Density-dependent vulnerability of forest ecosystems to drought
Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.; Fraver, Shawn; Battaglia, Mike A.; Asherin, Lance A.
2017-01-01
1. Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients.2. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events.3. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity.4. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades. Nonetheless, the broader applicability of our findings to other types of forest ecosystems merits additional investigation.
Assisted migration of forest populations for adapting trees to climate change
Cuauhtémoc Sáenz-Romero; Roberto A. Lindig-Cisneros; Dennis G. Joyce; Jean Beaulieu; J. Bradley St. Clair; Barry C. Jaquish
2016-01-01
We present evidence that climatic change is an ongoing process and that forest tree populations are genetically differentiated for quantitative traits because of adaptation to specific habitats. We discuss in detail indications that the shift of suitable climatic habitat for forest tree species and populations, as a result of rapid climatic change, is likely to cause...
Buckelew Cumming Anne; Daniel Twardus; William Smith
2006-01-01
Urban forests have many components: park trees, small woodlands, riparian buffers, street trees, and others. While some communities conduct city-wide inventories of street tree populations, there has been no comprehensive, statewide sampling to characterize the structure, health, and function of street tree populations. A statewide Street Tree Monitoring pilot study...
Hans T. Schreuder; Jin-Mann S. Lin; John Teply
2000-01-01
We estimate number of tree species in National Forest populations using the nonparametric estimator. Data from the Current Vegetation Survey (CVS) of Region 6 of the USDA Forest Service were used to estimate the number of tree species with a plot close in size to the Forest Inventory and Analysis (FIA) plot and the actual CVS plot for the 5.5 km FIA grid and the 2.7 km...
Criterion 8: Urban and community forests
Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield
2012-01-01
Urban and community forests are the trees and forests found in cities, towns, villages, and communities. This category of forest includes both forested stands and trees along streets, in residential lots, and parks. These trees within cities and communities provide many ecosystem services and values to both urban and rural populations.
Forest turnover rates follow global and regional patterns of productivity
Stephenson, N.L.; van Mantgem, P.J.
2005-01-01
Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics. ??2005 Blackwell Publishing Ltd/CNRS.
Genetic diversity-seeing the forest through the trees
M. Thompson Conkle
1992-01-01
Forest trees, populations, races, species, and taxonomic groups above the species level display rich variation in biochemical markers. The variation stems from inherited modifications that trace back in time, through converging ancestries, towards common progenitors. Past movements of continents, mountain building events, and climate changes isolated forest populations...
Peh, Kelvin S.-H.; Sonké, Bonaventure; Séné, Olivier; Djuikouo, Marie-Noël K.; Nguembou, Charlemagne K.; Taedoumg, Hermann; Begne, Serge K.; Lewis, Simon L.
2014-01-01
Background Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest. Methodology/Principal Findings We sampled all trees (diameter in breast height [dbh]≥10 cm) within 6×1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450–800 m apart). Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement–revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement. Conclusions/Significance Our results suggest that certain traits (wood density and light requirement) and population-level characteristics (relative abundance) may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species. PMID:24844914
Pilot Inventory of FIA plots traditionally called `nonforest'
Rachel Riemann
2003-01-01
Forest-inventory data were collected on plots defined as ?nonforest? by the USDA Forest Service?s Forest Inventory and Analysis (FIA) unit. Nonforest plots may have trees on them, but they do not fit FIA?s definition of forest because the area covered by trees is too small, too sparsely populated by trees, too narrow (e.g., trees between fields or in the middle of a...
Basal area growth for 15 tropical trees species in Puerto Rico. Forest
B. R. Parresol
1995-01-01
The tabonuco forest of Puerto Rico support a diverse population of tree species valued for timber, fuel, food, wildlife food and cover, and erosion control among other use. tree basal area growth data spanning 39 years are avaible on 15 species from eigth permanent plots in Luquillo Experimental Forest. The complexity of the rain forest challeges current forest...
David J. Nowak; Eric J. Greenfield
2016-01-01
Trees and forests are resources that significantly affect the health and well-being of people who live in urban areas where more than 80 percent of the U.S. population resides. These trees within our cities and communities provide many ecosystem services and values to both urban and rural populations. Healthy urban and rural forests are critical for sustaining quality...
Dick, Christopher W; Etchelecu, Gabriela; Austerlitz, Frédéric
2003-03-01
Tropical rainforest trees typically occur in low population densities and rely on animals for cross-pollination. It is of conservation interest therefore to understand how rainforest fragmentation may alter the pollination and breeding structure of remnant trees. Previous studies of the Amazonian tree Dinizia excelsa (Fabaceae) found African honeybees (Apis mellifera scutellata) as the predominant pollinators of trees in highly disturbed habitats, transporting pollen up to 3.2 km between pasture trees. Here, using microsatellite genotypes of seed arrays, we compare outcrossing rates and pollen dispersal distances of (i) remnant D. excelsa in three large ranches, and (ii) a population in undisturbed forest in which African honeybees were absent. Self-fertilization was more frequent in the disturbed habitats (14%, n = 277 seeds from 12 mothers) than in undisturbed forest (10%, n = 295 seeds from 13 mothers). Pollen dispersal was extensive in all three ranches compared to undisturbed forest, however. Using a twogener analysis, we estimated a mean pollen dispersal distance of 1509 m in Colosso ranch, assuming an exponential dispersal function, and 212 m in undisturbed forest. The low effective density of D. excelsa in undisturbed forest (approximately 0.1 trees/ha) indicates that large areas of rainforest must be preserved to maintain minimum viable populations. Our results also suggest, however, that in highly disturbed habitats Apis mellifera may expand genetic neighbourhood areas, thereby linking fragmented and continuous forest populations.
Western spruce budworm as related to stand characteristics in the bitterroot national forest
Carroll B. Williams; Patrick J. Shea; Gerald S. Walton
1971-01-01
Relation of population density to certain stand conditions and damage indicators was analyzed in four drainages on the Bitterroot National Forest of Montana. Western spruce budworm (Choristoneura occidentalis Freeman) populations were strongly related to plot basal area, tree species, and tree crown levels, and also to current and past levels of tree defoliation....
Urban Forest Health Monitoring in the United States
David J. Nowak; Daniel Twardus; Robert Hoehn; Manfred Mielke; Jeffery T. Walton; Daniel E. Crane; Anne Cumming; Jack C. Stevens
2006-01-01
To better understand the urban forest resource and its numerous values, the U.S. Department of Agriculture Forest Service has initiated a pilot program to sample the urban tree population in Indiana, Wisconsin, and New Jersey and statewide urban street tree populations in Maryland, Wisconsin, and Massachusetts. Results from the pilot study in Indiana revealed that...
Risk of genetic maladaptation due to climate change in three major European tree species
Aline Frank; Glenn T. Howe; Christoph Sperisen; Peter Brang; Brad St. Clair; Dirk R. Schmatz; Caroline Heiri
2017-01-01
Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnerability, and develop strategies to preserve forest...
Herbivores limit the population size of big-leaf mahogany trees in an Amazonian forest
Julian M. Norghauer; Christopher M. Free; R. Matthew Landis; James Grogan; Jay R. Malcolm; Sean C. Thomas
2015-01-01
The Janzen -- Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host-...
Local population extinction and vitality of an epiphytic lichen in fragmented old-growth forest.
Ockinger, Erik; Nilsson, Sven G
2010-07-01
The population dynamics of organisms living in short-lived habitats will largely depend on the turnover of habitat patches. It has been suggested that epiphytes, whose host plants can be regarded as habitat patches, often form such patch-tracking populations. However, very little is known about the long-term fate of epiphyte individuals and populations. We estimated life span and assessed environmental factors influencing changes in vitality, fertility, abundance, and distribution of the epiphytic lichen species Lobaria pulmonaria on two spatial scales, individual trees and forest patches, over a period of approximately 10 years in 66 old-growth forest fragments. The lichen had gone extinct from 7 of the 66 sites (13.0%) where it was found 10 years earlier, even though the sites remained unchanged. The risk of local population extinction increased with decreasing population size. In contrast to the decrease in the number of occupied trees and sites, the mean area of the lichen per tree increased by 43.0%. The number of trees with fertile ramets of L. pulmonaria increased from 7 (approximately 1%) to 61 (approximately 10%) trees, and the number of forest fragments with fertile ramets increased from 4 to 23 fragments. The mean annual rate of L. pulmonaria extinction at the tree level was estimated to be 2.52%, translating into an expected lifetime of 39.7 years. This disappearance rate is higher than estimated mortality rates for potential host trees. The risk of extinction at the tree level was significantly positively related to tree circumference and differed between tree species. The probability of presence of fertile ramets increased significantly with local population size. Our results show a long expected lifetime of Lobaria pulmonaria ramets on individual trees and a recent increase in vitality, probably due to decreasing air pollution. The population is, however, declining slowly even though remaining stands are left uncut, which we interpret as an extinction debt.
Fajardo, Alex; Torres-Díaz, Cristian; Till-Bottraud, Irène
2016-01-01
Disturbances, dispersal and biotic interactions are three major drivers of the spatial distribution of genotypes within populations, the last of which has been less studied than the other two. This study aimed to determine the role of competition and facilitation in the degree of conspecific genetic relatedness of nearby individuals of tree populations. It was expected that competition among conspecifics will lead to low relatedness, while facilitation will lead to high relatedness (selection for high relatedness within clusters). The stand structure and spatial genetic structure (SGS) of trees were examined within old-growth and second-growth forests (including multi-stemmed trees at the edge of forests) of Nothofagus pumilio following large-scale fires in Patagonia, Chile. Genetic spatial autocorrelations were computed on a spatially explicit sampling of the forests using five microsatellite loci. As biotic plant interactions occur among immediate neighbours, mean nearest neighbour distance (MNND) among trees was computed as a threshold for distinguishing the effects of disturbances and biotic interactions. All forests exhibited a significant SGS for distances greater than the MNND. The old-growth forest genetic and stand structure indicated gap recolonization from nearby trees (significantly related trees at distances between 4 and 10 m). At distances smaller than the MNND, trees of the second-growth interior forest showed significantly lower relatedness, suggesting a fading of the recolonization structure by competition, whereas the second-growth edge forest showed a positive and highly significant relatedness among trees (higher among stems of a cluster than among stems of different clusters), resulting from facilitation. Biotic interactions are shown to influence the genetic composition of a tree population. However, facilitation can only persist if individuals are related. Thus, the genetic composition in turn influences what type of biotic interactions will take place among immediate neighbours in post-disturbance forests. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sustaining America's urban trees and forests: a Forests on the Edge report
David J. Nowak; Paula B. Randler; Eric J. Greenfield; Sara J. Comas; Mary A. Carr; Ralph J. Alig
2010-01-01
Close to 80 percent of the U.S. population lives in urban areas and depends on the essential ecological, economic, and social benefits provided by urban trees and forests. However, the distribution of urban tree cover and the benefits of urban forests vary across the United States, as do the challenges of sustaining this important resource. As urban areas expand...
Memiaghe, Hervé R; Lutz, James A; Korte, Lisa; Alonso, Alfonso; Kenfack, David
2016-01-01
Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate.
Memiaghe, Hervé R.; Lutz, James A.; Korte, Lisa; Alonso, Alfonso; Kenfack, David
2016-01-01
Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate. PMID:27186658
Genetic effects of chronic habitat fragmentation in a wind-pollinated tree
Jump, Alistair S.; Peñuelas, Josep
2006-01-01
Habitat fragmentation poses a serious threat to plants through genetic changes associated with increased isolation and reduced population size. However, the longevity of trees, combined with effective seed or pollen dispersal, can enhance their resistance to these effects. The European beech (Fagus sylvatica) dominates forest over large regions of Europe. We demonstrate that habitat fragmentation in this species has led to genetic bottlenecks and the disruption of the species' breeding system, leading to significantly elevated levels of inbreeding, population divergence, and reduced genetic diversity within populations. These results show that, in contrast with the findings of previous studies, forest fragmentation has a negative genetic impact, even in this widespread, wind-pollinated tree. The identification of significant effects of forest fragmentation in beech demonstrates that trees are not at reduced risk from environmental change. This should be accounted for in the management of remaining natural and seminatural forest throughout the world. PMID:16698935
A United States national prioritization framework for tree species vulnerability to climate change
Kevin M. Potter; Barbara S. Crane; William W. Hargrove
2017-01-01
Climate change is one of several threats that will increase the likelihood that forest tree species could experience population-level extirpation or species-level extinction. Scientists and managers from throughout the United States Forest Service have cooperated to develop a framework for conservation priority-setting assessments of forest tree species. This framework...
Kevin M. Potter; Barbara S. Crane
2012-01-01
Changing climate conditions and increasing insect and pathogen infestations will increase the likelihood that forest trees could experience population-level extirpation or species-level extinction during the next century. Gene conservation and silvicultural efforts to preserve forest tree genetic diversity present a particular challenge in species-rich regions such as...
STUDYING FOREST ROOT SYSTEMS - AN OVERVIEW OF METHODOLOGICAL PROBLEMS
The study of tree root systems is central to understanding forest ecosystem carbon and nutrient cycles, nutrient and water uptake, C allocation patterns by trees, soil microbial populations, adaptation of trees to stress, soil organic matter production, etc. Methodological probl...
Introduced species and management of a Nothofagus/Austrocedrus forest.
Simberloff, Daniel; Relva, Maria Andrea; Nunez, Martin
2003-02-01
Isla Victoria (Nahuel Huapi National Park, Argentina), a large island dominated by native Nothofagus and Austrocedrus forest, has old plantations of many introduced tree species, some of which are famed invaders of native ecosystems elsewhere. There are also large populations of introduced deer and shrubs that may interact in a complex way with the introduced trees, as well as a recently arrived population of wild boar. Long-standing concern that the introduced trees will invade and transform native forest may be unwarranted, as there is little evidence of progressive invasion, even close to the plantations, despite over 50 years of opportunity. Introduced and native shrubs allow scattered introduced trees to achieve substantial size in abandoned pastures, but in almost all areas neither the trees nor the shrubs appear to be spreading beyond these sites. These shrub communities may be stable rather than successional, but the technology for restoring them to native forest is uncertain and probably currently impractical. Any attempt to remove the exotic tree seedlings and saplings from native forest would probably create the very conditions that would favor colonization by exotic plants rather than native trees, while simply clear-cutting the plantations would be unlikely to lead to regeneration of Nothofagus or Austrocedrus. The key to maintaining native forest is preventing catastrophic fire, as several introduced trees and shrubs would be favored over native dominant trees in recolonization. Deer undoubtedly interact with both native and introduced trees and shrubs, but their net effect on native forest is not yet clear, and specific management of deer beyond the current hunting by staff is unwarranted, at least if preventing tree invasion is the goal. The steep terrain and shallow soil make the recently arrived boar a grave threat to the native forest. Eradication is probably feasible and should be attempted quickly.
Akers, Alice A; Anwarul Islam, Md; Nijman, Vincent
2013-10-01
Conserving a species depends on an understanding of its habitat requirements. Primatologists often characterize the habitat requirements of primates using macroscale population-based approaches relying on correlations between habitat attributes and population abundances between sites with varying levels of disturbance. This approach only works for species spread between several populations. The populations of some primates do not fulfill these criteria, forcing researchers to rely on individual-based (microscale) rather than population-based approaches for habitat characterization. We examined the reliability of using micro-scale habitat characterizations by studying the microhabitat preferences of a group of wild western hoolock gibbons (Hoolock hoolock) in order to compare our results to the habitat preferences of western hoolock gibbons identified during a macroscale study of populations across Bangladesh. We used stepwise discriminant analysis to differentiate between the areas of low, medium, and high usage based on microhabitat characteristics (tree species availability, altitude, canopy connection, distance from forest edge, and levels of human disturbance). The gibbons used interior forest habitat with low food tree availability most frequently for sleeping and socializing, and used edge habitat containing high food tree availability for medium periods for feeding. These results indicate that the gibbons prefer interior forest but are frequently forced to visit the forest edge to feed. Therefore, the optimal habitat would be interior forest away from human disturbance with high sleeping-tree and feeding-tree availability. These habitat preferences are consistent with the habitat attributes of Bangladesh's largest remaining western hoolock gibbon populations, which live in areas containing low agricultural encroachment and high food-tree availability. Microhabitat use studies can be used to characterize the habitat requirements of a species, but should include multiple scales of analysis wherever possible.
Kevin M. Potter; Barbara S. Crane; Valerie D. Hipkins
2017-01-01
that forest tree species will undergo population-level extirpation or species-level extinction during the next century. Project CAPTURE (Conservation Assessment and Prioritization of Forest Trees Under Risk of Extirpation) is a cooperative effort across the three U.S. Department of Agriculture Forest Service (USDA FS) deputy areas to establish a framework for...
Basal area growth for 15 tropical tree species in Puerto Rico
Bernard R. Parresol
1995-01-01
The tabonuco forests of Puerto Rico support a diverse population of tree species valued for timber, fuel, food, wildlife food and cover, and erosion control among other uses. Tree basal area growth data spanning 39 years are available on 15 species from eight permanent plots in the Luquillo Experimental Forest. The complexity of the rain forest challenges current...
Kevin M. Potter; Barbara S. Crane; William W. Hargrove
2015-01-01
A variety of threats, most importantly climate change and insect and disease infestation, will increase the likelihood that forest tree species could experience population-level extirpation or species-level extinction during the next century. Project CAPTURE (Conservation Assessment and Prioritization of Forest Trees Under Risk of Extirpation) is a cooperative effort...
Stature of sub-arctic birch in relation to growth rate, lifespan and tree form.
Jónsson, Thorbergur Hjalti
2004-11-01
Sub-arctic mountain birch Betula pubescens var. pumila communities in the North Atlantic region are of variable stature, ranging from prostrate scrubs to forests with trees up to 12 m high. Four hypotheses were tested, relating growth and population characteristics of sub-arctic birch woodland and scrub to tree stature; i.e. the variable stature of birch woods is due to differences in (1) the mean growth rate; (2) the age-related patterns of growth rate; (3) the life expectancy of stems; or (4) the tree form. A stratified random sample of 300 birch trees was drawn from the total population of indigenous birch woodlands and scrub in Iceland, yielding 286 valid sample genets. The population was divided into three sub-populations with dominant trees 0-2, 2-4 and 4-12 m tall, referred to as birch scrub, birch scrub-woodland and birch forest, respectively. Trees in the scrub population were of more contorted growth form than birch in the scrub-woodland and forest populations. Mean growth rates, mean age and median life expectancies increased significantly with sub-population of greater tree stature. At the population level, annual increment and longevity of birch stems was apparently interrelated as the stems in vigorously growing birch sub-populations had a longer life expectancy than those of slower growth. However, no difference was observed between sub-populations in age-related patterns of extension growth rate. The results were consistent with hypotheses (1), (3) and (4), but hypothesis (2) was rejected. Hence, mountain birch of more vigorous growth attains a greater stature than birch of lesser increment due to faster extension growth rate and a longer lifespan. In addition, the more contorted stem form of scrub populations contributes to their low stature.
Matthew B. Russell; Christopher W. Woodall; Kevin M. Potter; Brian F. Walters; Grant M. Domke; Christopher M. Oswalt
2017-01-01
Forest understories across the northern United States (US) are a complex of tree seedlings, endemic forbs, herbs, shrubs, and introduced plant species within a forest structure defined by tree and forest floor attributes. The substantial increase in white-tailed deer (Odocoileus virginianus Zimmerman) populations over the past decades has resulted...
Biology of bats in Douglas-fir forests.
Robin E. Christy; Stephen D. West
1993-01-01
Twelve species of bats occur in Douglas-fir forests of the Pacific Northwest, of which nine are known to roost in tree cavities, bark crevices, or foliage, and several are closely associated with old-growth forests. Thus bat populations may be detrimentally affected by forest management practices involving the removal of large, old trees and snags. We review the life...
Natural migration rates of trees: Global terrestrial carbon cycle implications. Book chapter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, A.M.
The paper discusses the forest-ecological processes which constrain the rate of response by forests to rapid future environmental change. It establishes a minimum response time by natural tree populations which invade alien landscapes and reach the status of a mature, closed canopy forest when maximum carbon storage is realized. It considers rare long-distance and frequent short-distance seed transport, seedling and tree establishment, sequential tree and stand maturation, and spread between newly established colonies.
Holliday, Jason A; Aitken, Sally N; Cooke, Janice E K; Fady, Bruno; González-Martínez, Santiago C; Heuertz, Myriam; Jaramillo-Correa, Juan-Pablo; Lexer, Christian; Staton, Margaret; Whetten, Ross W; Plomion, Christophe
2017-02-01
Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land-use change have affected contemporary range-wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high-throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled 'Genomics and Forest Tree Genetics' was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome-enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology. © 2016 John Wiley & Sons Ltd.
Facilitating gene conservation with existing common gardens
S. Fei; K. Woeste
2017-01-01
Species and populations of forest trees stressed by a rapidly changing climate must adjust or they will not survive. Loss of species and populations could occur if they lack the genetic variability to adapt, the capacity to migrate to suitable habitats, or the ability to adjust to new environments through phenotypic plasticity. Fortunately, many forest tree provenance...
Population Dynamics of Southern Pine Beetle in Forest Landscapes
Andrew Birt
2011-01-01
Southern pine beetle (SPB) is an important pest of Southeastern United States pine forests. Periodic regional outbreaks are characterized by localized areas of tree mortality (infestations) surrounded by areas with little or no damage. Ultimately, this spatiotemporal pattern of tree mortality is driven by the dynamics of SPB populationsâmore specifically, by rates of...
Barbara J. Bentz; Jacob P. Duncan; James A. Powell
2016-01-01
Future forests are being shaped by changing climate and disturbances. Climate change is causing large-scale forest declines globally, in addition to distributional shifts of many tree species. Because environmental cues dictate insect seasonality and population success, climate change is also influencing tree-killing bark beetles. The mountain pine beetle,...
Gandhi, Durai Sanjay; Sundarapandian, Somaiah
2017-04-01
Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among them in terms of biomass and carbon stocks which could be attributed to variation in anthropogenic pressures among the plots as well as to changes in tree density across landscapes. Total basal area of woody vegetation showed a significant positive (R 2 = 0.978; P = 0.000) relationship with carbon storage while juvenile tree basal area showed the negative relationship (R 2 = 0.4804; P = 0.000) with woody carbon storage. The present study generates a large-scale baseline data of dry deciduous forest carbon stock, which would facilitate carbon stock assessment at a national level as well as to understand its contribution on a global scale.
2014-01-01
Background Habitat loss and fragmentation may have detrimental impacts on genetic diversity, population structure and overall viability of tropical trees. The response of tropical trees to fragmentation processes may, however, be species, cohort or region-specific. Here we test the hypothesis that forest fragmentation is associated with lower genetic variability and higher genetic differentiation in adult and seedling populations of Prunus africana in North-western Ethiopia. This is a floristically impoverished region where all but a few remnant forest patches have been destroyed, mostly by anthropogenic means. Results Genetic diversity (based on allelic richness) was significantly greater in large and less-isolated forest patches as well as in adults than seedlings. Nearly all pairwise FST comparisons showed evidence for significant population genetic differentiation. Mean FST values were significantly greater in seedlings than adults, even after correction for within population diversity, but varied little with patch size or isolation. Conclusions Analysis of long-lived adult trees suggests the formerly contiguous forest in North-western Ethiopia probably exhibited strong spatial patterns of genetic structure. This means that protecting a range of patches including small and isolated ones is needed to conserve the extant genetic resources of the valuable forests in this region. However, given the high livelihood dependence of the local community and the high impact of foreign investors on forest resources of this region, in situ conservation efforts alone may not be helpful. Therefore, these efforts should be supported with ex situ gene conservation actions. PMID:24602239
Density-dependent vulnerability of forest ecosystems to drought
Alessandra Bottero; Anthony W. D' Amato; Brian J. Palik; John B. Bradford; Shawn Fraver; Mike A. Battaglia; Lance A. Asherin; Harald Bugmann
2017-01-01
Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary...
Isozymes and the genetic resources of forest trees
A. H. D. Brown; G. F. Moran
1981-01-01
Genetic data are an essential prerequisite for analysing the genetic structure of tree populations. The isozyme technique is the best currently available method for obtaining such data. Despite several shortcomings, isozyme data directly evaluate the genetic resources of forest trees, and can thus be used to monitor and manipulate these resources. For example,...
Forest response to 1,000 years of drought variability in the Southwestern United States
NASA Astrophysics Data System (ADS)
Williams, A. P.; Meko, D. M.; Woodhouse, C. A.; Cook, E.; Swetnam, T. W.; Macalady, A. K.; Allen, C. D.; Rauscher, S. A.; Jiang, X.; Grissino-Mayer, H.; McDowell, N. G.; Cai, M.
2011-12-01
Droughts in the early 1950s and early 2000s significantly accelerated tree mortality rates in the Southwestern United States. During the early 2000s, forest inventory data indicate that the proportion of dead piñon pine, ponderosa pine, and Douglas-fir trees doubled in the Southwest. The 2000s drought peaked in 2002 and was the most severe drought in at least 100 years. In 2011, precipitation, dew-point, and wind data indicate the intensity of the 2002 drought has been surpassed in a number of ways. Measurements of water potential in piñon pine trees in northern New Mexico indicate that, at present, trees have less access to soil moisture than in 2002 when widespread mortality occurred. How do these recent droughts compare to those of the last 1000 years? We used records of annual tree-ring widths from 309 populations of piñon pine, ponderosa pine, and Douglas-fir throughout the Southwestern United States to reconstruct a single record of regional drought stress from 1000-2005 AD. This record indicates that the last Southwestern drought similar in intensity to one in the early 2000s occurred in the late 1600s. Both of these droughts, however, paled in comparison to a mega-drought that occurred from 1575-1595. The emergence from this mega-drought, around 1600 AD, appears to mark a transition period from a time when droughts similar the early 2000s drought were much more common. Tree-age studies indicate a scarcity of Southwestern trees with rings extending back beyond the mega-drought of the late 1500s. This suggests that (1) the late-1500s mega-drought triggered a massive die-off of forests and/or (2) the higher frequency of drought events prior to the mega-drought sustained a much more sparse forest population than the one that has thrived from the 1600s through present. Given this apparent plasticity of Southwestern forests, a change in the forest population should be underway if higher temperatures contribute to forest drought stress. The Southwestern tree-ring record indicates that this is the case. During the 20th century, tree-ring widths correlated very positively with total winter precipitation and very negatively with spring-summer maximum temperature. This indicates that Southwestern forest growth is significantly impacted by both the amount of water delivered before the growing season and temperature during the growing season. We conclude that in the absence of a significant increase in winter precipitation, continued warming should lead to a more sparsely populated Southwestern forest population, similar to the one that appears to have existed during 1000-1600 AD.
Bernard R. Parresol; F. Thomas Lloyd
2003-01-01
Forest inventory data were used to develop a standage-driven, stochastic predictor of unit-area, frequency weighted lists of breast high tree diameters (DBH). The average of mean statistics from 40 simulation prediction sets of an independent 78-plot validation dataset differed from the observed validation means by 0.5 cm for DBH, and by 12 trees/h for density. The 40...
Bird populations in logged and unlogged western larch/Douglas-fir forest in northwestern Montana
Bret W. Tobalske; Raymond C. Shearer; Richard L. Hutto
1991-01-01
Of 32 species of abundant breeding birds, populations of 10 species differed significantly between small cutting units and adjacent uncut forest. Foliage foragers and tree gleaners were less abundant in cutting units, while flycatching species and ground foragers were more common there. Of nesting guilds, conifer tree nesters were least abundant in cutting units, and...
Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; Veblen, Thomas T; Smith, Jeremy M.; Kueppers, Lara M.
2017-01-01
Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long life spans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively.Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers.Empirically observed, warming-driven declines in recruitment led to rapid modelled population declines at the low-elevation, ‘warm edge’ of subalpine forest and slow emergence of populations beyond the high-elevation, ‘cool edge’. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modelled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above tree line, and, ultimately, expansion into the alpine.Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts.
Li, Guo Chun; Song, Hua Dong; Li, Qi; Bu, Shu Hai
2017-11-01
In Abies fargesii forests of the giant panda's habitats in Mt. Taibai, the spatial distribution patterns and interspecific associations of main tree species and their spatial associations with the understory flowering Fargesia qinlingensis were analyzed at multiple scales by univariate and bivaria-te O-ring function in point pattern analysis. The results showed that in the A. fargesii forest, the number of A. fargesii was largest but its population structure was in decline. The population of Betula platyphylla was relatively young, with a stable population structure, while the population of B. albo-sinensis declined. The three populations showed aggregated distributions at small scales and gradually showed random distributions with increasing spatial scales. Spatial associations among tree species were mainly showed at small scales and gradually became not spatially associated with increasing scale. A. fargesii and B. platyphylla were positively associated with flowering F. qinlingensis at large and medium scales, whereas B. albo-sinensis showed negatively associated with flowering F. qinlingensis at large and medium scales. The interaction between trees and F. qinlingensis in the habitats of giant panda promoted the dynamic succession and development of forests, which changed the environment of giant panda's habitats in Qinling.
Hirabayashi, Satoshi; Nowak, David J
2016-08-01
Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and urban areas in every county in the conterminous United States. The results populated a national database of annual air pollutant removal, concentration changes, and reductions in adverse health incidences and costs for NO2, O3, PM2.5 and SO2. The developed database enabled a first order approximation of air quality and associated human health benefits provided by trees with any forest configurations anywhere in the conterminous United States over time. Comprehensive national database of tree effects on air quality and human health in the United States was developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gomes Viana, João Paulo; Bohrer Monteiro Siqueira, Marcos Vinícius; Araujo, Fabiano Lucas; Grando, Carolina; Sanae Sujii, Patricia; Silvestre, Ellida de Aguiar; Novello, Mariana; Pinheiro, José Baldin; Cavallari, Marcelo Mattos; Brancalion, Pedro H S; Rodrigues, Ricardo Ribeiro; Pereira de Souza, Anete; Catchen, Julian; Zucchi, Maria I
2018-01-01
The primary focus of tropical forest restoration has been the recovery of forest structure and tree taxonomic diversity, with limited attention given to genetic conservation. Populations reintroduced through restoration plantings may have low genetic diversity and be genetically structured due to founder effects and genetic drift, which limit the potential of restoration to recover ecologically resilient plant communities. Here, we studied the genetic diversity, genetic structure and differentiation using single nucleotide polymorphisms (SNP) markers between restored and natural populations of the native tree Casearia sylvestris in the Atlantic Forest of Brazil. We sampled leaves from approximately 24 adult individuals in each of the study sites: two restoration plantations (27 and 62 years old) and two forest remnants. We prepared and sequenced a genotyping-by-sequencing library, SNP markers were identified de novo using Stacks pipeline, and genetic parameters and structure analyses were then estimated for populations. The sequencing step was successful for 80 sampled individuals. Neutral genetic diversity was similar among restored and natural populations (AR = 1.72 ± 0.005; HO = 0.135 ± 0.005; HE = 0.167 ± 0.005; FIS = 0.16 ± 0.022), which were not genetically structured by population subdivision. In spite of this absence of genetic structure by population we found genetic structure within populations but even so there is not spatial genetic structure in any population studied. Less than 1% of the neutral alleles were exclusive to a population. In general, contrary to our expectations, restoration plantations were then effective for conserving tree genetic diversity in human-modified tropical landscapes. Furthermore, we demonstrate that genotyping-by-sequencing can be a useful tool in restoration genetics.
C. H. Sieg; S. M. Owen; C. H. Flather
2011-01-01
This indicator uses population trends of selected bird and tree species as a surrogate measure of genetic diversity. Population decreases, especially associated with small populations, can lead to decreases in genetic diversity, and contribute to increased risk of extinction. Many forest-associated species rely on some particular forest structure, vegetation...
Davies, S J; Cavers, S; Finegan, B; White, A; Breed, M F; Lowe, A J
2015-08-01
In forests with gap disturbance regimes, pioneer tree regeneration is typically abundant following stand-replacing disturbances, whether natural or anthropogenic. Differences in pioneer tree density linked to disturbance regime can influence pollinator behaviour and impact on mating patterns and genetic diversity of pioneer populations. Such mating pattern shifts can manifest as higher selfing rates and lower pollen diversity in old growth forest populations. In secondary forest, where more closely related pollen donors occur, an increase in biparental inbreeding is a potential problem. Here, we investigate the consequences of secondary forest colonisation on the mating patterns and genetic diversity of open-pollinated progeny arrays for the long-lived, self-compatible pioneer tree, Vochysia ferruginea, at two Costa Rican sites. Five microsatellite loci were screened across adult and seed cohorts from old growth forest with lower density, secondary forest with higher density, and isolated individual trees in pasture. Progeny from both old growth and secondary forest contexts were predominantly outcrossed (tm=1.00) and experienced low levels of biparental inbreeding (tm-ts=0.00-0.04). In contrast to predictions, our results indicated that the mating patterns of V. ferruginea are relatively robust to density differences between old growth and secondary forest stands. In addition, we observed that pollen-mediated gene flow possibly maintained the genetic diversity of open-pollinated progeny arrays in stands of secondary forest adults. As part of a natural resource management strategy, we suggest that primary forest remnants should be prioritised for conservation to promote restoration of genetic diversity during forest regeneration.
Hong Su An; David W. MacFarlane; Christopher W. Woodall
2012-01-01
Standing dead trees are an important component of forest ecosystems. However, reliable estimates of standing dead tree population parameters can be difficult to obtain due to their low abundance and spatial and temporal variation. After 1999, the Forest Inventory and Analysis (FIA) Program began collecting data for standing dead trees at the Phase 2 stage of sampling....
Diseases of Forest Trees: Consequences of Exotic Ecosystems?
William J. Otrosina
1998-01-01
Much attention is now given to risks and impacts of exotic pest introductions in forest ecosystems. This concern is for good reason because, once introduced, an exotic pathogen or insect encounters little resistance in the native plant population and can produce catastrophic losses in relatively short periods of time. Most native fungal pathogens of forest trees have...
Stature of Sub-arctic Birch in Relation to Growth Rate, Lifespan and Tree Form
JÓNSSON, THORBERGUR HJALTI
2004-01-01
• Background and Aims Sub-arctic mountain birch Betula pubescens var. pumila communities in the North Atlantic region are of variable stature, ranging from prostrate scrubs to forests with trees up to 12 m high. Four hypotheses were tested, relating growth and population characteristics of sub-arctic birch woodland and scrub to tree stature; i.e. the variable stature of birch woods is due to differences in (1) the mean growth rate; (2) the age-related patterns of growth rate; (3) the life expectancy of stems; or (4) the tree form. • Methods A stratified random sample of 300 birch trees was drawn from the total population of indigenous birch woodlands and scrub in Iceland, yielding 286 valid sample genets. The population was divided into three sub-populations with dominant trees 0–2, 2–4 and 4–12 m tall, referred to as birch scrub, birch scrub-woodland and birch forest, respectively. • Key Results Trees in the scrub population were of more contorted growth form than birch in the scrub-woodland and forest populations. Mean growth rates, mean age and median life expectancies increased significantly with sub-population of greater tree stature. At the population level, annual increment and longevity of birch stems was apparently interrelated as the stems in vigorously growing birch sub-populations had a longer life expectancy than those of slower growth. However, no difference was observed between sub-populations in age-related patterns of extension growth rate. • Conclusions The results were consistent with hypotheses (1), (3) and (4), but hypothesis (2) was rejected. Hence, mountain birch of more vigorous growth attains a greater stature than birch of lesser increment due to faster extension growth rate and a longer lifespan. In addition, the more contorted stem form of scrub populations contributes to their low stature. PMID:15374837
Fourqurean, James W.; Smith, Thomas J.; Possley, Jennifer; Collins, Timothy M.; Lee, David; Namoff, Sandra
2010-01-01
Two species of mangrove trees of Indo-Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year−1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximum number of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha−1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year−1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.
Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.
Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M
2016-01-01
Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and functioning. We furthermore conclude that artificial tree-hole analogues represent a useful experimental alternative to test effects of changes in forest management on natural communities.
Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes
Petermann, Jana S.; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W.; Gossner, Martin M.
2016-01-01
Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and functioning. We furthermore conclude that artificial tree-hole analogues represent a useful experimental alternative to test effects of changes in forest management on natural communities. PMID:27187741
Jian J. Duan; Kristopher J. Abell; Leah S. Bauer; Juli Gould; Roy. Van Driesche
2014-01-01
The emerald ash borer Agrilus planipennis Fairmaire is a serious invasive forest pest of ash (Fraxinus) trees in North America. Life tables were constructed for both experimentally established cohorts and wild populations of A. planipennis on healthy host trees from 2008 to 2011 in six forests in central Michigan...
Bacles, Cecile F E
2014-01-01
Understanding the consequences of habitat disturbance on mating patterns although pollen and seed dispersal in forest trees has been a long-standing theme of forest and conservation genetics. Forest ecosystems face global environmental pressures from timber exploitation to genetic pollution and climate change, and it is therefore essential to comprehend how disturbances may alter the dispersal of genes and their establishment in tree populations in order to formulate relevant recommendations for sustainable resource management practices and realistic predictions of potential adaptation to climate change by means of range shift or expansion (Kremer et al. 2012). However, obtaining reliable evidence of disturbance-induced effects on gene dispersal processes from empirical evaluation of forest tree populations is difficult. Indeed, tree species share characteristics such as high longevity, long generation time and large reproductive population size, which may impede the experimenter's ability to assess parameters at the spatial and time scales at which any change may occur (Petit and Hampe 2006). It has been suggested that appropriate study designs should encompass comparison of populations before and after disturbance as well as account for demonstrated variation in conspecific density, that is, the spatial distribution of mates, and forest density, including all species and relating to alteration in landscape openness (Bacles & Jump 2011). However, more often than not, empirical studies aiming to assess the consequences of habitat disturbance on genetic processes in tree populations assume rather than quantify a change in tree densities in forests under disturbance and generally fail to account for population history, which may lead to inappropriate interpretation of a causal relationship between population genetic structure and habitat disturbance due to effects of unmonitored confounding variables (Gauzere et al. 2013). In this issue, Shohami and Nathan (2014) take advantage of the distinctive features of the fire-adapted wind-pollinated Aleppo pine Pinus halepensis (Fig. 1) to provide an elegant example of best practice. Thanks to long-term monitoring of the study site, a natural stand in Israel, Shohami and Nathan witnessed the direct impact of habitat disturbance, here taking the shape of fire, on conspecific and forest densities and compared pre- and postdisturbance mating patterns estimated from cones of different ages sampled on the same surviving maternal individuals (Fig. 2). This excellent study design is all the more strong that Shohami and Nathan took further analytical steps to account for confounding variables, such as historical population genetic structure and possible interannual variation in wind conditions, thus giving high credibility to their findings of unequivocal fire-induced alteration of mating patterns in P. halepensis. Most notably, the authors found, at the pollen pool level, a disruption of local genetic structure which, furthermore, they were able to attribute explicitly to enhanced pollen-mediated gene immigration into the low-density fire-disturbed stand. This cleverly designed research provides a model approach to be followed if we are to advance our understanding of disturbance-induced dispersal and genetic change in forest trees. © 2013 John Wiley & Sons Ltd.
Deborah K. Kennard
2002-01-01
Stand structure, species richness and population structures of tree species were characterized in 12 stands representing 50 y of succession following slash-and-burn agriculture in a tropical dry forest in lowland Bolivia. Estimates of tree species richness, canopy cover and basal area reached or surpassed 75% of mature forest levels in the 5-, 8-, and 23-y-old stands...
Ismail, Sascha A.; Ghazoul, Jaboury; Ravikanth, Gudasalamani; Kushalappa, Cheppudira G.; Uma Shaanker, Ramanan; Kettle, Chris J.
2014-01-01
Tropical agro-forest landscapes are global priority areas for biodiversity conservation. Little is known about the ability of these landscapes to sustain large late successional forest trees upon which much forest biodiversity depends. These landscapes are subject to fragmentation and additional habitat degradation which may limit tree recruitment and thus compromise numerous ecosystem services including carbon storage and timber production. Dysoxylum malabaricum is a large canopy tree species in the Meliaceae, a family including many important tropical timber trees. This species is found in highly fragmented forest patches within a complex agro-forest landscape of the Western Ghats biodiversity hot spot, South India. In this paper we combined a molecular assessment of inbreeding with ecological and demographic data to explore the multiple threats to recruitment of this tree species. An evaluation of inbreeding, using eleven microsatellite loci in 297 nursery-reared seedlings collected form low and high density forest patches embedded in an agro-forest matrix, shows that mating between related individuals in low density patches leads to reduced seedling performance. By quantifying habitat degradation and tree recruitment within these forest patches we show that increasing canopy openness and the increased abundance of pioneer tree species lead to a general decline in the suitability of forest patches for the recruitment of D. malabaricum. We conclude that elevated inbreeding due to reduced adult tree density coupled with increased degradation of forest patches, limit the recruitment of this rare late successional tree species. Management strategies which maintain canopy cover and enhance local densities of adult trees in agro-forest mosaics will be required to ensure D. malabaricum persists in these landscapes. Our study highlights the need for a holistic understanding of the incipient processes that threaten populations of many important and rare tropical tree species in human dominated agro-forest landscapes. PMID:24558500
Comprehensive national database of tree effects on air quality and human health in the United States
Satoshi Hirabayashi; David J. Nowak
2016-01-01
Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and...
Forest responses to increasing aridity and warmth in the southwestern United States
P. Williams; C.D. Allen; C.I. Millar; T.W. Swetnam; J. Michaelsen; C.J. Still; S.W. Leavitt
2010-01-01
In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasingmortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each...
Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options.
Vannatta, A R; Hauer, R H; Schuettpelz, N M
2012-02-01
Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.
Land crabs as key drivers in tropical coastal forest recruitment
Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O'Dowd, D. J.; Sherman, P.M.; Smith, T. J.
2009-01-01
Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. ?? 2009 Cambridge Philosophical Society.
Rapid decay of tree-community composition in Amazonian forest fragments
Laurance, William F.; Nascimento, Henrique E. M.; Laurance, Susan G.; Andrade, Ana; Ribeiro, José E. L. S.; Giraldo, Juan Pablo; Lovejoy, Thomas E.; Condit, Richard; Chave, Jerome; Harms, Kyle E.; D'Angelo, Sammya
2006-01-01
Forest fragmentation is considered a greater threat to vertebrates than to tree communities because individual trees are typically long-lived and require only small areas for survival. Here we show that forest fragmentation provokes surprisingly rapid and profound alterations in Amazonian tree-community composition. Results were derived from a 22-year study of exceptionally diverse tree communities in 40 1-ha plots in fragmented and intact forests, which were sampled repeatedly before and after fragment isolation. Within these plots, trajectories of change in abundance were assessed for 267 genera and 1,162 tree species. Abrupt shifts in floristic composition were driven by sharply accelerated tree mortality and recruitment within ≈100 m of fragment margins, causing rapid species turnover and population declines or local extinctions of many large-seeded, slow-growing, and old-growth taxa; a striking increase in a smaller set of disturbance-adapted and abiotically dispersed species; and significant shifts in tree size distributions. Even among old-growth trees, species composition in fragments is being restructured substantially, with subcanopy species that rely on animal seed-dispersers and have obligate outbreeding being the most strongly disadvantaged. These diverse changes in tree communities are likely to have wide-ranging impacts on forest architecture, canopy-gap dynamics, plant–animal interactions, and forest carbon storage. PMID:17148598
Nest trees of northern spotted owls (Strix occidentalis caurina) in Washington and Oregon, USA
Lesmeister, Damon B.; Forsman, Eric D.
2018-01-01
The northern spotted owl (Strix occidentalis caurina) is a federally-threatened subspecies in the United States associated with late-successional forests. In mesic forests it nests primarily in tree cavities, but also uses various types of external platform nests in drier forests. We describe 1717 northern spotted owl nests in 16 different tree species in five study areas in Washington and Oregon in the Pacific Northwest, USA. The vast majority of nests (87%) were in Douglas-fir (Pseudotsuga menziesii) trees, except on the Olympic Peninsula, Washington, where nests were about equally abundant in Douglas-fir, western red cedar (Thuja plicata), and western hemlock (Tsuga heterophylla) trees. Distribution of nests was 57.9% in top cavities of trees with broken tops, 20.3% in side cavities of hollow tree trunks, and 21.8% on external platforms of trees. Platforms were most common in the two driest study areas in the Eastern Cascades Physiographic Province, Washington (89% of nests), and the Klamath Province, Oregon (32%). The vast majority (89%) of nests were in trees with intact or declining crowns. Nests in dead trees were most common on the Olympic Peninsula. Nest trees with top and side cavities were larger and much more prevalent in study areas where annual precipitation was highest (Olympic Peninsula, Oregon Coast Range). Large nest cavities and platforms used by northern spotted owls occur almost exclusively in old forest. Managing for the retention of such forests and for their replacement is a significant challenge for land managers, especially in the face of climate change and an increasing human population, but will likely be required for the persistence of viable populations of northern spotted owls. PMID:29852017
Calderón-Cortés, Nancy; Escalera-Vázquez, Luis H; Oyama, Ken
2018-01-01
Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60-98% of standing dead trees and 23-59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057-0.066 trees/m 2 ) than in riparian forests (0.022 and 0.027 trees/m 2 ), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01-0.09 trees/m 2 ) than in larger class sizes (0-0.02 trees/m 2 ). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.
Escalera-Vázquez, Luis H.; Oyama, Ken
2018-01-01
Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60–98% of standing dead trees and 23–59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057–0.066 trees/m2) than in riparian forests (0.022 and 0.027 trees/m2), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01–0.09 trees/m2) than in larger class sizes (0–0.02 trees/m2). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil. PMID:29785342
Land use history and population dynamics of free-standing figs in a maturing forest
Albrecht, Larissa; Stallard, Robert F.; Kalko, Elisabeth K.V.
2017-01-01
Figs (Ficus sp.) are often considered as keystone resources which strongly influence tropical forest ecosystems. We used long-term tree-census data to track the population dynamics of two abundant free-standing fig species, Ficus insipida and F. yoponensis, on Barro Colorado Island (BCI), a 15.6-km2 island in Lake Gatún, Panama. Vegetation cover on BCI consists of a mosaic of old growth (>400 years) and maturing (about 90–150 year old) secondary rainforest. Locations and conditions of fig trees have been mapped and monitored on BCI for more than 35 years (1973–2011), with a focus on the Lutz Catchment area (25 ha). The original distribution of the fig trees shortly after the construction of the Panama Canal was derived from an aerial photograph from 1927 and was compared with previous land use and forest status. The distribution of both fig species (~850 trees) is restricted to secondary forest. Of the original 119 trees observed in Lutz Catchment in 1973, >70% of F. insipida and >90% of F. yoponensis had died by 2011. Observations in other areas on BCI support the trend of declining free-standing figs. We interpret the decline of these figs on BCI as a natural process within a maturing tropical lowland forest. Senescence of the fig trees appears to have been accelerated by severe droughts such as the strong El Niño event in the year 1982/83. Because figs form such an important food resource for frugivores, this shift in resource availability is likely to have cascading effects on frugivore populations.
Land use history and population dynamics of free-standing figs in a maturing forest
2017-01-01
Figs (Ficus sp.) are often considered as keystone resources which strongly influence tropical forest ecosystems. We used long-term tree-census data to track the population dynamics of two abundant free-standing fig species, Ficus insipida and F. yoponensis, on Barro Colorado Island (BCI), a 15.6-km2 island in Lake Gatún, Panama. Vegetation cover on BCI consists of a mosaic of old growth (>400 years) and maturing (about 90–150 year old) secondary rainforest. Locations and conditions of fig trees have been mapped and monitored on BCI for more than 35 years (1973–2011), with a focus on the Lutz Catchment area (25 ha). The original distribution of the fig trees shortly after the construction of the Panama Canal was derived from an aerial photograph from 1927 and was compared with previous land use and forest status. The distribution of both fig species (~850 trees) is restricted to secondary forest. Of the original 119 trees observed in Lutz Catchment in 1973, >70% of F. insipida and >90% of F. yoponensis had died by 2011. Observations in other areas on BCI support the trend of declining free-standing figs. We interpret the decline of these figs on BCI as a natural process within a maturing tropical lowland forest. Senescence of the fig trees appears to have been accelerated by severe droughts such as the strong El Niño event in the year 1982/83. Because figs form such an important food resource for frugivores, this shift in resource availability is likely to have cascading effects on frugivore populations. PMID:28542161
James Grogan; Mark Schulze
2012-01-01
Understanding tree growth in response to rainfall distribution is critical to predicting forest and species population responses to climate change. We investigated inter-annual and seasonal variation in stem diameter by three emergent tree species in a seasonally dry tropical forest in southeast Pará, Brazil. Annual diameter growth rates by Swietenia macrophylla...
Cornelia C. Pinchot; Scott E. Schlarbaum; Arnold M. Saxton; Stacy L. Clark; Callie J. Schweitzer; David R. Smith; Alex. Mangini; Frederick V. Hebard
2011-01-01
American chestnut [Castanea dentate (Marshall) Borkhausen, Fagales: Fagaceae] was a dominant forest tree in the eastern forests of the U.S. until it was eliminated as a canopy tree species by 2 exotic pathogens. Ink disease, a root rot caused by Phytophthora cinnamomi Rands (Pythiales: Pythiaceae), began to destroy chestnut populations on bottomland and poorly-drained...
Climate threats on growth of rear-edge European beech peripheral populations in Spain.
Dorado-Liñán, I; Akhmetzyanov, L; Menzel, A
2017-12-01
European beech (Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence.
Climate threats on growth of rear-edge European beech peripheral populations in Spain
NASA Astrophysics Data System (ADS)
Dorado-Liñán, I.; Akhmetzyanov, L.; Menzel, A.
2017-12-01
European beech ( Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence.
Bolt, Laura M; Schreier, Amy L; Voss, Kristofor A; Sheehan, Elizabeth A; Barrickman, Nancy L; Pryor, Nathaniel P; Barton, Matthew C
2018-05-01
When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.
Andrew N. Gray; Thomas A. Spies; Robert J. Pabst
2012-01-01
Canopy gaps created by tree mortality can affect the speed and trajectory of vegetation growth. Speciesâ population dynamics, and spatial heterogeneity in mature forests. Most studies focus on plant development within gaps, yet gaps also affect the mortality and growth of surrounding trees, which influence shading and root encroachment into gaps and determine whether,...
Carroll B. Williams; David L. Azuma; George T. Ferrell
1992-01-01
Approximately 3.200 trees in young mixed-conifer stands were examined for pest activity and human-caused or mechanical injuries, and approximately 25 percent of these trees were randomly selected for stem analyses. The examination of trees felled for stem analyses showed that 409 (47 percent) were free of pests and 466 (53 percent) had one or more pest categories....
Miranda T. Curzon; Anthony W. D' Amato; Shawn Fraver; Emily S. Huff; Brian J. Palik
2016-01-01
Resource availability and its influence on tree-to-tree interactions are expected to change over the course of forest stand development, but the rarity of long-term datasets has limited examinations of neighborhood crowding over extended time periods. How do a history of neighborhood interactions and population-level dynamics, including demographic transition, impact...
Mistletoe-induced growth reductions at the forest stand scale.
Kollas, Chris; Gutsch, Martin; Hommel, Robert; Lasch-Born, Petra; Suckow, Felicitas
2018-05-01
The hemiparasite European mistletoe (Viscum album L.) adversely affects growth and reproduction of the host Scots pine (Pinus sylvestris L.) and in consequence may lead to tree death. Here, we aimed to estimate mistletoe-induced losses in timber yield applying the process-based forest growth model 4C. The parasite was implemented into the eco-physiological forest growth model 4C using (literature-derived) established impacts of the parasite on the tree's water and carbon cycle. The amended model was validated simulating a sample forest stand in the Berlin area (Germany) comprising trees with and without mistletoe infection. At the same forest stand, tree core measurements were taken to evaluate simulated and observed growth. A subsample of trees were harvested to quantify biomass compartments of the tree canopy and to derive a growth function of the mistletoe population. The process-based simulations of the forest stand revealed 27% reduction in basal area increment (BAI) during the last 9 years of heavy infection, which was confirmed by the measurements (29% mean growth reduction). The long-term simulations of the forest stand before and during the parasite infection showed that the amended forest growth model 4C depicts well the BAI growth pattern during >100 years and also quantifies well the mistletoe-induced growth reductions in Scots pine stands.
Hamard, Marie; Cheyne, Susan M; Nijman, Vincent
2010-06-01
Understanding the complex relationship between primates and their habitats is essential for effective conservation plans. Peat-swamp forest has recently been recognized as an important habitat for the Southern Bornean gibbon (Hylobates albibarbis), but information is scarce on the factors that link gibbon density to characteristics of this unique ecosystem. Our aims in this study were firstly to estimate gibbon density in different forest subtypes in a newly protected, secondary peat-swamp forest in the Sabangau Catchment, Indonesia, and secondly to identify which vegetation characteristics correlate with gibbon density. Data collection was conducted in a 37.1 km(2) area, using auditory sampling methods and vegetation "speed plotting". Gibbon densities varied between survey sites from 1.39 to 3.92 groups/km(2). Canopy cover, tree height, density of large trees and food availability were significantly correlated with gibbon density, identifying the preservation of tall trees and good canopy cover as a conservation priority for the gibbon population in the Sabangau forest. This survey indicates that selective logging, which specifically targets large trees and disrupts canopy cover, is likely to have adverse effects on gibbon populations in peat-swamp forests, and calls for greater protection of these little-studied ecosystems. (c) 2010 Wiley-Liss, Inc.
Fortini, Lucas Berio; Bruna, Emilio M; Zarin, Daniel J; Vasconcelos, Steel S; Miranda, Izildinha S
2010-04-01
Despite research demonstrating that water and nutrient availability exert strong effects on multiple ecosystem processes in tropical forests, little is known about the effect of these factors on the demography and population dynamics of tropical trees. Over the course of 5 years, we monitored two common Amazonian secondary forest species-Lacistema pubescens and Myrcia sylvatica-in dry-season irrigation, litter-removal and control plots. We then evaluated the effects of altered water and nutrient availability on population demography and dynamics using matrix models and life table response experiments. Our results show that despite prolonged experimental manipulation of water and nutrient availability, there were nearly no consistent and unidirectional treatment effects on the demography of either species. The patterns and significance of observed treatment effects were largely dependent on cross-year variability not related to rainfall patterns, and disappeared once we pooled data across years. Furthermore, most of these transient treatment effects had little effect on population growth rates. Our results suggest that despite major experimental manipulations of water and nutrient availability-factors considered critical to the ecology of tropical pioneer tree species-autogenic light limitation appears to be the primary regulator of tree demography at early/mid successional stages. Indeed, the effects of light availability may completely override those of other factors thought to influence the successional development of Amazonian secondary forests.
Present-day central African forest is a legacy of the 19th century human history.
Morin-Rivat, Julie; Fayolle, Adeline; Favier, Charly; Bremond, Laurent; Gourlet-Fleury, Sylvie; Bayol, Nicolas; Lejeune, Philippe; Beeckman, Hans; Doucet, Jean-Louis
2017-01-17
The populations of light-demanding trees that dominate the canopy of central African forests are now aging. Here, we show that the lack of regeneration of these populations began ca. 165 ya (around 1850) after major anthropogenic disturbances ceased. Since 1885, less itinerancy and disturbance in the forest has occurred because the colonial administrations concentrated people and villages along the primary communication axes. Local populations formerly gardened the forest by creating scattered openings, which were sufficiently large for the establishment of light-demanding trees. Currently, common logging operations do not create suitable openings for the regeneration of these species, whereas deforestation degrades landscapes. Using an interdisciplinary approach, which included paleoecological, archaeological, historical, and dendrological data, we highlight the long-term history of human activities across central African forests and assess the contribution of these activities to present-day forest structure and composition. The conclusions of this sobering analysis present challenges to current silvicultural practices and to those of the future.
A Forest Landscape Visualization System
Tim McDonald; Bryce Stokes
1998-01-01
A forest landscape visualization system was developed and used in creating realistic images depicting how an area might appear if harvested. The system uses a ray-tracing renderer to draw model trees on a virtual landscape. The system includes components to create landscape surfaces from digital elevation data, populate/cut trees within (polygonal) areas, and convert...
Point-Sampling and Line-Sampling Probability Theory, Geometric Implications, Synthesis
L.R. Grosenbaugh
1958-01-01
Foresters concerned with measuring tree populations on definite areas have long employed two well-known methods of representative sampling. In list or enumerative sampling the entire tree population is tallied with a known proportion being randomly selected and measured for volume or other variables. In area sampling all trees on randomly located plots or strips...
Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; ...
2017-02-08
Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long life spans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively. Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers. Empirically observed, warming-driven declines in recruitment led to rapid modelled population declines at the low-elevation, ‘warm edge’ of subalpine forestmore » and slow emergence of populations beyond the high-elevation, ‘cool edge’. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modelled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above tree line, and, ultimately, expansion into the alpine. Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.
Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long life spans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively. Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers. Empirically observed, warming-driven declines in recruitment led to rapid modelled population declines at the low-elevation, ‘warm edge’ of subalpine forestmore » and slow emergence of populations beyond the high-elevation, ‘cool edge’. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modelled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above tree line, and, ultimately, expansion into the alpine. Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts.« less
Forest responses to increasing aridity and warmth in the southwestern United States.
Williams, A Park; Allen, Craig D; Millar, Constance I; Swetnam, Thomas W; Michaelsen, Joel; Still, Christopher J; Leavitt, Steven W
2010-12-14
In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasing mortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth. We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ≈ 2.7% of southwestern forest and woodland area experienced substantial mortality due to wildfires from 1984 to 2006, and ≈ 7.6% experienced mortality associated with bark beetles from 1997 to 2008. We estimate that up to ≈ 18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests.
Forest responses to increasing aridity and warmth in the southwestern United States
Williams, A.P.; Allen, Craig D.; Millar, C.I.; Swetnam, T.W.; Michaelsen, J.; Still, C.J.; Leavitt, Steven W.
2010-01-01
In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasing mortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth. We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ≈2.7% of southwestern forest and woodland area experienced substantial mortality due to wildfires from 1984 to 2006, and ≈7.6% experienced mortality associated with bark beetles from 1997 to 2008. We estimate that up to ≈18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests.
NASA Astrophysics Data System (ADS)
Kiedrzyński, Marcin; Kurowski, Józef Krzysztof; Kiedrzyńska, Edyta
2017-11-01
Identifying potential refugial habitats in the face of rapid environmental change is a challenge faced by scientists and nature conservation managers. Relict populations and refugial habitats are the model objects in those studies. Based on the example of Actaea europaea from Central Poland, we analyse the habitat factors influencing relict populations of continental, light-demanding species in lowland forests and examine which habitats of studied species corresponding most closely to ancient vegetation. Our results indicate that the current refugial habitats of Actaea europaea include not only communities which are very similar to ancient open forest but also forests with a closed canopy. Although the populations are influenced by nitrogen and light availability, the co-occurrence of these two factors in forest communities is limited by dense canopy formation by hornbeam and beech trees on fertile soils and in more humid conditions. Our findings indicate that the future survival of relict, light-demanding communities in lowland forests requires low-intensity disturbances to be performed in tree-stands, according to techniques, which imitate traditional forests management.
Urban tree mortality: a primer on demographic approaches
Lara A. Roman; John J. Battles; Joe R. McBride
2016-01-01
Realizing the benefits of tree planting programs depends on tree survival. Projections of urban forest ecosystem services and cost-benefit analyses are sensitive to assumptions about tree mortality rates. Long-term mortality data are needed to improve the accuracy of these models and optimize the public investment in tree planting. With more accurate population...
A Black Swan and Sub-continental Scale Dynamics in Humid, Late-Holocene Broadleaf Forests
NASA Astrophysics Data System (ADS)
Pederson, N.; Dyer, J.; McEwan, R.; Hessl, A. E.; Mock, C. J.; Orwig, D.; Rieder, H. E.; Cook, B. I.
2012-12-01
In humid regions with dense broadleaf-dominated forests where gap-dynamics is the prevailing disturbance regime, paleoecological evidence shows regional-scale changes in forest composition associated with climatic change. To investigate the potential for regional events in late-Holocene forests, we use tree-ring data from 76 populations covering 840,000 km2 and 5.3k tree recruitment dates spanning 1.4 million km2 in the eastern US to investigate the occurrence of simultaneous forest dynamics across a humid region. We compare regional forest dynamics with an independent set of annually-resolved tree ring record of hydroclimate to examine whether climate dynamics might drive forest dynamics in this humid region. In forests where light availability is an important limitation for tree recruitment, we document a pulse of tree recruitment during the mid- to late-1600s across the eastern US. This pulse, which can be inferred as large-scale canopy opening, occurred during an era that multiple proxies indicate as extended drought between two intense pluvial. Principal component analysis of the 76 populations indicates a step-change increase in average ring width during the late-1770s resembling a potential canopy accession event over 42,800 km2 of the southeastern US. Growth-release analysis of populations loading strongly on this eigenvector indicates severe canopy disturbance from 1775-1779 that peaked in 1776. The 1776 event follows a period with extended droughts and severe large-scale frost event. We hypothesize these climatic events lead to elevated tree mortality in the late-1770s and canopy accession for understory trees. Superposed epoch analysis reveals that spikes of elevated canopy disturbance from 1685-1850 CE are significantly associated with drought. Extreme value theory statistics indicates the 1776 event lies beyond the 99.9 quantile and nearly 7 sigmas above the 1685-1850 mean rate of disturbance. The time-series of canopy disturbance from 1685-1850 is so poorly described by a Gaussian distribution that it can be considered 'heavy tailed'. Preliminary results show that disturbance events that affect >3-5% of the trees in our dataset occur approximately every 200 years. The most extreme rates (>5%) occur approximately every 500-1000 years. These statistics indicate that the 1775-1779 heavy-tail event can also be considered a 'Black Swan', the rare event that has the potential to alter a system's trajectory further than common events. Our results challenge traditional views regarding characteristic disturbance regime in humid temperate forests, and speak to the importance of punctuated climatic events in shaping forest structure for centuries. Such an understanding is critical given the potential of more frequent extreme climatic events in the future.
EnviroAtlas - Austin, TX - Residents with Minimal Potential Window Views of Trees by Block Group
This EnviroAtlas dataset shows the total block group population and the percentage of the block group population that has little access to potential window views of trees at home. Having little potential access to window views of trees is defined as having no trees & forest land cover within 50 meters. The window views are considered potential because the procedure does not account for presence or directionality of windows in one's home. Forest is defined as Trees & Forest. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
David J. Nowak; Peter D. Smith; Michael Merritt; John Giedraitis; Jeffrey T. Walton; Robert E. Hoehn; Jack C. Stevens; Daniel E. Crane; Mark Estes; Stephen Stetson; Charles Burditt; David Hitchcock; Wendee Holtcamp
2005-01-01
The population in and around Houston has grown rapidly over the past twenty years, now exceeding five million people. Studies of the area have noted that the loss of trees and changes to the forest makeup have generally accompanied this growth. Trees and urban forestry practices can be used effectively to reduce many of the negative effects of urban growth and other...
Brian R. Sturtevant; V. Quinn; L.E. Robert; D. Kneeshaw; P. James; M.-J. Fortin; P. Wolter; P. Townsend; B. Cooke; D. Anderson
2010-01-01
The balance of evidence suggests forest insect outbreaks today are more damaging than ever because of changes in forest composition and structure induced by fire suppression and post-harvest proliferation of tree species intolerant to herbivory. We hypothesized that landscape connectivity of acceptable host trees increases defoliator population connectivity, altering...
Quantitative Trait Inheritance in a Forty-Year-Old Longleaf Pine Partial Diallel Test
Michael Stine; Jim Roberds; C. Dana Nelson; David P. Gwaze; Todd Shupe; Les Groom
2002-01-01
A longleaf pine (Pinus palustris Mill.) 13 parent partial diallel field experiment was established at two locations on the Harrison Experimental Forest in 1960. Parent trees were randomly selected from a natural population growing on the Harrison Experimental Forest, near Gulfport, Miss. Distance between trees chosen as parents ranged from 13 to 357...
Urban forest structure, ecosystem services and change in Syracuse, NY
David J. Nowak; Robert E. Hoehn; Allison R. Bodine; Eric J. Greenfield; Jarlath O' Neil-Dunne
2013-01-01
The tree population within the City of Syracuse was assessed using a random sampling of plots in 1999, 2001 and 2009 to determine how the population and the ecosystem services these trees provide have changed over time. Ecosystem services and values for carbon sequestration, air pollution removal and changes in building energy use were derived using the i-Tree Eco...
F. Thomas Ledig; Virginia Jacob-Cervantes; Paul D. Hodgskiss
1997-01-01
Fragmentation and reduction in population size are expected to reduce genetic diversity. However, examples from natural populations of forest trees are scarce. The range of Chihuahua spruce retreated northward and fragmented coincident with the warming climate that marked the early Holocene. The isolated populations vary from 15 to 2441 trees, which provided an...
Long-term effects of different forest regeneration methods on mature forest birds
Roger W. Perry; Julianna M.A. Jenkins; Ronald E. Thill; Frank R. Thompson
2018-01-01
Changes in forest structure that result from silviculture, including timber harvest, can positively or negatively affect bird species that use forests. Because many bird species associated with mature forests are facing population declines, managers need to know how timber harvesting affects species of birds that rely on mature trees or forests for breeding, foraging,...
Changes in snag populations in northern Arizona mixed-conifer and ponderosa pine forests, 1997-2002
Joseph L. Ganey; Scott C. Vojta
2005-01-01
Snags (standing dead trees) are important components of forests that contribute to ecological processes and provide habitat for many life forms. We monitored dynamics of snag populations on 1-ha plots in southwestern mixed-conifer (n = 53 plots) and ponderosa pine (Pinus ponderosa, n = 60 plots) forests in north-central Arizona from 1997 to 2002. Of...
Trends in snag populations in Northern Arizona mixed-conifer and ponderosa pine forests, 1997-2012
J. L. Ganey; S. C. Vojta
2014-01-01
We monitored snag populations in drought-stressed mixed-conifer and ponderosa pine (Pinus ponderosa) forests, northern Arizona, at 5-yr intervals from 1997-2012. Snag density increased from 1997-2007 in both forest types, with accelerated change due to drought-related tree mortality during the period 2002-2007. Snag density declined non-significantly from 2007-2012,...
Joseph L. Ganey; Scott C. Vojta
2017-01-01
Logs provide an important form of coarse woody debris in forest systems, contributing to numerous ecological processes and affecting wildlife habitat and fuel complexes. Despite this, little information is available on the dynamics of log populations in southwestern ponderosa pine (Pinus ponderosa) and especially mixed-conifer forests. A recent episode of elevated tree...
Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Scott; Hanula, James L.; Ulyshen, Michael D.
2005-01-01
Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogsmore » were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.« less
Forest habitat loss, fragmentation, and red-cockaded woodpecker populations
Richard N. Conner; D. Craig Rudolph
1991-01-01
Loss of mature forest habitat was measured around Red-cockaded Woodpecker (Picoides borealis) cavity tree clusters (colonies) in three National Forests in eastern Texas. Forest removal results in a loss of foraging habitat and causes habitat fragmentation of the remaining mature forest. Habitat loss was negatively associated with woodpecker group size in small...
Accelerating the domestication of forest trees in a changing world.
Harfouche, Antoine; Meilan, Richard; Kirst, Matias; Morgante, Michele; Boerjan, Wout; Sabatti, Maurizio; Scarascia Mugnozza, Giuseppe
2012-02-01
In light of impending water and arable land shortages, population growth and climate change, it is more important than ever to examine how forest tree domestication can be accelerated to sustainably meet future demands for wood, biomass, paper, fuel and biomaterials. Because of long breeding cycles, tree domestication cannot be rapidly achieved through traditional genetic improvement methods alone. Integrating modern genetic and genomic techniques with conventional breeding will expedite tree domestication. Breeders will only embrace these technologies if they are cost-effective and readily accessible, and forest landowners will only adopt end-products that meet with regulatory approval and public acceptance. All parties involved must work together to achieve these objectives for the benefit of society. Copyright © 2011 Elsevier Ltd. All rights reserved.
Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia
Camarero, J. Julio; Carrer, Marco; Gutiérrez, Emilia; Alla, Arben Q.; Andreu-Hayles, Laia; Hevia, Andrea; Koutavas, Athanasios; Martínez-Sancho, Elisabet; Nola, Paola; Papadopoulos, Andreas; Pasho, Edmond; Toromani, Ervin
2017-01-01
Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950–2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells. PMID:29109266
Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia.
Sánchez-Salguero, Raúl; Camarero, J Julio; Carrer, Marco; Gutiérrez, Emilia; Alla, Arben Q; Andreu-Hayles, Laia; Hevia, Andrea; Koutavas, Athanasios; Martínez-Sancho, Elisabet; Nola, Paola; Papadopoulos, Andreas; Pasho, Edmond; Toromani, Ervin; Carreira, José A; Linares, Juan C
2017-11-21
Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950-2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells.
Present-day central African forest is a legacy of the 19th century human history
Morin-Rivat, Julie; Fayolle, Adeline; Favier, Charly; Bremond, Laurent; Gourlet-Fleury, Sylvie; Bayol, Nicolas; Lejeune, Philippe; Beeckman, Hans; Doucet, Jean-Louis
2017-01-01
The populations of light-demanding trees that dominate the canopy of central African forests are now aging. Here, we show that the lack of regeneration of these populations began ca. 165 ya (around 1850) after major anthropogenic disturbances ceased. Since 1885, less itinerancy and disturbance in the forest has occurred because the colonial administrations concentrated people and villages along the primary communication axes. Local populations formerly gardened the forest by creating scattered openings, which were sufficiently large for the establishment of light-demanding trees. Currently, common logging operations do not create suitable openings for the regeneration of these species, whereas deforestation degrades landscapes. Using an interdisciplinary approach, which included paleoecological, archaeological, historical, and dendrological data, we highlight the long-term history of human activities across central African forests and assess the contribution of these activities to present-day forest structure and composition. The conclusions of this sobering analysis present challenges to current silvicultural practices and to those of the future. DOI: http://dx.doi.org/10.7554/eLife.20343.001 PMID:28093097
Effect of plot and sample size on timing and precision of urban forest assessments
David J. Nowak; Jeffrey T. Walton; Jack C. Stevens; Daniel E. Crane; Robert E. Hoehn
2008-01-01
Accurate field data can be used to assess ecosystem services from trees and to improve urban forest management, yet little is known about the optimization of field data collection in the urban environment. Various field and Geographic Information System (GIS) tests were performed to help understand how time costs and precision of tree population estimates change with...
Assessing the US Urban Forest Resources
David J. Nowak; Mary H. Noble; Susan M. Sisinni; John F. Dwyer
2001-01-01
Urban areas in the conterminous United States doubled in size between 1969 and 1994, and currently cover 3.5 percent of the total land area and contain more than 75 percent of the US population. Urban areas contain approximately 3.8 billion trees with an average tree canopy cover of 27 percent. The extent and variation of urban forests across the 48 states are explored...
Control of pest species: Tree shelters help protect seedlings from nutria
Allen, J.A.; Boykin, R.
1991-01-01
Various methods of nutria preventative techniques were tested in attempts to curb the loss of seedlings due to nutria capturing. The results of testing possibly indicate that tree shelters have real potential for use in forest restoration projects on sites with moderate nutria populations. Tree shelters may even prove effective on sites with high nutria populations, as long as alternative food supplies are available.
Tree fern trunks facilitate seedling regeneration in a productive lowland temperate rain forest.
Gaxiola, Aurora; Burrows, Larry E; Coomes, David A
2008-03-01
Seedling regeneration on forest floors is often impaired by competition with established plants. In some lowland temperate rain forests, tree fern trunks provide safe sites on which tree species establish, and grow large enough to take root in the ground and persist. Here we explore the competitive and facilitative effects of two tree fern species, Cyathea smithii and Dicksonia squarrosa, on the epiphytic regeneration of tree species in nutrient-rich alluvial forests in New Zealand. The difficulties that seedlings have in establishing on vertical tree fern trunks were indicated by the following observations. First, seedling abundance was greatest on the oldest sections of tree fern trunks, near the base, suggesting that trunks gradually recruited more and more seedlings over time, but many sections of trunk were devoid of seedlings, indicating the difficulty of establishment on a vertical surface. Second, most seedlings were from small-seeded species, presumably because smaller seeds can easily lodge on tree fern trunks. Deer browsing damage was observed on 73% of epiphytic seedlings growing within 2 m of the ground, whereas few seedlings above that height were browsed. This suggests that tree ferns provide refugia from introduced deer, and may slow the decline in population size of deer-preferred species. We reasoned that tree ferns would compete with epiphytic seedlings for light, because below the tree fern canopy photosynthetically active radiation (PAR) was about 1% of above-canopy PAR. Frond removal almost tripled %PAR on the forest floor, leading to a significant increase in the height growth rate (HGR) of seedlings planted on the forest floor, but having no effects on the HGRs of epiphytic seedlings. Our study shows evidence of direct facilitative interactions by tree ferns during seedling establishment in plant communities associated with nutrient-rich soils.
Abundance of Green Tree Frogs and Insects in Artificial Canopy Gaps in a Bottomland Hardwood Forest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Scott; Hanula, James, L.; Ulyshen, Michael D.
2005-04-01
ABSTRACT - We found more green tree frogs ( Hyla cinerea) n canopv gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopv gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat Flies were the most commonlv collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.
Forest Thrives In Sludge Application Tests
Dale G. Brockway
1988-01-01
A six-year, state and federal research-demonstration project to recycle treated municipal wastewater sludge on forest lands has resulted in dramatic growth increase of trees, groundcover and wildlife populations.
USDA-ARS?s Scientific Manuscript database
The forest pathogen Armillaria mellea s.s. (Basidiomycota, Physalacriaceae) is among the most significant forest pathogens causing root rot in northern temperate forest trees worldwide. Phylogenetic reconstructions for A. mellea show distinct European, Asian and North American lineages. The North Am...
Rueegger, Niels; Law, Brad; Goldingay, Ross
2018-01-01
Understanding maternity roost requirements is fundamental to guide timber production forest management given such roosts are vital to sustain bat populations. We tracked lactating females of three tree cavity-roosting species: Gould's long-eared bat (Nyctophilus gouldi) (n = 7), eastern broad-nosed bat (Scotorepens orion) (n = 6) and little forest bat (Vespadelus vulturnus) (n = 25), over five weeks in young (predominately <5 years old) forest regenerating from heavy timber harvest in southeast Australia. We aimed to investigate interspecific maternity roost selection in a regenerating landscape and by doing so, increase our understanding of the three species' roost ecology. Sixteen V. vulturnus, 15 N. gouldi and six S. orion unique maternity roost trees were located. Bats displayed a degree of maternity roost selection plasticity, however, interspecific differences were found. Nyctophilus gouldi roosted selectively in retained riparian buffers, in trees of high senescence and switched roosts every day. Vespadelus vulturnus roosted in logged areas and displayed high roost site fidelity, with one roost used for 33 consecutive days. Scotorepens orion selected large live trees of low senescence. The preliminary data for this species suggests that females roost most days in 'primary' roosts but display a roost switching behaviour conforming to the fission-fusion model. Dead trees were identified to be important for both N. gouldi and V. vulturnus. Historical and recent logging at our study area drastically reduced cavity-bearing tree density to 1.4 trees per hectare in the logging zones (outside of exclusion areas), potentially limiting local populations of tree cavity-roosting bats and other cavity-dependent wildlife. Our data demonstrate that forest management must consider a range of maternity roost requirements to accommodate differences among species and highlight the importance of exclusion areas for roost habitat. We propose that an expanded 'retention forestry' approach should be implemented in logged areas that includes in-perpetuity forest patch retention to increase habitat complexity and continuity.
Law, Brad; Goldingay, Ross
2018-01-01
Understanding maternity roost requirements is fundamental to guide timber production forest management given such roosts are vital to sustain bat populations. We tracked lactating females of three tree cavity-roosting species: Gould's long-eared bat (Nyctophilus gouldi) (n = 7), eastern broad-nosed bat (Scotorepens orion) (n = 6) and little forest bat (Vespadelus vulturnus) (n = 25), over five weeks in young (predominately <5 years old) forest regenerating from heavy timber harvest in southeast Australia. We aimed to investigate interspecific maternity roost selection in a regenerating landscape and by doing so, increase our understanding of the three species’ roost ecology. Sixteen V. vulturnus, 15 N. gouldi and six S. orion unique maternity roost trees were located. Bats displayed a degree of maternity roost selection plasticity, however, interspecific differences were found. Nyctophilus gouldi roosted selectively in retained riparian buffers, in trees of high senescence and switched roosts every day. Vespadelus vulturnus roosted in logged areas and displayed high roost site fidelity, with one roost used for 33 consecutive days. Scotorepens orion selected large live trees of low senescence. The preliminary data for this species suggests that females roost most days in ‘primary’ roosts but display a roost switching behaviour conforming to the fission-fusion model. Dead trees were identified to be important for both N. gouldi and V. vulturnus. Historical and recent logging at our study area drastically reduced cavity-bearing tree density to 1.4 trees per hectare in the logging zones (outside of exclusion areas), potentially limiting local populations of tree cavity-roosting bats and other cavity-dependent wildlife. Our data demonstrate that forest management must consider a range of maternity roost requirements to accommodate differences among species and highlight the importance of exclusion areas for roost habitat. We propose that an expanded ‘retention forestry’ approach should be implemented in logged areas that includes in-perpetuity forest patch retention to increase habitat complexity and continuity. PMID:29543883
Aerts, Raf; Van Overtveld, Koen; November, Eva; Wassie, Alemayehu; Abiyu, Abrham; Demissew, Sebsebe; Daye, Desalegn D; Giday, Kidane; Haile, Mitiku; TewoldeBerhan, Sarah; Teketay, Demel; Teklehaimanot, Zewge; Binggeli, Pierre; Deckers, Jozef; Friis, Ib; Gratzer, Georg; Hermy, Martin; Heyn, Moïra; Honnay, Olivier; Paris, Maxim; Sterck, Frank J; Muys, Bart; Bongers, Frans; Healey, John R
2016-05-01
In the central and northern highlands of Ethiopia, native forest and forest biodiversity is almost confined to sacred groves associated with churches. Local communities rely on these 'church forests' for essential ecosystem services including shade and fresh water but little is known about their region-wide distribution and conservation value. We (1) performed the first large-scale spatially-explicit assessment of church forests, combining remote-sensing and field data, to assess the number of forests, their size, shape, isolation and woody plant species composition, (2) determined their plant communities and related these to environmental variables and potential natural vegetation, (3) identified the main challenges to biodiversity conservation in view of plant population dynamics and anthropogenic disturbances, and (4) present guidelines for management and policy. The 394 forests identified in satellite images were on average ~2ha in size and generally separated by ~2km from the nearest neighboring forest. Shape complexity, not size, decreased from the northern to the central highlands. Overall, 148 indigenous tree, shrub and liana species were recorded across the 78 surveyed forests. Patch α-diversity increased with mean annual precipitation, but typically only 25 woody species occurred per patch. The combined results showed that >50% of tree species present in tropical northeast Africa were still present in the 78 studied church forests, even though individual forests were small and relatively species-poor. Tree species composition of church forests varied with elevation and precipitation, and resembled the potential natural vegetation. With a wide distribution over the landscape, these church forests have high conservation value. However, long-term conservation of biodiversity of individual patches and evolutionary potential of species may be threatened by isolation, small sizes of tree species populations and disturbance, especially when considering climate change. Forest management interventions are essential and should be supported by environmental education and other forms of public engagement. Copyright © 2016 Elsevier B.V. All rights reserved.
Cuauhtemoc Saenz-Romero; R. Ricardo Guzman-Reyna; Gerald E. Rehfeldt
2006-01-01
Pinus oocarpa has a large natural distribution in the sub-tropical forests of Mexico. Populations, however, are rapidly disappearing particularly in the Michoacan State as native forests are converted to avocado (Persea sp.) orchards.We investigated the patterning of genetic variation among P. oocarpa populations...
Rate of tree carbon accumulation increases continuously with tree size.
Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A
2014-03-06
Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.
[Vegetation diversity, composition and structure in a cattle agro-landscape of Matiguás, Nicaragua].
Merlos, Dalia Sánchez; Harvey, Celia A; Grijalva, Alfredo; Medina, Arnulfo; Vílchez, Sergio; Hernández, Blas
2005-01-01
The diversity, composition and structure of vegetation in a cattle landscape in Matiguás, Nicaragua was characterized, and the floristic and structural differences of six types of habitats (secondary forests, riparian forests, charrales, live fences and pastures with high and low tree cover) were compared. A total of 3 949 trees of 180 species and 52 families were recorded. Forty six percent of the total trees reported for the landscape were represented by Guazuma ulmifolia (18.5%), Bursera simaruha (13.2%), Tabebuia rosea (6.3%), Enterolobium cyclocarpum (4.2%) and Albizia saman (3.4%). Many of the dominant species in the landscape were typical of open and disturbed areas. There were significant differences between the different habitats in the patterns of tree species richness, abundance, diversity, structure and floristic composition. The riparian forests had greater tree richness (p=0.0001) and diversity (p=0.0009) than other habitats. The floristic composition varied across habitats. with pairs of habitats sharing between 18.4 and 51.6% of the same tree species, and with clear differences in composition between the forested (riparian and secondary forests) and agricultural habitats. Of the habitats studied, the riparian forests and secondary forests seem to have greatest value for the conservation of the flora in the agropaisaje because they have the greatest species richness, and maintain small populations of endangered species. On the basis of the study, we recommend including agricultural landscapes in strategies to conserve tree diversity and suggest measures to ensure the maintenance of tree diversity in the Matiguas landscape.
Rate of tree carbon accumulation increases continuously with tree size
Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.
2014-01-01
Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage - increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.
Light Competition and Carbon Partitioning-Allocation in an improved Forest Ecosystem Model
NASA Astrophysics Data System (ADS)
Collalti, Alessio; Santini, Monia; Valentini Valentini, Riccardo
2010-05-01
In Italy about 100.000 km2 are covered by forests. This surface is the 30% of the whole national land and this shows how the forests are important both for socio-economic and for environmental aspects. Forests changes affect a delicate balance that involve not only vegetation components but also bio-geochemical cycles and global climate. The knowledge of the amount of Carbon sequestered by forests represents a precious information for their sustainable management in the framework of climate changes. Primary studies in terms of model about this important issue, has been done through Forest Ecosystem Model (FEM), well known and validated as 3PG (Landsberg et Waring, 1997; Sands 2004). It is based on light use efficiency approach at the canopy level. The present study started from the original model 3PG, producing an improved version that uses many of explicit formulations of all relevant ecophysiological processes but makes it able to be applied for natural forests. The mutual interaction of forest growth and light conditions causes vertical and horizontal differentiation in the natural forest mosaic. Only ecophysiological parameters which can be either directly measured or estimates with reasonable certainty are used. The model has been written in C language and has been created considering a tri-dimensional cell structure with different vertical layers depending on the forest type that has to be simulated. This 3PG 'improved' version enable to work on multi-layer and multi-species forests type with cell resolution of one hectare for the typical Italian forest species. The multi-layer version is the result of the implementation and development of Lambert-Beer law for the estimation of intercepted, absorbed and transmitted light through different storeys of the forest. It is possible estimates, for each storey, a Par value (Photosynthetic Active Radiation) through Leaf Area Index (LAI), Light Extinction Coefficient and cell Canopy Cover using a "Big Leaf" approach. Hence, the presence of a cohort in a storey determines the amount of light received for the photosynthetic processes. The population density (numbers of trees per cell) represents a good competition index for determining the tree crown structure and tree crown dimension within a forest population. The tree crown tend to branch out horizontally to intercept as much light as possible. The model assess the structure of the tree crown both vertically and horizontally on the base of the population density and it up-scales the result to the whole stand. The canopy depth and the percentage of horizontal coverage determines moreover a crowding competition index that lead to a specific biomass partitioning-allocation ratio among the different tree components (foliage, roots and stem) and especially for the stem affecting Height-Diameter (at breast height) ratio. In this model, Height-Diameter ratio is used as an alternative competition index in determining the vigour and the strength of competition on free growth status of trees. The forest dominant vegetative cover affects moreover the presence of a dominated layer, it influences its yield and its Carbon stocking capacity and hence it influences the forest ecosystem CO2 carbon balance. From this model it is possible to simulate the impact of Climate Change on forests, the feedback of one or more dominated layers in terms of CO2 uptake in a forest stand and the effects of forest management activities for the next years.
Landscape-level effects of forest management on bird species in the Ozarks of southeastern Missouri
Richard L. Clawson; John Faaborg; Wendy K. Gram; Paul A. Porneluzi
2002-01-01
This study was designed as an experiment to test how bird populations in an extensively forested landscape respond to small (group and single-tree selection) and large (clearcut) openings. Our objectives are to test the landscape-level effects of even-aged and uneven-aged forest management relative to no-harvest management on population density and reproductive success...
Silvestre, Ellida de Aguiar; Schwarcz, Kaiser Dias; Grando, Carolina; de Campos, Jaqueline Bueno; Sujii, Patricia Sanae; Tambarussi, Evandro Vagner; Macrini, Camila Menezes Trindade; Pinheiro, José Baldin; Brancalion, Pedro Henrique Santin; Zucchi, Maria Imaculada
2018-03-16
The reproductive system of a tree species has substantial impact on genetic diversity and structure within and among natural populations. Such information, should be considered when planning tree planting for forest restoration. Here, we describe the mating system and genetic diversity of an overexploited Neotropical tree, Myroxylon peruiferum L.f. (Fabaceae) sampled from a forest remnant (10 seed trees and 200 seeds) and assess whether the effective population size of nursery-grown seedlings (148 seedlings) is sufficient to prevent inbreeding depression in reintroduced populations. Genetic analyses were performed based on 8 microsatellite loci. M. peruiferum presented a mixed mating system with evidence of biparental inbreeding (t^m-t^s = 0.118). We found low levels of genetic diversity for M. peruiferum species (allelic richness: 1.40 to 4.82; expected heterozygosity: 0.29 to 0.52). Based on Ne(v) within progeny, we suggest a sample size of 47 seed trees to achieve an effective population size of 100. The effective population sizes for the nursery-grown seedlings were much smaller Ne = 27.54-34.86) than that recommended for short term Ne ≥ 100) population conservation. Therefore, to obtain a reasonable genetic representation of native tree species and prevent problems associated with inbreeding depression, seedling production for restoration purposes may require a much larger sampling effort than is currently used, a problem that is further complicated by species with a mixed mating system. This study emphasizes the need to integrate species reproductive biology into seedling production programs and connect conservation genetics with ecological restoration.
The components of change for an annual forest inventory design
Francis A. Roesch
2007-01-01
The sample design of the USDA Forest Service's Forest Inventory and Analysis Program (FIA) with respect to a three-dimensional population (forest area X time) of tree attributes is formally defined and evaluated. The definitions for both the traditional components of growth, as presented by Meyer (1953, Forest Mensuration), and a discrete analog to the time...
Trees, houses, and habitat: private forests at the wildland-urban interface.
Jonathan. Thompson
2004-01-01
How population growth and development affect forests is a shared concern among forest managers, policymakers, land use planners, and fish and wildlife specialists. Of particular interest is the "wildland-urban interface." It is characterized by expansion of residential and other developed land uses onto forest landscapes in a manner that threatens the...
Assessment and Mapping of Forest Parcel Sizes
Brett J. Butler; Susan L. King
2005-01-01
A method for analyzing and mapping forest parcel sizes in the Northeastern United States is presented. A decision tree model was created that predicts forest parcel size from spatially explicit predictor variables: population density, State, percentage forest land cover, and road density. The model correctly predicted parcel size for 60 percent of the observations in a...
Bryce A. Richardson; Marcus V. Warwell; Mee-Sook Kim; Ned B. Klopfenstein; Geral I. McDonald
2010-01-01
To assess threats or predict responses to disturbances, or both, it is essential to recognize and characterize the population structures of forest species in relation to changing environments. Appropriate management of these genetic resources in the future will require (1) understanding the existing genetic diversity/variation and population structure of forest trees...
Peters, C M; Balick, M J; Kahn, F; Anderson, A B
1989-12-01
Tropical forests dominated by only one or two tree species occupy tens of millions of hectares in Ammonia In many cases, the dominant species produce fruits, seeds, or oils of economic importance. Oligarchic (Gr. oligo = few, archic = dominated or ruled by) forests of six economic species, i. e., Euterpe oleracea, Grias peruviana, Jessenia bataua, Mauritia flexuosa, Myrciaria dubia, and Orbignya phalerata, were studied in Brazil and Peru Natural populations of these species contain from 100 to 3,000 conspecific adult trees/ha and produce up to 11.1 metric tons of fruit/hd/yr. These plant populations are utilized and occasionally managed, by rural inhabitants in the region. Periodic fruit harvests, if properly controlled have only a minimal impact on forest structure and function, yet can generate substantial economic returns Market-oriented extraction of the fruits produced by oligarchic forests appears to represent a promising alternative for reconciling the development and conservation of Amazonian forests.
Miller, Rose T; Raharison, Jean-Luc; Irwin, Mitchell T
2017-04-01
The destruction and degradation of forest habitats are major threats to the sustainability of lemur populations in Madagascar. Madagascan landscapes often contain forest fragments that represent refuges for native fauna, while also being used for firewood and timber by local human populations. As undisturbed forest becomes increasingly scarce, understanding resource competition between humans and wildlife in disturbed habitats will be increasingly important. We tested the hypothesis that Malagasy and aye-ayes (Daubentonia madagascariensis) compete for the limited number of dead trees in rainforest fragments at Tsinjoarivo, Madagascar. We surveyed 2.16 ha within five fragments (range 5-228 ha) surrounding human settlements to quantify the density of dead trees and traces of both human and aye-aye activity. Neither aye-aye nor human traces were distributed according to the availability of particular trees species, and aye-ayes and Malagasy apparently preferred several different species. Although overlap was recorded in tree species used, human use tended to be positively correlated with a species' desirability as firewood, while a negative relationship was seen for aye-ayes. Both consumers used trees of similar diameter at breast height, but those used by aye-ayes tended to be older, suggesting that human use might precede usefulness for aye-ayes. Finally, the density of dead trees and aye-aye traces were highest in smaller fragments, but human traces did not vary across fragment size. Although further study is needed to better quantify the aye-aye diet in this region, these data suggest that aye-ayes and local people compete for dead trees, and this competition could constitute a pressure on aye-aye populations.
Tree Age Distributions Reveal Large-Scale Disturbance-Recovery Cycles in Three Tropical Forests.
Vlam, Mart; van der Sleen, Peter; Groenendijk, Peter; Zuidema, Pieter A
2016-01-01
Over the past few decades there has been a growing realization that a large share of apparently 'virgin' or 'old-growth' tropical forests carries a legacy of past natural or anthropogenic disturbances that have a substantial effect on present-day forest composition, structure and dynamics. Yet, direct evidence of such disturbances is scarce and comparisons of disturbance dynamics across regions even more so. Here we present a tree-ring based reconstruction of disturbance histories from three tropical forest sites in Bolivia, Cameroon, and Thailand. We studied temporal patterns in tree regeneration of shade-intolerant tree species, because establishment of these trees is indicative for canopy disturbance. In three large areas (140-300 ha), stem disks and increment cores were collected for a total of 1154 trees (>5 cm diameter) from 12 tree species to estimate the age of every tree. Using these age estimates we produced population age distributions, which were analyzed for evidence of past disturbance. Our approach allowed us to reconstruct patterns of tree establishment over a period of around 250 years. In Bolivia, we found continuous regeneration rates of three species and a peaked age distribution of a long-lived pioneer species. In both Cameroon and Thailand we found irregular age distributions, indicating strongly reduced regeneration rates over a period of 10-60 years. Past fires, windthrow events or anthropogenic disturbances all provide plausible explanations for the reported variation in tree age across the three sites. Our results support the recent idea that the long-term dynamics of tropical forests are impacted by large-scale disturbance-recovery cycles, similar to those driving temperate forest dynamics.
Tree Age Distributions Reveal Large-Scale Disturbance-Recovery Cycles in Three Tropical Forests
Vlam, Mart; van der Sleen, Peter; Groenendijk, Peter; Zuidema, Pieter A.
2017-01-01
Over the past few decades there has been a growing realization that a large share of apparently ‘virgin’ or ‘old-growth’ tropical forests carries a legacy of past natural or anthropogenic disturbances that have a substantial effect on present-day forest composition, structure and dynamics. Yet, direct evidence of such disturbances is scarce and comparisons of disturbance dynamics across regions even more so. Here we present a tree-ring based reconstruction of disturbance histories from three tropical forest sites in Bolivia, Cameroon, and Thailand. We studied temporal patterns in tree regeneration of shade-intolerant tree species, because establishment of these trees is indicative for canopy disturbance. In three large areas (140–300 ha), stem disks and increment cores were collected for a total of 1154 trees (>5 cm diameter) from 12 tree species to estimate the age of every tree. Using these age estimates we produced population age distributions, which were analyzed for evidence of past disturbance. Our approach allowed us to reconstruct patterns of tree establishment over a period of around 250 years. In Bolivia, we found continuous regeneration rates of three species and a peaked age distribution of a long-lived pioneer species. In both Cameroon and Thailand we found irregular age distributions, indicating strongly reduced regeneration rates over a period of 10–60 years. Past fires, windthrow events or anthropogenic disturbances all provide plausible explanations for the reported variation in tree age across the three sites. Our results support the recent idea that the long-term dynamics of tropical forests are impacted by large-scale disturbance-recovery cycles, similar to those driving temperate forest dynamics. PMID:28105034
Fragment quality and matrix affect epiphytic performance in a Mediterranean forest landscape.
Belinchón, Rocío; Martínez, Isabel; Otálora, Mónica A G; Aragón, Gregorio; Dimas, Jesús; Escudero, Adrián
2009-11-01
Destruction and fragmentation of habitats represent one of the most important threats for biodiversity. Here, we examined the effects of fragmentation in Mediterranean forests on the epiphytic lichen Lobaria pulmonaria (Lobariaceae). We tested the hypothesis that not only the level of fragmentation affects L. pulmonaria populations, but also the quality of the habitat and the nature of the surrounding matrix affect them. The presence and abundance of the lichen was recorded on 2039 trees in a total of 31 stands. We recorded habitat quality and landscape variables at three hierarchical levels: tree, plot, and patch. We found that L. pulmonaria tends to occur in trees with larger diameters in two types of surveyed forests. In Quercus pyrenaica patches, the mean diameter of colonized trees was smaller, suggesting the importance of bark roughness. Factors affecting the presence and cover of the lichen in each type of forest were different. There was a strong positive influence of distance from a river in beech forests, whereas proximity to forest edge positively affected in oak forests. The influence of the surrounding matrix was also an important factor explaining the epiphytic lichen abundance.
Competition amplifies drought stress in forests across broad climatic and compositional gradients
Gleason, Kelly; Bradford, John B.; Bottero, Alessandra; D'Amato, Tony; Fraver, Shawn; Palik, Brian J.; Battaglia, Michael; Iverson, Louis R.; Kenefic, Laura; Kern, Christel C.
2017-01-01
Forests around the world are experiencing increasingly severe droughts and elevated competitive intensity due to increased tree density. However, the influence of interactions between drought and competition on forest growth remains poorly understood. Using a unique dataset of stand-scale dendrochronology sampled from 6405 trees, we quantified how annual growth of entire tree populations responds to drought and competition in eight, long-term (multi-decadal), experiments with replicated levels of density (e.g., competitive intensity) arrayed across a broad climatic and compositional gradient. Forest growth (cumulative individual tree growth within a stand) declined during drought, especially during more severe drought in drier climates. Forest growth declines were exacerbated by high density at all sites but one, particularly during periods of more severe drought. Surprisingly, the influence of forest density was persistent overall, but these density impacts were greater in the humid sites than in more arid sites. Significant density impacts occurred during periods of more extreme drought, and during warmer temperatures in the semi-arid sites but during periods of cooler temperatures in the humid sites. Because competition has a consistent influence over growth response to drought, maintaining forests at lower density may enhance resilience to drought in all climates.
Montoya, L; Haug, I; Bandala, V M
2010-01-01
Ectomycorrhizal (EM) fleshy fungi are being monitored in a population of Fagus grandifolia var. mexicana persisting in a montane cloud forest refuge on a volcano in a subtropical region of central Veracruz (eastern Mexico). The population of Fagus studied represents one of the 10 recognized forest fragments still housing this tree genus in Mexico. This is the first attempt to document EM fungi associated with this tree species in Mexico. We present evidence of the ectomycorrhizal symbiosis for Lactarius badiopallescens and L. cinereus with this endemic tree. Species identification of Lactarius on Fagus grandifolia var. mexicana was based on the comparison of DNAsequences (ITS rDNA) of spatiotemporally co-occurring basidiomes and EM root tips. The host of the EM tips was identified by comparison of the large subunit of the ribulose-bisphosphate carboxylase gene (rbcL). The occurrence of Lactarius badiopallescens and L. cinereus populations in the area of study represent the southernmost record known to date of these two species in North America and are new for the Neotropical Lactarius mycota. Descriptions coupled with illustrations of macro- and micromorphological features of basidiomes as well as photographs of ectomycorrhizas are presented.
Tree growth response to ENSO in Durango, Mexico
NASA Astrophysics Data System (ADS)
Pompa-García, Marin; Miranda-Aragón, Liliana; Aguirre-Salado, Carlos Arturo
2015-01-01
The dynamics of forest ecosystems worldwide have been driven largely by climatic teleconnections. El Niño-Southern Oscillation (ENSO) is the strongest interannual variation of the Earth's climate, affecting the regional climatic regime. These teleconnections may impact plant phenology, growth rate, forest extent, and other gradual changes in forest ecosystems. The objective of this study was to investigate how Pinus cooperi populations face the influence of ENSO and regional microclimates in five ecozones in northwestern Mexico. Using standard dendrochronological techniques, tree-ring chronologies (TRI) were generated. TRI, ENSO, and climate relationships were correlated from 1950-2010. Additionally, multiple regressions were conducted in order to detect those ENSO months with direct relations in TRI ( p < 0.1). The five chronologies showed similar trends during the period they overlapped, indicating that the P. cooperi populations shared an interannual growth variation. In general, ENSO index showed correspondences with tree-ring growth in synchronous periods. We concluded that ENSO had connectivity with regional climate in northern Mexico and radial growth of P. cooperi populations has been driven largely by positive ENSO values (El Niño episodes).
Tree growth response to ENSO in Durango, Mexico.
Pompa-García, Marin; Miranda-Aragón, Liliana; Aguirre-Salado, Carlos Arturo
2015-01-01
The dynamics of forest ecosystems worldwide have been driven largely by climatic teleconnections. El Niño-Southern Oscillation (ENSO) is the strongest interannual variation of the Earth's climate, affecting the regional climatic regime. These teleconnections may impact plant phenology, growth rate, forest extent, and other gradual changes in forest ecosystems. The objective of this study was to investigate how Pinus cooperi populations face the influence of ENSO and regional microclimates in five ecozones in northwestern Mexico. Using standard dendrochronological techniques, tree-ring chronologies (TRI) were generated. TRI, ENSO, and climate relationships were correlated from 1950-2010. Additionally, multiple regressions were conducted in order to detect those ENSO months with direct relations in TRI (p < 0.1). The five chronologies showed similar trends during the period they overlapped, indicating that the P. cooperi populations shared an interannual growth variation. In general, ENSO index showed correspondences with tree-ring growth in synchronous periods. We concluded that ENSO had connectivity with regional climate in northern Mexico and radial growth of P. cooperi populations has been driven largely by positive ENSO values (El Niño episodes).
González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A.; Stoner, Kathryn E.
2012-01-01
Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the southeastern Mexican rainforest, such as Terminalia-Dialium, and Brosimum-Dialium. PMID:23056486
González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A; Stoner, Kathryn E
2012-01-01
Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the southeastern Mexican rainforest, such as Terminalia-Dialium, and Brosimum-Dialium.
Physiology and Genetics of Tree-Phytophage Interactions
Frances Lieutier; William J. Mattson; Michael R. Wagner
1999-01-01
Interactions between trees and phytophagous organisms represent an important fundamental process in the evolution of forest ecosystems. Through evolutionary time, the special traits of trees have lead the herbivore populations to differentiate and evolve in order to cope with the variability in natural resistance mechanisms of their hosts. Conversely, damage by...
Allozyme markers in forest genetic conservation
Constance I. Millar; R. D. Westfall
1992-01-01
Genetic diversity is important in tree-breeding, in managing rare and endangered tree species, and in maintaining healthy populations of widespread native tree species. Allozymes are useful in determining genetic relationships among species, where they can be used to assess affiliations of rare taxa and predict relative endangerment among species. Because allozymes...
USDA-ARS?s Scientific Manuscript database
Forest trees tend to be genetically diverse, a condition related to their longevity, outcrossing mating system and extensive gene flow that maintains high levels of genetic diversity within populations. Forest pest epidemics are responsible for many historic and contemporary population declines repo...
Karen E. Bagne; Deborah M. Finch
2009-01-01
Mechanical and fire treatments are commonly used to reduce fuels where land use practices have encouraged accumulation of woody debris and high densities of trees. Treatments focus on restoration of vegetation structure, but will also affect wildlife populations. Small mammal populations were monitored before and after dense tree stands were thinned on 2,800 ha in NM,...
Compensatory value of urban trees in the United States
David J. Nowak; Daniel E. Crane; John F. Dwyer
2002-01-01
Understanding the value of an urban forest can give decision makers a better foundation for urban tree namagement. Based on tree-valuation methods of the Council of Tree and Landscape Appraisers and field data from eight cities, total compensatory value of tree populations in U.S. cities ranges from $101 million in Jersey City, New Jersey, to $6.2 billion in New York,...
Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.
2015-01-01
Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention. PMID:26000951
Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H
2015-01-01
Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention.
NASA Astrophysics Data System (ADS)
Martin, Y. E.; Johnson, E. A.; Chaikina, O.
2013-10-01
During the cycle of forest disturbance, regeneration, and maturity, tree mortality leading to topple is a regular occurrence. When tree topple occurs relatively soon after mortality and if the tree has attained some threshold diameter at breast height (dbh) at the time of death, then notable amounts of soil may be upheaved along with the root wad. This upheaval may result in sediment transfers and soil production. A combination of field evidence and numerical modeling is used herein to gain insights regarding the temporal dynamics of tree topple, associated root throw processes, and pit-mound microtopography. Results from our model of tree population dynamics demonstrate temporal patterns in root throw processes in subalpine forests of the Canadian Rockies, a region in which forests are affected largely by wildfire disturbance. As the forest regenerates after disturbance, the new cohort of trees has to reach a critical dbh before significant root plate upheaval can occur; in the subalpine forests of the Canadian Rockies, this may take up to ~ 102 years. Once trees begin to reach this critical dbh for root plate upheaval, a period of sporadic root throw arises that is caused by mortality of trees during competition. In due course, another wildfire will occur on the landscape and a period of much increased root throw activity then takes place for the next several decades; tree sizes and, therefore, the amount of sediment disturbance will be greater the longer the time period since the previous fire. Results of previous root throw studies covering a number of regional settings are used to guide an exercise in diffusion modeling with the aim of defining a range of reasonable diffusion coefficients for pit-mound degradation; the most appropriate values to fit the field data ranged from 0.01 m2 y- 1 to 0.1 m2 y- 1. A similar exercise is then undertaken that is guided by our field observations in subalpine forests of the Canadian Rockies. For these forests, the most appropriate range of diffusion coefficients is in the range 0.001 m2 y- 1 to 0.01 m2 y- 1. Finally, the model of tree population dynamics is combined with the model of pit-mound degradation to demonstrate the integration of these combined processes on the appearance of pit-mound microtopography and soil bioturbation in subalpine forests of the Canadian Rockies. We conclude that the appearance of notable pit-mound microtopography is limited to very specific time periods and is not visible for much of the time. Most of the hillslope plot is affected by root throw during the 1000-year model run time.
Is Markhamia lutea's abundance determined by animal foraging?
Chapman, Colin A; Bonnell, Tyler R; Sengupta, Raja; Goldberg, Tony L; Rothman, Jessica M
2013-11-15
Understanding the determinants of tropical forest tree richness and spatial distribution is a central goal of forest ecology; however, the role of herbivorous mammals has received little attention. Here we explore the potential for red colobus monkeys ( Procolobus rufomitratus ) to influence the abundance of Markhamia lutea trees in a tropical forest by feeding extensively on the tree's flowers, such that this tree population is not able to regularly set fruit. Using 14 years of data from Kibale National Park, Uganda, we quantify M. lutea flower and fruit production. Similarly, using 21 years of data, we quantify temporal changes in the abundance of stems in size classes from 1 m tall and above. Our analyses demonstrate that M. lutea is rarely able to produce fruit and that this corresponds to a general decline in its abundance across all size classes. Moreover, using 7 years of feeding records, we demonstrate that red colobus feed on M. lutea , consuming large amounts of leaf and flower buds whenever they were available, suggesting that this behavior limits fruit production. Therefore, we suggest that red colobus are presently important for structuring the distribution and abundance of M. lutea in Kibale. This dynamic raises the intriguing question of how a large M. lutea population was able to originally establish. There is no evidence of a change in red colobus population size; however, if this old-growth forest is in a non-equilibrium state, M. lutea may have become established when red colobus ate a different diet.
i-Tree: Tools to assess and manage structure, function, and value of community forests
NASA Astrophysics Data System (ADS)
Hirabayashi, S.; Nowak, D.; Endreny, T. A.; Kroll, C.; Maco, S.
2011-12-01
Trees in urban communities can mitigate many adverse effects associated with anthropogenic activities and climate change (e.g. urban heat island, greenhouse gas, air pollution, and floods). To protect environmental and human health, managers need to make informed decisions regarding urban forest management practices. Here we present the i-Tree suite of software tools (www.itreetools.org) developed by the USDA Forest Service and their cooperators. This software suite can help urban forest managers assess and manage the structure, function, and value of urban tree populations regardless of community size or technical capacity. i-Tree is a state-of-the-art, peer-reviewed Windows GUI- or Web-based software that is freely available, supported, and continuously refined by the USDA Forest Service and their cooperators. Two major features of i-Tree are 1) to analyze current canopy structures and identify potential planting spots, and 2) to estimate the environmental benefits provided by the trees, such as carbon storage and sequestration, energy conservation, air pollution removal, and storm water reduction. To cover diverse forest topologies, various tools were developed within the i-Tree suite: i-Tree Design for points (individual trees), i-Tree Streets for lines (street trees), and i-Tree Eco, Vue, and Canopy (in the order of complexity) for areas (community trees). Once the forest structure is identified with these tools, ecosystem services provided by trees can be estimated with common models and protocols, and reports in the form of texts, charts, and figures are then created for users. Since i-Tree was developed with a client/server architecture, nationwide data in the US such as location-related parameters, weather, streamflow, and air pollution data are stored in the server and retrieved to a user's computer at run-time. Freely available remote-sensed images (e.g. NLCD and Google maps) are also employed to estimate tree canopy characteristics. As the demand for i-Tree grows internationally, environmental databases from more countries will be coupled with the software suite. Two more i-Tree applications, i-Tree Forecast and i-Tree Landscape are now under development. i-Tree Forecast simulates canopy structures for up to 100 years based on planting and mortality rates and adds capabilities for other i-Tree applications to estimate the benefits of future canopy scenarios. While most i-Tree applications employ a spatially lumped approach, i-Tree landscape employs a spatially distributed approach that allows users to map changes in canopy cover and ecosystem services through time and space. These new i-Tree tools provide an advanced platform for urban managers to assess the impact of current and future urban forests. i-Tree allows managers to promote effective urban forest management and sound arboricultural practices by providing information for advocacy and planning, baseline data for making informed decisions, and standardization for comparisons with other communities.
Use of fragmented landscapes by Marbled Murrelets for nesting in Southern Oregon
C.B. Meyer; S.L. Miller
2002-01-01
As oldgrowth forest becomes more fragmented in the Pacific Northwest (U.S.A.), species dependent on large patches of oldgrowth forest may be at greater risk of extinction. The Marbled Murrelet (Brachyramphus marmoratus), a seabird whose populations are declining in North America, nests in such old-growth forests or forests with large remnant trees....
Restoration seed reserves for assisted gene flow within seed orchards
C.S. Echt; B.S. Crane
2017-01-01
Changing climate and declining forest populations imperil the future of certain forest tree species. To complement forest management and genetic conservation plans, we propose a new paradigm for seedling seed orchards: foster genetic mixing among a variety of seed sources to increase genetic diversity and adaptive potential of seed supplies used for forest restoration...
Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Samuel E. Nijensohn
2008-01-01
Healthy forests provide many of the essential ecosystem services upon which all life depends. Genetic diversity is an essential component of long-term forest health because it provides a basis for adaptation and resilience to environmental stress and change. In addition to natural processes, numerous anthropogenic factors deplete forest genetic resources. Genetic...
USDA-ARS?s Scientific Manuscript database
Genetic linkage maps in plants are usually constructed using segregating populations obtained from crosses between two inbred lines such as rice, maize, or soybean. Such populations are generally not available for forest trees because of time constraints. But tree species have the property of outcro...
Plethodontid salamander response to Silvilcultural Practices in Missouri Ozark forests
Laura A. Herbeck; David R. Larsen
1999-01-01
There is little information on the effects of tree harvest on salamander populations in the midwestern United States. We present data on plethodontid salamander densities in replicated stands of three forest age classes in the southeastern Ozarks of Missouri. Forest age classes consisted of regeneration-cut sites
NASA Astrophysics Data System (ADS)
Allen, C. D.
2013-12-01
Recent global warming, in concert with episodic droughts, is causing elevated levels of both chronic and acute forest water stress across large regions. Such increases in water stress affect forest dynamics in multiple ways, including by amplifying the incidence and severity of many significant forest disturbances, particularly drought-induced tree mortality, wildfire, and outbreaks of damaging insects and diseases. Emerging global-scale patterns of drought-related forest die-off are presented, including a newly updated map overview of documented drought- and heat-induced tree mortality events from around the world, demonstrating the vulnerability of all major forest types to forest drought stress, even in typically wet environments. Comparative patterns of drought stress and associated forest disturbances are reviewed for several regions (southwestern Australia, Inner Asia, western North America, Mediterranean Basin), including interactions among climate and various disturbance processes. From the Southwest USA, research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the most regionally-widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii), demonstrating recent escalation of FDSI to extreme levels relative to the past 1000 years, due to both drought and especially warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by CE 2050 anticipated regional warming will cause mean FDSI values to reach historically unprecedented levels that may exceed thresholds for the survival of current tree species in large portions of their current range in the Southwest. Similar patterns of recent climate-amplified forest disturbance risk are apparent from a variety of relatively dry regions across this planet, and given climate projections for substantially warmer temperatures and greater drought stress for many areas globally, the growing water-stress risks to forest health in such regions are becoming clearer. However, the effects of drought stress on forest dynamics are ameliorated through diverse compensatory and resilience-enhancing mechanisms and processes which operate at scales ranging from intracellular tree physiologies and individual tree developmental and morphological adjustments to species population-level demographic and genetic responses to forest stand-level structural and compositional responses up to landscape-scale tree host-insect pest outbreak dynamics and forest-climate ecohydrological feedbacks. In addition, significant uncertainties exist regarding how various other global atmospheric changes (e.g., CO2 enrichment, increased N deposition, and elevated surface-level ozone) will interact with the world's diverse spectrum of tree species to also affect global forest dynamics. Research efforts to address such core scientific uncertainties associated with modeling drought-induced tree mortality and resultant forest dynamics will be discussed.
NASA Technical Reports Server (NTRS)
Lawton, Robert M.; Lawton, Robert O.
2010-01-01
Didymopanax pittieri is a common shade-intolerant tree colonizing treefall gaps in the elfin forests on windswept ridgecrests in the lower montane rain forests of the Cordillera de Tilarain, Costa Rica. All D. pittieri taller than > 0.5 m in a 5.2-ha elfin forested portion of a gridded study watershed in the Monteverde Cloud Forest Preserve were located, mapped, and measured. This local population of D. pittieri is spatially inhomogeneous, in that density increases with increasing wind exposure; D. pittieri are more abundant near ridge crests than lower on windward slopes. The important and ubiquitous phenomenon of spatial inhomogeneity in population density is addressed and corrected for in spatial analyses by the application of the inhomogeneous version of Ripley's K. The spatial patterns of four size classes of D. pittieri (<5 cm dbh, 5-10 cm dbh, 10-20 cm dbh, and> 20 cm dbh) were investigated. Within the large-scale trend in density driven by wind exposure, D. pittieri saplings are clumped at the scale of treefall gaps and at the scale of patches of aggregated gaps. D. pittieri 5-10 cm dbh are randomly distributed, apparently due to competitive thinning of sapling clumps during the early stages of gap-phase regeneration. D. pittieri larger than 10 cm dbh are overdispersed at a scale larger than that of patches of gaps. Natural disturbance can influence the distribution of shade intolerant tree populations at several different spatial scales, and can have discordant effects at different life history stages.
Urbano, Plutarco; Poveda, Cristina; Molina, Jorge
2015-04-01
Rhodnius prolixus Stål, 1859 is one of the main vectors of Trypanosoma (Schyzotrypanum) cruzi Chagas, 1909. In its natural forest environment, this triatomine is mainly found in palm tree crowns, where it easily establishes and develops dense populations. The aim of this study was to evaluate the effect of the physiognomy and reproductive status of Attalea butyracea on the population relative density and age structure of R. prolixus and to determine the vector's population stratification according to the vertical and horizontal profile of an A. butyracea forest. Using live bait traps, 150 individuals of A. butyracea with different physiognomy and 40 individuals with similar physiognomy (crown size, number of leaves, palm tree height, diameter at breast height, reproductive status) were sampled for triatomines in Yopal, Casanare-Colombia. Temperature and relative humidity were measured in the crown of the palm tree. Entomological indices and natural infection rates were also determined. The relative population density of R. prolixus on natural A. butyracea groves is associated with the palm's height, number of leaves and crown volume. The young immature stages were present mostly at the crown's base and the advanced immature stages and adults were present mostly at the crown of the palm tree. This distribution correlates with the temperature stability and relative humidity in the base and the fluctuation of both environmental variables in the palm's crown. A higher density of R. prolixus was found as the palm tree height increased and as the distance of the palm with respect to the forest border decreased, especially towards anthropically intervened areas. A density index of 12.6 individuals per palm tree with an infestation index of 88.9% and a colonization index of 98.7% was observed. 85.2% was the infection index with T. cruzi. The physiognomy of palm trees affects the relative population density and the distribution of developmental stages of R. prolixus. Therefore, they constitute a risk factor for the potential migration of infected insects from wild environments towards residential environments and the subsequent epidemiological risk of transmission of T. cruzi to people.
NASA Astrophysics Data System (ADS)
Stella, J. C.; Harper, E. B.; Fremier, A. K.; Hayden, M. K.; Battles, J. J.
2009-12-01
In high-order alluvial river systems, physical factors of flooding and channel migration are particularly important drivers of riparian forest dynamics because they regulate habitat creation, resource fluxes of water, nutrients and light that are critical for growth, and mortality from fluvial disturbance. Predicting vegetation composition and dynamics at individual sites in this setting is challenging, both because of the stochastic nature of the flood regime and the spatial variability of flood events. Ecological models that correlate environmental factors with species’ occurrence and abundance (e.g., ’niche models’) often work well in infrequently-disturbed upland habitats, but are less useful in river corridors and other dynamic zones where environmental conditions fluctuate greatly and selection pressures on disturbance-adapted organisms are complex. In an effort to help conserve critical riparian forest habitat along the middle Sacramento River, CA, we are taking a mechanistic approach to quantify linkages between fluvial and biotic processes for Fremont cottonwood (Populus fremontii), a keystone pioneer tree in dryland rivers ecosystems of the U.S. Southwest. To predict the corridor-wide population effects of projected changes to the disturbance regime from flow regulation, climate change, and landscape modifications, we have coupled a physical model of channel meandering with a patch-based population model that incorporates the climatic, hydrologic, and topographic factors critical for tree recruitment and survival. We employed these linked simulations to study the relative influence of the two most critical habitat types--point bars and abandoned channels--in sustaining the corridor-wide cottonwood population over a 175-year period. The physical model uses discharge data and channel planform to predict the spatial distribution of new habitat patches; the population model runs on top of this physical template to track tree colonization and survival on each patch. Model parameters of tree life-history traits (e.g., dispersal timing) and hydrogeomorphic processes (e.g., sedimentation rate) were determined by field and experimental studies, and aerial LIDAR, with separate range of values for point bar versus floodplain habitats. In most runs, abandoned channels were colonized one third as frequently as point bars, but supported much larger forest patches when colonization was successful (from 15-99% of forest area, depending on point bar success). Independent evaluation of aerial photos confirm that cottonwood forest stands associated with abandoned channels were less frequent (38% of all stands) but more extensive (53% of all forest area) relative to those caused by migrating point bars. Results indicate that changes to the rate and scale of river migration, and particularly channel abandonment, from human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest dynamics, with consequences for the community of organisms that depend on this habitat.
Empirical relationships between tree fall and landscape-level amounts of logging and fire
Blanchard, Wade; Blair, David; McBurney, Lachlan; Stein, John; Banks, Sam C.
2018-01-01
Large old trees are critically important keystone structures in forest ecosystems globally. Populations of these trees are also in rapid decline in many forest ecosystems, making it important to quantify the factors that influence their dynamics at different spatial scales. Large old trees often occur in forest landscapes also subject to fire and logging. However, the effects on the risk of collapse of large old trees of the amount of logging and fire in the surrounding landscape are not well understood. Using an 18-year study in the Mountain Ash (Eucalyptus regnans) forests of the Central Highlands of Victoria, we quantify relationships between the probability of collapse of large old hollow-bearing trees at a site and the amount of logging and the amount of fire in the surrounding landscape. We found the probability of collapse increased with an increasing amount of logged forest in the surrounding landscape. It also increased with a greater amount of burned area in the surrounding landscape, particularly for trees in highly advanced stages of decay. The most likely explanation for elevated tree fall with an increasing amount of logged or burned areas in the surrounding landscape is change in wind movement patterns associated with cutblocks or burned areas. Previous studies show that large old hollow-bearing trees are already at high risk of collapse in our study area. New analyses presented here indicate that additional logging operations in the surrounding landscape will further elevate that risk. Current logging prescriptions require the protection of large old hollow-bearing trees on cutblocks. We suggest that efforts to reduce the probability of collapse of large old hollow-bearing trees on unlogged sites will demand careful landscape planning to limit the amount of timber harvesting in the surrounding landscape. PMID:29474487
Empirical relationships between tree fall and landscape-level amounts of logging and fire.
Lindenmayer, David B; Blanchard, Wade; Blair, David; McBurney, Lachlan; Stein, John; Banks, Sam C
2018-01-01
Large old trees are critically important keystone structures in forest ecosystems globally. Populations of these trees are also in rapid decline in many forest ecosystems, making it important to quantify the factors that influence their dynamics at different spatial scales. Large old trees often occur in forest landscapes also subject to fire and logging. However, the effects on the risk of collapse of large old trees of the amount of logging and fire in the surrounding landscape are not well understood. Using an 18-year study in the Mountain Ash (Eucalyptus regnans) forests of the Central Highlands of Victoria, we quantify relationships between the probability of collapse of large old hollow-bearing trees at a site and the amount of logging and the amount of fire in the surrounding landscape. We found the probability of collapse increased with an increasing amount of logged forest in the surrounding landscape. It also increased with a greater amount of burned area in the surrounding landscape, particularly for trees in highly advanced stages of decay. The most likely explanation for elevated tree fall with an increasing amount of logged or burned areas in the surrounding landscape is change in wind movement patterns associated with cutblocks or burned areas. Previous studies show that large old hollow-bearing trees are already at high risk of collapse in our study area. New analyses presented here indicate that additional logging operations in the surrounding landscape will further elevate that risk. Current logging prescriptions require the protection of large old hollow-bearing trees on cutblocks. We suggest that efforts to reduce the probability of collapse of large old hollow-bearing trees on unlogged sites will demand careful landscape planning to limit the amount of timber harvesting in the surrounding landscape.
Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.
2010-01-01
In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... construction (that will be decommissioned after project use), new road construction, danger tree removal along... increasing population. Late seral tree species have become dominant after long periods without disturbance... and vigor. Timber stands of seral tree species such as western larch and ponderosa pine are infilling...
Expanding the network of crossdated tree-ring chronologies for Sequoia sempervirens
Allyson L. Carroll; Stephen C. Sillett; Ethan J. Coonen; Benjamin G. Iberle
2017-01-01
Crossdated tree-ring chronologies for the Arcata Community Forest (ACF) and Muir Woods National Monument (Muir Woods) expand the spatial coverage of dated coast redwood (Sequoia sempervirens (D. Don) Endl.) series. Crossdating relies on the common pattern of ring-width variation among tree populations, and dated chronologies have many applications...
Tree physiology and bark beetles
Michael G. Ryan; Gerard Sapes; Anna Sala; Sharon Hood
2015-01-01
Irruptive bark beetles usually co-occur with their co-evolved tree hosts at very low (endemic) population densities. However, recent droughts and higher temperatures have promoted widespread tree mortality with consequences for forest carbon, fire and ecosystem services (Kurz et al., 2008; Raffa et al., 2008; Jenkins et al., 2012). In this issue of New Phytologist,...
Forest gene conservation programs in Alberta, Canada
Jodie Krakowski
2017-01-01
Provincial tree improvement programs in Alberta began in 1976. Early gene conservation focused on ex situ measures such as seed and clone banking, and research trials of commercial species with tree improvement programs. The gene conservation program now encompasses representative and unique populations of all native tree species in situ. The ex situ program aims to...
Dynamic conservation of forest genetic resources in 33 European countries.
Lefèvre, François; Koskela, Jarkko; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C; Schüler, Silvio; Bozzano, Michele; Alizoti, Paraskevi; Bakys, Remigijus; Baldwin, Cathleen; Ballian, Dalibor; Black-Samuelsson, Sanna; Bednarova, Dagmar; Bordács, Sándor; Collin, Eric; de Cuyper, Bart; de Vries, Sven M G; Eysteinsson, Thröstur; Frýdl, Josef; Haverkamp, Michaela; Ivankovic, Mladen; Konrad, Heino; Koziol, Czesław; Maaten, Tiit; Notivol Paino, Eduardo; Oztürk, Hikmet; Pandeva, Ivanova Denitsa; Parnuta, Gheorghe; Pilipovič, Andrej; Postolache, Dragos; Ryan, Cathal; Steffenrem, Arne; Varela, Maria Carolina; Vessella, Federico; Volosyanchuk, Roman T; Westergren, Marjana; Wolter, Frank; Yrjänä, Leena; Zariŋa, Inga
2013-04-01
Dynamic conservation of forest genetic resources (FGR) means maintaining the genetic diversity of trees within an evolutionary process and allowing generation turnover in the forest. We assessed the network of forests areas managed for the dynamic conservation of FGR (conservation units) across Europe (33 countries). On the basis of information available in the European Information System on FGR (EUFGIS Portal), species distribution maps, and environmental stratification of the continent, we developed ecogeographic indicators, a marginality index, and demographic indicators to assess and monitor forest conservation efforts. The pan-European network has 1967 conservation units, 2737 populations of target trees, and 86 species of target trees. We detected a poor coincidence between FGR conservation and other biodiversity conservation objectives within this network. We identified 2 complementary strategies: a species-oriented strategy in which national conservation networks are specifically designed for key target species and a site-oriented strategy in which multiple-target units include so-called secondary species conserved within a few sites. The network is highly unbalanced in terms of species representation, and 7 key target species are conserved in 60% of the conservation units. We performed specific gap analyses for 11 tree species, including assessment of ecogeographic, demographic, and genetic criteria. For each species, we identified gaps, particularly in the marginal parts of their distribution range, and found multiple redundant conservation units in other areas. The Mediterranean forests and to a lesser extent the boreal forests are underrepresented. Monitoring the conservation efficiency of each unit remains challenging; however, <2% of the conserved populations seem to be at risk of extinction. On the basis of our results, we recommend combining species-oriented and site-oriented strategies. © 2012 Society for Conservation Biology.
de Oliveira, Rodrigo Leonardo Costa; Farias, Hugo Leonardo Sousa; Perdiz, Ricardo de Oliveira; Scudeller, Veridiana Vizoni; Imbrozio Barbosa, Reinaldo
2017-01-01
Woody plant diversity from the Amazonian savannas has been poorly quantified. In order to improve the knowledge on wood plants of these regional ecosystems, a tree inventory was carried out in four different habitats used by indigenous people living in the savanna areas of the Northern Brazilian Amazon. The habitats were divided into two types (or groups) of vegetation formations: forest (riparian forest, forest island, and buritizal = Mauritia palm formation) and non-forest (typical savanna). The inventory was carried out in two hectares established in the Darora Indigenous Community region, north of the state of Roraima. The typical savanna is the most densely populated area (709 stems ha -1 ); however, it has the lowest tree species richness (nine species, seven families) in relation to typical forest habitats: riparian forest (22 species, 13 families and 202 stems ha -1 ), forest islands (13 species, 10 families and 264 stems ha -1 ), and buritizal (19 species, 15 families and 600 stems ha -1 ). The tree structure (density and dominance) of the forest habitats located in the savanna areas studied in this work is smaller in relation to forest habitats derived from continuous areas of other parts of the Amazon. These environments are derived from Paleoclimatic fragmentation, and are currently affected by the impact of intensive use of natural resources as timberselective logging and some land conversion for agriculture.
NASA Astrophysics Data System (ADS)
Uhía, E.; Briones, M. J. I.
2002-12-01
In order to increase our present knowledge of the potential impacts of deforestation on the soil ecosystem, we investigated the responses of enchytraeid and tardigrade populations to tree harvesting. The study was conducted in an area of ca. 10 ha located at an altitude of approximately 450 m in the surroundings of the University campus (Vigo, Pontevedra, Spain). Pine forest ( Pinus pinaster Aiton), with an average density of 400 trees/ha ranging between 10 and 20 years of age, and some young oaks ( Quercus robur L.) were covering the area. At the end of the summer 1995, approximately 50% of the area was harvested. Soil and animal samples were taken from May 1996 to April 1997 at monthly intervals in both forested and deforested areas. Removal of the trees resulted in a significant effect on enchytraeid population numbers and their response was species-dependent in terms of changes in both population numbers and vertical distribution. Higher mortality rates of enchytraeids were recorded in the absence of trees. August seemed to have been critical for survival of all enchytraeid species as no individuals were found in that month and only a few recovered in the following month. Only Cognettia sphagnetorum showed vertical migration in order to avoid adverse conditions. Tardigrades were more abundant in the deforested areas; their ability to enter in a resistant stage could have enabled them to overcome adverse environmental conditions. It is concluded that harvesting of the trees has changed the soil environment and that differences in moisture and temperature conditions are not sufficient to explain the observed differences. The forest soils contained more organic matter than those in the deforested area and therefore differences in the amount and/or quality of the organic matter could be one of the possible explanations for the observed changes in enchytraeid abundance when the forest is removed.
High gene flow in epiphytic ferns despite habitat loss and fragmentation.
Winkler, Manuela; Koch, Marcus; Hietz, Peter
2011-01-01
Tropical montane forests suffer from increasing fragmentation and replacement by other types of land-use such as coffee plantations. These processes are known to affect gene flow and genetic structure of plant populations. Epiphytes are particularly vulnerable because they depend on their supporting trees for their entire life-cycle. We compared population genetic structure and genetic diversity derived from AFLP markers of two epiphytic fern species differing in their ability to colonize secondary habitats. One species, Pleopeltis crassinervata , is a successful colonizer of shade trees and isolated trees whereas the other species, Polypodium rhodopleuron , is restricted to forests with anthropogenic separation leading to significant isolation between populations. By far most genetic variation was distributed within rather than among populations in both species, and a genetic admixture analysis did not reveal any clustering. Gene flow exceeded by far the benchmark of one migrant per generation to prevent genetic divergence between populations in both species. Though populations are threatened by habitat loss, long-distance dispersal is likely to support gene flow even between distant populations, which efficiently delays genetic isolation. Consequently, populations may rather be threatened by ecological consequences of habitat loss and fragmentation.
Efficient utilization of short rotation tree biomass for cooking in India
NASA Astrophysics Data System (ADS)
Sharma, R.; Chauhan, S. K.
2012-04-01
The human as well as livestock population increase is phenomenal in developing world including India. The survival of this huge population certainly depends on the carrying capacity of the natural systems, which is essentially determined by the nature itself. Present state of the forests can satisfy the needs of certain population and the demand for wood has rapidly outstripped the sustainability of forests. The fuelwood requirements in the developing world is approximately 80 per cent of total wood requirements and is the major cause of forest degradation. Therefore, there is need to maximize the productivity on one hand and protection/extention of the area on another hand. Wood substitution is an option including shifting from fuelwood for cooking to fossil fuels but in the changing climatic situation, this option is short term alternative. There is need to produce more and use the same efficiently to reduce the demands. Millions of households across the country are using crude cooking stoves for their daily needs which are not only energy inefficient but detrimental to women health also. It has been the policy of Government to encourage trees outside forests to minimize the pressure from forests through meeting requirements outside forests, which is possible through intensively managed short rotation forestry and also some initiatives have been taken to increase the fuelwood efficiency through improved cooking stove, which are working successfully. Woodfuel remained the most important source of household energy in India but regular attempts have not been made to improve the efficiency in its use. This paper will focus on potential of short rotation forestry plantations for energy consumption and its efficient use at domestic scale. This has three fold interrelated economic, environmental and social impact. Key words: Short Rotation Forestry, trees outside forests, wood energy, cooking stove
Celentano, Danielle; Rousseau, Guillaume Xavier; Engel, Vera Lex; Façanha, Cristiane Lima; Oliveira, Elivaldo Moreira de; Moura, Emanoel Gomes de
2014-01-27
Riparian forests provide ecosystem services that are essential for human well-being. The Pepital River is the main water supply for Alcântara (Brazil) and its forests are disappearing. This is affecting water volume and distribution in the region. Promoting forest restoration is imperative. In deprived regions, restoration success depends on the integration of ecology, livelihoods and traditional knowledge (TEK). In this study, an interdisciplinary research framework is proposed to design riparian forest restoration strategies based on ecological data, TEK and social needs. This study takes place in a region presenting a complex history of human relocation and land tenure. Local populations from seven villages were surveyed to document livelihood (including 'free-listing' of agricultural crops and homegarden tree species). Additionally, their perceptions toward environmental changes were explored through semi-structured interviews (n = 79). Ethnobotanical information on forest species and their uses were assessed by local-specialists (n = 19). Remnants of conserved forests were surveyed to access ecological information on tree species (three plots of 1,000 m2). Results included descriptive statistics, frequency and Smith’s index of salience of the free-list results. The local population depends primarily on slash-and-burn subsistence agriculture to meet their needs. Interviewees showed a strong empirical knowledge about the environmental problems of the river, and of their causes, consequences and potential solutions. Twenty-four tree species (dbh > 10 cm) were found at the reference sites. Tree density averaged 510 individuals per hectare (stdv = 91.6); and 12 species were considered the most abundant (density > 10ind/ha). There was a strong consensus among plant-specialists about the most important trees. The species lists from reference sites and plant-specialists presented an important convergence. Slash-and-burn agriculture is the main source of livelihood but also the main driver of forest degradation. Effective restoration approaches must transform problems into solutions by empowering local people. Successional agroforestry combining annual crops and trees may be a suitable transitional phase for restoration. The model must be designed collectively and include species of ecological, cultural, and socioeconomic value. In deprived communities of the Amazon, forest restoration must be a process that combines environmental and social gains.
2014-01-01
Background Riparian forests provide ecosystem services that are essential for human well-being. The Pepital River is the main water supply for Alcântara (Brazil) and its forests are disappearing. This is affecting water volume and distribution in the region. Promoting forest restoration is imperative. In deprived regions, restoration success depends on the integration of ecology, livelihoods and traditional knowledge (TEK). In this study, an interdisciplinary research framework is proposed to design riparian forest restoration strategies based on ecological data, TEK and social needs. Methods This study takes place in a region presenting a complex history of human relocation and land tenure. Local populations from seven villages were surveyed to document livelihood (including ‘free-listing’ of agricultural crops and homegarden tree species). Additionally, their perceptions toward environmental changes were explored through semi-structured interviews (n = 79). Ethnobotanical information on forest species and their uses were assessed by local-specialists (n = 19). Remnants of conserved forests were surveyed to access ecological information on tree species (three plots of 1,000 m2). Results included descriptive statistics, frequency and Smith’s index of salience of the free-list results. Results The local population depends primarily on slash-and-burn subsistence agriculture to meet their needs. Interviewees showed a strong empirical knowledge about the environmental problems of the river, and of their causes, consequences and potential solutions. Twenty-four tree species (dbh > 10 cm) were found at the reference sites. Tree density averaged 510 individuals per hectare (stdv = 91.6); and 12 species were considered the most abundant (density > 10ind/ha). There was a strong consensus among plant-specialists about the most important trees. The species lists from reference sites and plant-specialists presented an important convergence. Conclusions Slash-and-burn agriculture is the main source of livelihood but also the main driver of forest degradation. Effective restoration approaches must transform problems into solutions by empowering local people. Successional agroforestry combining annual crops and trees may be a suitable transitional phase for restoration. The model must be designed collectively and include species of ecological, cultural, and socioeconomic value. In deprived communities of the Amazon, forest restoration must be a process that combines environmental and social gains. PMID:24468421
NASA Astrophysics Data System (ADS)
Kueppers, L. M.; Molotch, N. P.; Meromy, L.; Moyes, A. B.; Conlisk, E.; Castanha, C.
2015-12-01
The extent and density of forest trees in mountain landscapes is a first order control on watershed function, affecting patterns of snow accumulation, timing of snowmelt, and amount and quality of run-off, through alterations of surface energy and water fluxes and wind. Climate change is increasingly affecting the density and distribution of mature forests through changes to disturbance regimes, increases in physiological stress and increases in mortality due to warmer temperatures. In addition, climate change is likely altering patterns of regeneration and driving establishment of trees in high elevation meadows and alpine tundra. Though hard to detect in current forestry datasets, changes in tree establishment are critical to the future of forests. Experimental approaches, such as our climate warming experiment in the Colorado Front Range, can provide valuable data regarding seedling sensitivity to climate variability and change across important landscape positions. We've found that warming enhances negative effects of water stress across forest, treeline and alpine sites, reducing recruitment in the absence of additional summer moisture. At the lowest elevation, reductions with warming have reduced Engelmann spruce recruitment to zero. Species differ in their responses to warming in the alpine, but together confirm the importance of seed dispersal to upward forest shifts. The presence of trees or other vegetation can facilitate tree establishment by modifying microclimates, especially at and above treeline. Ultimately, these ecological and demographic processes govern the timescales of tree and forest responses to climate variability and change. For the long-lived species that dominate high elevation watersheds, these processes can take decades or centuries to play out, meaning many tree populations are and will continue to be out of equilibrium with a rapidly changing climate. Projecting changes in tree distributions and abundances across mountain landscapes requires integration of changes in hydroclimatic conditions across diverse topoclimatic settings; the sensitivity of recruitment, growth and mortality to climate; and feedbacks between trees and microclimate into modeling tools that represent time-explicit ecological and demographic processes.
Response of a tropical tree to non-timber forest products harvest and reduction in habitat size
Kouagou, M’Mouyohoun; Natta, Armand K.; Gado, Choukouratou
2017-01-01
Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution. PMID:28850624
Response of a tropical tree to non-timber forest products harvest and reduction in habitat size.
Gaoue, Orou G; Kouagou, M'Mouyohoun; Natta, Armand K; Gado, Choukouratou
2017-01-01
Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution.
Wisconsin's forest resources in 2004
Charles H. Perry
2006-01-01
Results of the 2000-2004 annual inventory of Wisconsin show about 16.0 million acres of forest land, more than 22.1 billion cubic feet of live volume on forest land, and nearly 593 million dry tons of all live aboveground tree biomass on timberland. Populations of jack pine budworm are increasing, and it remains a significant pest in Wisconsin forests. A complete...
Projection matrices as a forest management tool: an invasive tree case study
Ian J. Renne; Benjamin F. Tracy; Timothy P. Spira
2003-01-01
Life history parameters of many forest-dwelling species are affected by native and non-native pests. In turn, these pests alter forest processes and cost the United States billions of dollars annually. Population projection matrices can aid ecologists and managers in evaluating the impact of pests on forest species as well as devising effective strategies for pest...
Jonathan A. Cale; Jennifer G. Klutsch; Nadir Erbilgin; Jose F. Negron; John D. Castello
2016-01-01
Heavy disturbance-induced mortality can negatively impact forest biota, functions, and services by drastically altering the forest structures that create stable environmental conditions. Disturbance impacts on forest structure can be assessed using structural sustainability - the degree of balance between living and dead portions of a tree populationâs size-...
Archaeal communities in boreal forest tree rhizospheres respond to changing soil temperatures.
Bomberg, Malin; Münster, Uwe; Pumpanen, Jukka; Ilvesniemi, Hannu; Heinonsalo, Jussi
2011-07-01
Temperature has generally great effects on both the activity and composition of microbial communities in different soils. We tested the impact of soil temperature and three different boreal forest tree species on the archaeal populations in the bulk soil, rhizosphere, and mycorrhizosphere. Scots pine, silver birch, and Norway spruce seedlings were grown in forest humus microcosms at three different temperatures, 7-11.5°C (night-day temperature), 12-16°C, and 16-22°C, of which 12-16°C represents the typical mid-summer soil temperature in Finnish forests. RNA and DNA were extracted from indigenous ectomycorrhiza, non-mycorrhizal long roots, and boreal forest humus and tested for the presence of archaea by nested PCR of the archaeal 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE) profiling and sequencing. Methanogenic Euryarchaeota belonging to Methanolobus sp. and Methanosaeta sp. were detected on the roots and mycorrhiza. The most commonly detected archaeal 16S rRNA gene sequences belonged to group I.1c Crenarchaeota, which are typically found in boreal and alpine forest soils. Interestingly, also one sequence belonging to group I.1b Crenarchaeota was detected from Scots pine mycorrhiza although sequences of this group are usually found in agricultural and forest soils in temperate areas. Tree- and temperature-related shifts in the archaeal population structure were observed. A clear decrease in crenarchaeotal DGGE band number was seen with increasing temperature, and correspondingly, the number of euryarchaeotal DGGE bands, mostly methanogens, increased. The greatest diversity of archaeal DGGE bands was detected in Scots pine roots and mycorrhizas. No archaea were detected from humus samples from microcosms without tree seedling, indicating that the archaea found in the mycorrhizosphere and root systems were dependent on the plant host. The detection of archaeal 16S rRNA gene sequences from both RNA and DNA extractions show that the archaeal populations were living and that they may have significant contribution to the methane cycle in boreal forest soil, especially when soil temperatures rise.
Bodare, Sofia; Tsuda, Yoshiaki; Ravikanth, Gudasalamani; Uma Shaanker, Ramanan; Lascoux, Martin
2013-09-01
The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range-wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species' evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old-growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (F IS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation-based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies.
Bodare, Sofia; Tsuda, Yoshiaki; Ravikanth, Gudasalamani; Uma Shaanker, Ramanan; Lascoux, Martin
2013-01-01
The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range-wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species’ evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old-growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (FIS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation-based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies. PMID:24223264
Urban Forestry Laboratory Exercises (For Elementary, Middle, and High School)
USDA Forest Service
1998-01-01
The development of the Urban Forest is fast becoming a major concern. The population shift in our country from rural to urban is undeniable. People see trees as a barrier to the hot summer sun and harsh winter winds. They see trees as a source of natural aesthetic beauty. Trees are a resource for the renewal of inner peace and health. Trees are landscape essentials,...
W. Beltran; Joseph Wunderle Jr.
2014-01-01
The seasonal dynamics of foliage arthropod populations are poorly studied in tropical dry forests despite the importance of these studies for understanding arthropod population responses to environmental change.We monitored the abundance, temporal distributions, and body size of arthropods in five naturalized alien and one native tree species to characterize arthropod...
Kevin M. Potter; John Frampton; Sedley A. Josserand; Dana C. Nelson
2008-01-01
The island-like populations of Fraser fir (Abies fraseri (Pursh) Poir.) have been isolated since the end of the late-Wisconsinian glaciation on the highest peaks of the Southern Appalachian Mountains and therefore offer an opportunity to investigate the genetic dynamics of a long-fragmented forest tree species. An analysis of eight microsatellite...
Kevin M. Potter; John Framton; Sedley A. Josserand; C. Dana Nelson
2008-01-01
The island-like populations of Fraser fir (Abies fraseri (Pursh) Poir.) have been isolated since the end of the late-Wisconsinian glaciation on the highest peaks of the Southern Appalachian Mountains and therefore offer an opportunity to investigate the genetic dynamics of a long-fragmented forest tree species. An analysis of eight microsatellite...
Structure of a forested urban park: implications for strategic management.
Millward, Andrew A; Sabir, Senna
2010-11-01
Informed management of urban parks can provide optimal conditions for tree establishment and growth and thus maximize the ecological and aesthetic benefits that trees provide. This study assesses the structure, and its implications for function, of the urban forest in Allan Gardens, a 6.1 ha downtown park in the City of Toronto, Canada, using the Street Tree Resource Analysis Tool for Urban Forest Managers (STRATUM). Our goal is to present a framework for collection and analysis of baseline data that can inform a management strategy that would serve to protect and enhance this significant natural asset. We found that Allan Garden's tree population, while species rich (43), is dominated by maple (Acer spp.) (48% of all park trees), making it reliant on very few species for the majority of its ecological and aesthetic benefits and raising disease and pest-related concerns. Age profiles (using size as a proxy) showed a dominance of older trees with an inadequate number of individuals in the young to early middle age cohort necessary for short- to medium-term replacement. Because leaf area represents the single-most important contributor to urban tree benefits modelling, we calculated it separately for every park tree, using hemispheric photography, to document current canopy condition. These empirical measurements were lower than estimates produced by STRATUM, especially when trees were in decline and lacked full canopies, highlighting the importance of individual tree condition in determining leaf area and hence overall forest benefits. Stewardship of natural spaces within cities demands access to accurate and timely resource-specific data. Our work provides an uncomplicated approach to the acquisition and interpretation of these data in the context of a forested urban park. Copyright 2010 Elsevier Ltd. All rights reserved.
Ecological consequences of forest elephant declines for Afrotropical forests.
Poulsen, John R; Rosin, Cooper; Meier, Amelia; Mills, Emily; Nuñez, Chase L; Koerner, Sally E; Blanchard, Emily; Callejas, Jennifer; Moore, Sarah; Sowers, Mark
2018-06-01
Poaching is rapidly extirpating African forest elephants (Loxodonta cyclotis) from most of their historical range, leaving vast areas of elephant-free tropical forest. Elephants are ecological engineers that create and maintain forest habitat; thus, their loss will have large consequences for the composition and structure of Afrotropical forests. Through a comprehensive literature review, we evaluated the roles of forest elephants in seed dispersal, nutrient recycling, and herbivory and physical damage to predict the cascading ecological effects of their population declines. Loss of seed dispersal by elephants will favor tree species dispersed abiotically and by smaller dispersal agents, and tree species composition will depend on the downstream effects of changes in elephant nutrient cycling and browsing. Loss of trampling and herbivory of seedlings and saplings will result in high tree density with release from browsing pressures. Diminished seed dispersal by elephants and high stem density are likely to reduce the recruitment of large trees and thus increase homogeneity of forest structure and decrease carbon stocks. The loss of ecological services by forest elephants likely means Central African forests will be more like Neotropical forests, from which megafauna were extirpated thousands of years ago. Without intervention, as much as 96% of Central African forests will have modified species composition and structure as elephants are compressed into remaining protected areas. Stopping elephant poaching is an urgent first step to mitigating these effects, but long-term conservation will require land-use planning that incorporates elephant habitat into forested landscapes that are being rapidly transformed by industrial agriculture and logging. © 2017 Society for Conservation Biology.
Growth and demography of Pinaleno high elevation forests
Christopher O' Connor; Donald A. Falk; Ann M. Lynch; Craig P. Wilcox; Thomas W. Swetnam; Tyson L. Swetnam
2010-01-01
The project goal is to understand how multiple disturbance events including fire, insect outbreaks, and climate variability interact in space and time, and how they combine to influence forest species composition, spatial structure, and tree population dynamics in high elevation forests of the Pinaleno Mountains. Information from each of these components is needed in...
Forest Insect and Disease Tally System (FINDIT) user manual
Barbara J. Bentz
2000-01-01
FINDIT, the Forest Insect and Disease Tally System, is an easy-to-use tool for analyzing insect and disease population information taken during stand surveys. Incidence of insects, pathogens, and other biotic and abiotic influences on forest ecosystems are summarized using traditional mensurational measurements. Information is summarized by diameter class, tree species...
Fortini, Lucas B.; Cropper, Wendell P.; Zarin, Daniel J.
2015-01-01
At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine-tuned management guidelines could make management more attractive, thus bridging the currently prevalent gap between tropical timber management practice and regulation. PMID:26322896
Fortini, Lucas B.; Cropper, Wendell P.; Zarin, Daniel J.
2015-01-01
At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine-tuned management guidelines could make management more attractive, thus bridging the currently prevalent gap between tropical timber management practice and regulation.
NASA Astrophysics Data System (ADS)
Mihai, Georgeta; Birsan, Marius-Victor; Teodosiu, Maria; Dumitrescu, Alexandru; Daia, Mihai; Mirancea, Ionel; Ivanov, Paula; Alin, Alexandru
2017-04-01
Mountain ecosystems are extremely vulnerable to climate change. The real potential for adaptation depends upon the existence of a wide genetic diversity in trees populations, upon the adaptive genetic variation, respectively. Genetic diversity offers the guarantee that forest species can survive, adapt and evolve under the influence of changing environmental conditions. The aim of this study is to evaluate the genetic diversity and adaptive genetic potential of two local species - Norway spruce and European silver fir - in the context of regional climate change. Based on data from a long-term provenance experiments network and climate variables spanning over more than 50 years, we have investigated the impact of climatic factors on growth performance and adaptation of tree species. Our results indicate that climatic and geographic factors significantly affect forest site productivity. Mean annual temperature and annual precipitation amount were found to be statistically significant explanatory variables. Combining the additive genetic model with the analysis of nuclear markers we obtained different images of the genetic structure of tree populations. As genetic indicators we used: gene frequencies, genetic diversity, genetic differentiation, genetic variance, plasticity. Spatial genetic analyses have allowed identifying the genetic centers holding high genetic diversity which will be valuable sources of gene able to buffer the negative effects of future climate change. Correlations between the marginal populations and in the optimal vegetation, between the level of genetic diversity and ecosystem stability, will allow the assessment of future risks arising from current genetic structure. Therefore, the strategies for sustainable forest management have to rely on the adaptive genetic variation and local adaptation of the valuable genetic resources. This work was realized within the framework of the project GENCLIM (Evaluating the adaptive potential of the main coniferous species for a sustainable forest management in the context of climate change), financed by the Executive Agency for Higher Education, Research, Development and Innovation Funding, grant number PN-II-PC-PCCA-2013-4-0695.
NASA Astrophysics Data System (ADS)
Allen, C. D.; Williams, P.
2012-12-01
Ongoing climate changes are increasingly affecting the world's forests, particularly including high latitude and high elevation coniferous forests. Although forest growth has improved in some regions due to greater growing season length and warmth (perhaps along with increased atmospheric CO2 or N), large growth declines or increased mortality from droughts or hotter temperatures also are being observed. We present and interpret information on regional variation in climate-tree growth relationships and trends, and on patterns and trends of climate-related forest disturbances, from western North America. From 235 tree-ring chronologies in the Southwest US we show that tree-ring growth records from warmer southwestern sites are more sensitive to temperature than tree-ring growth records from cooler southwestern sites. Assessment of 59 tree-ring records from 11 species in the Cascade Mountains of the Pacific Northwest shows that trees growing in cool places respond positively to increased temperature and trees in warm places respond negatively, implying that trees historically not sensitive to temperature may become sensitive as mean temperatures warm. An analysis of 59 white spruce populations in Alaska supports the hypothesis that warming has caused tree growth to lose sensitivity to cold temperatures. Comparing ring widths to temperature during just the coldest 50% of years during the 20th century, tree growth was sensitive to cold temperatures, and this effect was strongest at the coldest sites; whereas during the warmest 50% of years, trees were not at all sensitive to cold temperatures, even at the cold sites. Drought and vapor pressure deficit are among the variables that emerge as being increasingly important to these Alaska boreal forests as mean temperatures rise. Most recently, from 346 tree-ring chronologies in the Southwest US we establish a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in this region. FDSI responds sensitively and nonlinearly to growing season daily maximum temperatures which increase vapor pressure deficit, resulting in greater tree physiological stress and reduced tree growth. Drought conditions and warming temperatures in the Southwest since ca. 1996 have caused FDSI values in particular years since 2000 to start to exceed the most extreme values reconstructed from tree-rings for the past 1000 years for this region. FDSI demonstrates strong correlations with the spatial extent of major forest disturbances in the Southwest, including high-severity wildfire and bark beetle infestations, which over the past 20 years also have affected historically unprecedented levels. Similar trends of increasing extent and severity of forest disturbances are apparent across large portions of western North America. For the Southwest US, given relatively robust projections of substantial further increases in warmer temperatures and drought stress in coming decades, by ~2050 projected levels of FDSI and associated disturbances would reach extreme values, suggesting that current forest ecosystems likely would be forced to reorganize through wholesale tree mortality and the establishment of new dominant species.
Quantitative metrics for assessing predicted climate change pressure on North American tree species
Kevin M. Potter; William W. Hargrove
2013-01-01
Changing climate may pose a threat to forest tree species, forcing three potential population-level responses: toleration/adaptation, movement to suitable environmental conditions, or local extirpation. Assessments that prioritize and classify tree species for management and conservation activities in the face of climate change will need to incorporate estimates of the...
The importance of tree size and fecundity for wind dispersal of big-leaf mahogany
Julian M. Norghauer; Charles A. Nock; James Grogan
2011-01-01
Seed dispersal by wind is a critical yet poorly understood process in tropical forest trees. How tree size and fecundity affect this process at the population level remains largely unknown because of insufficient replication across adults. We measured seed dispersal by the endangered neotropical timber species big-leaf mahogany (Swietenia macrophylla King, Meliaceae)...
Modeling snag dynamics in northern Arizona mixed-conifer and ponderosa pine forests
Joseph L. Ganey; Scott C. Vojta
2007-01-01
Snags (standing dead trees) are important components of forested habitats that contribute to ecological decay and recycling processes as well as providing habitat for many life forms. As such, snags are of special interest to land managers, but information on dynamics of snag populations is lacking. We modeled trends in snag populations in mixed-conifer and ponderosa...
B.A. Ferguson; T.A. Dreisbach; C.G. Parks; G.M. Filip; C.L. Schmitt
2003-01-01
The coarse-scale population structure of pathogenic Armillaria (Fr.) Staude species was determined on approximately 16 100 ha Of relatively dry, mixed-conifer forest in the Blue Mountains of northeast Oregon. Sampling of recently dead or live, symptomatic conifers produced 112 isolates of Armillaria from six tree species.
Jian J. Duan; Leah S. Bauer; Kristopher J. Abell; Michael D. Ulyshen; Roy G. Van Driesche
2015-01-01
1. Understanding the population dynamics of exotic pests and associated natural enemies is important in developing sound management strategies in invaded forest ecosystems. The emerald ash borer (EAB) Agrilus planipennis Fairmaire is an invasive phloem-feeding beetle that has killed tens of millions of ash Fraxinus trees in North...
Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change.
Schueler, Silvio; Falk, Wolfgang; Koskela, Jarkko; Lefèvre, François; Bozzano, Michele; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C
2014-05-01
A transnational network of genetic conservation units for forest trees was recently documented in Europe aiming at the conservation of evolutionary processes and the adaptive potential of natural or man-made tree populations. In this study, we quantified the vulnerability of individual conservation units and the whole network to climate change using climate favourability models and the estimated velocity of climate change. Compared to the overall climate niche of the analysed target species populations at the warm and dry end of the species niche are underrepresented in the network. However, by 2100, target species in 33-65 % of conservation units, mostly located in southern Europe, will be at the limit or outside the species' current climatic niche as demonstrated by favourabilities below required model sensitivities of 95%. The highest average decrease in favourabilities throughout the network can be expected for coniferous trees although they are mainly occurring within units in mountainous landscapes for which we estimated lower velocities of change. Generally, the species-specific estimates of favourabilities showed only low correlations to the velocity of climate change in individual units, indicating that both vulnerability measures should be considered for climate risk analysis. The variation in favourabilities among target species within the same conservation units is expected to increase with climate change and will likely require a prioritization among co-occurring species. The present results suggest that there is a strong need to intensify monitoring efforts and to develop additional conservation measures for populations in the most vulnerable units. Also, our results call for continued transnational actions for genetic conservation of European forest trees, including the establishment of dynamic conservation populations outside the current species distribution ranges within European assisted migration schemes. © 2013 John Wiley & Sons Ltd.
Methods for measuring populations of arboreal rodents.
Andrew B. Carey; Brian L. Biswell; Joseph W. Witt
1991-01-01
Three arboreal rodents are sensitive indicators of forest ecosystem function in the Pacific Northwest. The northern flying squirrel (Glaucomys sabrinus) is mycophagous, cavity-nesting, and a major prey of the spotted owl (Strix occidentalis). The red tree vole (Phenacomys longicaudus) is restricted to trees...
Landscape and vegetation effects on avian reproduction on bottomland forest restorations
Twedt, Daniel J.; Somershoe, Scott G.; Hazler, Kirsten R.; Cooper, Robert J.
2010-01-01
Forest restoration has been undertaken on >200,000 ha of agricultural land in the Mississippi Alluvial Valley, USA, during the past few decades. Decisions on where and how to restore bottomland forests are complex and dependent upon landowner objectives, but for conservation of silvicolous (forest-dwelling) birds, ecologists have espoused restoration through planting a diverse mix of densely spaced seedlings that includes fast-growing species. Application of this planting strategy on agricultural tracts that are adjacent to extant forest or within landscapes that are predominately forested has been advocated to increase forest area and enhance forested landscapes, thereby benefiting area-sensitive, silvicolous birds. We measured support for these hypothesized benefits through assessments of densities of breeding birds and reproductive success of 9 species on 36 bottomland forest restoration sites. Densities of thamnic (shrub-scrub dwelling) and silvicolous birds, such as yellow-breasted chat (Icteria virens), indigo bunting (Passerina cyanea), and white-eyed vireo (Vireo griseus) were positively associated with 1) taller trees, 2) greater stem densities, and 3) a greater proportion of forest within the landscape, whereas densities of birds associated with grasslands, such as dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), were negatively associated with these variables. Vegetation structure, habitat edge, and temporal effects had greater influence on nest success than did landscape effects. Taller trees, increased density of woody stems, greater vegetation density, and more forest within the landscape were often associated with greater nest success. Nest success of grassland birds was positively related to distance from forest edge but, for thamnic birds, success was greater near edges. Moreover, nest success and estimated fecundity of thamnic species suggested their populations are self-sustaining on forest restoration sites, whereas these sites are likely population sinks for grassland and open-woodland species. We recommend restoration strategies that promote rapid development of dense forest stands within largely forested landscapes to recruit breeding populations of thamnic and silvicolous birds that have reproductive success sufficient to sustain their populations.
Levis, Carolina; de Souza, Priscila Figueira; Schietti, Juliana; Emilio, Thaise; Pinto, José Luiz Purri da Veiga; Clement, Charles R.; Costa, Flavia R. C.
2012-01-01
Background Native Amazonian populations managed forest resources in numerous ways, often creating oligarchic forests dominated by useful trees. The scale and spatial distribution of forest modification beyond pre-Columbian settlements is still unknown, although recent studies propose that human impact away from rivers was minimal. We tested the hypothesis that past human management of the useful tree community decreases with distance from rivers. Methodology/Principal Findings In six sites, we inventoried trees and palms with DBH≥10 cm and collected soil for charcoal analysis; we also mapped archaeological evidence around the sites. To quantify forest manipulation, we measured the relative abundance, richness and basal area of useful trees and palms. We found a strong negative exponential relationship between forest manipulation and distance to large rivers. Plots located from 10 to 20 km from a main river had 20–40% useful arboreal species, plots between 20 and 40 km had 12–23%, plots more than 40 km had less than 15%. Soil charcoal abundance was high in the two sites closest to secondary rivers, suggesting past agricultural practices. The shortest distance between archaeological evidence and plots was found in sites near rivers. Conclusions/Significance These results strongly suggest that past forest manipulation was not limited to the pre-Columbian settlements along major rivers, but extended over interfluvial areas considered to be primary forest today. The sustainable use of Amazonian forests will be most effective if it considers the degree of past landscape domestication, as human-modified landscapes concentrate useful plants for human sustainable use and management today. PMID:23185264
Wieczorek, Mareike; Kruse, Stefan; Epp, Laura S; Kolmogorov, Alexei; Nikolaev, Anatoly N; Heinrich, Ingo; Jeltsch, Florian; Pestryakova, Lyudmila A; Zibulski, Romy; Herzschuh, Ulrike
2017-09-01
Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field- and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least ~240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning ~130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future. © 2017 by the Ecological Society of America.
Mathiasen, Paula; Rovere, Adriana E; Premoli, Andrea C
2007-02-01
Deforestation of temperate forests has created landscapes of forest remnants in matrices of intense human use. We studied the genetic effects of fragmentation in southern Chile on Embothrium coccineum J.R. et G. Forster, an early colonizing, bird-pollinated tree. We tested the hypothesis that, because of its self-incompatibility and life-history strategy, E. coccineum is less strongly affected by fragmentation. We studied the effects of reduced population size and increased isolation on population genetic structure and early performance of progeny. Samples were collected from spatially isolated trees and six fragments of differing sizes (small, 1 ha; medium, 20 ha; large, >150 ha). Based on isozyme polymorphisms we estimated parameters of genetic diversity, divergence, and inbreeding for adults and greenhouse-grown progeny. We also measured germination, seedling growth, and outcrossing rates on progeny arrays. Genetic variation of adults did not correlate significantly with population size, as expected, given that fragmentation occurred relatively recently. Weak effects of fragmentation were measured on progeny. Only adults yielded significant inbreeding. Similar total genetic diversity was found in adults and progeny. Low but significant genetic differentiation existed among adult and progeny populations. Seedling growth correlated positively with the effective number of alleles, showing deleterious effects of inbreeding on progeny. Seeds from small fragments had the highest outcrossing rates and germination success, indicating that higher pollinator activity in such fragments reduced selfing, thereby buffering genetic erosion and maintaining adaptive variation. The effects of forest fragmentation were detectable in E. coccineum, but these effects will probably not be detrimental to the viability of remnant populations because small, fragmented populations demonstrated higher levels of gene flow and lower inbreeding than larger stands. Pioneer species that are insensitive to forest clearing may be crucial in recovery plans to facilitate the establishment of species intolerant to such disturbance.
Sah, Jay P.; Ross, Michael S.; Snyder, James R.; ...
2010-01-01
In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated withmore » tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.« less
Forest insect and fungal pathogen responses to drought [Chapter 6
Thomas E. Kolb; Christopher J. Fettig; Barbara J. Bentz; Jane E. Stewart; Aaron S. Weed; Jeffrey A. Hicke; Matthew P. Ayres
2016-01-01
Recent changes in precipitation patterns and in the occurrence of extreme temperature and precipitation events have been documented in many forested regions of the United States (Ryan and Vose 2012). Changes in drought intensity and frequency have the potential to alter populations and impacts of tree-damaging forest insects and pathogens (Ayers and Lombardero...
NASA Astrophysics Data System (ADS)
Martin, Y. E.; Johnson, E. A.; Gallaway, J.; Chaikina, O.
2011-12-01
Herein we conduct a followup investigation to an earlier research project in which we developed a numerical model of tree population dynamics, tree throw, and sediment transport associated with the formation of pit-mound features for Hawk Creek watershed, Canadian Rockies (Gallaway et al., 2009). We extend this earlier work by exploring the most appropriate transport relations to simulate the diffusion over time of newly-formed pit-pound features due to tree throw. We combine our earlier model with a landscape development model that can incorporate these diffusive transport relations. Using these combined models, changes in hillslope microtopography over time associated with the formation of pit-mound features and their decay will be investigated. The following ideas have motivated this particular study: (i) Rates of pit-mound degradation remain a source of almost complete speculation, as there is almost no long-term information on process rates. Therefore, we will attempt to tackle the issue of pit-mound degradation in a methodical way that can guide future field studies; (ii) The degree of visible pit-mound topography at any point in time on the landscape is a joint function of the rate of formation of new pit-mound features due to tree death/topple and their magnitude vs. the rate of decay of pit-mound features. An example of one interesting observation that arises is the following: it appears that pit-mound topography is often more pronounced in some eastern North American forests vs. field sites along the eastern slopes of the Canadian Rockies. Why is this the case? Our investigation begins by considering whether pit-mound decay might occur by linear or nonlinear diffusion. What differences might arise depending on which diffusive approach is adopted? What is the magnitude of transport rates associated with these possible forms of transport relations? We explore linear and nonlinear diffusion at varying rates and for different sizes of pit-mound pairs using a numerical modelling approach. Model results suggest that longevity of pit-mound features is dependent on: (i) magnitude/dimensions of initial pit-mound features for forests in different regions; (ii) defining appropriate pit-mound diffusion rates for these different forests (unfortunately, almost no appropriate field observations exist for calibration of these transport relations). In the next stage of this research, we will combine our earlier model of forest disturbance/tree population dynamics, tree throw and pit-mound formation with the numerical model LandMod (Martin, 1998, 2000, 2007); the latter will be used to simulate pit-mound diffusion over time. In this way, we can observe changes in hillslope microtopographic signatures over time that are found in different forest settings.
Miao, Ning; Liu, Shi-Rong; Shi, Zuo-Min; Yu, Hong; Liu, Xing-Liang
2009-06-01
Based on the investigation in a 4 hm2 Betula-Abies forest plot in sub-alpine area in West Sichuan of China, and by using point pattern analysis method in terms of O-ring statistics, the spatial patterns of dominant species Betula albo-sinensis and Abies faxoniana in different age classes in study area were analyzed, and the intra- and inter-species associations between these age classes were studied. B. albo-sinensis had a unimodal distribution of its DBH frequency, indicating a declining population, while A. faxoniana had a reverse J-shaped pattern, showing an increasing population. All the big trees of B. albo-sinensis and A. faxoniana were spatially in random at all scales, while the medium age and small trees were spatially clumped at small scales and tended to be randomly or evenly distributed with increasing spatial scale. The maximum aggregation degree decreased with increasing age class. Spatial association mainly occurred at small scales. A. faxoniana generally showed positive intra-specific association, while B. albo-sinensis generally showed negative intra-specific association. For the two populations, big and small trees had no significant spatial association, but middle age trees had negative spatial association. Negative inter-specific associations of the two populations were commonly found in different age classes. The larger the difference of age class, the stronger the negative inter-specific association.
Hou, Lin; Hou, Sijia
2017-01-01
Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country's fragile and fragmented environment, the Chinese government initiated an ecological engineering project, the Natural Forest Protection Program, in seventeen provinces in China beginning in 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied nation wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems. We investigated community diversity, biomass of dominant tree species, age structures, and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi, China. Plant species richness of Pinus tabulaeformis community was significantly affected ( p < 0.05) by forest protection and the effect attenuated with protection age. Shannon evenness index of plant species generally increased with protection age. Stands protected for 45 years had the highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon, available phosphorus and available potassium in top soil increased in protected stands less than 45 years, however decreased significantly thereafter. Long-term forest protection also decreased the content of mineral nitrogen in top soil. We found that the richness of shrubs and herbs was significantly affected by forest protection, and evenness indices of tree, shrub and herb increased inconsistently with protected ages. Forest protection created more complex age structures and tree densities with increasing age of protection. Content of soil mineral nitrogen at 0-20 cm soil depth showed a decreasing trend in stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands with greater proportions of big and medium trees. Long-term protection (>45 years) of Pinus tabulaeformis stands in southeast Loess Plateau, China, may be associated with decreasing plant species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis and soil nutrients.
Bourdier, Thomas; Cordonnier, Thomas; Kunstler, Georges; Piedallu, Christian; Lagarrigues, Guillaume; Courbaud, Benoit
2016-01-01
Plant structural diversity is usually considered as beneficial for ecosystem functioning. For instance, numerous studies have reported positive species diversity-productivity relationships in plant communities. However, other aspects of structural diversity such as individual size inequality have been far less investigated. In forests, tree size inequality impacts directly tree growth and asymmetric competition, but consequences on forest productivity are still indeterminate. In addition, the effect of tree size inequality on productivity is likely to vary with species shade-tolerance, a key ecological characteristic controlling asymmetric competition and light resource acquisition. Using plot data from the French National Geographic Agency, we studied the response of stand productivity to size inequality for ten forest species differing in shade tolerance. We fitted a basal area stand production model that included abiotic factors, stand density, stand development stage and a tree size inequality index. Then, using a forest dynamics model we explored whether mechanisms of light interception and light use efficiency could explain the tree size inequality effect observed for three of the ten species studied. Size inequality negatively affected basal area increment for seven out of the ten species investigated. However, this effect was not related to the shade tolerance of these species. According to the model simulations, the negative tree size inequality effect could result both from reduced total stand light interception and reduced light use efficiency. Our results demonstrate that negative relationships between size inequality and productivity may be the rule in tree populations. The lack of effect of shade tolerance indicates compensatory mechanisms between effect on light availability and response to light availability. Such a pattern deserves further investigations for mixed forests where complementarity effects between species are involved. When studying the effect of structural diversity on ecosystem productivity, tree size inequality is a major facet that should be taken into account.
Mello, J H F; Moulton, T P; Raíces, D S L; Bergallo, H G
2015-01-01
We carried out a six-year study aimed at evaluating if and how a Brazilian Atlantic Forest small mammal community responded to the presence of the invasive exotic species Artocarpus heterophyllus, the jackfruit tree. In the surroundings of Vila Dois Rios, Ilha Grande, RJ, 18 grids were established, 10 where the jackfruit tree was present and eight were it was absent. Previous results indicated that the composition and abundance of this small mammal community were altered by the presence and density of A. heterophyllus. One observed effect was the increased population size of the spiny-rat Trinomys dimidiatus within the grids where the jackfruit trees were present. Therefore we decided to create a mathematical model for this species, based on the Verhulst-Pearl logistic equation. Our objectives were i) to calculate the carrying capacity K based on real data of the involved species and the environment; ii) propose and evaluate a mathematical model to estimate the population size of T. dimidiatus based on the monthly seed production of jackfruit tree, Artocarpus heterophyllus and iii) determinate the minimum jackfruit tree seed production to maintain at least two T. dimidiatus individuals in one study grid. Our results indicated that the predicted values by the model for the carrying capacity K were significantly correlated with real data. The best fit was found considering 20~35% energy transfer efficiency between trophic levels. Within the scope of assumed premises, our model showed itself to be an adequate simulator for Trinomys dimidiatus populations where the invasive jackfruit tree is present.
Population genetics meets ecological genomics and community ecology in Cornus Florida
USDA-ARS?s Scientific Manuscript database
Understanding evolutionary/ecological consequences of alien pests on native forests is important to conservation. Cornus florida L. subsp. florida is an ecologically important understory tree in forests of the eastern United States but faces heavy mortality from dogwood anthracnose. Understanding ge...
Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William
2014-01-01
Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies.
Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William
2014-01-01
Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies. PMID:24992657
Epigenetic Variability in the Genetically Uniform Forest Tree Species Pinus pinea L
Sáez-Laguna, Enrique; Guevara, María-Ángeles; Díaz, Luis-Manuel; Sánchez-Gómez, David; Collada, Carmen; Aranda, Ismael; Cervera, María-Teresa
2014-01-01
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees. PMID:25084460
Epigenetic variability in the genetically uniform forest tree species Pinus pinea L.
Sáez-Laguna, Enrique; Guevara, María-Ángeles; Díaz, Luis-Manuel; Sánchez-Gómez, David; Collada, Carmen; Aranda, Ismael; Cervera, María-Teresa
2014-01-01
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.
Zang, Christian; Hartl-Meier, Claudia; Dittmar, Christoph; Rothe, Andreas; Menzel, Annette
2014-12-01
The future performance of native tree species under climate change conditions is frequently discussed, since increasingly severe and more frequent drought events are expected to become a major risk for forest ecosystems. To improve our understanding of the drought tolerance of the three common European temperate forest tree species Norway spruce, silver fir and common beech, we tested the influence of climate and tree-specific traits on the inter and intrasite variability in drought responses of these species. Basal area increment data from a large tree-ring network in Southern Germany and Alpine Austria along a climatic cline from warm-dry to cool-wet conditions were used to calculate indices of tolerance to drought events and their variability at the level of individual trees and populations. General patterns of tolerance indicated a high vulnerability of Norway spruce in comparison to fir and beech and a strong influence of bioclimatic conditions on drought response for all species. On the level of individual trees, low-growth rates prior to drought events, high competitive status and low age favored resilience in growth response to drought. Consequently, drought events led to heterogeneous and variable response patterns in forests stands. These findings may support the idea of deliberately using spontaneous selection and adaption effects as a passive strategy of forest management under climate change conditions, especially a strong directional selection for more tolerant individuals when frequency and intensity of summer droughts will increase in the course of global climate change. © 2014 John Wiley & Sons Ltd.
Dual impacts of climate change: forest migration and turnover through life history.
Zhu, Kai; Woodall, Christopher W; Ghosh, Souparno; Gelfand, Alan E; Clark, James S
2014-01-01
Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance-climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large-scale tree migration. Taken together, this juvenile-adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics accelerate with longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales.
Drought-related tree mortality in drought-resistant semi-arid Aleppo pine forest
NASA Astrophysics Data System (ADS)
Preisler, Yakir; Grünzweig, José M.; Rotenberg, Eyal; Rohatyn, Shani; Yakir, Dan
2014-05-01
The frequency and intensity of drought events are expected to increase as part of global climate change. In fact, drought related tree mortality had become a widespread phenomenon in forests around the globe in the past decades. This study was conducted at the Yatir FLUXNET site, located in a 45 years old Pinus halepensis dominated forest that successfully sustained low mean annual precipitation (276mm) and extended seasonal droughts (up to 340 days between rain events). However, five recent non-consecutive drought years led to enhanced tree mortality in 2010 (5-10% of the forest population, which was not observed hitherto). The Tree mortality was characterized by patchiness, showing forest zones with either >80% mortality or no mortality at all. Areas of healthy trees were associated with deeper root distribution and increased stoniness (soil pockets & cracks). To help identify possible causes of the increased mortality and its patterns, four tree stress levels were identified based on visual appearance, and studied in more detail. This included examining from spring 2011 to summer 2013 the local trees density, root distribution, annual growth rings, needle length and chlorophyll content, rates of leaf gas exchange, and branch predawn water potential. Tree phenotypic stress level correlated with the leaf predawn water potential (-1.8 and -3.0 in healthy and stressed trees, respectively), which likely reflected tree-scale water availability. These below ground characteristics were also associated, in turn, with higher rate of assimilation (3.5 and 0.8 μmol CO2 m-2s1 in healthy and stress trees, respectively), longer needles (8.2cm and 3.4 cm in healthy and stressed trees, respectively). Annual ring widths showed differences between stress classes, with stressed trees showing 30% narrower rings on average than unstressed trees. Notably, decline in annual ring widths could be identified in currently dead or severely stressed trees 15-20 years prior to mortality or tree degradation. These results indicate, together with earlier results that showed a virtually close hydrological cycle (ET~P) for this forest, that mortality was dominated by conditions at the level of the single-tree or small group of trees. The dependency on belowground water availability of individual trees emphasizes the difficulties in drawing process-based conclusions from the mean response at the forest stand level and, alternatively, the need to investigate drought stress and survival processes at the patch scale. The capabilities of early identification, and of grading the stress level with simple tools, such as tree-rings and pre-dawn water potential, can facilitate partitioning forest stands into zones more relevant to the study and management of drought related mortality. Ultimately, an integrated approach considering both the stand and patch scales and which utilizes methodologies such as used in this study will be essential to reliably predict ecosystem response to changes in precipitation regimes and climate.
Ogawa, Mifuyu; Yamaura, Yuichi; Abe, Shin; Hoshino, Daisuke; Hoshizaki, Kazuhiko; Iida, Shigeo; Katsuki, Toshio; Masaki, Takashi; Niiyama, Kaoru; Saito, Satoshi; Sakai, Takeshi; Sugita, Hisashi; Tanouchi, Hiroyuki; Amano, Tatsuya; Taki, Hisatomo; Okabe, Kimiko
2011-07-01
Many indicators/indices provide information on whether the 2010 biodiversity target of reducing declines in biodiversity have been achieved. The strengths and limitations of the various measures used to assess the success of such measures are now being discussed. Biodiversity dynamics are often evaluated by a single biological population metric, such as the abundance of each species. Here we examined tree population dynamics of 52 families (192 species) at 11 research sites (three vegetation zones) of Japanese old-growth forests using two population metrics: number of stems and basal area. We calculated indices that track the rate of change in all species of tree by taking the geometric mean of changes in population metrics between the 1990s and the 2000s at the national level and at the levels of the vegetation zone and family. We specifically focused on whether indices based on these two metrics behaved similarly. The indices showed that (1) the number of stems declined, whereas basal area did not change at the national level and (2) the degree of change in the indices varied by vegetation zone and family. These results suggest that Japanese old-growth forests have not degraded and may even be developing in some vegetation zones, and indicate that the use of a single population metric (or indicator/index) may be insufficient to precisely understand the state of biodiversity. It is therefore important to incorporate more metrics into monitoring schemes to overcome the risk of misunderstanding or misrepresenting biodiversity dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentz, B.J.; Powell, J.A.; Logan, J.A.
1996-12-01
Colonization of a host tree by the mountain pine beetle (Dendroctonus ponderosae) involves chemical communication that enables a massive aggregation of beetles on a single resource, thereby ensuring host death and subsequent beetle population survival. Beetle populations have evolved a mechanism for termination of colonization on a lodgepole pine tree at optimal beetle densities, with a concomitant switch of attacks to nearby trees. Observations of the daily spatial and temporal attack process of mountain pine beetles (nonepidemic) attacking lodgepole pine suggest that beetles switch attacks to a new host tree before the original focus tree is fully colonized, and thatmore » verbenone, an antiaggregating pheromone, may be acting within a tree rather than between trees.« less
Jin, Yi; Qian, Hong; Yu, Mingjian
2015-01-01
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.
Jin, Yi; Qian, Hong; Yu, Mingjian
2015-01-01
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916
Variability of rooting in a small second-generation population of the hybrid Pinus attenuradiata
J. W. Duffield; A. R. Liddicoet
1949-01-01
Propagation of conifers by rooting of cuttings is an old art that has recently benefited by the findings of the plant physiologist. The forest tree breeder may now use rooting as a tool in his efforts to evaluate the heredity of his trees. In a study undertaken to use vegetative propagation of members of a variable hybrid population as a guide for selecting superior...
Shiqin Xu; C.G. Tauer; C. Dana Nelson
2008-01-01
Shortleaf pine (n=93) and loblolly pine (n=112) trees representing 22 seed sources or 16 physiographic populations were sampled from Southwide Southern Pine Seed Source Study plantings located in Oklahoma, Arkansas and Mississippi. The sampled trees were grown from shortleaf pine and loblolly pine seeds formed in 1951 and 1952, prior to the start of intensive forest...
Are Scots pine forest edges particularly prone to drought-stress?
NASA Astrophysics Data System (ADS)
Buras, Allan; Schunk, Christian; Taeger, Steffen; Lemme, Hannes; Gößwein, Sebastian; Menzel, Annette
2017-04-01
In 2016, Scots pine (Pinus sylvestris L.) forests experienced a pronounced dieback in several regions across Germany. Being an economically important tree species, a thorough identification of the reasons for this dieback is of high interest. The dieback is likely to be associated with a record drought event which occurred in summer 2015. However, visual observations indicate that forest edges were particularly affected. This observation is supported by a study from Sweden which showed that Scots pine trees growing at a north-facing forest edge expressed a higher water use if compared to trees from the interior (Cienciala et al., 2002). We therefore hypothesize that Scots pine trees are more prone to drought-stress induced dieback when growing at the forest edge. To test this hypothesis, we investigated the growth performance of Scots pine across three affected stands in Franconia, southern Germany. The stands were selected to represent differing conditions along a gradient of forest fragmentation, ranging from the forest interior, over a forest edge situation, to a small forest island. By means of dendroclimatology and UAV-borne remote sensing, Scots pine growth performance and vitality was compared among the three stands. Our results revealed differing Scots pine growth reactions between the forest interior and forest edge as indicated by the identification of different responder groups (Buras et al., 2016). The forest edge and the forest island expressed significantly higher correlations with the drought-index SPEI (Vicente-Serrano et al., 2009) if compared to the forest interior. Moreover, NDVI of Scots Pine canopies significantly decreased towards the forest edge, this indicating lower vitality of corresponding trees. In conclusion, our results highlight Scots pine to be more prone to drought-stress when growing at the forest edge. This finding has important implications for forest management activities in the context of climate change adaptation, since foresters may need to revise concepts of Scots pine management at forest edges and in forest islands under an increasingly warmer and drier climate. 1. Cienciala, E. et al. The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Can. J. For. Res. 32, 693-702 (2002). 2. Buras, A. et al. Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations. PLOS ONE 11, e0158346 (2016). 3. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Climate 23, 1696-1718 (2009).
The role of composition, invasives, and maintenance emissions on urban forest carbon stocks.
Horn, Josh; Escobedo, Francisco J; Hinkle, Ross; Hostetler, Mark; Timilsina, Nilesh
2015-02-01
There are few field-based, empirical studies quantifying the effect of invasive trees and palms and maintenance-related carbon emissions on changes in urban forest carbon stocks. We estimated carbon (C) stock changes and tree maintenance-related C emissions in a subtropical urban forest by re-measuring a subsample of residential permanent plots during 2009 and 2011, using regional allometric biomass equations, and surveying residential homeowners near Orlando, FL, USA. The effect of native, non-native, invasive tree species and palms on C stocks and sequestration was also quantified. Findings show 17.8 tC/ha in stocks and 1.2 tC/ha/year of net sequestration. The most important species both by frequency of C stocks and sequestration were Quercus laurifolia Michx. and Quercus virginiana Mill., accounting for 20% of all the trees measured; 60% of carbon stocks and over 75% of net C sequestration. Palms contributed to less than 1% of the total C stocks. Natives comprised two-thirds of the tree population and sequestered 90% of all C, while invasive trees and palms accounted for 5 % of net C sequestration. Overall, invasive and exotic trees had a limited contribution to total C stocks and sequestration. Annual tree-related maintenance C emissions were 0.1% of total gross C sequestration. Plot-level tree, palm, and litter cover were correlated to C stocks and net sequestration. Findings can be used to complement existing urban forest C offset accounting and monitoring protocols and to better understand the role of invasive woody plants on urban ecosystem service provision.
The Role of Composition, Invasives, and Maintenance Emissions on Urban Forest Carbon Stocks
NASA Astrophysics Data System (ADS)
Horn, Josh; Escobedo, Francisco J.; Hinkle, Ross; Hostetler, Mark; Timilsina, Nilesh
2015-02-01
There are few field-based, empirical studies quantifying the effect of invasive trees and palms and maintenance-related carbon emissions on changes in urban forest carbon stocks. We estimated carbon (C) stock changes and tree maintenance-related C emissions in a subtropical urban forest by re-measuring a subsample of residential permanent plots during 2009 and 2011, using regional allometric biomass equations, and surveying residential homeowners near Orlando, FL, USA. The effect of native, non-native, invasive tree species and palms on C stocks and sequestration was also quantified. Findings show 17.8 tC/ha in stocks and 1.2 tC/ha/year of net sequestration. The most important species both by frequency of C stocks and sequestration were Quercus laurifolia Michx. and Quercus virginiana Mill., accounting for 20 % of all the trees measured; 60 % of carbon stocks and over 75 % of net C sequestration. Palms contributed to less than 1 % of the total C stocks. Natives comprised two-thirds of the tree population and sequestered 90 % of all C, while invasive trees and palms accounted for 5 % of net C sequestration. Overall, invasive and exotic trees had a limited contribution to total C stocks and sequestration. Annual tree-related maintenance C emissions were 0.1 % of total gross C sequestration. Plot-level tree, palm, and litter cover were correlated to C stocks and net sequestration. Findings can be used to complement existing urban forest C offset accounting and monitoring protocols and to better understand the role of invasive woody plants on urban ecosystem service provision.
[Estimation of vegetation carbon storage and density of forests at tree layer in Tibet, China.
Liu, Shu Qin; Xia, Chao Zong; Feng, Wei; Zhang, Ke Bin; Ma, Li; Liu, Jian Kang
2017-10-01
The estimation of vegetation carbon storage and density of forests at tree layer in Tibet Autonomous Region was calculated based on the eighth forest inventory data using the biomass inventory method, as well as other attributes like tree trunk density and carbon content of different species. The results showed that the total carbon storage at tree layer in Tibet forest ecosystem was 1.067×10 9 t and the average carbon density was 72.49 t·hm -2 . The carbon storage at tree layer of different stands was in the order of arbor forest > scattered wood > sparse forest > alluvial tree. The carbon storage of different forest types at tree layer were in the order of shelterbelt > special purpose forest > timber forest > firewood forest. The proportion of the first mentioned two was 88.5%, and the average carbon density of different forest types at tree layer was 88.09 t·hm -2 . The carbon sto-rage and its distribution area at tree layer in different forest groups were in the same order, followed by mature forest > over mature forest > near mature forest > middle aged forest > young forest. The carbon storage in mature forests accounted for 50% of the total carbon storage at tree layer in diffe-rent forest groups. The carbon storage at tree layer in different forest groups increased first and then decreased with the increase of stand ages.
Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Joanne Rebbeck; Kamal J.K. Gandhi; Annemarie Smith; Wendy S. Klooster; Catherine P. Herms; Alejandro A. Royo
2010-01-01
The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program involving the U.S. Forest Service's Northern Research Station and The Ohio State University. We are monitoring the decline and mortality of >4,500 ash trees and saplings, EAB population density, changes...
US Forest Service bark beetle research in the western United States: Looking toward the future
Jose F. Negron; Barbara J. Bentz; Christopher J. Fettig; Nancy Gillette; E. Matthew Hansen; Jane L. Hayes; Rick G. Kelsey; John E. Lundquist; Ann M. Lynch; Robert A. Progar; Steven J. Seybold
2008-01-01
Bark beetles cause extensive tree mortality in coniferous forests of western North America and play an important role in the disturbance ecology of these ecosystems. Recently, elevated populations of bark beetles have been observed in all conifer forest types across the western United States. This has heightened public awareness of the issue and triggered legislation...
Management recommendations for the northern goshawk in the southwestern United States
Richard T. Reynolds; Russell T. Graham; M. Hildegard Reiser
1992-01-01
Present forest conditions  loss of a herbaceous and shrubby understory, reductions in the amount of older forests, and increased areas of dense tree regeneration  reflect the extent of human influence on these forests. These changes may also be affecting goshawk populations. Information on goshawk nesting habitat and foraging behavior, and the food and habitats of...
William K. Smith; Keith N.C. Reinhardt; Daniel M. Johnson
2010-01-01
Fraser fir (Abies fraseri [Pursh] Poiret) and red spruce (Picea rubens Sarg.) occur as codominant trees in six relic, mountain-top populations that make up the high-elevation forests of the Southern Appalachian Mountains (SA). These two relic species of the former boreal forest have experienced a significant decline over the past...
Persson, Inga-Lill; Nilsson, Mats B; Pastor, John; Eriksson, Tobias; Bergström, Roger; Danell, Kjell
2009-10-01
Large herbivores can affect the carbon cycle in boreal forests by changing productivity and plant species composition, which in turn could ultimately alter litter production, nutrient cycling, and the partitioning between aboveground and belowground allocation of carbon. Here we experimentally tested how moose (Alces alces) at different simulated population densities affected belowground respiration rates (estimated as CO2 flux) in young boreal forest stands situated along a site productivity gradient. At high simulated population density, moose browsing considerably depressed belowground respiration rates (24-56% below that of no-moose controls) except during June, where the difference only was 10%. Moose browsing depressed belowground respiration the most on low-productivity sites. Soil moisture and temperature did not affect respiration rates. Impact of moose on belowground respiration was closely linked to litter production and followed Michaelis-Menten dynamics. The main mechanism by which moose decrease belowground respiration rates is likely their effect on photosynthetic biomass (especially decreased productivity of deciduous trees) and total litter production. An increased productivity of deciduous trees along the site productivity gradient causes an unequal effect of moose along the same gradient. The rapid growth of deciduous trees may offer higher resilience against negative effects of moose browsing on litter production and photosynthate allocation to roots.
David C. Shaw; Jiquan Chen; Elizabeth A. Freeman; David M. Braun
2005-01-01
We investigated the distribution and severity of trees infected with western hemlock dwarf mistletoe (Arceuthobium tsugense (Rosendahl) G.N. Jones subsp. tsugense) in an old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) - western hemlock (Tsuga heterophylla (Raf.) Sarg.)...
Stages and Spatial Scales of Recruitment Limitation in Southern Appalachain Forests
James S. Clark; Eric Macklin; Leslie Wood
1998-01-01
Recruitment limitation of tree population dynamics is poorly understood, because fecundity and dispersal are difficult to characterize in closed stands. We present an approach that estimates seed production and dispersal under closed canopies and four limitations on recruitment: tree density and location, fecundity, seed dispersal, and establishment. Consistent...
Environmental Assessment for Hypersonic Technology Vehicle 2 Flight Tests
2009-04-01
areas were noted to contain high-quality Pisonia and Pisonia/ Cordia forests and some coconut palm trees. Twelve kinds of sea and shore birds and other...Pisonia, Cordia , and/or other tree and shrub species. Coconut palms are also common and widespread on several of the islands. Bird populations are
From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees
Glenn T. Howe; Sally N. Aitken; David B. Neale; Kathleen D. Jermstad; Nicholas C. Wheeler; Tony H.H Chen
2003-01-01
Adaptation to winter cold in temperate and boreal trees involves complex genetic, physiological, and developmental processes. Genecological studies demonstrate the existence of steep genetic clines for cold adaptation traits in relation to environmental (mostly temperature related) gradients. Population differentiation is generally stronger for cold adaptation traits...
Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe
2015-01-01
The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P. chihuahuana trees and P. chihuahuana tree community and but to specific spatial scales measured by the univariate L-function. The spatial distribution pattern of P. chihuahuana trees was found to be independent of patches of other tree species measured by the bivariate L-function. The spatial distribution was not significantly related to tree density, diameter distribution or tree species diversity. The index of Clark and Evans decreased significantly from the southern to northern plots containing all tree species. Self-thinning due to intra and inter-specific competition-induced mortality is probably the main cause of the decrease in aggregation intensity during the course of population development in this tree community. We recommend the use of larger sampling plots (> 0.25 ha) in uneven-aged and species-rich forest ecosystems to detect less obvious, but important, relationships between spatial tree pattern and functioning and diversity in these forests.
Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe
2015-01-01
The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P. chihuahuana trees and P. chihuahuana tree community and but to specific spatial scales measured by the univariate L-function. The spatial distribution pattern of P. chihuahuana trees was found to be independent of patches of other tree species measured by the bivariate L-function. The spatial distribution was not significantly related to tree density, diameter distribution or tree species diversity. The index of Clark and Evans decreased significantly from the southern to northern plots containing all tree species. Self-thinning due to intra and inter-specific competition-induced mortality is probably the main cause of the decrease in aggregation intensity during the course of population development in this tree community. We recommend the use of larger sampling plots (> 0.25 ha) in uneven-aged and species-rich forest ecosystems to detect less obvious, but important, relationships between spatial tree pattern and functioning and diversity in these forests. PMID:26496189
New Approaches to FIA data for understanding distribution, abundance, and response to climate change
Kai Zhu; Souparno Ghosh; Alan E. Gelfand; James S. Clark
2012-01-01
We are using Forest Inventory and Analysis data to examine evidence for tree responses to climate change. By comparing seedling and tree occurrence data, we found that there is not yet evidence that tree populations in the eastern half of the United States are shifting geographic ranges to higher latitude in response to warming temperature. We are developing novel...
City of Cheyenne, Wyoming Municipal Tree Resource Analysis
P.J. Peper; Greg McPherson; J.R. Simpson; S.E. Maco; Q. Xiao
2004-01-01
Street trees in Cheyenne are comprised of two distinct populations, those managed by the cityâs Urban Forestry Division (UFD) and those inspected by the UFD but managed by private property owners. Over the years Cheyenne has invested millions in its municipal forest. The primary question that this study asks is whether the accrued benefits from Cheyenneâs street trees...
Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests.
Peres, Carlos A; Emilio, Thaise; Schietti, Juliana; Desmoulière, Sylvain J M; Levi, Taal
2016-01-26
Tropical forests are the global cornerstone of biological diversity, and store 55% of the forest carbon stock globally, yet sustained provisioning of these forest ecosystem services may be threatened by hunting-induced extinctions of plant-animal mutualisms that maintain long-term forest dynamics. Large-bodied Atelinae primates and tapirs in particular offer nonredundant seed-dispersal services for many large-seeded Neotropical tree species, which on average have higher wood density than smaller-seeded and wind-dispersed trees. We used field data and models to project the spatial impact of hunting on large primates by ∼ 1 million rural households throughout the Brazilian Amazon. We then used a unique baseline dataset on 2,345 1-ha tree plots arrayed across the Brazilian Amazon to model changes in aboveground forest biomass under different scenarios of hunting-induced large-bodied frugivore extirpation. We project that defaunation of the most harvest-sensitive species will lead to losses in aboveground biomass of between 2.5-5.8% on average, with some losses as high as 26.5-37.8%. These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs.
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
NASA Astrophysics Data System (ADS)
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-09-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.
Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests.
Bowman, David M J S; Murphy, Brett P; Neyland, Dominic L J; Williamson, Grant J; Prior, Lynda D
2014-03-01
Obligate seeder trees requiring high-severity fires to regenerate may be vulnerable to population collapse if fire frequency increases abruptly. We tested this proposition using a long-lived obligate seeding forest tree, alpine ash (Eucalyptus delegatensis), in the Australian Alps. Since 2002, 85% of the Alps bioregion has been burnt by several very large fires, tracking the regional trend of more frequent extreme fire weather. High-severity fires removed 25% of aboveground tree biomass, and switched fuel arrays from low loads of herbaceous and litter fuels to high loads of flammable shrubs and juvenile trees, priming regenerating stands for subsequent fires. Single high-severity fires caused adult mortality and triggered mass regeneration, but a second fire in quick succession killed 97% of the regenerating alpine ash. Our results indicate that without interventions to reduce fire severity, interactions between flammability of regenerating stands and increased extreme fire weather will eliminate much of the remaining mature alpine ash forest. © 2013 John Wiley & Sons Ltd.
Dávila-Lara, A; Affenzeller, M; Tribsch, A; Díaz, V; Comes, H P
2017-10-01
The Central American seasonally dry tropical (SDT) forest biome is one of the worlds' most endangered ecosystems, yet little is known about the genetic consequences of its recent fragmentation. A prominent constituent of this biome is Calycophyllum candidissimum, an insect-pollinated and wind-dispersed canopy tree of high socio-economic importance, particularly in Nicaragua. Here, we surveyed amplified fragment length polymorphisms across 13 populations of this species in Nicaragua to elucidate the relative roles of contemporary vs historical factors in shaping its genetic variation. Genetic diversity was low in all investigated populations (mean H E =0.125), and negatively correlated with latitude. Overall population differentiation was moderate (Φ ST =0.109, P<0.001), and Bayesian analysis of population structure revealed two major latitudinal clusters (I: 'Pacific North'+'Central Highland'; II: 'Pacific South'), along with a genetic cline between I and II. Population-based cluster analyses indicated a strong pattern of 'isolation by distance' as confirmed by Mantel's test. Our results suggest that (1) the low genetic diversity of these populations reflects biogeographic/population history (colonisation from South America, Pleistocene range contractions) rather than recent human impact; whereas (2) the underlying process of their isolation by distance pattern, which is best explained by 'isolation by dispersal limitation', implies contemporary gene flow between neighbouring populations as likely facilitated by the species' efficient seed dispersal capacity. Overall, these results underscore that even tree species from highly decimated forest regions may be genetically resilient to habitat fragmentation due to species-typical dispersal characteristics, the necessity of broad-scale measures for their conservation notwithstanding.
How does tree age influence damage and recovery in forests impacted by freezing rain and snow?
Zhu, LiRong; Zhou, Ting; Chen, BaoMing; Peng, ShaoLin
2015-05-01
The response and recovery mechanisms of forests to damage from freezing rain and snow events are a key topic in forest research and management. However, the relationship between the degree of damage and tree age, i.e., whether seedlings, young trees, or adult trees are most vulnerable, remains unclear and is rarely reported. We investigated the effect of tree age on the degrees of vegetation damage and subsequent recovery in three subtropical forest types-coniferous, mixed, and broad-leaved-in the Tianjing Mountains, South China, after a series of rare icy rain and freezing snow events in 2008. The results showed that damage and recovery rates were both dependent on tree age, with the proportion of damaged vegetation increasing with age (estimated by diameter at breast height, DBH) in all three forest types and gradually plateauing. Significant variation occurred among forest types. Young trees in the coniferous forest were more vulnerable than those in the broad-leaved forest. The type of damage also varied with tree age in different ways in the three forest types. The proportion of young seedlings that were uprooted (the most severe type of damage) was highest in the coniferous forest. In the mixed forest, young trees were significantly more likely to be uprooted than seedlings and adult trees, while in the broad-leaved forest, the proportion of uprooted adult trees was significantly higher than that of seedlings and young trees. There were also differences among forest types in how tree age affected damage recovery. In the coniferous forest, the recovery rate of trees with broken trunks or crowns (DBH > 2.5 cm) increased with tree age. However, in the mixed and broad-leaved forests, no obvious correlation between the recovery rate of trees with broken trunks or crowns and tree age was observed. Trees with severe root damage did not recover; they were uprooted and died. In these forests, vegetation damage and recovery showed tree age dependencies, which varied with tree shape, forest type, and damage type. Understanding this dependency will guide restoration after freezing rain and snow disturbances.
Important Hawaiian tree species in need of genetic conservation
Robert D. Hauff
2017-01-01
Resource managers in Hawaii face unique forest conservation challenges. Invasive species continue to inundate the remote island archipelago, directly threatening its forest resources. Hawaii has the largest number (> 400) of endangered plants in the United States, and managers use genetic approaches to preserve these small populations which are often island...
A Conceptual Model of Riparian Forest Response to Channel Abandonment on Meandering Rivers
NASA Astrophysics Data System (ADS)
Stella, J. C.; Hayden, M. K.; Battles, J. J.; Piegay, H.; Dufour, S.; Fremier, A. K.
2008-12-01
On alluvial rivers, hydrogeomorphic regimes exert a primary control on the regeneration of pioneer riparian forest stands and thus their composition and age structure. Seasonal flow patterns provide the necessary conditions for recruitment, and channel migration drives patterns of forest stand dynamics. To date, studies of pioneer riparian forest structure have focused primarily on point bar habitats, where woody vegetation typically recruits with decadal frequency in even-aged bands parallel to the river margin. However, there are indications that other recruitment pathways exist and can be important from a population and conservation perspective. On floodplains where channel migration occurs as infrequent cutoff or avulsion events, the geometry and position of the old channel relative to the new one determines rates and patterns of sedimentation and flood frequency. These conditions provide a brief opportunity for forest recruitment, and geomorphic evolution of the former channel habitat in turn influences forest dynamics. The population implications of this alternative forest regeneration pathway depend on the temporal dynamics of channel abandonment versus the rate of lateral channel migration. Preliminary analysis indicates that the geographic scope of this ecogeomorphological process is sizable. Along the Sacramento River (CA) and Ain River (France), for example, cottonwood-dominated stands associated with abandoned channels tend to be less frequent in number (38% of all stands) but larger in area (accounting for 53% of all forest area) relative to forest stands associated with laterally migrating point bars. Dendrochronological analysis confirms that tree ages in floodplain stands corresponds to the first decade after channel abandonment. These data indicate that changes to the rate and scale of channel abandonment due to human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest dynamics.
Cloutier, D; Kanashiro, M; Ciampi, A Y; Schoen, D J
2007-02-01
Selective logging may impact patterns of genetic diversity within populations of harvested forest tree species by increasing distances separating conspecific trees, and modifying physical and biotic features of the forest habitat. We measured levels of gene diversity, inbreeding, pollen dispersal and spatial genetic structure (SGS) of an Amazonian insect-pollinated Carapa guianensis population before and after commercial selective logging. Similar levels of gene diversity and allelic richness were found before and after logging in both the adult and the seed generations. Pre- and post-harvest outcrossing rates were high, and not significantly different from one another. We found no significant levels of biparental inbreeding either before or after logging. Low levels of pollen pool differentiation were found, and the pre- vs. post-harvest difference was not significant. Pollen dispersal distance estimates averaged between 75 m and 265 m before logging, and between 76 m and 268 m after logging, depending on the value of tree density and the dispersal model used. There were weak and similar levels of differentiation of allele frequencies in the adults and in the pollen pool, before and after logging occurred, as well as weak and similar pre- and post-harvest levels of SGS among adult trees. The large neighbourhood sizes estimated suggest high historical levels of gene flow. Overall our results indicate that there is no clear short-term genetic impact of selective logging on this population of C. guianensis.
Zachary I. Felix; Yong Wang; Callie Jo Schweitzer
2010-01-01
In-depth analyses of a speciesâ response to canopy retention treatments can provide insight into reasons for observed changes in abundance. The eastern worm snake (Carphophis amoenus amoenus Say) is common in many eastern deciduous forests, yet little is known about the ecology of the species in managed forests. We examined the relationship between...
Demand-based urban forest planning using high-resolution remote sensing and AHP
NASA Astrophysics Data System (ADS)
Kolanuvada, Srinivasa Raju; Mariappan, Muneeswaran; Krishnan, Vani
2016-05-01
Urban forest planning is important for providing better urban ecosystem services and conserve the natural carbon sinks inside the urban area. In this study, a demand based urban forest plan was developed for Chennai city by using Analytical Hierarchy Process (AHP) method. Population density, Tree cover, Air quality index and Carbon stocks are the parameters were considered in this study. Tree cover and Above Ground Biomass (AGB) layers were prepared at a resolution of 1m from airborne LiDAR and aerial photos. The ranks and weights are assigned by the spatial priority using AHP. The results show that, the actual status of the urban forest is not adequate to provide ecosystem services on spatial priority. From this perspective, we prepared a demand based plan for improving the urban ecosystem.
Garcia, Martín N.; Acuña, Cintia; Borralho, Nuno M. G.; Grattapaglia, Dario; Marcucci Poltri, Susana N.
2013-01-01
The promise of association genetics to identify genes or genomic regions controlling complex traits has generated a flurry of interest. Such phenotype-genotype associations could be useful to accelerate tree breeding cycles, increase precision and selection intensity for late expressing, low heritability traits. However, the prospects of association genetics in highly heterozygous undomesticated forest trees can be severely impacted by the presence of cryptic population and pedigree structure. To investigate how to better account for this, we compared the GLM and five combinations of the Unified Mixed Model (UMM) on data of a low-density genome-wide association study for growth and wood property traits carried out in a Eucalyptus globulus population (n = 303) with 7,680 Diversity Array Technology (DArT) markers. Model comparisons were based on the degree of deviation from the uniform distribution and estimates of the mean square differences between the observed and expected p-values of all significant marker-trait associations detected. Our analysis revealed the presence of population and family structure. There was not a single best model for all traits. Striking differences in detection power and accuracy were observed among the different models especially when population structure was not accounted for. The UMM method was the best and produced superior results when compared to GLM for all traits. Following stringent correction for false discoveries, 18 marker-trait associations were detected, 16 for tree diameter growth and two for lignin monomer composition (S∶G ratio), a key wood property trait. The two DArT markers associated with S∶G ratio on chromosome 10, physically map within 1 Mbp of the ferulate 5-hydroxylase (F5H) gene, providing a putative independent validation of this marker-trait association. This study details the merit of collectively integrate population structure and relatedness in association analyses in undomesticated, highly heterozygous forest trees, and provides additional insights into the nature of complex quantitative traits in Eucalyptus. PMID:24282578
Menezes, Lucas; Canedo, Clarissa; Batalha-Filho, Henrique; Garda, Adrian Antonio; Gehara, Marcelo; Napoli, Marcelo Felgueiras
2016-01-01
We aim to evaluate the genetic structure of an Atlantic Forest amphibian species, Scinax eurydice, testing the congruence among patterns identified and proposed by the literature for Pleistocene refugia, microrefugia, and geographic barriers to gene flow such as major rivers. Furthermore, we aim to evaluate predictions of such barriers and refugia on the genetic structure of the species, such as presence/absence of dispersal, timing since separation, and population expansions/contractions. We sequenced mitochondrial and nuclear genetic markers on 94 tissue samples from 41 localities. We inferred a gene tree and estimated genetic distances using mtDNA sequences. We then ran population clustering and assignment methods, AMOVA, and estimated migration rates among populations identified through mtDNA and nDNA analyses. We used a dated species tree, skyline plots, and summary statistics to evaluate concordance between population's distributions and geographic barriers and Pleistocene refugia. Scinax eurydice showed high mtDNA divergences and four clearly distinct mtDNA lineages. Species tree and population assignment tests supported the existence of two major clades corresponding to northeastern and southeastern Atlantic Forest in Brazil, each one composed of two other clades. Lineage splitting events occurred from late Pliocene to Pleistocene. We identified demographic expansions in two clades, and inexistent to low levels of migrations among different populations. Genetic patterns and demographic data support the existence of two northern Refuge and corroborate microrefugia south of the Doce/Jequitinhonha Rivers biogeographic divide. The results agree with a scenario of recent demographic expansion of lowland taxa. Scinax eurydice comprises a species complex, harboring undescribed taxa consistent with Pleistocene refugia. Two rivers lie at the boundaries among populations and endorse their role as secondary barriers to gene flow.
Chapman, Colin A; Wasserman, Michael D; Gillespie, Thomas R; Speirs, Michaela L; Lawes, Michael J; Saj, Tania L; Ziegler, Toni E
2006-12-01
Identifying factors that influence animal density is a fundamental goal in ecology that has taken on new importance with the need to develop informed management plans. This is particularly the case for primates as the tropical forest that supports many species is being rapidly converted. We use a system of forest fragments adjacent to Kibale National Park, Uganda, to examine if food availability and parasite infections have synergistic affects on red colobus (Piliocolobus tephrosceles) abundance. Given that the size of primate populations can often respond slowly to environmental changes, we also examined how these factors influenced cortisol levels. To meet these objectives, we monitored gastrointestinal parasites, evaluated fecal cortisol levels, and determined changes in food availability by conducting complete tree inventories in eight fragments in 2000 and 2003. Red colobus populations declined by an average of 21% among the fragments; however, population change ranged from a 25% increase to a 57% decline. The cumulative basal area of food trees declined by an average of 29.5%; however, forest change was highly variable (a 2% gain to a 71% decline). We found that nematode prevalence averaged 58% among fragments (range 29-83%). The change in colobus population size was correlated both with food availability and a number of indices of parasite infections. A path analysis suggests that change in food availability has a strong direct effect on population size, but it also has an indirect effect via parasite infections. 2006 Wiley-Liss, Inc.
Ponderosa pine resin defenses and growth: Metrics matter
Sharon Hood; Anna Sala
2015-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause widespread tree mortality in coniferous forests worldwide. Constitutive and induced host defenses are important factors in an individual treeâs ability to survive an attack and in bottom-up regulation of bark beetle population dynamics, yet quantifying defense levels is often difficult. For example, in...
The mountain pine beetle: causes and consequences of an unprecedented outbreak
Allan L. Carroll
2011-01-01
The mountain pine beetle (Dendroctonus ponderosae) is native to the pine forests of western North America where it normally exists at very low densities, infesting only weakened or damaged trees. Under conditions conducive to survival, populations may erupt and spread over extensive landscapes, killing large numbers of healthy trees.
Planning the future's forests with assisted migration
Mary I. Williams; R. Kasten Dumroese
2014-01-01
Studies show that changes in climate may exceed plant adaptation and migration. The mismatch in rates between climate change and plant adaptation and migration will pose significant challenges for practitioners that select, grow, and outplant native tree species. Native tree species and populations that are planted today must meet the climatic challenges that they will...
Final Environmental Assessment for Hypersonic Technology Vehicle 2 Flight Tests
2009-04-28
areas were noted to contain high-quality Pisonia and Pisonia/ Cordia forests and some coconut palm trees. Twelve kinds of sea and shore birds and other...Pisonia, Cordia , and/or other tree and shrub species. Coconut palms are also common and widespread on several of the islands. Bird populations are
Fichtner, Andreas; Forrester, David I.; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert
2015-01-01
The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services. PMID:25803035
Fichtner, Andreas; Forrester, David I; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert
2015-01-01
The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services.
Khanduri, Vinod Prasad; Sharma, C. M.; Kumar, K. S.; Ghildiyal, S. K.
2013-01-01
Background. Schima wallichii is a highly valuable tree of tropical forest in north-east Himalaya region that grows naturally in a wide range of altitudes between 750 and 2400 m asl with varying environments. Flowering phenology of tropical tree species at population level is generally ignored and therefore a detailed knowledge of flowering and fruiting patterns of important multipurpose tree species is critical to the successful management of forest genetic resources. Materials and Methods. The study was conducted at two different altitudes (i.e., 750 m and 900 m asl) in the tropical semideciduous forest of north-east Himalaya. The floral phenology including flowering synchrony in the populations, anthesis, anther dehiscence, stigma receptivity, pollinators visitation frequency, and mating system including index of self-incompatibility were worked out in Schima wallichii according to the ear-marked standard methods given by various scientists for each parameter. Results. The flowering period in Schima wallichii varied from 33 to 42 days with mean synchrony of 0.54 to 0.68 between the populations. The stigma was receptive up to 2.5 days only and showed slightly protandrous type of dichogamy. Average pollen production ranged between 6.90 × 107 pollen per tree in 2007 and 15.49 × 108 pollen per tree in 2011. A three-year masting cycle was noticed in this species. The frequency of visitation of honey bees was fairly high (5.2 ± 1.12 visits/flower/hour) as compared to other pollinators. The hand pollination revealed maximum fruit (74.2 ± 5.72%) and seed (70.8 ± 7.46%) settings. Conclusions. The variation in flowering phenology and pollen yield individually and annually along with temporal separation in anther dehiscence and pollinator's visitation cause pollen limited reproduction, which ultimately influences the reproductive success in Schima wallichii. PMID:24501577
Genetic structure of populations and differentiation in forest trees
Raymond P. Guries; F. Thomas Ledig
1981-01-01
Electrophoretic techniques permit population biologists to analyze genetic structure of natural populations by using large numbers of allozyme loci. Several methods of analysis have been applied to allozyme data, including chi-square contingency tests, F-statistics, and genetic distance. This paper compares such statistics for pitch pine (Pinus rigida...
Linares, Juan-Carlos; Delgado-Huertas, Antonio; Julio Camarero, J; Merino, José; Carreira, José A
2009-09-01
The gas-exchange and radial growth responses of conifer forests to climatic warming and increasing atmospheric CO2 have been widely studied. However, the modulating effects of variables related to stand structure (e.g., tree-to-tree competition) on those responses are poorly explored. The basal-area increment (BAI) and C isotope discrimination (C stable isotope ratio; delta13C) in the Mediterranean fir Abies pinsapo were investigated to elucidate the influences of stand competition, atmospheric CO2 concentrations and climate on intrinsic water-use efficiency (WUEi). We assessed the variation in delta13C of tree-rings from dominant or co-dominant trees subjected to different degrees of competition. A high- (H) and a low-elevation (L) population with contrasting climatic constraints were studied in southern Spain. Both populations showed an increase in long-term WUEi. However, this increase occurred more slowly at the L site, where a decline of BAI was also observed. Local warming and severe droughts have occurred in the study area over the past 30 years, which have reduced water availability more at lower elevations. Contrastingly, trees from the H site were able to maintain high BAI values at a lower cost in terms of water consumption. In each population, trees subjected to a higher degree of competition by neighboring trees showed lower BAI and WUEi than those subjected to less competition, although the slopes of the temporal trends in WUEi were independent of the competitive micro-environment experienced by the trees. The results are consistent with an increasing drought-induced limitation of BAI and a decreasing rate of WUEi improvement in low-elevation A. pinsapo forests. This relict species might not be able to mitigate the negative effects of a decrease in water availability through a reduction in stomatal conductance, thus leading to a growth decline in the more xeric sites. An intense and poorly asymmetric competitive environment at the stand level may also act as an important constraint on the adaptive capacity of these drought-sensitive forests to climatic warming.
Effects of Intensified 21st Century Drought on the Boreal Forest of Alaska
NASA Astrophysics Data System (ADS)
Juday, G. P.; Alix, C. M.; Jess, R.; Grant, T. A., III
2014-12-01
A long term perspective on several quasi-decadal cycles of intensifying drought stress across boreal Alaska has been synthesized from monitoring of forest reference stands at Bonanza Creek LTER, Interior Alaska Research Natural Areas, and tree ring sampling across Alaska. The Alaska boreal forest is largely made up of tree populations with two growth responses to temperature increases. Negative responders are more common, and found across the warm, dry Interior. Positive responders are largely in western Alaska, a maritime climate region near the Bering Sea, and at high elevation of the Brooks and Alaska Ranges. Following the North Pacific climate regime shift in 1976-77, negative responder Interior white and black spruce, aspen, and birch all experienced major growth reductions, particularly in warm drought years. Elevated summer temperatures and low annual precipitation of recent decades at low elevations of the Tanana and central Yukon Valleys were outside the values which previously defined the species distributions limits, Long term survival prospects are questionable. Simultaneously, recent elevated temperatures were associated with growth increases of positive responders. On fertile floodplain sites of the lower Yukon and Kuskokwim Rivers, the growth rate of positive responding white spruce is now greater than negative responders for the first time in centuries. NDVI trends in recent decades confirm these opposite growth trends in their respective regions. During peak warm/dry anomalies, forest disturbance, an important process for tree regeneration over the long term, intensified in boreal Alaska. Several insect outbreaks of wood-boring and defoliating species associated with warm temperature/drought stress anomalies appeared, many of them severe, and some not previously known to outbreak. Significant tree injury (e.g. top dieback) and mortality resulted. Wildfire extent and severity increased and reached record levels. The overall pattern has been described as biome shift. Future research is needed on the distribution of boreal forest refuge habitats in the Interior, drought effects on natural tree regeneration and growth/health of young tree populations, carbon accumulation profiles under the modern drought regime compared to earlier, and the genetic disruption of biome shift.
Sánchez-Salguero, Raúl; Camarero, Jesus Julio; Gutiérrez, Emilia; González Rouco, Fidel; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Andreu-Hayles, Laia; Linares, Juan Carlos; Seftigen, Kristina
2017-07-01
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO 2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Fang, F. J.
2017-12-01
Reconciling observations at fundamentally different scales is central in understanding the global carbon cycle. This study investigates a model-based melding of forest inventory data, remote-sensing data and micrometeorological-station data ("flux towers" estimating forest heat, CO2 and H2O fluxes). The individual tree-based model FORCCHN was used to evaluate the tree DBH increment and forest carbon fluxes. These are the first simultaneous simulations of the forest carbon budgets from flux towers and individual-tree growth estimates of forest carbon budgets using the continuous forest inventory data — under circumstances in which both predictions can be tested. Along with the global implications of such findings, this also improves the capacity for forest sustainable management and the comprehensive understanding of forest ecosystems. In forest ecology, diameter at breast height (DBH) of a tree significantly determines an individual tree's cross-sectional sapwood area, its biomass and carbon storage. Evaluation the annual DBH increment (ΔDBH) of an individual tree is central to understanding tree growth and forest ecology. Ecosystem Carbon flux is a consequence of key ecosystem processes in the forest-ecosystem carbon cycle, Gross and Net Primary Production (GPP and NPP, respectively) and Net Ecosystem Respiration (NEP). All of these closely relate with tree DBH changes and tree death. Despite advances in evaluating forest carbon fluxes with flux towers and forest inventories for individual tree ΔDBH, few current ecological models can simultaneously quantify and predict the tree ΔDBH and forest carbon flux.
Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Alamgir, Mohammed; Porolak, Gabriel; Mohandass, D; Laurance, William F
2018-04-01
Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.
Tree mortality from drought, insects, and their interactions in a changing climate
Anderegg, William R.L.; Hicke, Jeffrey A.; Fisher, Rosie A.; Allen, Craig D.; Aukema, Juliann E.; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W.; Macalady, Alison K.; McDowell, Nate G.; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D.; Stephenson, Nathan L.; Tague, Christina L.; Zeppel, Melanie
2015-01-01
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects – bark beetles and defoliators – which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree–insect interactions will better inform projections of forest ecosystem responses to climate change.
Mechanisms of nitrogen deposition effects on temperate forest lichens and trees
Carter, Therese S.; Clark, Christopher M.; Fenn, Mark E.; Jovan, Sarah E.; Perakis, Steven; Riddell, Jennifer; Schaberg, Paul G.; Greaver, Tara; Hastings, Meredith
2017-01-01
We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved mechanistic knowledge of these effects can aid in developing robust predictions of how organisms respond to either increases or decreases in N deposition. Rising N levels affect forests in micro- and macroscopic ways from physiological responses at the cellular, tissue, and organism levels to influencing individual species and entire communities and ecosystems. A synthesis of these processes forms the basis for the overarching themes of this paper, which focuses on N effects at different levels of biological organization in temperate forests. For lichens, the mechanisms of direct effects of N are relatively well known at cellular, organismal, and community levels, though interactions of N with other stressors merit further research. For trees, effects of N deposition are better understood for N as an acidifying agent than as a nutrient; in both cases, the impacts can reflect direct effects on short time scales and indirect effects mediated through long-term soil and belowground changes. There are many gaps on fundamental N use and cycling in ecosystems, and we highlight the most critical gaps for understanding potential deleterious effects of N deposition. For lichens, these gaps include both how N affects specific metabolic pathways and how N is metabolized. For trees, these gaps include understanding the direct effects of N deposition onto forest canopies, the sensitivity of different tree species and mycorrhizal symbionts to N, the influence of soil properties, and the reversibility of N and acidification effects on plants and soils. Continued study of how these N response mechanisms interact with one another, and with other dimensions of global change, remains essential for predicting ongoing changes in lichen and tree populations across North American temperate forests.
Underplanting to sustain future stocking of oak (Quercus) in temperate deciduous forests
Daniel C. Dey; Emile S. Gardiner; Callie J. Schweitzer; John M. Kabrick; Douglass F. Jacobs
2012-01-01
Oaks (Quercus spp.) are one of the most important tree taxa in the northern hemisphere. Although they are dominant in mixed species forests and widely distributed, there are frequent reports of regeneration failures. An adequate population of large oak advance reproduction is a critical prerequisite to successful oak regeneration, and hence...
Bashalkhanov, Stanislav; Eckert, Andrew J; Rajora, Om P
2013-12-01
One of the most important drivers of local adaptation for forest trees is climate. Coupled to these patterns, however, are human-induced disturbances through habitat modification and pollution. The confounded effects of climate and disturbance have rarely been investigated with regard to selective pressure on forest trees. Here, we have developed and used a population genetic approach to search for signals of selection within a set of 36 candidate genes chosen for their putative effects on adaptation to climate and human-induced air pollution within five populations of red spruce (Picea rubens Sarg.), distributed across its natural range and air pollution gradient in eastern North America. Specifically, we used FST outlier and environmental correlation analyses to highlight a set of seven single nucleotide polymorphisms (SNPs) that were overly correlated with climate and levels of sulphate pollution after correcting for the confounding effects of population history. Use of three age cohorts within each population allowed the effects of climate and pollution to be separated temporally, as climate-related SNPs (n = 7) showed the strongest signals in the oldest cohort, while pollution-related SNPs (n = 3) showed the strongest signals in the youngest cohorts. These results highlight the usefulness of population genetic scans for the identification of putatively nonneutral evolution within genomes of nonmodel forest tree species, but also highlight the need for the development and application of robust methodologies to deal with the inherent multivariate nature of the genetic and ecological data used in these types of analyses. © 2013 John Wiley & Sons Ltd.
Bird use of reforestation sites: Influence of location and vertical structure
Twedt, Daniel J.; Cooper, Robert
2005-01-01
In the Lower Mississippi Valley, more than 300,000 acres of agricultural land have been reforested in the last 10 years. Planning decisions on how and where to restore forest are complex and usually reflect landowner objectives. However, initial planning decisions may have a large influence on the value of restored stands for birds and other wildlife.Reforestation of small, isolated tracts will likely result in mature forests where reproductive output of breeding birds does not compensate for adult mortality (sink habitats). This may be due to factors such as lower reproductive success near edges (edge effects), insufficient area of habitat to attract colonizing birds (area effects), or restricted population mixing and mating opportunities because of limited dispersal among tracts (isolation effects).Conversely, reforestation adjacent to existing forest increases contiguous forest area and provides areas buffered from agricultural or urban habitats (interior forest core).Bottomland reforestation has historically focused on planting relatively slow-growing tree species, particularly oaks (Quercus spp.). Thus, restoration sites are often dominated by grasses and forbs for up to a decade after tree planting. Grassland birds are the first birds to colonize reforested sites. However, abundance and productivity of grassland birds is generally poor on sites associated with woody vegetation, such as sites adjacent to mature forest.As woody vegetation develops on reforested sites, birds preferring shrub-scrub habitat displace grassland species (Twedt et al. 2002) (fig. 1). Planting faster-growing trees compresses the time for colonization by shrub-scrub birds and the increased vertical stature of these trees attracts forest birds (Twedt and Portwood 1996). Additionally, planting next to existing mature forests creates transitional edges that reduce the detrimental effects of abrupt forest-agriculture interfaces.
Adaptive and plastic responses of Quercus petraea populations to climate across Europe.
Sáenz-Romero, Cuauhtémoc; Lamy, Jean-Baptiste; Ducousso, Alexis; Musch, Brigitte; Ehrenmann, François; Delzon, Sylvain; Cavers, Stephen; Chałupka, Władysław; Dağdaş, Said; Hansen, Jon Kehlet; Lee, Steve J; Liesebach, Mirko; Rau, Hans-Martin; Psomas, Achilleas; Schneck, Volker; Steiner, Wilfried; Zimmermann, Niklaus E; Kremer, Antoine
2017-07-01
How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071-2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5-EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4-GEM2-ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will probably not show large changes in growth and survival in response to climate change. © 2017 John Wiley & Sons Ltd.
Dispersal of remnant endangered trees in a fragmented and disturbed forest by frugivorous birds.
Li, Ning; Bai, Bing; Li, Xin-Hai; An, Shu-Qing; Lu, Chang-Hu
2017-07-01
Most endangered plant species in a fragmented forest behave as a unique source population, with a high dependence on frugivorous birds for recruitment and persistence. In this study, we combined field data of dispersal behavior of birds and GIS information of patch attributes to estimate how frugivorous birds could affect the effective dispersal pattern of Chinese yew (Taxus chinensis) in a fragmented and disturbed forest. Nine bird species were observed to visit T. chinensis trees, with Urocissa erythrorhyncha, Zoothera dauma and Picus canus being the most common dispersers. After foraging, six disperser species exhibited different perching patterns. Three specialist species, P. canus, Turdus hortulorum, and Z. dauma stayed in the source patch, while three generalist species, U. erythrorhyncha, Hypsipetes mcclellandii, and H. castanonotus, could perch in bamboo patches and varied in movement ability due to body size. As a consequence of perching, dispersers significantly contributed to the seed bank, but indirectly affected seedling recruitment. Moreover, the recruitment of T. chinensis was also affected by patch attributes in a fragmented forest (distances to source patch, patch type, size). Our results highlighted the ability of unique source population regeneration of T. chinensis in a fragmented forest, with high dependence on both frugivorous birds and patch attributes, which should be considered in future planning for forest management and conservation.
Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests
Peres, Carlos A.; Emilio, Thaise; Schietti, Juliana; Desmoulière, Sylvain J. M.; Levi, Taal
2016-01-01
Tropical forests are the global cornerstone of biological diversity, and store 55% of the forest carbon stock globally, yet sustained provisioning of these forest ecosystem services may be threatened by hunting-induced extinctions of plant–animal mutualisms that maintain long-term forest dynamics. Large-bodied Atelinae primates and tapirs in particular offer nonredundant seed-dispersal services for many large-seeded Neotropical tree species, which on average have higher wood density than smaller-seeded and wind-dispersed trees. We used field data and models to project the spatial impact of hunting on large primates by ∼1 million rural households throughout the Brazilian Amazon. We then used a unique baseline dataset on 2,345 1-ha tree plots arrayed across the Brazilian Amazon to model changes in aboveground forest biomass under different scenarios of hunting-induced large-bodied frugivore extirpation. We project that defaunation of the most harvest-sensitive species will lead to losses in aboveground biomass of between 2.5–5.8% on average, with some losses as high as 26.5–37.8%. These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs. PMID:26811455
Using urban forest assessment tools to model bird habitat potential
Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd
2014-01-01
The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.
Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers
Blarquez, Olivier; Ali, Adam A.; Girardin, Martin P.; Grondin, Pierre; Fréchette, Bianca; Bergeron, Yves; Hély, Christelle
2015-01-01
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees. PMID:26330162
Jönsson, Mari T.; Thor, Göran
2012-01-01
At least 10% of the world’s tree species are threatened with extinction and pathogens are increasingly implicated in tree threats. Coextinction and threats to affiliates as a consequence of the loss or decline of their host trees is a poorly understood phenomenon. Ash dieback is an emerging infectious disease causing severe dieback of common ash Fraxinus excelsior throughout Europe. We utilized available empirical data on affiliate epiphytic lichen diversity (174 species and 17,800 observations) among 20 ash dieback infected host tree populations of F. excelsior on the island Gotland in the Baltic Sea, Sweden. From this, we used structured scenario projections scaled with empirical data of ash dieback disease to generate probabilistic models for estimating local and regional lichen coextinction risks. Average coextinction probabilities (Ā) were 0.38 (95% CI ±0.09) for lichens occurring on F. excelsior and 0.14 (95% CI ±0.03) when considering lichen persistence on all tree species. Ā was strongly linked to local disease incidence levels and generally increasing with lichen host specificity to F. excelsior and decreasing population size. Coextinctions reduced affiliate community viability, with significant local reductions in species richness and shifts in lichen species composition. Affiliates were projected to become locally extirpated before their hosts, illuminating the need to also consider host tree declines. Traditionally managed open wooded meadows had the highest incidence of ash dieback disease and significantly higher proportions of affiliate species projected to go extinct, compared with unmanaged closed forests and semi-open grazed sites. Most cothreatened species were not previously red-listed, which suggest that tree epidemics cause many unforeseen threats to species. Our analysis shows that epidemic tree deaths represent an insidious, mostly overlooked, threat to sessile affiliate communities in forested environments. Current conservation and management strategies must account for secondary extinctions associated with epidemic tree death. PMID:23049840
NASA Technical Reports Server (NTRS)
Ballard, Jerrell R., Jr.; Howington, Stacy E.; Cinnella, Pasquale; Smith, James A.
2011-01-01
The temperature and moisture regimes in a forest are key components in the forest ecosystem dynamics. Observations and studies indicate that the internal temperature distribution and moisture content of the tree influence not only growth and development, but onset and cessation of cambial activity [1], resistance to insect predation[2], and even affect the population dynamics of the insects [3]. Moreover, temperature directly affects the uptake and metabolism of population from the soil into the tree tissue [4]. Additional studies show that soil and atmospheric temperatures are significant parameters that limit the growth of trees and impose treeline elevation limitation [5]. Directional thermal infrared radiance effects have long been observed in natural backgrounds [6]. In earlier work, we illustrated the use of physically-based models to simulate directional effects in thermal imaging [7-8]. In this paper, we illustrated the use of physically-based models to simulate directional effects in thermal, and net radiation in a adeciduous forest using our recently developed three-dimensional, macro-scale computational tool that simulates the heat and mass transfer interaction in a soil-root-stem systems (SRSS). The SRSS model includes the coupling of existing heat and mass transport tools to stimulate the diurnal internal and external temperatures, internal fluid flow and moisture distribution, and heat flow in the system.
High-Throughput DNA sequencing of ancient wood.
Wagner, Stefanie; Lagane, Frédéric; Seguin-Orlando, Andaine; Schubert, Mikkel; Leroy, Thibault; Guichoux, Erwan; Chancerel, Emilie; Bech-Hebelstrup, Inger; Bernard, Vincent; Billard, Cyrille; Billaud, Yves; Bolliger, Matthias; Croutsch, Christophe; Čufar, Katarina; Eynaud, Frédérique; Heussner, Karl Uwe; Köninger, Joachim; Langenegger, Fabien; Leroy, Frédéric; Lima, Christine; Martinelli, Nicoletta; Momber, Garry; Billamboz, André; Nelle, Oliver; Palomo, Antoni; Piqué, Raquel; Ramstein, Marianne; Schweichel, Roswitha; Stäuble, Harald; Tegel, Willy; Terradas, Xavier; Verdin, Florence; Plomion, Christophe; Kremer, Antoine; Orlando, Ludovic
2018-03-01
Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long-term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human-induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro-evolutionary response of trees to climate change and human forest management. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Vogt, Nathan
2005-12-01
Investigations in this portfolio of manuscripts broadly advance understanding of how institutional arrangements influence impacts of population growth and integration into non-local markets on forest and tree-cover change. This research integrates methods of the natural and social sciences including remote sensing, geographical information systems, vegetation plot analysis, key informant interviews, and archival research. In combination, these methods are applied for longer-term analyses of the role of institutional arrangements in land-cover change in West Mengo, Uganda. Over the past fifty years, tree cover on settled areas (cultivated and grazed lands and home-gardens) in West Mengo has increased while forest cover (particularly outside of state reserves) is more diffuse. One finding is that the underlying, traditional sociopolitical structure in West Mengo does facilitate, on aggregate, customary arrangements in identifying diverse strategies to maintain the flow of forest products and benefits under growing population and market pressures (avoiding local tragedies). But, these customary arrangements may or may not be able to maintain ecosystem services (produced from large-scale forest patches) outside of the local sociopolitical unit under these conditions. Boundaries of state forest reserves in West Mengo were found to have remained stable for over fifty years despite population and market pressures. Another finding is that formal state arrangements can, but don't always, stem deforestation under conditions of high population and market pressures. When design principles for robust, large-scale commons are adopted in the process of creating adaptive arrangements for governance of large extents of working forests that the arrangements and desired outcomes (e.g., stable forest cover and flow of subsistence products in the West Mengo case) may endure over the long term. And, when not adopted, you may find a relatively fast breakdown in the institutional arrangement resulting in unintended outcomes for some or all stakeholders (e.g., forest degradation and loss for foresters in the Kikuyu case).
Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests
NASA Astrophysics Data System (ADS)
Trugman, Anna T.; Medvigy, David; Hoffmann, William A.; Pellegrini, Adam F. A.
2018-01-01
Fire frequencies are changing in Neotropical savannas and forests as a result of forest fragmentation and increasing drought. Such changes in fire regime and climate are hypothesized to destabilize tropical carbon storage, but there has been little consideration of the widespread variability in tree fire tolerance strategies. To test how aboveground carbon stocks change with fire frequency and composition of plants with different fire tolerance strategies, we update the Ecosystem Demography model 2 (ED2) with (i) a fire survivorship module based on tree bark thickness (a key fire-tolerance trait across woody plants in savannas and forests), and (ii) plant functional types representative of trees in the region. With these updates, the model is better able to predict how fire frequency affects population demography and aboveground woody carbon. Simulations illustrate that the high survival rate of thick-barked, large trees reduces carbon losses with increasing fire frequency, with high investment in bark being particularly important in reducing losses in the wettest sites. Additionally, in landscapes that frequently burn, bark investment can broaden the range of climate and fire conditions under which savannas occur by reducing the range of conditions leading to either complete tree loss or complete grass loss. These results highlight that tropical vegetation dynamics depend not only on rainfall and changing fire frequencies but also on tree fire survival strategy. Further, our results indicate that fire survival strategy is fundamentally important in regulating tree size demography in ecosystems exposed to fire, which increases the preservation of aboveground carbon stocks and the coexistence of different plant functional groups.
NASA Astrophysics Data System (ADS)
Juday, G. P.; Grant, T.; Alix, C. M.; Spencer, D. L.; Beck, P. S.
2012-12-01
The boreal forest region of Alaska is characterized by a major east-west climate gradient, in addition to a widely appreciated north-south gradient. Low elevations of the eastern and central Interior experience warm summer temperatures and low annual precipitation, while coastal western Alaska has cool summer temperatures and greater precipitation. In the Interior the four dominant tree species of white and black spruce, aspen, and Alaska birch on low elevation sites nearly all register a strong negative radial growth relationship to summer temperatures, concentrated in May and July. Precipitation, particularly in late winter and midsummer, plays a supplemental role as a positive factor in growth. Floodplain white spruce along the Yukon and Kuskokwim Rivers transition from negative temperature response to positive response in western Alaska near the tree limit. Populations of white spruce on treeline sites display both negative growth response to July temperature and positive response to spring temperatures, with the negative response dominant in the east and the positive response dominant in the west. Across boreal Alaska summer temperatures increased abruptly in 1974, and have remained at historically high levels since. Correspondingly, climatic favorability for radial growth of Interior trees on most low elevation sites has been at extreme low levels particularly in the 21st century. Satellite-based NDVI coverage confirms that forest growth reduction is widespread in boreal Alaska since the 1980s. Defoliating and wood boring insects have reached outbreak population levels across most of boreal Alaska, partly from release of direct temperature control on the insects and partly from increased tree host susceptibility. Major outbreak species include aspen leaf miner, spruce engraver beetle, and spruce budworm. About a dozen tall willow species have been subjected to widespread attack by willow leaf blotch miner, and a new disease and defoliating insect have spread rapidly in alder shrubs, so nearly all woody species face health challenges. Temperatures and precipitation on many Interior sites are now at or beyond tolerance limits for white spruce, aspen, and Alaska birch. Two episodes of acute drought injury were widespread in birch during the last decade. Deficits in climate predicted tree growth are synchronous with the major insect outbreaks as recorded in insect trapping records and aerial surveys of area affected. Over the past 25 years tree mortality of 50% or more occurred in nearly all long-term monitoring plots in mature stands on productive sites in the Interior, but to date trees have successfully regenerated on most disturbed sites. These environmental changes and tree responses, including opposite responses, are coherent, and consistent with early stages of a biome shift eliminating boreal forest on dry Interior sites, and emergence of a new climate optimum zone in western Alaska currently only sparsely populated with forest.
Spatial aspects of tree mortality strongly differ between young and old-growth forests.
Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F
2015-11-01
Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (< 60-year-old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.
Menezes, Lucas; Canedo, Clarissa; Batalha-Filho, Henrique; Garda, Adrian Antonio; Gehara, Marcelo; Napoli, Marcelo Felgueiras
2016-01-01
We aim to evaluate the genetic structure of an Atlantic Forest amphibian species, Scinax eurydice, testing the congruence among patterns identified and proposed by the literature for Pleistocene refugia, microrefugia, and geographic barriers to gene flow such as major rivers. Furthermore, we aim to evaluate predictions of such barriers and refugia on the genetic structure of the species, such as presence/absence of dispersal, timing since separation, and population expansions/contractions. We sequenced mitochondrial and nuclear genetic markers on 94 tissue samples from 41 localities. We inferred a gene tree and estimated genetic distances using mtDNA sequences. We then ran population clustering and assignment methods, AMOVA, and estimated migration rates among populations identified through mtDNA and nDNA analyses. We used a dated species tree, skyline plots, and summary statistics to evaluate concordance between population’s distributions and geographic barriers and Pleistocene refugia. Scinax eurydice showed high mtDNA divergences and four clearly distinct mtDNA lineages. Species tree and population assignment tests supported the existence of two major clades corresponding to northeastern and southeastern Atlantic Forest in Brazil, each one composed of two other clades. Lineage splitting events occurred from late Pliocene to Pleistocene. We identified demographic expansions in two clades, and inexistent to low levels of migrations among different populations. Genetic patterns and demographic data support the existence of two northern Refuge and corroborate microrefugia south of the Doce/Jequitinhonha Rivers biogeographic divide. The results agree with a scenario of recent demographic expansion of lowland taxa. Scinax eurydice comprises a species complex, harboring undescribed taxa consistent with Pleistocene refugia. Two rivers lie at the boundaries among populations and endorse their role as secondary barriers to gene flow. PMID:27248688
Synergy of agroforestry and bottomland hardwood afforestation
Twedt, D.J.; Portwood, J.; Clason, Terry R.
2003-01-01
Afforestation of bottomland hardwood forests has historically emphasized planting heavy-seeded tree species such as oak (Quercus spp.) and pecan (Caryaillinoensis) with little or no silvicultural management during stand development. Slow growth of these tree species, herbivory, competing vegetation, and limited seed dispersal, often result in restored sites that are slow to develop vertical vegetation structure and have limited tree diversity. Where soils and hydrology permit, agroforestry can provide transitional management that mitigates these historical limitations on converting cropland to forests. Planting short-rotation woody crops and intercropping using wide alleyways are two agroforestry practices that are well suited for transitional management. Weed control associated with agroforestry systems benefits planted trees by reducing competition. The resultant decrease in herbaceous cover suppresses small mammal populations and associated herbivory of trees and seeds. As a result, rapid vertical growth is possible that can 'train' under-planted, slower-growing, species and provide favorable environmental conditions for naturally invading trees. Finally, annual cropping of alleyways or rotational pulpwood harvest of woody crops provides income more rapidly than reliance on future revenue from traditional silviculture. Because of increased forest diversity, enhanced growth and development, and improved economic returns, we believe that using agroforestry as a transitional management strategy during afforestation provides greater benefits to landowners and to the environment than does traditional bottomland hardwood afforestation.
Carvalho, Joana S; Meyer, Christoph F J; Vicente, Luis; Marques, Tiago A
2015-02-01
Conversion of forests to anthropogenic land-uses increasingly subjects chimpanzee populations to habitat changes and concomitant alterations in the plant resources available to them for nesting and feeding. Based on nest count surveys conducted during the dry season, we investigated nest tree species selection and the effect of vegetation attributes on nest abundance of the western chimpanzee, Pan troglodytes verus, at Lagoas de Cufada Natural Park (LCNP), Guinea-Bissau, a forest-savannah mosaic widely disturbed by humans. Further, we assessed patterns of nest height distribution to determine support for the anti-predator hypothesis. A zero-altered generalized linear mixed model showed that nest abundance was negatively related to floristic diversity (exponential form of the Shannon index) and positively with the availability of smaller-sized trees, reflecting characteristics of dense-canopy forest. A positive correlation between nest abundance and floristic richness (number of plant species) and composition indicated that species-rich open habitats are also important in nest site selection. Restricting this analysis to feeding trees, nest abundance was again positively associated with the availability of smaller-sized trees, further supporting the preference for nesting in food tree species from dense forest. Nest tree species selection was non-random, and oil palms were used at a much lower proportion (10%) than previously reported from other study sites in forest-savannah mosaics. While this study suggests that human disturbance may underlie the exclusive arboreal nesting at LCNP, better quantitative data are needed to determine to what extent the construction of elevated nests is in fact a response to predators able to climb trees. Given the importance of LCNP as refuge for Pan t. verus our findings can improve conservation decisions for the management of this important umbrella species as well as its remaining suitable habitats. © 2014 Wiley Periodicals, Inc.
Advancing dendrochronological studies of fire in the United States
Grant L. Harley; Christopher H. Baisan; Peter M. Brown; Donald A. Falk; William T. Flatley; Henri D. Grissino-Mayer; Amy Hessl; Emily K. Heyerdahl; Margot W. Kaye; Charles W. Lafon; Ellis Q. Margolis; R. Stockton Maxwell; Adam T. Naito; William J. Platt; Monica T. Rother; Thomas Saladyga; Rosemary L. Sherriff; Lauren A. Stachowiak; Michael C. Stambaugh; Elaine Kennedy Sutherland; Alan H. Taylor
2018-01-01
Dendroecology is the science that dates tree rings to their exact calendar year of formation to study processes that influence forest ecology (e.g., Speer 2010 [1], Amoroso et al., 2017 [2]). Reconstruction of past fire regimes is a core application of dendroecology, linking fire history to population dynamics and climate effects on tree growth and survivorship. Since...
USDA-ARS?s Scientific Manuscript database
Silver birch, Betula pendula, is a common pioneer tree species in boreal forests across Eurasia. In contrast to most other trees, which have generation times from several years to decades, birch can be induced to flower within one year. This, together with a small 440 Mb genome and advanced breedi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueppers, Lara; Faist, Akasha; Ferrenberg, Scott
Accurately predicting upslope shifts in subalpine tree ranges with warming requires understanding how future forest populations will be affected by climate change, as these are the seed sources for new tree line and alpine populations. Early life history stages are particularly sensitive to climate and are also influenced by genetic variation among populations. Here, we tested the climate sensitivity of germination and initial development for two widely distributed subalpine conifers, using controlled-environment growth chambers with one temperature regime from subalpine forest in the Colorado Rocky Mountains and one 5 °C warmer, and two soil moisture levels. We also tracked germinationmore » rate and timing, rate of seedling development, and seedling morphology for two seed provenances separated by ~300 m elevation. Warming advanced germination timing and initial seedling development by a total of ~2 weeks, advances comparable to mean differences between provenances. Advances were similar for both provenances and species; however, warming reduced the overall germination rate, as did low soil moisture, only for Picea engelmannii. A three-year field warming and watering experiment planted with the same species and provenances yielded responses qualitatively consistent with the lab trials. Altogether these experiments indicate that in a warmer, drier climate, P. engelmannii germination, and thus regeneration, could decline, which could lead to declining subalpine forest populations, while Pinus flexilis forest populations could remain robust as a seed source for upslope range shifts.« less
Kueppers, Lara; Faist, Akasha; Ferrenberg, Scott; ...
2017-11-11
Accurately predicting upslope shifts in subalpine tree ranges with warming requires understanding how future forest populations will be affected by climate change, as these are the seed sources for new tree line and alpine populations. Early life history stages are particularly sensitive to climate and are also influenced by genetic variation among populations. Here, we tested the climate sensitivity of germination and initial development for two widely distributed subalpine conifers, using controlled-environment growth chambers with one temperature regime from subalpine forest in the Colorado Rocky Mountains and one 5 °C warmer, and two soil moisture levels. We also tracked germinationmore » rate and timing, rate of seedling development, and seedling morphology for two seed provenances separated by ~300 m elevation. Warming advanced germination timing and initial seedling development by a total of ~2 weeks, advances comparable to mean differences between provenances. Advances were similar for both provenances and species; however, warming reduced the overall germination rate, as did low soil moisture, only for Picea engelmannii. A three-year field warming and watering experiment planted with the same species and provenances yielded responses qualitatively consistent with the lab trials. Altogether these experiments indicate that in a warmer, drier climate, P. engelmannii germination, and thus regeneration, could decline, which could lead to declining subalpine forest populations, while Pinus flexilis forest populations could remain robust as a seed source for upslope range shifts.« less
Sosa, Victoria; Ornelas, Juan Francisco; Ramírez-Barahona, Santiago; Gándara, Etelvina
2016-01-01
Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors.
2016-01-01
Background Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Methods Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Results Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant variables or elevation. For elevational shifts, we found repeated change from low to high elevations. Conclusions Our data suggest that representatives of Cyatheaceae main lineages migrated from Australia to Mesoamerican cloud forests in different times and have persisted in these environmentally unstable areas but extant species diverged recentrly from their ancestors. PMID:27896030
Remnant trees affect species composition but not structure of tropical second-growth forest.
Sandor, Manette E; Chazdon, Robin L
2014-01-01
Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.
Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest
Sandor, Manette E.; Chazdon, Robin L.
2014-01-01
Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700
Transient synchrony among populations of five foliage-feeding Lepidoptera
Maartje J. Klapwijk; Jonathan A. Walter; Anikó Hirka; György Csóka; Christer Björkman; Andrew M. Liebhold
2018-01-01
Studies of transient population dynamics have largely focused on temporal changes in dynamical behaviour, such as the transition between periods of stability and instability. This study explores a related dynamic pattern, namely transient synchrony during a 49-year period among populations of five sympatric species of forest insects that share host tree resources. The...
Host Use Patterns by the European Woodwasp, Sirex noctilio, in Its Native and Invaded Range
Ayres, Matthew P.; Pena, Rebeca; Lombardo, Jeffrey A.; Lombardero, Maria J.
2014-01-01
Accelerating introductions of forest insects challenge decision-makers who might or might not respond with surveillance programs, quarantines, eradication efforts, or biological control programs. Comparing ecological controls on indigenous vs. introduced populations could inform responses to new introductions. We studied the European woodwasp, Sirex noctilio, which is not a pest in its native forests, is a serious invasive pest in the southern hemisphere, and now has an uncertain future in North America after its introduction there. Indigenous populations of S. noctilio (in Galicia, Spain) resembled those in New York in that S. noctilio were largely restricted to suppressed trees that were also dying for other reasons, and still only some dying trees showed evidence of S. noctilio: 20–40% and 35–51% in Galicia and New York, respectively. In both areas, P. sylvestris (native to Europe) was the species most likely to have attacks in non-suppressed trees. P. resinosa, native to North America, does not appear dangerously susceptible to S. noctilio. P. radiata, which sustains high damage in the southern hemisphere, is apparently not innately susceptible because in Galicia it was less often used by native S. noctilio than either native pine (P. pinaster and P. sylvestris). Silvicultural practices in Galicia that maintain basal area at 25–40 m2/ha limit S. noctilio abundance. More than 25 species of other xylophagous insects feed on pine in Galicia, but co-occurrences with S. noctilio were infrequent, so strong interspecific competition seemed unlikely. Evidently, S. noctilio in northeastern North America will be more similar to indigenous populations in Europe, where it is not a pest, than to introduced populations in the southern hemisphere, where it is. However, S. noctilio populations could behave differently when they reach forests of the southeastern U.S., where tree species, soils, climate, ecology, management, and landscape configurations of pine stands are different. PMID:24675574
Tree mortality from drought, insects, and their interactions in a changing climate.
Anderegg, William R L; Hicke, Jeffrey A; Fisher, Rosie A; Allen, Craig D; Aukema, Juliann; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W; Macalady, Alison K; McDowell, Nate; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D; Stephenson, Nathan L; Tague, Christina; Zeppel, Melanie
2015-11-01
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects - bark beetles and defoliators - which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree-insect interactions will better inform projections of forest ecosystem responses to climate change. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Karin L. Riley; Isaac C. Grenfell; Mark A. Finney
2015-01-01
Mapping the number, size, and species of trees in forests across the western United States has utility for a number of research endeavors, ranging from estimation of terrestrial carbon resources to tree mortality following wildfires. For landscape fire and forest simulations that use the Forest Vegetation Simulator (FVS), a tree-level dataset, or âtree listâ, is a...
NASA Astrophysics Data System (ADS)
Ma, Q.; Su, Y.; Tao, S.; Guo, Q.
2016-12-01
Trees in the Sierra Nevada (SN) forests are experiencing rapid changes due to human disturbances and climatic changes. An improved monitoring of tree growth and understanding of how tree growth responses to different impact factors, such as tree competition, forest density, topographic and hydrologic conditions, are urgently needed in tree growth modeling. Traditional tree growth modeling mainly relied on field survey, which was highly time-consuming and labor-intensive. Airborne Light detection and ranging System (ALS) is increasingly used in forest survey, due to its high efficiency and accuracy in three-dimensional tree structure delineation and terrain characterization. This study successfully detected individual tree growth in height (ΔH), crown area (ΔA), and crown volume (ΔV) over a five-year period (2007-2012) using bi-temporal ALS data in two conifer forest areas in SN. We further analyzed their responses to original tree size, competition indices, forest structure indices, and topographic environmental parameters at individual tree and forest stand scales. Our results indicated ΔH was strongly sensitive to topographic wetness index; whereas ΔA and ΔV were highly responsive to forest density and original tree sizes. These ALS based findings in ΔH were consistent with field measurements. Our study demonstrated the promising potential of using bi-temporal ALS data in forest growth measurements and analysis. A more comprehensive study over a longer temporal period and a wider range of forest stands would give better insights into tree growth in the SN, and provide useful guides for forest growth monitoring, modeling, and management.
Jones, Jay E; Kroll, Andrew J; Giovanini, Jack; Duke, Steven D; Ellis, Tana M; Betts, Matthew G
2012-01-01
Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations. We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35-80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness. Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with stand management strategies that retain or increase hardwood vegetation while simultaneously regenerating the conifer cover in commercial tree plantations.
Pridnya, M.V.; Cherpakov, V.V.; Paillet, Frederick L.
1996-01-01
Chestnut-dominated forests of the Caucasus Mountain area of Russia are very similar to former chestnut-dominated forests in eastern North America. The distribution, pathology, and reproductive status of European chestnut (Castanea sativa) in the Caucasus are described and compared to that of American chestnut (C. dentata). Chestnut forests are distributed continuously along the southern slope of the Caucasus mountains near the Black Sea, and are found in isolated populations on the north side of the Caucasus, at elevations ranging from 200 to 1300 meters. Chestnut blight was apparently introduced into the region after 1880 and continues to destroy chestnut forests today. Chestnut in the Caucasus is also infected by several other fungal and bacterial parasites and the joint infection of blight and bacteria may be especially dangerous for chestnut trees. Chestnut-dominated forests comprise only a few percent of total forest cover in the Caucasus Biosphere Preserve, and usually occur in mountain valleys or coves with deep brown soil. The age structure and reproductive status of chestnut in the Caucasus was investigated on six study plots in the Caucasus Biosphere Forest Preserve near the upper altitudinal limit of chestnut. Although chestnut is at least 70 percent of the overstory on these sites, there are very few trees less than 50 years old, and very few recent seedlings on any of the plots. Most large chestnut trees appear to have originated as basal spouts from previously established stems. Although chestnut seed production appears adequate, we suspect that competition with shrubs and other tree seedlings, and predation by herbivores and rodents, now prevent the establishment and survival of chestnut seedlings in the Biosphere Preserve.
Trees wanted--dead or alive! Host selection and population dynamics in tree-killing bark beetles.
Kausrud, Kyrre L; Grégoire, Jean-Claude; Skarpaas, Olav; Erbilgin, Nadir; Gilbert, Marius; Økland, Bjørn; Stenseth, Nils Chr
2011-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) feed and breed in dead or severely weakened host trees. When their population densities are high, some species aggregate on healthy host trees so that their defences may be exhausted and the inner bark successfully colonized, killing the tree in the process. Here we investigate under what conditions participating with unrelated conspecifics in risky mass attacks on living trees is an adaptive strategy, and what this can tell us about bark beetle outbreak dynamics. We find that the outcome of individual host selection may deviate from the ideal free distribution in a way that facilitates the emergence of tree-killing (aggressive) behavior, and that any heritability on traits governing aggressiveness seems likely to exist in a state of flux or cycles consistent with variability observed in natural populations. This may have implications for how economically and ecologically important species respond to environmental changes in climate and landscape (forest) structure. The population dynamics emerging from individual behavior are complex, capable of switching between "endemic" and "epidemic" regimes spontaneously or following changes in host availability or resistance. Model predictions are compared to empirical observations, and we identify some factors determining the occurrence and self-limitation of epidemics.
Hayes, Christopher J; DeGomez, Tom E; Clancy, Karen M; Williams, Kelly K; McMillin, Joel D; Anhold, John A
2008-08-01
Lindgren funnel traps baited with aggregation pheromones are widely used to monitor and manage populations of economically important bark beetles (Coleoptera: Scolytidae). This study was designed to advance our understanding of how funnel trap catches assess bark beetle communities and relative abundance of individual species. In the second year (2005) of a 3-yr study of the bark beetle community structure in north-central Arizona pine (Pinus spp.) forests, we collected data on stand structure, site conditions, and local bark beetle-induced tree mortality at each trap site. We also collected samples of bark from infested (brood) trees near trap sites to identify and determine the population density of bark beetles that were attacking ponderosa pine, Pinus ponderosa Douglas ex Lawson, in the area surrounding the traps. Multiple regression models indicated that the number of Dendroctonus and Ips beetles captured in 2005 was inversely related to elevation of the trap site, and positively associated with the amount of ponderosa pine in the stand surrounding the site. Traps located closer to brood trees also captured more beetles. The relationship between trap catches and host tree mortality was weak and inconsistent in forest stands surrounding the funnel traps, suggesting that trap catches do not provide a good estimate of local beetle-induced tree mortality. However, pheromone-baited funnel trap data and data from gallery identification in bark samples produced statistically similar relative abundance profiles for the five species of bark beetles that we examined, indicating that funnel trap data provided a good assessment of species presence and relative abundance.
36 CFR 223.12 - Permission to cut, damage, or destroy trees without advertisement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... destroy trees without advertisement. 223.12 Section 223.12 Parks, Forests, and Public Property FOREST... trees without advertisement. Permission may be granted to cut, damage, or destroy trees, portions of trees, or other forest products on National Forest System lands without advertisement when necessary for...
36 CFR 223.12 - Permission to cut, damage, or destroy trees without advertisement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... destroy trees without advertisement. 223.12 Section 223.12 Parks, Forests, and Public Property FOREST... trees without advertisement. Permission may be granted to cut, damage, or destroy trees, portions of trees, or other forest products on National Forest System lands without advertisement when necessary for...
36 CFR 223.12 - Permission to cut, damage, or destroy trees without advertisement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... destroy trees without advertisement. 223.12 Section 223.12 Parks, Forests, and Public Property FOREST... trees without advertisement. Permission may be granted to cut, damage, or destroy trees, portions of trees, or other forest products on National Forest System lands without advertisement when necessary for...
36 CFR 223.12 - Permission to cut, damage, or destroy trees without advertisement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... destroy trees without advertisement. 223.12 Section 223.12 Parks, Forests, and Public Property FOREST... trees without advertisement. Permission may be granted to cut, damage, or destroy trees, portions of trees, or other forest products on National Forest System lands without advertisement when necessary for...
Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska
Suarez, F.; Binkley, Dan; Kaye, Margot W.; Stottlemyer, R.
1999-01-01
Temperatures across the northern regions of North America have been increasing for 150 years, and forests have responded to this increase. In the Noatak National Preserve in Alaska, white spruce (Picea glauca [Moench] Voss) forests reach their northern limit, occurring primarily on well-drained sites and as gallery forests along streams. Rolling plateaus of tundra separate the white spruce forests into disjunct stands. We examined patterns of tree age, tree growth, and tree encroachment into tundra ecosystems in six stands along the Agashashok River. Warming over the past 150 years appears to have increased tree growth and resulted in forest expansion into adjacent tundra ecosystems. The forest/tundra ecotone shifted by about 80 to 100 m into the tundra in the past 200 years, as evidenced by declining maximum tree age with distance towards the tundra. The decadal-scale pattern of tree establishment at the farthest extent of trees into the tundra (the tundra-forest ecotone) correlated with the detrended growth index for trees within the forests; climate conditions that led to higher tree growth appeared to foster tree establishment in the tundra. This recent forest expansion has occurred across topographic boundaries, from well-drained soils on slopes onto poorly drained, flatter areas of tundra. Further expansion of the forests may be limited by more severe wind exposure and poor drainage that make the majority of tundra less suitable for trees.
Seress, Gábor; Hammer, Tamás; Bókony, Veronika; Vincze, Ernő; Preiszner, Bálint; Pipoly, Ivett; Sinkovics, Csenge; Evans, Karl L; Liker, András
2018-04-20
Urbanization can have marked effects on plant and animal populations' phenology, population size, predator-prey interactions and reproductive success. These aspects are rarely studied simultaneously in a single system, and some are rarely investigated, e.g. how insect phenology responds to urban development. Here, we study a tri-trophic system of trees - phytophagous insects (caterpillars) - insectivorous birds (great tits) to assess how urbanization influences i) the phenology of each component of this system, ii) insect abundance and iii) avian reproductive success. We use data from two urban and two forest sites in Hungary, central Europe, collected over four consecutive years. Despite a trend of earlier leaf emergence in urban sites there is no evidence for an earlier peak in caterpillar abundance. Thus, contrary to the frequently stated prediction in the literature, the earlier breeding of urban bird populations is not associated with an earlier peak in caterpillar availability. Despite this the seasonal dynamics of caterpillar biomass exhibited striking differences between habitat types with a single clear peak in forests, and several much smaller peaks in urban sites. Caterpillar biomass was higher in forests than urban areas across the entire sampling period, and between 8.5 and 24 times higher during the first brood's chick-rearing period. This higher biomass was not associated with taller trees in forest sites, or with tree species identity, and occurred despite most of our focal trees being native to the study area. Urban great tits laid smaller clutches, experienced more frequent nestling mortality from starvation, reared fewer offspring to fledging age, and their fledglings had lower body mass. Our study strongly indicates that food limitation is responsible for lower avian reproductive success in cities, which is driven by reduced availability of the preferred nestling diet, i.e. caterpillars, rather than phenological shifts in the timing of peak food availability. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Analysis of populations of the sudden oak death pathogen in Oregon forests
Zhian N. Kamvar; Everett M. Hansen; Alan M. Kanaskie; Meredith M. Larsen; Niklaus J. Grünwald
2017-01-01
Sudden oak death, caused by the oomycete Phytophthora ramorum, was first discovered in California toward the end of the 20th century and subsequently emerged on tanoak forests in Oregon before its first detection in 2001 by aerial surveys. The Oregon Department of Forestry has since monitored the epidemic and sampled symptomatic tanoak trees from...
Management of western coniferous forest habitat for nesting accipiter hawks
Richard T. Reynolds
1983-01-01
Availability of nesting sites can limit accipiter populations. Because accipiters nest in dense forest stands, any alteration that opens these stands is likely to lessen their desirability as nest sites. Tree growth and the associated changes in the vegetative structure of aging nest sites limit the number of years sites will be suitable. Therefore, prospective...
Paula E. Marquardt; Craig S. Echt; Bryan K. Epperson; Dan M. Pubanz
2007-01-01
Resource sustainability requires a thorough understanding of the influence of forest management programs on the conservation of genetic diversity in tree populations. To observe how differences in forest structure affect the genetic structure of eastern white pine (Pinus strobus L.), we evaluated six eastern white pine sites across the 234000 acre (1...
Gordon M. Heisler; Richard H. Grant; David J. Nowak; Wei Gao; Daniel E. Crane; Jeffery T. Walton
2003-01-01
Evaluating the impact of ultraviolet-B radiation (UVB) on urban populations would be enhanced by improved predictions of the UVB radiation at the level of human activity. This paper reports the status of plans for incorporating a UVB prediction module into an existing Urban Forest Effects (UFORE) model. UFORE currently has modules to quantify urban forest structure,...
Davies, Helen J; Doick, Kieron J; Hudson, Malcolm D; Schreckenberg, Kate
2017-07-01
Urbanisation and a changing climate are leading to more frequent and severe flood, heat and air pollution episodes in Britain's cities. Interest in nature-based solutions to these urban problems is growing, with urban forests potentially able to provide a range of regulating ecosystem services such as stormwater attenuation, heat amelioration and air purification. The extent to which these benefits are realized is largely dependent on urban forest management objectives, the availability of funding, and the understanding of ecosystem service concepts within local governments, the primary delivery agents of urban forests. This study aims to establish the extent to which British local authorities actively manage their urban forests for regulating ecosystem services, and identify which resources local authorities most need in order to enhance provision of ecosystem services by Britain's urban forests. Interviews were carried out with staff responsible for tree management decisions in fifteen major local authorities from across Britain, selected on the basis of their urban nature and high population density. Local authorities have a reactive approach to urban forest management, driven by human health and safety concerns and complaints about tree disservices. There is relatively little focus on ensuring provision of regulating ecosystem services, despite awareness by tree officers of the key role that urban forests can play in alleviating chronic air pollution, flood risk and urban heat anomalies. However, this is expected to become a greater focus in future provided that existing constraints - lack of understanding of ecosystem services amongst key stakeholders, limited political support, funding constraints - can be overcome. Our findings suggest that the adoption of a proactive urban forest strategy, underpinned by quantified and valued urban forest-based ecosystem services provision data, and innovative private sector funding mechanisms, can facilitate a change to a proactive, ecosystem services approach to urban forest management. Copyright © 2017. Published by Elsevier Inc.
Siegert, Nathan W; McCullough, Deborah G; Poland, Therese M; Heyd, Robert L
2017-06-01
Effective survey methods to detect and monitor recently established, low-density infestations of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), remain a high priority because they provide land managers and property owners with time to implement tactics to slow emerald ash borer population growth and the progression of ash mortality. We evaluated options for using girdled ash (Fraxinus spp.) trees for emerald ash borer detection and management in a low-density infestation in a forested area with abundant green ash (F. pennsylvanica). Across replicated 4-ha plots, we compared detection efficiency of 4 versus 16 evenly distributed girdled ash trees and between clusters of 3 versus 12 girdled trees. We also examined within-tree larval distribution in 208 girdled and nongirdled trees and assessed adult emerald ash borer emergence from detection trees felled 11 mo after girdling and left on site. Overall, current-year larvae were present in 85-97% of girdled trees and 57-72% of nongirdled trees, and larval density was 2-5 times greater on girdled than nongirdled trees. Low-density emerald ash borer infestations were readily detected with four girdled trees per 4-ha, and 3-tree clusters were as effective as 12-tree clusters. Larval densities were greatest 0.5 ± 0.4 m below the base of the canopy in girdled trees and 1.3 ± 0.7 m above the canopy base in nongirdled trees. Relatively few adult emerald ash borer emerged from trees felled 11 mo after girdling and left on site through the following summer, suggesting removal or destruction of girdled ash trees may be unnecessary. This could potentially reduce survey costs, particularly in forested areas with poor accessibility. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
Sene, Godar; Thiao, Mansour; Samba-Mbaye, Ramatoulaye; Khasa, Damase; Kane, Aboubacry; Mbaye, Mame Samba; Beaulieu, Marie-Ève; Manga, Anicet; Sylla, Samba Ndao
2013-01-01
Several fast-growing and multipurpose tree species have been widely used in West Africa to both reverse the tendency of land degradation and restore soil productivity. Although beneficial effects have been reported on soil stabilization, there still remains a lack of information about their impact on soil microorganisms. Our investigation has been carried out in exotic and native tree plantations of 28 years and aimed to survey and compare the abundance and genetic diversity of natural legume-nodulating rhizobia (LNR). The study of LNR is supported by the phylogenetic analysis which clustered the isolates into three genera: Bradyrhizobium, Mesorhizobium, and Sinorhizobium. The results showed close positive correlations between the sizes of LNR populations estimated both in the dry and rainy seasons and the presence of legume tree hosts. There were significant increases in Rhizobium spp. population densities in response to planting with Acacia spp., and high genetic diversities and richness of genotypes were fittest in these tree plantations. This suggests that enrichment of soil Rhizobium spp. populations is host specific. The results indicated also that species of genera Mesorhizobium and Sinorhizobium were lacking in plantations of non-host species. By contrast, there was a widespread distribution of Bradyrhizobium spp. strains across the tree plantations, with no evident specialization in regard to plantation type. Finally, the study provides information about the LNR communities associated with a range of old tree plantations and some aspects of their relationships to soil factors, which may facilitate the management of man-made forest systems that target ecosystem rehabilitation and preservation of soil biota.
Urban Forest Ecosystem Service Optimization, Tradeoffs, and Disparities
NASA Astrophysics Data System (ADS)
Bodnaruk, E.; Kroll, C. N.; Endreny, T. A.; Hirabayashi, S.; Yang, Y.
2014-12-01
Urban land area and the proportion of humanity living in cities is growing, leading to increased urban air pollution, temperature, and stormwater runoff. These changes can exacerbate respiratory and heat-related illnesses and affect ecosystem functioning. Urban trees can help mitigate these threats by removing air pollutants, mitigating urban heat island effects, and infiltrating and filtering stormwater. The urban environment is highly heterogeneous, and there is no tool to determine optimal locations to plant or protect trees. Using spatially explicit land cover, weather, and demographic data within biophysical ecosystem service models, this research expands upon the iTree urban forest tools to produce a new decision support tool (iTree-DST) that will explore the development and impacts of optimal tree planting. It will also heighten awareness of environmental justice by incorporating the Atkinson Index to quantify disparities in health risks and ecosystem services across vulnerable and susceptible populations. The study area is Baltimore City, a location whose urban forest and environmental justice concerns have been studied extensively. The iTree-DST is run at the US Census block group level and utilizes a local gradient approach to calculate the change in ecosystem services with changing tree cover across the study area. Empirical fits provide ecosystem service gradients for possible tree cover scenarios, greatly increasing the speed and efficiency of the optimization procedure. Initial results include an evaluation of the performance of the gradient method, optimal planting schemes for individual ecosystem services, and an analysis of tradeoffs and synergies between competing objectives.
Building genomic resources for Theobroma cacao
USDA-ARS?s Scientific Manuscript database
Theobroma cacao L (cacao: Malvaceae) is a small tree endemic to the Amazonian rain forest, where it most likely evolved. Cacao persists in populations of naturally outcrossing and inbreeding plants, as it is a species with a complex system of self-incompatibility, where only a fraction of the popul...
Spatial dispersal of Douglas-fir beetle populations in Colorado and Wyoming
John R. Withrow; John E. Lundquist; Jose F. Negron
2013-01-01
Bark beetles (Coleoptera: Curculionidae: Scolytinae) are mortality agents to multiple tree species throughout North America. Understanding spatiotemporal dynamics of these insects can assist management, prediction of outbreaks, and development of "real time" assessments of forest susceptibility incorporating insect population data. Here, dispersal of Douglas-...
36 CFR 223.12 - Permission to cut, damage, or destroy trees without advertisement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... destroy trees without advertisement. 223.12 Section 223.12 Parks, Forests, and Public Property FOREST... § 223.12 Permission to cut, damage, or destroy trees without advertisement. Permission may be granted to cut, damage, or destroy trees, portions of trees, or other forest products on National Forest System...
29 CFR 780.208 - Forest and Christmas tree activities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Forest and Christmas tree activities. 780.208 Section 780... Christmas tree activities. Operations in a forest tree nursery such as seeding new beds and growing and transplanting forest seedlings are not farming operations. The planting, tending, and cutting of Christmas trees...
29 CFR 780.208 - Forest and Christmas tree activities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 3 2013-07-01 2013-07-01 false Forest and Christmas tree activities. 780.208 Section 780... Christmas tree activities. Operations in a forest tree nursery such as seeding new beds and growing and transplanting forest seedlings are not farming operations. The planting, tending, and cutting of Christmas trees...
29 CFR 780.208 - Forest and Christmas tree activities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 3 2011-07-01 2011-07-01 false Forest and Christmas tree activities. 780.208 Section 780... Christmas tree activities. Operations in a forest tree nursery such as seeding new beds and growing and transplanting forest seedlings are not farming operations. The planting, tending, and cutting of Christmas trees...
29 CFR 780.208 - Forest and Christmas tree activities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 3 2014-07-01 2014-07-01 false Forest and Christmas tree activities. 780.208 Section 780... Christmas tree activities. Operations in a forest tree nursery such as seeding new beds and growing and transplanting forest seedlings are not farming operations. The planting, tending, and cutting of Christmas trees...
29 CFR 780.208 - Forest and Christmas tree activities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 3 2012-07-01 2012-07-01 false Forest and Christmas tree activities. 780.208 Section 780... Christmas tree activities. Operations in a forest tree nursery such as seeding new beds and growing and transplanting forest seedlings are not farming operations. The planting, tending, and cutting of Christmas trees...
Carbon stocks of trees killed by bark beetles and wildfire in the western United States
Hicke, Jeffrey A.; Meddens, Arjan J.H.; Allen, Craig D.; Kolden, Crystal A.
2013-01-01
Forests are major components of the carbon cycle, and disturbances are important influences of forest carbon. Our objective was to contribute to the understanding of forest carbon cycling by quantifying the amount of carbon in trees killed by two disturbance types, fires and bark beetles, in the western United States in recent decades. We combined existing spatial data sets of forest biomass, burn severity, and beetle-caused tree mortality to estimate the amount of aboveground and belowground carbon in killed trees across the region. We found that during 1984-2010, fires killed trees that contained 5-11 Tg C year-1 and during 1997-2010, beetles killed trees that contained 2-24 Tg C year-1, with more trees killed since 2000 than in earlier periods. Over their periods of record, amounts of carbon in trees killed by fires and by beetle outbreaks were similar, and together these disturbances killed trees representing 9% of the total tree carbon in western forests, a similar amount to harvesting. Fires killed more trees in lower-elevation forest types such as Douglas-fir than higher-elevation forest types, whereas bark beetle outbreaks also killed trees in higher-elevation forest types such as lodgepole pine and Engelmann spruce. Over 15% of the carbon in lodgepole pine and spruce/fir forest types was in trees killed by beetle outbreaks; other forest types had 5-10% of the carbon in killed trees. Our results document the importance of these natural disturbances in the carbon budget of the western United States.
Gene flow among established Puerto Rican populations of the exotic tree species, Albizia lebbeck.
Dunphy, B K; Hamrick, J L
2005-04-01
We estimate gene flow and patterns of genetic diversity in Albizia lebbeck, an invasive leguminous tree in the dry forest of southwestern Puerto Rico. Genetic diversity estimates calculated for 10 populations of 24 trees each indicated that these populations may have been formed from multiple introductions. The presence of unique genotypes in the northernmost populations suggests that novel genotypes are still immigrating into the area. This combination of individuals from disparate locations led to high estimates of genetic diversity (He = 0.266, P = 0.67). Indirect estimates of gene flow indicate that only 0.69 migrants per generation move between populations, suggesting that genetic diversity within populations should decrease due to genetic drift. Since migration-drift equilibrium was not found, however, this estimate needs to be viewed with caution. The regular production of pods in this outcrossing species (tm = 0.979) indicates that sufficient outcross pollen is received to insure successful reproduction. Direct estimates of gene flow indicate that between 44 and 100% of pollen received by trees in four small stands of trees (n < 11) was foreign. The role of gene flow in facilitating the spread of this invasive plant species is discussed.
Spatial Pattern of Attacks of the Invasive Woodwasp Sirex noctilio, at Landscape and Stand Scales.
Lantschner, M Victoria; Corley, Juan C
2015-01-01
Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems.
36 CFR 223.4 - Exchange of trees or portions of trees.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Exchange of trees or portions of trees. 223.4 Section 223.4 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF... PRODUCTS General Provisions § 223.4 Exchange of trees or portions of trees. Trees or portions of trees may...
36 CFR 223.4 - Exchange of trees or portions of trees.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Exchange of trees or portions of trees. 223.4 Section 223.4 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF... PRODUCTS General Provisions § 223.4 Exchange of trees or portions of trees. Trees or portions of trees may...
36 CFR 223.4 - Exchange of trees or portions of trees.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Exchange of trees or portions of trees. 223.4 Section 223.4 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF... PRODUCTS General Provisions § 223.4 Exchange of trees or portions of trees. Trees or portions of trees may...
36 CFR 223.4 - Exchange of trees or portions of trees.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Exchange of trees or portions of trees. 223.4 Section 223.4 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF... PRODUCTS General Provisions § 223.4 Exchange of trees or portions of trees. Trees or portions of trees may...
Tree growth inference and prediction from diameter censuses and ring widths
James S. Clark; Michael Wolosin; Michael Dietze; Ines Ibanez; Shannon LaDeau; Miranda Welsh; Brian Kloeppel
2007-01-01
Knowledge of tree growth is needed to understand population dynamics (Condit et al. 1993, Fastie 1995, Frelich and Reich 1995, Clark and Clark 1999, Wyckoff and Clark 2002, 2005, Webster and Lorimer 2005), species interactions (Swetnam and Lynch 1993), carbon sequestration (DeLucia et al. 1999, Casperson et al. 2000), forest response to climate change (Cook 1987,...
Conserving and managing the trees of the future: genetic resources for Pacific Northwest forests.
Sally Duncan
2003-01-01
Genetic resource management has historically called for altering the genetic structure of plant populations through selection for traits of interest such as rapid growth. Although this is still a principal component of tree breeding programs in the Pacific Northwest, managing genetic resources now also brings a clear focus on retaining a broad diversity within and...
P.S. Meng; K. Hoover; M.A. Keena
2015-01-01
The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), threatens urban and forest hardwood trees both where introduced and in parts of its native range. Native to Asia, this beetle has hitchhiked several times in infested wood packaging used in international trade, and has established breeding populations in five U.S. states, Canada,...
Genetic structure of the invasive tree Ailanthus altissima in eastern United States cities
Preston R. Aldrich; Joseph S. Briguglio; Shyam N. Kapadia; Minesh U. Morker; Ankit Rawal; Preeti Kalra; Cynthia D. Huebner; Gary K. Greer
2010-01-01
Ailanthus altissima is an invasive tree from Asia. It now occurs in most US states, and although primarily an urban weed, it has become a problem in forested areas especially in the eastern states. Little is known about its genetic structure. We explore its naturalized gene pool from 28 populations, mostly of the eastern US where infestations are...
Utilization options for decadent eastern hemlock timber
Matthew F. Winn; Philip A. Araman
2007-01-01
The hemlock woolly adelgid (Adelges tsugae Annand) is a non-native pest that is decimating the eastern hemlock (Tsuga canadensis L.) population in the forests of the eastern United States. Nearly one third of the area inhabited by native hemlocks in the Central Hardwoods region is infested with the insect. Once a tree is heavily infected, it is estimated that tree...
USDA-ARS?s Scientific Manuscript database
The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is a serious invasive forest pest that has killed tens of millions of ash (Fraxinus) trees in the United States and Canada. By caging EAB adults on trunks of healthy ash trees, we established three generations of experimental cohorts from ...
Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage
Wesley G. Page; Michael J. Jenkins; Justin B. Runyon
2012-01-01
During periods with epidemic mountain pine beetle (Dendroctonus ponderosae Hopkins) populations in lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests, large amounts of tree foliage are thought to undergo changes in moisture content and chemistry brought about by tree decline and death. However, many of the presumed changes have yet to be...
[Quantitative relationships of intra- and interspecific competition in Cryptocarya concinna].
Zhang, Chi; Huang, Zhongliang; Li, Jiong; Shi, Junhui; Li, Lin
2006-01-01
The monsoon evergreen broad-leaved forest (MEBF) in Dinghushan Nature Reserve (DNR) has been considered as a zonal vegetation in lower subtropical China, with a history of more than 400 years. In this paper, the intra- and interspecific competition intensity in Cryptocarya concinna, one of the constructive species in MEBF in DNR was quantitatively analyzed by Hegyi single-tree competition index model. The results showed that the intraspecific competition intensity in C. concinna decreased gradually with increasing tree diameter. For C. concinna, its intraspecific competition was weaker than its interspecific competition with Aporosa yunnanensis. The competition intensity of interspecific competition with C. concinna followed the order of A. yunnanensis > Schima superba > Gironniera subaequalis > Acmena acuminatissima > Castanopsis chinensis > Syzygium rehderianum > Pygeum topengii > Blastus cochinchinensis > Sarcosperma laurinum > Pterospermum lanceaefolium > Cryptocarya chinensis. The relationship of the DBH of objective tree and the competition intensity between competitive tree and objective tree in the whole forest and C. concinna population nearly conformed to power function, while that between other competitive tree and the objective C. concinna tree conformed to logarithm function. There was a significantly negative correlation between the competition intensity and the DBH of objective tree.
Why are there more arboreal ant species in primary than in secondary tropical forests?
Klimes, Petr; Idigel, Cliffson; Rimandai, Maling; Fayle, Tom M; Janda, Milan; Weiblen, George D; Novotny, Vojtech
2012-09-01
1. Species diversity of arboreal arthropods tends to increase during rainforest succession so that primary forest communities comprise more species than those from secondary vegetation, but it is not well understood why. Primary forests differ from secondary forests in a wide array of factors whose relative impacts on arthropod diversity have not yet been quantified. 2. We assessed the effects of succession-related determinants on a keystone ecological group, arboreal ants, by conducting a complete census of 1332 ant nests from all trees with diameter at breast height ≥ 5 cm occurring within two (unreplicated) 0·32-ha plots, one in primary and one in secondary lowland forest in New Guinea. Specifically, we used a novel rarefaction-based approach to match number, size distribution and taxonomic structure of trees in primary forest communities to those in secondary forest and compared the resulting numbers of ant species. 3. In total, we recorded 80 nesting ant species from 389 trees in primary forest but only 42 species from 295 trees in secondary forest. The two habitats did not differ in the mean number of ant species per tree or in the relationship between ant diversity and tree size. However, the between-tree similarity of ant communities was higher in secondary forest than in primary forest, as was the between-tree nest site similarity, suggesting that secondary trees were more uniform in providing nesting microhabitats. 4. Using our rarefaction method, the difference in ant species richness between two forest types was partitioned according to the effects of higher tree density (22·6%), larger tree size (15·5%) and higher taxonomic diversity of trees (14·3%) in primary than in secondary forest. The remaining difference (47·6%) was because of higher beta diversity of ant communities between primary forest trees. In contrast, difference in nest density was explained solely by difference in tree density. 5. Our study shows that reduction in plant taxonomic diversity in secondary forests is not the main driver of the reduction in canopy ant species richness. We suggest that the majority of arboreal species losses in secondary tropical forests are attributable to simpler vegetation structure, combined with lower turnover of nesting microhabitats between trees. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Osbrink, Weste L A; Cornelius, Mary L; Lax, Alan R
2008-08-01
Hurricane Katrina (2005) resulted in extensive flooding in the city of New Orleans, LA. Periodic sampling of monitors before the flood, and of different monitors in the same areas after the flood, was used to evaluate the effects of long-term flooding on populations of Formosan subterranean termites, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Monitors were located adjacent to buildings and in urban forests. Significant population reductions occurred in areas that flooded 2-3 wk with brackish water, with termite populations associated with pine (Pinus spp.) trees and buildings slower to recover than populations associated with oak trees. Alate production in flooded areas showed no reduction from previous years.
Space sequestration below ground in old-growth spruce-beech forests-signs for facilitation?
Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz
2013-01-01
Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.
Tara Luna; Daniel L. Lindner; R. Kasten Dumroese
2014-01-01
Bats (Vespertilionidae and Phyllostomidae) are a critically important component of North American ecosystems. These insectivorous mammals provide largely unrecognized ecosystem services to agriculture and forest health and sustain bat-dependent native plant populations. The decline of North American bat populations reflects the recent emergence of the fungal disease...
36 CFR 223.4 - Exchange of trees or portions of trees.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Exchange of trees or portions of trees. 223.4 Section 223.4 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER General Provisions § 223.4 Exchange of trees or...
Individual legacy trees influence vertebrate wildlife diversity in commercial forests
M.J. Mazurek; William J. Zielinski
2007-01-01
Old-growth forests provide important structural habitat elements for many species of wildlife. These forests, however, are rare where lands are managed for timber. In commercial forests, large and old trees sometimes exist only as widely-dispersed residual or legacy trees. Legacy trees are old trees that have been spared during harvest or have survived stand-replacing...
Walker, Xanthe; Henry, Gregory H R; McLeod, Katherine; Hofgaard, Annika
2012-10-01
The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the current Low Arctic. Central to the prediction of forest expansion is an increase in the reproductive capacity and establishment of individual trees. We assessed cone production, seed viability, and transplanted seedling success of Picea glauca (Moench.) Voss. (white spruce) in the early 1990s and again in the late 2000s at four forest stand sites and eight tree island sites (clonal populations beyond present treeline) in the Mackenzie Delta region of the Northwest Territories, Canada. Over the past 20 years, average temperatures in this region have increased by 0.9 °C. This area has the northernmost forest-tundra ecotone in North America and is one of the few circumpolar regions where the northern limit of conifer trees reaches the Arctic Ocean. We found that cone production and seed viability did not change between the two periods of examination and that both variables decreased northward across the forest-tundra ecotone. Nevertheless, white spruce individuals at the northern limit of the forest-tundra ecotone produced viable seeds. Furthermore, transplanted seedlings were able to survive in the northernmost sites for 15 years, but there were no signs of natural regeneration. These results indicate that if climatic conditions continue to ameliorate, reproductive output will likely increase, but seedling establishment and forest expansion within the forest-tundra of this region is unlikely to occur without the availability of suitable recruitment sites. Processes that affect the availability of recruitment sites are likely to be important elsewhere in the circumpolar ecotone, and should be incorporated into models and predictions of climate change and its effects on the northern forest-tundra ecotone. © 2012 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, A.H.
1995-08-01
The relationship between climate change and the dynamics of ecotonal populations of mountain hemlock (Tsuga mertensiana [Bong.] Carr.) was determined by comparing climate and the age structure of trees from 24 plots and seedlings from 13 plots in the subalpine zone of Lassen Volcanic National Park, California. Tree establishment was greatest during periods with above normal annual and summer temperatures, and normal or above normal precipitation. Seedling establishment was positively correlated with above normal annual and summer temperatures and negatively correlated with April snowpack depth. The different responses of trees and seedlings to precipitation variation is probably related to sitemore » soil moisture conditions. Mountain hemlock populations began to expand in 1842 and establishment increased dramatically after 1880 and peaked during a warm mesic period between 1895 and 1910. The onset of forest expansion coincides with warming that began at the end of the Little Ice Age (1850-1880). These data indicate that stability of the mountain hemlock ecotone is strongly influenced by climate. If warming induced by greenhouse gases does occur as climate models predict, then the structure and dynamics of near timberline forests in the Pacific Northwest will change. 52 refs., 8 figs., 3 tabs.« less
Naughton-Treves, Lisa; Alix-Garcia, Jennifer; Chapman, Colin A
2011-08-23
We use field data linked to satellite image analysis to examine the relationship between biodiversity loss, deforestation, and poverty around Kibale National Park (KNP) in western Uganda, 1996-2006. Over this decade, KNP generally maintained forest cover, tree species, and primate populations, whereas neighboring communal forest patches were reduced by half and showed substantial declines in tree species and primate populations. However, a bad decade for forest outside the park proved a prosperous one for most local residents. Panel data for 252 households show substantial improvement in welfare indicators (e.g., safer water, more durable roof material), with the greatest increases found among those with highest initial assets. A combination of regression analysis and matching estimators shows that although the poor tend to be located on the park perimeter, proximity to the park has no measureable effect on growth of productive assets. The risk for land loss among the poor was inversely correlated with proximity to the park, initial farm size, and decline in adjacent communal forests. We conclude the current disproportionate presence of poor households at the edge of the park does not signal that the park is a poverty trap. Rather, Kibale appears to provide protection against desperation sales and farm loss among those most vulnerable.
Naughton-Treves, Lisa; Alix-Garcia, Jennifer; Chapman, Colin A.
2011-01-01
We use field data linked to satellite image analysis to examine the relationship between biodiversity loss, deforestation, and poverty around Kibale National Park (KNP) in western Uganda, 1996–2006. Over this decade, KNP generally maintained forest cover, tree species, and primate populations, whereas neighboring communal forest patches were reduced by half and showed substantial declines in tree species and primate populations. However, a bad decade for forest outside the park proved a prosperous one for most local residents. Panel data for 252 households show substantial improvement in welfare indicators (e.g., safer water, more durable roof material), with the greatest increases found among those with highest initial assets. A combination of regression analysis and matching estimators shows that although the poor tend to be located on the park perimeter, proximity to the park has no measureable effect on growth of productive assets. The risk for land loss among the poor was inversely correlated with proximity to the park, initial farm size, and decline in adjacent communal forests. We conclude the current disproportionate presence of poor households at the edge of the park does not signal that the park is a poverty trap. Rather, Kibale appears to provide protection against desperation sales and farm loss among those most vulnerable. PMID:21873178
Modeling tree growth and stable isotope ratios of white spruce in western Alaska.
NASA Astrophysics Data System (ADS)
Boucher, Etienne; Andreu-Hayles, Laia; Field, Robert; Oelkers, Rose; D'Arrigo, Rosanne
2017-04-01
Summer temperatures are assumed to exert a dominant control on physiological processes driving forest productivity in interior Alaska. However, despite the recent warming of the last few decades, numerous lines of evidence indicate that the enhancing effect of summer temperatures on high latitude forest populations has been weakening. First, satellite-derived indices of photosynthetic activity, such as the Normalized-Difference Vegetation Index (NDVI, 1982-2005), show overall declines in productivity in the interior boreal forests. Second, some white spruce tree ring series strongly diverge from summer temperatures during the second half of the 20th century, indicating a persistent loss of temperature sensitivity of tree ring proxies. Thus, the physiological response of treeline forests to ongoing climate change cannot be accurately predicted, especially from correlation analysis. Here, we make use of a process-based dendroecological model (MAIDENiso) to elucidate the complex linkages between global warming and increases in atmospheric CO2 concentration [CO2] with the response of treeline white spruce stands in interior Alaska (Seward). In order to fully capture the array of processes controlling tree growth in the area, multiple physiological indicators of white spruce productivity are used as target variables: NDVI images, ring widths (RW), maximum density (MXD) and newly measured carbon and oxygen stable isotope ratios from ring cellulose. Based on these data, we highlight the processes and mechanisms responsible for the apparent loss of sensitivity of white spruce trees to recent climate warming and [CO2] increase in order to elucidate the sensitivity and vulnerability of these trees to climate change.
Carbon Dynamics in Vegetation and Soils
NASA Technical Reports Server (NTRS)
Trumbore, Susan; Chambers, Jeffrey Q.; Camargo, Plinio; Martinelli, Luiz; Santos, Joaquim
2005-01-01
The overall goals of CD-08 team in Phase I were to quantify the contributions of different components of the carbon cycle to overall ecosystem carbon balance in Amazonian tropical forests and to undertake process studies at a number of sites along the eastern LBA transect to understand how and why these fluxes vary with site, season, and year. We divided this work into a number of specific tasks: (1) determining the average rate (and variability) of tree growth over the past 3 decades; (2) determining age demographics of tree populations, using radiocarbon to determine tree age; (3) assessing the rate of production and decomposition of dead wood debris; (4) determining turnover rates for organic matter in soils and the mean age of C respired from soil using radiocarbon measurements; and (5) comparing our results with models and constructing models to predict the potential of tropical forests to function as sources or sinks of C. This report summarizes the considerable progress made towards our original goals, which have led to increased understanding of the potential for central Amazon forests to act as sources or sinks of carbon with altered productivity. The overall picture of tropical forest C dynamics emerging from our Phase I studies suggests that the fraction of gross primary production allocated to growth in these forests is only 25-30%, as opposed to the 50% assumed by many ecosystem models. Consequent slow tree growth rates mean greater mean tree age for a given diameter, as reflected in our measurements and models of tree age. Radiocarbon measurements in leaf and root litter suggest that carbon stays in living tree biomass for several years up to a decade before being added to soils, where decomposition is rapid. The time lags predicted from 14C, when coupled with climate variation on similar time scales, can lead to significant interannual variation in net ecosystem C exchange.
Mangrove forests: a tough system to invade
Ariel E. Lugo
1998-01-01
Tropical forests are the most species-rich forests in the world. As many as 225 tree species per hectare have been reported in these ecosystems, values that are equivalent to almost finding a different tree species every other tree encountered in the forest. Under some conditions, tree species richness decreases in tropical forests. For example, Hart et al. (1989)...
Dulamsuren, Choimaa; Hauck, Markus; Bader, Martin; Osokhjargal, Dalaikhuu; Oyungerel, Shagjjav; Nyambayar, Suran; Runge, Michael; Leuschner, Christoph
2009-01-01
Shoot water relations were studied in Siberian larch (Larix sibirica Ledeb.) trees growing at the borderline between taiga and steppe in northern Mongolia. Larix sibirica is the main tree species in these forests covering 80% of Mongolia's forested area. Minimum shoot water potentials (Psi(m)) close to the point of zero turgor (Psi(0)) repeatedly recorded throughout the growing season suggest that the water relations in L. sibirica were often critical. The Psi(m) varied in close relation to the atmospheric vapor pressure deficit, whereas Psi(0) was correlated with monthly precipitation. Young larch trees growing at the forest line to the steppe were more susceptible to drought than mature trees at the same sites. Furthermore, isolated trees growing on the steppe exhibited lower Psi(m) and recovered to a lower degree from drought overnight than the trees at the forest line. Indications of drought stress in L. sibirica were obtained in two study areas in Mongolia's forest-steppe ecotone: one in the mountain taiga of the western Khentey in northernmost Mongolia, the other in the forest-steppe at the southern distribution limit of L. sibirica on Mt. Bogd Uul, southern Khentey. Larix sibirica growing in riverine taiga with contact to the groundwater table was better water-supplied than the larch trees growing at the forest line to the steppe. Larch trees from the interior of light taiga forests on north-facing slopes, however, exhibited more critical water relations than the trees at the forest line. Frequent drought stress in mature trees and even more in young larch trees at the forest-steppe borderline suggests that L. sibirica does not have the potential to encroach on the steppe under the present climate, except in a sequence of exceptionally moist and cool years. A regression of the present borderline between forest and steppe is likely to occur, as average temperatures are increasing everywhere and precipitation is decreasing regionally in Mongolia's taiga forest region. Higher stomatal conductance concomitant to lower Psi(m) in trees of northern-slope forests compared to trees from the forest line to the steppe may be the result of a recent increase in drought intensity that affects better drought-adapted trees at the forest edge less than the trees in the forest interior. We conclude that drought is a key factor explaining the forest-steppe borderline in northern Mongolia. The proportion of forests within the present vegetation pattern of forests on north-facing slopes and the grasslands on south-facing slopes in Mongolia's forest-steppe ecotone is not likely to increase under the present climate, but may decrease with increasing aridity due to global warming.
Distribution, density, and biomass of introduced small mammals in the southern mariana islands
Wiewel, A.S.; Adams, A.A.Y.; Rodda, G.H.
2009-01-01
Although it is generally accepted that introduced small mammals have detrimental effects on island ecology, our understanding of these effects is frequently limited by incomplete knowledge of small mammal distribution, density, and biomass. Such information is especially critical in the Mariana Islands, where small mammal density is inversely related to effectiveness of Brown Tree Snake (Boiga irregularis) control tools, such as mouse-attractant traps. We used mark-recapture sampling to determine introduced small mammal distribution, density, and biomass in the major habitats of Guam, Rota, Saipan, and Tinian, including grassland, Leucaena forest, and native limestone forest. Of the five species captured, Rattus diardii (sensu Robins et al. 2007) was most common across habitats and islands. In contrast, Mus musculus was rarely captured at forested sites, Suncus murinus was not captured on Rota, and R. exulans and R. norvegicus captures were uncommon. Modeling indicated that neophobia, island, sex, reproductive status, and rain amount influenced R. diardii capture probability, whereas time, island, and capture heterogeneity influenced S. murinus and M. musculus capture probability. Density and biomass were much greater on Rota, Saipan, and Tinian than on Guam, most likely a result of Brown Tree Snake predation pressure on the latter island. Rattus diardii and M. musculus density and biomass were greatest in grassland, whereas S. murinus density and biomass were greatest in Leucaena forest. The high densities documented during this research suggest that introduced small mammals (especially R. diardii) are impacting abundance and diversity of the native fauna and flora of the Mariana Islands. Further, Brown Tree Snake control and management tools that rely on mouse attractants will be less effective on Rota, Saipan, and Tinian than on Guam. If the Brown Tree Snake becomes established on these islands, high-density introduced small mammal populations will likely facilitate and support a high-density Brown Tree Snake population, even as native species are reduced or extirpated. ?? 2009 by University of Hawai'i Press All rights reserved.
Banks, Sam C.; Knight, Emma J.; McBurney, Lachlan; Blair, David; Lindenmayer, David B.
2011-01-01
Background Big environmental disturbances have big ecological effects, yet these are not always what we might expect. Understanding the proximate effects of major disturbances, such as severe wildfires, on individuals, populations and habitats will be essential for understanding how predicted future increases in the frequency of such disturbances will affect ecosystems. However, researchers rarely have access to data from immediately before and after such events. Here we report on the effects of a severe and extensive forest wildfire on mortality, reproductive output and availability of key shelter resources for an arboreal marsupial. We also investigated the behavioural response of individuals to changed shelter resource availability in the post-fire environment. Methodology/Principal Findings We fitted proximity-logging radiotransmitters to mountain brushtail possums (Trichosurus cunninghami) before, during and after the 2009 wildfires in Victoria, Australia. Surprisingly, we detected no mortality associated with the fire, and despite a significant post-fire decrease in the proportion of females carrying pouch young in the burnt area, there was no short-term post-fire population decline. The major consequence of this fire for mountain brushtail possums was the loss of over 80% of hollow-bearing trees. The types of trees preferred as shelter sites (highly decayed dead standing trees) were those most likely to collapse after fire. Individuals adapted to resource decline by being more flexible in resource selection after the fire, but not by increased resource sharing. Conclusions/Significance Despite short-term demographic resilience and behavioural adaptation following this fire, the major loss of decayed hollow trees suggests the increased frequency of stand-replacing wildfires predicted under climate change will pose major challenges for shelter resource availability for hollow-dependent fauna. Hollow-bearing trees are typically biological legacies of previous forest generations in post-fire regrowth forests but will cease to be recruited to future regrowth forests if the interval between severe fires becomes too rapid for hollow formation. PMID:21826221
Monroy-Ortiz, Columba; García-Moya, Edmundo; Romero-Manzanares, Angélica; Luna-Cavazos, Mario; Monroy, Rafael
2018-05-15
This research integrates Traditional and Formal Ecological Knowledge (TEK / FEK) of a Tropical Dry Forest in central Mexico, in order to assess harvesting and conservation of the non-timber forest species. We were interested in: knowing the structure and diversity of the forest community; identifying which are the tree resources of common interest to the users through participatory workshops. A further interest was to identify those resources which are important to local people in terms of preservation; explaining the relationship of the species with some environmental factors; and visualizing which management practices endanger or facilitate the conservation of species. Studied areas were defined and labelled on a map drawn by local informants, where they indicated those plant species of common interest for preservation. Ethnobotanical techniques were used to reveal the TEK and assess harvesting and conservation of the species. With the FEK through community and population ecology, we detected the importance of five environmental factors, obtained various ecological indicators of the vegetation, and studied the population structure of the relevant species. The FEK was analyzed using descriptive and multivariate statistics. As a result, low density and small basal area of trees were registered. Species richness and diversity index were similar to other natural protected areas in Mexico. Tree species harvested shown an asymmetric distribution of diameters. Harvesting, elevation, and accessibility were the most influential factors on tree density. FEK demonstrated that TEK is helpful for the assessment of forest harvesting. Ecological analysis complemented the local knowledge detecting that Lysiloma tergemina is a species non-identified for the people as interesting, although we discover that it is a threatened species by over-harvesting. Haematoxylum brasiletto was identified as important for conservation due to its scarcity and medicinal use. Our results advanced on how the traditional harvesting of tree community has contributed to preserve diversity, when comparing with protected areas. Discrepancies between both kinds of knowledge should be reconciled for contributing to the preservation of priority resources by the local society. Copyright © 2018 Elsevier Ltd. All rights reserved.
Newbery, D M; Kennedy, D N; Petol, G H; Madani, L; Ridsdale, C E
1999-11-29
Changes in species composition in two 4-ha plots of lowland dipterocarp rainforest at Danum, Sabah, were measured over ten years (1986-1996) for trees > or = 10 cm girth at breast height (gbh). Each included a lower-slope to ridge gradient. The period lay between two drought events of moderate intensity but the forest showed no large lasting responses, suggesting that its species were well adapted to this regime. Mortality and recruitment rates were not unusual in global or regional comparisons. The forest continued to aggrade from its relatively (for Sabah) low basal area in 1986 and, together with the very open upper canopy structure and an abundance of lianas, this suggests a forest in a late stage of recovery from a major disturbance, yet one continually affected by smaller recent setbacks. Mortality and recruitment rates were not related to population size in 1986, but across subplots recruitment was positively correlated with the density and basal area of small trees (10-< 50cm gbh) forming the dense understorey. Neither rate was related to topography. While species with larger mean gbh had greater relative growth rates (rgr) than smaller ones, subplot mean recruitment rates were correlated with rgr among small trees. Separating understorey species (typically the Euphorbiaceae) from the overstorey (Dipterocarpaceae) showed marked differences in change in mortality with increasing gbh: in the former it increased, in the latter it decreased. Forest processes are centred on this understorey quasi-stratum. The two replicate plots showed a high correspondence in the mortality, recruitment, population changes and growth rates of small trees for the 49 most abundant species in common to both. Overstorey species had higher rgrs than understorey ones, but both showed considerable ranges in mortality and recruitment rates. The supposed trade-off in traits, viz slower rgr, shade tolerance and lower population turnover in the understorey group versus faster potential growth rate, high light responsiveness and high turnover in the overstorey group, was only partly met, as some understorey species were also very dynamic. The forest at Danum, under such a disturbance-recovery regime, can be viewed as having a dynamic equilibrium in functional and structural terms. A second trade-off in shade-tolerance versus drought-tolerance is suggested for among the understorey species. A two-storey (or vertical component) model is proposed where the understorcy-overstorey species' ratio of small stems (currently 2:1) is maintained by a major feedback process. The understorey appears to be an important part of this forest, giving resilience against drought and protecting the overstorey saplings in the long term. This view could be valuable for understanding forest responses to climate change where drought frequency in Borneo is predicted to intensify in the coming decades.
Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests.
Liu, Min; Li, Changcheng; Xu, Xingliang; Wanek, Wolfgang; Jiang, Ning; Wang, Huimin; Yang, Xiaodong
2017-11-01
Evidence shows that many tree species can take up organic nitrogen (N) in the form of free amino acids from soils, but few studies have been conducted to compare organic and inorganic N uptake patterns in temperate and tropical tree species in relation to mycorrhizal status and successional state. We labeled intact tree roots by brief 15N exposures using field hydroponic experiments in a temperate forest and a tropical forest in China. A total of 21 dominant tree species were investigated, 8 in the temperate forest and 13 in the tropical forest. All investigated tree species showed highest uptake rates for NH4+ (ammonium), followed by glycine and NO3- (nitrate). Uptake of NH4+ by temperate trees averaged 12.8 μg N g-1 dry weight (d.w.) root h-1, while those by tropical trees averaged 6.8 μg N g-1 d.w. root h-1. Glycine uptake rates averaged 3.1 μg N g-1 d.w. root h-1 for temperate trees and 2.4 μg N g-1 d.w. root h-1 for tropical trees. NO3- uptake was the lowest (averaging 0.8 μg N g-1 d.w. root h-1 for temperate trees and 1.2 μg N g-1 d.w. root h-1 for tropical trees). Uptake of NH4+ accounted for 76% of the total uptake of all three N forms in the temperate forest and 64% in the tropical forest. Temperate tree species had similar glycine uptake rates as tropical trees, with the contribution being slightly lower (20% in the temperate forest and 23% in the tropical forest). All tree species investigated in the temperate forest were ectomycorrhizal and all species but one in the tropical forest were arbuscular mycorrhizal (AM). Ectomycorrhizal trees showed significantly higher NH4+ and lower NO3- uptake rates than AM trees. Mycorrhizal colonization rates significantly affected uptake rates and contributions of NO3- or NH4+, but depended on forest types. We conclude that tree species in both temperate and tropical forests preferred to take up NH4+, with organic N as the second most important N source. These findings suggest that temperate and tropical forests demonstrate similar N uptake patterns although they differ in physiology of trees and soil biogeochemical processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Newbery, David M; Chuyong, George B; Zimmermann, Lukas
2006-01-01
Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995-2000. The series was extended to 1988-2004 with less detailed data. Individual transitions in phenology were analysed. Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An 'alternative bearing' system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.
Miller, Amy C.; Woeste, Keith E.; Anagnostakis, Sandra L.; Jacobs, Douglass F.
2014-01-01
With the transport of plants around the globe, exotic species can readily spread disease to their native relatives; however, they can also provide genetic resistance to those relatives through hybrid breeding programmes. American chestnut (Castanea dentata) was an abundant tree species in North America until its decimation by introduced chestnut blight. To restore chestnut in North America, efforts are ongoing to test putative blight-resistant hybrids of Castanea dentata and Chinese chestnut (Castanea mollissima), but little is known about the ecology of C. mollissima. In a forest in northeastern USA in which C. mollissima has become established, we explored questions of stand dynamics, health and genetic relationships of C. mollissima offspring to an adjacent parent orchard. We found that C. mollissima was adapted and randomly distributed among native species in this relatively young forest. The genetics of the C. mollissima population compared with its parents indicated little effect of selection pressure as each of the parent trees contributed at least one offspring. The ease with which this exotic species proliferated calls to question why C. mollissima is rare elsewhere in forests of North America. It is likely that a time window of low animal predation allowed seedlings to establish, and the shallow soil at this site limited the maximum forest canopy height, permitting the characteristically short-statured C. mollissima to avoid suppression. Our results indicate that because C. mollissima exhibited pioneer species characteristics, hybrids between C. mollissima and C. dentata have the potential to be successful pioneer species of future forests in North America, and we challenge the paradigm that exotic tree species are wholly detrimental to native biodiversity. We contend that exotic tree species should be assessed not only by their level of threat to native species, but also by their potential positive impacts on ecosystems via hybrid breeding programmes. PMID:25336337
Baltzinger, Marie; Archaux, Frédéric; Dumas, Yann
2012-05-01
Litter is a key factor in structuring plant populations, through positive or negative interactions. The litter layer forms a mechanical barrier that is often strongly selective against individuals lacking hypocotyle plasticity. Litter composition also interacts with plant growth by providing beneficial nutrients or, inversely, by allowing harmful allelopathic leaching. As conspicuous litter fall accumulation is often observed under deciduous forests, interactions between tree litter and understorey plant populations are worthy of study. In a 1-year ex-situ experiment, the effects of tree litter on the growth of Anemone nemorosa, a small perennial forest geophyte, were investigated. Three 'litter quantity' treatments were defined, representative of forest floor litter (199, 356·5 and 514 g m(-2)), which were crossed with five 'litter composition' treatments (Quercus petraea, Fagus sylvatica, Carpinus betulus, Q. petraea + F. sylvatica and Q. petraea + C. betulus), plus a no-litter control. Path analysis was then used to investigate the pathways linking litter characteristics and components of adult plant growth. As expected, the heavier the litter, the longer the petiole; rhizome growth, however, was not depreciated by the litter-induced petiole lengthening. Both rhizome mass increment and number of initiated buds marginally increased with the amount of litter. Rhizome mass increment was in fact determined primarily by leaf area and leaf life span, neither of which was unequivocally correlated with any litter characteristics. However, the presence of litter significantly increased leafing success: following a late frost event, control rhizomes growing in the absence of litter experienced higher leaf mortality before leaf unfolding. The study questions the role of litter as a physical or chemical barrier to ground vegetation; to better understand this role, there is a need for ex-situ, longer-term experiments coupled with in-situ observations in the forest.
Baltzinger, Marie; Archaux, Frédéric; Dumas, Yann
2012-01-01
Background and Aims Litter is a key factor in structuring plant populations, through positive or negative interactions. The litter layer forms a mechanical barrier that is often strongly selective against individuals lacking hypocotyle plasticity. Litter composition also interacts with plant growth by providing beneficial nutrients or, inversely, by allowing harmful allelopathic leaching. As conspicuous litter fall accumulation is often observed under deciduous forests, interactions between tree litter and understorey plant populations are worthy of study. Methods In a 1-year ex-situ experiment, the effects of tree litter on the growth of Anemone nemorosa, a small perennial forest geophyte, were investigated. Three ‘litter quantity’ treatments were defined, representative of forest floor litter (199, 356·5 and 514 g m−2), which were crossed with five ‘litter composition’ treatments (Quercus petraea, Fagus sylvatica, Carpinus betulus, Q. petraea + F. sylvatica and Q. petraea + C. betulus), plus a no-litter control. Path analysis was then used to investigate the pathways linking litter characteristics and components of adult plant growth. Key Results As expected, the heavier the litter, the longer the petiole; rhizome growth, however, was not depreciated by the litter-induced petiole lengthening. Both rhizome mass increment and number of initiated buds marginally increased with the amount of litter. Rhizome mass increment was in fact determined primarily by leaf area and leaf life span, neither of which was unequivocally correlated with any litter characteristics. However, the presence of litter significantly increased leafing success: following a late frost event, control rhizomes growing in the absence of litter experienced higher leaf mortality before leaf unfolding. Conclusions The study questions the role of litter as a physical or chemical barrier to ground vegetation; to better understand this role, there is a need for ex-situ, longer-term experiments coupled with in-situ observations in the forest. PMID:22419760
Miller, Amy C; Woeste, Keith E; Anagnostakis, Sandra L; Jacobs, Douglass F
2014-10-20
With the transport of plants around the globe, exotic species can readily spread disease to their native relatives; however, they can also provide genetic resistance to those relatives through hybrid breeding programmes. American chestnut (Castanea dentata) was an abundant tree species in North America until its decimation by introduced chestnut blight. To restore chestnut in North America, efforts are ongoing to test putative blight-resistant hybrids of Castanea dentata and Chinese chestnut (Castanea mollissima), but little is known about the ecology of C. mollissima. In a forest in northeastern USA in which C. mollissima has become established, we explored questions of stand dynamics, health and genetic relationships of C. mollissima offspring to an adjacent parent orchard. We found that C. mollissima was adapted and randomly distributed among native species in this relatively young forest. The genetics of the C. mollissima population compared with its parents indicated little effect of selection pressure as each of the parent trees contributed at least one offspring. The ease with which this exotic species proliferated calls to question why C. mollissima is rare elsewhere in forests of North America. It is likely that a time window of low animal predation allowed seedlings to establish, and the shallow soil at this site limited the maximum forest canopy height, permitting the characteristically short-statured C. mollissima to avoid suppression. Our results indicate that because C. mollissima exhibited pioneer species characteristics, hybrids between C. mollissima and C. dentata have the potential to be successful pioneer species of future forests in North America, and we challenge the paradigm that exotic tree species are wholly detrimental to native biodiversity. We contend that exotic tree species should be assessed not only by their level of threat to native species, but also by their potential positive impacts on ecosystems via hybrid breeding programmes. Published by Oxford University Press on behalf of the Annals of Botany Company.
VAM populations in relation to grass invasion associated with forest decline.
Vosatka, M; Cudlin, P; Mejstrik, V
1991-01-01
Spruce stands in Northern Bohemia forests, damaged to various degrees by industrial pollution, have shown establishment of grass cover following tree defoliation. Populations of vesicular-arbuscular mycorrhizal (VAM) fungi were studied under this grass cover in four permanent plots with spruce under different levels of pollution stress. Soil and root samples were collected in April and June within each plot as follows: (1) sites without grass, (2) sites with initial stages of grass invasion, and (3) sites with fully developed grass cover. In all plots, the highest number of propagules were recovered from samples taken from sites having full grass cover. Mycorrhizal infection of grass was highest in the plot with the severest pollution damage and lowest in the least damaged plot. The development of grass cover and VAM infection of grass increased with tree defoliation caused by air pollution.
Arthur M. Phillips; Debra J. Kennedy; Barbara G. Phillips; Diedre Weage
2001-01-01
Surveys for Paradine plains cactus (Pediocactus paradinei B. W. Benson) conducted for the Kaibab National Forest, North Kaibab Ranger District in 1992-94 qualitatively showed a fairly substantial population of scattered individuals in the pinyon-juniper woodland, and indicated that there might be a correlation between plant distribution and dripline of trees. This...
N. Mukhamadiev; A. Lynch; C. O' Connor; A. Sagitov; N. Ashikbaev; I. Panyushkina
2014-01-01
On 17 May and 27 June 2011 severe cyclonic storms damaged several hundred hectares of spruce forest (Picea schrenkiana) in the Tian Shan Mountains. Bark beetle populations increased rapidly in dead and damaged trees, particularly Ips hauseri, I. typographus, I. sexdentatus, and Piiyogenesperfossus (all Coleoptera: Curculionidae), and there is concern about the...
Traditional adaptation to natural processes of erosion and sedimentation on Yap Island
Marjorie C. Falanruw
1990-01-01
Yap is a high island with a mean annual rainfall of 3040 mm and considerable potential for erosion. The island once supported a dense population with a nature-intensive technology. The traditional food production system incorporated tree gardens which mimic natural forests in intercepting rainfall and holding the soil, and taro patch system which mimic swamp forests...
Evidence of changes in populations of the Marbled Murrelet in the Pacific Northwest
C. John Ralph
1994-01-01
The Marbled Murrelet (Brachyramphus marmoratus) occurs along the coasts of the North Pacific. It is unique among the Alcidae in its tree nesting habits. Recent research has revealed that in forested areas it is closely associated with old-growth coniferous forests, most of which have been harvested over the past 100 years. All historical accounts,...
R. Sollmann; Angela White; Gina Tarbill; Patricia Manley; Eric E. Knapp
2016-01-01
In the dry forests of the western United States frequent fires historically maintained a diversity of habitats in multiple seral stages. Over the past century, fire suppression and preferential harvest of large trees has led to a densification and homogenization of forests, making them more prone to larger and more severe wildfires. In response, fuel reduction...
Gary J. Hawley; Donald H. DeHayes; John C. Brissette
2000-01-01
Loss of populations and individuals within species to human-induced selective forces can result in loss of specific genes and overall genetic diversity upon which productivity, ecosystem stability, long-term survival, and evolution depend. This is particularly true for long-lived organisms, such as forest trees, because genetic diversity confers adaptability necessary...
Joseph L. Ganey; Gary C. White; Jeffrey S. Jenness; Scott C. Vojta
2015-01-01
Snags (standing dead trees) are important components of forests that provide resources for numerous species of wildlife and contribute to decay dynamics and other ecological processes. Managers charged with managing populations of snags need information about standing rates of snags and factors influencing those rates, yet such data are limited for ponderosa pine (...
Is the western United States running out of trees?
J. Shaw; J. Long
2014-01-01
During the past 2 decades, the forests of the Interior West of the United States have been impacted by drought, insects, disease, and fire. When considered over periods of 5-10 years, many forest types have experienced periods of negative net growth, meaning that mortality exceeded gross growth at the population scale. While many of these changes have been attributed...
Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000-2014
NASA Astrophysics Data System (ADS)
Potapov, P.; Siddiqui, B. N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; Hansen, M. C.
2017-10-01
A novel approach for satellite-based comprehensive national tree cover change assessment was developed and applied in Bangladesh, a country where trees outside of forests play an important role in the national economy and carbon sequestration. Tree cover change area was quantified using the integration of wall-to-wall Landsat-based mapping with a higher spatial resolution sample-based assessment. The total national tree canopy cover area was estimated as 3165 500 ± 186 600 ha in the year 2000, with trees outside forests making up 54% of total canopy cover. Total tree canopy cover increased by 135 700 (± 116 600) ha (4.3%) during the 2000-2014 time interval. Bangladesh exhibits a national tree cover dynamic where net change is rather small, but gross dynamics significant and variable by forest type. Despite the overall gain in tree cover, results revealed the ongoing clearing of natural forests, especially within the Chittagong hill tracts. While forests decreased their tree cover area by 83 600 ha, the trees outside forests (including tree plantations, village woodlots, and agroforestry) increased their canopy area by 219 300 ha. Our results demonstrated method capability to quantify tree canopy cover dynamics within a fine-scale agricultural landscape. Our approach for comprehensive monitoring of tree canopy cover may be recommended for operational implementation in Bangladesh and other countries with significant tree cover outside of forests.
Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines
NASA Astrophysics Data System (ADS)
Diego Galván, J.; Büntgen, Ulf; Ginzler, Christian; Grudd, Håkan; Gutiérrez, Emilia; Labuhn, Inga; Julio Camarero, J.
2015-01-01
The growth/climate relationship of theoretically temperature-controlled high-elevation forests has been demonstrated to weaken over recent decades. This is likely due to new tree growth limiting factors, such as an increasing drought risk for ecosystem functioning and productivity across the Mediterranean Basin. In addition, declining tree growth sensitivity to spring temperature may emerge in response to increasing drought stress. Here, we evaluate these ideas by assessing the growth/climate sensitivity of 1500 tree-ring width (TRW) and 102 maximum density (MXD) measurement series from 711 and 74 Pinus uncinata trees, respectively, sampled at 28 high-elevation forest sites across the Pyrenees and two relict populations of the Iberian System. Different dendroclimatological standardization and split period approaches were used to assess the high- to low-frequency behavior of 20th century tree growth in response to temperature means, precipitation totals and drought indices. Long-term variations in TRW track summer temperatures until about 1970 but diverge afterwards, whereas MXD captures the recent temperature increase in the low-frequency domain fairly well. On the other hand summer drought has increasingly driven TRW along the 20th century. Our results suggest fading temperature sensitivity of Iberian high-elevation P. uncinata forest growth, and reveal the importance of summer drought that is becoming the emergent limiting factor of tree ring width formation in many parts of the Mediterranean Basin.
Development of an establishment scheme for a DGVM
NASA Astrophysics Data System (ADS)
Song, Xiang; Zeng, Xiaodong; Zhu, Jiawen; Shao, Pu
2016-07-01
Environmental changes are expected to shift the distribution and abundance of vegetation by determining seedling establishment and success. However, most current ecosystem models only focus on the impacts of abiotic factors on biogeophysics (e.g., global distribution, etc.), ignoring their roles in the population dynamics (e.g., seedling establishment rate, mortality rate, etc.) of ecological communities. Such neglect may lead to biases in ecosystem population dynamics (such as changes in population density for woody species in forest ecosystems) and characteristics. In the present study, a new establishment scheme for introducing soil water as a function rather than a threshold was developed and validated, using version 1.0 of the IAP-DGVM as a test bed. The results showed that soil water in the establishment scheme had a remarkable influence on forest transition zones. Compared with the original scheme, the new scheme significantly improved simulations of tree population density, especially in the peripheral areas of forests and transition zones. Consequently, biases in forest fractional coverage were reduced in approximately 78.8% of the global grid cells. The global simulated areas of tree, shrub, grass and bare soil performed better, where the relative biases were reduced from 34.3% to 4.8%, from 27.6% to 13.1%, from 55.2% to 9.2%, and from 37.6% to 3.6%, respectively. Furthermore, the new scheme had more reasonable dependencies of plant functional types (PFTs) on mean annual precipitation, and described the correct dominant PFTs in the tropical rainforest peripheral areas of the Amazon and central Africa.
Cellulose factories: advancing bioenergy production from forest trees.
Mizrachi, Eshchar; Mansfield, Shawn D; Myburg, Alexander A
2012-04-01
Fast-growing, short-rotation forest trees, such as Populus and Eucalyptus, produce large amounts of cellulose-rich biomass that could be utilized for bioenergy and biopolymer production. Major obstacles need to be overcome before the deployment of these genera as energy crops, including the effective removal of lignin and the subsequent liberation of carbohydrate constituents from wood cell walls. However, significant opportunities exist to both select for and engineer the structure and interaction of cell wall biopolymers, which could afford a means to improve processing and product development. The molecular underpinnings and regulation of cell wall carbohydrate biosynthesis are rapidly being elucidated, and are providing tools to strategically develop and guide the targeted modification required to adapt forest trees for the emerging bioeconomy. Much insight has already been gained from the perturbation of individual genes and pathways, but it is not known to what extent the natural variation in the sequence and expression of these same genes underlies the inherent variation in wood properties of field-grown trees. The integration of data from next-generation genomic technologies applied in natural and experimental populations will enable a systems genetics approach to study cell wall carbohydrate production in trees, and should advance the development of future woody bioenergy and biopolymer crops.
Population dynamics in changing environments: the case of an eruptive forest pest species.
Kausrud, Kyrre; Okland, Bjørn; Skarpaas, Olav; Grégoire, Jean-Claude; Erbilgin, Nadir; Stenseth, Nils Chr
2012-02-01
In recent decades we have seen rapid and co-occurring changes in landscape structure, species distributions and even climate as consequences of human activity. Such changes affect the dynamics of the interaction between major forest pest species, such as bark beetles (Coleoptera: Curculionidae, Scolytinae), and their host trees. Normally breeding mostly in broken or severely stressed spruce; at high population densities some bark beetle species can colonise and kill healthy trees on scales ranging from single trees in a stand to multi-annual landscape-wide outbreaks. In Eurasia, the largest outbreaks are caused by the spruce bark beetle, Ips typographus (Linnaeus), which is common and shares a wide distribution with its main host, Norway spruce (Picea abies Karst.). A large literature is now available, from which this review aims to synthesize research relevant for the population dynamics of I. typographus and co-occurring species under changing conditions. We find that spruce bark beetle population dynamics tend to be metastable, but that mixed-species and age-heterogeneous forests with good site-matching tend to be less susceptible to large-scale outbreaks. While large accumulations of logs should be removed and/or debarked before the next swarming period, intensive removal of all coarse dead wood may be counterproductive, as it reduces the diversity of predators that in some areas may play a role in keeping I. typographus populations below the outbreak threshold, and sanitary logging frequently causes edge effects and root damage, reducing the resistance of remaining trees. It is very hard to predict the outcome of interspecific interactions due to invading beetle species or I. typographus establishing outside its current range, as they can be of varying sign and strength and may fluctuate depending on environmental factors and population phase. Most research indicates that beetle outbreaks will increase in frequency and magnitude as temperature, wind speed and precipitation variability increases, and that mitigating forestry practices should be adopted as soon as possible considering the time lags involved. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.
Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J
2016-03-01
Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species.
What determines tree mortality in dry environments? A multi-perspective approach.
Dorman, Michael; Svoray, Tal; Perevolotsky, Avi; Moshe, Yitzhak; Sarris, Dimitrios
2015-06-01
Forest ecosystems function under increasing pressure due to global climate changes, while factors determining when and where mortality events will take place within the wider landscape are poorly understood. Observational studies are essential for documenting forest decline events, understanding their determinants, and developing sustainable management plans. A central obstacle towards achieving this goal is that mortality is often patchy across a range of spatial scales, and characterized by long-term temporal dynamics. Research must therefore integrate different methods, from several scientific disciplines, to capture as many relevant informative patterns as possible. We performed a landscape-scale assessment of mortality and its determinants in two representative Pinus halepensis planted forests from a dry environment (~300 mm), recently experiencing an unprecedented sequence of two severe drought periods. Three data sources were integrated to analyze the spatiotemporal variation in forest performance: (1) Normalized Difference Vegetation Index (NDVI) time-series, from 18 Landsat satellite images; (2) individual dead trees point-pattern, based on a high-resolution aerial photograph; and (3) Basal Area Increment (BAI) time-series, from dendrochronological sampling in three sites. Mortality risk was higher in older-aged sparse stands, on southern aspects, and on deeper soils. However, mortality was patchy across all spatial scales, and the locations of patches within "high-risk" areas could not be fully explained by the examined environmental factors. Moreover, the analysis of past forest performance based on NDVI and tree rings has indicated that the areas affected by each of the two recent droughts do not coincide. The association of mortality with lower tree densities did not support the notion that thinning semiarid forests will increase survival probability of the remaining trees when facing extreme drought. Unique information was obtained when merging dendrochronological and remotely sensed performance indicators, in contrast to potential bias when using a single approach. For example, dendrochronological data suggested highly resilient tree growth, since it was based only on the "surviving" portion of the population, thus failing to identify past demographic changes evident through remote sensing. We therefore suggest that evaluation of forest resilience should be based on several metrics, each suited for detecting transitions at a different level of organization.
Pothasin, Pornwiwan; Compton, Stephen G.; Wangpakapattanawong, Prasit
2014-01-01
Fig trees (Ficus) are often ecologically significant keystone species because they sustain populations of the many seed-dispersing animals that feed on their fruits. They are prominent components of riparian zones where they may also contribute to bank stability as well as supporting associated animals. The diversity and distributions of riparian fig trees in deciduous and evergreen forests in Chiang Mai Province, Northern Thailand were investigated in 2010–2012. To record the diversity and abundance of riparian fig trees, we (1) calculated stem density, species richness, and diversity indices in 20×50 m randomly selected quadrats along four streams and (2) measured the distances of individual trees from four streams to determine if species exhibit distinct distribution patterns within riparian zones. A total of 1169 individuals (from c. 4 ha) were recorded in the quadrats, representing 33 Ficus species (13 monoecious and 20 dioecious) from six sub-genera and about 70% of all the species recorded from northern Thailand. All 33 species had at least some stems in close proximity to the streams, but they varied in their typical proximity, with F. squamosa Roxb. and F. ischnopoda Miq the most strictly stream-side species. The riparian forests in Northern Thailand support a rich diversity and high density of Ficus species and our results emphasise the importance of fig tree within the broader priorities of riparian area conservation. Plans to maintain or restore properly functioning riparian forests need to take into account their significance. PMID:25310189
Adams, Henry D; Kolb, Thomas E
2004-07-01
We sought to understand differences in tree response to meteorological drought among species and soil types at two ecotone forests in northern Arizona, the pinyon-juniper woodland/ponderosa pine ecotone, and the higher elevation, wetter, ponderosa pine/mixed conifer ecotone. We used two approaches that provide different information about drought response: the ratio of standardized radial growth in wet years to dry years (W:D) for the period between years 1950 and 2000 as a measure of growth response to drought, and delta13C in leaves formed in non-drought (2001) and drought (2002) years as a measure of change in water use efficiency (WUE) in response to drought. W:D and leaf delta13C response to drought for Pinus edulis and P. ponderosa did not differ for trees growing on coarse-texture soils derived from cinders compared with finer textured soils derived from flow basalts or sedimentary rocks. P. ponderosa growing near its low elevation range limit at the pinyon-juniper woodland/ponderosa pine ecotone had a greater growth response to drought (higher W:D) and a larger increase in WUE in response to drought than co-occurring P. edulis growing near its high elevation range limit. P. flexilis and Pseudotsuga menziesii growing near their low elevation range limit at the ponderosa pine/mixed conifer ecotone had a larger growth response to drought than co-occurring P. ponderosa growing near its high elevation range limit. Increases in WUE in response to drought were similar for all species at the ponderosa pine/mixed conifer ecotone. Low elevation populations of P. ponderosa had greater growth response to drought than high-elevation populations, whereas populations had a similar increase in WUE in response to drought. Our findings of different responses to drought among co-occurring tree species and between low- and high-elevation populations are interpreted in the context of drought impacts on montane coniferous forests of the southwestern USA.
Owen, Sheldon F.; Berl, Jacob L.; Edwards, John W.; Ford, W. Mark; Wood, Petra Bohall
2015-01-01
We studied a raccoon (Procyon lotor) population within a managed central Appalachian hardwood forest in West Virginia to investigate the effects of intensive forest management on raccoon spatial requirements and habitat selection. Raccoon home-range (95% utilization distribution) and core-area (50% utilization distribution) size differed between sexes with males maintaining larger (2×) home ranges and core areas than females. Home-range and core-area size did not differ between seasons for either sex. We used compositional analysis to quantify raccoon selection of six different habitat types at multiple spatial scales. Raccoons selected riparian corridors (riparian management zones [RMZ]) and intact forests (> 70 y old) at the core-area spatial scale. RMZs likely were used by raccoons because they provided abundant denning resources (i.e., large-diameter trees) as well as access to water. Habitat composition associated with raccoon foraging locations indicated selection for intact forests, riparian areas, and regenerating harvest (stands <10 y old). Although raccoons were able to utilize multiple habitat types for foraging resources, a selection of intact forest and RMZs at multiple spatial scales indicates the need of mature forest (with large-diameter trees) for this species in managed forests in the central Appalachians.
Grogan, James; Loveless, Marilyn D
2013-11-01
Flowering phenology is a crucial determinant of reproductive success and offspring genetic diversity in plants. We measure the flowering phenology of big-leaf mahogany (Swietenia macrophylla, Meliaceae), a widely distributed neotropical tree, and explore how disturbance from logging impacts its reproductive biology. We use a crown scoring system to estimate the timing and duration of population-level flowering at three forest sites in the Brazilian Amazon over a five-year period. We combine this information with data on population structure and spatial distribution to consider the implications of logging for population flowering patterns and reproductive success. Mahogany trees as small as 14 cm diam flowered, but only trees > 30 cm diam flowered annually or supra-annually. Mean observed flowering periods by focal trees ranged from 18-34 d, and trees flowered sequentially during 3-4 mo beginning in the dry season. Focal trees demonstrated significant interannual correlation in flowering order. Estimated population-level flowering schedules resembled that of the focal trees, with temporal isolation between early and late flowering trees. At the principal study site, conventional logging practices eliminated 87% of mahogany trees > 30 cm diam and an estimated 94% of annual pre-logging floral effort. Consistent interannual patterns of sequential flowering among trees create incompletely isolated subpopulations, constraining pollen flow. After harvests, surviving subcommercial trees will have fewer, more distant, and smaller potential partners, with probable consequences for post-logging regeneration. These results have important implications for the sustainability of harvesting systems for tropical timber species.
Mortality rates associated with crown health for eastern forest tree species
Randall S. Morin; KaDonna C. Randolph; Jim Steinman
2015-01-01
The condition of tree crowns is an important indicator of tree and forest health. Crown conditions have been evaluated during inventories of the US Forest Service Forest Inventory and Analysis (FIA) program since 1999. In this study, remeasured data from 55,013 trees on 2616 FIA plots in the eastern USA were used to assess the probability of survival among various tree...
Varying selection differential throughout the climatic range of Norway spruce in Central Europe.
Kapeller, Stefan; Dieckmann, Ulf; Schueler, Silvio
2017-01-01
Predicting species distribution changes in global warming requires an understanding of how climatic constraints shape the genetic variation of adaptive traits and force local adaptations. To understand the genetic capacity of Norway spruce populations in Central Europe, we analyzed the variation in tree heights at the juvenile stage in common garden experiments established from the species' warm-dry to cold-moist distribution limits. We report the following findings: First, 47% of the total tree height variation at trial sites is attributable to the tree populations irrespective of site climate. Second, tree height variation within populations is higher at cold-moist trial sites than at warm-dry sites and higher within populations originating from cold-moist habitats than from warm-dry habitats. Third, for tree ages of 7-15 years, the variation within populations increases at cold-moist trial sites, whereas it remains constant at warm-dry sites. Fourth, tree height distributions are right-skewed at cold-moist trial sites, whereas they are nonskewed, but platykurtic at warm-dry sites. Our results suggest that in cold environments, climatic conditions impose stronger selection and probably restrict the distribution of spruce, whereas at the warm distribution limit, the species' realized niche might rather be controlled by external drivers, for example, forest insects.
Plant competition and the implications for tropical forest carbon dynamics
NASA Astrophysics Data System (ADS)
Schnitzer, Stefan
2016-04-01
Tropical forests store more than one third of all terrestrial carbon and account for over one third of terrestrial net primary productivity, and thus they are a critical component of the global carbon cycle. Nearly all of the aboveground carbon in tropical forests is held in tree biomass, and long-term carbon fluxes are balanced largely by tree growth and tree death. Therefore, the vast majority of research on tropical forest carbon dynamics has focused on the growth and mortality of canopy trees. By contrast, lianas (woody vines) contribute little biomass relative to trees. However, competition between lianas (woody vines) and trees may result in forest-wide carbon loss if lianas fail to accumulate the carbon that they displace in trees. We tested this hypotheses using a series of large-scale liana-removal studies in the Republic of Panama. We found that lianas limited tree growth and increased tree mortality, thus significantly reducing carbon accumulation in trees. Lianas themselves, however, did not compensate for the carbon that they displaced in trees. Lianas lower the capacity of tropical forests to uptake and store carbon, and the recently observed increases in liana abundance in neotropical forests will likely result in further reductions of carbon uptake.
Susanne Winter; Andreas Böck; Ronald E. McRoberts
2012-01-01
Tree diameter and height are commonly measured forest structural variables, and indicators based on them are candidates for assessing forest diversity. We conducted our study on the uncertainty of estimates for mostly large geographic scales for four indicators of forest structural gamma diversity: mean tree diameter, mean tree height, and standard deviations of tree...
Trees Wanted—Dead or Alive! Host Selection and Population Dynamics in Tree-Killing Bark Beetles
Kausrud, Kyrre L.; Grégoire, Jean-Claude; Skarpaas, Olav; Erbilgin, Nadir; Gilbert, Marius; Økland, Bjørn; Stenseth, Nils Chr.
2011-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) feed and breed in dead or severely weakened host trees. When their population densities are high, some species aggregate on healthy host trees so that their defences may be exhausted and the inner bark successfully colonized, killing the tree in the process. Here we investigate under what conditions participating with unrelated conspecifics in risky mass attacks on living trees is an adaptive strategy, and what this can tell us about bark beetle outbreak dynamics. We find that the outcome of individual host selection may deviate from the ideal free distribution in a way that facilitates the emergence of tree-killing (aggressive) behavior, and that any heritability on traits governing aggressiveness seems likely to exist in a state of flux or cycles consistent with variability observed in natural populations. This may have implications for how economically and ecologically important species respond to environmental changes in climate and landscape (forest) structure. The population dynamics emerging from individual behavior are complex, capable of switching between “endemic” and “epidemic” regimes spontaneously or following changes in host availability or resistance. Model predictions are compared to empirical observations, and we identify some factors determining the occurrence and self-limitation of epidemics. PMID:21647433
NASA Astrophysics Data System (ADS)
Juhari, Mohd Afiq Aizat; Adam, Jumaat Haji; Ishak, Siti Amirah
2016-11-01
A study was conducted to determine the floristic composition of the Sungai Kenau, Raub, Pahang. The study area was located in the lowland dipterocarp forest where logging and forest opening were common in Malaysia and the area have a population of Rafflesia. The method used was plotting with size of 100 m ×10 m for each plot. Each plot was then divided into 10 subplots measuring 10 m ×10 m. All trees with diameter at breast height (DBH) of 5 cm and above was measured and recorded. Results showed that there were 623 individual trees in an area of 0.5 hectares which includes 50 families, 98 genera and 140 species. Annonaceae was the most dominant family in the study area, while the dominant species in the entire study area was Saraca cauliflora (Leguminosae). The contribution of this study were the presence of tree species from Macaranga which can be used as biological indicator to detect the presence of an open area in the forest while Saraca cauliflora can also be a biological indicator that indicated the present of riparian areas.
Mageroy, Melissa H; Parent, Geneviève; Germanos, Gaby; Giguère, Isabelle; Delvas, Nathalie; Maaroufi, Halim; Bauce, Éric; Bohlmann, Joerg; Mackay, John J
2015-01-01
Periodic outbreaks of spruce budworm (SBW) affect large areas of ecologically and economically important conifer forests in North America, causing tree mortality and reduced forest productivity. Host resistance against SBW has been linked to growth phenology and the chemical composition of foliage, but the underlying molecular mechanisms and population variation are largely unknown. Using a genomics approach, we discovered a β-glucosidase gene, Pgβglu-1, whose expression levels and function underpin natural resistance to SBW in mature white spruce (Picea glauca) trees. In phenotypically resistant trees, Pgβglu-1 transcripts were up to 1000 times more abundant than in non-resistant trees and were highly enriched in foliage. The encoded PgβGLU-1 enzyme catalysed the cleavage of acetophenone sugar conjugates to release the aglycons piceol and pungenol. These aglycons were previously shown to be active against SBW. Levels of Pgβglu-1 transcripts and biologically active acetophenone aglycons were substantially different between resistant and non-resistant trees over time, were positively correlated with each other and were highly variable in a natural white spruce population. These results suggest that expression of Pgβglu-1 and accumulation of acetophenone aglycons is a constitutive defence mechanism in white spruce. The progeny of resistant trees had higher Pgβglu-1 gene expression than non-resistant progeny, indicating that the trait is heritable. With reported increases in the intensity of SBW outbreaks, influenced by climate, variation of Pgβglu-1 transcript expression, PgβGLU-1 enzyme activity and acetophenone accumulation may serve as resistance markers to better predict impacts of SBW in both managed and wild spruce populations. PMID:25302566
Long-term changes of tree species composition and distribution in Korean mountain forests
NASA Astrophysics Data System (ADS)
Lee, Boknam; Lee, Hoontaek; Cho, Sunhee; Yoon, Jongguk; Park, Jongyoung; Kim, Hyun Seok
2017-04-01
Long-term changes in the abundance and distribution of tree species in the temperate forests of South Korea remain poorly understood. We investigated how tree species composition and stand distribution change across temperate mountainous forests using the species composition and DBH size collected over the past 15 years (1998-2012) across 130 permanent forest plots of 0.1 ha in Jiri and Baegun mountains in South Korea. The overall net change of tree communities over the years showed positive in terms of stand density, richness, diversity, and evenness. At the species level, the change of relative species composition has been led by intermediate and shade-tolerant species, such as Quercus mongolica, Carpinus laxiflora, Quercus serrate, Quercus variabilis, Styrax japonicus, Lindera erythrocarpa, and Pinus densiflora and was categorized into five species communities, representing gradual increase or decrease, establishment, extinction, fluctuation of species population. At the community level, the change in species composition appeared to have consistent and directional patterns of increase in the annual rate of change in the mean species traits including species density, pole growth rate, adult growth rate, and adult stature. Based on the additive models, the distribution of species diversity was significantly related to topographical variables including elevation, latitude, longitude, slope, topographic wetness index, and curvature where elevation was the most significant driver, followed by latitude and longitude. However, the change in distribution of species diversity was only significantly influenced by latitude and longitude. This is the first study to reveal the long-term dynamics of change in tree species composition and distribution, which are important to broaden our understanding of temperate mountainous forest ecosystem in South Korea.
Comparison of leaf-on and leaf-off ALS data for mapping riparian tree species
NASA Astrophysics Data System (ADS)
Laslier, Marianne; Ba, Antoine; Hubert-Moy, Laurence; Dufour, Simon
2017-10-01
Forest species composition is a fundamental indicator of forest study and management. However, describing forest species composition at large scales and of highly diverse populations remains an issue for which remote sensing can provide significant contribution, in particular, Airborne Laser Scanning (ALS) data. Riparian corridors are good examples of highly valuable ecosystems, with high species richness and large surface areas that can be time consuming and expensive to monitor with in situ measurements. Remote sensing could be useful to study them, but few studies have focused on monitoring riparian tree species using ALS data. This study aimed to determine which metrics derived from ALS data are best suited to identify and map riparian tree species. We acquired very high density leaf-on and leaf-off ALS data along the Sélune River (France). In addition, we inventoried eight main riparian deciduous tree species along the study site. After manual segmentation of the inventoried trees, we extracted 68 morphological and structural metrics from both leaf-on and leaf-off ALS point clouds. Some of these metrics were then selected using Sequential Forward Selection (SFS) algorithm. Support Vector Machine (SVM) classification results showed good accuracy with 7 metrics (0.77). Both leaf-on and leafoff metrics were kept as important metrics for distinguishing tree species. Results demonstrate the ability of 3D information derived from high density ALS data to identify riparian tree species using external and internal structural metrics. They also highlight the complementarity of leaf-on and leaf-off Lidar data for distinguishing riparian tree species.
UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought
Ludovisi, Riccardo; Tauro, Flavia; Salvati, Riccardo; Khoury, Sacha; Mugnozza Scarascia, Giuseppe; Harfouche, Antoine
2017-01-01
Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV)-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP) aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level) HTFP approach to investigate the response to drought of a full-sib F2 partially inbred population (termed here ‘POP6’), whose F1 was obtained from an intraspecific P. nigra controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought) on a population of 4603 trees (503 genotypes) hosted in two adjacent experimental plots (1.67 ha) by conducting low-elevation (25 m) flights with an aerial drone and capturing 7836 thermal infrared (TIR) images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature (Tc) was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype variability under drought stress conditions. Tc derived from aerial thermal imagery presented a good correlation with ground-truth stomatal conductance (gs) in both segmentation techniques. Interestingly, the HTFP approach was instrumental to detect drought-tolerant response in 25% of the population. This study shows the potential of UAV-based thermal imaging for field phenomics of poplar and other tree species. This is anticipated to have tremendous implications for accelerating forest tree genetic improvement against abiotic stress. PMID:29021803
UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.
Ludovisi, Riccardo; Tauro, Flavia; Salvati, Riccardo; Khoury, Sacha; Mugnozza Scarascia, Giuseppe; Harfouche, Antoine
2017-01-01
Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV)-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP) aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level) HTFP approach to investigate the response to drought of a full-sib F 2 partially inbred population (termed here 'POP6'), whose F 1 was obtained from an intraspecific P. nigra controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought) on a population of 4603 trees (503 genotypes) hosted in two adjacent experimental plots (1.67 ha) by conducting low-elevation (25 m) flights with an aerial drone and capturing 7836 thermal infrared (TIR) images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature ( T c ) was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype variability under drought stress conditions. T c derived from aerial thermal imagery presented a good correlation with ground-truth stomatal conductance ( g s ) in both segmentation techniques. Interestingly, the HTFP approach was instrumental to detect drought-tolerant response in 25% of the population. This study shows the potential of UAV-based thermal imaging for field phenomics of poplar and other tree species. This is anticipated to have tremendous implications for accelerating forest tree genetic improvement against abiotic stress.
Guam's forest resources, 2002.
Joseph A. Donnegan; Sarah L. Butler; Walter Grabowiecki; Bruce A. Hiserote; David. Limtiaco
2004-01-01
The Forest Inventory and Analysis Program collected, analyzed, and summarized field data on 46 forested plots on the island of Guam. Estimates of forest area, tree stem volume and biomass, the numbers of trees, tree damages, and the distribution of tree sizes were summarized for this statistical sample. Detailed tables and graphical highlights provide a summary of Guam...
Palau's forest resources, 2003.
Joseph A. Donnegan; Sarah L. Butler; Olaf Kuegler; Brent J. Stroud; Bruce A. Hiserote; Kashgar. Rengulbai
2007-01-01
The Forest Inventory and Analysis Program collected, analyzed, and summarized field data on 54 forested plots on the islands in the Republic of Palau. Estimates of forest area, tree stem volume and biomass, the numbers of trees, tree damages, and the distribution of tree sizes were summarized for this statistical sample. Detailed tables and graphical highlights provide...
C.A. Eyre; M. Kozanitas; M. Garbelotto
2013-01-01
Limited information is available on how soil and leaf populations of the sudden oak death pathogen, Phytophthora ramorum, may differ in their response to changing weather conditions, and their corresponding role in initiating the next disease cycle after unfavorable weather conditions. We sampled and cultured from 425 trees in six sites, three...
The structure of tropical forests and sphere packings
Jahn, Markus Wilhelm; Dobner, Hans-Jürgen; Wiegand, Thorsten; Huth, Andreas
2015-01-01
The search for simple principles underlying the complex architecture of ecological communities such as forests still challenges ecological theorists. We use tree diameter distributions—fundamental for deriving other forest attributes—to describe the structure of tropical forests. Here we argue that tree diameter distributions of natural tropical forests can be explained by stochastic packing of tree crowns representing a forest crown packing system: a method usually used in physics or chemistry. We demonstrate that tree diameter distributions emerge accurately from a surprisingly simple set of principles that include site-specific tree allometries, random placement of trees, competition for space, and mortality. The simple static model also successfully predicted the canopy structure, revealing that most trees in our two studied forests grow up to 30–50 m in height and that the highest packing density of about 60% is reached between the 25- and 40-m height layer. Our approach is an important step toward identifying a minimal set of processes responsible for generating the spatial structure of tropical forests. PMID:26598678
Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao
2016-12-01
Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.
Oil palm plantations fail to support mammal diversity.
Yue, Sam; Brodie, Jedediah F; Zipkin, Elise F; Bernard, Henry
2015-12-01
Agricultural expansion is the largest threat to global biodiversity. In particular, the rapid spread of tree plantations is a primary driver of deforestation in hyperdiverse tropical regions. Plantations tend to support considerably lower biodiversity than native forest, but it remains unclear whether plantation traits affect their ability to sustain native wildlife populations, particularly for threatened taxa. If animal diversity varies across plantations with different characteristics, these traits could be manipulated to make plantations more "wildlife friendly." The degree to which plantations create edge effects that degrade habitat quality in adjacent forest also remains unclear, limiting our ability to predict wildlife persistence in mixed-use landscapes. We used systematic camera trapping to investigate mammal occurrence and diversity in oil palm plantations and adjacent forest in Sabah, Malaysian Borneo. Mammals within plantations were largely constrained to locations near native forest; the occurrence of most species and overall species richness declined abruptly with decreasing forest proximity from an estimated 14 species at the forest ecotone to -1 species 2 km into the plantation. Neither tree height nor canopy cover within plantations strongly affected mammal diversity or occurrence, suggesting that manipulating tree spacing or planting cycles might not make plantations more wildlife friendly. Plantations did not appear to generate strong edge effects; mammal richness within forest remained high and consistent up to the plantation ecotone. Our results suggest that land-sparing strategies, as opposed to efforts to make plantations more wildlife-friendly, are required for regional wildlife conservation in biodiverse tropical ecosystems.
Climate Warming Threatens Semi-arid Forests in Inner Asia
NASA Astrophysics Data System (ADS)
WU, X.; Liu, H.; Qi, Z.; Li, X.
2014-12-01
A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes (such as fire and insect dynamics) in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected. However, the functionally realistic mechanisms beneath the pervasively climate-induced forest decline/dieback still remain unclear. Network-based long-term surveys and experiment studies are urgently needed for further understandings regarding the responses of forest/tree growth to climate warming/variations.
Ancient human disturbances may be skewing our understanding of Amazonian forests.
McMichael, Crystal N H; Matthews-Bird, Frazer; Farfan-Rios, William; Feeley, Kenneth J
2017-01-17
Although the Amazon rainforest houses much of Earth's biodiversity and plays a major role in the global carbon budget, estimates of tree biodiversity originate from fewer than 1,000 forest inventory plots, and estimates of carbon dynamics are derived from fewer than 200 recensus plots. It is well documented that the pre-European inhabitants of Amazonia actively transformed and modified the forest in many regions before their population collapse around 1491 AD; however, the impacts of these ancient disturbances remain entirely unaccounted for in the many highly influential studies using Amazonian forest plots. Here we examine whether Amazonian forest inventory plot locations are spatially biased toward areas with high probability of ancient human impacts. Our analyses reveal that forest inventory plots, and especially forest recensus plots, in all regions of Amazonia are located disproportionately near archaeological evidence and in areas likely to have ancient human impacts. Furthermore, regions of the Amazon that are relatively oversampled with inventory plots also contain the highest values of predicted ancient human impacts. Given the long lifespan of Amazonian trees, many forest inventory and recensus sites may still be recovering from past disturbances, potentially skewing our interpretations of forest dynamics and our understanding of how these forests are responding to global change. Empirical data on the human history of forest inventory sites are crucial for determining how past disturbances affect modern patterns of forest composition and carbon flux in Amazonian forests.
Christopher W. Woodall; Linda S. Heath; Grant M. Domke; Michael C. Nichols
2011-01-01
The U.S. Forest Service, Forest Inventory and Analysis (FIA) program uses numerous models and associated coefficients to estimate aboveground volume, biomass, and carbon for live and standing dead trees for most tree species in forests of the United States. The tree attribute models are coupled with FIA's national inventory of sampled trees to produce estimates of...
Macquarrie, Chris J K; Scharbach, Roger
2015-02-01
The success of emerald ash borer (Agrilus planipennis Fairmaire) in North America is hypothesized to be due to both the lack of significant natural enemies permitting easy establishment and a population of trees that lack the ability to defend themselves, which allows populations to grow unchecked. Since its discovery in 2002, a number of studies have examined mortality factors of the insect in forests, but none have examined the role of natural enemies and other mortality agents in the urban forest. This is significant because it is in the urban forest where the emerald ash borer has had the most significant economic impacts. We studied populations in urban forests in three municipalities in Ontario, Canada, between 2010 and 2012 using life tables and stage-specific survivorship to analyze data from a split-rearing manipulative experiment. We found that there was little overall mortality caused by natural enemies; most mortality we did observe was caused by disease. Stage-specific survivorship was lowest in small and large larvae, supporting previous observations of high mortality in these two stages. We also used our data to test the hypothesis that mortality and density in emerald ash borer are linked. Our results support the prediction of a negative relationship between mortality and density. However, the relationship varies between insects developing in the crown and those in the trunk of the tree. This relationship was significant because when incorporated with previous findings, it suggests a mechanism and hypothesis to explain the outbreak dynamics of the emerald ash borer. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Local-scale drivers of tree survival in a temperate forest.
Wang, Xugao; Comita, Liza S; Hao, Zhanqing; Davies, Stuart J; Ye, Ji; Lin, Fei; Yuan, Zuoqiang
2012-01-01
Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1-20 cm dbh) and medium trees (20-40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management.
Local-Scale Drivers of Tree Survival in a Temperate Forest
Wang, Xugao; Comita, Liza S.; Hao, Zhanqing; Davies, Stuart J.; Ye, Ji; Lin, Fei; Yuan, Zuoqiang
2012-01-01
Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1–20 cm dbh) and medium trees (20–40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management. PMID:22347996
N.R. LaBonte; K.E. Woeste
2017-01-01
Yellowwood (Cladrastis kentukea) is an uncommon, relict, tree species with a disjunct distribution primarily in the Central Hardwoods region. Most common on rocky, sheltered slopes of the Cumberland Plateau in Tennessee and Kentucky, isolated populations occur on appropriate sites throughout the southern and central United States. In Illinois,...
Interpreting Recruitment Limitation in Forests
J.S. Clark; B. Beckage; P. Camill; B. Cleveland; J. HilleRisLambers; J. Lichter; J. McLachlan; J. Mohan; P. Wyckoff
1999-01-01
Studies of tree recruitment are many, but they provide few general insights into the role of recruitment limitation for population dynamics. That role depends on the vital rates (transitions) from seed production to sapling stages and on overall population growth. To determine the state of our understanding of recruitment limitation we examined how well we can estimate...
Cultural practices for prevention and control of mountain pine beetle infestations
Christopher J. Fettig; Kenneth E. Gibson; A. Steven Munson; Jose F. Negrón
2014-01-01
In recent years, the mountain pine beetle, Dendroctonus ponderosae Hopkins, has impacted >8.9 million hectares of forests in the western United States. During endemic populations, trees weakened by other agents are often colonized by D. ponderosae but may be difficult to detect due to their scarcity. Once populations reach...
Richard Cutler; Leslie Brown; James Powell; Barbara Bentz; Adele Cutler
2003-01-01
Mountain pine beetles (Dendroctonus ponderosae Hopkins) are a pest indigenous to the pine forests of the western United States. Capable of exponential population growth, mountain pine beetles can destroy thousands of acres of trees in a short period of time. The research reported here is part of a larger project to demonstrate the application of, and evaluate,...
Stand level impacts of Ips and Dendroctonus bark beetles in pine forest types of northern Arizona
Joel McMillin; John Anhold; Jose Negron
2008-01-01
(Please note, this is an extended abstract only) Extensive tree mortality occurred in ponderosa pine forests and pinon-juniper woodlands of Arizona from 2001-2004. This mortality has been attributed to a combination of an extensive drought, overstocked stands of pine, and increased bark beetle populations. A complex of Ips and Dendroctonus species worked in concert to...
Jose F. Negron; Christopher J. Fettig
2014-01-01
It is well documented in the scientific and popular literature that large-scale bark beetle outbreaks are occurring across many coniferous forests in the western United States. One of the major species exhibiting extensive eruptive populations resulting in high levels of tree mortality is the mountain pine beetle, Dendroctonus ponderosae (Hopkins) (Negron et al. 2008...
Victoria J. Apsit; Rodney J. Dyer; Victoria L. Sork
2002-01-01
Contemporary gene flow is a major mechanism for the maintenance of genetic diversity. One component of gene flow is the mating system, which is a composite measure of selfing, mating with relatives, and outcrossing. Although both gene flow and mating patterns contribute to the ecological sustainability of populations, a focus of many forest management plans, these...
Climate-induced migration of native tree populations and consequences for forest composition
W. Henry McNab; Martin A. Spetich; Roger W. Perry; James D. Haywood; Shelby Gull Laird; Stacy L. Clark; Justin L. Hart; Scott J. Torreano; Megan L. Buchanan
2014-01-01
The climate of the 13 Southern United States is generally thought to be changing in response to global and continental scale influences; and by 2060, average annual temperature is predicted to be higher and precipitation lower than for the year 2000, the date defined as current for the purposes of this analysis (Figure 10.1). Some southern forest species and...
NASA Astrophysics Data System (ADS)
Pugh, E. T.; Small, E. E.
2010-12-01
The high-elevation forests that are a primary source for Colorado’s domestic and agricultural water needs are changing rapidly due to an infestation by the mountain pine beetle (MPB). MPB are native to Colorado’s high elevation forests. However, the frequency of MPB infestation and resulting tree death has increased dramatically over the past 15 years. In Colorado, over 8,000 km2 of Lodgepole (Pinus contorta) and Ponderosa Pine (Pinus ponderosa) forest have been infested by MPB since 1996. It is predicted that the current epidemic will kill most of the pines in these areas; MPB are very destructive to forest canopies, often killing all of the overhead trees within lodgepole pine stands. Current widespread MPB outbreaks are not limited to Colorado; they are also impacting forests in much of the Western US and British Columbia, Canada. This study is focused on quantifying the impacts of widespread tree death on Colorado’s mountain snowpack. The data were collected one to three years after beetle infestation, at various stages of tree mortality. During the winters of 2009 and 2010, snowpack and meteorological properties were measured at eight pairs of dead and living lodgepole pine stands. All stands are located at an elevation of 2720 ± 32m, in a subalpine region along the headwaters of the Colorado River. Trees in living stands were generally smaller in diameter and more densely populated than trees in dead stands. In the red phase of tree death, snowpack accumulated equally beneath living and dead tree stands. Additionally, snow under all tree stands became isothermal on the same date regardless of mortality. However, the snow was depleted as much as one week earlier beneath red phase dead stands. Canopy transmission of solar radiation was not consistently different between living and red phase dead stands. We noted more ground litter in red phase dead stands which would decrease snowpack albedo and lead to the snowmelt differences observed. We also performed an albedo experiment to quantify the impact of surface litter on snow albedo. Results are also reported for more advanced grey phase dead stands. Lastly, we present a conceptual model of how the primary snow processes change with time as tree mortality progresses through various stages and introduce future work.
Federated States of Micronesia's forest resources, 2006
Joseph A. Donnegan; Sarah L. Butler; Olaf Kuegler; Bruce A. Hiserote
2011-01-01
The Forest Inventory and Analysis program collected, analyzed, and summarized field data on 73 forested field plots on the islands of Kosrae, Chuuk, Pohnpei, and Yap in the Federated States of Micronesia (FSM). Estimates of forest area, tree stem volume and biomass, the numbers of trees, tree damages, and the distribution of tree sizes were summarized for this...
Standing dead tree resources in forests of the United States
Christopher W. Woodall; Karen L. Waddell; Christopher M. Oswalt; James E. Smith
2013-01-01
Given the importance of standing dead trees to numerous forest ecosystem attributes/ processes such as fuel loadings and wildlife habitat, the Forest Inventory and Analysis (FIA) Program of the Forest Service, U.S. Department of Agriculture, initiated a consistent nationwide inventory of standing dead trees in 1999. As the first cycle of annual standing dead tree...
Alabama, 2012 - forest inventory and analysis factsheet
Andrew J. Hartsell
2013-01-01
These early surveys were not concerned with the forests, species, and tree sizes that were not considered commercially viable. Early surveys reported only on growing-stock trees on timberlands, i.e. commercially important tree species and tree sizes on forests that could sustain harvest operations. Currently, FIA reports on all of the forest lands regardless of site...
Proceedings: third lake states forest tree improvement conference
Forest Service U.S.
1958-01-01
The Third Lake States Forest Tree Improvement Conference culminated the activities of the Lake States Forest Tree Improvement Committee and offered an opportmity to report on committee work for the past biennium. It also provided an important means for the Committee to meet its major objective - the encouraging and coordinating of forest tree improvement activities in...
The Importance of Tree Size and Fecundity for Wind Dispersal of Big-Leaf Mahogany
Norghauer, Julian M.; Nock, Charles A.; Grogan, James
2011-01-01
Seed dispersal by wind is a critical yet poorly understood process in tropical forest trees. How tree size and fecundity affect this process at the population level remains largely unknown because of insufficient replication across adults. We measured seed dispersal by the endangered neotropical timber species big-leaf mahogany (Swietenia macrophylla King, Meliaceae) in the Brazilian Amazon at 25 relatively isolated trees using multiple 1-m wide belt transects extended 100 m downwind. Tree diameter and fecundity correlated positively with increased seed shadow extent; but in combination large, high fecundity trees contributed disproportionately to longer-distance dispersal events (>60 m). Among three empirical models fitted to seed density vs. distance in one dimension, the Student-t (2Dt) generally fit best (compared to the negative exponential and inverse power). When seedfall downwind was modelled in two dimensions using a normalised sample, it peaked furthest downwind (c. 25 m) for large, high-fecundity trees; with the inverse Gaussian and Weibull functions providing comparable fits that were slightly better than the lognormal. Although most seeds fell within 30 m of parent trees, relatively few juveniles were found within this distance, resulting in juvenile-to-seed ratios peaking at c. 35–45 m. Using the 2Dt model fits to predict seed densities downwind, coupled with known fecundity data for 2000–2009, we evaluated potential Swietenia regeneration near adults (≤30 m dispersal) and beyond 30 m. Mean seed arrival into canopy gaps >30 m downwind was more than 3× greater for large, high fecundity trees than small, high-fecundity trees. Tree seed production did not necessarily scale up proportionately with diameter, and was not consistent across years, and this resulting intraspecific variation can have important consequences for local patterns of dispersal in forests. Our results have important implications for management and conservation of big-leaf mahogany populations, and may apply to other threatened wind-dispersed Meliaceae trees. PMID:21408184
Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA.
Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T
2013-05-01
A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860-2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20-30 years, at which point the visually healthy populations had consistently higher BAI values (22-34%) than the MPB-infected trees. These results suggest that growth rates two-three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955-59 for the visually healthy trees and 1960-64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies.
Compensatory value of an urban forest: an application of the tree-value formula
David J. Nowak
1993-01-01
Understanding the value of an urban forest can give decisionmakers a better foundation for urban tree management. According to the tree-valuation formula of the Council of Tree and Landscape Appraisers, the estimated compensatory value of the urban forest in Oakland, California, (21% tree cover) is $385.7 million, with residential trees accounting for 58.6% of the...
A.E. Lugo; O. Abelleira Martínez; J. Fonseca da Silva
2012-01-01
The article presents comparative data for aboveground biomass, wood volume, nutirent stocks (N, P, K) and leaf litter in different types of forests in Puerto Rico. The aim of the study is to assess how novel forests of Castilla elastica, Panama Rubber Tree, and Spathodea campanulata, African Tulip Tree, compare with tree plantations and native historical forests (both...
Utilizing random forests imputation of forest plot data for landscape-level wildfire analyses
Karin L. Riley; Isaac C. Grenfell; Mark A. Finney; Nicholas L. Crookston
2014-01-01
Maps of the number, size, and species of trees in forests across the United States are desirable for a number of applications. For landscape-level fire and forest simulations that use the Forest Vegetation Simulator (FVS), a spatial tree-level dataset, or âtree listâ, is a necessity. FVS is widely used at the stand level for simulating fire effects on tree mortality,...
Seeing the forest through the trees: Considering roost-site selection at multiple spatial scales
Jachowski, David S.; Rota, Christopher T.; Dobony, Christopher A.; Ford, W. Mark; Edwards, John W.
2016-01-01
Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007–2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural components that are products of past and current land use interacting with environmental aspects such as landform also are important factors influencing roost-tree selection patterns.
Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo
2015-01-01
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.
Orihuela, Rodrigo L. L.; Peres, Carlos A.; Mendes, Gabriel; Jarenkow, João A.; Tabarelli, Marcelo
2015-01-01
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide. PMID:26309252
Häggman, Hely; Raybould, Alan; Borem, Aluizio; Fox, Thomas; Handley, Levis; Hertzberg, Magnus; Lu, Meng-Zu; Macdonald, Philip; Oguchi, Taichi; Pasquali, Giancarlo; Pearson, Les; Peter, Gary; Quemada, Hector; Séguin, Armand; Tattersall, Kylie; Ulian, Eugênio; Walter, Christian; McLean, Morven
2013-01-01
Forests are vital to the world's ecological, social, cultural and economic well-being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry incorporating the most advanced methods for tree breeding, including the application of genetic engineering (GE), has tremendous potential for producing more wood on less land. However, the deployment of GE trees in plantation forests is a controversial topic and concerns have been particularly expressed about potential harms to the environment. This paper, prepared by an international group of experts in silviculture, forest tree breeding, forest biotechnology and environmental risk assessment (ERA) that met in April 2012, examines how the ERA paradigm used for GE crop plants may be applied to GE trees for use in plantation forests. It emphasizes the importance of differentiating between ERA for confined field trials of GE trees, and ERA for unconfined or commercial-scale releases. In the case of the latter, particular attention is paid to characteristics of forest trees that distinguish them from shorter-lived plant species, the temporal and spatial scale of forests, and the biodiversity of the plantation forest as a receiving environment. PMID:23915092
A bibliography on forest genetics and forest tree improvement 1955
Jonathan W. Wright
1957-01-01
Station Paper No. 77, issued in 1955, was a bibliography of articles on forest genetics and forest tree improvement that were published in 1954. It was prepared at the request of the Committee of Forest Tree Improvement, Society of American Foresters. This second annual bibliography includes articles published in 1955 and a few articles published in 1954 that were not...
Desertification and a shift of forest species in the West African Sahel
Gonzalez, Patrick
2001-01-01
Original field data show that forest species richness and tree density in the West African Sahel declined in the last half of the 20th century. Average forest species richness of areas of 4 km2 in Northwest Senegal fell from 64 ?? 2 species ca 1945 to 43 ?? 2 species in 1993, a decrease significant at p < 0.001. Densities of trees of height ???3 m declined from 10 ?? 0.3 trees ha-1 in 1954 to 7.8 ?? 0.3 trees ha-1 in 1989, also significant at p < 0.001. Standing wood biomass fell 2.1 t ha-1 in the period 1956-1993, releasing CO2 at a rate of 60 kgC person-1 yr-1. These changes have shifted vegetation zones toward areas of higher rainfall at an average rate of 500 to 600 m yr-1. Arid Sahel species have expanded in the north, tracking a concomitant retraction of mesic Sudan and Guinean species to the south. Multivariate analyses identify latitude and longitude, proxies for rainfall and temperature, as the most significant factors explaining tree and shrub distribution. The changes also decreased human carrying capacity to below actual population densities. The rural population of 45 people km-2 exceeded the 1993 carrying capacity, for firewood from shrubs, of 13 people km-2 (range 1 to 21 people km-2). As an adaptation strategy, ecological and socioeconomic factors favor the natural regeneration of local species over the massive plantation of exotic species. Natural regeneration is a traditional practice in which farmers select small field trees that they wish to raise to maturity, protect them, and prune them to promote rapid growth of the apical meristem. The results of this research provide evidence for desertification in the West African Sahel. These documented impacts of desertification foreshadow possible future effects of climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veldman, Joseph W.; Mattingly, W. Brett; Brudvig, Lars A.
Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural equation modeling (SEM) and data from 157 sites across three locations in the southeastern United States to understand the effects of broadleaf savanna trees, broadleaf forest trees, and pine trees on savanna understory plant communities. After accounting for underlying gradients in firemore » frequency and soil moisture, abundances (i.e., basal area and stem density) of forest trees and pines, but not savanna trees, were negatively correlated with the cover and density (i.e., local-scale species richness) of C4 graminoid species, a defining savanna understory functional group that is linked to ecosystem flammability. In analyses of the full understory community, abundances of trees from all functional groups were negatively correlated with species density and cover. For both the C4 and full communities, fire frequency promoted understory plants directly, and indirectly by limiting forest tree abundance. There was little indirect influence of fire on the understory mediated through savanna trees and pines, which are more fire tolerant than forest trees. We conclude that tree functional identity is an important factor that influences overstory tree relationships with savanna understory plant communities. In particular, distinct relationships between trees and C4 graminoids have implications for grass-tree coexistence and vegetation-fire feedbacks that maintain savanna environments and their associated understory plant diversity.« less
Kueppers, Lara M.; Conlisk, Erin; Castanha, Cristina; Moyes, Andrew B.; Germino, Matthew; de Valpine, Perry; Torn, Margaret S.; Mitton, Jeffry B.
2017-01-01
Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.
Kueppers, Lara M; Conlisk, Erin; Castanha, Cristina; Moyes, Andrew B; Germino, Matthew J; de Valpine, Perry; Torn, Margaret S; Mitton, Jeffry B
2017-06-01
Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueppers, Lara M.; Conlisk, Erin; Castanha, Cristina
Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, butmore » raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.« less
Jones, Jay E.; Kroll, Andrew J.; Giovanini, Jack; Duke, Steven D.; Ellis, Tana M.; Betts, Matthew G.
2012-01-01
Background Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations. Methodology and Principal Findings We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35–80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness. Conclusion and Significance Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with stand management strategies that retain or increase hardwood vegetation while simultaneously regenerating the conifer cover in commercial tree plantations. PMID:22905249
Kueppers, Lara M.; Conlisk, Erin; Castanha, Cristina; ...
2016-12-15
Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, butmore » raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.« less
The role of disappeared disturbances in driving the North American prairie-forest boundary
NASA Astrophysics Data System (ADS)
Heilman, K.; McLachlan, J. S.; Staver, A. C.
2016-12-01
Globally, transitions from savanna to forest are often characterized by abrupt changes in tree density that cannot be fully explained by climate and edaphic factors. In the tropics, fire-vegetation feedbacks drive a bimodal distribution in tree cover that leads to alternative forest and savanna stable states within the same climate space. In temperate North America, the pre-European settlement prairie-forest transition has also been hypothesized to be influenced by widespread fires (anthropogenic or natural). However, large scale evidence for fire disturbance feedbacks on tree density in the temperate zone is currently lacking. We investigate both the pre-European and modern tree density along the North American prairie-forest boundary. We hypothesized that the pre-European distribution of tree density was distinctly bimodal due to intact vegetation-disturbance feedbacks along the prairie-forest boundary before settlement, but that fragmentation and fire suppression has produced a modern prairie-forest boundary that is less abrupt and less bimodal. We estimated tree density from aggregated Public Land Survey (PLS) data collected before the time of European agricultural settlement in Minnesota, Wisconsin, Michigan, Indiana, and Illinois and compared PLS density distributions to tree density estimated from modern USFS Forest Inventory Analysis (FIA) data. PLS tree density follows a bimodal distribution that abruptly shifts from savanna to forest at the boundary. Only 15% of the variance in pre-settlement tree density is explained by historical Mean Annual Precipitation (MAP), suggesting that the bimodality may be due to internal feedbacks in the vegetation-disturbance system, rather than to the past underlying environmental gradient. On the modern landscape, MAP explains 6% of FIA tree density variance, and tree density is not bimodal. Regions that had low tree density savannas in the PLS era have significantly increased in tree density, suggesting that the disappearance of disturbances that accompanied agricultural settlement resulted in closed forests where savannas were once an alternative stable state (p < 0.01). Additionally, the once high tree density forests in the PLS have significantly declined in density, suggesting that logging has contributed to land cover change in North America.
Big trees in the southern forest inventory
Christopher M. Oswalt; Sonja N. Oswalt; Thomas J. Brandeis
2010-01-01
Big trees fascinate people worldwide, inspiring respect, awe, and oftentimes, even controversy. This paper uses a modified version of American Forestsâ Big Trees Measuring Guide point system (May 1990) to rank trees sampled between January of 1998 and September of 2007 on over 89,000 plots by the Forest Service, U.S. Department of Agriculture, Forest Inventory and...
Are Protected Areas Required to Maintain Functional Diversity in Human-Modified Landscapes?
Cottee-Jones, H. Eden W.; Matthews, Thomas J.; Bregman, Tom P.; Barua, Maan; Tamuly, Jatin; Whittaker, Robert J.
2015-01-01
The conversion of forest to agriculture across the world’s tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities. PMID:25946032
City of San Francisco, California street tree resource analysis
E.G. McPherson; J.R. Simpson; P.J. Peper; Q. Xiao
2004-01-01
Street trees in San Francisco are comprised of two distinct populations, those managed by the cityâs Department of Public Works (DPW) and those managed by private property owners with or without the help of San Franciscoâs urban forestry nonprofit, Friends of the Urban Forest (FUF). These two entities believe that the publicâs investment in stewardship of San Francisco...
Peter M. Brown; Anna W. Schoettle
2008-01-01
We developed fire-scar and tree-recruitment chronologies from two stands dominated by limber pine and Rocky Mountain bristlecone pine in central and northern Colorado. Population structures in both sites exhibit reverse-J patterns common in uneven-aged forests. Bristlecone pine trees were older than any other at the site or in the limber pine stand, with the oldest...
Randall S. Rosenberger; Lauren A. Bell; Patricia A. Champ; Eric M. White
2013-01-01
Forest insects have long-standing ecological relationships with their host trees. Many insects have a benign or beneficial relationship with trees, but a few species are characterized by unpredictable population eruptions that have great ecological and economic implications (Logan, Régnière, and Powell 2003). These insect outbreaks are a major agent of natural...
Schnitzler, Annik; Arnold, Claire; Cornille, Amandine; Bachmann, Olivier; Schnitzler, Christophe
2014-01-01
The increasing fragmentation of forest habitats and the omnipresence of cultivars potentially threaten the genetic integrity of the European wild apple (Malus sylvestris (L.) Mill). However, the conservation status of this species remains unclear in Europe, other than in Belgium and the Czech Republic, where it has been declared an endangered species. The population density of M. sylvestris is higher in the forests of the upper Rhine Valley (France) than in most European forests, with an unbalanced age-structure, an overrepresentation of adults and a tendency to clump. We characterize here the ecology, age-structure and genetic diversity of wild apple populations in the Rhine Valley. We use these data to highlight links to the history of this species and to propose guidelines for future conservation strategies. In total, 255 individual wild apple trees from six forest stands (five floodplain forests and one forest growing in drier conditions) were analysed in the field, collected and genotyped on the basis of data for 15 microsatellite markers. Genetic analyses showed no escaped cultivars and few hybrids with the cultivated apple. Excluding the hybrids, the genetically "pure" populations displayed high levels of genetic diversity and a weak population structure. Age-structure and ecology studies of wild apple populations identified four categories that were not randomly distributed across the forests, reflecting the history of the Rhine forest over the last century. The Rhine wild apple populations, with their ecological strategies, high genetic diversity, and weak traces of crop-to-wild gene flow associated with the history of these floodplain forests, constitute candidate populations for inclusion in future conservation programmes for European wild apple.
Schnitzler, Annik; Arnold, Claire; Cornille, Amandine; Bachmann, Olivier; Schnitzler, Christophe
2014-01-01
The increasing fragmentation of forest habitats and the omnipresence of cultivars potentially threaten the genetic integrity of the European wild apple (Malus sylvestris (L.) Mill). However, the conservation status of this species remains unclear in Europe, other than in Belgium and the Czech Republic, where it has been declared an endangered species. The population density of M. sylvestris is higher in the forests of the upper Rhine Valley (France) than in most European forests, with an unbalanced age-structure, an overrepresentation of adults and a tendency to clump. We characterize here the ecology, age-structure and genetic diversity of wild apple populations in the Rhine Valley. We use these data to highlight links to the history of this species and to propose guidelines for future conservation strategies. In total, 255 individual wild apple trees from six forest stands (five floodplain forests and one forest growing in drier conditions) were analysed in the field, collected and genotyped on the basis of data for 15 microsatellite markers. Genetic analyses showed no escaped cultivars and few hybrids with the cultivated apple. Excluding the hybrids, the genetically “pure” populations displayed high levels of genetic diversity and a weak population structure. Age-structure and ecology studies of wild apple populations identified four categories that were not randomly distributed across the forests, reflecting the history of the Rhine forest over the last century. The Rhine wild apple populations, with their ecological strategies, high genetic diversity, and weak traces of crop-to-wild gene flow associated with the history of these floodplain forests, constitute candidate populations for inclusion in future conservation programmes for European wild apple. PMID:24827575
Bradford, John B.; Bell, David M.
2017-01-01
Increasing aridity as a result of climate change is expected to exacerbate tree mortality. Reducing forest basal area – the cross-sectional area of tree stems within a given ground area – can decrease tree competition, which may reduce drought-induced tree mortality. However, neither the magnitude of expected mortality increases, nor the potential effectiveness of basal area reduction, has been quantified in dryland forests such as those of the drought-prone Southwest US. We used thousands of repeatedly measured forest plots to show that unusually warm and dry conditions are related to high tree mortality rates and that mortality is positively related to basal area. Those relationships suggest that while increasing high temperature extremes forecasted by climate models may lead to elevated tree mortality during the 21st century, future tree mortality might be partly ameliorated by reducing stand basal area. This adaptive forest management strategy may provide a window of opportunity for forest managers and policy makers to guide forest transitions to species and/or genotypes more suited to future climates.
Winter drought impairs xylem phenology, anatomy and growth in Mediterranean Scots pine forests.
Camarero, J J; Guada, G; Sánchez-Salguero, R; Cervantes, E
2016-12-01
Continental Mediterranean forests face drought but also cold spells and both climate extremes can impair the resilience capacity of these forests. Climate warming could amplify the negative effects of cold spells by inducing premature dehardening. Here we capitalize on a winter drought-induced dieback triggered by a cold spell which occurred in December 2001 affecting Scots pine forests in eastern Spain. We assessed post-dieback recovery by quantifying and comparing radial growth and xylem anatomy of non-declining (ND, crown cover >50%) and declining (D, crown cover ≤50%) trees in two sites (VP, Villarroya de los Pinares; TO, Torrijas). We also characterized xylogenesis in both sites and aboveground productivity in site VP. Dieback caused legacy effects since needle loss, a 60% reduction in litter fall and radial-growth decline characterized D-trees 3 years after dieback symptoms started appearing in spring 2002. D-trees formed collapsed tracheids in the 2002-ring, particularly in the most affected VP site where xylogenesis differences between ND and D trees were most noticeable. The lower growth rates of D-trees were caused by a shorter duration of their major xylogenesis phases. In site VP the radial-enlargement and wall-thickening of tracheids were significantly reduced in D-trees as compared to ND-trees because these xylogenesis phases tended to start earlier and end later in ND-trees. Gompertz models fitted to tracheid production predicted that maximum growth rates occurred 11-12 days earlier in ND than in D-trees. The formation of radially-enlarging tracheids was enhanced by longer days in both study sites and also by wetter conditions in the driest TO site, but xylogenesis sensitivity to climate was reduced in D-trees. Winter-drought dieback impairs xylem anatomy and phenology, aboveground productivity, xylogenesis and growth in Mediterranean Scots pine populations. Affected stands show a costly post-dieback recovery challenging their resilience ability. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Does Forest Continuity Enhance the Resilience of Trees to Environmental Change?
von Oheimb, Goddert; Härdtle, Werner; Eckstein, Dieter; Engelke, Hans-Hermann; Hehnke, Timo; Wagner, Bettina; Fichtner, Andreas
2014-01-01
There is ample evidence that continuously existing forests and afforestations on previously agricultural land differ with regard to ecosystem functions and services such as carbon sequestration, nutrient cycling and biodiversity. However, no studies have so far been conducted on possible long-term (>100 years) impacts on tree growth caused by differences in the ecological continuity of forest stands. In the present study we analysed the variation in tree-ring width of sessile oak (Quercus petraea (Matt.) Liebl.) trees (mean age 115-136 years) due to different land-use histories (continuously existing forests, afforestations both on arable land and on heathland). We also analysed the relation of growth patterns to soil nutrient stores and to climatic parameters (temperature, precipitation). Tree rings formed between 1896 and 2005 were widest in trees afforested on arable land. This can be attributed to higher nitrogen and phosphorous availability and indicates that former fertilisation may continue to affect the nutritional status of forest soils for more than one century after those activities have ceased. Moreover, these trees responded more strongly to environmental changes - as shown by a higher mean sensitivity of the tree-ring widths - than trees of continuously existing forests. However, the impact of climatic parameters on the variability in tree-ring width was generally small, but trees on former arable land showed the highest susceptibility to annually changing climatic conditions. We assume that incompletely developed humus horizons as well as differences in the edaphon are responsible for the more sensitive response of oak trees of recent forests (former arable land and former heathland) to variation in environmental conditions. We conclude that forests characterised by a long ecological continuity may be better adapted to global change than recent forest ecosystems.
Does Forest Continuity Enhance the Resilience of Trees to Environmental Change?
von Oheimb, Goddert; Härdtle, Werner; Eckstein, Dieter; Engelke, Hans-Hermann; Hehnke, Timo; Wagner, Bettina; Fichtner, Andreas
2014-01-01
There is ample evidence that continuously existing forests and afforestations on previously agricultural land differ with regard to ecosystem functions and services such as carbon sequestration, nutrient cycling and biodiversity. However, no studies have so far been conducted on possible long-term (>100 years) impacts on tree growth caused by differences in the ecological continuity of forest stands. In the present study we analysed the variation in tree-ring width of sessile oak (Quercus petraea (Matt.) Liebl.) trees (mean age 115–136 years) due to different land-use histories (continuously existing forests, afforestations both on arable land and on heathland). We also analysed the relation of growth patterns to soil nutrient stores and to climatic parameters (temperature, precipitation). Tree rings formed between 1896 and 2005 were widest in trees afforested on arable land. This can be attributed to higher nitrogen and phosphorous availability and indicates that former fertilisation may continue to affect the nutritional status of forest soils for more than one century after those activities have ceased. Moreover, these trees responded more strongly to environmental changes – as shown by a higher mean sensitivity of the tree-ring widths – than trees of continuously existing forests. However, the impact of climatic parameters on the variability in tree-ring width was generally small, but trees on former arable land showed the highest susceptibility to annually changing climatic conditions. We assume that incompletely developed humus horizons as well as differences in the edaphon are responsible for the more sensitive response of oak trees of recent forests (former arable land and former heathland) to variation in environmental conditions. We conclude that forests characterised by a long ecological continuity may be better adapted to global change than recent forest ecosystems. PMID:25494042
Functional traits help predict post-disturbance demography of tropical trees.
Flores, Olivier; Hérault, Bruno; Delcamp, Matthieu; Garnier, Éric; Gourlet-Fleury, Sylvie
2014-01-01
How tropical tree species respond to disturbance is a central issue of forest ecology, conservation and resource management. We define a hierarchical model to investigate how functional traits measured in control plots relate to the population change rate and to demographic rates for recruitment and mortality after disturbance by logging operations. Population change and demographic rates were quantified on a 12-year period after disturbance and related to seven functional traits measured in control plots. The model was calibrated using a Bayesian Network approach on 53 species surveyed in permanent forest plots (37.5 ha) at Paracou in French Guiana. The network analysis allowed us to highlight both direct and indirect relationships among predictive variables. Overall, 89% of interspecific variability in the population change rate after disturbance were explained by the two demographic rates, the recruitment rate being the most explicative variable. Three direct drivers explained 45% of the variability in recruitment rates, including leaf phosphorus concentration, with a positive effect, and seed size and wood density with negative effects. Mortality rates were explained by interspecific variability in maximum diameter only (25%). Wood density, leaf nitrogen concentration, maximum diameter and seed size were not explained by variables in the analysis and thus appear as independent drivers of post-disturbance demography. Relationships between functional traits and demographic parameters were consistent with results found in undisturbed forests. Functional traits measured in control conditions can thus help predict the fate of tropical tree species after disturbance. Indirect relationships also suggest how different processes interact to mediate species demographic response.
CO2 flux studies of different hemiboreal forest ecosystems
NASA Astrophysics Data System (ADS)
Krasnova, Alisa; Krasnov, Dmitrii; Noe, Steffen M.; Uri, Veiko; Mander, Ülo; Niinemets, Ülo; Soosaar, Kaido
2017-04-01
Hemiboreal zone is a transition between boreal and temperate zones characterized by the combination of climatic and edaphic conditions inherent in both zones. Hemiboreal forests are typically presented by mixed forests types with different ratios of deciduous and conifer tree species. Dominating tree species composition affects the functioning of forest ecosystem and its influence on biogeochemical cycles. We present the result of ecosystem scale CO2 eddy-covariance fluxes research conducted in 4 ecosystems (3 forests sites and 1 clear-cut area) of hemiboreal zone in Estonia. All 4 sites were developing under similar climatic conditions, but different forest management practices resulted in different composition of dominating tree species: pine forest with spruce trees as a second layer (Soontaga site); spruce/birch forest with single alder trees (Liispõllu site); forest presented by sectors of pine, spruce, birch and clearcut areas (SMEAR Estonia site); 5-years old clearcut area (Kõnnu site).
Observations from old forests underestimate climate change effects on tree mortality.
Luo, Yong; Chen, Han Y H
2013-01-01
Understanding climate change-associated tree mortality is central to linking climate change impacts and forest structure and function. However, whether temporal increases in tree mortality are attributed to climate change or stand developmental processes remains uncertain. Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same for young and old forests. Here we disentangle the effects of climate change and stand developmental processes on tree mortality. We show that both climate change and forest development processes influence temporal mortality increases, climate change-associated increases are significantly higher in young than old forests, and higher increases in younger forests are a result of their higher sensitivity to regional warming and drought. We anticipate our analysis to be a starting point for more comprehensive examinations of how forest ecosystems might respond to climate change.
Weghorst, Jennifer A
2007-04-01
The main objective of this study was to estimate the population density and demographic structure of spider monkeys living in wet forest in the vicinity of Sirena Biological Station, Corcovado National Park, Costa Rica. Results of a 14-month line-transect survey showed that spider monkeys of Sirena have one of the highest population densities ever recorded for this genus. Density estimates varied, however, depending on the method chosen to estimate transect width. Data from behavioral monitoring were available to compare density estimates derived from the survey, providing a check of the survey's accuracy. A combination of factors has most probably contributed to the high density of Ateles, including habitat protection within a national park and high diversity of trees of the fig family, Moraceae. Although natural densities of spider monkeys at Sirena are substantially higher than those recorded at most other sites and in previous studies at this site, mean subgroup size and age ratios were similar to those determined in previous studies. Sex ratios were similar to those of other sites with high productivity. Although high densities of preferred fruit trees in the wet, productive forests of Sirena may support a dense population of spider monkeys, other demographic traits recorded at Sirena fall well within the range of values recorded elsewhere for the species.
Large-Scale Mixed Temperate Forest Mapping at the Single Tree Level using Airborne Laser Scanning
NASA Astrophysics Data System (ADS)
Scholl, V.; Morsdorf, F.; Ginzler, C.; Schaepman, M. E.
2017-12-01
Monitoring vegetation on a single tree level is critical to understand and model a variety of processes, functions, and changes in forest systems. Remote sensing technologies are increasingly utilized to complement and upscale the field-based measurements of forest inventories. Airborne laser scanning (ALS) systems provide valuable information in the vertical dimension for effective vegetation structure mapping. Although many algorithms exist to extract single tree segments from forest scans, they are often tuned to perform well in homogeneous coniferous or deciduous areas and are not successful in mixed forests. Other methods are too computationally expensive to apply operationally. The aim of this study was to develop a single tree detection workflow using leaf-off ALS data for the canton of Aargau in Switzerland. Aargau covers an area of over 1,400km2 and features mixed forests with various development stages and topography. Forest type was classified using random forests to guide local parameter selection. Canopy height model-based treetop maxima were detected and maintained based on the relationship between tree height and window size, used as a proxy to crown diameter. Watershed segmentation was used to generate crown polygons surrounding each maximum. The location, height, and crown dimensions of single trees were derived from the ALS returns within each polygon. Validation was performed through comparison with field measurements and extrapolated estimates from long-term monitoring plots of the Swiss National Forest Inventory within the framework of the Swiss Federal Institute for Forest, Snow, and Landscape Research. This method shows promise for robust, large-scale single tree detection in mixed forests. The single tree data will aid ecological studies as well as forest management practices. Figure description: Height-normalized ALS point cloud data (top) and resulting single tree segments (bottom) on the Laegeren mountain in Switzerland.
Leberecht, Martin; Dannenmann, Michael; Gschwendtner, Silvia; Bilela, Silvija; Meier, Rudolf; Simon, Judy; Rennenberg, Heinz; Schloter, Michael; Polle, Andrea
2015-09-01
Beech (Fagus sylvatica), a dominant forest species in Central Europe, competes for nitrogen with soil microbes and suffers from N limitation under dry conditions. We hypothesized that ectomycorrhizal communities and the free-living rhizosphere microbes from beech trees from sites with two contrasting climatic conditions exhibit differences in N acquisition that contribute to differences in host N uptake and are related to differences in host belowground carbon allocation. To test these hypotheses, young trees from the natural regeneration of two genetically similar populations, one from dryer conditions (located in an area with a southwest exposure [SW trees]) and the other from a cooler, moist climate (located in an area with a northeast exposure [NE trees]), were transplanted into a homogeneous substrate in the same environment and labeled with (13)CO2 and (15)NH4 (+). Free-living rhizosphere microbes were characterized by marker genes for the N cycle, but no differences between the rhizospheres of SW or NE trees were found. Lower (15)N enrichment was found in the ectomycorrhizal communities of the NE tree communities than the SW tree communities, whereas no significant differences in (15)N enrichment were observed for nonmycorrhizal root tips of SW and NE trees. Neither the ectomycorrhizal communities nor the nonmycorrhizal root tips originating from NE and SW trees showed differences in (13)C signatures. Because the level of (15)N accumulation in fine roots and the amount transferred to leaves were lower in NE trees than SW trees, our data support the suggestion that the ectomycorrhizal community influences N transfer to its host and demonstrate that the fungal community from the dry condition was more efficient in N acquisition when environmental constraints were relieved. These findings highlight the importance of adapted ectomycorrhizal communities for forest nutrition in a changing climate. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Leberecht, Martin; Dannenmann, Michael; Gschwendtner, Silvia; Bilela, Silvija; Meier, Rudolf; Simon, Judy; Rennenberg, Heinz; Schloter, Michael
2015-01-01
Beech (Fagus sylvatica), a dominant forest species in Central Europe, competes for nitrogen with soil microbes and suffers from N limitation under dry conditions. We hypothesized that ectomycorrhizal communities and the free-living rhizosphere microbes from beech trees from sites with two contrasting climatic conditions exhibit differences in N acquisition that contribute to differences in host N uptake and are related to differences in host belowground carbon allocation. To test these hypotheses, young trees from the natural regeneration of two genetically similar populations, one from dryer conditions (located in an area with a southwest exposure [SW trees]) and the other from a cooler, moist climate (located in an area with a northeast exposure [NE trees]), were transplanted into a homogeneous substrate in the same environment and labeled with 13CO2 and 15NH4+. Free-living rhizosphere microbes were characterized by marker genes for the N cycle, but no differences between the rhizospheres of SW or NE trees were found. Lower 15N enrichment was found in the ectomycorrhizal communities of the NE tree communities than the SW tree communities, whereas no significant differences in 15N enrichment were observed for nonmycorrhizal root tips of SW and NE trees. Neither the ectomycorrhizal communities nor the nonmycorrhizal root tips originating from NE and SW trees showed differences in 13C signatures. Because the level of 15N accumulation in fine roots and the amount transferred to leaves were lower in NE trees than SW trees, our data support the suggestion that the ectomycorrhizal community influences N transfer to its host and demonstrate that the fungal community from the dry condition was more efficient in N acquisition when environmental constraints were relieved. These findings highlight the importance of adapted ectomycorrhizal communities for forest nutrition in a changing climate. PMID:26092464
Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J
2016-01-01
Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species. PMID:26696137
St Clair, Samuel B; Hoines, Joshua
2018-01-01
Climate change is restructuring plant populations and can result in range shifts depending on responses at various life stages of plants. In 2013, a widespread and episodic flowering event provided an opportunity to characterize how Joshua tree's reproductive success and population structure vary in response to the climate variability across its range. We examined the reproductive success and stand structure of 10 Joshua tree populations distributed across the Mojave Desert. Joshua tree density varied by more than an order of magnitude across sites. At 8 of the 10 sites, nearly 80% of the Joshua trees were in bloom, and at the other two 40% were in bloom. The range of seed production and fruit set across the study populations varied by more than an order of magnitude. Fruit production occurred at all of our study sites suggesting that yucca moth pollinators were present at our sites. Increasing temperature had strong positive correlations with the number of trees in bloom (R2 = 0.42), inflorescences per tree (R2 = 0.37), and fruit mass (R2 = 0.77) and seed size (R2 = 0.89. In contrast, temperature was negatively correlated with Joshua tree stand density (R2 = -0.80). Positive correlations between temperature and greater flower and seed production suggest that warming may positively affect Joshua Tree reproduction while negative relationships between temperature and stand density are suggestive of potential constraints of warmer temperatures on establishment success.
Gugger, Paul F; Liang, Christina T; Sork, Victoria L; Hodgskiss, Paul; Wright, Jessica W
2018-02-01
Identifying and quantifying the importance of environmental variables in structuring population genetic variation can help inform management decisions for conservation, restoration, or reforestation purposes, in both current and future environmental conditions. Landscape genomics offers a powerful approach for understanding the environmental factors that currently associate with genetic variation, and given those associations, where populations may be most vulnerable under future environmental change. Here, we applied genotyping by sequencing to generate over 11,000 single nucleotide polymorphisms from 311 trees and then used nonlinear, multivariate environmental association methods to examine spatial genetic structure and its association with environmental variation in an ecologically and economically important tree species endemic to Hawaii, Acacia koa . Admixture and principal components analyses showed that trees from different islands are genetically distinct in general, with the exception of some genotypes that match other islands, likely as the result of recent translocations. Gradient forest and generalized dissimilarity models both revealed a strong association between genetic structure and mean annual rainfall. Utilizing a model for projected future climate on the island of Hawaii, we show that predicted changes in rainfall patterns may result in genetic offset, such that trees no longer may be genetically matched to their environment. These findings indicate that knowledge of current and future rainfall gradients can provide valuable information for the conservation of existing populations and also help refine seed transfer guidelines for reforestation or replanting of koa throughout the state.
The role of stand history in assessing forest impacts
Dale, V.H.; Doyle, T.W.
1987-01-01
Air pollution, harvesting practices, and natural disturbances can affect the growth of trees and forest development. To make predictions about anthropogenic impacts on forests, we need to understand how these factors affect tree growth. In this study the effect of disturbance history on tree growth and stand structure was examined by using a computer model of forest development. The model was run under the climatic conditions of east Tennessee, USA, and the results compared to stand structure and tree growth data from a yellow poplar-white oak forest. Basal area growth and forest biomass were more accurately projected when rough approximations of the thinning and fire history typical of the measured plots were included in the simulation model. Stand history can influence tree growth rates and forest structure and should be included in any attempt to assess forest impacts.
Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests
J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan
2008-01-01
Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...
Monitoring nontimber forest products using forest inventory data: an example with slippery elm bark
Jobriath S. Kauffman; Stephen P. Prisley; James L. Chamberlain
2015-01-01
The USDA Forest Service Forest Inventory and Analysi (FIA) program collects data on a wealth of variables related to trees in forests. Some of these trees produce nontimber forest products (NTFPs) (e.g., fruit, bark and sap) that are harvested for culinary, decorative, building, and medicinal purposes. At least 11 tree species inventoried by FIA are valued for their...
Balaguer, Luís; Arroyo-García, Rosa; Jiménez, Percy; Jiménez, María Dolores; Villegas, Luís; Cordero, Irene; Rubio de Casas, Rafael; Fernández-Delgado, Raúl; Ron, María Eugenia; Manrique, Esteban; Vargas, Pablo; Cano, Emilio; Pueyo, José J.; Aronson, James
2011-01-01
Background In the Peruvian Coastal Desert, an archipelago of fog oases, locally called lomas, are centers of biodiversity and of past human activity. Fog interception by a tree canopy, dominated by the legume tree tara (Caesalpinia spinosa), enables the occurrence in the Atiquipa lomas (southern Peru) of an environmental island with a diverse flora and high productivity. Although this forest provides essential services to the local population, it has suffered 90% anthropogenic reduction in area. Restoration efforts are now getting under way, including discussion as to the most appropriate reference ecosystem to use. Methodology/Principal Findings Genetic diversity of tara was studied in the Atiquipa population and over a wide geographical and ecological range. Neither exclusive plastid haplotypes to loma formations nor clear geographical structuring of the genetic diversity was found. Photosynthetic performance and growth of seedlings naturally recruited in remnant patches of loma forest were compared with those of seedlings recruited or planted in the adjacent deforested area. Despite the greater water and nitrogen availability under tree canopy, growth of forest seedlings did not differ from that of those recruited into the deforested area, and was lower than that of planted seedlings. Tara seedlings exhibited tight stomatal control of photosynthesis, and a structural photoprotection by leaflet closure. These drought-avoiding mechanisms did not optimize seedling performance under the conditions produced by forest interception of fog moisture. Conclusions/Significance Both weak geographic partitioning of genetic variation and lack of physiological specialization of seedlings to the forest water regime strongly suggest that tara was introduced to lomas by humans. Therefore, the most diverse fragment of lomas is the result of landscape management and resource use by pre-Columbian cultures. We argue that an appropriate reference ecosystem for ecological restoration of lomas should include sustainable agroforestry practices that emulate the outcomes of ancient uses. PMID:21829680
Rain forest fragmentation and the proliferation of successional trees.
Laurance, William F; Nascimento, Henrique E M; Laurance, Susan G; Andrade, Ana C; Fearnside, Philip M; Ribeiro, José E L; Capretz, Robson L
2006-02-01
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.
Roost networks of northern myotis (Myotis septentrionalis) in a managed landscape
Johnson, J.B.; Mark, Ford W.; Edwards, J.W.
2012-01-01
Maternity groups of many bat species conform to fission-fusion models and movements among diurnal roost trees and individual bats belonging to these groups use networks of roost trees. Forest disturbances may alter roost networks and characteristics of roost trees. Therefore, at the Fernow Experimental Forest in West Virginia, we examined roost tree networks of northern myotis (Myotis septentrionalis) in forest stands subjected to prescribed fire and in unmanipulated control treatments in 2008 and 2009. Northern myotis formed social groups whose roost areas and roost tree networks overlapped to some extent. Roost tree networks largely resembled scale-free network models, as 61% had a single central node roost tree. In control treatments, central node roost trees were in early stages of decay and surrounded by greater basal area than other trees within the networks. In prescribed fire treatments, central node roost trees were small in diameter, low in the forest canopy, and surrounded by low basal area compared to other trees in networks. Our results indicate that forest disturbances, including prescribed fire, can affect availability and distribution of roosts within roost tree networks. ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ewers, B. E.; Bretfeld, M.; Millar, D.; Hall, J. S.; Beverly, D.; Hall, J. S.; Ogden, F. L.; Mackay, D. S.
2016-12-01
Process-based models of tree impacts on the hydrologic cycle must include not only plant hydraulic limitations but also photosynthetic controls because plants lose water to gain carbon. The Terrestrial Regional Ecosystem Exchange Simulator (TREES) is one such model. TREES includes a Bayesian model-data fusion approach that provides rigorous tests of patterns in tree transpiration data against biophysical processes in the model. TREES has been extensively tested against many temperate tree data sets including those experiencing severe and lethal drought. We test TREES against data from sap flow-scaled transpiration in 76 tropical trees (representing 42 different species) in secondary forests of three different ages (8, 25, and 80+ years) located in the Panama Canal Watershed. These data were collected during the third driest El Niño-Southern Oscillation (ENSO) event on record in Panama during 2015/2016. Tree transpiration response to vapor pressure deficit and solar radiation was the same in the two older forests, but showed an additional response to limited soil moisture in the youngest forest. Volumetric water content at 30 and 50 cm depths was 8% lower in the 8 year old forest than in the 80+ year old forest. TREES could not simulate this difference in soil moisture without increasing simulated root area. TREES simulations were improved by including light response curves of leaf photosynthesis, root vulnerability to cavitation and canopy position impacts on light. TREES was able to simulate the anisohydric (loose stomatal regulation of leaf water potential) and isohydric (tight stomatal regulation) of the 73 trees species a priori indicating that species level information is not required. Analyses of posterior probability distributions indicates TREES model predictions of individual tree transpiration would likely be improved with more detailed root and soil moisture in all forest ages data with the most improvement likely in the 8 year old forest. Our results suggest that a biophysical tree transpiration model developed in temperate forests can be applied to the tropics and could be used to improve predictions of evapotranspiration from changing land cover in tropical hydrology models.
Tracey N. Johnson; Steven W. Buskirk; Gregory D. Hayward; Martin G. Raphael
2014-01-01
A recent series of bark beetle outbreaks in the Rocky Mountain region of the U.S. is the largest and most intense ever recorded. Factors contributing to tree mortality from bark beetles are complex, but include aspects of forest stand condition. Because stand conditions respond to forest management, evaluating bark beetle-caused tree mortality and changes in forest...
Proceedings of the fourth Lake States forest tree improvement conference
Lake States Forest Experiment Station
1960-01-01
The Lake States Forest Experiment Station is glad to facilitate the work of the Lake States Forest Tree Improvement Committee in encouraging and coordinating forest genetics activities in this region. We are happy, therefore, to publish this Proceedings of the Fourth Lake States Forest Tree Improvement Conference, as we did for the preceding three conferences in 1953,...
Proceedings of the fifth Lake States forest tree improvement conference
Lake States Forest Experiment Station
1962-01-01
The Lake States Forest Experiment Station has given active support to the Lake States Forest Tree Improvement Committee since the Committee's inception in 1953. In the interests of encouraging and coordinating forest genetics activities in this region, we are happy to publish this Proceedings of the Fifth Lake States Forest Tree Improvement Conference, as we did...
Species Composition of Down Dead and Standing Live Trees: Implications for Forest Inventory Analysis
Christopher W. Woodall; Linda Nagel
2005-01-01
The assessment of species composition in most forest inventory analysis relies solely on standing live tree information characterized by current forest type. With the implementation of the third phase of the U.S. Department of Agriculture Forest Service's Forest Inventory and Analysis program, the species composition of down dead trees, otherwise termed coarse...
Randall S. Morin; Jim Steinman; KaDonna C. Randolph
2012-01-01
The condition of tree crowns is an important indicator of tree and forest health. Crown conditions have been evaluated during surveys of Forest Inventory and Analysis (FIA) Phase 3 (P3) plots since 1999. In this study, remeasured data from 39,357 trees in the northern United States were used to assess the probability of survival among various tree species using the...
Detection, diversity, and population dynamics of waterborne Phytophthora ramorum populations
Catherine Eyre; Matteo Garbelotto
2015-01-01
Sudden oak death, the tree disease caused by Phytophthora ramorum, has significant environmental and economic impacts on natural forests on the U.S. west coast, plantations in the United Kingdom, and in the worldwide nursery trade. Stream baiting is vital for monitoring and early detection of the pathogen in high-risk areas and is performed...
K. L. Fenn; F. C. Meinzer; K. A. McCulloh; D. R. Woodruff; D. E. Marias
2015-01-01
First-year tree seedlings represent a particularly vulnerable life stage and successful seedling establishment is crucial for forest regeneration. We investigated the extent to which Pinus ponderosa P. & C. Lawson populations from different climate zones exhibit differential expression of functional traits that may facilitate their establishment. Seeds from two...
Contemporary pollen and seed dispersal in natural populations of Bertholletia excelsa (Bonpl.).
Baldoni, A B; Wadt, L H O; Campos, T; Silva, V S; Azevedo, V C R; Mata, L R; Botin, A A; Mendes, N O; Tardin, F D; Tonini, H; Hoogerheide, E S S; Sebbenn, A M
2017-09-21
Due to the nutritional content and commercial value of its seeds, Bertholletia excelsa is one of the most important species exploited in the Amazon region. The species is hermaphroditic, insect pollinated, and its seeds are dispersed by barochory and animals. Because the fruit set is dependent on natural pollinator activity, gene flow plays a key role in fruit production. However, to date, there have been no studies on pollen and seed flow in natural populations of B. excelsa. Herein, we used microsatellite loci and parentage analysis to investigate the spatial genetic structure (SGS), realized pollen and seed dispersal, and effective pollen dispersal for two B. excelsa populations in the Brazilian Amazon forest. Two plots were established in natural forests from which adults, juveniles, and seeds were sampled. Realized and effective pollen flow was greater than realized seed flow. The distance of realized pollen dispersal ranged from 36 to 2060 m, and the distance of realized seed dispersal ranged from 30 to 1742 m. Both pollen and seeds showed a dispersal pattern of isolation by distance, indicating a high frequency of mating among near-neighbor trees and seed dispersal near to mother trees. Both populations present SGS up to 175 m, which can be explained by isolation by distance pollen and seed dispersal patterns. Our results suggested that fragmentation of these forest populations may result in a significant decrease in gene flow, due to the isolation by distance pollen and seed dispersal patterns.
NASA Astrophysics Data System (ADS)
Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn
2016-06-01
Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled with terrain variables produced better result, with the higher overall accuracy and kappa coefficient than first experiment. The results indicate that the Maximum Entropy method is an applicable, and to classify tree species using satellite imagery data coupled with terrain information can improve the classification of tree species in the study area.
Häggman, Hely; Raybould, Alan; Borem, Aluizio; Fox, Thomas; Handley, Levis; Hertzberg, Magnus; Lu, Meng-Zu; Macdonald, Philip; Oguchi, Taichi; Pasquali, Giancarlo; Pearson, Les; Peter, Gary; Quemada, Hector; Séguin, Armand; Tattersall, Kylie; Ulian, Eugênio; Walter, Christian; McLean, Morven
2013-09-01
Forests are vital to the world's ecological, social, cultural and economic well-being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry incorporating the most advanced methods for tree breeding, including the application of genetic engineering (GE), has tremendous potential for producing more wood on less land. However, the deployment of GE trees in plantation forests is a controversial topic and concerns have been particularly expressed about potential harms to the environment. This paper, prepared by an international group of experts in silviculture, forest tree breeding, forest biotechnology and environmental risk assessment (ERA) that met in April 2012, examines how the ERA paradigm used for GE crop plants may be applied to GE trees for use in plantation forests. It emphasizes the importance of differentiating between ERA for confined field trials of GE trees, and ERA for unconfined or commercial-scale releases. In the case of the latter, particular attention is paid to characteristics of forest trees that distinguish them from shorter-lived plant species, the temporal and spatial scale of forests, and the biodiversity of the plantation forest as a receiving environment. © 2013 ILSI Research Foundation. Plant Biotechnology Journal published by Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Varghese, Anita; Ticktin, Tamara; Mandle, Lisa; Nath, Snehlata
2015-01-01
The harvest of non-timber forest products (NTFPs), together with other sources of anthropogenic disturbance, impact plant populations greatly. Despite this, conservation research on NTFPs typically focuses on harvest alone, ignoring possible confounding effects of other anthropogenic and ecological factors. Disentangling anthropogenic disturbances is critical in regions such as India's Western Ghats, a biodiversity hotspot with high human density. Identifying strategies that permit both use and conservation of resources is essential to preserving biodiversity while meeting local needs. We assessed the effects of NTFP harvesting (fruit harvest from canopy and lopping of branches for fruit) in combination with other common anthropogenic disturbances (cattle grazing, fire frequency and distance from village), in order to identify which stressors have greater effects on recruitment of three tropical dry forest fruit tree species. Specifically, we assessed the structure of 54 populations of Phyllanthus emblica, P. indofischeri and Terminalia chebula spread across the Nilgiri Biosphere Reserve, Western Ghats to ask: (1) How are populations recruiting? and (2) What anthropogenic disturbance and environmental factors, specifically forest type and elevation, are the most important predictors of recruitment status? We combined participatory research with an information-theoretic model-averaging approach to determine which factors most affect population structure and recruitment status. Our models illustrate that for T. chebula, high fire frequency and high fruit harvest intensity decreased the proportion of saplings, while lopping branches or stems to obtain fruit increased it. For Phyllanthus spp, recruitment was significantly lower in plots with more frequent fire. Indices of recruitment of both species were significantly higher for plots in more open-canopy environments of savanna woodlands than in dry forests. Our research illustrates an approach for identifying which factors are most important in limiting recruitment of NTFP populations and other plant species that may be in decline, in order to design effective management strategies.
Surface storage of rainfall in tree crowns: not all trees are equal
E. Gregory McPherson; Q. Xiao; Natalie van Doorn; P. Peper; E. Teach
2017-01-01
Urban forests can be an effective strategy for managing stormwater. The soil that supports tree growth acts like a reservoir that reduces runoff. The tree crown intercepts rainfall on leaves and stems and its evaporation reduces water reaching the ground below. Until now surface storage capacities have been studied only for forest trees. Based on forest research, green...
Calibration and Validation of Landsat Tree Cover in the Taiga-Tundra Ecotone
NASA Technical Reports Server (NTRS)
Montesano, Paul Mannix; Neigh, Christopher S. R.; Sexton, Joseph; Feng, Min; Channan, Saurabh; Ranson, Kenneth J.; Townshend, John R.
2016-01-01
Monitoring current forest characteristics in the taiga-tundra ecotone (TTE) at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover greater than 80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010) by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.
GOULART, MAÍRA FIGUEIREDO; LEMOS FILHO, JOSÉ PIRES; LOVATO, MARIA BERNADETE
2005-01-01
• Background and Aims Plathymenia reticulata (Leguminosae) is a Brazilian tree that occurs in two biomes: Cerrado, a woody savanna vegetation, and the Atlantic Forest, a tropical forest. In this study, phenological patterns and their variability within and among populations located in these biomes and in transitional zones between them were assessed. • Methods During a 15-month period, individuals from two populations in Cerrado, two in the Atlantic Forest, and six in transitional zones (three in a cerrado-like environment and three in forest fragments) were evaluated in Minas Gerais State, Brazil. The individuals were evaluated monthly according to the proportion of the canopy in each vegetative phenophase (leaf fall, leaf flush and mature leaves) and each reproductive phenophase (floral buds, flowers, immature fruits and mature fruit/seed dispersal). In order to assess the phenological variability within and among populations, habitats and biomes, the Shannon–Wiener diversity index, the Morisita–Horn similarity index and genetic population approach of partitioning diversity were used. • Key Results Populations of P. reticulata, in general, showed similar phenology; the main differences were related to leaf fall, a process that starts months earlier in the Cerrado than in transitional sites, and even later in forest areas. Considerable synchrony was observed for reproductive phenology among populations and between biomes. Most phenological diversity was due to differences among individuals within populations. • Conclusion In spite of environmental differences, P. reticulata from the Atlantic Forest and Cerrado showed similar phenological behavior with only about 10 % of the total diversity being attributed to differences between biomes. PMID:15972799
Sustainable development and use of ecosystems with non-forest trees
USDA-ARS?s Scientific Manuscript database
Non-forest trees are components of managed ecosystems including orchards and agroforestry systems and natural ecosystems such as savannas and riparian corridors. Each of these ecosystems includes trees but does not have a complete tree canopy or spatial extent necessary to create a true forest ecosy...
Palaeovegetation. Diversity of temperate plants in east Asia.
Harrison, S P; Yu, G; Takahara, H; Prentice, I C
2001-09-13
The exceptionally broad species diversity of vascular plant genera in east Asian temperate forests, compared with their sister taxa in North America, has been attributed to the greater climatic diversity of east Asia, combined with opportunities for allopatric speciation afforded by repeated fragmentation and coalescence of populations through Late Cenozoic ice-age cycles. According to Qian and Ricklefs, these opportunities occurred in east Asia because temperate forests extended across the continental shelf to link populations in China, Korea and Japan during glacial periods, whereas higher sea levels during interglacial periods isolated these regions and warmer temperatures restricted temperate taxa to disjunct refuges. However, palaeovegetation data from east Asia show that temperate forests were considerably less extensive than today during the Last Glacial Maximum, calling into question the coalescence of tree populations required by the hypothesis of Qian and Ricklefs.
Gasparini, Patrizia; Di Cosmo, Lucio; Cenni, Enrico; Pompei, Enrico; Ferretti, Marco
2013-07-01
In the frame of a process aiming at harmonizing National Forest Inventory (NFI) and ICP Forests Level I Forest Condition Monitoring (FCM) in Italy, we investigated (a) the long-term consistency between FCM sample points (a subsample of the first NFI, 1985, NFI_1) and recent forest area estimates (after the second NFI, 2005, NFI_2) and (b) the effect of tree selection method (tree-based or plot-based) on sample composition and defoliation statistics. The two investigations were carried out on 261 and 252 FCM sites, respectively. Results show that some individual forest categories (larch and stone pine, Norway spruce, other coniferous, beech, temperate oaks and cork oak forests) are over-represented and others (hornbeam and hophornbeam, other deciduous broadleaved and holm oak forests) are under-represented in the FCM sample. This is probably due to a change in forest cover, which has increased by 1,559,200 ha from 1985 to 2005. In case of shift from a tree-based to a plot-based selection method, 3,130 (46.7%) of the original 6,703 sample trees will be abandoned, and 1,473 new trees will be selected. The balance between exclusion of former sample trees and inclusion of new ones will be particularly unfavourable for conifers (with only 16.4% of excluded trees replaced by new ones) and less for deciduous broadleaves (with 63.5% of excluded trees replaced). The total number of tree species surveyed will not be impacted, while the number of trees per species will, and the resulting (plot-based) sample composition will have a much larger frequency of deciduous broadleaved trees. The newly selected trees have-in general-smaller diameter at breast height (DBH) and defoliation scores. Given the larger rate of turnover, the deciduous broadleaved part of the sample will be more impacted. Our results suggest that both a revision of FCM network to account for forest area change and a plot-based approach to permit statistical inference and avoid bias in the tree sample composition in terms of DBH (and likely age and structure) are desirable in Italy. As the adoption of a plot-based approach will keep a large share of the trees formerly selected, direct tree-by-tree comparison will remain possible, thus limiting the impact on the time series comparability. In addition, the plot-based design will favour the integration with NFI_2.
Estimation of Trees Outside Forests using IRS High Resolution data by Object Based Image Analysis
NASA Astrophysics Data System (ADS)
Pujar, G. S.; Reddy, P. M.; Reddy, C. S.; Jha, C. S.; Dadhwal, V. K.
2014-11-01
Assessment of Trees outside forests (TOF) is widely being recognized as a pivotal theme, in sustainable natural resource management, due to their role in offering variety of goods, such as timber, fruits and fodder as well as services like water, carbon, biodiversity. Forest Conservation efforts involving reduction of deforestation and degradation may have to increasingly rely on alternatives provided by TOF in catering to economic demands in forest edges. Spatial information systems involving imaging, analysis and monitoring to achieve objectives under protocols like REDD+, require incorporation of information content from areas under forest as well as trees outside forests, to aid holistic decisions. In this perspective, automation in retrieving information on area under trees, growing outside forests, using high resolution imaging is essential so that measuring and verification of extant carbon pools, are strengthened. Retrieval of this tree cover is demonstrated herewith, using object based image analysis in a forest edge of dry deciduous forests of Eastern Ghats, in Khammam district of Telangana state of India. IRS high resolution panchromatic 2.5 m data (Cartosat-1 Orthorectified) used in tandem with 5.8 m multispectral LISS IV data, discerns tree crowns and clusters at a detailed scale and hence semi-automated approach is attempted to classify TOF from a pair of image from relatively crop and cloud free season. Object based image analysis(OBIA) approach as implemented in commercial suite of e-Cognition (Ver 8.9) consists of segmentation at user defined scale followed by application of wide range of spectral, textural and object geometry based parameters for classification. Software offers innovative blend of raster and vector features that can be juxtaposed flexibly, across scales horizontally or vertically. Segmentation was carried out at multiple scales to discern first the major land covers, such as forest, water, agriculture followed by that at a finer scale, within cultivated landscape. Latter scale aimed to segregate TOF in configurations such as individual or scattered crowns, linear formations and patch TOF. As per the adopted norms in India for defining tree cover, units up to 1 ha area were considered as candidate TOF. Classification of fine scale (at 10) segments was accomplished using size, shape and texture. A customised parameter involving ratio of area of segment to its main skeleton length discerned linear formations consistently. Texture of Cartosat-1 2.5 m data was also used segregate tree cover from smoother crop patches in patch TOF category. In view of the specificity of the landscape character, continuum of cultivated area (b) and pockets of cultivation within forest (c) as well as the entire study area (a) were considered as three envelopes for evaluating the accuracy of the method. Accuracies not less than 75.1 per cent were reported in all the envelopes with a kappa accuracy of not less than 0.58. Overall accuracy of entire study area was 75.9 per cent with Kappa of 0.59 followed by 75.1 per cent ( Kappa: 0.58 ) of agricultural landscape (b). In pockets of cultivation context(c) accuracy was higher at 79.2 per cent ( Kappa: 0.64 ) possibly due to smaller population. Assessment showed that 1,791 ha of 24,140 ha studied (7.42 %) was under tree cover as per the definitions adopted. Strength of accuracy demonstrated obviously points to the potential of IRS high resolution data combination in setting up procedures to monitor the TOF in Indian context using OBIA approach so as to cater to the evolving demands of resource assessment and monitoring.
Ancient human disturbances may be skewing our understanding of Amazonian forests
McMichael, Crystal N. H.; Matthews-Bird, Frazer; Farfan-Rios, William; Feeley, Kenneth J.
2017-01-01
Although the Amazon rainforest houses much of Earth’s biodiversity and plays a major role in the global carbon budget, estimates of tree biodiversity originate from fewer than 1,000 forest inventory plots, and estimates of carbon dynamics are derived from fewer than 200 recensus plots. It is well documented that the pre-European inhabitants of Amazonia actively transformed and modified the forest in many regions before their population collapse around 1491 AD; however, the impacts of these ancient disturbances remain entirely unaccounted for in the many highly influential studies using Amazonian forest plots. Here we examine whether Amazonian forest inventory plot locations are spatially biased toward areas with high probability of ancient human impacts. Our analyses reveal that forest inventory plots, and especially forest recensus plots, in all regions of Amazonia are located disproportionately near archaeological evidence and in areas likely to have ancient human impacts. Furthermore, regions of the Amazon that are relatively oversampled with inventory plots also contain the highest values of predicted ancient human impacts. Given the long lifespan of Amazonian trees, many forest inventory and recensus sites may still be recovering from past disturbances, potentially skewing our interpretations of forest dynamics and our understanding of how these forests are responding to global change. Empirical data on the human history of forest inventory sites are crucial for determining how past disturbances affect modern patterns of forest composition and carbon flux in Amazonian forests. PMID:28049821
36 CFR 261.6 - Timber and other forest products.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...
Tree species diversity and distribution patterns in tropical forests of Garo Hills.
A. Kumar; B.G. Marcot; A. Saxena
2006-01-01
We analyzed phytosociological characteristics and diversity patterns of tree species of tropical forests of Garo Hills, western Meghalaya, northeast India. The main vegetation of the region included primary forests, secondary forests, and sal (Shorea robusta) plantations, with 162, 132, and 87 tree species, respectively. The Shannon-Wiener...
36 CFR 261.6 - Timber and other forest products.
Code of Federal Regulations, 2014 CFR
2014-07-01
... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...
36 CFR 261.6 - Timber and other forest products.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...
36 CFR 261.6 - Timber and other forest products.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...
36 CFR 261.6 - Timber and other forest products.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...
Gossner, Martin M; Lade, Peggy; Rohland, Anja; Sichardt, Nora; Kahl, Tiemo; Bauhus, Jürgen; Weisser, Wolfgang W; Petermann, Jana S
2016-01-01
Arthropod communities in water-filled tree holes may be sensitive to impacts of forest management, for example via changes in environmental conditions such as resource input. We hypothesized that increasing forest management intensity (ForMI) negatively affects arthropod abundance and richness and shifts community composition and trophic structure of tree hole communities. We predicted that this shift is caused by reduced habitat and resource availability at the forest stand scale as well as reduced tree hole size, detritus amount and changed water chemistry at the tree holes scale. We mapped 910 water-filled tree holes in two regions in Germany and studied 199 tree hole inhabiting arthropod communities. We found that increasing ForMI indeed significantly reduced arthropod abundance and richness in water-filled tree holes. The most important indirect effects of management intensity on tree hole community structure were the reduced amounts of detritus for the tree hole inhabiting organisms and changed water chemistry at the tree hole scale, both of which seem to act as a habitat filter. Although habitat availability at the forest stand scale decreased with increasing management intensity, this unexpectedly increased local arthropod abundance in individual tree holes. However, regional species richness in tree holes significantly decreased with increasing management intensity, most likely due to decreased habitat diversity. We did not find that the management-driven increase in plant diversity at the forest stand scale affected communities of individual tree holes, for example via resource availability for adults. Our results suggest that management of temperate forests has to target a number of factors at different scales to conserve diverse arthropod communities in water-filled tree holes. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Interacting factors driving a major loss of large trees with cavities in a forest ecosystem.
Lindenmayer, David B; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E; Franklin, Jerry F; Laurance, William F; Stein, John A R; Gibbons, Philip
2012-01-01
Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.
Upland Trees Contribute to Exchange of Nitrous Oxide (N2O) in Forest Ecosystems
NASA Astrophysics Data System (ADS)
Tian, H.; Thompson, R.; Canadell, J.; Winiwarter, W.; Machacova, K.; Maier, M.; Halmeenmäki, E.; Svobodova, K.; Lang, F.; Pihlatie, M.; Urban, O.
2017-12-01
The increase in atmospheric nitrous oxide (N2O) concentration contributes to the acceleration of the greenhouse effect. However, the role of trees in the N2O exchange of forest ecosystems is still an open question. While the soils of temperate and boreal forests were shown to be a natural source of N2O, trees have been so far overlooked in the forest N2O inventories. We determined N2O fluxes in common tree species of boreal and temperate forests: Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy and silver birch (Betula pubescens, B. pendula), and European beech (Fagus sylvatica). We investigated (1) whether these tree species exchange N2O with the atmosphere under natural field conditions, (2) how the tree N2O fluxes contribute to the forest N2O balance, and (3) whether these fluxes show seasonal dynamics. The studies were performed in a boreal forest (SMEAR II station, Finland; June 2014 - May 2015) and two temperate mountain forests (White Carpathians, Czech Republic; Black Forest, Germany; June and July 2015). Fluxes of N2O in mature tree stems and forest floor were measured using static chamber systems followed by chromatographic and photo-acoustic analyses of N2O concentration changes. Pine, spruce and birch trees were identified as net annual N2O sources. Spruce was found the strongest emitter (0.27 mg ha-1 h-1) amounting thus up to 2.5% of forest floor N2O emissions. All tree species showed a substantial seasonality in stem N2O flux that was related to their physiological activity and climatic variables. In contrast, stems of beech trees growing at soils consuming N2O may act as a substantial sink of N2O from the atmosphere. Consistent N2O consumption by tree stems ranging between -12.1 and -35.2 mg ha-1 h-1 and contributing by up to 3.4% to the forest floor N2O uptake is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with beech bark (lichens, mosses and algae) was quantified. All the organisms were net N2O sinks at full rehydration with consumption rates comparable to stem consumption rates. All tree species studied contribute to N2O exchange in forest ecosystems and these fluxes have to be included in the forest N2O emission inventories.
Karin Riley; Isaac C. Grenfell; Mark A. Finney
2016-01-01
Maps of the number, size, and species of trees in forests across the western United States are desirable for many applications such as estimating terrestrial carbon resources, predicting tree mortality following wildfires, and for forest inventory. However, detailed mapping of trees for large areas is not feasible with current technologies, but statistical...
Integrating LIDAR and forest inventories to fill the trees outside forests data gap
Kristofer D. Johnson; Richard Birdsey; Jason Cole; Anu Swatantran; Jarlath O' Neil-Dunne; Ralph Dubayah; Andrew Lister
2015-01-01
Forest inventories are commonly used to estimate total tree biomass of forest land even though they are not traditionally designed to measure biomass of trees outside forests (TOF). The consequence may be an inaccurate representation of all of the aboveground biomass, which propagates error to the outputs of spatial and process models that rely on the inventory data....
A Regional Simulation to Explore Impacts of Resource Use and Constraints
2007-03-01
mountaintops. (10) Deciduous Forest - This class is composed of forests, which contain at least 75% deciduous trees in the canopy, deciduous ... trees , pine plantations, and evergreen woodlands. (12) Mixed Forest - This class includes forests with mixed deciduous /coniferous canopies, natural...reflective surfaces. Classification of forested wetlands dominated by deciduous trees is probably more accurate than that in areas with 104