, Academy of Finland Research Fellow projects (292699, 263858, 288494), The Academy of Finland Centre of Excellence (projects 1118615, 272041), and ICOS-Finland (281255). We thank Hyytiälä SMEAR II station staff and Marek Jakubik for technical support.

  18. Stages and Spatial Scales of Recruitment Limitation in Southern Appalachain Forests

    Treesearch

    James S. Clark; Eric Macklin; Leslie Wood

    1998-01-01

    Recruitment limitation of tree population dynamics is poorly understood, because fecundity and dispersal are difficult to characterize in closed stands. We present an approach that estimates seed production and dispersal under closed canopies and four limitations on recruitment: tree density and location, fecundity, seed dispersal, and establishment. Consistent...

  19. Regulation of water flux through tropical forest canopy trees: do universal rules apply?

    PubMed

    Meinzer, F C; Goldstein, G; Andrade, J L

    2001-01-01

    Tropical moist forests are notable for their richness in tree species. The presence of such a diverse tree flora presents potential problems for scaling up estimates of water use from individual trees to entire stands and for drawing generalizations about physiological regulation of water use in tropical trees. We measured sapwood area or sap flow, or both, in 27 co-occurring canopy species in a Panamanian forest to determine the extent to which relationships between tree size, sapwood area and sap flow were species-specific, or whether they were constrained by universal functional relationships between tree size, conducting xylem area, and water use. For the 24 species in which active xylem area was estimated over a range of size classes, diameter at breast height (DBH) accounted for 98% of the variation in sapwood area and 67% of the variation in sapwood depth when data for all species were combined. The DBH alone also accounted for > or = 90% of the variation in both maximum and total daily sap flux density in the outermost 2 cm of sapwood for all species taken together. Maximum sap flux density measured near the base of the tree occurred at about 1,400 h in the largest trees and 1,130 h in the smallest trees studied, and DBH accounted for 93% of the variation in the time of day at which maximum sap flow occurred. The shared relationship between tree size and time of maximum sap flow at the base of the tree suggests that a common relationship between diurnal stem water storage capacity and tree size existed. These results are consistent with a recent hypothesis that allometric scaling of plant vascular systems, and therefore water use, is universal.

  20. Effects of Canopy Wetness on Evapotranspiration in Native and Invaded Tropical Montane Cloud Forest in Hawai‘i

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Delay, J. K.; Takahashi, M.; Mudd, R. G.; Huang, M.; Asner, G. P.; Martin, R. E.; Nullet, M. A.

    2009-12-01

    Canopy wetness has profound effects on ecosystem processes. Canopy-atmosphere gas and energy exchanges are strongly altered when leaves are wetted by rainfall, fog, or dew. In some tropical forests, wet-canopy evaporation contributes a large portion of total evapotranspiration. On the other hand, transpiration is minimized when leaves are wet. The overall hydrological effects of canopy wetting depend on the canopy structure and on the frequency and duration of wetting events. At two field sites in Hawai‘i, one within native Metrosideros polymorpha forest and the other at a site heavily invaded by Psidium cattleianum, we are conducting measurements of canopy water balance, stand-level evapotranspiration (ET), transpiration (using sapflow techniques), energy balance, and related processes. Preliminary canopy water balance results show that wet canopy evaporation is 588 mm/yr (33% of potential ET) at the native site and 376 mm/yr (22% of potential ET) at the invaded site. Based on sapflow measurements in canopy branches, mean transpiration for partially and fully wetted canopy periods (categorized using leaf wetness sensor observations) was 47% and 17% of dry canopy transpiration at the native forest site. For the invaded site, transpiration for partially and fully wetted canopy periods was 67% and 33% of dry canopy transpiration. It appears that the invaded site is able to maintain higher transpiration rates, along with lower wet-canopy evaporation rates, during wet-canopy periods. Previously reported stand level measurements have shown that total ET represents a larger portion of available energy at the invaded site than the native site. These findings suggest that alien plant invasion is shifting evaporative water loss from wet-canopy evaporation to transpiration, while increasing overall water loss. Higher transpiration is likely to be associated with higher rates of carbon exchange, which may contribute to the success of this invasive tree.

  1. Persistence of long-distance, insect-mediated pollen movement for a tropical canopy tree species in remnant forest patches in an urban landscape.

    PubMed

    Noreen, A M E; Niissalo, M A; Lum, S K Y; Webb, E L

    2016-12-01

    As deforestation and urbanization continue at rapid rates in tropical regions, urban forest patches are essential repositories of biodiversity. However, almost nothing is known about gene flow of forest-dependent tree species in urban landscapes. In this study, we investigated gene flow in the insect-pollinated, wind-dispersed tropical tree Koompassia malaccensis in and among three remnant forest patches in the urbanized landscape of Singapore. We genotyped the vast majority of adults (N=179) and a large number of recruits (N=2103) with 8 highly polymorphic microsatellite markers. Spatial genetic structure of the recruit and adult cohorts was significant, showing routine gene dispersal distances of ~100-400 m. Parentage analysis showed that 97% of recruits were within 100 m of their mother tree, and a high frequency of relatively short-distance pollen dispersal (median ~143-187 m). Despite routine seed and pollen dispersal distances of within a few hundred meters, interpatch gene flow occurred between all patches and was dominated by pollen movement: parentage analysis showed 76 pollen versus 2 seed interpatch dispersal events, and the seedling neighborhood model estimated ~1-6% seed immigration and ~21-46% pollen immigration rates, depending on patch. In addition, the smallest patch (containing five adult K. malaccensis trees) was entirely surrounded by >2.5 km of 'impervious' substrate, yet had the highest proportional pollen and seed immigration estimates of any patch. Hence, contrary to our hypothesis, insect-mediated gene flow persisted across an urban landscape, and several of our results also parallel key findings from insect-pollinated canopy trees sampled in mixed agricultural-forest landscapes.

  2. Are temperate mature forests buffered from invasive lianas?

    USGS Publications Warehouse

    Pavlovic, Noel B.; Leicht-Young, Stacey A.

    2011-01-01

    Mature and old-growth forests are often thought to be buffered against invasive species due to low levels of light and infrequent disturbance. Lianas (woody vines) and other climbing plants are also known to exhibit lower densities in older forests. As part of a larger survey of the lianas of the southern Lake Michigan region in mature and old-growth forests, the level of infestation by invasive lianas was evaluated. The only invasive liana detected in these surveys was Celastrus orbiculatus Thunb. (Celastraceae). Although this species had only attached to trees and reached the canopy in a few instances, it was present in 30% of transects surveyed, mostly as a component of the ground layer. Transects with C. orbiculatus had higher levels of soil potassium and higher liana richness than transects without. In contrast, transects with the native C. scandens had higher pH, sand content, and soil magnesium and lower organic matter compared to transects where it was absent. Celastrus orbiculatus appears to be a generalist liana since it often occurs with native lianas. Celastrus orbiculatus poses a substantial threat to mature forests as it will persist in the understory until a canopy gap or other disturbance provides the light and supports necessary for it to ascend to the canopy and damage tree species. As a result, these forests should be monitored by land managers so that C. orbiculatus eradication can occur while invasions are at low densities and restricted to the ground layer.

  3. Capturing species-level drought responses in a temperate deciduous forest using ratios of photochemical reflectance indices between sunlit and shaded canopies

    Treesearch

    Taehee Hwang; Hamed Gholizadeh; Daniel A. Sims; Kimberly A. Novick; Edward R. Brzostek; Richard P. Phillips; Daniel T. Roman; Scott M. Robeson; Abdullah F. Rahman

    2017-01-01

    To classify trees along a spectrum of isohydric to anisohydric behavior is a promising new framework for identifying tree species' sensitivities to drought stress, directly related to the vulnerability of carbon uptake of terrestrial ecosystems with increased hydroclimate variability. Trees with isohydric strategies regulate stomatal conductance to maintain...

  4. Landsat Time-series for the Masses: Predicting Wood Biomass Growth from Tree-rings Using Departures from Mean Phenology in Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Foster, J. R.; D'Amato, A. W.; Itter, M.; Reinikainen, M.; Curzon, M.

    2017-12-01

    The terrestrial carbon cycle is perturbed when disturbances remove leaf biomass from the forest canopy during the growing season. Changes in foliar biomass arise from defoliation caused by insects, disease, drought, frost or human management. As ephemeral disturbances, these often go undetected and their significance to models that predict forest growth from climatic drivers remains unknown. Here, we seek to distinguish the roles of weather vs. canopy disturbance on forest growth by using dense Landsat time-series to quantify departures in mean phenology that in turn predict changes in leaf biomass. We estimated a foliar biomass index (FBMI) from 1984-2016, and predict plot-level wood growth over 28 years on 156 tree-ring monitoring plots in Minnesota, USA. We accessed the entire Landsat archive (sensors 4, 5 & 7) to compute FBMI using Google Earth Engine's cloud computing platform (GEE). GEE allows this pixel-level approach to be applied at any location; a feature we demonstrate with published wood-growth data from flux tower sites. Our Bayesian models predicted biomass changes from tree-ring plots as a function of Landsat FBMI and annual climate data. We expected model parameters to vary by tree functional groups defined by differences in xylem anatomy and leaf longevity, two traits with linkages to phenology, as reported in a recent review. We found that Landsat FBMI was a surprisingly strong predictor of aggregate wood-growth, explaining up to 80% of annual growth variation for some deciduous plots. Growth responses to canopy disturbance varied among tree functional groups, and the importance of some seasonal climate metrics diminished or changed sign when FBMI was included (e.g. fall and spring climatic water deficit), while others remained unchanged (current and lagged summer deficit). Insights emerging from these models can clear up sources of persistent uncertainty and open a new frontier for models of forest productivity.

  5. Ecophysiological Remote Sensing of Leaf-Canopy Photosynthetic Characteristics in a Cool-Temperate Deciduous Forest in Japan

    NASA Astrophysics Data System (ADS)

    Noda, H. M.; Muraoka, H.

    2014-12-01

    Satellite remote sensing of structure and function of canopy is crucial to detect temporal and spatial distributions of forest ecosystems dynamics in changing environments. The spectral reflectance of the canopy is determined by optical properties (spectral reflectance and transmittance) of single leaves and their spatial arrangements in the canopy. The optical properties of leaves reflect their pigments contents and anatomical structures. Thus detailed information and understandings of the consequence between ecophysiological traits and optical properties from single leaf to canopy level are essential for remote sensing of canopy ecophysiology. To develop the ecophysiological remote sensing of forest canopy, we have been promoting multiple and cross-scale measurements in "Takayama site" belonging to AsiaFlux and JaLTER networks, located in a cool-temperate deciduous broadleaf forest on a mountainous landscape in Japan. In this forest, in situ measurement of canopy spectral reflectance has been conducted continuously by a spectroradiometer as part of the "Phenological Eyes Network (PEN)" since 2004. To analyze the canopy spectral reflectance from leaf ecophysiological viewpoints, leaf mass per area, nitrogen content, chlorophyll contents, photosynthetic capacities and the optical properties have been measured for dominant canopy tree species Quercus crispla and Betula ermanii throughout the seasons for multiple years.Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season in both Q. crispla and B. ermanii. In these leaves, the reflectance at "red edge" (710 nm) changed by corresponding to the changes of chlorophyll contents throughout the seasons. Our canopy-level examination showed that vegetation indices obtained by red edge reflectance have linear relationship with leaf chlorophyll contents and photosynthetic capacity. Finally we apply this knowledge to the Rapid Eye satellite imagery around Takayama site to scale-up the leaf-level findings to canopy and landscape levels on a mountainous landscape.

  6. Rodent Damage to Natural and Replanted Mountain Forest Regeneration

    PubMed Central

    Heroldová, Marta; Bryja, Josef; Jánová, Eva; Suchomel, Josef; Homolka, Miloslav

    2012-01-01

    Impact of small rodents on mountain forest regeneration was studied in National Nature Reserve in the Beskydy Mountains (Czech Republic). A considerable amount of bark damage was found on young trees (20%) in spring after the peak abundance of field voles (Microtus agrestis) in combination with long winter with heavy snowfall. In contrast, little damage to young trees was noted under high densities of bank voles (Myodes glareolus) with a lower snow cover the following winter. The bark of deciduous trees was more attractive to voles (22% damaged) than conifers (8%). Young trees growing in open and grassy localities suffered more damage from voles than those under canopy of forest stands (χ 2 = 44.04, P < 0.001). Natural regeneration in Nature Reserve was less damaged compared to planted trees (χ 2 = 55.89, P < 0.001). The main factors influencing the impact of rodent species on tree regeneration were open, grassy habitat conditions, higher abundance of vole species, tree species preferences- and snow-cover condition. Under these conditions, the impact of rodents on forest regeneration can be predicted. Foresters should prefer natural regeneration to the artificial plantings. PMID:22666163

  7. AmeriFlux US-UMd UMBS Disturbance

    DOE Data Explorer

    Curtis, Peter [Ohio State University; Gough, Christopher [Virginia Commonwealth University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-UMd UMBS Disturbance. Site Description - The UMBS Disturbance site is an artificial disturbance site that has recently been created as part of the Forest Accelerate Succession ExperimenT (FASET). In Spring 2008, every aspen and birch tree (>6,700, ~35% canopy LAI), the dominant early successional trees, were girdled over 39 ha of the FASET treatment plot to stimulate a disturbance that will move the forest into a later successional stage, dominated by maples, oaks, and white pine. This treatment caused aspen and birch mortality within 2 - 3 years. As a result of the changed canopy structure, there is a divergence in net ecosystem exchange between the control plot (enhanced carbon uptake) and the treatment plot (reduced carbon uptake).

  8. Urban forest ecosystem analysis using fused airborne hyperspectral and lidar data

    NASA Astrophysics Data System (ADS)

    Alonzo, Mike Gerard

    Urban trees are strategically important in a city's effort to mitigate their carbon footprint, heat island effects, air pollution, and stormwater runoff. Currently, the most common method for quantifying urban forest structure and ecosystem function is through field plot sampling. However, taking intensive structural measurements on private properties throughout a city is difficult, and the outputs from sample inventories are not spatially explicit. The overarching goal of this dissertation is to develop methods for mapping urban forest structure and function using fused hyperspectral imagery and waveform lidar data at the individual tree crown scale. Urban forest ecosystem services estimated using the USDA Forest Service's i-Tree Eco (formerly UFORE) model are based largely on tree species and leaf area index (LAI). Accordingly, tree species were mapped in my Santa Barbara, California study area for 29 species comprising >80% of canopy. Crown-scale discriminant analysis methods were introduced for fusing Airborne Visible Infrared Imaging Spectrometry (AVIRIS) data with a suite of lidar structural metrics (e.g., tree height, crown porosity) to maximize classification accuracy in a complex environment. AVIRIS imagery was critical to achieving an overall species-level accuracy of 83.4% while lidar data was most useful for improving the discrimination of small and morphologically unique species. LAI was estimated at both the field-plot scale using laser penetration metrics and at the crown scale using allometry. Agreement of the former with photographic estimates of gap fraction and the latter with allometric estimates based on field measurements was examined. Results indicate that lidar may be used reasonably to measure LAI in an urban environment lacking in continuous canopy and characterized by high species diversity. Finally, urban ecosystem services such as carbon storage and building energy-use modification were analyzed through combination of aforementioned methods and the i-Tree Eco modeling framework. The remote sensing methods developed in this dissertation will allow researchers to more precisely constrain urban ecosystem spatial analyses and equip cities to better manage their urban forest resource.

  9. Treeline advances along the Urals mountain range - driven by improved winter conditions?

    PubMed

    Hagedorn, Frank; Shiyatov, Stepan G; Mazepa, Valeriy S; Devi, Nadezhda M; Grigor'ev, Andrey A; Bartysh, Alexandr A; Fomin, Valeriy V; Kapralov, Denis S; Terent'ev, Maxim; Bugman, Harald; Rigling, Andreas; Moiseev, Pavel A

    2014-11-01

    High-altitude treelines are temperature-limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest-tundra ecotones have changed during the last century along the Ural mountains. In the South, North, Sub-Polar, and Polar Urals, we compared 450 historical and recent photographs and determined the ages of 11,100 trees along 16 altitudinal gradients. In these four regions, boundaries of open and closed forests (crown covers above 20% and 40%) expanded upwards by 4 to 8 m in altitude per decade. Results strongly suggest that snow was an important driver for these forest advances: (i) Winter precipitation has increased substantially throughout the Urals (~7 mm decade(-1) ), which corresponds to almost a doubling in the Polar Urals, while summer temperatures have only changed slightly (~0.05°C decade(-1) ). (ii) There was a positive correlation between canopy cover, snow height and soil temperatures, suggesting that an increasing canopy cover promotes snow accumulation and, hence, a more favorable microclimate. (iii) Tree age analysis showed that forest expansion mainly began around the year 1900 on concave wind-sheltered slopes with thick snow covers, while it started in the 1950s and 1970s on slopes with shallower snow covers. (iv) During the 20th century, dominant growth forms of trees have changed from multistemmed trees, resulting from harsh winter conditions, to single-stemmed trees. While 87%, 31%, and 93% of stems appearing before 1950 were from multistemmed trees in the South, North and Polar Urals, more than 95% of the younger trees had a single stem. Currently, there is a high density of seedlings and saplings in the forest-tundra ecotone, indicating that forest expansion is ongoing and that alpine tundra vegetation will disappear from most mountains of the South and North Urals where treeline is already close to the highest peaks. © 2014 John Wiley & Sons Ltd.

  10. Automated lidar-derived canopy height estimates for the Upper Mississippi River System

    USGS Publications Warehouse

    Hlavacek, Enrika

    2015-01-01

    Land cover/land use (LCU) classifications serve as important decision support products for researchers and land managers. The LCU classifications produced by the U.S. Geological Survey’s Upper Midwest Environmental Sciences Center (UMESC) include canopy height estimates that are assigned through manual aerial photography interpretation techniques. In an effort to improve upon these techniques, this project investigated the use of high-density lidar data for the Upper Mississippi River System to determine canopy height. An ArcGIS tool was developed to automatically derive height modifier information based on the extent of land cover features for forest classes. The measurement of canopy height included a calculation of the average height from lidar point cloud data as well as the inclusion of a local maximum filter to identify individual tree canopies. Results were compared to original manually interpreted height modifiers and to field survey data from U.S. Forest Service Forest Inventory and Analysis plots. This project demonstrated the effectiveness of utilizing lidar data to more efficiently assign height modifier attributes to LCU classifications produced by the UMESC.

  11. Effects of Disturbance on Carbon Sequestration in the New Jersey Pine Barrens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, Karina; Bohrer, Gil

    While carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling, it may be affected by disturbance and climate change. In this research, we contributed to the body of research on leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, in an effort to foster more mechanistic understanding, which in turn can improve modeling efforts. Here, we summarize some of the major findings in this research of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cyclingmore » in an Atlantic Coastal Plain upland oak/pine and upland pine forest. Following we have incorporated some of our findings into a new version of the Finite-element Tree-Crown Hydrodynamics (model version 2) model, which improved timing and hysteresis of transpiration modeling for trees. Furthermore, incorporation of hydrodynamics into modeling transpiration improved latent heat flux estimates. In our study on the physiology of the trees, we showed that during drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance. Incorporating this responses improves model outcome.« less

  12. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback.

    PubMed

    Jump, Alistair S; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-09-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales. © 2017 John Wiley & Sons Ltd.

  13. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback

    USGS Publications Warehouse

    Jump, Alistair S.; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D.; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-01-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales.

  14. A Spectral Mapping Signature for the Rapid Ohia Death (ROD) Pathogen in Hawaiian Forests

    USDA-ARS?s Scientific Manuscript database

    Pathogenic invasions are a major disruptive source of change in both agricultural and natural ecosystems. In forests, fungal pathogens can kill habitat-generating plant species such as canopy trees, but methods for remote detection, mapping and monitoring of such outbreaks are poorly developed. Cera...

  15. Simulation of Surface Energy Fluxes and Snow Interception Using a Higher Order Closure Multi-Layer Soil-Vegetation-Atmospheric Model: The Effect of Canopy Shape and Structure

    NASA Astrophysics Data System (ADS)

    McGowan, L. E.; Dahlke, H. E.; Paw U, K. T.

    2015-12-01

    Snow cover is a critical driver of the Earth's surface energy budget, climate change, and water resources. Variations in snow cover not only affect the energy budget of the land surface but also represent a major water supply source. In California, US estimates of snow depth, extent, and melt in the Sierra Nevada are critical to estimating the amount of water available for both California agriculture and urban users. However, accurate estimates of snow cover and snow melt processes in forested area still remain a challenge. Canopy structure influences the vertical and spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability in forested regions. In this study we use the Advanced Canopy-Atmosphere-Soil algorithm (ACASA), a multi-layer soil-vegetation-atmosphere numerical model, to simulate the effect of different snow-covered canopy structures on the energy budget, and temperature and other scalar profiles within different forest types in the Sierra Nevada, California. ACASA incorporates a higher order turbulence closure scheme which allows the detailed simulation of turbulent fluxes of heat and water vapor as well as the CO2 exchange of several layers within the canopy. As such ACASA can capture the counter gradient fluxes within canopies that may occur frequently, but are typically unaccounted for, in most snow hydrology models. Six different canopy types were modeled ranging from coniferous forests (e.g. most biomass near the ground) to top-heavy (e.g. most biomass near the top of the crown) deciduous forests to multi-layered forest canopies (e.g. mixture of young and mature trees). Preliminary results indicate that the canopy shape and structure associated with different canopy types fundamentally influence the vertical scalar profiles (including those of temperature, moisture, and wind speed) in the canopy and thus alter the interception and snow melt dynamics in forested land surfaces. The turbulent transport dynamics, including counter-gradient fluxes, and radiation features including land surface albedo, are discussed in the context of the snow energy balance.

  16. Linking dominant Hawaiian tree species to understory development in recovering pastures via impacts on soils and litter

    USGS Publications Warehouse

    Yelenik, Stephanie G.

    2017-01-01

    Large areas of tropical forest have been cleared and planted with exotic grass species for use as cattle pasture. These often remain persistent grasslands after grazer removal, which is problematic for restoring native forest communities. It is often hoped that remnant and/or planted trees can jump-start forest succession; however, there is little mechanistic information on how different canopy species affect community trajectories. To investigate this, I surveyed understory communities, exotic grass biomass, standing litter pools, and soil properties under two dominant canopy trees—Metrosideros polymorpha (‘ōhi‘a) and Acacia koa (koa)—in recovering Hawaiian forests. I then used structural equation models (SEMs) to elucidate direct and indirect effects of trees on native understory. Native understory communities developed under ‘ōhi‘a, which had larger standing litter pools, lower soil nitrogen, and lower exotic grass biomass than koa. This pattern was variable, potentially due to historical site differences and/or distance to intact forest. Koa, in contrast, showed little understory development. Instead, data suggest that increased soil nitrogen under koa leads to high grass biomass that stalls native recruitment. SEMs suggested that indirect effects of trees via litter and soils were as or more important than direct effects for determining native cover. It is suggested that diverse plantings which incorporate species that have high carbon to nitrogen ratios may help ameliorate the negative indirect effects of koa on natural understory regeneration.

  17. Quantifying environmental limiting factors on tree cover using geospatial data.

    PubMed

    Greenberg, Jonathan A; Santos, Maria J; Dobrowski, Solomon Z; Vanderbilt, Vern C; Ustin, Susan L

    2015-01-01

    Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree cover across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree cover? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree cover. We found that the study area showed system-wide limitations on tree cover, and each of the factors showed evidence of being limiting on tree cover. However, only 1.2% of the total area appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree cover in the study area. Where sites were near their theoretical maximum, non-forest sites (tree cover < 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree cover between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range.

  18. Effects of land-use change on community composition of tropical amphibians and reptiles in Sulawesi, Indonesia.

    PubMed

    Wanger, Thomas C; Iskandar, Djoko T; Motzke, Iris; Brook, Barry W; Sodhi, Navjot S; Clough, Yann; Tscharntke, Teja

    2010-06-01

    Little is known about the effects of anthropogenic land-use change on the amphibians and reptiles of the biodiverse tropical forests of Southeast Asia. We studied a land-use modification gradient stretching from primary forest, secondary forest, natural-shade cacao agroforest, planted-shade cacao agroforest to open areas in central Sulawesi, Indonesia. We determined species richness, abundance, turnover, and community composition in all habitat types and related these to environmental correlates, such as canopy heterogeneity and thickness of leaf litter. Amphibian species richness decreased systematically along the land-use modification gradient, but reptile richness and abundance peaked in natural-shade cacao agroforests. Species richness and abundance patterns across the disturbance gradient were best explained by canopy cover and leaf-litter thickness in amphibians and by canopy heterogeneity and cover in reptiles. Amphibians were more severely affected by forest disturbance in Sulawesi than reptiles. Heterogeneous canopy cover and thick leaf litter should be maintained in cacao plantations to facilitate the conservation value for both groups. For long-term and sustainable use of plantations, pruned shade trees should be permanently kept to allow rejuvenation of cacao and, thus, to prevent repeated forest encroachment.

  19. Post Wildfire Changes in Plant Functioning and Vegetation Dynamics: Implications for Water Fluxes in Re-sprouting Forests

    NASA Astrophysics Data System (ADS)

    Nolan, R. H.; Lane, P. N.; Mitchell, P. J.; Bradstock, R. A.

    2011-12-01

    Fire induced changes to the vegetation dynamics in temperate forests have been demonstrated to affect evapotranspiration (Et) rates through increases in plant size and density and stand-level transpiration and interception. In many cases these transient changes in forest structure result in substantial declines in stream flow for protracted periods after the disturbance. However to date research has focused on the wetter 'ash' forests of south-eastern Australia which solely regenerate via seedlings, it is unknown what changes in Et may occur in those forests which re-sprout post-fire. We hypothesize that Et fluxes track post-fire changes in sapwood area and leaf area index (L) in re-sprouting temperate forests, increasing as the forest regenerates. Following the 2009 Black Saturday wildfires in Victoria, we monitored Et rates for over a year in both damp and dry re-sprouting forest, incorporating a range of fire severity classes. Components of Et including overstorey transpiration, rainfall interception loss and forest floor Et were measured in conjunction with changes in L, sapwood area and leaf physiology. The monitoring period began one year post-fire with a typical hot, dry summer, at which stage Et rates in burnt forest were similar or less than those in unburnt forest. During the following summer, which was one of the wettest on record, Et increased across all monitoring plots but particularly so in the burnt forest where seedling regeneration resulted in an understorey L nearly twice that of unburnt forest. Forest floor Et was up to 46% higher in burnt forest, and rainfall interception values accounted for approximately 25% of rainfall compared to 15% in unburnt forest. The greatest increase in canopy transpiration rates over this period occurred in those trees subject to a low intensity fire where most of the canopy remained intact but there was also fire-triggered sprouting of new leaves along the trunk and main branches. In these trees rates of sapflow, standardized by sapwood area, were up to 50% greater than in unburnt trees. Measurements of leaf physiology in mature leaves, regenerating canopy leaves and in seedlings indicate higher rates of stomatal conductance in seedlings, and in the early regeneration phase of canopy leaves, which may be driving higher rates of water use per unit leaf area in the early stages of post-fire regeneration. This research indicates that disturbance-induced changes in vegetation dynamics are dependent on fire severity and can alter forest energy and water balances through changes in stand structure (i.e. L) and adjustments in plant functioning via leaf level increases in water use.

  20. Rapid decay of tree-community composition in Amazonian forest fragments

    PubMed Central

    Laurance, William F.; Nascimento, Henrique E. M.; Laurance, Susan G.; Andrade, Ana; Ribeiro, José E. L. S.; Giraldo, Juan Pablo; Lovejoy, Thomas E.; Condit, Richard; Chave, Jerome; Harms, Kyle E.; D'Angelo, Sammya

    2006-01-01

    Forest fragmentation is considered a greater threat to vertebrates than to tree communities because individual trees are typically long-lived and require only small areas for survival. Here we show that forest fragmentation provokes surprisingly rapid and profound alterations in Amazonian tree-community composition. Results were derived from a 22-year study of exceptionally diverse tree communities in 40 1-ha plots in fragmented and intact forests, which were sampled repeatedly before and after fragment isolation. Within these plots, trajectories of change in abundance were assessed for 267 genera and 1,162 tree species. Abrupt shifts in floristic composition were driven by sharply accelerated tree mortality and recruitment within ≈100 m of fragment margins, causing rapid species turnover and population declines or local extinctions of many large-seeded, slow-growing, and old-growth taxa; a striking increase in a smaller set of disturbance-adapted and abiotically dispersed species; and significant shifts in tree size distributions. Even among old-growth trees, species composition in fragments is being restructured substantially, with subcanopy species that rely on animal seed-dispersers and have obligate outbreeding being the most strongly disadvantaged. These diverse changes in tree communities are likely to have wide-ranging impacts on forest architecture, canopy-gap dynamics, plant–animal interactions, and forest carbon storage. PMID:17148598

  1. Behavioral activities of male Cerulean Warblers in relation to habitat characteristics

    USGS Publications Warehouse

    Wood, Petra Bohall; Perkins, Kelly A.

    2012-01-01

    Activities of 29 male Cerulean Warblers (Setophaga cerulea) were quantified on two sites in West Virginia during May–June 2005. Singing and foraging were the most common of 11 observed behavioral activities (81.6%), while maintenance and mating behaviors were uncommonly observed. Male activity differed among vegetative strata (P  =  0.02) with lower- and mid-canopy strata used most often (70% of observations), especially for foraging, perching, and preening. The upper-canopy was used primarily for singing, particularly within core areas of territories and in association with canopy gaps. Foraging occurred more than expected outside of core areas. Males were associated with canopy gaps during 30% of observations, but the distribution of behavioral activities was not significantly related (P  =  0.06) to gap presence. Males used 23 different tree species for a variety of activities with oaks (Quercus spp.) used most often on the xeric site and black cherry (Prunus serotina) and black locust (Robinia pseudoacacia) on the mesic site. Tree species used for singing differed between core and non-core areas (P < 0.0001) but distribution of singing and foraging activity did not differ among tree species (P  =  0.13). Cerulean Warblers appear to be flexible in use of tree species. Their use of different canopy strata for different behavioral activities provides an explanation for the affinity this species exhibits for a vertically stratified forest canopy.

  2. Integrating Landsat Data and High-Resolution Imagery for Applied Conservation Assessment of Forest Cover in Latin American Heterogenous Landscapes

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Rueda, X.; Lambin, E.; Mendenhall, C. D.

    2012-12-01

    Large intact forested regions of the world are known to be critical to maintaining Earth's climate, ecosystem health, and human livelihoods. Remote sensing has been successfully implemented as a tool to monitor forest cover and landscape dynamics over broad regions. Much of this work has been done using coarse resolution sensors such as AVHRR and MODIS in combination with moderate resolution sensors, particularly Landsat. Finer scale analysis of heterogeneous and fragmented landscapes is commonly performed with medium resolution data and has had varying success depending on many factors including the level of fragmentation, variability of land cover types, patch size, and image availability. Fine scale tree cover in mixed agricultural areas can have a major impact on biodiversity and ecosystem sustainability but may often be inadequately captured with the global to regional (coarse resolution and moderate resolution) satellite sensors and processing techniques widely used to detect land use and land cover changes. This study investigates whether advanced remote sensing methods are able to assess and monitor percent tree canopy cover in spatially complex human-dominated agricultural landscapes that prove challenging for traditional mapping techniques. Our study areas are in high altitude, mixed agricultural coffee-growing regions in Costa Rica and the Colombian Andes. We applied Random Forests regression tree analysis to Landsat data along with additional spectral, environmental, and spatial variables to predict percent tree canopy cover at 30m resolution. Image object-based texture, shape, and neighborhood metrics were generated at the Landsat scale using eCognition and included in the variable suite. Training and validation data was generated using high resolution imagery from digital aerial photography at 1m to 2.5 m resolution. Our results are promising with Pearson's correlation coefficients between observed and predicted percent tree canopy cover of .86 (Costa Rica) and .83 (Colombia). The tree cover mapping developed here supports two distinct projects on sustaining biodiversity and natural and human capital: in Costa Rica the tree canopy cover map is utilized to predict bird community composition; and in Colombia the mapping is performed for two time periods and used to assess the impact of coffee eco-certification programs on the landscape. This research identifies ways to leverage readily available, high quality, and cost-free Landsat data or other medium resolution satellite data sources in combination with high resolution data, such as that frequently available through Google Earth, to monitor and support sustainability efforts in fragmented and heterogeneous landscapes.

  3. Evaluating UAV and LiDAR Retrieval of Snow Depth in a Coniferous Forest in Arizona

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, W. J. D.; Broxton, P.; Biederman, J. A.

    2017-12-01

    Remote sensing of snow depth and cover in forested environments is challenging. Trees interfere with the remote sensing of snowpack below the canopy and cause large variations in the spatial distribution of the snowpack itself (e.g. between below canopy environments to shaded gaps to open clearings). The distribution of trees and topographic variation make it challenging to monitor the snowpack with in-situ observations. Airborne LiDAR has improved our ability to monitor snowpack over large areas in montane and forested environments because of its high sampling rate and ability to penetrate the canopy. However, these LiDAR flights can be too expensive and time-consuming to process, making it hard to use them for real-time snow monitoring. In this research, we evaluate Structure from Motion (SfM) as an alternative to Airborne LiDAR to generate high-resolution snow depth data in forested environments. This past winter, we conducted a snow field campaign over Arizona's Mogollon Rim where we acquired aerial LiDAR, multi-angle aerial photography from a UAV, and extensive field observations of snow depth at two sites. LiDAR and SFM derived snow depth maps were generated by comparing "snow-on" and "snow-off" LiDAR and SfM data. The SfM- and LiDAR-generated snow depth maps were similar at a site with fewer trees, though there were more discrepancies at a site with more trees. Both compared reasonably well with the field observations at the sparser forested site, with poorer agreement at the denser forested site. Finally, although the SfM produced point clouds with much higher point densities than the aerial LiDAR, the SfM was not able to produce meaningful snow depth estimates directly underneath trees and had trouble in areas with deep shadows. Based on these findings, we are optimizing our UAV data acquisition strategies for this upcoming field season. We are using these data, along with high-resolution hydrological modeling, to gain a better understanding of how different forest structural, climatic and topographic conditions affect the snowpack and consequently the water resources available to the Salt River Project, a water utility providing power and water to millions of customers in the Phoenix area

  4. A comparison of two sampling approaches for assessing the urban forest canopy cover from aerial photography.

    Treesearch

    Ucar Zennure; Pete Bettinger; Krista Merry; Jacek Siry; J.M. Bowker

    2016-01-01

    Two different sampling approaches for estimating urban tree canopy cover were applied to two medium-sized cities in the United States, in conjunction with two freely available remotely sensed imagery products. A random point-based sampling approach, which involved 1000 sample points, was compared against a plot/grid sampling (cluster sampling) approach that involved a...

  5. The Regeneration of Group Selection Openings in Southern Indiana

    Treesearch

    Dale R. Weigel

    1994-01-01

    The group selection method combines some of the advantages of even-aged silvicultural methods with those of uneven-aged methods. The method maintains a fairly continuous tree canopy, which provides a more natural appearance to the forest than does any even-aged method. By creating small canopy openings, it also provides the light necessary for the growth of species...

  6. Influence of Canopy Density on Ground Vegetation in a Bottomland Hardwood Forest

    Treesearch

    Sarah E. Billups

    1999-01-01

    We investigated the influence of canopy density on ground vegetation in naturally formed gap and non-gap habitats (environments) in a blackwater river floodplain. Tree seedlings were more important (relatively more abundant) in the non-gap habitat, and grass was more important in the gap habitat, but there were elevation x habitat interactions. Also, there was an...

  7. Monitoring urban tree cover using object-based image analysis and public domain remotely sensed data

    Treesearch

    L. Monika Moskal; Diane M. Styers; Meghan Halabisky

    2011-01-01

    Urban forest ecosystems provide a range of social and ecological services, but due to the heterogeneity of these canopies their spatial extent is difficult to quantify and monitor. Traditional per-pixel classification methods have been used to map urban canopies, however, such techniques are not generally appropriate for assessing these highly variable landscapes....

  8. The formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Treesearch

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  9. The formation of dense understory layers in the forest worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Treesearch

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  10. The ecological role of American elm (Ulmus americana L.) in floodplain forests of northeastern North America

    Treesearch

    Christian O. Marks

    2017-01-01

    Before Dutch elm disease, the American elm (Ulmus americana L.) was a leading dominant tree species in the better drained parts of floodplain forests where flooding occurs about 1 percent of the time. Although still common in these habitats today, U. americana now rarely lives long enough to reach the forest canopy because elm...

  11. Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments

    Treesearch

    Patrick Meir; Tana Wood; David R. Galbraith; Paulo M. Brando; Antonio C.I. Da Costa; Lucy Rowland; Leandro V. Ferreira

    2015-01-01

    Many tropical rain forest regions are at risk of increased future drought. The net effects of drought on forest ecosystem functioning will be substantial if important ecological thresholds are passed. However, understanding and predicting these effects is challenging using observational studies alone. Field-based rainfall exclusion (canopy throughfall exclusion; TFE)...

  12. Characterizing 2-D snow stratigraphy in forests based on high-resolution snow penetrometry

    NASA Astrophysics Data System (ADS)

    Teich, M.; Loewe, H.; Jenkins, M. J.; Schneebeli, M.

    2016-12-01

    Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception of falling snow by tree crowns, the reduction of near-surface wind speeds, and changes to the energy balance beneath and around trees leading to a highly variable stratigraphy in space and time. The lack of snowpack observations in forests limits our ability to understand the spatio-temporal evolution of snow stratigraphy as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack in field campaigns using the SnowMicroPen (SMP) under tree canopies in an Engelmann spruce forest in the central Rocky Mountains in Utah, USA. Data were collected in plots beneath canopies of undisturbed, bark beetle-disturbed and salvage logged forest stands, and a non-forested meadow. In 2015 weekly-repeated SMP penetration measurements were taken along 10 m transects at 0.3 m intervals. In the winter of 2016 bi-weekly measurements were collected along 20 m transects every 0.5 m. Using a statistical model, we derived 2-D snow density profiles as a measure of stratigraphy. The small-scale patterns in snow density revealed a more heterogeneous stratigraphy in undisturbed dense stands and also beneath bark beetle-disturbed forest. In contrast, snow stratigraphy was more homogeneous in the harvested plot despite standing small diameter trees and woody debris with effective heights up to 95 cm. As expected, snow depth and layering in non-forested plots varied only slightly over the small spatial extent sampled. Observed patterns changed throughout the snow season dependent upon snow and meteorological conditions. The results contribute to the general understanding of forest-snowpack interactions at high spatial resolution, and can be used to validate snowpack and microwave models for avalanche formation processes and SWE retrieval in forests.

  13. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques

    DOE PAGES

    Meng, Ran; Wu, Jin; Zhao, Feng; ...

    2018-06-01

    Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less

  14. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; Wu, Jin; Zhao, Feng

    Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less

  15. Biodiversity mapping in a tropical West African forest with airborne hyperspectral data.

    PubMed

    Vaglio Laurin, Gaia; Cheung-Wai Chan, Jonathan; Chen, Qi; Lindsell, Jeremy A; Coomes, David A; Guerriero, Leila; Del Frate, Fabio; Miglietta, Franco; Valentini, Riccardo

    2014-01-01

    Tropical forests are major repositories of biodiversity, but are fast disappearing as land is converted to agriculture. Decision-makers need to know which of the remaining forests to prioritize for conservation, but the only spatial information on forest biodiversity has, until recently, come from a sparse network of ground-based plots. Here we explore whether airborne hyperspectral imagery can be used to predict the alpha diversity of upper canopy trees in a West African forest. The abundance of tree species were collected from 64 plots (each 1250 m(2) in size) within a Sierra Leonean national park, and Shannon-Wiener biodiversity indices were calculated. An airborne spectrometer measured reflectances of 186 bands in the visible and near-infrared spectral range at 1 m(2) resolution. The standard deviations of these reflectance values and their first-order derivatives were calculated for each plot from the c. 1250 pixels of hyperspectral information within them. Shannon-Wiener indices were then predicted from these plot-based reflectance statistics using a machine-learning algorithm (Random Forest). The regression model fitted the data well (pseudo-R(2) = 84.9%), and we show that standard deviations of green-band reflectances and infra-red region derivatives had the strongest explanatory powers. Our work shows that airborne hyperspectral sensing can be very effective at mapping canopy tree diversity, because its high spatial resolution allows within-plot heterogeneity in reflectance to be characterized, making it an effective tool for monitoring forest biodiversity over large geographic scales.

  16. Biodiversity Mapping in a Tropical West African Forest with Airborne Hyperspectral Data

    PubMed Central

    Vaglio Laurin, Gaia; Chan, Jonathan Cheung-Wai; Chen, Qi; Lindsell, Jeremy A.; Coomes, David A.; Guerriero, Leila; Frate, Fabio Del; Miglietta, Franco; Valentini, Riccardo

    2014-01-01

    Tropical forests are major repositories of biodiversity, but are fast disappearing as land is converted to agriculture. Decision-makers need to know which of the remaining forests to prioritize for conservation, but the only spatial information on forest biodiversity has, until recently, come from a sparse network of ground-based plots. Here we explore whether airborne hyperspectral imagery can be used to predict the alpha diversity of upper canopy trees in a West African forest. The abundance of tree species were collected from 64 plots (each 1250 m2 in size) within a Sierra Leonean national park, and Shannon-Wiener biodiversity indices were calculated. An airborne spectrometer measured reflectances of 186 bands in the visible and near-infrared spectral range at 1 m2 resolution. The standard deviations of these reflectance values and their first-order derivatives were calculated for each plot from the c. 1250 pixels of hyperspectral information within them. Shannon-Wiener indices were then predicted from these plot-based reflectance statistics using a machine-learning algorithm (Random Forest). The regression model fitted the data well (pseudo-R2 = 84.9%), and we show that standard deviations of green-band reflectances and infra-red region derivatives had the strongest explanatory powers. Our work shows that airborne hyperspectral sensing can be very effective at mapping canopy tree diversity, because its high spatial resolution allows within-plot heterogeneity in reflectance to be characterized, making it an effective tool for monitoring forest biodiversity over large geographic scales. PMID:24937407

  17. Spatiotemporal throughfall patterns beneath an urban tree row

    NASA Astrophysics Data System (ADS)

    Bogeholz, P.; Van Stan, J. T., II; Hildebrandt, A.; Friesen, J.; Dibble, M.; Norman, Z.

    2016-12-01

    Much recent research has focused on throughfall patterns in natural forests as they can influence the heterogeneity of surface ecohydrological and biogeochemical processes. However, to the knowledge of the authors, no work has assessed how urban forest structures affect the spatiotemporal variability of throughfall water flux. Urbanization greatly alters not only a significant portion of the land surface, but canopy structure, with the most typical urban forest configuration being landscaped tree rows along streets, swales, parking lot medians, etc. This study examines throughfall spatiotemporal patterns for a landscaped tree row of Pinus elliottii (Engelm., slash pine) on Georgia Southern University's campus (southeastern, USA) using 150 individual observations per storm. Throughfall correlation lengths beneath this tree row were similar to, but appeared to be more stable across storm size than, observations in past studies on natural forests. Individual tree overlap and the planting interval also may more strongly drive throughfall patterns in tree rows. Meteorological influences beyond storm magnitude (intensity, intermittency, wind conditions, and atmospheric moisture demand) are also examined.

  18. Quantifying forest mortality with the remote sensing of snow

    NASA Astrophysics Data System (ADS)

    Baker, Emily Hewitt

    Greenhouse gas emissions have altered global climate significantly, increasing the frequency of drought, fire, and pest-related mortality in forests across the western United States, with increasing area affected each year. Associated changes in forests are of great concern for the public, land managers, and the broader scientific community. These increased stresses have resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack, and changes forest-atmosphere exchanges of carbon, water, and energy. Most satellite-based retrievals of summer-season forest data are insufficient to quantify canopy, as opposed to the combination of canopy and undergrowth, since the signals of the two types of vegetation greenness have proven persistently difficult to distinguish. To overcome this issue, this research develops a method to quantify forest canopy cover using winter-season fractional snow covered area (FSCA) data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where the ground surface and undergrowth are completely snow-covered, a pixel comprises only forest canopy and snow. Following a snowfall event, FSCA initially rises, as snow is intercepted in the canopy, and then falls, as snow unloads. A select set of local minima in a winter F SCA timeseries form a threshold where canopy is snow-free, but forest understory is snow-covered. This serves as a spatially-explicit measurement of forest canopy, and viewable gap fraction (VGF) on a yearly basis. Using this method, we determine that MODIS-observed VGF is significantly correlated with an independent product of yearly crown mortality derived from spectral analysis of Landsat imagery at 25 high-mortality sites in northern Colorado. (r =0.96 +/-0.03, p =0.03). Additionally, we determine the lag timing between green-stage tree mortality and needlefall, showing that needlefall occurred an average of 2.6 +/- 1.2 years after green-stage mortality. We relate observed increases in the VGF with crown mortality, showing that a 1% increase in mortality area produces a 0.33 +/- 0.1 % increase in the VGF.

  19. Under-canopy snow accumulation and ablation measured with airborne scanning LiDAR altimetry and in-situ instrumental measurements, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Kirchner, P. B.; Bales, R. C.; Musselman, K. N.; Molotch, N. P.

    2012-12-01

    We investigated the influence of canopy on snow accumulation and melt in a mountain forest using paired snow on and snow off scanning LiDAR altimetry, synoptic measurement campaigns and in-situ time series data of snow depth, SWE, and radiation collected from the Kaweah River watershed, Sierra Nevada, California. Our analysis of forest cover classified by dominant species and 1 m2 grided mean under canopy snow accumulation calculated from airborne scanning LiDAR, demonstrate distinct relationships between forest class and under-canopy snow depth. The five forest types were selected from carefully prepared 1 m vegetation classifications and named for their dominant tree species, Giant Sequoia, Jeffrey Pine, White Fir, Red Fir, Sierra Lodgepole, Western White Pine, and Foxtail Pine. Sufficient LiDAR returns for calculating mean snow depth per m2 were available for 31 - 44% of the canopy covered area and demonstrate a reduction in snow depth of 12 - 24% from adjacent open areas. The coefficient of variation in snow depth under canopies ranged from 0.2 - 0.42 and generally decreased as elevation increased. Our analysis of snow density snows no statistical significance between snow under canopies and in the open at higher elevations with a weak significance for snow under canopies at lower elevations. Incident radiation measurements made at 15 minute intervals under forest canopies show an input of up to 150 w/m2 of thermal radiation from vegetation to the snow surface on forest plots. Snow accumulated on the mid to high elevation forested slopes of the Sierra Nevada represents the majority of winter snow storage. However snow estimates in forested environments demonstrate a high level of uncertainty due to the limited number of in-situ observations and the inability of most remote sensing platforms to retrieve reflectance under dense vegetation. Snow under forest canopies is strongly mediated by forest cover and decoupled from the processes that dictate accumulation and ablation of snow in open locations, where almost all precipitation and meteorlogic measurements concerning snow are made. Snow accumulation is intercepted by vegetation until it accumulates to a depth equal to or greater than the height of the vegetation, is reduced by the amount of sublimation or evaporation occurring while on the canopy and is redistributed beneath the canopy at a different density or as liquid water. Ablation processes are dictated by the energy environment surrounding vegetation where sensible heat is mediated by shading of short wave radiation.

  20. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    PubMed

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  1. Light Competition and Carbon Partitioning-Allocation in an improved Forest Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Collalti, Alessio; Santini, Monia; Valentini Valentini, Riccardo

    2010-05-01

    In Italy about 100.000 km2 are covered by forests. This surface is the 30% of the whole national land and this shows how the forests are important both for socio-economic and for environmental aspects. Forests changes affect a delicate balance that involve not only vegetation components but also bio-geochemical cycles and global climate. The knowledge of the amount of Carbon sequestered by forests represents a precious information for their sustainable management in the framework of climate changes. Primary studies in terms of model about this important issue, has been done through Forest Ecosystem Model (FEM), well known and validated as 3PG (Landsberg et Waring, 1997; Sands 2004). It is based on light use efficiency approach at the canopy level. The present study started from the original model 3PG, producing an improved version that uses many of explicit formulations of all relevant ecophysiological processes but makes it able to be applied for natural forests. The mutual interaction of forest growth and light conditions causes vertical and horizontal differentiation in the natural forest mosaic. Only ecophysiological parameters which can be either directly measured or estimates with reasonable certainty are used. The model has been written in C language and has been created considering a tri-dimensional cell structure with different vertical layers depending on the forest type that has to be simulated. This 3PG 'improved' version enable to work on multi-layer and multi-species forests type with cell resolution of one hectare for the typical Italian forest species. The multi-layer version is the result of the implementation and development of Lambert-Beer law for the estimation of intercepted, absorbed and transmitted light through different storeys of the forest. It is possible estimates, for each storey, a Par value (Photosynthetic Active Radiation) through Leaf Area Index (LAI), Light Extinction Coefficient and cell Canopy Cover using a "Big Leaf" approach. Hence, the presence of a cohort in a storey determines the amount of light received for the photosynthetic processes. The population density (numbers of trees per cell) represents a good competition index for determining the tree crown structure and tree crown dimension within a forest population. The tree crown tend to branch out horizontally to intercept as much light as possible. The model assess the structure of the tree crown both vertically and horizontally on the base of the population density and it up-scales the result to the whole stand. The canopy depth and the percentage of horizontal coverage determines moreover a crowding competition index that lead to a specific biomass partitioning-allocation ratio among the different tree components (foliage, roots and stem) and especially for the stem affecting Height-Diameter (at breast height) ratio. In this model, Height-Diameter ratio is used as an alternative competition index in determining the vigour and the strength of competition on free growth status of trees. The forest dominant vegetative cover affects moreover the presence of a dominated layer, it influences its yield and its Carbon stocking capacity and hence it influences the forest ecosystem CO2 carbon balance. From this model it is possible to simulate the impact of Climate Change on forests, the feedback of one or more dominated layers in terms of CO2 uptake in a forest stand and the effects of forest management activities for the next years.

  2. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia.

    PubMed

    Kato, Makoto; Kosaka, Yasuyuki; Kawakita, Atsushi; Okuyama, Yudai; Kobayashi, Chisato; Phimminith, Thavy; Thongphan, Daovorn

    2008-11-01

    Forests with different flora and vegetation types harbor different assemblages of flower visitors, and plant-pollinator interactions vary among forests. In monsoon-dominated East and Southeast Asia, there is a characteristic gradient in climate along latitude, creating a broad spectrum of forest types with potentially diverse pollinator communities. To detect a geographical pattern of plant-pollinator interactions, we investigated flowering phenology and pollinator assemblages in the least-studied forest type, i.e., tropical monsoon forest, in the Vientiane plain in Laos. Throughout the 5-year study, we observed 171 plant species blooming and detected flower visitors on 145 species. Flowering occurred throughout the year, although the number of flowering plant species peaked at the end of dry season. The dominant canopy trees, including Dipterocarpaceae, bloomed annually, in contrast to the supra-annual general flowering that occurs in Southeast Asian tropical rain forests. Among the 134 native plant species, 68 were pollinated by hymenopterans and others by lepidopterans, beetles, flies, or diverse insects. Among the observed bees, Xylocopa, megachilids, and honeybees mainly contributed to the pollination of canopy trees, whereas long-tongued Amegilla bees pollinated diverse perennials with long corolla tubes. This is the first community-level study of plant-pollinator interactions in an Asian tropical monsoon forest ecosystem.

  3. Patch to landscape patterns in post fire recruitment of a serotinous conifer

    USGS Publications Warehouse

    Ne'eman, Gidi; Fotheringham, C.J.; Keeley, J.E.

    1999-01-01

    Obligate seeding species are highly specialized to fire disturbance and many conifers such as cypress, which are adapted to high intensity stand-replacing fires, have canopy seed banks stored in serotinous cones. Resilience of these trees to fire disturbance is a function of disturbance frequency and one focus of this study was to determine the effect of patch age on postfire recruitment. A second focus was to determine the extent to which fire induced a landscape level change in the location of the forest boundary. Prior to a fire in 1994, a large Cupressus sargentii forest was a mosaic landscape of different aged patches of nearly pure cypress bordered by chaparral. Patches less than 60 years of age were relatively dense with roughly one tree every 1-2 m2 but older patches had thinned to one tree every 3-15 m2. Older trees had substantially greater canopy cone crops but the stand level seed bank size was not significantly correlated with stand age. Fire-dependent obligate seeding species are sensitive to fire return interval because of potential changes in the size of seed banks - facing both a potential 'immaturity risk' and a 'senescence risk'. At our site, C. sargentii regeneration was substantial in stands as young as 20 years, suggesting that fire return interval would need to be shorter than this to pose any significant risk. Reduced seedling recruitment in stands nearly 100 years of age may indicate risk from senescence is greater, however, even the lowest density seedling recruitment was many times greater than the density of mature forests - thus this cypress would appear to be resilient to a wide range of fire return intervals. Changes in landscape patterning of forest and chaparral are unlikely except after fire. Factors that inhibit tree establishment within the shrubland, as well as factors that affect shrub establishment within the forest border likely affect the 'permeability' of this ecotone. After the 1994 fire this boundary appeared to be stable in that cypress recruited best within the shadow of burned canopies and cypress were weak invaders of adjacent shrublands.

  4. Modeling the Impact of Land Use Change on Regional Water Flux in Northern Wisconsin-Species Effects on Transpiration and Canopy Average Stomatal Conductance

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Ahl, D. E.; Burrows, S. N.; Samanta, S. S.; Gower, S. T.

    2001-05-01

    Land use change has created a diversity of forest cover types in northern Wisconsin. Our objective was to determine if changes in forest cover would result in a significant change in regional water flux. To adequately sample these forest cover types we chose four cover types red pine, sugar maple/basswood, quaking aspen/balsam fir, and northern white-cedar/balsam fir/green alder that represent more than 80 percent of the ground area. The remainder of the ground area is mostly non-forested grassland, shrubland, and open water. Within each cover type we measured sap flux of 8 trees of each species. We scaled point measurements of sap flux to tree transpiration using sensors positioned radially into the conducting sapwood and on both the north and south sides of the tree. We found that aspen/balsam fir had the highest average daily transpiration rates. There was no difference in the northern white-cedar/balsam fir/green alder and red pine cover types. The sugar maple/basswood cover type had the lowest daily average transpiration rate. These changes in transpiration could not be explained by differences in leaf area index. Thus, we calculated canopy average stomatal conductance (GS) using an inversion of the Penman-Monteith equation and tree leaf area. We modified a regional hydrology model to include a simple tree hydraulic sub-model that assumes stomatal regulation of leaf water potential. We tested the behavior of the sub-model by evaluating GS response to vapor pressure deficit, radiation, temperature, and soil moisture for each species. We hypothesize that species with a high canopy average stomatal conductance at low vapor pressure deficit will have to have greater sensitivity to vapor pressure deficit in order to maintain minimal leaf water potential as suggested by the model. Our results indicate that changes to forest cover such as conversion from low transpiring sugar maple/basswood to high transpiring aspen/fir will result in predictable changes to the regional water balance of northern Wisconsin.

  5. Leaf Pressure Volume Data in Caxiuana and Tapajos National Forest, Para, Brazil (2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Thomas; Moorcroft, Paul

    Pressure volume curve measurements on leaves of canopy trees from the from the Caxiuana and Tapajos National Forests, Para, Brazil. Tapajos samples were harvested from the km 67 forested area, which is adjacent to the decommissioned throughfall exclusion drought experimental plot. Caxiuana samples were harvested from trees growing in the throughfall exclusion plots. Data were collected in 2011. Dataset includes: date of measurement, site ID, plot ID, tree ID (species, tree tag #), leaf area, fresh weight, relative weight, leaf water potential, and leaf water loss. P-V curve parameters (turgor loss point, osmotic potential, and bulk modulus of elasticity) canmore » be found in Powell et al. (2017) Differences in xylem cavitation resistance and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Global Change Biology.« less

  6. A data-led comparison of simple canopy radiative transfer models for the boreal forest

    NASA Astrophysics Data System (ADS)

    Reid, T.; Essery, R.; Rutter, N.; King, M.

    2012-12-01

    Given the computational complexity of numerical weather and climate models, it is worthwhile developing very simple parameterizations for processes such as the transmission of radiation through forest canopies. For this reason, the land surface schemes in global models, and most snow hydrological models, tend to use simple one-dimensional approaches based on Beer's Law or two-stream approximations. Such approaches assume a continuous canopy structure that may not be suitable for the varied, heterogeneous forest cover in boreal regions, especially in winter when snow in the canopy and on the ground may either block radiation or produce multiple reflections between the ground and the trees. There is great benefit in comparing models to real transmissivity values calculated from radiation measurements below and above Arctic canopies. In particular, there is a lack of data for leafless boreal deciduous forests, where canopy gaps are prevalent even at low solar elevation angles near the horizon. In this study, models are compared to radiation data collected in an area of boreal birch forest near Abisko, Sweden in March/April 2011 and mixed conifer forest at Sodankylä, Finland in March/April 2012. Arrays comprising ten shortwave pyranometers were deployed for periods of up to 50 days, under forest plots of varying canopy structures and densities. In addition, global and diffuse shortwave irradiances were recorded at nearby open sites representing the top-of-canopy conditions. A model is developed that explicitly accounts for both diffuse radiation and direct beam transmission on a 5-minute timestep, by using upward-looking hemispherical photographs taken from every pyranometer site. This model reproduces measured transmissivity, although with a slight underestimation, especially at low solar elevations - this could be attributed to multiple reflections that are not accounted for in the model. On the other hand, models based on Beer's Law tend to underestimate the canopy transmissivity significantly, especially for leafless birch canopies where the required assumption of a continuous canopy breaks down. These findings are important for the often sparse, heterogeneous forest cover in boreal regions, where forest edges and canopy gaps are plentiful. They could also have an impact on estimations of overall land surface albedo. Moreover, all models are sensitive to the partitioning of top-of-canopy radiation into its direct and diffuse components, which is complicated by the low solar elevations in the Arctic. More research is required to decide the best way of quantifying the diffuse fraction, using data alongside both physical and empirical models.

  7. Interactions with successional stage and nutrient status determines the life-form-specific effects of increased soil temperature on boreal forest floor vegetation.

    PubMed

    Hedwall, Per-Ola; Skoglund, Jerry; Linder, Sune

    2015-02-01

    The boreal forest is one of the largest terrestrial biomes and plays a key role for the global carbon balance and climate. The forest floor vegetation has a strong influence on the carbon and nitrogen cycles of the forests and is sensitive to changes in temperature conditions and nutrient availability. Additionally, the effects of climate warming on forest floor vegetation have been suggested to be moderated by the tree layer. Data on the effects of soil warming on forest floor vegetation from the boreal forest are, however, very scarce. We studied the effects on the forest floor vegetation in a long-term (18 years) soil warming and fertilization experiment in a Norway spruce stand in northern Sweden. During the first 9 years, warming favored early successional species such as grasses and forbs at the expense of dwarf shrubs and bryophytes in unfertilized stands, while the effects were smaller after fertilization. Hence, warming led to significant changes in species composition and an increase in species richness in the open canopy nutrient limited forest. After another 9 years of warming and increasing tree canopy closure, most of the initial effects had ceased, indicating an interaction between forest succession and warming. The only remaining effect of warming was on the abundance of bryophytes, which contrary to the initial phase was strongly favored by warming. We propose that the suggested moderating effects of the tree layer are specific to plant life-form and conclude that the successional phase of the forest may have a considerable impact on the effects of climate change on forest floor vegetation and its feedback effects on the carbon and nitrogen cycles, and thus on the climate.

  8. Interactions with successional stage and nutrient status determines the life-form-specific effects of increased soil temperature on boreal forest floor vegetation

    PubMed Central

    Hedwall, Per-Ola; Skoglund, Jerry; Linder, Sune

    2015-01-01

    The boreal forest is one of the largest terrestrial biomes and plays a key role for the global carbon balance and climate. The forest floor vegetation has a strong influence on the carbon and nitrogen cycles of the forests and is sensitive to changes in temperature conditions and nutrient availability. Additionally, the effects of climate warming on forest floor vegetation have been suggested to be moderated by the tree layer. Data on the effects of soil warming on forest floor vegetation from the boreal forest are, however, very scarce. We studied the effects on the forest floor vegetation in a long-term (18 years) soil warming and fertilization experiment in a Norway spruce stand in northern Sweden. During the first 9 years, warming favored early successional species such as grasses and forbs at the expense of dwarf shrubs and bryophytes in unfertilized stands, while the effects were smaller after fertilization. Hence, warming led to significant changes in species composition and an increase in species richness in the open canopy nutrient limited forest. After another 9 years of warming and increasing tree canopy closure, most of the initial effects had ceased, indicating an interaction between forest succession and warming. The only remaining effect of warming was on the abundance of bryophytes, which contrary to the initial phase was strongly favored by warming. We propose that the suggested moderating effects of the tree layer are specific to plant life-form and conclude that the successional phase of the forest may have a considerable impact on the effects of climate change on forest floor vegetation and its feedback effects on the carbon and nitrogen cycles, and thus on the climate. PMID:25750720

  9. An estimate of the number of tropical tree species.

    PubMed

    Slik, J W Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L; Bellingham, Peter J; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal; Bongers, Frans; Boyle, Brad; Bradford, Matt; Brearley, Francis Q; Breuer-Ndoundou Hockemba, Mireille; Bunyavejchewin, Sarayudh; Calderado Leal Matos, Darley; Castillo-Santiago, Miguel; Catharino, Eduardo L M; Chai, Shauna-Lee; Chen, Yukai; Colwell, Robert K; Chazdon, Robin L; Robin, Chazdon L; Clark, Connie; Clark, David B; Clark, Deborah A; Culmsee, Heike; Damas, Kipiro; Dattaraja, Handanakere S; Dauby, Gilles; Davidar, Priya; DeWalt, Saara J; Doucet, Jean-Louis; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl A O; Eisenlohr, Pedro V; Eler, Eduardo; Ewango, Corneille; Farwig, Nina; Feeley, Kenneth J; Ferreira, Leandro; Field, Richard; de Oliveira Filho, Ary T; Fletcher, Christine; Forshed, Olle; Franco, Geraldo; Fredriksson, Gabriella; Gillespie, Thomas; Gillet, Jean-François; Amarnath, Giriraj; Griffith, Daniel M; Grogan, James; Gunatilleke, Nimal; Harris, David; Harrison, Rhett; Hector, Andy; Homeier, Jürgen; Imai, Nobuo; Itoh, Akira; Jansen, Patrick A; Joly, Carlos A; de Jong, Bernardus H J; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L; Kenfack, David; Kessler, Michael; Kitayama, Kanehiro; Kooyman, Robert; Larney, Eileen; Laumonier, Yves; Laurance, Susan; Laurance, William F; Lawes, Michael J; Amaral, Ieda Leao do; Letcher, Susan G; Lindsell, Jeremy; Lu, Xinghui; Mansor, Asyraf; Marjokorpi, Antti; Martin, Emanuel H; Meilby, Henrik; Melo, Felipe P L; Metcalfe, Daniel J; Medjibe, Vincent P; Metzger, Jean Paul; Millet, Jerome; Mohandass, D; Montero, Juan C; de Morisson Valeriano, Márcio; Mugerwa, Badru; Nagamasu, Hidetoshi; Nilus, Reuben; Ochoa-Gaona, Susana; Onrizal; Page, Navendu; Parolin, Pia; Parren, Marc; Parthasarathy, Narayanaswamy; Paudel, Ekananda; Permana, Andrea; Piedade, Maria T F; Pitman, Nigel C A; Poorter, Lourens; Poulsen, Axel D; Poulsen, John; Powers, Jennifer; Prasad, Rama C; Puyravaud, Jean-Philippe; Razafimahaimodison, Jean-Claude; Reitsma, Jan; Dos Santos, João Roberto; Roberto Spironello, Wilson; Romero-Saltos, Hugo; Rovero, Francesco; Rozak, Andes Hamuraby; Ruokolainen, Kalle; Rutishauser, Ervan; Saiter, Felipe; Saner, Philippe; Santos, Braulio A; Santos, Fernanda; Sarker, Swapan K; Satdichanh, Manichanh; Schmitt, Christine B; Schöngart, Jochen; Schulze, Mark; Suganuma, Marcio S; Sheil, Douglas; da Silva Pinheiro, Eduardo; Sist, Plinio; Stevart, Tariq; Sukumar, Raman; Sun, I-Fang; Sunderland, Terry; Sunderand, Terry; Suresh, H S; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jangwei; Targhetta, Natália; Theilade, Ida; Thomas, Duncan W; Tchouto, Peguy; Hurtado, Johanna; Valencia, Renato; van Valkenburg, Johan L C H; Van Do, Tran; Vasquez, Rodolfo; Verbeeck, Hans; Adekunle, Victor; Vieira, Simone A; Webb, Campbell O; Whitfeld, Timothy; Wich, Serge A; Williams, John; Wittmann, Florian; Wöll, Hannsjoerg; Yang, Xiaobo; Adou Yao, C Yves; Yap, Sandra L; Yoneda, Tsuyoshi; Zahawi, Rakan A; Zakaria, Rahmad; Zang, Runguo; de Assis, Rafael L; Garcia Luize, Bruno; Venticinque, Eduardo M

    2015-06-16

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.

  10. Seasonal and Inter-annual Variation in Wood Production in Tropical Trees on Barro Colorado Island, Panama, is Related to Local Climate and Species Functional Traits

    NASA Astrophysics Data System (ADS)

    Cushman, K.; Muller-Landau, H. C.; Kellner, J. R.; Wright, S. J.; Condit, R.; Detto, M.; Tribble, C. M.

    2015-12-01

    Tropical forest carbon budgets play a major role in global carbon dynamics, but the responses of tropical forests to current and future inter-annual climatic variation remains highly uncertain. Better predictions of future tropical forest carbon fluxes require an improved understanding of how different species of tropical trees respond to changes in climate at seasonal and inter-annual temporal scales. We installed dendrometer bands on a size-stratified sample of 2000 trees in old growth forest on Barro Colorado Island, Panama, a moist lowland forest that experiences an annual dry season of approximately four months. Tree diameters were measured at the beginning and end of the rainy season since 2008. Additionally, we recorded the canopy illumination level, canopy intactness, and liana coverage of all trees during each census. We used linear mixed-effects models to evaluate how tree growth was related to seasonal and interannual variation in local climate, tree condition, and species identity, and how species identity effects related to tree functional traits. Climatic variables considered included precipitation, solar radiation, soil moisture, and climatological water deficit, and were all calculated from high-quality on-site measurements. Functional traits considered included wood density, maximum adult stature, deciduousness, and drought tolerance. We found that annual wood production was positively related to water availability, with higher growth in wetter years. Species varied in their response to seasonal water availability, with some species showing more pronounced reduction of growth during the dry season when water availability is limited. Interspecific variation in seasonal and interannual growth patterns was related to life-history strategies and species functional traits. The finding of higher growth in wetter years is consistent with previous tree ring studies conducted on a small subset of species with reliable annual rings. Together with previous findings that seed production at this site is higher in sunnier (and drier) years, this suggests strong climate-related shifts in allocation. This study highlights the importance of considering forest species composition and potential allocational shifts when predicting carbon fluxes in response to local climate variation.

  11. Edge disturbance drives liana abundance increase and alteration of liana-host tree interactions in tropical forest fragments.

    PubMed

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Alamgir, Mohammed; Porolak, Gabriel; Mohandass, D; Laurance, William F

    2018-04-01

    Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.

  12. Deposition of aerially applied BT in an oak forest and its prediction with the FSCBG model

    USGS Publications Warehouse

    Anderson, Dean E.; Miller, David R.; Wang, Yansen; Yendol, William G.; Mierzejewski, Karl; McManus, Michael L.

    1992-01-01

    Data are provided from 17 single-swath aerial spray trials that were conducted over a fully leafed, 16-m tall, mixed oak forest. The distribution of cross-swath spray deposits was sampled at the top of the canopy and below the canopy. Micrometeorological conditions were measured above and within the canopy during the spray trials. The USDA Forest Service FSCBG (Forest Service-Cramer-Barry-Grim) model was run to predict the target sampler catch for each trial using forest stand, airplane-application-equipment configuration, and micrometeorological conditions as inputs. Observations showed an average cross-swath deposition of 100 IU cm−2 with large run-to-run variability in deposition patterns, magnitudes, and drift. Eleven percent of the spray material that reached the top of the canopy penetrated through the tree canopy to the forest floor.The FSCBG predictions of the ensemble-averaged deposition were within 17% of the measured deposition at the canopy top and within 8% on the ground beneath the canopy. Run-to-run deposit predictions by FSCBG were considerably less variable than the measured deposits. Individual run predictions were much less accurate than the ensemble-averaged predictions as demonstrated by an average root-mean-square-error (rmse) of 27.9 IU CM−2 at the top of the canopy. Comparisons of the differences between predicted and observed deposits indicated that the model accuracy was sensitive to atmospheric stability conditions. In neutral and stable conditions, a regular pattern of error was indicated by overprediction of the canopy-top deposit at distances from 0 to 20 m downwind from the flight line and underprediction of the deposit both farther downwind than 20 m and upwind of the flight line. In unstable conditions the model generally underpredicted the deposit downwind from the flight line, but showed no regular pattern of error.

  13. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    NASA Astrophysics Data System (ADS)

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant below the closed canopy of even-aged, pioneer trees a climax-species-rich understorey that will build the canopy of the mature forest. This study highlights that forest structure and species composition are both relevant for understanding the temperature sensitivity of wood production.

  14. Foliar Temperature-Respiration Response Functions for Broad-Leaved Tree Species in the Southern Appalachians

    Treesearch

    Paul V. Bolstad; Katherine Mitchell; James M. Vose

    1999-01-01

    We measured leaf respiration in 18 eastern deciduous forest tree species to determine if there were differences in temperature-respiration response functions among species or among canopy positions. Leaf respiration rates were measured in situ an4 on detached branches for Acer pensylvanicum L., A. rubrum L., Betula...

  15. Ten-year performance of the United States national elm trial

    Treesearch

    Jason J. Griffin; William R. Jacobi; E. Gregory McPherson; Clifford S. Sadof; James R. McKenna; Mark L. Gleason; Nicole Ward Gauthier; Daniel A. Potter; David R. Smitley; Gerard C. Adams; Ann Brooks Gould; Christian R. Cash; James A. Walla; Mark C. Starrett; Gary Chastagner; Jeff L. Sibley; Vera A. Krischik; Adam F. Newby

    2017-01-01

    Ulmus americana (American elm) was an important urban tree in North America prior to the introduction of the Dutch elm disease pathogen in 1930. Subsequently, urban and community forests were devastated by the loss of large canopies. Tree improvement programs produced disease tolerant American and Eurasian elm cultivars and introduced them into the...

  16. Experimental evaluation of the significance of the pressure transport term for the Turbulence Kinetic Energy Budget across contrasting forest architectures

    NASA Astrophysics Data System (ADS)

    Ehrnsperger, Laura; Wunder, Tobias; Thomas, Christoph

    2017-04-01

    Forests are one of the dominant vegetation types on Earth and are an important sink for carbon on our planet. Forests are special ecosystems due to their great canopy height und complex architecture consisting of a subcanopy and a canopy layer, which changes the mechanisms of turbulent exchange within the plant canopy. To date, the sinks and sources of turbulence in forest canopies are not completely understood, especially the role of the pressure transport remains unclear. The INTRAMIX experiment was conducted in a mountainous Norway spruce (Picea abies) forest at the Fluxnet Waldstein site (DE-Bay) in Bavaria, Germany, for a period of 10 weeks in order to experimentally evaluate the significance of the pressure transport to the TKE budget for the first time. The INTRAMIX data of the dense mountain forest was compared to observations from a sparse Ponderosa pine (Pinus ponderosa) stand in Oregon, USA, to study the influence of forest architecture. We hypothesized that the pressure transport is more important in dense forest canopies as the crown decouples the subcanopy from the buoyancy- and shear-driven flow above the canopy. It is also investigated how atmospheric stability influences the TKE budget. Based upon model results from literature we expect the pressure transport to act as a source for TKE especially under free convective and unstable dynamic stability. Results to date indicate that pressure transport is most important in the subcanopy with decreasing magnitude with increasing height. Nevertheless, pressure transport is a continuous source of TKE above the canopy, while in the canopy and subcanopy layer pressure transport acts both as a sink and source term for TKE. In the tree crown layer pressure transport is a source in the morning and afternoon hours and acts as a sink during the evening, while in the subcanopy pressure transport is a source around noon and during the night and acts as a sink in the early morning and afternoon hours. This complementary pattern suggests that the pressure transport is an important means for exchanging TKE across canopy layers.

  17. The interactive effects of surface-burn severity and canopy cover on conifer and broadleaf tree seedling ecophysiology

    Treesearch

    Sheel Bansal; Till Jochum; David A. Wardle; Marie-Charlotte Nilsson

    2014-01-01

    Fire has an important role for regeneration of many boreal forest tree species, and this includes both wildfire and prescribed burning following clear-cutting. Depending on the severity, fire can have a variety of effects on above- and belowground properties that impact tree seedling establishment. Very little is known about the impacts of ground fire severity on post-...

  18. A Forest Tent Caterpillar Outbreak Increased Resource Levels and Seedling Growth in a Northern Hardwood Forest.

    PubMed

    Rozendaal, Danaë M A; Kobe, Richard K

    2016-01-01

    In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008-2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed-canopy forests.

  19. A Forest Tent Caterpillar Outbreak Increased Resource Levels and Seedling Growth in a Northern Hardwood Forest

    PubMed Central

    Rozendaal, Danaë M. A.; Kobe, Richard K.

    2016-01-01

    In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008–2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed-canopy forests. PMID:27870897

  20. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-Derived Dissolved Organic Matter in an Epiphyte-Laden Oak-Cedar Forest

    NASA Astrophysics Data System (ADS)

    Van Stan, John T.; Wagner, Sasha; Guillemette, François; Whitetree, Ansley; Lewis, Julius; Silva, Leticia; Stubbins, Aron

    2017-11-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched in dissolved organic carbon (DOC) compared to rainfall, and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with fluorescent DOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g C m-2 yr-1) were similar to other yields from discrete down-gradient fluxes (litter leachates, soil leachates, and stream discharge) along the rainfall-to-discharge flow path.

Top