Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo
2015-01-01
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.
Orihuela, Rodrigo L. L.; Peres, Carlos A.; Mendes, Gabriel; Jarenkow, João A.; Tabarelli, Marcelo
2015-01-01
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide. PMID:26309252
A model of forest floor carbon mass for United States forest types
James E. Smith; Linda S. Heath
2002-01-01
Includes a large set of published values of forest floor mass and develop large-scale estimates of carbon mass according to region and forest type. Estimates of average forest floor carbon mass per hectare of forest applied to a 1997 summary forest inventory, sum to 4.5 Gt carbon stored in forests of the 48 contiguous United States.
Arizona’s forest resources, 2001-2014
John D. Shaw; Jim Menlove; Chris Witt; Todd A. Morgan; Michael C. Amacher; Sara A. Goeking; Charles E. Werstak
2018-01-01
This report presents a summary of the most recent inventory of Arizonaâs forests based on field data collected between 2001 and 2014. The report includes descriptive highlights and tables of forest and timberland area, numbers of trees, biomass, volume, growth, mortality, and removals. Most sections and tables are organized by forest type or forest-type group, species...
Productivity and carbon sequestration of forests in the southern United States
Kurt H. Johnsen; Tara L. Keyser; John R. Butnor; Carlos A. Gonzalez-Beenecke; Donald J. Kaczmarek; Chris A. Maier; Heather R. McCarthy; Ge. Sun
2014-01-01
Sixty percent of the Southern United States landscape is forested (Wear 2002). Forest types vary greatly among the five subregions of the South, which include the Coastal Plain, Piedmont, Appalachian-Cumberland, Mid-South, and the Mississippi Alluvial Valley. Current inventory data show upland hardwood forests being the predominant forest type in the South (>30...
Classification of the forest vegetation on the National Forests of Arizona and New Mexico
Robert R. Alexander; Frank Ronco
1987-01-01
Forest vegetation classified by habitat types and community types in Arizona and New Mexico are tabulated. Eleven series and 123 habitat and community types are identified; however, these habitat types and community types have been grouped into a lesser number of categories having similar characteristics or synonymous names. The table includes the name, location,...
Steve R. Auten; Nadia Hamey
2012-01-01
On August 12, 2009, the Lockheed Fire ignited the west slope of the Santa Cruz Mountains burning approximately 7,819 acres. A mixture of vegetation types were in the path of the fire, including approximately 2,420 acres of redwood forest and 1,951 acres of mixed conifer forest types representative of the Santa Cruz Mountains. Foresters and land managers were left with...
Nationwide classification of forest types of India using remote sensing and GIS.
Reddy, C Sudhakar; Jha, C S; Diwakar, P G; Dadhwal, V K
2015-12-01
India, a mega-diverse country, possesses a wide range of climate and vegetation types along with a varied topography. The present study has classified forest types of India based on multi-season IRS Resourcesat-2 Advanced Wide Field Sensor (AWiFS) data. The study has characterized 29 land use/land cover classes including 14 forest types and seven scrub types. Hybrid classification approach has been used for the classification of forest types. The classification of vegetation has been carried out based on the ecological rule bases followed by Champion and Seth's (1968) scheme of forest types in India. The present classification scheme has been compared with the available global and national level land cover products. The natural vegetation cover was estimated to be 29.36% of total geographical area of India. The predominant forest types of India are tropical dry deciduous and tropical moist deciduous. Of the total forest cover, tropical dry deciduous forests occupy an area of 2,17,713 km(2) (34.80%) followed by 2,07,649 km(2) (33.19%) under tropical moist deciduous forests, 48,295 km(2) (7.72%) under tropical semi-evergreen forests and 47,192 km(2) (7.54%) under tropical wet evergreen forests. The study has brought out a comprehensive vegetation cover and forest type maps based on inputs critical in defining the various categories of vegetation and forest types. This spatially explicit database will be highly useful for the studies related to changes in various forest types, carbon stocks, climate-vegetation modeling and biogeochemical cycles.
Colorado's forest resources, 2004-2013
Michael T. Thompson; John D. Shaw; Chris Witt; Charles E. Werstak; Michael C. Amacher; Sara A. Goeking; R. Justin DeRose; Todd A. Morgan; Colin B. Sorenson; Steven W. Hayes; Jim Menlove
2017-01-01
This report presents a summary of the most recent inventory of Coloradoâs forests based on field data collected between 2004 and 2013. The report includes descriptive highlights and tables of area, numbers of trees, biomass, carbon, volume, growth, mortality, and removals. Most sections and tables are organized by forest type or forest-type group, species group,...
Utah's forest resources, 2003-2012
Charles E. Werstak; John D. Shaw; Sara A. Goeking; Christopher Witt; James Menlove; Mike T. Thompson; R. Justin DeRose; Michael C. Amacher; Sarah Jovan; Todd A. Morgan; Colin B. Sorenson; Steven W. Hayes; Chelsea P. McIver
2016-01-01
This report presents a summary of the most recent inventory of Utahâs forests based on field data collected from 2003 through 2012. The report includes descriptive highlights and tables of area, numbers of trees, biomass, volume, growth, mortality, and removals. Most sections and tables are organized by forest type or forest-type group, species group, diameter class,...
New Mexico's forest resources, 2008-2012
Sara A. Goeking; John D. Shaw; Chris Witt; Michael T. Thompson; Charles E. Werstak; Michael C. Amacher; Mary Stuever; Todd A. Morgan; Colin B. Sorenson; Steven W. Hayes; Chelsea P. McIver
2014-01-01
This report presents a summary of the most recent inventory of New Mexicoâs forests based on field data collected between 2008 and 2012. The report includes descriptive highlights and tables of area, numbers of trees, biomass, volume, growth, mortality, and removals. Most sections and tables are organized by forest type or forest type group, species group, diameter...
Photo series for quantifying forest residues in managed lands of the Medicine Bow National Forest
John B. Popp; John E. Lundquist
2006-01-01
This photo series presents a visual representation of a range of fuel loading conditions specifically found on the Medicine Bow National Forest. The photos are grouped by forest type and past management practices. This field guide describes the distribution of different types of woody fuels and includes some vegetation data.
Jeffery A. Turner; Christopher M. Oswalt; James L. Chamberlain; Roger C. Conner; Tony G. Johnson; Sonja N. Oswalt; KaDonna C. Randolph
2008-01-01
Forest land area in the Commonwealth of Kentucky amounted to 11.97 million acres, including 11.6 million acres of timberland. Over 110 different species, mostly hardwoods, account for an estimated 21.2 billion cubic feet of all live tree volume. Hardwood forest types occupy 85 percent of Kentuckyâs timberland, and oak-hickory is the dominant forest-type group...
NASA Astrophysics Data System (ADS)
Thapa, R. B.; Watanabe, M.; Motohka, T.; Shiraishi, T.; shimada, M.
2013-12-01
Tropical forests are providing environmental goods and services including carbon sequestration, energy regulation, water fluxes, wildlife habitats, fuel, and building materials. Despite the policy attention, the tropical forest reserve in Southeast Asian region is releasing vast amount of carbon to the atmosphere due to deforestation. Establishing quality forest statistics and documenting aboveground forest carbon stocks (AFCS) are emerging in the region. Airborne and satellite based large area monitoring methods are developed to compliment conventional plot based field measurement methods as they are costly, time consuming, and difficult to implement for large regions. But these methods still require adequate ground measurements for calibrating accurate AFCS model. Furthermore, tropical region comprised of varieties of natural and plantation forests capping higher variability of forest structures and biomass volumes. To address this issue and the needs for ground data, we propose the systematic collection of ground data integrated with airborne light detection and ranging (LiDAR) data. Airborne LiDAR enables accurate measures of vertical forest structure, including canopy height and volume demanding less ground measurement plots. Using an appropriate forest type based LiDAR sampling framework, structural properties of forest can be quantified and treated similar to ground measurement plots, producing locally relevant information to use independently with satellite data sources including synthetic aperture radar (SAR). In this study, we examined LiDAR derived forest parameters with field measured data and developed general and specific AFCS models for tropical forests in central Sumatra. The general model is fitted for all types of natural and plantation forests while the specific model is fitted to the specific forest type. The study region consists of natural forests including peat swamp and dry moist forests, regrowth, and mangrove and plantation forests including rubber, acacia, oil palm, and coconut. To cover these variations of forest type, eight LiDAR transacts crossing 60 (1-ha size) field plots were acquired for calibrating the models. The field plots consisted of AFCS ranging from 4 - 161 Mg /ha. The calibrated LiDAR to AFCS general model enabled to predict the AFCS with R2 = 0.87 and root mean square errors (RMSE) = 17.4 Mg /ha. The specific AFCS models provided carbon estimates, varied by forest types, with R2 ranging from 0.72 - 0.97 and uncertainty (RMSE) ranging from 1.4 - 10.7 Mg /ha. Using these models, AFCS maps were prepared for the LiDAR coverage that provided AFCS estimates for 8,000 ha offering larger ground sampling measurements for calibration of SAR based carbon mapping model to wider region of Sumatra.
George R. Hoffman; Robert R. Alexander
1987-01-01
A vegetation classification based on concepts and methods developed by Daubenmire was used to identify 12 forest habitat types and one shrub habitat type in the Black Hills. Included were two habitat types in the Quercus macrocarpa series, seven in the Pinus ponderosa series, one in the Populus tremuloides series, two in the Picea glaucci series, and one in the...
Roger D. Ottmar; Colin C. Hardy; Robert E. Vihnanek
1990-01-01
A series of stereo photographs displays a range of residue loadings for harvested units in the Douglas-fir-western hemlock cover type common to the Willamette National Forest. Postburn residue levels are also represented for the Douglas-fir-western hemlock types. Information with each photo includes measured quadratic means and weights for various size classes, woody...
Forest vegetation in the Rocky Mountain and Intermountain regions: Habitat types and community types
Robert R. Alexander
1988-01-01
Habitat types and community types and their phases for the major forest tree species in the Rocky Mountain and Intermountain regions are tabulated. Included are the name(s), general location, elevation, relative site, successional status, principal tree and undergrowth associates, and the authority.
Andrew J. Hartsell; Tony G. Johnson
2009-01-01
The principle findings of the seventh forest survey of Alabama (2000) and changes that have occurred since the previous surveys are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, and mortality.
Andrew J. Hartsell; Tony G. Johnson
2009-01-01
The principle findings of the eighth forest survey of Alabama (2005) and changes that have occurred since the previous surveys are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth removals, and mortality.
Regional cost information for private timberland conversion and management.
Lucas S Bair; Ralph J. Alig
2006-01-01
Cost of private timber management practices in the United States are identified, and their relationship to timber production in general is highlighted. Costs across timber-producing regions and forest types are identified by forest type and timber management practices historically applied in each region. This includes cost estimates for activities such as forest...
2007-11-01
of dwarf arctic birch and bog rosemary. Understory in most areas includes Labrador tea, lowbush cranberry , and blueberry. Occasionally the black...wild rose, blueberry, and highbush cranberry are common shrubs. Mixed forests usually develop from stands of pure or nearly pure broadleaftrees...forest type include tamarack, blueberry, lowbush cranberry , labrador tea, and feather moss. It is unclear what type of black spruce lowland forest, if
Area changes for forest cover types in the United States, 1952 to 1997, with projections to 2050.
Ralph J. Alig; Brett J. Butler
2004-01-01
The United States has a diverse array of forest cover types on its 747 million acres of forest land. Forests in the United States have been shaped by many natural and human-caused forces, including climate, physiography, geology, soils, water, fire, land use changes, timber harvests, and other human interventions. The major purpose of this document is to describe area...
A second look a North Dakota's timber lands, 1980.
Pamela J. Jakes; W. Brad Smith
1982-01-01
The second inventory of North Dakota forest resources shows a decline in commercial forest area between 1954 and 1980. Presented are text and statistics on forest area and timber volume, growth, mortality, ownership, stocking, future timber supply, timber use, forest management opportunities, and nontimber forest resources. A forest type map is included.
Distribution and Characterization of Forested Wetlands in the Carolinas and Virginia
Mark J. Brown
1995-01-01
Recent forest inventories of North Carolina, South Carolina, and Virginia, included sampled for hydric soils, and wetland hydrology. Forest samples that met all 3 of these criteria were classified as forested wetland.This study characterizes wetland forests by extent, owner, age, forest type, physiography, volume, growth, and removals, and evaluates its contribution...
Forest resources of Mississippi - 1994
James F. Rosson
2001-01-01
The principal findings of the seventh forest survey of Mississippi and changes that have occurred since the previous survey are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, mortality, harvesting, and management activity.
Forest resources of Arkansas, 1995
James F. Rosson
2002-01-01
The principal findings of the seventh forest survey of Arkansas and changes that have occurred since the previous survey are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, mortality, harvesting, and management activity.
Downed woody material in southeast Alaska forest stands.
Frederic R. Larson
1992-01-01
Data collected in conjunction with the multiresource inventory of southeast Alaska in 1985-86 included downed wood along 234 transects at 60 locations. Transects occurred in 11 forest types and 19 plant associations within the entire southeastern Alaska archipelago. Downed wood weights in forest types ranged from 1232 kilograms per hectare (0.6 ton per acre) in muskeg...
Trees of Our National Forests.
ERIC Educational Resources Information Center
Forest Service (USDA), Washington, DC.
Presented is a description of the creation of the National Forests system, how trees grow, managing the National Forests, types of management systems, and managing for multiple use, including wildlife, water, recreation and other uses. Included are: (1) photographs; (2) line drawings of typical leaves, cones, flowers, and seeds; and (3)…
James F. Rosson; Anita K. Rose
2015-01-01
The principal findings of the ninth forest survey of Arkansas are presented. The survey examines trends between the 2005 and 2010 surveys. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, mortality, crown characteristics, ozone levels, and invasive species.
Forest resources of east Oklahoma, 1993
James F. Rosson
2001-01-01
The principal findings of the sixth forest survey of east Oklahoma (1993) and changes that have occurred since the previous survey are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, mortality, harvesting, and management activity.
Forest resources of east Texas, 1992
James F. Rosson
2000-01-01
The principal findings of the sixth forest survey of east Texas (1992) and changes that have occurred since the previous survey are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, mortality, harvesting, and management activity.
PATTERNS OF NITRATE LOSSES FROM FORESTED BASINS IN THE OREGON COAST RANGE
Numerous factors may control losses of dissolved nutrients from forested basins in the Oregon Coast Range. Potentially important factors include forest composition, stand age, forest management, grazing, agriculture, sewage inputs and bedrock types, as well as others perhaps not...
The timberland and woodland resources of central and west Oklahoma, 1989
James F. Rosson
1995-01-01
SRS Publications Principal findings of the first forest survey of central and west Oklahoma are presented. Topics examined include forest area, forest types, stand structure, basal area, timber volume, growth, and mortality. Information is presented for timberland and woodland forests.
Mouri, Goro; Nakano, Katsuhiro; Tsuyama, Ikutaro; Tanaka, Nobuyuki
2016-08-01
Forest disturbance (or land-cover change) and climatic variability are commonly recognised as two major drivers interactively influencing hydrology in forested watersheds. Future climate changes and corresponding changes in forest type and distribution are expected to generate changes in rainfall runoff that pose a threat to river catchments. It is therefore important to understand how future climate changes will effect average rainfall distribution and temperature and what effect this will have upon forest types across Japan. Recent deforestation of the present-day coniferous forest and expected increases in evergreen forest are shown to influence runoff processes and, therefore, to influence future runoff conditions. We strongly recommend that variations in forest type be considered in future plans to ameliorate projected climate changes. This will help to improve water retention and storage capacities, enhance the flood protection function of forests, and improve human health. We qualitatively assessed future changes in runoff including the effects of variation in forest type across Japan. Four general circulation models (GCMs) were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM), and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble including multiple physics configurations and different reference concentration pathways (RCP2.6, 4.5, and 8.5), the results of which have produced monthly data sets for the whole of Japan. The impacts of future climate changes on forest type in Japan are based on the balance amongst changes in rainfall distribution, temperature and hydrological factors. Methods for assessing the impact of such changes include the Catchment Simulator modelling frameworks based on the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) model, which was expanded to estimate discharge by incorporating the effects of forest-type transition across the whole of Japan. The results indicated that, by the 2090s, annual runoff will increase above present-day values. Increases in annual variation in runoff by the 2090s was predicted to be around 14.1% when using the MRI-GCM data and 44.4% when using the HadGEM data. Analysis by long-term projection showed the largest increases in runoff in the 2090s were related to the type of forest, such as evergreen. Increased runoff can have negative effects on both society and the environment, including increased flooding events, worsened water quality, habitat destruction and changes to the forest moisture-retaining function. Prediction of the impacts of future climate change on water generation is crucial for effective environmental planning and management. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Spruce, J.; Hargrove, W. W.; Gasser, J.; Norman, S. P.
2013-12-01
Forest threats across the US have become increasingly evident in recent years. These include regionally extensive disturbances (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and result in extensive forest mortality. In addition, forests can be subject to ephemeral, sometimes yearly defoliation from various insects and types of storm damage. After prolonged severe disturbance, signs of forest recovery can vary in terms of satellite-based Normalized Difference Vegetation Index (NDVI) values. The increased extent and threat of forest disturbances in part led to the enactment of the 2003 Healthy Forest Restoration Act, which mandated that a national forest threat Early Warning System (EWS) be deployed. In response, the US Forest Service collaborated with NASA, DOE Oak Ridge National Laboratory, and the USGS Eros Data Center to build the near real time ForWarn forest threat EWS for monitoring regionally evident forest disturbances, starting on-line operations in 2010. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines used with current NDVI to derive a suite of six nationwide 'weekly' forest change products. ForWarn uses daily 232 meter MODIS Aqua and Terra satellite NDVI data, including MOD13 products for deriving historical baseline NDVIs and eMODIS products for compiling current NDVI. Separately pre-processing the current and historical NDVIs, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally reduce noise, fuse, and aggregate MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of forest change products per year. The 24 day compositing interval typically enables new disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. ForWarn's three standard forest change products compare current NDVI to that from the previous year, previous 3 years, and all previous years since 2000. Other forest change products added in 2013 include one for quicker disturbance detection and two others that adjust for seasonal fluctuations in normal vegetation phenology. This product suite and ForWarn's geospatial data viewer allow end users to view and assess disturbance dynamics for many regionally evident biotic and abiotic forest disturbances throughout a given current year. ForWarn's change products are also being used for forest change trend analysis and for developing regional forest overstory mortality products. They are used to alert forest health specialists about new regional forest disturbances. Such alerts also typically consider available Landsat, aerial, and ground data as well as communications with forest health specialists and previous experience. ForWarn products have been used to detect and track many types of regional disturbances for multiple forest types, including defoliation from caterpillars and severe storms, as well as mortality from both biotic and abiotic agents (e.g., bark beetles, drought, fire, anthropogenic clearing). ForWarn provides forest change products that could be combined with other geospatial data on forest biomass to help assess forest disturbance carbon impacts within the conterminous US.
Use of generalized linear models and digital data in a forest inventory of Northern Utah
Moisen, Gretchen G.; Edwards, Thomas C.
1999-01-01
Forest inventories, like those conducted by the Forest Service's Forest Inventory and Analysis Program (FIA) in the Rocky Mountain Region, are under increased pressure to produce better information at reduced costs. Here we describe our efforts in Utah to merge satellite-based information with forest inventory data for the purposes of reducing the costs of estimates of forest population totals and providing spatial depiction of forest resources. We illustrate how generalized linear models can be used to construct approximately unbiased and efficient estimates of population totals while providing a mechanism for prediction in space for mapping of forest structure. We model forest type and timber volume of five tree species groups as functions of a variety of predictor variables in the northern Utah mountains. Predictor variables include elevation, aspect, slope, geographic coordinates, as well as vegetation cover types based on satellite data from both the Advanced Very High Resolution Radiometer (AVHRR) and Thematic Mapper (TM) platforms. We examine the relative precision of estimates of area by forest type and mean cubic-foot volumes under six different models, including the traditional double sampling for stratification strategy. Only very small gains in precision were realized through the use of expensive photointerpreted or TM-based data for stratification, while models based on topography and spatial coordinates alone were competitive. We also compare the predictive capability of the models through various map accuracy measures. The models including the TM-based vegetation performed best overall, while topography and spatial coordinates alone provided substantial information at very low cost.
Interpreting Michigan forest cover types from color infrared aerial photographs
NASA Technical Reports Server (NTRS)
Hudson, W. D.
1984-01-01
The characteristics of 17 cover types (13 forest types or tree species and 4 nonforest cover types) in Michigan are discussed as well as their interpretation from medium scale color infrared photography. The occurrence of each type is described by region and site requirements. Those attributes of a tree or stand which are helpful when attempting to interpret the type from a vertical perspective are discussed as well as common crown types. The identification of the forest type or tree species by using image characteristics (size, shape, shadow, color, texture, pattern, or association) is discussed. Ground photographs and sketches of individual trees are included. Stereograms of typical stands are available.
Diversity of Medicinal Plants among Different Forest-use Types of the Pakistani Himalaya.
Adnan, Muhammad; Hölscher, Dirk
2012-12-01
Diversity of Medicinal Plants among Different Forest-use Types of the Pakistani Himalaya Medicinal plants collected in Himalayan forests play a vital role in the livelihoods of regional rural societies and are also increasingly recognized at the international level. However, these forests are being heavily transformed by logging. Here we ask how forest transformation influences the diversity and composition of medicinal plants in northwestern Pakistan, where we studied old-growth forests, forests degraded by logging, and regrowth forests. First, an approximate map indicating these forest types was established and then 15 study plots per forest type were randomly selected. We found a total of 59 medicinal plant species consisting of herbs and ferns, most of which occurred in the old-growth forest. Species number was lowest in forest degraded by logging and intermediate in regrowth forest. The most valuable economic species, including six Himalayan endemics, occurred almost exclusively in old-growth forest. Species composition and abundance of forest degraded by logging differed markedly from that of old-growth forest, while regrowth forest was more similar to old-growth forest. The density of medicinal plants positively correlated with tree canopy cover in old-growth forest and negatively in degraded forest, which indicates that species adapted to open conditions dominate in logged forest. Thus, old-growth forests are important as refuge for vulnerable endemics. Forest degraded by logging has the lowest diversity of relatively common medicinal plants. Forest regrowth may foster the reappearance of certain medicinal species valuable to local livelihoods and as such promote acceptance of forest expansion and medicinal plants conservation in the region. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12231-012-9213-4) contains supplementary material, which is available to authorized users.
Andrew J. Hartsell; Jason A. Cooper
2013-01-01
The principle findings of the ninth forest survey of Alabama (2010) and changes that have occurred since the previous surveys are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth removals, and mortality. Alabamaâs contribution to the Nationâs forest resources and regional comparisons are...
The Forest Types and Ages Cleared for Land Development in Puerto Rico.
Todd Kennaway; E. H. Helmer
2007-01-01
On the Caribbean island of Puerto Rico, forest, urban/built-up, and pasture lands have replaced most formerly cultivated lands. The extent and age distribution of each forest type that undergoes land development, however, is unknown. This study assembles a time series of four land cover maps for Puerto Rico. The time series includes two digitized paper maps of land...
Forested wetlands of the Southern United States: a bibliography
William H. Conner; Nicole L. Hill; Evander M. Whitehead; William S. Busbee; Marceau A. Ratard; Mehmet Ozalp; Darrel L. Smith; James P. Marshall
2001-01-01
The term forested wetland covers a variety of forest types including mangroves, cypress/tupelo swamps, bottomland hardwoods, pocosins and Carolina bays, flatwoods, and mountain fens. These forests are dominated by woody species that have morphological features, physiological adaptations, and/or reproductive strategies enabling them to achieve maturity and reproduce in...
James F. Rosson; Anita K. Rose
2010-01-01
The principal fi ndings of the eighth forest survey of Arkansas are presented. This survey marks a major change in the FIA sampling protocol from a periodic prism sample to an annualized fi xed-plot sample. Topics examined include forest area, ownership, forest-type groups, stand structure, basal area, timber volume, growth, removals, and mortality, crown...
James L. Hanula; Scott Horn; Joseph J. O' Brien
2015-01-01
Two conservation goals of the early 20th century, extensive reforestation and reduced wildfire through fire exclusion, may have contributed to declining pollinator abundance as forests became denser and shrub covered. To examine how forest structure affects bees we selected 5 stands in each of 7 forest types including: cleared forest; dense young pines; thinned young...
Sonja N. Oswalt
2016-01-01
The principle findings of the 2013 forest survey in the State of Louisiana and changes that have occurred since previous surveysare presented. Topics examined include forest area, ownership, forest-type groups, stand structure, timber volume, growth, removals, and mortality. Emerald ash borer and invasive plants are also discussed in the context of...
Forest resources of Pennsylvania
Richard H. Widmann; Richard H. Widmann
1995-01-01
Phis report presents an analysis of the results of the 1989 forest inventory of Pennsylvania as well as trends that habe occurred since the previous survey. Major topics include changes in forest land by ownership, forest type, and timberland component7 stand structure is charaterized by stand size, understory woody vegetation, dead trees, and changes in relative...
Sonja N. Oswalt
2015-01-01
The principle findings of the 2013 forest survey in the State of Mississippi and changes that have occurred since previous surveys are presented. Topics examined include forest area, ownership, forest-type groups, stand structure, timber volume, growth, removals, and mortality. Emerald ash borer and invasive plants are also discussed in the context of Mississippiâs...
Inventory shows extent of non-native invasive plants in Minnesota forests
W. Keith Moser; Mark D. Nelson; Mark H. Hansen
2009-01-01
Readers are no doubt aware of the impact that non-native invasive plants (NNIP) present to Minnesota's ecosystems. The U.S. Forest Service's Northern Research Station (NRS) Forest Inventory and Analysis (FIA) Program is studying what determines where these plants are found, including forest type, tree density, disturbance, productivity, and topography.
CONTROLS ON WATER CHEMISTRY OF AN OREGON COAST RANGE STREAM
Numerous factors may control losses of dissolved nutrients from forested basins in the Oregon Coast Range. Potentially important factors include forest composition, stand age, forest management, grazing, agriculture, sewage inputs and bedrock types, as well as others perhaps not...
NASA Astrophysics Data System (ADS)
Singh, Minerva; Malhi, Yadvinder; Bhagwat, Shonil
2014-01-01
The focus of this study is to assess the efficacy of using optical remote sensing (RS) in evaluating disparities in forest composition and aboveground biomass (AGB). The research was carried out in the East Sabah region, Malaysia, which constitutes a disturbance gradient ranging from pristine old growth forests to forests that have experienced varying levels of disturbances. Additionally, a significant proportion of the area consists of oil palm plantations. In accordance with local laws, riparian forest (RF) zones have been retained within oil palm plantations and other forest types. The RS imagery was used to assess forest stand structure and AGB. Band reflectance, vegetation indicators, and gray-level co-occurrence matrix (GLCM) consistency features were used as predictor variables in regression analysis. Results indicate that the spectral variables were limited in their effectiveness in differentiating between forest types and in calculating biomass. However, GLCM based variables illustrated strong correlations with the forest stand structures as well as with the biomass of the various forest types in the study area. The present study provides new insights into the efficacy of texture examination methods in differentiating between various land-use types (including small, isolated forest zones such as RFs) as well as their AGB stocks.
CONTROLS ON STREAM CHEMISTRY IN AN OREGON COASTAL WATERSHED: THE SALMON RIVER
Numerous factors may control losses of dissolved nutrients from forested basins in the Oregon Coast Range. Potentially important factors include forest composition, stand age, forest management, grazing, agriculture, sewage inputs and bedrock types, as well as others perhaps not...
Upland Hardwood Forests and Related Communities of the Arkansas Ozarks in the Early 19th Century
Thomas L. Foti
2004-01-01
Historic accounts of the 19 th Century Arkansas Ozarks mention such communities as oak forests, pine forests, barrens and prairies. I document the region-wide distribution of these types based on data from the first land survey conducted by the General Land Office (GLO). Structural classes used here include closed forest, open forest, woodland, savanna, open savanna...
John T. Kliejunas
2011-01-01
This risk assessment projects the effects of eight forest diseases under two climate-change scenarios (warmer and drier, warmer and wetter). Examples are used to describe how various types of forest diseases may respond to environmental changes. Forest diseases discussed in this report include foliar diseases, Phytophthora diseases, stem rusts,...
W.G. Maxwell; F.R. Ward
1979-01-01
Five series of photographs display different forest residue loading levels, by size classes, for areas of like timber type (Sierra mixed conifer and Sierra true fir) and cutting objective. Information with each photo includes measured weights, volumes and other residue data, information about the timber stand and harvest actions, and assessment of fire behavior and...
R.W. Cowlin; F.L. Moravets
1937-01-01
Completion of the forest survey of Oregon and Washington has recently made it possible to compile reliable statistics as to the forest-land areas and timber volumes of the national forests in the North Pacific Region. This region, the sixth of 10 regions into which the United States is divided for purposes of national-forest administration, includes all the national-...
An analysis of New York's timber resources
Thomas J., Jr. Considine
1984-01-01
This report presents an analysis of the results of the third forest survey of New York as well as trends that have occurred since the previous surveys. Topics include forest area by ownership, stand size, and forest type; timber volume by species, location, and quality; biomass; timber products output for sawlogs, pulpwood, and fuelwood; and growth and removals. Forest...
NASA Astrophysics Data System (ADS)
Fedrigo, Melissa; Newnham, Glenn J.; Coops, Nicholas C.; Culvenor, Darius S.; Bolton, Douglas K.; Nitschke, Craig R.
2018-02-01
Light detection and ranging (lidar) data have been increasingly used for forest classification due to its ability to penetrate the forest canopy and provide detail about the structure of the lower strata. In this study we demonstrate forest classification approaches using airborne lidar data as inputs to random forest and linear unmixing classification algorithms. Our results demonstrated that both random forest and linear unmixing models identified a distribution of rainforest and eucalypt stands that was comparable to existing ecological vegetation class (EVC) maps based primarily on manual interpretation of high resolution aerial imagery. Rainforest stands were also identified in the region that have not previously been identified in the EVC maps. The transition between stand types was better characterised by the random forest modelling approach. In contrast, the linear unmixing model placed greater emphasis on field plots selected as endmembers which may not have captured the variability in stand structure within a single stand type. The random forest model had the highest overall accuracy (84%) and Cohen's kappa coefficient (0.62). However, the classification accuracy was only marginally better than linear unmixing. The random forest model was applied to a region in the Central Highlands of south-eastern Australia to produce maps of stand type probability, including areas of transition (the 'ecotone') between rainforest and eucalypt forest. The resulting map provided a detailed delineation of forest classes, which specifically recognised the coalescing of stand types at the landscape scale. This represents a key step towards mapping the structural and spatial complexity of these ecosystems, which is important for both their management and conservation.
Fernbank Science Center Forest Teacher's Guide-1967.
ERIC Educational Resources Information Center
Cherry, Jim; And Others
This guide is designed primarily to familiarize teachers with the types of programs available through the Fernback Science Center. Instructional programs involving the use of the Fernbank Forest are outlined. Programs for secondary students include Plant Taxonomy, Field Ecology, Winter Taxonomy of Plants, and Climax Forest Succession. Elementary…
[Soil meso- and micro-fauna community structures in different urban forest types in Shanghai, China.
Jin, Shi Ke; Wang, Juan Juan; Zhu, Sha; Zhang, Qi; Li, Xiang; Zheng, Wen Jing; You, Wen Hui
2016-07-01
Soil meso- and micro-fauna of four urban forest types in Shanghai were investigated in four months which include April 2014, July 2014, October 2014 and January 2015. A total of 2190 soil fauna individuals which belong to 6 phyla, 15 classes and 22 groups were collected. The dominant groups were Nematoda and Arcari, accounting for 56.0% and 21.8% of the total in terms of individual numbers respectively. The common groups were Enchytraeidae, Rotatoria, Collembola and Hymenoptera and they accounted for 18.7% of the total in terms of individual numbers. There was a significant difference (P<0.05) among soil meso- and micro-fauna density in the four urban forest types and the largest density was found in Metasequoia glyptostroboides forest, the smallest in Cinnamomum camphora forest. The largest groupe number was found in near-nature forest, the smallest was found in M. glyptostroboides forest. There was obvious seasonal dynamics in each urban forest type and green space which had larger density in autumn and larger groupe number in summer and autumn. In soil profiles, the degree of surface accumulation of soil meso- and micro-fauna in C. camphora forest was higher than in other forests and the vertical distribution of soil meso- and micro-fauna in near-nature forest was relatively homogeneous in four layers. Density-group index was ranked as: near-nature forest (6.953)> C. camphora forest (6.351)> Platanus forest (6.313)>M. glyptostroboides forest (5.910). The community diversity of soil fauna in each vegetation type could be displayed preferably by this index. It could be inferred through redundancy analysis (RDA) that the soil bulk density, organic matter and total nitrogen were the main environmental factors influencing soil meso- and micro-fauna community structure in urban forest. The positive correlations occurred between the individual number of Arcari, Enchytraeidae and soil organic matter and total nitrogen, as well as between the individual number of Diptera larvae, Rotatoria and soil water content.
Developing New Coastal Forest Restoration Products Based on Landsat, ASTER, and MODIS Data
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Graham, William; Smoot, James
2009-01-01
This paper discusses an ongoing effort to develop new geospatial information products for aiding coastal forest restoration and conservation efforts in coastal Louisiana and Mississippi. This project employs Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data in conjunction with airborne elevation data to compute coastal forest cover type maps and change detection products. Improved forest mapping products are needed to aid coastal forest restoration and management efforts of State and Federal agencies in the Northern Gulf of Mexico (NGOM) region. In particular, such products may aid coastal forest land acquisition and conservation easement procurements. This region's forests are often disturbed and subjected to multiple biotic and abiotic threats, including subsidence, salt water intrusion, hurricanes, sea-level rise, insect-induced defoliation and mortality, altered hydrology, wildfire, and conversion to non-forest land use. In some cases, such forest disturbance has led to forest loss or loss of regeneration capacity. In response, a case study was conducted to assess and demonstrate the potential of satellite remote sensing products for improving forest type maps and for assessing forest change over the last 25 years. Change detection products are needed for assessing risks for specific priority coastal forest types, such as live oak and baldcypress-dominated forest. Preliminary results indicate Landsat time series data are capable of generating the needed forest type and change detection products. Useful classifications were obtained using 2 strategies: 1) general forest classification based on use of 3 seasons of Landsat data from the same year; and 2) classification of specific forest types of concern using a single date of Landsat data in which a given targeted type is spectrally distinct compared to adjacent forested cover. When available, ASTER data was useful as a complement to Landsat data. Elevation data helped to define areas in which targeted forest types occur, such as live oak forests on natural levees. MODIS Normalized Difference Vegetation Index time series data aided visual assessments of coastal forest damage and recovery from hurricanes. Landsat change detection products enabled change to be identified at the stand level and at 10- year intervals with the earliest date preceding available change detection products from the National Oceanic and Atmospheric Administration and from the U.S. Geological Survey. Additional work is being done in collaboration with State and Federal agency partners in a follow-on NASA ROSES project to refine and validate these new, promising products. The products from the ROSES project will be available for aiding NGOM coastal forest restoration and conservation.
Photo series for quantifying forest residues in the coastal Douglas-fir-hemlock type.
W.G. Maxwell; F.R. Ward
1976-01-01
Six series of photographs display forest residue loading levels, by size classes, for areas of timber type and cutting practice. Information with each photo includes measured weights, volumes and other residue data, information about the timber stand and harvest or thinning actions and fuel ratings. These photo series provide...
William C. Siegel
1999-01-01
The form of ownership in which you hold your woodland is important from a tax standpoint. Further, if your forest property is structured as a business, the type of business organization chosen also has significant tax implications. Additionally, non-tax factors bear on choosing an ownership and/or business format. These include forest management goals, size of the...
Zheng, Jingming; Jiang, Fengqi; Zeng, Dehui
2003-06-01
To realize the sustainable management of forest ecosystems, we should explicitly clarify the types and differences of the ecosystem services provided by different ecosystems under different conditions, with rethinking about the value of forest ecosystems; then solid management strategies and measurements will be enacted and applied to achieve the objects. The broad-leaved Korean pine forest (BLKPF) in Changbai Mountain is a unique and important forest type in China, owing to its many important ecosystem services such as preventing soil erosion, regulating climates, nutrient cycling, providing wood and non-timber forest products, etc. This paper is a preliminary study on the management strategy of BLKPF on the basis of analyzing the characters of the ecosystems and the relative importance of services they provided in this region. Based on the latest research of ecosystem services of BLKPF in Changbai Mountain, an idea of eco-value level (EVL) was introduced, and accordingly, management strategies were summarized by adopting the advanced theories in ecosystem management science and by analyzing field survey data. EVL means the relative amount of the value of ecosystem services provided by certain ecosystem, which can indicate the difference between services in given objects. The EVL classification of BLKPF implies the relative amount of the eco-value of different ecosystems including virgin forest, secondary forest, forest with human disturbance, and man-made forest in the clear-cutting sites. Analytical Hierarchical Processing method was used to formulate the equation for EVL index. Eight factors, namely, slope, soil depth, stability of soil maternal material, coverage of above-ground canopy, species diversity, regeneration rate of the stand, life span of dominant tree species, and intensity of human disturbance were chosen to build the formula. These factors belonged to three aspects affecting ecosystem services including the physical environment, community, and disturbance regime, and their selection and scaling were based on the previous studies on the BLKPF. The equation of EVL index (EI) was expressed as: EI = 0.542A1 + 0.171A2 + 0.072A3 + 0.067B1 + 0.043B2 + 0.014B3 + 0.010B4 + 0.081C1. According to the range of EI, ecosystems were classified into three types: low EVL type with EI from 1.000 to 1.874, medium EVL type with EI 1.874-2.749, and high EVL type with EI 2.749-3.623. Typical plots were surveyed and scaled with EI, and the predominant characters of each EVL type were summarized. Most forests of high EVL type were those in sites at high risk of soil erosion and hard to recover after disrupted. Forests of medium EVL type were those with worse community structure and composition, and were disturbed by human activities in relative steep sites. Forest of low EVL type were those in plane site with serious disruption or some young man-made stands. Based on the analyses of the characters of these three types, different management strategies were put forward. For high EVL type forest, strictly protection is most important to maintain the forest in natural succession and its eco-services. For medium EVL type forest, the key points of management are restoring their health and vigor by regulating their composition and structure in a seminatural way. For low EVL type forest, some area could be used to extensive exploration for economic benefits, and the rests should be reconstructed towards the original stand in composition and structure, based on the 'shadow ecosystem' in a close-to-nature way to promote the capacity of providing more eco-services.
Influence of disturbance on temperate forest productivity
Peters, Emily B.; Wythers, Kirk R.; Bradford, John B.; Reich, Peter B.
2013-01-01
Climate, tree species traits, and soil fertility are key controls on forest productivity. However, in most forest ecosystems, natural and human disturbances, such as wind throw, fire, and harvest, can also exert important and lasting direct and indirect influence over productivity. We used an ecosystem model, PnET-CN, to examine how disturbance type, intensity, and frequency influence net primary production (NPP) across a range of forest types from Minnesota and Wisconsin, USA. We assessed the importance of past disturbances on NPP, net N mineralization, foliar N, and leaf area index at 107 forest stands of differing types (aspen, jack pine, northern hardwood, black spruce) and disturbance history (fire, harvest) by comparing model simulations with observations. The model reasonably predicted differences among forest types in productivity, foliar N, leaf area index, and net N mineralization. Model simulations that included past disturbances minimally improved predictions compared to simulations without disturbance, suggesting the legacy of past disturbances played a minor role in influencing current forest productivity rates. Modeled NPP was more sensitive to the intensity of soil removal during a disturbance than the fraction of stand mortality or wood removal. Increasing crown fire frequency resulted in lower NPP, particularly for conifer forest types with longer leaf life spans and longer recovery times. These findings suggest that, over long time periods, moderate frequency disturbances are a relatively less important control on productivity than climate, soil, and species traits.
Zhang, Tai Dong; Wang, Chuan Kuan; Zhang, Quan Zhi
2017-10-01
Five forests under diverse site conditions but under identical climate in the Maoershan region of Northeast China were sampled for measuring contents of soil carbon (C), nitrogen (N), and phosphorus (P), soil bulk density, and soil thickness by soil profile horizons. The stands included two plantations (i.e., Pinus koraiensis and Larix gmelinii plantations) and three broadleaved forests (i.e., Quercus mongolica stand, Populus davidiana Betula platyphylla mixed stand, and hardwood stand). Our aim was to examine vertical distribution of the content, density, and stoichio metry of soil C, N and P for the five forest types. The results showed that the contents and densities of soil C, N and P differed significantly among the forest types, with the maxima of the soil C and N at both O and A horizons occurring in the hardwood stand. The contents of C and N decreased significantly with increasing soil depth in all the stands. P content decreased significantly only in the broadleaved stands, and P content had no significant difference among different soil layers in the coniferous stands. The soil C/N at the A horizon, N/P at the O horizon, and the C/P at A and B horizons were significantly different among the forest types. The soil C and N linearly correlated significantly across all the forest types without significant differences in the slopes and intercepts, and the soil N and P, or the soil C and P correlated significantly only in the broadleaved stands. This result suggested that the C-N coupling relationship tended to converge across the forest types, and the N-P and C-P relationships varied with forest types.
Montana's forest resources, 2003-2009
Jim Menlove; John D. Shaw; Michael T. Thompson; Chris Witt; Michael C. Amacher; Todd A. Morgan; Colin Sorenson; Chelsea McIver; Charles Werstak
2012-01-01
This report presents a summary of the most recent inventory information for Montana's forest lands. The report includes descriptive highlights and tables of area, number of trees, biomass, volume, growth, mortality, and removals. Most of the tables are organized by forest type group, species group, diameter class, or owner group. The report also describes...
L.H. Pardo; C.L. Goodale; E.A. Lilleskov; L.H. Geiser
2011-01-01
The Northern Forests ecological region spans much of Canada, from Saskatchewan to Newfoundland; its southern portion extends into the northern United States (CEC 1997). The U.S. component includes the northern hardwood and spruce-fir forest types and encompasses parts of the Northeast (mountainous regions in Pennsylvania, New York, New Jersey, Connecticut,...
Idaho's Forest Resources, 2004-2009
Chris Witt; John D. Shaw; Michael T. Thompson; Sara A. Goeking; Jim Menlove; Michael C. Amacher; Todd A. Morgan; Charles Werstak
2012-01-01
This report presents a summary of the most recent inventory information for Idaho's forest lands. The report includes descriptive highlights and tables of area, number of trees, biomass, volume, growth, mortality, and removals. Most of the tables are organized by forest type, species, diameter class, or owner group. The report also describes inventory design,...
Michael T. Thompson; Larry T. DeBlander; Jock A. Blackard
2005-01-01
This report presents a summary of the most recent inventory information for Wyoming's forest lands. The report includes descriptive highlights and tables of area, number of trees, biomass, volume, growth, mortality, removals, and net change. Most of the tables are organized by forest type, species, diameter class, or owner group. The report also describes...
Microscale photo interpretation of forest and nonforest land classes
NASA Technical Reports Server (NTRS)
Aldrich, R. C.; Greentree, W. J.
1972-01-01
Remote sensing of forest and nonforest land classes are discussed, using microscale photointerpretation. Results include: (1.) Microscale IR color photography can be interpreted within reasonable limits of error to estimate forest area. (2.) Forest interpretation is best on winter photography with 97 percent or better accuracy. (3.) Broad forest types can be classified on microscale photography. (4.) Active agricultural land is classified most accurately on early summer photography. (5.) Six percent of all nonforest observations were misclassified as forest.
Latent heat exchange in the boreal and arctic biomes.
Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank
2014-11-01
In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling. © 2014 John Wiley & Sons Ltd.
Evans, Andrew; Odom, Richard H.; Resler, Lynn M.; Ford, W. Mark; Prisley, Stephen
2014-01-01
The northern hardwood forest type is an important habitat component for the endangered Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus) for den sites and corridor habitats between boreo-montane conifer patches foraging areas. Our study related terrain data to presence of northern hardwood forest type in the recovery areas of CNFS in the southern Appalachian Mountains of western North Carolina, eastern Tennessee, and southwestern Virginia. We recorded overstory species composition and terrain variables at 338 points, to construct a robust, spatially predictive model. Terrain variables analyzed included elevation, aspect, slope gradient, site curvature, and topographic exposure. We used an information-theoretic approach to assess seven models based on associations noted in existing literature as well as an inclusive global model. Our results indicate that, on a regional scale, elevation, aspect, and topographic exposure index (TEI) are significant predictors of the presence of the northern hardwood forest type in the southern Appalachians. Our elevation + TEI model was the best approximating model (the lowest AICc score) for predicting northern hardwood forest type correctly classifying approximately 78% of our sample points. We then used these data to create region-wide predictive maps of the distribution of the northern hardwood forest type within CNFS recovery areas.
Albert, David M; Schoen, John W
2013-08-01
The forests of southeastern Alaska remain largely intact and contain a substantial proportion of Earth's remaining old-growth temperate rainforest. Nonetheless, industrial-scale logging has occurred since the 1950s within a relatively narrow range of forest types that has never been quantified at a regional scale. We analyzed historical patterns of logging from 1954 through 2004 and compared the relative rates of change among forest types, landform associations, and biogeographic provinces. We found a consistent pattern of disproportionate logging at multiple scales, including large-tree stands and landscapes with contiguous productive old-growth forests. The highest rates of change were among landform associations and biogeographic provinces that originally contained the largest concentrations of productive old growth (i.e., timber volume >46.6 m³/ha). Although only 11.9% of productive old-growth forests have been logged region wide, large-tree stands have been reduced by at least 28.1%, karst forests by 37%, and landscapes with the highest volume of contiguous old growth by 66.5%. Within some island biogeographic provinces, loss of rare forest types may place local viability of species dependent on old growth at risk of extirpation. Examination of historical patterns of change among ecological forest types can facilitate planning for conservation of biodiversity and sustainable use of forest resources. © 2013 Society for Conservation Biology.
Arkansas, 2009 forest inventory and analysis factsheet
James F. Rosson
2011-01-01
The summary includes estimates of forest land area (table 1), ownership (table 2), forest-type groups (table 3), volume (tables 4 and 5), biomass (tables 6 and 7), and pine plantation area (table 8) along with maps of Arkansasâ survey units (fig. 1), percent forest by county (fig. 2), and distribution of pine plantations (fig. 3). The estimates are presented by survey...
Chapter 10: Marbled Murrelet Inland Patterns of Activity: Defining Detections and Behavior
Peter W.C. Paton
1995-01-01
This chapter summarizes terminology and methodology used by Marbled Murrelet (Brachyramphus marmoratus) biologists when surveying inland forests. Information is included on the types of behaviors used to determine if murrelets may be nesting in an area, and the various types of detections used to quantify murrelet use of forest stands. Problems with...
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Sader, Steve; Smoot, James
2012-01-01
This presentation discusses a collaborative project to develop, test, and demonstrate baldcypress forest mapping and monitoring products for aiding forest conservation and restoration in coastal Louisiana. Low lying coastal forests in the region are being negatively impacted by multiple factors, including subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, annual insect-induced forest defoliation, timber harvesting, and conversion to urban land uses. Coastal baldcypress forests provide invaluable ecological services in terms of wildlife habitat, forest products, storm buffers, and water quality benefits. Before this project, current maps of baldcypress forest concentrations and change did not exist or were out of date. In response, this project was initiated to produce: 1) current maps showing the extent and location of baldcypress dominated forests; and 2) wetland forest change maps showing temporary and persistent disturbance and loss since the early 1970s. Project products are being developed collaboratively with multiple state and federal agencies. Products are being validated using available reference data from aerial, satellite, and field survey data. Results include Landsat TM- based classifications of baldcypress in terms of cover type and percent canopy cover. Landsat MSS data was employed to compute a circa 1972 classification of swamp and bottomland hardwood forest types. Landsat data for 1972-2010 was used to compute wetland forest change products. MODIS-based change products were applied to view and assess insect-induced swamp forest defoliation. MODIS, Landsat, and ASTER satellite data products were used to help assess hurricane and flood impacts to coastal wetland forests in the region.
Nevada's forest resources, 2004-2013
James Menlove; John D. Shaw; Christopher Witt; Charles Werstak; R. Justin DeRose; Sara A. Goeking; Michael C. Amacher; Todd A. Morgan; Colin B. Sorenson
2016-01-01
This report presents a summary of the most recent inventory information for Nevadaâs forest lands. The report includes descriptive highlights and tables of area, number of trees, biomass, volume, growth, mortality, and removals. Most of the tables are organized by forest-type group, species group, diameter class, or ownership. The report also describes...
S.L. Stout
1991-01-01
Transition stands, those containing species associated with both the northern hardwood and oak-hickory forest types, are important to forest diversity in northwestern Pennsylvania. These stands have high value for a variety of forest uses, including timber production, wildlife habitat, and aesthetics. Diameter distributions are characteristically stratified by species...
Ryan B. Walker; Jonathan D. Coop; Sean A. Parks; Laura Trader
2018-01-01
Extensive high-severity wildfires have driven major losses of ponderosa pine and mixed-conifer forests in the southwestern United States, in some settings catalyzing enduring conversions to nonforested vegetation types. Management interventions to reduce the probability of stand-replacing wildfire have included mechanical fuel treatments, prescribed fire, and wildfire...
Models for estimation and simulation of crown and canopy cover
John D. Shaw
2005-01-01
Crown width measurements collected during Forest Inventory and Analysis and Forest Health Monitoring surveys are being used to develop individual tree crown width models and plot-level canopy cover models for species and forest types in the Intermountain West. Several model applications are considered in the development process, including remote sensing of plot...
Polycyclic Aromatic Hydrocarbons Content in Contaminated Forest Soils with Different Humus Types.
Lasota, Jarosław; Błońska, Ewa
2018-01-01
The aim of the study was to determine polycyclic aromatic hydrocarbon (PAH) content in different forest humus types. The investigation was carried out in Chrzanów Forest District in southern Poland. Twenty research plots with different humus types (mor and mull) were selected. The samples for analysis were taken after litter horizons removing from a depth of 0-10 cm (from the Of- and Oh-horizon total or A-horizon). pH, organic carbon and total nitrogen content, base cations, acidity, and heavy metal content were determined. In the natural moisture state, the activity of dehydrogenase was determined. The study included the determination of PAH content. The conducted research confirms strong contamination of study soil by PAHs and heavy metals. Our experiment provided evidence that different forest humus types accumulate different PAH amounts. The highest content of PAHs and heavy metals was recorded in mor humus type. The content of PAHs in forest humus horizon depends on the content and quality of soil organic matter. Weaker degradation of hydrocarbons is associated with lower biological activity of soils. The mull humus type showed lower content of PAHs and at the same time the highest biological activity confirmed by high dehydrogenase activity.
Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia
2014-01-01
Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. PMID:24757012
Nitrogen deposition's role in determining forest photosynthetic capacity; a FLUXNET synthesis
NASA Astrophysics Data System (ADS)
Fleischer, K.; Rebel, K.; van der Molen, M.; Erisman, J.; Wassen, M.; Dolman, H.
2011-12-01
There is growing evidence that nitrogen (N) deposition stimulates forest growth, as many forest ecosystems are N-limited. However, the significance of N deposition in determining the strength of the present and future terrestrial carbon sink is strongly debated. We investigated and quantified the effect of N deposition on ecosystem photosynthetic capacity (Amax) with the FLUXNET database, including 80 forest sites, covering the major forest types and climates of the world. The relative effect of climate and N deposition on photosynthesis was assessed with regression models. We found a significant positive correlation of Amax and N deposition for evergreen needleleaf forests in our dataset. We further found indications that foliar N and LAI scale positively with N deposition, reflecting the 2 mechanisms at which N is believed to cause an increase in carbon gain. We can support the hypothesis that foliar N is the principal scaling factor for canopy Amax across all forest types. Deciduous forests are less diverse in terms of climate and nutritional conditions for the included sites and these forests exhibited weak to no correlations with the included climate and N predictor variables. Quantifying the effect of N deposition on photosynthetic rates at the canopy level is an essential step for quantifying its contribution to the terrestrial carbon sink and for predicting vegetation response to N fertilization and global change in the future. The approach shows that eddy-covariance measurements of carbon fluxes at the canopy scale allow us to test hypotheses with respect to the expected nitrogen-photosynthesis relationships at the canopy scale.
The effects of thinning and similar stand treatments on fire behavior in Western forests.
Russell T. Graham; Alan E. Harvey; Theresa B. Jain; Jonalea R. Tonn
1999-01-01
In the West, thinning and partial cuttings are being considered for treating millions of forested acres that are overstocked and prone to wildfire. The objectives of these treatments include tree growth redistribution, tree species regulation, timber harvest, wildlife habitat improvement, and wildfire-hazard reduction. Depending on the forest type and its structure,...
Small-diameter timber utilization in Wisconsin: a case study of four counties
Scott A. Bowe; Matthew S. Bumgardner
2006-01-01
The state of Wisconsin has numerous forest ownership types. These include national, state, and county forests, as well as privately owned industrial and nonindustrial forests. In addition to sawlog markets, portions of the state also have substantial pulpwood markets associated with paper and panel mills. Combined, these attributes make Wisconsin a good location for...
Homogenization of northern U.S. Great Lakes forests due to land use
Lisa A. Schulte; David J. Mladenoff; Thomas R. Crow; Laura C. Merrick; David T. Cleland
2007-01-01
Human land use of forested regions has intensified worldwide in recent decades, threatening long-term sustainability. Primary effects include conversion of land cover or reversion to an earlier stage of successional development. Both types of change can have cascading effects through ecosystems; however, the longterm effects where forests are allowed to regrow are...
Silvicultural guidelines for forest stands threatened by the gypsy moth
Kurt W. Gottschalk
1993-01-01
Ecological and silvicultural information on the interaction of gypsy moth and its host forest types is incorporated into silvicultural guidelines for minimizing the impacts of gypsy moth on forest stands threatened by the insect. Decision charts are used to match stand and insect conditions to the proper prescription that includes instructions for implementing it....
Soil properties discriminating Araucaria forests with different disturbance levels.
Bertini, Simone Cristina Braga; Azevedo, Lucas Carvalho Basilio; Stromberger, Mary E; Cardoso, Elke Jurandy Bran Nogueira
2015-04-01
Soil biological, chemical, and physical properties can be important for monitoring soil quality under one of the most spectacular vegetation formation on Atlantic Forest Biome, the Araucaria Forest. Our aim was to identify a set of soil variables capable of discriminating between disturbed, reforested, and native Araucaria forest soils such that these variables could be used to monitor forest recovery and maintenance. Soil samples were collected at dry and rainy season under the three forest types in two state parks at São Paulo State, Brazil. Soil biological, chemical, and physical properties were evaluated to verify their potential to differentiate the forest types, and discriminant analysis was performed to identify the variables that most contribute to the differentiation. Most of physical and chemical variables were sensitive to forest disturbance level, but few biological variables were significantly different when comparing native, reforested, and disturbed forests. Despite more than 20 years following reforestation, the reforested soils were chemically and biologically distinct from native and disturbed forest soils, mainly because of the greater acidity and Al3+ content of reforested soil. Disturbed soils, in contrast, were coarser in texture and contained greater concentrations of extractable P. Although biological properties are generally highly sensitive to disturbance and amelioration efforts, the most important soil variables to discriminate forest types in both seasons included Al3+, Mg2+, P, and sand, and only one microbial attribute: the NO2- oxidizers. Therefore, these five variables were the best candidates, of the variables we employed, for monitoring Araucaria forest disturbance and recovery.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Hargrove, William W.; Gasser, Gerald
2013-01-01
Forest threats across the US have become increasingly evident in recent years. Sometimes these have resulted in regionally evident disturbance progressions (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and have resulted in extensive forest overstory mortality. In addition to stand replacement disturbances, other forests are subject to ephemeral, sometimes yearly defoliation from various insects and varying types and intensities of ephemeral damage from storms. Sometimes, after prolonged severe disturbance, signs of recovery in terms of Normalized Difference Vegetation Index (NDVI) can occur. The growing prominence and threat of forest disturbances in part have led to the formation and implementation of the 2003 Healthy Forest Restoration Act which mandated that national forest threat early warning system be developed and deployed. In response, the US Forest Service collaborated with NASA, DOE Oakridge National Laboratory, and the USGS Eros Data Center to build and roll-out the near real time ForWarn early warning system for monitoring regionally evident forest disturbances. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines that are used with current NDVI to derive a suite of six forest change products that are refreshed every 8 days. ForWarn employs daily quarter kilometer MODIS NDVI data from the Aqua and Terra satellites, including MOD13 data for deriving historical baseline NDVIs and eMODIS 7 NDVI for compiling current NDVI. In doing so, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally de-noise, fuse, and aggregate current and historical MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of products per year. The 24 day compositing interval enables disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. Forest change products are computed versus the previous 1, previous 3, and all previous years in the MODIS record for a given 24 day interval. Other "weekly" forest change products include one computed using an adaptive length compositing method for quicker detection of disturbances, two others that adjust for seasonal fluctuations in normal vegetation phenology (e.g., early versus late springs). This overall approach enables forest disturbance dynamics from a variety of regionally evident biotic and abiotic forest disturbances to be viewed and assessed through the calendar year. The change products are also being utilized for forest change trend analysis and for developing regional forest overstory mortality products. ForWarn's forest change products are used to alert forest health specialists about new forest disturbances. Such alerts are also typically based on available Landsat, aerial, and ground data as well as communications with forest health specialists and previous experience. ForWarn products have been used to detect and track many types of regional disturbances to multiple forest types, including defoliation from caterpillars and severe storms, as well as mortality from both biotic and abiotic agents (e.g., bark beetles, drought, fire, anthropogenic clearing). ForWarn offers products that could be combined with other geospatial data on forest biomass to assess forest disturbance carbon impacts within the conterminous US.
Flinn, Kathryn M; Marks, P L
2007-03-01
Temperate deciduous forests across much of Europe and eastern North America reflect legacies of past land use, particularly in the diversity and composition of plant communities. Intense disturbances, such as clearing forests for agriculture, may cause persistent environmental changes that continue to shape vegetation patterns as landscapes recover. We assessed the long-term consequences of agriculture for environmental conditions in central New York forests, including tree community structure and composition, soil physical and chemical properties, and light availability. To isolate the effects of agriculture, we compared 20 adjacent pairs of forests that were never cleared for agriculture (primary forests) and forests that established 85-100 years ago on plowed fields (secondary forests). Tree communities in primary and secondary forests had similar stem density, though secondary forests had 14% greater basal area. Species composition differed dramatically between the two forest types, with primary forests dominated by Acer saccharum and Fagus grandifolia and secondary forests by Acer rubrum and Pinus strobus. Primary and secondary forests showed no consistent differences in soil physical properties or in the principal gradient of soil fertility associated with soil pH. Within stands, however, soil water content and pH were more variable in primary forests. Secondary forest soils had 15% less organic matter, 16% less total carbon, and 29% less extractable phosphorus in the top 10 cm than adjacent primary stands, though the ranges of the forest types mostly overlapped. Understory light availability in primary and secondary forests was similar. These results suggest that, within 100 years, post-agricultural stands have recovered conditions comparable to less disturbed forests in many attributes, including tree size and number, soil physical properties, soil chemical properties associated with pH, and understory light availability. The principal legacies of agriculture that remain in these forests are the reduced levels of soil organic matter, carbon, and phosphorus; the spatial homogenization of soil properties; and the altered species composition of the vegetation.
Joseph Wunderle, Jr; Wayne J. Arendt
2011-01-01
The Luquillo Experimental Forest (LEF) located on the Caribbean island of Puerto Rico has a rich history of ecological research, including a variety of avian studies, and is one of the most active ecological research sites in the Neotropics. The LEF spans an elevational range from 100 to 1075mover which five life zones and four forest types are found in a warm, humid...
Patterns and determinants of plant biodiversity in non-commercial forests of eastern China
Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru
2017-01-01
Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken. PMID:29161324
Patterns and determinants of plant biodiversity in non-commercial forests of eastern China.
Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru; Yu, Mingjian
2017-01-01
Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken.
Marine Riparian Vegetation Communities of Puget Sound
2007-02-01
species . In areas of frequent disturbance, early successional trees , such as red alder and maple, dominated coastal forests. Douglas fir is currently...sea level to the mountain tops), forest types are broken into zones, represented by the dominant canopy ( tree ) species , or cli- max community, with...Within each zone, there is also vertical stratification of vegetation types, including dominant canopy tree species , understory trees and shrubs, and
2009-08-01
community of halophytes, including turtleweed (Batis maritima), sea purslane (Sesuvium portulacastrum), and salt heliotrope (Heliotropium...mangrove (Laguncularia racemosa) dominate basin mangrove forests. Associated species, depending on salinity , may include leatherferns (Acrostichum...of Puerto Rico, however, Lugo and Brown (1988) list a number of oligohaline (low salinity ) and freshwater forested wetland types, the most
NASA Technical Reports Server (NTRS)
Driscoll, R. S.; Francis, R. E.
1970-01-01
A description of space and supporting aircraft photography for the interpretation and analyses of non-forest (shrubby and herbaceous) native vegetation is presented. The research includes the development of a multiple sampling technique to assign quantitative area values of specific plant community types included within an assigned space photograph map unit. Also, investigations of aerial film type, scale, and season of photography for identification and quantity measures of shrubby and herbaceous vegetation were conducted. Some work was done to develop automated interpretation techniques with film image density measurement devices.
Plant-pollinator interactions in tropical monsoon forests in Southeast Asia.
Kato, Makoto; Kosaka, Yasuyuki; Kawakita, Atsushi; Okuyama, Yudai; Kobayashi, Chisato; Phimminith, Thavy; Thongphan, Daovorn
2008-11-01
Forests with different flora and vegetation types harbor different assemblages of flower visitors, and plant-pollinator interactions vary among forests. In monsoon-dominated East and Southeast Asia, there is a characteristic gradient in climate along latitude, creating a broad spectrum of forest types with potentially diverse pollinator communities. To detect a geographical pattern of plant-pollinator interactions, we investigated flowering phenology and pollinator assemblages in the least-studied forest type, i.e., tropical monsoon forest, in the Vientiane plain in Laos. Throughout the 5-year study, we observed 171 plant species blooming and detected flower visitors on 145 species. Flowering occurred throughout the year, although the number of flowering plant species peaked at the end of dry season. The dominant canopy trees, including Dipterocarpaceae, bloomed annually, in contrast to the supra-annual general flowering that occurs in Southeast Asian tropical rain forests. Among the 134 native plant species, 68 were pollinated by hymenopterans and others by lepidopterans, beetles, flies, or diverse insects. Among the observed bees, Xylocopa, megachilids, and honeybees mainly contributed to the pollination of canopy trees, whereas long-tongued Amegilla bees pollinated diverse perennials with long corolla tubes. This is the first community-level study of plant-pollinator interactions in an Asian tropical monsoon forest ecosystem.
Controlling solar light and heat in a forest by managing shadow sources
Howard G. Halverson; James L. Smith
1974-01-01
Control of solar light and heat to develop the proper growth environment is a desirable goal in forest management. The amount of sunlight and heat reaching the surface is affected by shadows cast by nearby objects, including trees. In timbered areas, the type of forest management practiced can help develop desired microclimates. The results depend on the size and...
Amanda Schramm; Rachel Loehman
2011-01-01
The Eastern Woodlands and Forests bioregion is an expansive area with a diversity of forest types and associated ecosystems. Changes that have already been observed within this bioregion include warmer average annual temperatures, earlier dates of runoff, a longer frost-free period, and a longer growing season. During the 21st Century, warmer temperatures and increased...
Spatial and Temporal Habitat Use of an Asian Elephant in Sumatra
Sitompul, Arnold F.; Griffin, Curtice R.; Rayl, Nathaniel D.; Fuller, Todd K.
2013-01-01
Simple Summary A wild Sumatran elephant radio-monitored near a conservation center from August 2007–May 2008 used medium- and open-canopy land cover more than expected, but closed canopy forests were used more during the day than at night. When in closed canopy forests, elephants spent more time near the forest edge. Effective elephant conservation strategies in Sumatra need to focus on forest restoration of cleared areas and providing a forest matrix that includes various canopy types. Abstract Increasingly, habitat fragmentation caused by agricultural and human development has forced Sumatran elephants into relatively small areas, but there is little information on how elephants use these areas and thus, how habitats can be managed to sustain elephants in the future. Using a Global Positioning System (GPS) collar and a land cover map developed from TM imagery, we identified the habitats used by a wild adult female elephant (Elephas maximus sumatranus) in the Seblat Elephant Conservation Center, Bengkulu Province, Sumatra during 2007–2008. The marked elephant (and presumably her 40–60 herd mates) used a home range that contained more than expected medium canopy and open canopy land cover. Further, within the home range, closed canopy forests were used more during the day than at night. When elephants were in closed canopy forests they were most often near the forest edge vs. in the forest interior. Effective elephant conservation strategies in Sumatra need to focus on forest restoration of cleared areas and providing a forest matrix that includes various canopy types. PMID:26479527
Kershaw, H Maureen; Morris, Dave M; Fleming, Robert L; Luckai, Nancy J
2015-11-01
Overall demand for forest products in the boreal forest is increasing to supply growing bio-energy demands in addition to traditional forest products. As a result, there is a need to refine current forest policies to reconcile production and ecosystem function within the context of ecologically sustainable management. This study assessed understory plants' richness, evenness, and diversity in six harvested boreal black spruce-dominated stands situated on loam, sand, and peat site types 15 years after the application of four harvest treatments of increasing biomass removals. Treatments included uncut, stem-only harvest, full-tree harvest, and full-tree harvest + blading of O horizon. Following canopy removal, species richness and diversity (Shannon's and Simpson's indices) increased on all soil types. The more than doubling of slash loading on the stem-only treatment plots compared to the full-tree plots led to significantly lower species diversity on loam sites; however, the reverse was observed on peat sites where the slash provided warmer, drier microsites facilitating the establishment of a broader array of species. Preexisting ericaceous shrub and sphagnum components continued to dominate on the peat sites. Compositional shifts were most evident for the full-tree + bladed treatment on all soil types, with increases in herbaceous cover including ruderal species. The results suggest that the intensification of harvesting on plant diversity varies with soil type, and these differential results should be considered in the refinement of forest biomass-harvesting guidelines to ensure ecological sustainability and biodiversity conservation over a broad suite of soil types.
Ballantyne, Mark; Pickering, Catherine Marina
2015-08-15
Recreational trails are one of the most common types of infrastructure used for nature-based activities such as hiking and mountain biking worldwide. Depending on their design, location, construction, maintenance and use, these trails differ in their environmental impacts. There are few studies, however, comparing the impacts of different trail types including between formal management-created trails and informal visitor-created trails. Although both types of trails can be found in remote natural areas, dense networks of them often occur in forests close to cities where they experience intense visitor use. To assess the relative impacts of different recreational trails in urban forests, we compared the condition of the trail surface, loss of forest strata and changes in tree structure caused by seven types of trails (total network 46.1 km) traversing 17 remnants of an endangered urban forest in Australia. After mapping and classifying all trails, we assessed their impact on the forest condition at 125 sites (15 sites per trail type, plus 15 control sites within undisturbed forest). On the trail sites, the condition of the trail surface, distance from the trail edge to four forest strata (litter, understory, midstorey and tree cover) and structure of the tree-line were assessed. Informal trails generally had poorer surface conditions and were poorly-designed and located. Per site, formal and informal trails resulted in similar loss of forest strata, with wider trails resulting in greater loss of forest. Because there were more informal trails, however, they accounted for the greatest cumulative forest loss. Structural impacts varied, with the widest informal trails and all formal hardened trails resulting in similar reductions in canopy cover and tree density but an increase in saplings. These structural impacts are likely a function of the unregulated and intense use of large informal trails, and disturbance from the construction and maintenance of formal trails. The results demonstrate that different types of recreational trails vary in the type and range of impacts they cause to forests. They highlight the importance of careful consideration towards management options when dealing with trail networks especially in areas of high conservation value. Copyright © 2015 Elsevier Ltd. All rights reserved.
Forest inventory: Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narolski, Steven W.
The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area.
[A review on fundamental studies of secondary forest management].
Zhu, Jiaojun
2002-12-01
Secondary forest is also called as natural secondary forest, which regenerates on native forest that has been disturbed by severe natural or anthropogenic disturbances. The structural and dynamic organizations, growth, productivity and stand environment of secondary forests are significantly different from those of natural and artificial forests. Such significant differences make secondary forests have their own special characteristics in forestry. Secondary forests are the main body of forests in China. Therefore, their management plays a very important role in the projects of natural forest conservation and the construction of ecological environment in China or in the world. Based on a wide range of literature collection on secondary forest research, the fundamental studies of secondary forest management were discussed. The major topics are as follows: 1) basic characteristics of secondary forest, 2) principles of secondary forest management, 3) types of secondary forest, 4) community structure and succession dynamics of secondary forest, including niches, biodiversity, succession and so on, 5) main ecological processes of secondary forest, including regeneration, forest soil and forest environment. Additionally, the research needs and tendency related to secondary forest in the future were also given, based on the analyses of the main results and the problems in current management of secondary forest. The review may be helpful to the research of secondary forest management, and to the projects of natural forest conservation in China.
NASA Astrophysics Data System (ADS)
Nur Johana, J.; Muzzneena, A. M.; Grismer, L. L.; Norhayati, A.
2016-11-01
Anurans on Langkawi Island, Peninsular Malaysia exhibit variation in their habits and forms, ranging from small (SVL < 25 mm) to large (SVL > 150 mm), and occupy a range of habitats, such as riverine forests, agricultural fields, peat swamps, and lowland and upland dipterocarp forests. These variations provide a platform to explore species diversity, distribution, abundance, microhabitat, and other ecological parameters to understand the distribution patterns and to facilitate conservation and management of sensitive or important species and areas. The objective of this study was to evaluate the diversity and distribution of anuran species in different types of habitat on Langkawi Island. Specimens were collected based on active sampling using the Visual Encounter Survey (VES) method. We surveyed anuran species inhabiting seven types of habitat, namely agriculture (AG), coastal (CL), forest (FT), pond (PD), mangrove (MG), riparian forest (RF) and river (RV). A total of 775 individuals were sampled from all localities, representing 23 species from 12 genera and included all six families of frogs in Malaysia. FT and RF showed high values of Shannon Index, H', 2.60 and 2.38, respectively, followed by the other types of habitat, CL (1.82), RV (1.71), MG (1.56), PD (1.54), and AG (1.53). AG had the highest abundance (156 individuals) compared to other habitat types. Based on Cluster Analysis by using Jaccard coefficient (UPGMA), two groups can be clearly seen and assigned as forested species group (FT and RF) and species associating with human activity (AG, CL, PD, MG and RV). Forest species group is more diverse compared to non-forest group. Nevertheless, non-forest species are found in abundance, highlighting the relevance of these disturbed habitats in supporting the amphibians.
Photo series for quantifying natural forest residues: southern Cascades, northern Sierra Nevada
Kenneth S. Blonski; John L. Schramel
1981-01-01
A total of 56 photographs shows different levels of natural fuel loadings for selected size classes in seven forest types of the southern Cascade and northern Sierra-Nevada ranges. Data provided with each photo include size, weight, volumes, residue depths, and percent of ground coverage. Stand information includes sizes, weights, and volumes of the trees sampled for...
Shade images of forested areas obtained from LANDSAT MSS data
NASA Technical Reports Server (NTRS)
Shimabukuro, Yosio Edemir; Smith, James A.
1989-01-01
The pixel size in the present day Remote Sensing systems is large enough to include different types of land cover. Depending upon the target area, several components may be present within the pixel. In forested areas, generally, three main components are present: tree canopy, soil (understory), and shadow. The objective is to generate a shade (shadow) image of forested areas from multispectral measurements of LANDSAT MSS (Multispectral Scanner) data by implementing a linear mixing model, where shadow is considered as one of the primary components in a pixel. The shade images are related to the observed variation in forest structure, i.e., the proportion of inferred shadow in a pixel is related to different forest ages, forest types, and tree crown cover. The Constrained Least Squares (CLS) method is used to generate shade images for forest of eucalyptus and vegetation of cerrado using LANDSAT MSS imagery over Itapeva study area in Brazil. The resulted shade images may explain the difference on ages for forest of eucalyptus and the difference on three crown cover for vegetation of cerrado.
Evaluation of Thematic Mapper data for mapping forest, agricultural and soil resources
NASA Technical Reports Server (NTRS)
Degloria, S.; Benson, A.; Dummer, K.; Fakhoury, E.
1985-01-01
Color composite TM film products which include TM5, TM4, and a visible band (TM1, TM2, or TM3) are superior to composites which exclude TM4 for discriminating most forest and agricultural cover types and estimating area proportions for inventory and sampling purposes. Clustering a subset of TM data results in a spectral class map which groups diverse forest cover types into spectrally and ecologically similar areas suitable for use as a stratification base in traditional forest inventory practices. Analysis of simulated Thematic Mapper data indicate that the location and number of TM spectral bands are suitable for detecting differences in major soil properties and characterizing soil spectral curve form and magnitude.
Designing Forest Adaptation Experiments through Manager-Scientist Partnerships
NASA Astrophysics Data System (ADS)
Nagel, L. M.; Swanston, C.; Janowiak, M.
2014-12-01
Three common forest adaptation options discussed in the context of an uncertain future climate are: creating resistance, promoting resilience, and enabling forests to respond to change. Though there is consensus on the broad management goals addressed by each of these options, translating these concepts into management plans specific for individual forest types that vary in structure, composition, and function remains a challenge. We will describe a decision-making framework that we employed within a manager-scientist partnership to develop a suite of adaptation treatments for two contrasting forest types as part of a long-term forest management experiment. The first, in northern Minnesota, is a red pine-dominated forest with components of white pine, aspen, paper birch, and northern red oak, with a hazel understory. The second, in southwest Colorado, is a warm-dry mixed conifer forest dominated by ponderosa pine, white fir, and Douglas-fir, with scattered aspen and an understory of Gambel oak. The current conditions at both sites are characterized by overstocking with moderate-to-high fuel loading, vulnerability to numerous forest health threats, and are generally uncharacteristic of historic structure and composition. The desired future condition articulated by managers for each site included elements of historic structure and natural range of variability, but were greatly tempered by known vulnerabilities and projected changes to climate and disturbance patterns. The resultant range of treatments we developed are distinct for each forest type, and address a wide range of management objectives.
Depauperate Avifauna in Plantations Compared to Forests and Exurban Areas
Haskell, David G.; Evans, Jonathan P.; Pelkey, Neil W.
2006-01-01
Native forests are shrinking worldwide, causing a loss of biological diversity. Our ability to prioritize forest conservation actions is hampered by a lack of information about the relative impacts of different types of forest loss on biodiversity. In particular, we lack rigorous comparisons of the effects of clearing forests for tree plantations and for human settlements, two leading causes of deforestation worldwide. We compared avian diversity in forests, plantations and exurban areas on the Cumberland Plateau, USA, an area of global importance for biodiversity. By combining field surveys with digital habitat databases, and then analyzing diversity at multiple scales, we found that plantations had lower diversity and fewer conservation priority species than did other habitats. Exurban areas had higher diversity than did native forests, but native forests outscored exurban areas for some measures of conservation priority. Overall therefore, pine plantations had impoverished avian communities relative to both native forests and to exurban areas. Thus, reports on the status of forests give misleading signals about biological diversity when they include plantations in their estimates of forest cover but exclude forested areas in which humans live. Likewise, forest conservation programs should downgrade incentives for plantations and should include settled areas within their purview. PMID:17183694
T. L. E. Trammell; Charles Rhoades; P. A. Bukaveckas
2004-01-01
Forest openings, also known as glades, arise through a variety of mechanisms including disturbance (fire and blow downs) and local variation in soil or bedrock geology. They are common in many forest types and are often dominated by locally rare herbaceous species. Prescribed burning is increasingly used as a management approach for maintaining glades although...
Chemical and dispersal characteristics of particulate emissions from forest fires in Siberia
Y. N. Samsonov; V. A. Ivanov; D. J. McRae; S. P. Baker
2012-01-01
Approximately 20 experimental fires were conducted on forest plots of 1-4 ha each in 2000-07 in two types of boreal forests in central Siberia, and 18 on 6 x 12-m plots in 2008-10. These experiments were designed to mimic wildfires under similar burning conditions. The fires were conducted in prescribed conditions including full documentation on pre-fire weather, pre-...
Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia
2014-10-01
Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
Emma Lucy Braun's forest plots in eastern North America.
Ricklefs, Robert E
2018-02-01
Relative abundances of tree species are presented for the 348 forest plots described in E. Lucy Braun's (1950) book, Deciduous Forests of Eastern North America (Hafner, New York, facsimile reprint 1972). Information about the plots includes forest type, location with latitude and longitude, WorldClim climate variables, and sources of original studies where applicable. No copyright restrictions are associated with the use of this data set. Please cite this article when the data are used in other publications. © 2017 by the Ecological Society of America.
Silver, Emily J.; D'Amato, Anthony W.; Fraver, Shawn; Palik, Brian J.; Bradford, John B.
2013-01-01
The structure and developmental dynamics of old-growth forests often serve as important baselines for restoration prescriptions aimed at promoting more complex structural conditions in managed forest landscapes. Nonetheless, long-term information on natural patterns of development is rare for many commercially important and ecologically widespread forest types. Moreover, the effectiveness of approaches recommended for restoring old-growth structural conditions to managed forests, such as the application of extended rotation forestry, has been little studied. This study uses several long-term datasets from old growth, extended rotation, and unmanaged second growth Pinus resinosa (red pine) forests in northern Minnesota, USA, to quantify the range of variation in structural conditions for this forest type and to evaluate the effectiveness of extended rotation forestry at promoting the development of late-successional structural conditions. Long-term tree population data from permanent plots for one of the old-growth stands and the extended rotation stands (87 and 61 years, respectively) also allowed for an examination of the long-term structural dynamics of these systems. Old-growth forests were more structurally complex than unmanaged second-growth and extended rotation red pine stands, due in large part to the significantly higher volumes of coarse woody debris (70.7 vs. 11.5 and 4.7 m3/ha, respectively) and higher snag basal area (6.9 vs. 2.9 and 0.5 m2/ha, respectively). In addition, old-growth forests, although red pine-dominated, contained a greater abundance of other species, including Pinus strobus, Abies balsamea, and Picea glauca relative to the other stand types examined. These differences between stand types largely reflect historic gap-scale disturbances within the old-growth systems and their corresponding structural and compositional legacies. Nonetheless, extended rotation thinning treatments, by accelerating advancement to larger tree diameter classes, generated diameter distributions more closely approximating those found in old growth within a shorter time frame than depicted in long-term examinations of old-growth structural development. These results suggest that extended rotation treatments may accelerate the development of old-growth structural characteristics, provided that coarse woody debris and snags are deliberately retained and created on site. These and other developmental characteristics of old-growth systems can inform forest management when objectives include the restoration of structural conditions found in late-successional forests.
NASA Astrophysics Data System (ADS)
Hargrove, W. W.; Spruce, J.; Norman, S. P.; Hoffman, F. M.
2011-12-01
The National Early Warning System (EWS) provides an 8-day coast-to-coast snapshot of potentially disturbed forests across the U.S.. A prototype system has produced national maps of potential forest disturbances every eight days since January 2010, identifying locations that may require further investigation. Through phenology, the system shows both early and delayed vegetation development and detects all types of unexpected forest disturbances, including insects, disease, wildfires, frost and ice damage, tornadoes, hurricanes, blowdowns, harvest, urbanization, landslides, drought, flood, and climate change. The USDA Forest Service Eastern Forest Environmental Threat Assessment Center is collaborating with NASA Stennis Space Center and the Western Wildland Environmental Threat Assessment Center to develop the tool. The EWS uses differences in phenological responses between an expectation based on historical data and a current view to strategically identify potential forest disturbances and direct attention to locations where forest behavior seems unusual. Disturbance maps are available via the Forest Change Assessment Viewer (FCAV) (http://ews.forestthreats.org/gis), which allows resource managers and other users to see the most current national disturbance maps as soon as they are available. Phenology-based detections show not only vegetation disturbances in the classical sense, but all departures from normal seasonal vegetation behavior. In 2010, the EWS detected a repeated late-frost event at high elevations in North Carolina, USA, that resulted in delayed seasonal development, contrasting with an early spring development at lower elevations, all within close geographic proximity. Throughout 2011, there was a high degree of correspondence between the National Climatic Data Center's North American Drought Monitor maps and EWS maps of phenological drought disturbance in forests. Urban forests showed earlier and more severe phenological drought disturbance than surrounding non-urban forests. An EWS news page (http://www.geobabbble.org/~hnw/EWSNews) highlights disturbances the system has detected during the 2011 season. Unsupervised statistical multivariate clustering of smoothed phenology data every 8 days over an 11-year period produces a detailed map of national vegetation types, including major disturbances. Examining the constancy of these phenological classifications at a particular location from year to year produces a national map showing the persistence of vegetation, regardless of vegetation type. Using spectral unmixing methods, national maps of evergreen decline can be produced which are a composite of insect, disease, and anthropogenic factors causing chronic decline in these forests, including hemlock wooly adelgid, mountain pine beetle, wildfire, tree harvest, and urbanization. Because phenology shows vegetation responses, all disturbance and recovery events detected by the EWS are viewed through the lens of the vegetation.
NASA Astrophysics Data System (ADS)
Leigh, D.; Gragson, T. L.
2017-12-01
Summits of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, including use of fire. We hypothesize differences in soil chemical and physical traits evolved because of this transformation. Paired forest versus grassland soils were sampled at four separate hillslope sites having a clear boundary between the two vegetation types. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples from the upper 7.6 cm of the mineral soil within each vegetation type and the A horizon thickness was recorded at each core hole. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. Analyses included bulk density, pH, plant-available nutrients, organic matter, fulvic versus humic acids, total carbon and nitrogen, amorphous silica, and charcoal content. Results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, and have lower bulk densities. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we validated with saturated hydraulic conductivity tests. Melanization has been more pronounced in the managed pastures, which contain significantly more humic acids than forests. Significantly more charcoal (black carbon) is present in the pastured soils from long-term use of fire, and having implications for sequestration of carbon. Pastures register significantly higher soil magnetic susceptibility than forests, also related to past use of fire as a management tool. Pastures contain greater contents of amorphous silica due to more rapid phytolith production from grasses as opposed to trees. Anthropic manipulation of the biotic factor of pedogenesis has created new soil materials, processes, and functions. Our results indicate better soil quality in pastured soils, counter to stereotypical concepts of soil degradation due to grazing, and having important implications for soil sustainability
The nitrogen budget for different forest types in the central Congo Basin
NASA Astrophysics Data System (ADS)
Bauters, Marijn; Verbeeck, Hans; Cizungu, Landry; Boeckx, Pascal
2016-04-01
Characterization of fundamental processes in different forest types is vital to understand the interaction of forests with their changing environment. Recent data analyses, as well as modeling activities have shown that the CO2 uptake by terrestrial ecosystems strongly depends on site fertility, i.e. nutrient availability. Accurate projections of future net forest growth and terrestrial CO2 uptake thus necessitate an improved understanding on nutrient cycles and how these are coupled to the carbon (C) cycle in forests. This holds especially for tropical forests, since they represent about 40-50% of the total carbon that is stored in terrestrial vegetation, with the Amazon basin and the Congo basin being the largest two contiguous blocks. However, due to political instability and reduced accessibility in the central Africa region, there is a strong bias in scientific research towards the Amazon basin. Consequently, central African forests are poorly characterized and their role in global change interactions shows distinct knowledge gaps, which is important bottleneck for all efforts to further optimize Earth system models explicitly including this region. Research in the Congo Basin region should combine assessments of both carbon stocks and the underlying nutrient cycles which directly impact the forest productivity. We set up a monitoring network for carbon stocks and nitrogen fluxes in four different forest types in the Congo Basin, which is now operative. With the preliminary data, we can get a glimpse of the differences in nitrogen budget and biogeochemistry of African mixed lowland rainforest, monodominant lowland forest, mixed montane forest and eucalypt plantations.
Forest fire risk zonation mapping using remote sensing technology
NASA Astrophysics Data System (ADS)
Chandra, Sunil; Arora, M. K.
2006-12-01
Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.
NASA Astrophysics Data System (ADS)
Joyce, L. A.; Running, S. W.; Breshears, D. D.; Dale, V.; Malmsheimer, R. W.; Sampson, N.; Sohngen, B.; Woodall, C. W.
2012-12-01
Increasingly the value of US forest carbon dynamics and carbon sequestration is being recognized in discussions of adaptation and mitigation to climate change. Past exploitation of forestlands in the United States for timber, fuelwood, and conversion to agriculture resulted in large swings in forestland area and terrestrial carbon dynamics. The National Climate Assessment explored the implications of current and future stressors, including climate change, to the future of forest carbon dynamics in the United States. While U.S forests and associated harvested wood products sequestered roughly 13 percent of all carbon dioxide emitted in the United States in 2010, the capacity of forests to maintain this amount of carbon sequestration will be affected by the effects of climate change on forest disturbances, tree growth and mortality, changes in species composition, and to a greater extent, the economic and societal influences on forest management and forestland use. Carbon mitigation through forest management includes three strategies: 1) land management to increase forest area (afforestation) and/or avoid deforestation; 2) carbon management in existing forests; and 3) use of wood in place of materials that require more carbon emissions to produce, in place of fossil fuels to produce energy or in wood products for carbon storage. A significant financial incentive facing many private forest owners is the value of their forest lands for conversion to urban or developed uses. In addition, consequences of large scale die-off and wildfire disturbance events from climate change pose major challenges to forestland area and forest management with potential impacts occurring up to regional scales for timber, flooding and erosion risks, other changes in water budgets, and biogeochemical changes including carbon storage. Options for carbon management on existing forests include practices that increase forest growth such as fertilization, irrigation, switch to fast-growing planting stock and shorter rotations, and weed, disease, and insect control, and increasing the interval between harvests or decreasing harvest intensity. Economic drivers will affect future carbon cycle of forests such as shifts in forest age class structure in response to markets, land-use changes such as urbanization, and forest type changes. Future changes in forestland objectives include the potential for bioenergy based on forestland resources, which is as large as 504 million acres of timberland and 91 million acres of other forest land out of the 751 million acres of U.S. forestland. Implications of forest product use for bioenergy depend on the context of specific locations such as feedstock type and prior management, land conditions, transport and storage logistics, conversion processes used to produce energy, distribution and use. Markets for energy from biomass appear to be ready to grow in response to energy pricing, policy and demand, although recent increases in the supply of natural gas have reduced urgency for new biomass projects. Beyond use in the forest industry and some residences, biopower is not a large-scale enterprise in the United States. Societal choices about forest policy will also affect the carbon cycles on public and private forestland.
NASA Astrophysics Data System (ADS)
Melo, Catarina Drumonde; Luna, Sara; Krüger, Claudia; Walker, Christopher; Mendonça, Duarte; Fonseca, Henrique M. A. C.; Jaizme-Vega, Maria; da Câmara Machado, Artur
2017-02-01
The communities of glomeromycotan fungi (arbuscular mycorrhizal fungi, AMF) under native Juniperus brevifolia forest from two Azorean islands, Terceira and São Miguel, were compared, mainly by spore morphology, and when possible, by molecular analysis. Thirty-nine morphotypes were detected from 12 genera. Glomeromycotan fungal richness was similar in Terceira and São Miguel, but significantly different among the four fragments of native forest. Spore diversity and community composition differed significantly between the two islands. The less degraded island, Terceira, showed 10 exclusive morphotypes including more rare types, whereas the more disturbed forest on São Miguel showed 13 morphs, mostly of common types. Forests from Terceira were dominated by Acaulosporaceae and Glomeraceae. Whereas members of Acaulosporaceae, Glomeraceae and Ambisporaceae were most frequent and abundant in those from São Miguel. Spore abundance was greatest on Terceira, and correlated with soil chemical properties (pH), average monthly temperature and relative humidity.
Predicting healthcare associated infections using patients' experiences
NASA Astrophysics Data System (ADS)
Pratt, Michael A.; Chu, Henry
2016-05-01
Healthcare associated infections (HAI) are a major threat to patient safety and are costly to health systems. Our goal is to predict the HAI performance of a hospital using the patients' experience responses as input. We use four classifiers, viz. random forest, naive Bayes, artificial feedforward neural networks, and the support vector machine, to perform the prediction of six types of HAI. The six types include blood stream, urinary tract, surgical site, and intestinal infections. Experiments show that the random forest and support vector machine perform well across the six types of HAI.
Dominant forest tree mycorrhizal type mediates understory plant invasions
Insu Jo; Kevin M. Potter; Grant M. Domke; Songlin Fei
2017-01-01
Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree mycorrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are...
Bandala, Victor M; Montoya, Leticia; Horak, Egon
2006-01-01
Two species of Crepidotus are recorded from cloud forest in the central region of Veracruz State (eastern Mexico): Crepidotus rubrovinosus sp. nov. and Crepidotus septicoides. The latter species was known previously only from the type locality in Brazil and from one record in tropical rain forest in southern Veracruz (as C. longicystis s. str. Singer). Descriptions, illustrations and discussions for both taxa are provided. A type study of C. fusisporus var. longicystis from USA is included, and it is concluded that the collection supporting this variety belongs to C. luteolus.
Disturbance-mediated accelerated succession in two Michigan forest types
Abrams, Marc D.; Scott, Michael L.
1989-01-01
In northern lower Michigan, logging accelerated sugar maple (Acer saccharum) dominance in a northern white cedar (Thuja occidentals) community, and clear-cutting and burning quickly converted certain sites dominated by mature jack pine (Pinus banksiana) to early-succesional hardwoods, including Prunus, Populus, and Quercus. In both forest types the succeeding hardwoods should continue to increase in the future at the expense of the pioneer conifer species. In the cedar example, sugar maple was also increasing a an undisturbed, old-growth stand, but at a much reduced rate than in the logged stand. Traditionally, disturbance was through to set back succession to some earlier stage. However, out study sites and at least several other North American forest communities exhibited accelerated succession following a wide range of disturbances, including logging fire, ice storms, wind-throw, disease, insect attack, and herbicide spraying.
Plant diversity of the Pantanal wetland.
Pott, A; Oliveira, A K M; Damasceno-Junior, G A; Silva, J S V
2011-04-01
This is a review of current studies in diversity of the flora and main vegetation types in the Brazilian Pantanal. The flora of this wetland, nearly 2,000 species, constitutes a pool of elements of wide distribution and from more or less adjacent phytogeographic provinces, such as Cerrado, dry seasonal forests, Chaco, Amazonia and Atlantic Forest. The most numerous group includes wide-distribution species, mainly herbs, while the second contingent comes from the Cerrado. Endemic plants are rare, numbering only seven. The vegetation of the sedimentary floodplain is a mosaic of aquatics, floodable grasslands, riparian forests, savannas (cerrados), cerrado woodlands, dry forests, and a large area of mono-dominant savannas, and pioneer woodlands. The main vegetation types are briefly described with their characteristic species, and their estimated areas are given according to the latest mapping.
Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.
Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S
2016-09-01
We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.
Lin, Guigang; McCormack, M Luke; Ma, Chengen; Guo, Dali
2017-02-01
Compared with ectomycorrhizal (ECM) forests, arbuscular mycorrhizal (AM) forests are hypothesized to have higher carbon (C) cycling rates and a more open nitrogen (N) cycle. To test this hypothesis, we synthesized 645 observations, including 22 variables related to below-ground C and N dynamics from 100 sites, where AM and ECM forests co-occurred at the same site. Leaf litter quality was lower in ECM than in AM trees, leading to greater forest floor C stocks in ECM forests. By contrast, AM forests had significantly higher mineral soil C concentrations, and this result was strongly mediated by plant traits and climate. No significant differences were found between AM and ECM forests in C fluxes and labile C concentrations. Furthermore, inorganic N concentrations, net N mineralization and nitrification rates were all higher in AM than in ECM forests, indicating 'mineral' N economy in AM but 'organic' N economy in ECM trees. AM and ECM forests show systematic differences in mineral vs organic N cycling, and thus mycorrhizal type may be useful in predicting how different tree species respond to multiple environmental change factors. By contrast, mycorrhizal type alone cannot reliably predict below-ground C dynamics without considering plant traits and climate. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Dacia M. Meneguzzo; Brett J. Butler; Susan J. Crocker; David E. Haugen; W. Keith Moser; Charles H. Perry; Barry T. Wilson; Christopher W. Woodall
2008-01-01
Results of the first annual inventory of Nebraska's forests (2001-05) show an estimated 1.24 million acres of forest land; 1.17 million acres meet the definition of timberland. Softwood forest types account for one-third of all forest land area, with ponderosa pine being the most prevalent type. Hardwood forest types comprise 58 percent of Nebraska's forest...
Dominant forest tree mycorrhizal type mediates understory plant invasions
Insu Jo; Kevin M. Potter; Grant M. Domke; Songlin Fei
2018-01-01
Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree myc- orrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are...
Saproxylic Hemiptera Habitat Associations
Michael D. Ulyshen; James L. Hanula; Robert L. Blinn; Gene. Kritsky
2012-01-01
Understanding the habitat requirements of organisms associated with dead wood is important in order to conserve them in managed forests. Unfortunately, many of the less diverse saproxylic taxa, including Hemiptera, remain largely unstudied. An effort to rear insects from dead wood taken from two forest types (an upland pine-dominated and a bottomland mixed hardwood),...
New England wildlife: management forested habitats
Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier
1992-01-01
Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...
Forest Types in the Lower Suwannee River Floodplain, Florida?-A Report and Interactive Map
Darst, M.R.; Light, H.M.; Lewis, L.J.; Sepulveda, A.A.
2003-01-01
A map of forest types in the lower Suwannee River floodplain, Florida, was created during a study conducted from 1996 to 2000 by the U.S. Geological Survey in cooperation with the Suwannee River Water Management District. The map is presented with this report on a compact disc with interactive viewing software. The forest map can be used by scientists for ecological studies in the floodplain based on land cover types and by landowners and management personnel making land use decisions. The study area is the 10-year floodplain of the lower Suwannee River from its confluence with the Santa Fe River to the lower limit of forests near the Gulf of Mexico. The floodplain is divided into three reaches: riverine (non-tidal), upper tidal, and lower tidal, due to changes in hydrology, vegetation, and soils with proximity to the coast. The 10-year floodplain covers about 21,170 hectares; nearly 88 percent of this area (18,580 hectares) is mapped as 14 major forest types. Approximately 29 percent (5,319 hectares) of these forests have been altered by agriculture or development. About 75 percent of the area of major forest types (13,994 hectares) is wetland forests and about 25 percent (4,586 hectares) is upland forests. Tidal wetland forests (8,955 hectares) cover a much greater area than riverine wetland forests (5,039 hectares). Oak/pine upland forests are present in the riverine and upper tidal reaches of the floodplain on elevations that are inundated only briefly during the highest floods. High bottomland hardwoods are present on the higher levees, ridges, and flats of the riverine reach where soils are usually sandy. Low bottomland hardwood forests are present in the riverine reach on swamp margins and low levees and flats that are flooded continuously for several weeks or longer every 1 to 3 years. Riverine swamps are present in the lowest and wettest areas of the non-tidal floodplain that are either inundated or saturated most of the time. Upper tidal bottomland hardwood forests are present on sandy soils on high flats and in transitional areas between upland forests and swamps. Upper tidal mixed forests are found on low levees or between swamps and higher forest types. Upper tidal swamps are present at elevations below median monthly high stage and usually have surface soils that are permanently saturated mucks. Lower tidal hammocks are found on higher elevations that do not receive regular tidal inundation but have a high water table and are briefly inundated by storm surges several times a decade. Lower tidal mixed forests include swamps with numerous small hummocks or less common larger hummocks. Lower tidal swamps are found on deep muck soils that are below the elevation of the median daily or monthly high stage. Seven additional land cover types (2,590 hectares) are mapped. Water in the main channel of the lower Suwannee River (1,767 hectares) was mapped separately from open water in the floodplain (239 hectares). Other land cover types are: seepage slopes (70 hectares), isolated forested wetlands (19 hectares), marshes upstream of the tree line (505 hectares), beds of emergent aquatic vegetation (21 hectares), and floodplain glades (46 hectares)
Gary L. Parson; Gerasimos Cassis; Andrew R. Moldenke; John D. Lattin; Norman H. Anderson; Jeffrey C Miller; Paul Hammond; Timothy D. Schowalter
1991-01-01
An annotated list of species of insects and other arthropods that have been collected and studies on the H.J. Andrews Experimental forest, western Cascade Range, Oregon. The list includes 459 families, 2,096 genera, and 3,402 species. All species have been authoritatively identified by more than 100 specialists. Information is included on habitat type, functional group...
Gary L. Parson; Gerasimos Cassis; Andrew R. Moldenke; John D. Lattin; Norman H. Anderson; Jeffrey C Miller; Paul Hammond; Timothy D. Schowalter
1991-01-01
An annotated list of species of insects and other arthropods that have been collected and studies on the H.J. Andrews Experimental forest, western Cascade Range, Oregon. The list includes 459 families, 2,096 genera, and 3,402 species. All species have been authoritatively identified by more than 100 specialists. Information is included on habitat type, functional group...
Beyond edge effects: landscape controls on forest structure in the southeastern US
NASA Astrophysics Data System (ADS)
Fagan, M. E.; Morton, D. C.; Cook, B.; Masek, J. G.; Zhao, F. A.; Nelson, R.; Huang, C.
2016-12-01
The structure of forest canopies (i.e., their height and complexity) is known to be influenced by a variety of factors, including forest age, species composition, disturbance, edaphic and topographical conditions, and exposure to edge environments. The combined impact of each of these factors on canopy structure is not well characterized for most forest ecosystems, however, which limits our ability to predict the regional impacts of forest fragmentation. The objective of this study was to elucidate the main biophysical drivers of canopy structure across two dominant ecosystems in the southeastern U.S: natural mixed deciduous forests, and industrial conifer plantations. We analyzed spatial changes in canopy structure along aerial transects of LiDAR data ( 3,000 km in all). High-resolution (1 m) LiDAR data from Goddard's LiDAR, Hyperspectral, and Thermal Airborne Imager (G-LiHT) were combined with time series of Landsat imagery to quantify forest type, age, composition, and fragmentation. Forest structural metrics (height, gap fraction, and canopy roughness) were examined across forest types, ages, topography, and decreasing edge exposure. We hypothesized that 1) structural edge effects would be weak in both natural and plantation forest types, and 2) age, composition, and topography would be the dominant influences on natural forest structure. We analyzed all large (>4 ha) fragments from the 8562 distinct forests measured during G-LiHT data collections in 2011 across the southeastern U.S. In general, the relationship between forest structural metrics and edge exposure was highly variable in both natural forests and plantations. However, variability in all structural metrics decreased with distance from an edge. Forest age and topography were strong predictors of canopy structure in natural forests. However plantations tended to be located in sites with limited topographical variation, and thinning disturbances of conifer plantations decreased the strength of the age-structure relationship. We found that canopy structure in our region is influenced by edge effects, but other factors played a larger role in determining forest characteristics. Our results highlight the importance of endogenous, stand-specific processes for forest structure, biomass, and biodiversity in the southeastern U.S.
Messier, Kyle P; Jackson, Laura E; White, Jennifer L; Hilborn, Elizabeth D
2015-01-01
This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity) and aggregate classes (e.g., forest, developed). Percent of each landcover type, median income, and centroid coordinates were calculated by census tract. Regression results from individual and aggregate variable models were compared with the dispersion parameter-based R(2) (Rα(2)) and AIC. The maximum Rα(2) was 0.82 and 0.83 for the best aggregate and individual model, respectively. The AICs for the best models differed by less than 0.5%. The aggregate model variables included forest, developed, agriculture, agriculture-squared, y-coordinate, y-coordinate-squared, income and income-squared. The individual model variables included deciduous forest, deciduous forest-squared, developed low intensity, pasture, y-coordinate, y-coordinate-squared, income, and income-squared. Results indicate that regional landscape models for Lyme disease rate are robust to NLCD landcover classification resolution. Published by Elsevier Ltd.
Tng, David Y P; Jordan, Greg J; Bowman, David M J S
2013-01-01
Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world's tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest - open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management.
Tng, David Y. P.; Jordan, Greg J.; Bowman, David M. J. S.
2013-01-01
Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management. PMID:24358359
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...
NASA Astrophysics Data System (ADS)
Huesca Martinez, M.; Garcia, M.; Roth, K. L.; Casas, A.; Ustin, S.
2015-12-01
There is a well-established need within the remote sensing community for improved estimation of canopy structure and understanding of its influence on the retrieval of leaf biochemical properties. The aim of this project was to evaluate the estimation of structural properties directly from hyperspectral data, with the broader goal that these might be used to constrain retrievals of canopy chemistry. We used NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to discriminate different canopy structural types, defined in terms of biomass, canopy height and vegetation complexity, and compared them to estimates of these properties measured by LiDAR data. We tested a large number of optical metrics, including single narrow band reflectance and 1st derivative, sub-pixel cover fractions, narrow-band indices, spectral absorption features, and Principal Component Analysis components. Canopy structural types were identified and classified from different forest types by integrating structural traits measured by optical metrics using the Random Forest (RF) classifier. The classification accuracy was above 70% in most of the vegetation scenarios. The best overall accuracy was achieved for hardwood forest (>80% accuracy) and the lowest accuracy was found in mixed forest (~70% accuracy). Furthermore, similarly high accuracy was found when the RF classifier was applied to a spatially independent dataset, showing significant portability for the method used. Results show that all spectral regions played a role in canopy structure assessment, thus the whole spectrum is required. Furthermore, optical metrics derived from AVIRIS proved to be a powerful technique for structural attribute mapping. This research illustrates the potential for using optical properties to distinguish several canopy structural types in different forest types, and these may be used to constrain quantitative measurements of absorbing properties in future research.
Previous land use and invasive species impacts on long-term afforestation success
Joshua B. Nickelson; Eric J. Holzmueller; John W. Groninger; Damon B. Lesmeister
2015-01-01
The conversion of agricultural lands to forests has increased worldwide over the past few decades for multiple reasons including increasing forest connectivity and wildlife habitat. However, previous land cover and competing vegetation often impede afforestation. We established 219 plots in 29 Quercus plantations on four previous land cover types (...
The forest ecosystem of southeast Alaska: 1. The setting.
Arland S. Harris; O. Keith Hutchison; William R. Meehan; Douglas N. Swanston; Austin E. Helmers; John C. Hendee; Thomas M. Collins
1974-01-01
A description of the discovery and exploration of southeast Alaska sets the scene for a discussion of the physical and biological features of this region. Subjects discussed include geography, climate, vegetation types, geology, minerals, forest products, soils, fish, wildlife, water, recreation, and aesthetic values. This is the first of a series of publications...
Exposure of tropical ecosystems to artificial light at night: Brazil as a case study.
Freitas, Juliana Ribeirão de; Bennie, Jon; Mantovani, Waldir; Gaston, Kevin J
2017-01-01
Artificial nighttime lighting from streetlights and other sources has a broad range of biological effects. Understanding the spatial and temporal levels and patterns of this lighting is a key step in determining the severity of adverse effects on different ecosystems, vegetation, and habitat types. Few such analyses have been conducted, particularly for regions with high biodiversity, including the tropics. We used an intercalibrated version of the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) images of stable nighttime lights to determine what proportion of original and current Brazilian vegetation types are experiencing measurable levels of artificial light and how this has changed in recent years. The percentage area affected by both detectable light and increases in brightness ranged between 0 and 35% for native vegetation types, and between 0 and 25% for current vegetation (i.e. including agriculture). The most heavily affected areas encompassed terrestrial coastal vegetation types (restingas and mangroves), Semideciduous Seasonal Forest, and Mixed Ombrophilous Forest. The existing small remnants of Lowland Deciduous and Semideciduous Seasonal Forests and of Campinarana had the lowest exposure levels to artificial light. Light pollution has not often been investigated in developing countries but our data show that it is an environmental concern.
NASA Astrophysics Data System (ADS)
Tyukavina, A.; Potapov, P.; Hansen, M.; Talero, Y.; Turubanova, S.; Pickering, J.; Pickens, A. H.; Quyen, N. H.; Spirovska Kono, M.
2017-12-01
Timely forest monitoring data produced following good practice guidance are required for national reporting on greenhouse gas emissions, national forest resource assessments, and monitoring for REDD+ projects. Remote sensing provides a cost-efficient supplement to national forest inventories, and is often the single viable source of data on forest extent for countries still in the process of establishing field-based inventories. Operational forest monitoring using remotely sensed data requires technical capacity to store, process, and analyze high volumes of satellite imagery. The University of Maryland Global Land Analysis and Discovery (UMD GLAD) lab possesses such technical capacity and is seeking to transfer it to national agencies responsible for forest reporting, national academic institutions, and NGOs. Our projects in South and Southeast Asia include regional forest monitoring in the lower Mekong region in support of the Regional Land Cover Monitoring System (funded by the NASA SERVIR program) and building capacity for forest monitoring in Nepal, Bangladesh, Vietnam, Cambodia, Laos, and Thailand (funded by the SilvaCarbon program). Our forest monitoring approach is a regional scale adaptation of methods developed for the global analysis (Hansen et al. 2013). The methodology to track large-scale clearing of natural forests (e.g. in Brazil and Indonesia) is well established; however, the methods for small-scale disturbance mapping and tree cover rotation assessment are still in development. In Bangladesh our mapping of tree cover change between 2000-2014 revealed that 54% of the tree canopy cover was outside forests, and the majority of canopy changes were smaller than 0.1 ha. Landsat's 30-m resolution was therefore insufficient to monitor changes in tree cover. By using a probability sample of high resolution (circa 1 m) imagery we were able to quantify change in tree canopy cover outside forests (including village woodlots, tree plantations and agroforestry) and in different forest types. Our result shows that while the net tree cover change in Bangladesh is rather small, the gross dynamics are significant and can vary by forest type.
Climate change, fire management, and ecological services in the southwestern US
Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.
2014-01-01
The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem services. We conclude with an assessment of the role of fire management in an increasingly flammable Southwest.
Phylobetadiversity among forest types in the Brazilian Atlantic Forest complex.
Duarte, Leandro Da Silva; Bergamin, Rodrigo Scarton; Marcilio-Silva, Vinícius; Seger, Guilherme Dubal Dos Santos; Marques, Márcia Cristina Mendes
2014-01-01
Phylobetadiversity is defined as the phylogenetic resemblance between communities or biomes. Analyzing phylobetadiversity patterns among different vegetation physiognomies within a single biome is crucial to understand the historical affinities between them. Based on the widely accepted idea that different forest physiognomies within the Southern Brazilian Atlantic Forest constitute different facies of a single biome, we hypothesize that more recent phylogenetic nodes should drive phylobetadiversity gradients between the different forest types within the Atlantic Forest, as the phylogenetic divergence among those forest types is biogeographically recent. We compiled information from 206 checklists describing the occurrence of shrub/tree species across three different forest physiognomies within the Southern Brazilian Atlantic Forest (Dense, Mixed and Seasonal forests). We analyzed intra-site phylogenetic structure (phylogenetic diversity, net relatedness index and nearest taxon index) and phylobetadiversity between plots located at different forest types, using five different methods differing in sensitivity to either basal or terminal nodes (phylogenetic fuzzy weighting, COMDIST, COMDISTNT, UniFrac and Rao's H). Mixed forests showed higher phylogenetic diversity and overdispersion than the other forest types. Furthermore, all forest types differed from each other in relation phylobetadiversity patterns, particularly when phylobetadiversity methods more sensitive to terminal nodes were employed. Mixed forests tended to show higher phylogenetic differentiation to Dense and Seasonal forests than these latter from each other. The higher phylogenetic diversity and phylobetadiversity levels found in Mixed forests when compared to the others likely result from the biogeographical origin of several taxa occurring in these forests. On one hand, Mixed forests shelter several temperate taxa, like the conifers Araucaria and Podocarpus. On the other hand, tropical groups, like Myrtaceae, are also very representative of this forest type. We point out to the need of more attention to Mixed forests as a conservation target within the Brazilian Atlantic Forest given their high phylogenetic uniqueness.
Phylobetadiversity among Forest Types in the Brazilian Atlantic Forest Complex
Duarte, Leandro Da Silva; Bergamin, Rodrigo Scarton; Marcilio-Silva, Vinícius; Seger, Guilherme Dubal Dos Santos; Marques, Márcia Cristina Mendes
2014-01-01
Phylobetadiversity is defined as the phylogenetic resemblance between communities or biomes. Analyzing phylobetadiversity patterns among different vegetation physiognomies within a single biome is crucial to understand the historical affinities between them. Based on the widely accepted idea that different forest physiognomies within the Southern Brazilian Atlantic Forest constitute different facies of a single biome, we hypothesize that more recent phylogenetic nodes should drive phylobetadiversity gradients between the different forest types within the Atlantic Forest, as the phylogenetic divergence among those forest types is biogeographically recent. We compiled information from 206 checklists describing the occurrence of shrub/tree species across three different forest physiognomies within the Southern Brazilian Atlantic Forest (Dense, Mixed and Seasonal forests). We analyzed intra-site phylogenetic structure (phylogenetic diversity, net relatedness index and nearest taxon index) and phylobetadiversity between plots located at different forest types, using five different methods differing in sensitivity to either basal or terminal nodes (phylogenetic fuzzy weighting, COMDIST, COMDISTNT, UniFrac and Rao’s H). Mixed forests showed higher phylogenetic diversity and overdispersion than the other forest types. Furthermore, all forest types differed from each other in relation phylobetadiversity patterns, particularly when phylobetadiversity methods more sensitive to terminal nodes were employed. Mixed forests tended to show higher phylogenetic differentiation to Dense and Seasonal forests than these latter from each other. The higher phylogenetic diversity and phylobetadiversity levels found in Mixed forests when compared to the others likely result from the biogeographical origin of several taxa occurring in these forests. On one hand, Mixed forests shelter several temperate taxa, like the conifers Araucaria and Podocarpus. On the other hand, tropical groups, like Myrtaceae, are also very representative of this forest type. We point out to the need of more attention to Mixed forests as a conservation target within the Brazilian Atlantic Forest given their high phylogenetic uniqueness. PMID:25121495
NASA Astrophysics Data System (ADS)
Helmer, E.; Ruzycki, T. S.; Wunderle, J. M.; Kwit, C.; Ewert, D. N.; Voggesser, S. M.; Brandeis, T. J.
2011-12-01
We mapped tropical dry forest height (RMSE = 0.9 m, R2 = 0.84, range 0.6-7 m) and foliage height profiles with a time series of gap-filled Landsat and Advanced Land Imager (ALI) imagery for the island of Eleuthera, The Bahamas. We also mapped disturbance type and age with decision tree classification of the image time series. Having mapped these variables in the context of studies of wintering habitat of an endangered Nearctic-Neotropical migrant bird, the Kirtland's Warbler (Dendroica kirtlandii), we then illustrated relationships between forest vertical structure, disturbance type and counts of forage species important to the Kirtland's Warbler. The ALI imagery and the Landsat time series were both critical to the result for forest height, which the strong relationship of forest height with disturbance type and age facilitated. Also unique to this study was that seven of the eight image time steps were cloud-gap-filled images: mosaics of the clear parts of several cloudy scenes, in which cloud gaps in a reference scene for each time step are filled with image data from alternate scenes. We created each cloud-cleared image, including a virtually seamless ALI image mosaic, with regression tree normalization of the image data that filled cloud gaps. We also illustrated how viewing time series imagery as red-green-blue composites of tasseled cap wetness (RGB wetness composites) aids reference data collection for classifying tropical forest disturbance type and age.
Mladenoff, David J.; Cogbill, Charles V.; Record, Sydne; Paciorek, Christopher J.; Jackson, Stephen T.; Dietze, Michael C.; Dawson, Andria; Matthes, Jaclyn Hatala; McLachlan, Jason S.; Williams, John W.
2016-01-01
Background EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. Changes in Forest Structure We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA) data to show the prevalence of lost forests (pre-settlement forests with no current analog), and novel forests (modern forests with no past analogs). Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical forest type. The spatial relationships between remnant and novel forests, shifts in ecotone structure and the loss of historic forest types point to significant challenges for land managers if landscape restoration is a priority. The spatial signals of novelty and ecological change also point to potential challenges in using modern spatial distributions of species and communities and their relationship to underlying geophysical and climatic attributes in understanding potential responses to changing climate. The signal of human settlement on modern forests is broad, spatially varying and acts to homogenize modern forests relative to their historic counterparts, with significant implications for future management. PMID:27935944
Determining stocking, forest type and stand-size class from forest inventory data
Mark H. Hansen; Jerold T. Hahn
1992-01-01
This paper describes the procedures used by North Central Forest Experiment Station's Forest Inventory and Analysis Work Unit (NCFIA) in determining stocking, forest type, and stand-size class. The stocking procedure assigns a portion of the stocking to individual trees measured on NCFIA 10-point field plots. Stand size and forest type are determined as functions...
Goring, Simon J; Mladenoff, David J; Cogbill, Charles V; Record, Sydne; Paciorek, Christopher J; Jackson, Stephen T; Dietze, Michael C; Dawson, Andria; Matthes, Jaclyn Hatala; McLachlan, Jason S; Williams, John W
2016-01-01
EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA) data to show the prevalence of lost forests (pre-settlement forests with no current analog), and novel forests (modern forests with no past analogs). Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical forest type. The spatial relationships between remnant and novel forests, shifts in ecotone structure and the loss of historic forest types point to significant challenges for land managers if landscape restoration is a priority. The spatial signals of novelty and ecological change also point to potential challenges in using modern spatial distributions of species and communities and their relationship to underlying geophysical and climatic attributes in understanding potential responses to changing climate. The signal of human settlement on modern forests is broad, spatially varying and acts to homogenize modern forests relative to their historic counterparts, with significant implications for future management.
Analysis of the 1996 Wisconsin forest statistics by habitat type.
John Kotar; Joseph A. Kovach; Gary Brand
1999-01-01
The fifth inventory of Wisconsin's forests is presented from the perspective of habitat type as a classification tool. Habitat type classifies forests based on the species composition of the understory plant community. Various forest attributes are summarized by habitat type and management implications are discussed.
A multi-scale metrics approach to forest fragmentation for Strategic Environmental Impact Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eunyoung, E-mail: eykim@kei.re.kr; Song, Wonkyong, E-mail: wksong79@gmail.com; Lee, Dongkun, E-mail: dklee7@snu.ac.kr
Forests are becoming severely fragmented as a result of land development. South Korea has responded to changing community concerns about environmental issues. The nation has developed and is extending a broad range of tools for use in environmental management. Although legally mandated environmental compliance requirements in South Korea have been implemented to predict and evaluate the impacts of land-development projects, these legal instruments are often insufficient to assess the subsequent impact of development on the surrounding forests. It is especially difficult to examine impacts on multiple (e.g., regional and local) scales in detail. Forest configuration and size, including forest fragmentationmore » by land development, are considered on a regional scale. Moreover, forest structure and composition, including biodiversity, are considered on a local scale in the Environmental Impact Assessment process. Recently, the government amended the Environmental Impact Assessment Act, including the SEA, EIA, and small-scale EIA, to require an integrated approach. Therefore, the purpose of this study was to establish an impact assessment system that minimizes the impacts of land development using an approach that is integrated across multiple scales. This study focused on forest fragmentation due to residential development and road construction sites in selected Congestion Restraint Zones (CRZs) in the Greater Seoul Area of South Korea. Based on a review of multiple-scale impacts, this paper integrates models that assess the impacts of land development on forest ecosystems. The applicability of the integrated model for assessing impacts on forest ecosystems through the SEIA process is considered. On a regional scale, it is possible to evaluate the location and size of a land-development project by considering aspects of forest fragmentation, such as the stability of the forest structure and the degree of fragmentation. On a local scale, land-development projects should consider the distances at which impacts occur in the vicinity of the forest ecosystem, and these considerations should include the impacts on forest vegetation and bird species. Impacts can be mitigated by considering the distances at which these influences occur. In particular, this paper presents an integrated environmental impact assessment system to be applied in the SEIA process. The integrated assessment system permits the assessment of the cumulative impacts of land development on multiple scales. -- Highlights: • The model is to assess the impact of forest fragmentation across multiple scales. • The paper suggests the type of forest fragmentation on a regional scale. • The type can be used to evaluate the location and size of a land development. • The paper shows the influence distance of land development on a local scale. • The distance can be used to mitigate the impact at an EIA process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harms, W.R.
1996-09-01
All Forest Service Stations and Regions began developing old-growth definitions for specific forest types. Definitions will first be developed for broad forest types and based mainly on published information and so must be viewed accordingly. Refinements will be made by the Forest Service as new information becomes available. This document represents 1 of 35 forest types for which old-growth definition will be drafted.
Global-scale patterns of forest fragmentation
Riitters, K.; Wickham, J.; O'Neill, R.; Jones, B.; Smith, E.
2000-01-01
We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 ?? 9 pixels, "small" scale) to 59,049 km 2 (243 ?? 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined) from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe - Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types) and Europe - Asia (four types), in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland). The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf. Copyright ?? 2000 by The Resilience Alliance.
NASA Astrophysics Data System (ADS)
McGowan, L. E.; Dahlke, H. E.; Paw U, K. T.
2015-12-01
Snow cover is a critical driver of the Earth's surface energy budget, climate change, and water resources. Variations in snow cover not only affect the energy budget of the land surface but also represent a major water supply source. In California, US estimates of snow depth, extent, and melt in the Sierra Nevada are critical to estimating the amount of water available for both California agriculture and urban users. However, accurate estimates of snow cover and snow melt processes in forested area still remain a challenge. Canopy structure influences the vertical and spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability in forested regions. In this study we use the Advanced Canopy-Atmosphere-Soil algorithm (ACASA), a multi-layer soil-vegetation-atmosphere numerical model, to simulate the effect of different snow-covered canopy structures on the energy budget, and temperature and other scalar profiles within different forest types in the Sierra Nevada, California. ACASA incorporates a higher order turbulence closure scheme which allows the detailed simulation of turbulent fluxes of heat and water vapor as well as the CO2 exchange of several layers within the canopy. As such ACASA can capture the counter gradient fluxes within canopies that may occur frequently, but are typically unaccounted for, in most snow hydrology models. Six different canopy types were modeled ranging from coniferous forests (e.g. most biomass near the ground) to top-heavy (e.g. most biomass near the top of the crown) deciduous forests to multi-layered forest canopies (e.g. mixture of young and mature trees). Preliminary results indicate that the canopy shape and structure associated with different canopy types fundamentally influence the vertical scalar profiles (including those of temperature, moisture, and wind speed) in the canopy and thus alter the interception and snow melt dynamics in forested land surfaces. The turbulent transport dynamics, including counter-gradient fluxes, and radiation features including land surface albedo, are discussed in the context of the snow energy balance.
Fire ecology of western Montana forest habitat types
William C. Fischer; Anne F. Bradley
1987-01-01
Provides information on fire as an ecological factor for forest habitat types in western Montana. Identifies Fire Groups of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.
Conterminous U.S. and Alaska Forest Type Mapping Using Forest Inventory and Analysis Data
B. Ruefenacht; M.V. Finco; M.D. Nelson; R. Czaplewski; E.H. Helmer; J. A. Blackard; G.R. Holden; A.J. Lister; D. Salajanu; D. Weyermann; K. Winterberger
2008-01-01
Classification-trees were used to model forest type groups and forest types for the conterminous United States and Alaska. The predictor data were a geospatial data set with a spatial resolution of 250 m developed by the U.S. Department of Agriculture Forest Service (USFS). The response data were plot data from the USFS Forest Inventory and Analysis program. Overall...
Use of remote sensing for monitoring deforestation in tropical and subtropical latitudes
Talbot, J. J.; Pettinger, Lawrence R.
1981-01-01
Factors limiting the application of Landsat data—including relatively low spatial resolution, persistent cloud cover in tropical regions, inadequate coverage of certain areas due to data-acquisition restraints and lack of local Landsat data receiving stations for real-time data recording—must be considered in any proposed study. Future improvements in Landsat capabilities might extend present applications beyond distinction of forest vs. non-forest cover, determination of gross vegetation or forest type, and generalized land use mapping.
Hydrological processes in major types of Chinese forest
NASA Astrophysics Data System (ADS)
Wei, X.; Liu, S.; Zhou, G.; Wang, C.
2005-01-01
Overexploitation of forest resources in China has caused serious concerns over its negative impacts on water resources, biodiversity, soil erosion, wildlife habitat and community stability. One key concern is the impact of forestry practices on hydrological processes, particularly the effect of forest harvest on water quality and quantity. Since the mid 1980s, a series of scientific studies on forest hydrology have been initiated in major types of forest across the country, including Korean pine (Pinus koraiensis), Chinese fir (Cunninghamia lanceolata), oak (Quercus mongolica), larch (Larix gmelinii), faber fir (Abies fabri), Chinese pine (Pinus tabulaeformis), armand pine (Pinus arandi), birch (Betula platyphylla) and some tropical forests. These studies measured rainfall interception, streamflow, evapotranspiration and impacts of forest management (clearcutting and reforestation). This paper reviews key findings from these forest hydrological studies conducted over the past 20 years in China.
Ecological type classification for California: the Forest Service approach
Barbara H. Allen
1987-01-01
National legislation has mandated the development and use of an ecological data base to improve resource decision making, while State and Federal agencies have agreed to cooperate in standardizing resource classification and inventory data. In the Pacific Southwest Region, which includes nearly 20 million acres (8.3 million ha) in California, the Forest Service, U.S....
John L. Greene; Michael A. Kilgore; Michael G. Jacobson; Steven E. Daniels; Thomas J. Straka
2007-01-01
This study examined the compatibility between sustainable forestry practices and the framework of public and private financial incentive programs directed toward nonindustrial private forest (NIPF) owners. The incentives include tax, cost-share, and other types of programs. The study consisted of four components: a literature review, a mail survey of selected...
Contrasting fine-root production, survival and soil CO2 efflux in pine and poplar plantation
M. D. Coleman; Richard E. Dickson; J. G. Isebrands
2000-01-01
Tree root activity, including fine-root production, turnover and metabolic activity are significant components of forest productivity and nutrient cycling. Differences in root activity among forest types are not well known. A 3-year study was undertaken in red pine (Pinus resinosa Ait.) and hybrid poplar (Populus tristis X P.
Contrasting fine-root production, survival and soil CO2 efflux in pine and poplar plantations
M.D. Coleman; R.E. Dickson; J.G. Isebrands
2000-01-01
Tree root activity, including fine-root production, turnover and metabolic activity are significant components of forest productivity and nutrient cycling. Differences in root activity among forest types are not well known. A 3-year study was undertaken in red pine (Pinus resinosa Ait.) and hybrid poplar (Populus tristis X P.
What We Know--and Don't Know--About Water Quality at Stream Crossings
Steven E. Taylor; Robert B. Rummer; Kyung H. Yoo; Richard A. Welch; Jason D. Thompson
1999-01-01
Forest road stream crossings including fords, culverts, and bridges, are primary contributors of sediment to forest streams. Information on the water quality impacts form each type for crossings is limited, but the available literature indicates that signicifacent amounts of sediment are produced during installation fo fords and culverts; construction and use of...
Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad
2002-01-01
Global climate change could have profound effects on the Earth's biota, including large redistributions of tree species and forest types. We used DISTRIB, a deterministic regression tree analysis model, to examine environmental drivers related to current forest-species distributions and then model potential suitable habitat under five climate change scenarios...
Old growth in northwestern California national forests.
Debby Beardsley; Ralph. Warbington
1996-01-01
This report estimates old-growth forest area and summarizes stand characteristics of old growth in northwestern California National Forests by forest type. Old-growth definitions for each forest type are used.
Rebecca S.H. Kennedy; Tomas A. Spies
2005-01-01
Changes to minor patch types in forested landscapes may have large consequences for forest biodiversity. The effects of forest management and environment on these secondary patch types are often poorly understood. For example, do early-to-mid successional minor patch types become more expansive as late successional forest types are fragmented or do they also become...
Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests.
Lamarre, Greg P A; Hérault, Bruno; Fine, Paul V A; Vedel, Vincent; Lupoli, Roland; Mesones, Italo; Baraloto, Christopher
2016-01-01
Arthropods represent most of global biodiversity, with the highest diversity found in tropical rain forests. Nevertheless, we have a very incomplete understanding of how tropical arthropod communities are assembled. We conducted a comprehensive mass sampling of arthropod communities within three major habitat types of lowland Amazonian rain forest, including terra firme clay, white-sand and seasonally flooded forests in Peru and French Guiana. We examined how taxonomic and functional composition (at the family level) differed across these habitat types in the two regions. The overall arthropod community composition exhibited strong turnover among habitats and between regions. In particular, seasonally flooded forest habitats of both regions comprised unique assemblages. Overall, 17·7% (26 of 147) of arthropod families showed significant preferences for a particular habitat type. We present a first reproducible arthropod functional classification among the 147 taxa based on similarity among 21 functional traits describing feeding source, major mouthparts and microhabitats inhabited by each taxon. We identified seven distinct functional groups whose relative abundance contrasted strongly across the three habitats, with sap and leaf feeders showing higher abundances in terra firme clay forest. Our novel arthropod functional classification provides an important complement to link these contrasting patterns of composition to differences in forest functioning across geographical and environmental gradients. This study underlines that both environment and biogeographical processes are responsible for driving arthropod taxonomic composition while environmental filtering is the main driver of the variance in functional composition. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Fungal decomposers of leaf litter from an invaded and native mountain forest of NW Argentina.
Fernandez, Romina Daiana; Bulacio, Natalia; Álvarez, Analía; Pajot, Hipólito; Aragón, Roxana
2017-09-01
The impact of plant species invasions on the abundance, composition and activity of fungal decomposers of leaf litter is poorly understood. In this study, we isolated and compared the relative abundance of ligninocellulolytic fungi of leaf litter mixtures from a native forest and a forest invaded by Ligustrum lucidum in a lower mountain forest of Tucuman, Argentina. In addition, we evaluated the relationship between the relative abundance of ligninocellulolytic fungi and properties of the soil of both forest types. Finally, we identified lignin degrading fungi and characterized their polyphenol oxidase activities. The relative abundance of ligninocellulolytic fungi was higher in leaf litter mixtures from the native forest. The abundance of cellulolytic fungi was negatively related with soil pH while the abundance of ligninolytic fungi was positively related with soil humidity. We identified fifteen genera of ligninolytic fungi; four strains were isolated from both forest types, six strains only from the invaded forest and five strains were isolated only from the native forest. The results found in this study suggest that L. Lucidum invasion could alter the abundance and composition of fungal decomposers. Long-term studies that include an analysis of the nutritional quality of litter are needed, for a more complete overview of the influence of L. Lucidum invasion on fungal decomposers and on leaf litter decomposition.
Mapping forest types in Worcester County, Maryland, using LANDSAT data
NASA Technical Reports Server (NTRS)
Burtis, J., Jr.; Witt, R. G.
1981-01-01
The feasibility of mapping Level 2 forest cover types for a county-sized area on Maryland's Eastern Shore was demonstrated. A Level 1 land use/land cover classification was carried out for all of Worcester County as well. A June 1978 LANDSAT scene was utilized in a classification which employed two software packages on different computers (IDIMS on an HP 3000 and ASTEP-II on a Univac 1108). A twelve category classification scheme was devised for the study area. Resulting products include black and white line printer maps, final color coded classification maps, digitally enhanced color imagery and tabulated acreage statistics for all land use and land cover types.
How does tree age influence damage and recovery in forests impacted by freezing rain and snow?
Zhu, LiRong; Zhou, Ting; Chen, BaoMing; Peng, ShaoLin
2015-05-01
The response and recovery mechanisms of forests to damage from freezing rain and snow events are a key topic in forest research and management. However, the relationship between the degree of damage and tree age, i.e., whether seedlings, young trees, or adult trees are most vulnerable, remains unclear and is rarely reported. We investigated the effect of tree age on the degrees of vegetation damage and subsequent recovery in three subtropical forest types-coniferous, mixed, and broad-leaved-in the Tianjing Mountains, South China, after a series of rare icy rain and freezing snow events in 2008. The results showed that damage and recovery rates were both dependent on tree age, with the proportion of damaged vegetation increasing with age (estimated by diameter at breast height, DBH) in all three forest types and gradually plateauing. Significant variation occurred among forest types. Young trees in the coniferous forest were more vulnerable than those in the broad-leaved forest. The type of damage also varied with tree age in different ways in the three forest types. The proportion of young seedlings that were uprooted (the most severe type of damage) was highest in the coniferous forest. In the mixed forest, young trees were significantly more likely to be uprooted than seedlings and adult trees, while in the broad-leaved forest, the proportion of uprooted adult trees was significantly higher than that of seedlings and young trees. There were also differences among forest types in how tree age affected damage recovery. In the coniferous forest, the recovery rate of trees with broken trunks or crowns (DBH > 2.5 cm) increased with tree age. However, in the mixed and broad-leaved forests, no obvious correlation between the recovery rate of trees with broken trunks or crowns and tree age was observed. Trees with severe root damage did not recover; they were uprooted and died. In these forests, vegetation damage and recovery showed tree age dependencies, which varied with tree shape, forest type, and damage type. Understanding this dependency will guide restoration after freezing rain and snow disturbances.
Bradford, J.B.
2011-01-01
Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).
Erdmann, Georgia; Scheu, Stefan; Maraun, Mark
2012-06-01
Most European forests are managed by humans. However, the manner and intensity of management vary. While the effect of forest management on above-ground communities has been investigated in detail, effects on the below-ground fauna remain poorly understood. Oribatid mites are abundant microarthropods in forest soil and important decomposers in terrestrial ecosystems. Here, we investigated the effect of four forest types (i.e., managed coniferous forests; 30 and 70 years old managed beech forests; natural beech forests) on the density, diversity and community structure of oribatid mites (Acari). The study was replicated at three regions in Germany: the Swabian Alb, the Hainich and the Schorfheide. To relate changes in oribatid mite community structure to environmental factors, litter mass, pH, C and N content of litter, fine roots and C content of soil were measured. Density of oribatid mites was highest in the coniferous forests and decreased in the order 30 years old, 70 years old, and natural beech forests. Mass of the litter layer and density of oribatid mites were strongly correlated indicating that the litter layer is an important factor regulating oribatid mite densities. Diversity of oribatid mites was little affected by forest type indicating that they harbor similar numbers of niches. Species composition differed between the forest types, suggesting different types of niches. The community structure of oribatid mites differed more strongly between the three regions than between the forest types indicating that regional factors are more important than effects associated with forest type.
Abell-Davis, Sandra E; Gadek, Paul A; Pearce, Ceridwen A; Congdon, Bradley C
2012-01-01
Across three tropical Australian sclerophyll forest types, site-specific environmental variables could explain the distribution of both quantity (abundance and biomass) and richness (genus and species) of hypogeous fungi sporocarps. Quantity was significantly higher in the Allocasuarina forest sites that had high soil nitrogen but low phosphorous. Three genera of hypogeous fungi were found exclusively in Allocasuarina forest sites including Gummiglobus, Labyrinthomyces and Octaviania, as were some species of Castoreum, Chondrogaster, Endogone, Hysterangium and Russula. However, the forest types did not all group according to site-scale variables and subsequently the taxonomic assemblages were not significantly different between the three forest types. At site scale, significant negative relationships were found between phosphorous concentration and the quantity of hypogeous fungi sporocarps. Using a multivariate information theoretic approach, there were other more plausible models to explain the patterns of sporocarp richness. Both the mean number of fungal genera and species increased with the number of Allocasuarina stems, at the same time decreasing with the number of Eucalyptus stems. The optimal conditions for promoting hypogeous fungi sporocarp quantity and sporocarp richness appear to be related to the presence and abundance of Allocasuarina (Casuarinaceae) host trees. Allocasuarina tree species may have a higher host receptivity for ectomycorrhizal hypogeous fungi species that provide an important food resource for Australian mycophagous animals.
Potential climate change impacts on temperate forest ecosystem processes
Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.
2013-01-01
Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.
Effects of plot size on forest-type algorithm accuracy
James A. Westfall
2009-01-01
The Forest Inventory and Analysis (FIA) program utilizes an algorithm to consistently determine the forest type for forested conditions on sample plots. Forest type is determined from tree size and species information. Thus, the accuracy of results is often dependent on the number of trees present, which is highly correlated with plot area. This research examines the...
Change in avian abundance predicted from regional forest inventory data
Twedt, Daniel J.; Tirpak, John M.; Jones-Farrand, D. Todd; Thompson, Frank R.; Uihlein, William B.; Fitzgerald, Jane A.
2010-01-01
An inability to predict population response to future habitat projections is a shortcoming in bird conservation planning. We sought to predict avian response to projections of future forest conditions that were developed from nationwide forest surveys within the Forest Inventory and Analysis (FIA) program. To accomplish this, we evaluated the historical relationship between silvicolous bird populations and FIA-derived forest conditions within 25 ecoregions that comprise the southeastern United States. We aggregated forest area by forest ownership, forest type, and tree size-class categories in county-based ecoregions for 5 time periods spanning 1963-2008. We assessed the relationship of forest data with contemporaneous indices of abundance for 24 silvicolous bird species that were obtained from Breeding Bird Surveys. Relationships between bird abundance and forest inventory data for 18 species were deemed sufficient as predictive models. We used these empirically derived relationships between regional forest conditions and bird populations to predict relative changes in abundance of these species within ecoregions that are anticipated to coincide with projected changes in forest variables through 2040. Predicted abundances of these 18 species are expected to remain relatively stable in over a quarter (27%) of the ecoregions. However, change in forest area and redistribution of forest types will likely result in changed abundance of some species within many ecosystems. For example, abundances of 11 species, including pine warbler (Dendroica pinus), brown-headed nuthatch (Sitta pusilla), and chuckwills- widow (Caprimulgus carolinensis), are projected to increase within more ecoregions than ecoregions where they will decrease. For 6 other species, such as blue-winged warbler (Vermivora pinus), Carolina wren (Thryothorus ludovicianus), and indigo bunting (Passerina cyanea), we projected abundances will decrease within more ecoregions than ecoregions where they will increase.
Dynamics and pattern of a managed coniferous forest landscape in Oregon
NASA Technical Reports Server (NTRS)
Spies, Thomas A.; Ripple, William J.; Bradshaw, G. A.
1995-01-01
We examined the process of fragmentation in a managed forest landscape by comparing rates and patterns of disturbance (primarily clear-cutting) and regrowth between 1972 and 1988 using Landsat imagery. A 2589-km(exp 2) managed forest landscape in western Oregon was classified into two forest types, closed-canopy conifer forest (CF) (typically, greater than 60% conifer cover) and other forest and nonforest types (OT) (typically, less than 40 yr old or deciduous forest). The percentage of CF declined from 71 to 58% between 1972 and 1988. Declines were greatest on private land, least in wilderness, and intermediate in public nonwilderness. High elevations (greater than 914 m) maintained a greater percentage of CF than lower elevations (less than 914 m). The percentage of the area at the edge of the two cover types increased on all ownerships and in both elevational zones, whereas the amount of interior habitat (defined as CF at least 100 m from OT) decreased on all ownerships and elevational zones. By 1988 public lands contained approximately 45% interior habitat while private lands had 12% interior habitat. Mean interior patch area declined from 160 to 62 ha. The annual rate of disturbance (primarily clear-cutting) for the entire area including the wilderness was 1.19%, which corresponds to a cutting rotation of 84 yr. The forest landscape was not in a steady state or regulated condition which is not projected to occur for at least 40 yr under current forest plans. Variability in cutting rates within ownerships was higher on private land than on nonreserve public land. However, despite the use of dispersed cutting patterns on public land, spatial patterns of cutting and remnant forest patches were nonuniform across the entire public ownership. Large remaining patches (less than 5000 ha) of contiguous interior forest were restricted to public lands designated for uses other than timber production such as wilderness areas and research natural areas.
Comparison of forest edge effects on throughfall deposition in different forest types.
Wuyts, Karen; De Schrijver, An; Staelens, Jeroen; Gielis, Leen; Vandenbruwane, Jeroen; Verheyen, Kris
2008-12-01
This study examined the influence of distance to the forest edge, forest type, and time on Cl-, SO4(2-), NO3(-), and NH4+ throughfall deposition in forest edges. The forests were dominated by pedunculate oak, silver birch, or Corsican/Austrian pine, and were situated in two regions of Flanders (Belgium). Along transects, throughfall deposition was monitored at distances of 0-128 m from the forest edge. A repeated-measures analysis demonstrated that time, forest type, and distance to the forest edge significantly influenced throughfall deposition of the ions studied. The effect of distance to the forest edge depended significantly on forest type in the deposition of Cl-, SO4(2-), and NO3(-): the edge effect was significantly greater in pine stands than in deciduous birch and oak stands. This finding supports the possibility of converting pine plantations into oak or birch forests in order to mitigate the input of nitrogen and potentially acidifying deposition.
NASA Astrophysics Data System (ADS)
Darmawan, S.; Takeuchi, W.; Nakazono, E.; Parwati, E.; Dien, V. T.; Oo, K. S.; Wikantika, K.; Sari, D. K.
2016-06-01
The objective of this research is to investigate characteristics of mangrove forest types and to identify spatial distribution of mangrove forest based on ALOS PALSAR mosaic 25m- resolution in Southeast Asia. Methodology consists of collecting of ALOS PALSAR image for overall Southeast Asia region, preprocessing include converting DN to NRCS and filtering, collecting regions of interest of mangrove forest in Southeast Asia, plotting, characterization and classification. Result on this research we found characteristics of mangrove forest on HH values around -10.88 dB to -6.65 dB and on HV value around -16.49 dB to -13.26 dB. On polarization of HH which the highest backscattering value is mangrove forest in Preak Piphot River Cambodia, Thái Thủy Thai Binh Vietnam, and Vạn Ninh tp. Móng Cái Quảng Ninh Vietnam whereas the lowest backscattering value is mangrove forest in Thailand area. On polarization of HV which the highest backscattering value is mangrove forest in Preak Piphot River Cambodia, Sorong and Teluk Bintuni Indonesia whereas the lowest backscattering value is mangrove forest in Subang Indonesia, Giao Thiện Giao Thuỷ Nam Định, Vietnam and Puyu Mueng Satun Thailand. Based on characterization, we create a rule criteria for classification of mangrove areas and non mangrove area. Finally we found spatial distribution of mangrove forest based on ALOS PALSAR 25m-resolution in Southeast Asia.
Eileen H. Helmer; Thomas S. Ruzycki; Jay Benner; Shannon M. Voggesser; Barbara P. Scobie; Courtenay Park; David W. Fanning; Seepersad Ramnarine
2012-01-01
Tropical forest managers need detailed maps of forest types for REDD+, but spectral similarity among forest types; cloud and scan-line gaps; and scarce vegetation ground plots make producing such maps with satellite imagery difficult. How can managers map tropical forest tree communities with satellite imagery given these challenges? Here we describe a case study of...
Stapanian, Martin A.; Gara, Brian; Schumacher, William
2018-01-01
The loss of wetland habitats and their often-unique biological communities is a major environmental concern. We examined vegetation data obtained from 380 wetlands sampled in a statistical survey of wetlands in the USA. Our goal was to identify which surrounding land cover types best predict two indices of vegetation quality in wetlands at the regional scale. We considered palustrine wetlands in four regions (Coastal Plains, North Central East, Interior Plains, and West) in which the dominant vegetation was emergent, forested, or scrub-shrub. For each wetland, we calculated weighted proportions of eight land cover types surrounding the area in which vegetation was assessed, in four zones radiating from the edge of the assessment area to 2 km. Using Akaike's Information Criterion, we determined the best 1-, 2- and 3-predictor models of the two indices, using the weighted proportions of the land cover types as potential predictors. Mean values of the two indices were generally higher in the North Central East and Coastal Plains than the other regions for forested and emergent wetlands. In nearly all cases, the best predictors of the indices were not the dominant surrounding land cover types. Overall, proportions of forest (positive effect) and agriculture (negative effect) surrounding the assessment area were the best predictors of the two indices. One or both of these variables were included as predictors in 65 of the 72 models supported by the data. Wetlands surrounding the assessment area had a positive effect on the indices, and ranked third (33%) among the predictors included in supported models. Development had a negative effect on the indices and was included in only 28% of supported models. These results can be used to develop regional management plans for wetlands, such as creating forest buffers around wetlands, or to conserve zones between wetlands to increase habitat connectivity.
Towards improved bottom-up inventories of methane from the European land surface
NASA Astrophysics Data System (ADS)
Grunwald, Dennis; Fender, Ann-Catrin; Erasmi, Stefan; Jungkunst, Hermann F.
2012-05-01
Forests and wetlands are generally seen as opposites in the methane cycle of terrestrial ecosystems. Wetlands are sources for atmospheric methane and forest soils sinks. However, this greenhouse gas is also emitted by wet forest soils, which is commonly disregarded due to lacking information on their spatial distribution. Here, we estimated the potential bias made for the European methane budget of terrestrial ecosystems when neglecting wet forest ecosystems but including rice paddies and latest estimates for lakes. We appointed distinct annual methane rates for individual land use types based on a literature survey and weighted them according to their European area. This was performed separately for four major ecozones (cold, temperate, continental and Mediterranean). Three approaches were applied: (1) the mean values for forests and wetlands were calculated in three different scenarios, (2) assuming that boreal needle-leaved evergreen forest with a low tree cover (<40%) is predominately forested wetland (3) assuming different shares of wet forest ecosystems in individual forest areas. For the net balance 2.8 Tg CH4-C a-1 were calculated which includes emissions from rice paddies (0.2 Tg CH4-C a-1) and from lakes (2.5 Tg CH4-C a-1). The different approaches for the net balances that included wet forest ecosystems mainly ranged between 4.6 and 6.7 Tg CH4-C a-1. The results suggest that wet forest ecosystems are approximately as important as wetlands for the European methane balance. European bottom-up inventories are improved best by more accurate mapping of wetlands both within and outside forests and more flux data for lakes and continental wetlands.
Forest type mapping with satellite data
NASA Technical Reports Server (NTRS)
Dodge, A. G., Jr.; Bryant, E. S.
1976-01-01
Computer classification of data from Landsat, an earth-orbiting satellite, has resulted in measurements and maps of forest types for two New Hampshire counties. The acreages of hardwood and softwood types and total forested areas compare favorably with Forest Service figures for the same areas. These techniques have advantages for field application, particularly in states having forest taxation laws based on general productivity.
Exposure of tropical ecosystems to artificial light at night: Brazil as a case study
Bennie, Jon; Mantovani, Waldir; Gaston, Kevin J.
2017-01-01
Artificial nighttime lighting from streetlights and other sources has a broad range of biological effects. Understanding the spatial and temporal levels and patterns of this lighting is a key step in determining the severity of adverse effects on different ecosystems, vegetation, and habitat types. Few such analyses have been conducted, particularly for regions with high biodiversity, including the tropics. We used an intercalibrated version of the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) images of stable nighttime lights to determine what proportion of original and current Brazilian vegetation types are experiencing measurable levels of artificial light and how this has changed in recent years. The percentage area affected by both detectable light and increases in brightness ranged between 0 and 35% for native vegetation types, and between 0 and 25% for current vegetation (i.e. including agriculture). The most heavily affected areas encompassed terrestrial coastal vegetation types (restingas and mangroves), Semideciduous Seasonal Forest, and Mixed Ombrophilous Forest. The existing small remnants of Lowland Deciduous and Semideciduous Seasonal Forests and of Campinarana had the lowest exposure levels to artificial light. Light pollution has not often been investigated in developing countries but our data show that it is an environmental concern. PMID:28178352
Elizabeth Reinhardt; Lisa Holsinger
2010-01-01
Fuel treatments alter conditions in forested stands at the time of the treatment and subsequently. Fuel treatments reduce on-site carbon and also change the fire potential and expected outcome of future wildfires, including their carbon emissions. We simulated effects of fuel treatments on 140 stands representing seven major habitat type groups of the northern Rocky...
Biomass publications of the forest operations research unit: A synthesis
Dana Mitchell; Renee Ayala; [Compilers
2005-01-01
The Forest Operations Unit of the Southern Research Station has been studying biomass-related topics since 1977. This CD aids the reader by organizing these publications in one easy-to-use CD. This CD is comprised of an executive summary, two bibliographies, individual publications (in PDF format), and a keyword listing. The types of publications included on this CD...
Seed Biology and Technology of Quercus
F.T. Bonner; John A. Vozzo
1987-01-01
The genus Quercus,known as oak, includes worldwide some 500 species with 58 of these species in the United States, making it this country's largest genus of native trees (Little 1979). Oak is therefore an important group of temperate-zone forest trees. In addition, oaks are significant components of many of the major forest types of the South (Burns 1983)and are...
M.E. Fenn; H.-D. Nagel; I. Koseva; J. Aherne; S.E. Jovan; L.H. Geiser; A. Schlutow; T. Scheuschner; A. Bytnerowicz; B.S. Gimeno; F. Yuan; S.A. Watmough; E.B. Allen; R.F. Johnson; T. Meixner
2014-01-01
Nitrogen (N) deposition is impacting a number of ecosystem types in California. Critical loads (CLs) for N deposition determined for mixed conifer forests and chaparral/oak woodlands in the Sierra Nevada Mountains of California and the San Bernardino Mountains in southern California using empirical and various modelling approaches were compared. Models used included...
Vertebrate assemblages associated with headwater hydrology in western Oregon managed forests.
D.H. Olson; G. Weaver
2007-01-01
We characterized headwater stream habitats, fish, and amphibian fauna, in and along 106 headwater stream reaches at 12 study sites within managed forest stands 40 to 70 years old in western Oregon. Headwater stream types in our sample included perennial, spatially intermittent, and dry reaches. We captured 454 fish of three species groups and 1,796 amphibians of 12...
A density management diagram for even-aged Sierra Nevada mixed-conifer stands
James N. Long; John D. Shaw
2012-01-01
We have developed a density management diagram (DMD) for even-aged mixed-conifer stands in the Sierra Nevada Mountains using forest inventory and analysis (FIA) data. Analysis plots were drawn from FIA plots in California, southern Oregon, and western Nevada which included those conifer species associated with the mixed-conifer forest type. A total of 204 plots met the...
Wayne G. Maxwell; Franklin R. Ward
1980-01-01
Twenty-five series of photographs display different levels of natural forest residue loadings by size classes for areas of like vegetation in the Pacific Northwest. Information with each photo includes measured weights, volumes, and other data on residues, information about live vegetation, and fuel ratings.These photo series provide a fast, easy-to-use way to...
Estimating canopy fuels in conifer forests
Joe H. Scott; Elizabeth D. Reinhardt
2002-01-01
Crown fires occur in a variety of coniferous forest types (Agee 1993), including some that are not historically prone to crown fire, such as ponderosa pine (Mutch and others 1993). The head fire spread rate of a crown fire is usually several times faster than that of a surface fire burning under the same conditions, which leads to a significant increase in the number...
Larval habitats of anopheline mosquitoes in the Upper Orinoco, Venezuela.
Rejmánková, E; Rubio-Palis, Y; Villegas, L
1999-12-01
Survey of larval habitats of anopheline mosquitoes was conducted in Ocamo in the State of Amazonas, southern Venezuela. The sampled habitats belonged to three different hydrological types: lagoons (26 habitats), forest pools including flooded forest (16 habitats), and forest streams (4 habitats). Out of 46 habitats surveyed, 31 contained anopheline larvae. Six species were found: Anopheles darlingi, Anopheles triannulatus, Anopheles oswaldoi, Anopheles peryassui, Anopheles punctimacula, and Anopheles mediopunctatus. Anopheles triannulatus was the most abundant species. Significantly higher numbers of anopheline larvae, in general, and of An. triannulatus specifically were found in lagoons with submersed macrophytes and sparse emergent graminoids than in forest pools with detritus.
Charles H. Perry; Vern A. Everson; Brett J. Butler; Susan J. Crocker; Sally E. Dahir; Andrea L. Diss-Torrance; Grant M Domke; Dale D. Gormanson; Sarah K. Herrick; Steven S. Hubbard; Terry R. Mace; Patrick D. Miles; Mark D. Nelson; Richard B. Rodeout; Luke T. Saunders; Kirk M. Stueve; Barry T. Wilson; Christopher W. Woodall
2012-01-01
The second full annual inventory of Wisconsin's forests reports more than 16.7 million acres of forest land with an average volume of more than 1,400 cubic feet per acre. Forest land is dominated by the oak/hickory forest-type group, which occupies slightly more than one quarter of the total forest land area; the maple/beech/birch forest-type group occupies an...
Projecting large-scale area changes in land use and land cover for terrestrial carbon analyses.
Alig, Ralph J; Butler, Brett J
2004-04-01
One of the largest changes in US forest type areas over the last half-century has involved pine types in the South. The area of planted pine has increased more than 10-fold since 1950, mostly on private lands. Private landowners have responded to market incentives and government programs, including subsidized afforestation on marginal agricultural land. Timber harvest is a crucial disturbance affecting planted pine area, as other forest types are converted to planted pine after harvest. Conversely, however, many harvested pine plantations revert to other forest types, mainly due to passive regeneration behavior on nonindustrial private timberlands. We model land use and land cover changes as a basis for projecting future changes in planted pine area, to aid policy analysts concerned with mitigation activities for global climate change. Projections are prepared in two stages. Projected land use changes include deforestation due to pressures to develop rural land as the human population expands, which is a larger area than that converted from other rural lands (e.g., agriculture) to forestry. In the second stage, transitions among forest types are projected on land allocated to forestry. We consider reforestation, influences of timber harvest, and natural succession and disturbance processes. Baseline projections indicate a net increase of about 5.6 million ha in planted pine area in the South over the next 50 years, with a notable increase in sequestered carbon. Additional opportunities to expand pine plantation area warrant study of landowner behavior to aid in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change and attain other goals.
Sensitivity of regional forest carbon budgets to continuous and stochastic climate change pressures
NASA Astrophysics Data System (ADS)
Sulman, B. N.; Desai, A. R.; Scheller, R. M.
2010-12-01
Climate change is expected to impact forest-atmosphere carbon budgets through three processes: 1. Increased disturbance rates, including fires, mortality due to pest outbreaks, and severe storms 2. Changes in patterns of inter-annual variability, related to increased incidence of severe droughts and defoliating insect outbreaks 3. Continuous changes in forest productivity and respiration, related to increases in mean temperature, growing season length, and CO2 fertilization While the importance of these climate change effects in future regional carbon budgets has been established, quantitative characterization of the relative sensitivity of forested landscapes to these different types of pressures is needed. We present a model- and- data-based approach to understanding the sensitivity of forested landscapes to climate change pressures. Eddy-covariance and biometric measurements from forests in the northern United States were used to constrain two forest landscape models. The first, LandNEP, uses a prescribed functional form for the evolution of net ecosystem productivity (NEP) over the age of a forested grid cell, which is reset following a disturbance event. This model was used for investigating the basic statistical properties of a simple landscape’s responses to climate change pressures. The second model, LANDIS-II, includes different tree species and models forest biomass accumulation and succession, allowing us to investigate the effects of more complex forest processes such as species change and carbon pool accumulation on landscape responses to climate change effects. We tested the sensitivity of forested landscapes to these three types of climate change pressures by applying ensemble perturbations of random disturbance rates, distribution functions of inter-annual variability, and maximum potential carbon uptake rates, in the two models. We find that landscape-scale net carbon exchange responds linearly to continuous changes in potential carbon uptake and inter-annual variability, while responses to stochastic changes are non-linear and become more important at shorter mean disturbance intervals. These results provide insight on how to better parameterize coupled carbon-climate models to more realistically simulate feedbacks between forests and the atmosphere.
NASA Astrophysics Data System (ADS)
Roth, T. R.; Nolin, A. W.
2015-12-01
Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.
Fire ecology of Montana forest habitat types east of the Continental Divide
William C. Fischer; Bruce D. Clayton
1983-01-01
Provides information on fire as an ecological factor for forest habitat types occurring east of the Continental Divide in Montana. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.
[Forest ecosystem service and its evaluation in China].
Fang, Jin; Lu, Shaowei; Yu, Xinxiao; Rao, Liangyi; Niu, Jianzhi; Xie, Yuanyuan; Zhag, Zhenming
2005-08-01
Facing the relative lag of forest ecosystem service and estimation in China, this paper proposed to quickly carry out the research on the evaluation of forest ecosystem service. On the basis of the classification of forest ecosystem types in China, the service of artificial and semi-artificial forest ecosystems was investigated, which was divided into eight types, i.e., timber and other products, recreation and eco-tourism, water storage, C fixation and O2 release, nutrient cycling, air quality purifying, erosion control, and habitat provision. According to the assessment index system for global ecosystem service proposed by Costanza et al., a series of assessment index system suitable for Chinese forest ecosystem service was set up, by which, the total value of forest ecosystem service in China was estimated to be 30 601.20 x 10(8) yuan x yr(-1), including direct and indirect economic value about 1 920.23 x 10(8) and 28 680.97 x 10(8) yuan x yr(-1), respectively. The indirect value was as 14.94 times as the direct one. The research aimed to bring natural resources and environment factors into the account system of national economy quickly, and to realize the green GDP at last, which would be helpful to realize sustainable development and environment protection.
Ferreira, Rodrigo B; Beard, Karen H; Crump, Martha L
2016-01-01
Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest, iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types). By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders) was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm) and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog distributions in response to edge effect and matrix types, and can guide more effective management and conservation actions.
Remm, Liina; Lõhmus, Piret; Leis, Mare; Lõhmus, Asko
2013-01-01
Artificial drainage (ditching) is widely used to increase timber yield in northern forests. When the drainage systems are maintained, their environmental impacts are likely to accumulate over time and along accompanying management, notably after logging when new forest develops on decayed peat. Our study provides the first comprehensive documentation of long-term ditching impacts on terrestrial and arboreal biodiversity by comparing natural alder swamps and second-generation drained forests that have evolved from such swamps in Estonia. We explored species composition of four potentially drainage-sensitive taxonomic groups (vascular plants, bryophytes, lichens, and snails), abundance of species of conservation concern, and their relationships with stand structure in two-ha plots representing four management types (ranging from old growth to clearcut). We found that drainage affected plot-scale species richness only weakly but it profoundly changed assemblage composition. Bryophytes and lichens were the taxonomic groups that were most sensitive both to drainage and timber-harvesting; in closed stands they responded to changed microhabitat structure, notably impoverished tree diversity and dead-wood supply. As a result, natural old-growth plots were the most species-rich and hosted several specific species of conservation concern. Because the most influential structural changes are slow, drainage impacts may be long hidden. The results also indicated that even very old drained stands do not provide quality habitats for old-growth species of drier forest types. However, drained forests hosted many threatened species that were less site type specific, including early-successional vascular plants and snails on clearcuts and retention cuts, and bryophytes and lichens of successional and old forests. We conclude that three types of specific science-based management tools are needed to mitigate ditching effects on forest biodiversity: (i) silvicultural techniques to maintain stand structural complexity; (ii) context-dependent spatial analysis and planning of drained landscapes; and (iii) lists of focal species to monitor and guide ditching practices. PMID:23646179
Ferreira, Rodrigo B.; Beard, Karen H.; Crump, Martha L.
2016-01-01
Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil’s Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest, iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types). By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders) was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm) and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog distributions in response to edge effect and matrix types, and can guide more effective management and conservation actions. PMID:27272328
Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013
Tyukavina, Alexandra; Hansen, Matthew C.; Potapov, Peter V.; Stehman, Stephen V.; Smith-Rodriguez, Kevin; Okpa, Chima; Aguilar, Ricardo
2017-01-01
Deforestation rates in primary humid tropical forests of the Brazilian Legal Amazon (BLA) have declined significantly since the early 2000s. Brazil’s national forest monitoring system provides extensive information for the BLA but lacks independent validation and systematic coverage outside of primary forests. We use a sample-based approach to consistently quantify 2000–2013 tree cover loss in all forest types of the region and characterize the types of forest disturbance. Our results provide unbiased forest loss area estimates, which confirm the reduction of primary forest clearing (deforestation) documented by official maps. By the end of the study period, nonprimary forest clearing, together with primary forest degradation within the BLA, became comparable in area to deforestation, accounting for an estimated 53% of gross tree cover loss area and 26 to 35% of gross aboveground carbon loss. The main type of tree cover loss in all forest types was agroindustrial clearing for pasture (63% of total loss area), followed by small-scale forest clearing (12%) and agroindustrial clearing for cropland (9%), with natural woodlands being directly converted into croplands more often than primary forests. Fire accounted for 9% of the 2000–2013 primary forest disturbance area, with peak disturbances corresponding to droughts in 2005, 2007, and 2010. The rate of selective logging exploitation remained constant throughout the study period, contributing to forest fire vulnerability and degradation pressures. As the forest land use transition advances within the BLA, comprehensive tracking of forest transitions beyond primary forest loss is required to achieve accurate carbon accounting and other monitoring objectives. PMID:28439536
Bat activity in harvested and intact forest stands in the allegheny mountains
Owen, S.F.; Menzel, M.A.; Edwards, J.W.; Ford, W.M.; Menzel, J.M.; Chapman, B.R.; Wood, P.B.; Miller, K.V.
2004-01-01
We used Anabat acoustical monitoring devices to examine bat activity in intact canopy forests, complex canopy forests with gaps, forests subjected to diameter-limit harvests, recent deferment harvests, clearcuts and unmanaged forested riparian areas in the Allegheny Mountains of West Virginia in the summer of 1999. We detected eight species of bats, including the endangered Indiana bat (Myotis sodalis). Most bat activity was concentrated in forested riparian areas. Among upland habitats, activity of silver-haired bats (Lasionycteris noctivagans) and hoary bats (Lasiurus cinereus) was higher in open, less cluttered vegetative types such as recent deferment harvests and clearcuts. Our results suggest that bat species in the central Appalachians partially segregate themselves among vegetative conditions based on differences in body morphology and echolocation call characteristics. From the standpoint of conserving bat foraging habitat for the maximum number of species in the central Appalachians, special emphasis should be placed on protecting forested riparian areas.
Woodpecker abundance and habitat use in three forest types in eastern Texas
Clifford E. Shackelford; Richard N. Conner
1997-01-01
Woodpeckers were censused in 60 fixed-radius (300 m) circular plots (divided into eight 45B-arc pie-shaped sectors) in mature forests (60 to 80 years-old) of three forest types (20 plots per type) in eastern Texas: bottomland hardwood forest; longleaf pine (Pinus palustris) savanna; and mixed pine-hardwood forest. A total of 2,242 individual woodpeckers of eight...
Old-growth forests in the Sierra Nevada: by type in 1945 and 1993 and ownership in 1993.
Debby Beardsley; Charles Bolsinger; Ralph. Warbington
1999-01-01
This report presents estimates of old-growth forest area in the Sierra Nevada by forest type in 1993 and 1945 and by old-growth stand characteristics as they existed in 1993. Ecological old-growth definitions for each forest type are used.
Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D.A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.
2003-01-01
Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.
Na, X D; Zang, S Y; Wu, C S; Li, W L
2015-11-01
Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.
Landscape-scale forest disturbance regimes in southern Peruvian Amazonia.
Boyd, Doreen S; Hill, Ross A; Hopkinson, Chris; Baker, Timothy R
2013-10-01
Landscape-scale gap-size frequency distributions in tropical forests are a poorly studied but key ecological variable. Currently, a scale gap currently exists between local-scale field-based studies and those employing regional-scale medium-resolution satellite data. Data at landscape scales but of fine resolution would, however, facilitate investigation into a range of ecological questions relating to gap dynamics. These include whether canopy disturbances captured in permanent sample plots (PSPs) are representative of those in their surrounding landscape, and whether disturbance regimes vary with forest type. Here, therefore, we employ airborne LiDAR data captured over 142.5 km2 of mature, swamp, and regenerating forests in southeast Peru to assess the landscape-scale disturbance at a sampling resolution of up to 2 m. We find that this landscape is characterized by large numbers of small gaps; large disturbance events are insignificant and infrequent. Of the total number of gaps that are 2 m2 or larger in area, just 0.45% were larger than 100 m2, with a power-law exponent (alpha) value of the gap-size frequency distribution of 2.22. However, differences in disturbance regimes are seen among different forest types, with a significant difference in the alpha value of the gap-size frequency distribution observed for the swamp/regenerating forests compared with the mature forests at higher elevations. Although a relatively small area of the total forest of this region was investigated here, this study presents an unprecedented assessment of this landscape with respect to its gap dynamics. This is particularly pertinent given the range of forest types present in the landscape and the differences observed. The coupling of detailed insights into forest properties and growth provided by PSPs with the broader statistics of disturbance events using remote sensing is recommended as a strong basis for scaling-up estimates of landscape and regional-scale carbon balance.
NASA Astrophysics Data System (ADS)
Stuart-Haëntjens, E. J.; De Boeck, H. J.; Lemoine, N. P.; Gough, C. M.; Kröel-Dulay, G.; Mänd, P.; Jentsch, A.; Schmidt, I. K.; Bahn, M.; Lloret, F.; Kreyling, J.; Wohlgemuth, T.; Stampfli, A.; Anderegg, W.; Classen, A. T.; Smith, M. D.
2017-12-01
Extreme drought is increasing globally in frequency and intensity, with uncertain consequences for the resistance and resilience of key ecosystem functions, including primary production. Primary production resistance, the capacity of an ecosystem to withstand change in primary production following extreme climate, and resilience, the degree to which primary production recovers, vary among and within ecosystem types, obscuring global patterns of resistance and resilience to extreme drought. Past syntheses on resistance have focused climatic gradients or individual ecosystem types, without assessing interactions between the two. Theory and many empirical studies suggest that forest production is more resistant but less resilient than grassland production to extreme drought, though some empirical studies reveal that these trends are not universal. Here, we conducted a global meta-analysis of sixty-four grassland and forest sites, finding that primary production resistance to extreme drought is predicted by a common continuum of mean annual precipitation (MAP). However, grasslands and forests exhibit divergent production resilience relationships with MAP. We discuss the likely mechanisms underlying the mixed production resistance and resilience patterns of forests and grasslands, including different plant species turnover times and drought adaptive strategies. These findings demonstrate the primary production responses of forests and grasslands to extreme drought are mixed, with far-reaching implications for Earth System Models, ecosystem management, and future studies of extreme drought resistance and resilience.
Ozone distribution in remote ecologically vulnerable terrain of the southern Sierra Nevada, CA.
Panek, Jeanne; Saah, David; Esperanza, Annie; Bytnerowicz, Andrzej; Fraczek, Witold; Cisneros, Ricardo
2013-11-01
Ozone concentration spatial patterns remain largely uncharacterized across the extensive wilderness areas of the Sierra Nevada, CA, despite being downwind of major pollution sources. These natural areas, including four national parks and four national forests, contain forest species that are susceptible to ozone injury. Forests stressed by ozone are also more vulnerable to other agents of mortality, including insects, pathogens, climate change, and ultimately fire. Here we analyze three years of passive ozone monitor data from the southern Sierra Nevada and interpolate landscape-scale spatial and temporal patterns during the summer-through-fall high ozone concentration period. Segmentation analysis revealed three types of ozone exposure sub-regions: high, low, and variable. Consistently high ozone exposure regions are expected to be most vulnerable to forest mortality. One high exposure sub-region has been documented elsewhere as being further vulnerable to increased drought and fire potential. Identifying such hot-spots of forest vulnerability has utility for prioritizing management. Copyright © 2013 Elsevier Ltd. All rights reserved.
Matyssek, R; Wieser, G; Calfapietra, C; de Vries, W; Dizengremel, P; Ernst, D; Jolivet, Y; Mikkelsen, T N; Mohren, G M J; Le Thiec, D; Tuovinen, J-P; Weatherall, A; Paoletti, E
2012-01-01
Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Coggeshall, M. E.; Hoffer, R. M.
1973-01-01
Remote sensing equipment and automatic data processing techniques were employed as aids in the institution of improved forest resource management methods. On the basis of automatically calculated statistics derived from manually selected training samples, the feature selection processor of LARSYS selected, upon consideration of various groups of the four available spectral regions, a series of channel combinations whose automatic classification performances (for six cover types, including both deciduous and coniferous forest) were tested, analyzed, and further compared with automatic classification results obtained from digitized color infrared photography.
Leicht-Young, Stacey A.; Pavlovic, Noel B.; Grundel, Ralph
2013-01-01
Fire effects on invasive species are an important land management issue in areas subjected to prescribed fires as well as wildfires. These effects on invasive species can be manifested across life stages. The liana Celastrus orbiculatus (oriental bittersweet) is a widespread invader of eastern US habitats including those where fire management is in practice. This study examined if prescribed fire makes these habitats more susceptible to invasion of C. orbiculatus by seed at Indiana Dunes National Lakeshore. Four treatments (control, litter removed, high and low intensity fire) were applied in six habitat types (sand savanna/woodland, sand prairie, moraine prairie, sand oak forest, beech-maple forest, and oak-hickory forest) and germinating seedlings were tracked over two growing seasons. Treatment did not have a significant effect on the germination, survival, or biomass of C. orbiculatus. However, habitat type did influence these responses mostly in the first growing season. Moraine prairie, beech-maple forest, and oak-hickory forests had the greatest peak percentage of germinants. Moraine prairie had significantly greater survival than oak forest and savanna habitats. Control plots with intact litter, and the moraine prairie habitat had the tallest seedlings at germination, while tallest final heights and greatest aboveground biomass were highest in oak forest. Thus, fire and litter removal did not increase the susceptibility of these habitats to germination and survival of C. orbiculatus. These results indicate that most eastern US habitats are vulnerable to invasion by this species via seed regardless of the level or type of disturbance to the litter layer.
A stochastic Forest Fire Model for future land cover scenarios assessment
NASA Astrophysics Data System (ADS)
D'Andrea, M.; Fiorucci, P.; Holmes, T. P.
2010-10-01
Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM) produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary - each cell either contains a tree or it is empty - and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM), addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.
NASA Astrophysics Data System (ADS)
Akay, A. E.; Gencal, B.; Taş, İ.
2017-11-01
This short paper aims to detect spatiotemporal detection of land use/land cover change within Karacabey Flooded Forest region. Change detection analysis applied to Landsat 5 TM images representing July 2000 and a Landsat 8 OLI representing June 2017. Various image processing tools were implemented using ERDAS 9.2, ArcGIS 10.4.1, and ENVI programs to conduct spatiotemporal change detection over these two images such as band selection, corrections, subset, classification, recoding, accuracy assessment, and change detection analysis. Image classification revealed that there are five significant land use/land cover types, including forest, flooded forest, swamp, water, and other lands (i.e. agriculture, sand, roads, settlement, and open areas). The results indicated that there was increase in flooded forest, water, and other lands, while the cover of forest and swamp decreased.
An analysis of modern pollen rain from the Maya lowlands of northern Belize
Bhattacharya, T.; Beach, T.; Wahl, D.
2011-01-01
In the lowland Maya area, pollen records provide important insights into the impact of past human populations and climate change on tropical ecosystems. Despite a long history of regional paleoecological research, few studies have characterized the palynological signatures of lowland ecosystems, a fact which lowers confidence in ecological inferences made from palynological data. We sought to verify whether we could use pollen spectra to reliably distinguish modern ecosystem types in the Maya lowlands of Central America. We collected 23 soil and sediment samples from eight ecosystem types, including upland, riparian, secondary, and swamp (bajo) forests; pine savanna; and three distinct wetland communities. We analyzed pollen spectra with non-metric multidimensional scaling (NMDS), and found significant compositional differences in ecosystem types' pollen spectra. Forested sites had spectra dominated by Moraceae/Urticaceae pollen, while non-forested sites had significant portions of Poaceae, Asteraceae, and Amaranthaceae pollen. Upland, bajo, and riparian forest differed in representation of Cyperaceae, Bactris-type, and Combretaceae/Melastomataceae pollen. High percentages of pine (Pinus), oak (Quercus), and the presence of Byrsonima characterized pine savanna. Despite its limited sample size, this study provides one of the first statistical analyses of modern pollen rain in the Maya lowlands. Our results show that pollen assemblages can accurately reflect differences between ecosystem types, which may help refine interpretations of pollen records from the Maya area. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Leigh, David; Gragson, Theodore
2017-04-01
Mounting evidence indicates that highland pastures of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, as early as during the late Neolithic and Bronze age by human actions including use of fire. We observe pronounced differences between soil profiles of ancient pastures and old-growth forests in otherwise similar landscape positions. In order to test physical and chemical differences, we collected paired samples of forest versus grassland soils at four separate hillslope sites where there was a clear boundary between the two vegetation types. Animal trails were excluded from sampling. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples (7.6 cm diameter) from the upper 7.6 cm of the mineral soil within each vegetation type, and the A horizon thickness was recorded at each core hole site. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. In addition, we measured the magnetic susceptibility of the mineral soil surface on two transects crossing the vegetation boundary. Core samples have been measured for bulk density, pH, plant-available nutrients, and organic matter; and tests for total carbon and nitrogen, amorphous silica, charcoal, and other forms of black carbon are ongoing. Preliminary results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, have lower soil bulk densities, have much finer and stronger structural development of soil aggregates. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we have validated with saturated hydraulic conductivity tests. Pedogenically, the pastured soils indicate that melanization processes have been much more pronounced than in the forested soils. Distinct changes in soil materials result from conversion to pasture. Significantly more black carbon (including macro-charcoal) appears to be present in the pastured soils, indicating that it plays an important role in melanization, in addition to long-term sequestration of carbon. Pastured soils contain greater contents of amorphous silica due to more rapid phytolith production from grasses as opposed to trees. Pastures register significantly higher soil magnetic susceptibility than forests, presumably from past use of fire. In essence, anthropic manipulation of the biotic factor of pedogenesis has created new soil materials, processes, and functions. Our current research involves radiocarbon and chronostratigraphy to establish rates of this anthropisation of the biotic factor.
Zhou, G.; Liu, S.; Tang, X.; Ouyang, X.; Zhang, Dongxiao; Liu, J.; Yan, J.; Zhou, C.; Luo, Y.; Guan, L.; Liu, Yajing
2006-01-01
The balance, accumulation rate and temporal dynamics of belowground carbon in the successional series of monsoon evergreen broadleaved forest are obtained in this paper, based on long-term observations to the soil organic matter, input and standing biomass of litter and coarse woody debris, and dissolved organic carbon carried in the hydrological process of subtropical climax forest ecosystem—monsoon evergreen broad-leaved forest, and its two successional forests of natural restoration—coniferous and broad-leaved mixed forest and Pinus massoniana forest, as well as data of root biomass obtained once every five years and respiration measurement of soil, litter and coarse woody debris respiration for 1 year. The major results include: the belowground carbon pools of monsoon evergreen broad-leaved forest, coniferous and broad-leaved mixed forest, and Pinus massoniana forest are 23191 ± 2538 g · m−2, 16889 ± 1936 g · m−2 and 12680 ± 1854 g · m−2, respectively, in 2002. Mean annual carbon accumulation rates of the three forest types during the 24a from 1978 to 2002 are 383 ± 97 g · m−2 · a−1, 193 ± 85 g · m−2 · a−1 and 213 ± 86 g · m−2 · a−1, respectively. The belowground carbon pools in the three forest types keep increasing during the observation period, suggesting that belowground carbon pools are carbon sinks to the atmosphere. There are seasonal variations, namely, they are strong carbon sources from April to June, weak carbon sources from July to September; while they are strong carbon sinks from October to November, weak carbon sinks from December to March.
Pena, Rodica; Lang, Christa; Lohaus, Gertrud; Boch, Steffen; Schall, Peter; Schöning, Ingo; Ammer, Christian; Fischer, Markus; Polle, Andrea
2017-04-01
Ectomycorrhizal (EM) fungal taxonomic, phylogenetic, and trait diversity (exploration types) were analyzed in beech and conifer forests along a north-to-south gradient in three biogeographic regions in Germany. The taxonomic community structures of the ectomycorrhizal assemblages in top soil were influenced by stand density and forest type, by biogeographic environmental factors (soil physical properties, temperature, and precipitation), and by nitrogen forms (amino acids, ammonium, and nitrate). While α-diversity did not differ between forest types, β-diversity increased, leading to higher γ-diversity on the landscape level when both forest types were present. The highest taxonomic diversity of EM was found in forests in cool, moist climate on clay and silty soils and the lowest in the forests in warm, dry climate on sandy soils. In the region with higher taxonomic diversity, phylogenetic clustering was found, but not trait clustering. In the warm region, trait clustering occurred despite neutral phylogenetic effects. These results suggest that different forest types and favorable environmental conditions in forests promote high EM species richness in top soil presumably with both high functional diversity and phylogenetic redundancy, while stressful environmental conditions lead to lower species richness and functional redundancy.
Spring bird migration in Mississippi Alluvial Valley forests
Wilson, R. Randy; Twedt, Daniel J.
2003-01-01
We surveyed forest songbirds during migration in bottomland hardwood forest stands and managed cottonwood (Populus deltoides) plantations in northeast Louisiana and west-central Mississippi between 24 March and 24 May 1996 and 1997. We detected more bird species in bottomland hardwood stands than in cottonwood stands. Within hardwood stands, we detected more individuals in stands subjected to uneven-aged timber harvest than in unmanaged stands. Early in migration, avian species composition was similar in both forest types, being comprised mainly of short-distance migrants. Bird species composition in these forest types became increasingly disparate as long-distance neotropical-nearctic migrants arrived. Ten bird species were characteristic of bottomland hardwood forests, whereas eight different species were characteristic of managed cottonwood plantations. Because these two forest types supported different bird communities, both forest types provide important inland stopover habitat during migration. Silvicultural management of bottomland hardwood forests that increases their understory vegetation will provide forested habitat for a more species rich and abundant population of songbirds during migration.
Localizing National Fragmentation Statistics with Forest Type Maps
Kurt H. Riitters; John W. Coulston; James D. Wickham
2003-01-01
Fragmentation of forest types is an indicator of biodiversity in the Montreal Process, but the available national data permit assessment of only overall forestland fragmentation, not forest type fragmentation. Here we illustrate how to localize national statistics from the 2003 National Report on Sustainable Forests by combining state vegetation maps with national...
The forest fire season at different elevations in Idaho
J. A. Larsen
1925-01-01
In any fire-ridden forest region, such as north Idaho, there is great need for a tangible basis by which to judge the length and the intensity of the fire season in different forest types and at different elevations. The major and natural forest types, such as the western yellow pine forests, the western white-pine forests, and the subalpine forests occur in...
NASA Technical Reports Server (NTRS)
Gao, Feng; Ghimire, Bardan; Jiao, Tong; Williams, Christopher A.; Masek, Jeffrey; Schaaf, Crystal
2017-01-01
Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.
Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.
2018-01-01
Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.
Stenbacka, Fredrik; Hjältén, Joakim; Hilszczański, Jacek; Dynesius, Mats
2010-12-01
Current clear-cutting forestry practices affect many boreal organisms negatively, and those dependent on dead wood (saproxylics) are considered as particularly vulnerable. The succession of species assemblages in managed forest habitats regenerating after clear-cutting is, however, poorly known. We compared beetle assemblages in three successional stages of managed boreal spruce forests established after clear-cutting and two types of older spruce forests that had not been clear-cut. We also assessed whether saproxylic and non-saproxylic beetle assemblages show similar biodiversity patterns among these forest types. Beetles were collected in window traps in nine study areas, each encompassing a protected old-growth forest (mean forest age approximately 160 years, mean dead wood volume 34 m3/ha), an unprotected mature forest (approximately 120 years old, 15 m3/ha), a middle-aged commercially thinned forest (53 years old, 3 m3/ha), a young unthinned forest (30 years old, 4 m3/ha), and a clearcut (5-7 years after harvest, 11 m3/ha). Saproxylic beetles, in particular red-listed species, were more abundant and more species rich in older forest types, whereas no significant differences among forest types in these variables were detected for non-saproxylics. The saproxylic assemblages were clearly differentiated; with increasing forest age, assemblage compositions gradually became more similar to those of protected old-growth forests, but the assemblage composition in thinned forests could not be statistically distinguished from those of the two oldest forest types. Many saproxylic beetles adapted to late-successional stages were present in thinned middle-aged forests but absent from younger unthinned forests. In contrast, non-saproxylics were generally more evenly distributed among the five forest types, and the assemblages were mainly differentiated between clearcuts and forested habitats. The saproxylic beetle assemblages of unprotected mature forests were very similar to those of protected old-growth forests. This indicates a relatively high conservation value of mature boreal forests currently subjected to clear-cutting and raises the question of whether future mature forests will have the same qualities. Our results suggest a high beetle conservation potential of developing managed forests, provided that sufficient amounts and qualities of dead wood are made available (e.g., during thinning operations). Confirming studies of beetle reproduction in dead wood introduced during thinning are, however, lacking.
Liu, J.; Liu, S.; Loveland, Thomas R.; Tieszen, L.L.
2008-01-01
Land cover change is one of the key driving forces for ecosystem carbon (C) dynamics. We present an approach for using sequential remotely sensed land cover observations and a biogeochemical model to estimate contemporary and future ecosystem carbon trends. We applied the General Ensemble Biogeochemical Modelling System (GEMS) for the Laurentian Plains and Hills ecoregion in the northeastern United States for the period of 1975-2025. The land cover changes, especially forest stand-replacing events, were detected on 30 randomly located 10-km by 10-km sample blocks, and were assimilated by GEMS for biogeochemical simulations. In GEMS, each unique combination of major controlling variables (including land cover change history) forms a geo-referenced simulation unit. For a forest simulation unit, a Monte Carlo process is used to determine forest type, forest age, forest biomass, and soil C, based on the Forest Inventory and Analysis (FIA) data and the U.S. General Soil Map (STATSGO) data. Ensemble simulations are performed for each simulation unit to incorporate input data uncertainty. Results show that on average forests of the Laurentian Plains and Hills ecoregion have been sequestrating 4.2 Tg C (1 teragram = 1012 gram) per year, including 1.9 Tg C removed from the ecosystem as the consequences of land cover change. ?? 2008 Elsevier B.V.
Development and Evaluation of an Expert System for Diagnosing Pest Damage of Red Pine
Daniel L Schmoldt; George L. Martin
1989-01-01
An expert system for diagnosing pest damage of red pine stands in Wisconsin, PREDICT, runs on IBM or compatible microcomputers and is designed to be useful for field foresters with no advanced training in forest pathology or entomology. PREDICT recognizes 28 damaging agents including species of mammals, insects, and pathogens, as well as two types of abiotic damage....
Mark A. Rumble; R. Scott Gamo
2011-01-01
Timber management is the most prominent land management activity in the Black Hills National Forest in the northcentral United States. Management units are stands 4-32 ha in size and are described using a hierarchal vegetative description including vegetation type, size class (age), and overstory canopy cover. For the most part, these stands are relatively homogeneous...
H. Viana; J. Aranha; D. Lopes; Warren B. Cohen
2012-01-01
Spatially crown biomass of Pinus pinaster stands and shrubland above-ground biomass (AGB) estimation was carried-out in a region located in Centre-North Portugal, by means of different approaches including forest inventory data, remotely sensed imagery and spatial prediction models. Two cover types (pine stands and shrubland) were inventoried and...
Short-term effects of prescribed fire in grand fir-white pine-western hemlock slash fuels
Elizabeth D. Reinhardt; Russell T. Graham; Theresa B. Jain; Dennis G. Simmerman
1994-01-01
Experimental burns were conducted on 36 plots in mixed conifer logging slash in northern Idaho, under varying fuel loadings and moisture conditions. This paper reports the immediate effects of these burns on the forest floor, the woody fuel complex, and the plant community, and includes recommendations to managers for using prescribed fire in this forest type. Much of...
Evaluation of Sentinel-1A Data For Above Ground Biomass Estimation in Different Forests in India
NASA Technical Reports Server (NTRS)
Vadrevu, Krishna Prasad
2017-01-01
Use of remote sensing data for mapping and monitoring of forest biomass across large spatial scales can aid in addressing uncertainties in carbon cycle. Earlier, several researchers reported on the use of Synthetic Aperture Radar (SAR) data for characterizing forest structural parameters and the above ground biomass estimation. However, these studies cannot be generalized and the algorithms cannot be applied to all types of forests without additional information on the forest physiognomy, stand structure and biomass characteristics. The radar backscatter signal also saturates as forest parameters such as biomass and the tree height increase. It is also not clear how different polarizations (VV versus VH) impact the backscatter retrievals in different forested regions. Thus, it is important to evaluate the potential of SAR data in different landscapes for characterizing forest structural parameters. In this study, the SAR data from Sentinel-1A has been used to characterize forest structural parameters including the above ground biomass from tropical forests of India. Ground based data on tree density, basal area and above ground biomass data from thirty-eight different forested sites has been collected to relate to SAR data. After the pre-processing of Sentinel 1-A data for radiometric calibration, geo-correction, terrain correction and speckle filtering, the variability in the backscatter signal in relation tree density, basal area and above biomass density has been investigated. Results from the curve fitting approach suggested exponential model between the Sentinel-1A backscatter versus tree density and above ground biomass whereas the relationship was almost linear with the basal area in the VV polarization mode. Of the different parameters, tree density could explain most of the variations in backscatter. Both VV and VH backscatter signals could explain only thirty and thirty three percent of variation in above biomass in different forest sites of India. Results also suggested saturation of the Sentinel-1A backscatter signal around hundred tonnes per hectare for VV polarization and one hundred and forty five tonnes per hectare for VH polarization. The presentation will highlight the above results in addition to potentials and limitations of Sentinel-1A data for retrieving forest structural parameters. Also, background information on different forest types of India, biomass variations and forest type mapping efforts in the region will be presented.
Abundance and characteristics of snags in western Montana forests
Richard B. Harris
1999-01-01
Plot data from the U.S. Forest Service's Forest Inventory and Analysis program was used to characterize the abundance and selected characteristics of snags from forests in western Montana. Plots were grouped by whether they had a history of timber harvest, and the U.S. Forest Service classifications of forest type, habitat type, and potential vegetation group were...
Mineral resource appraisal of the Salmon National Forest, Idaho
Johnson, Rick; Close, Terry; McHugh, Ed
1998-01-01
The Salmon National Forest administers 1,776,994 net acres of mountainous terrain located in east-central Idaho. Most of the Forest is in Lemhi County; only a small portion falls within Idaho and Valley Counties. Approximately 426,114 acres of the Frank Church-River of No Return Wilderness extends into the western part of the Forest and mineral entry is severely restricted. Because of its location within the Salmon River drainage, the Forest also is subject to numerous issues surrounding restoration of anadromous fish runs. Mineral production from the Salmon National Forest began during 1866 when placer gold was discovered in Leesburg Basin. Hardrock mining quickly spread throughout the Forest and many deposits containing a wide range of commodities were discovered and developed. Although early records are sketchy, production is estimated to include 940,000 ounces gold, 654,000 ounces silver, 61.9 million pounds copper, 8.9 million pounds lead, 13.9 million pounds cobalt, 208,000 pounds zinc, and 37,000 tons fluorite mill feed. Mineral resources are large, diverse, and occur in many deposit types including exhalative, stockwork, disseminated, vein, replacement, sedimentary, skarn, breccia pipe, porphyry, and placer. The largest cobalt resource in the United States occurs in the Blackbird Mining District. Other resources include gold, silver, copper, lead, molybdenum, phosphate, manganese, iron, fluorite, uranium, thorium, rare earth oxides, and barite.
NASA Technical Reports Server (NTRS)
Rignot, Eric; Williams, Cynthia; Way, Jobea; Viereck, Leslie
1993-01-01
A maximum a posteriori Bayesian classifier for multifrequency polarimetric SAR data is used to perform a supervised classification of forest types in the floodplains of Alaska. The image classes include white spruce, balsam poplar, black spruce, alder, non-forests, and open water. The authors investigate the effect on classification accuracy of changing environmental conditions, and of frequency and polarization of the signal. The highest classification accuracy (86 percent correctly classified forest pixels, and 91 percent overall) is obtained combining L- and C-band frequencies fully polarimetric on a date where the forest is just recovering from flooding. The forest map compares favorably with a vegetation map assembled from digitized aerial photos which took five years for completion, and address the state of the forest in 1978, ignoring subsequent fires, changes in the course of the river, clear-cutting of trees, and tree growth. HV-polarization is the most useful polarization at L- and C-band for classification. C-band VV (ERS-1 mode) and L-band HH (J-ERS-1 mode) alone or combined yield unsatisfactory classification accuracies. Additional data acquired in the winter season during thawed and frozen days yield classification accuracies respectively 20 percent and 30 percent lower due to a greater confusion between conifers and deciduous trees. Data acquired at the peak of flooding in May 1991 also yield classification accuracies 10 percent lower because of dominant trunk-ground interactions which mask out finer differences in radar backscatter between tree species. Combination of several of these dates does not improve classification accuracy. For comparison, panchromatic optical data acquired by SPOT in the summer season of 1991 are used to classify the same area. The classification accuracy (78 percent for the forest types and 90 percent if open water is included) is lower than that obtained with AIRSAR although conifers and deciduous trees are better separated due to the presence of leaves on the deciduous trees. Optical data do not separate black spruce and white spruce as well as SAR data, cannot separate alder from balsam poplar, and are of course limited by the frequent cloud cover in the polar regions. Yet, combining SPOT and AIRSAR offers better chances to identify vegetation types independent of ground truth information using a combination of NDVI indexes from SPOT, biomass numbers from AIRSAR, and a segmentation map from either one.
Correlation between the morphogenetic types of litter and their properties in bog birch forests
NASA Astrophysics Data System (ADS)
Efremova, T. T.; Efremov, S. P.; Avrova, A. F.
2010-08-01
A formalized arrangement of morphogenetic types of litter according to the physicochemical parameters provided their significant grouping in three genetic associations. The litter group (highly decomposed + moderately decomposed) is confined to the tall-grass group of bog birch forests. The rhizomatous (roughly decomposed) litter is formed in the sedge-reed grass bog birch forests. The litter group (peaty + peatified + peat) is associated with the bog-herbaceous-moss group of forest types. The genetic associations of the litters (a) reliably characterize the edaphic conditions of bog birch forests and (b)correspond to formation of the peat of certain ecological groups. We found highly informative the acid-base parameters, the exchangeable cations (Ca2+ + Mg2+) and the total potential acidity, which differentiated the genetic associations of litter practically with 100% probability. The expediency of studying litters under groups of forest types rather than under separate types of bog birch forests was demonstrated.
Martins, V; Miranda, A I; Carvalho, A; Schaap, M; Borrego, C; Sá, E
2012-01-01
The main purpose of this work is to estimate the impact of forest fires on air pollution applying the LOTOS-EUROS air quality modeling system in Portugal for three consecutive years, 2003-2005. Forest fire emissions have been included in the modeling system through the development of a numerical module, which takes into account the most suitable parameters for Portuguese forest fire characteristics and the burnt area by large forest fires. To better evaluate the influence of forest fires on air quality the LOTOS-EUROS system has been applied with and without forest fire emissions. Hourly concentration results have been compared to measure data at several monitoring locations with better modeling quality parameters when forest fire emissions were considered. Moreover, hourly estimates, with and without fire emissions, can reach differences in the order of 20%, showing the importance and the influence of this type of emissions on air quality. Copyright © 2011 Elsevier B.V. All rights reserved.
Remote sensing in agriculture. [using Earth Resources Technology Satellite photography
NASA Technical Reports Server (NTRS)
Downs, S. W., Jr.
1974-01-01
Some examples are presented of the use of remote sensing in cultivated crops, forestry, and range management. Areas of concern include: the determination of crop areas and types, prediction of yield, and detection of disease; the determination of forest areas and types, timber volume estimation, detection of insect and disease attack, and forest fires; and the determination of range conditions and inventory, and livestock inventory. Articles in the literature are summarized and specific examples of work being performed at the Marshall Space Flight Center are given. Primarily, aerial photographs and photo-like ERTS images are considered.
Fire ecology of the forest habitat types of central Idaho
M. F. Crane; William C. Fischer
1986-01-01
Discusses fire as an ecological factor for forest habitat types occurring in central Idaho. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Considerations for fire management are suggested.
Redefining plant functional types for forests based on plant traits
NASA Astrophysics Data System (ADS)
Wei, L.; Xu, C.; Christoffersen, B. O.; McDowell, N. G.; Zhou, H.
2016-12-01
Our ability to predict forest mortality is limited by the simple plant functional types (PFTs) in current generations of Earth System models (ESMs). For example, forests were formerly separated into PFTs only based on leaf form and phenology across different regions (arctic, temperate, and tropic areas) in the Community Earth System Model (CESM). This definition of PFTs ignored the large variation in vulnerability of species to drought and shade tolerance within each PFT. We redefined the PFTs for global forests based on plant traits including phenology, wood density, leaf mass per area, xylem-specific conductivity, and xylem pressure at 50% loss of conductivity. Species with similar survival strategies were grouped into the same PFT. New PFTs highlighted variation in vulnerability and physiological adaptation to drought and shade. New PFTs were better clustered than old ones in the two-dimensional plane of the first two principle components in a principle component analysis. We expect that the new PFTs will strengthen ESMs' ability on predicting drought-induced mortality in the future.
Martínez Baños, Vera; Pacheco Florez, Vanesa; Ramírez-Pinilla, Martha P
2011-06-01
Geobatrachus walkeri belongs to a monotypic frog genus endemic to the San Lorenzo area, Sierra Nevada de Santa Marta, Colombia. This species has been categorized as endangered because of its small distribution area and the decline in the extent and quality of its habitat. It inhabits two forest types with different composition and structure, the native secondary forest and a pine plantation (dominated by Pinus patula). To compare the relative abundance and microhabitat use of this species in these habitat types, 30 quadrants/environment were distributed randomly. The individual number, microhabitat use and other aspects of its natural history were registered using visual encounter surveys in both sites, including non-sampled areas in the quadrants. The relative abundance of frogs was significantly different between habitats and among seasons. The highest abundance of G. walkeri relative to the total area was found in the pine plantation, being 2.3 times higher than in the natural forest. More frogs were significantly found during the rainy season; nevertheless, active individuals were also found during the dry season. Significant differences were found in the microhabitat use with respect to the forest type and season. The most frequently microhabitat used in the two forest types was the pine leaf-litter; besides, in the native forest, the microhabitat occupied more frequently presented medium and large size stones. Geobatrachus walkeri is a successful species in pine plantations, associated permanently to its leaf-litter environment where it seems to develop its entire life cycle. The clear modifications in the soils and water, derived from the introduction of the pine plantation in this area, seem not to have negatively affected the conservation and successful maintenance of this species.
Streby, Henry M.; Andersen, David E.
2013-01-01
We used radio telemetry to monitor movements, cover-type selection, and survival for fledglings of the mature-forest nesting Ovenbird (Seiurus aurocapilla) at two managed forest sites in north-central Minnesota. Both sites contained forested wetlands, regenerating clearcut stands of various ages, and logging roads, but differed in mature forest composition; one deciduous with open understory, and the other mixed coniferous-deciduous with dense understory. We used compositional analysis, modified to incorporate age-specific limitations in fledgling movements, to assess cover-type selection by fledglings throughout the dependent (on adult care) post-fledging period. Compared to those that were depredated, fledglings from nests in deciduous forest that survived the early post-fledging period had more older (sapling-dominated) clearcut available, directed movements toward older clearcuts and forested wetlands, and used older clearcuts more than other cover types relative to availability. Fledglings that were depredated had more young (shrub-dominated) clearcut and unpaved logging road available, and used mature forest and roads more than expected based on availability. For birds from nests in mixed mature forest with dense understory, movements and cover-type selection were similar between fledglings that survived and those that were depredated. However, fledglings that were depredated at that site also had more young clearcut available than fledglings that survived. We conclude that Ovenbird fledgling survival is influenced by distance of their nest to various non-nesting cover types, and by the subsequent selection among those cover types, but that the influence of non-nesting cover types varies depending on the availability of dense understory vegetation in mature forest.
NASA Astrophysics Data System (ADS)
Johnson, A. C.; Yeakley, A.
2009-12-01
Timberline forest advance associated with global climate change is occurring worldwide and is often associated with microsites. Microsites, controlled by topography, substrates, and plant cover, are localized regions dictating temperature, moisture, and solar radiation. These abiotic factors are integral to seedling survival. From a compilation of world-wide information on seedling regeneration on microsites at timberline, including our on-going research in the Pacific Northwest, we classified available literature into four microsite categories, related microsite category to annual precipitation, and used analysis of variance to detect statistical differences in microsite type and associated precipitation. We found statistical differences (p = 0.022) indicating the usefulness of understanding microsite/precipitation associations in detecting world-wide trends in timberline expansion. For example, wetter timberlines with downed wood, had regeneration associated with nurse logs, whereas on windy, drier landscapes, regeneration was typically associated with either leeward sides of tree clumps or on microsites protected from frost by overstory canopy. In our study of timberline expansion in the Pacific Northwest, we expect that such knowledge of microsite types associated with forest expansion will reveal a better understanding of mechanisms and rates of timberline forest advance during global warming.
Peer, W A; Briggs, W R; Langenheim, J H
1999-05-01
Shade-avoidance responses were examined for two species common to the coastal redwood forest, Sequoia sempervirens and Satureja douglasii. Sequoia seedlings demonstrated a shade-avoidance response when given end-of-day far-red light by increased hypocotyl, epicotyl, and first-node extension, and greater total number of needles and reduced anthocyanin concentration. Thus, Sequoia seedlings respond as sun-adapted plants. Satureja has several leaf monoterpene chemotypes that occur in different light environments including the redwood forest, and the types responded differently to the light treatments. The pulegone type responded to end-of-day far-red light as a sun-adapted plant with significant extension growth, increased leaf area and chlorophyll, and reduced anthocyanin. The isomenthone type responded as a shade-tolerant plant and did not exhibit extension growth nor a change in other parameters with end-of-day far-red light. However, the carvone and bicyclic types had variable responses depending on the parameter studied, which indicated genetic variation for these traits.
Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Gary J. Brand; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Tonya W. Lister; Dacia M. Meneguzzo; Charles H. Perry; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall; Bill Zipse
2011-01-01
The first full annual inventory of New Jersey's forests reports more than 2.0 million acres of forest land and 83 tree species. Forest land is dominated by oak-hickory forest types in the north and pitch pine forest types in the south. The volume of growing stock on timberland has been rising since 1956 and currently totals 3.4 billion cubic feet. The average...
A Computer Program for Displaying Forest Survey Type Information
B. Bruce Bare; Robert N. Stone
1968-01-01
Presents a computerized procedure for displaying forest type information from inventory plots. Although the development of general forest type maps in emphasized, the program can be used to display any locational data having rectangular coordinates
Horton, Bryony M; Glen, Morag; Davidson, Neil J; Ratkowsky, David A; Close, Dugald C; Wardlaw, Tim J; Mohammed, Caroline
2017-01-01
Fungal diversity of Australian eucalypt forests remains underexplored. We investigated the ectomycorrhizal (EcM) fungal community characteristics of declining temperate eucalypt forests in Tasmania. Within this context, we explored the diversity of EcM fungi of two forest types in the northern highlands in the east and west of the island. We hypothesised that EcM fungal community richness and composition would differ between forest type but that the Cortinariaceae would be the dominant family irrespective of forest type. We proposed that EcM richness would be greater in the wet sclerophyll forest than the dry sclerophyll forest type. Using both sporocarps and EcM fungi from root tips amplified by PCR and sequenced in the rDNA ITS region, 175 EcM operational taxonomic units were identified of which 97 belonged to the Cortinariaceae. The Cortinariaceae were the most diverse family, in both the above and below ground communities. Three distinct fungal assemblages occurred within the wet and dry sclerophyll forest types and two geographic regions that were studied, although this pattern did not remain when only the root tip data were analysed. EcM sporocarp richness was unusually higher than root tip richness and EcM richness did not significantly differ among forest types. The results are discussed in relation to the importance of the Cortinariaceae and the drivers of EcM fungal community composition within these forests.
36 CFR 228.57 - Types of disposal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Types of disposal. 228.57 Section 228.57 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.57 Types of disposal. Except as provided...
36 CFR 228.57 - Types of disposal.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Types of disposal. 228.57 Section 228.57 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.57 Types of disposal. Except as provided...
36 CFR 228.57 - Types of disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Types of disposal. 228.57 Section 228.57 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.57 Types of disposal. Except as provided...
36 CFR 228.57 - Types of disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Types of disposal. 228.57 Section 228.57 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.57 Types of disposal. Except as provided...
Classification of forest land attributes using multi-source remotely sensed data
NASA Astrophysics Data System (ADS)
Pippuri, Inka; Suvanto, Aki; Maltamo, Matti; Korhonen, Kari T.; Pitkänen, Juho; Packalen, Petteri
2016-02-01
The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008-2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland.
Plant hydraulic controls over ecosystem responses to climate-enhanced disturbances
NASA Astrophysics Data System (ADS)
Mackay, D. S.; Ewers, B. E.; Reed, D. E.; Pendall, E.; McDowell, N. G.
2012-12-01
Climate-enhanced disturbances such as drought and insect infestation range in severity, contributing minor to severe stress to forests including forest mortality. While neither form of disturbance has been unambiguously implicated as a mechanism of mortality, both induce changes in water, carbon, and nutrient cycling that are key to understanding forest ecosystem response to, and recovery from, disturbance. Each disturbance type has different biophysical, ecohydrological, and biogeochemical signatures that potentially complicate interpretation and development of theory. Plant hydraulic function is arguably a unifying control over these responses to disturbance because it regulates stomatal conductance, leaf biochemistry, carbon (C) uptake and utilization, and nutrient cycling. We demonstrated this idea by focusing on water and C, including non-structural (NSC), resources, and nitrogen (N) uptake across a spectrum of forest ecosystems (e.g., northern temperate mixed forests, lodgepole pine forests in the Rocky Mountains, and pinon pine - juniper woodlands in New Mexico) using the Terrestrial Regional Ecosystem Exchange Simulator (TREES). TREES is grounded in the biophysics of water movement through soil and plants, respectively via hydraulic conductivity of the soil and cavitation of xylem. It combines this dynamic plant hydraulic conductance with canopy biochemical controls over photosynthesis, and the dynamics of structural and non-structural carbon through a carbon budget that responds to plant hydraulic status. As such, the model can be used to develop testable hypotheses on a multitude of disturbance and recovery responses including xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, respiration, and allocation to defense compounds. For each of the ecosystems we constrained and evaluated the model with allometry, sap flux and/or eddy covariance data, leaf gas exchange measurements, and vulnerability to cavitation data. Disturbances included declining water tables and canopy defoliators (northern temperature forests), bark beetles and associated blue-stain fungi (coniferous forests), and prolonged drought with bark beetles (semi-arid woodland). We show that C dynamics in trees that experience water-limitation, insect attack, or a combination of both disturbance types cannot be explained solely from hydraulic status or NSC, but are better explained by a combination of both in conjunction with N uptake. Results show that the use of plant hydraulics can yield parsimonious explanations of biophysical, ecohydrological, and biogeochemical responses to disturbance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munger, J. William; Foster, David R.; Richardson, Andrew D.
This report summarizes work to improve quantitative understanding of the terrestrial ecosystem processes that control carbon sequestration in unmanaged forests It builds upon the comprehensive long-term observations of CO2 fluxes, climate and forest structure and function at the Harvard Forest in Petersham, MA. This record includes the longest CO2 flux time series in the world. The site is a keystone for the AmeriFlux network. Project Description The project synthesizes observations made at the Harvard Forest HFEMS and Hemlock towers, which represent the dominant mixed deciduous and coniferous forest types in the northeastern United States. The 20+ year record of carbonmore » uptake at Harvard Forest and the associated comprehensive meteorological and biometric data, comprise one of the best data sets to challenge ecosystem models on time scales spanning hourly, daily, monthly, interannual and multi-decadal intervals, as needed to understand ecosystem change and climate feedbacks.« less
Missouri's forest resources in 2002.
W. Keith Moser; Gary J. Brand; Thomas Treiman; Bruce Moltzan; Robert Lawrence
2004-01-01
Results of the 2002 annual inventory of Missouri''s forest resources show an estimated 14.5 million acres of forest land. The oak-hickory type is the predominant forest type on the landscape, making up over 70 percent of all forested land. Pinyon-juniper (primarily eastern redcedar) is the primary softwood component by acreage, although shortleaf pine makes...
Hierarchical spatial models for predicting tree species assemblages across large domains
Andrew O. Finley; Sudipto Banerjee; Ronald E. McRoberts
2009-01-01
Spatially explicit data layers of tree species assemblages, referred to as forest types or forest type groups, are a key component in large-scale assessments of forest sustainability, biodiversity, timber biomass, carbon sinks and forest health monitoring. This paper explores the utility of coupling georeferenced national forest inventory (NFI) data with readily...
NASA Technical Reports Server (NTRS)
Anderson, J. E.; Kalcic, M. T. (Principal Investigator)
1982-01-01
Digital processed aircraft-acquired thematic mapping simulator (TMS) data collected during the winter season over a forested site in southern Mississippi are presented to investigate the utility of TMS data for use in forest inventories and monitoring. Analyses indicated that TMS data are capable of delineating the mixed forest land cover type to an accuracy of 92.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct, respectively. The figures reflect the performance for products produced using the best subset of channels for each forest cover type. It was found that the choice of channels (subsets) has a significant effect on the accuracy of classification produced, and that the same channels are not the most desirable for all three forest types studied. Both supervised and unsupervised spectral signature development techniques are evaluated; the unsupervised methods proved unacceptable for the three forest types considered.
Observation and simulation of net primary productivity in Qilian Mountain, western China.
Zhou, Y; Zhu, Q; Chen, J M; Wang, Y Q; Liu, J; Sun, R; Tang, S
2007-11-01
We modeled net primary productivity (NPP) at high spatial resolution using an advanced spaceborne thermal emission and reflection radiometer (ASTER) image of a Qilian Mountain study area using the boreal ecosystem productivity simulator (BEPS). Two key driving variables of the model, leaf area index (LAI) and land cover type, were derived from ASTER and moderate resolution imaging spectroradiometer (MODIS) data. Other spatially explicit inputs included daily meteorological data (radiation, precipitation, temperature, humidity), available soil water holding capacity (AWC), and forest biomass. NPP was estimated for coniferous forests and other land cover types in the study area. The result showed that NPP of coniferous forests in the study area was about 4.4 tCha(-1)y(-1). The correlation coefficient between the modeled NPP and ground measurements was 0.84, with a mean relative error of about 13.9%.
The Salutary Influence of Forest Bathing on Elderly Patients with Chronic Heart Failure.
Mao, Genxiang; Cao, Yongbao; Wang, Bozhong; Wang, Sanying; Chen, Zhuomei; Wang, Jirong; Xing, Wenmin; Ren, Xiaoxu; Lv, Xiaoling; Dong, Jianhua; Chen, Shasha; Chen, Xiuyuan; Wang, Guofu; Yan, Jing
2017-03-31
The aim of the current study was to test the hypothesis that forest bathing would be beneficial for elderly patients with chronic heart failure (CHF) as an adjunctive therapy. Two groups of participants with CHF were simultaneously sent to the forest or an urban control area for a four-day trip, respectively. Subjects exposed to the forest site showed a significant reduction of brain natriuretic peptide (BNP) in comparison to that of the city group and their own baseline levels. The values for the cardiovascular disease related pathological factors, including endothelin-1 (ET-1), and constituents of the renin-angiotensin system (RAS), including renin, angiotensinogen (AGT), angiotensin II (ANGII), and ANGII receptor type 1 or 2 (AT1 or AT2) in subjects exposed to the forest environment were lower than those in the urban control group. Obviously, a decreased level of inflammatory cytokines and improved antioxidant function was observed in the forest group rather than in the city group. The assessment of the profile of mood states (POMS) indicated that the negative emotional mood state was alleviated after forest bathing. As anticipated, a better air quality in the forest site was observed according to the detection of PM 2.5 (particulate matter <2.5 μm) and negative ions. These results provided direct evidence that forest bathing has a beneficial effect on CHF patients, and thus may pave the way for potential development of forest bathing as an effective adjunctive therapy on cardiovascular disorders.
Susan J. Crocker; Charles J. Barnett; Brett J. Butler; Mark A. Hatfield; Cassandra M. Kurtz; Tonya W. Lister; Dacia M. Meneguzzo; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Ronald J. Piva; Rachel Riemann; James E. Smith; Christopher W. Woodall; William. Zipse
2017-01-01
The second full annual inventory of New Jerseyâs forests reports more than 2.0 million acres of forest land and 77 tree species. Forest land is dominated by oak/hickory forest types in the north and pitch pine forest types in the south. The volume of growing stock on timberland has been rising since 1956 and currently totals 3.3 billion cubic feet. Average annual net...
James E. Smith; Linda S. Heath; Kenneth E. Skog; Richard A. Birdsey
2006-01-01
This study presents techniques for calculating average net annual additions to carbon in forests and in forest products. Forest ecosystem carbon yield tables, representing stand-level merchantable volume and carbon pools as a function of stand age, were developed for 51 forest types within 10 regions of the United States. Separate tables were developed for...
Jacobs, Jenna M; Bergeron, J A Colin
2017-01-01
Quedius (Raphirus) spencei Jacobs and Bergeron, new species, (Coleoptera: Staphylinidae), is described based on specimens from two localities (type locality: 35 km. E Dixonville, Alberta, Canada) in the Boreal Forest. Male genitalia are illustrated, compared with congeners ( Q. rusticus Smetana and Q. simulator Smetana) in the Aenescens species group, and included in a slightly modified key to the species of Quedius .
Victoria A. Saab; Jonathan G. Dudley
1998-01-01
From 1994 to 1996, researchers monitored 695 nests of nine cavity-nesting bird species and measured vegetation at nest sites and at 90 randomly located sites in burned ponderosa pine forests of southwestern Idaho. Site treatments included two types of salvage logging, and unlogged controls. All bird species selected nest sites with higher tree densities, larger...
Benjamin L. Reichert; Sharon R. Jean-Philippe; Christopher Oswalt; Jennifer Franklin; Mark Radosevich
2015-01-01
As the process of urbanization advances across the country, so does the importance of urban forests, which include both trees and the soils in which they grow. Soil microbial biomass, which plays a critical role in nutrient transformation in urban ecosystems, is affected by factors such as soil type and the availability of water, carbon, and nitrogen. The aim of this...
Dugger, Katie M.; Wagner, Frank; Anthony, Robert G.; Olson, Gail S.
2005-01-01
We used data from Northern Spotted Owl (Strix occidentalis caurina) territories to model the effects of habitat (particularly intermediate-aged forest stand types), climate, and nonhabitat covariates (i.e., age, sex) on owl reproductive rate and apparent survival in southwestern Oregon. Our best model for reproductive rate included an interaction between a cyclic, annual time trend and male breeding experience, with higher reproductive rates in even years compared to odd, particularly for males with previous breeding experience. Reproductive rate was also negatively related to the amount of winter precipitation and positively related to the proportion of old-growth forest near the owl territory center. Apparent survival was not associated with age, sex, climate or any of the intermediate-aged forest types, but was positively associated with the proportion of older forest near the territory center in a pseudothreshold pattern. The quadratic structure of the proportion of nonhabitat farther from the nest or primary roost site was also part of our best survival model. Survival decreased dramatically when the amount of nonhabitat exceeded ∼50%. Habitat fitness potential estimates (λ̂h) for 97 owl territories ranged from 0.29–1.09, with a mean of 0.86 ± 0.02. Owl territories with habitat fitness potentials <1.0 were generally characterized by <40%–50% old forest habitat near the territory center. Our results indicate that both apparent survival and reproductive rate are positively associated with older forest types close to the nest or primary roost site. We found no support for either a positive or negative direct effect of intermediate-aged forests on either survival or reproductive rate.
Kane, Van R.; North, Malcolm P.; Lutz, James A.; Churchill, Derek J.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Kane, Jonathan T.; Brooks, Matthew L.
2014-01-01
Mosaics of tree clumps and openings are characteristic of forests dominated by frequent, low- and moderate-severity fires. When restoring these fire-suppressed forests, managers often try to reproduce these structures to increase ecosystem resilience. We examined unburned and burned forest structures for 1937 0.81 ha sample areas in Yosemite National Park, USA. We estimated severity for fires from 1984 to 2010 using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR) and measured openings and canopy clumps in five height strata using airborne LiDAR data. Because our study area lacked concurrent field data, we identified methods to allow structural analysis using LiDAR data alone. We found three spatial structures, canopy-gap, clump-open, and open, that differed in spatial arrangement and proportion of canopy and openings. As fire severity increased, the total area in canopy decreased while the number of clumps increased, creating a patchwork of openings and multistory tree clumps. The presence of openings > 0.3 ha, an approximate minimum gap size needed to favor shade-intolerant pine regeneration, increased rapidly with loss of canopy area. The range and variation of structures for a given fire severity were specific to each forest type. Low- to moderate-severity fires best replicated the historic clump-opening patterns that were common in forests with frequent fire regimes. Our results suggest that managers consider the following goals for their forest restoration: 1) reduce total canopy cover by breaking up large contiguous areas into variable-sized tree clumps and scattered large individual trees; 2) create a range of opening sizes and shapes, including ~ 50% of the open area in gaps > 0.3 ha; 3) create multistory clumps in addition to single story clumps; 4) retain historic densities of large trees; and 5) vary treatments to include canopy-gap, clump-open, and open mosaics across project areas to mimic the range of patterns found for each forest type in our study.
LOCALIZING NATIONAL FRAGMENTATION STATISTICS WITH FOREST TYPE MAPS
Fragmmentation of forest types is an indicator of biodiversity in the Montreal Process, but the available national data permit assessment of only overall forestland fragmentation, not forest type fragmentation. Here we illustrate how to localize national statistics from the 2003...
Quantifying deforestation and forest degradation with thermal response.
Lin, Hua; Chen, Yajun; Song, Qinghai; Fu, Peili; Cleverly, James; Magliulo, Vincenzo; Law, Beverly E; Gough, Christopher M; Hörtnagl, Lukas; Di Gennaro, Filippo; Matteucci, Giorgio; Montagnani, Leonardo; Duce, Pierpaolo; Shao, Changliang; Kato, Tomomichi; Bonal, Damien; Paul-Limoges, Eugénie; Beringer, Jason; Grace, John; Fan, Zexin
2017-12-31
Deforestation and forest degradation cause the deterioration of resources and ecosystem services. However, there are still no operational indicators to measure forest status, especially for forest degradation. In the present study, we analysed the thermal response number (TRN, calculated by daily total net radiation divided by daily temperature range) of 163 sites including mature forest, disturbed forest, planted forest, shrubland, grassland, savanna vegetation and cropland. TRN generally increased with latitude, however the regression of TRN against latitude differed among vegetation types. Mature forests are superior as thermal buffers, and had significantly higher TRN than disturbed and planted forests. There was a clear boundary between TRN of forest and non-forest vegetation (i.e. grassland and savanna) with the exception of shrubland, whose TRN overlapped with that of forest vegetation. We propose to use the TRN of local mature forest as the optimal TRN (TRN opt ). A forest with lower than 75% of TRN opt was identified as subjected to significant disturbance, and forests with 66% of TRN opt was the threshold for deforestation within the absolute latitude from 30° to 55°. Our results emphasized the irreplaceable thermal buffer capacity of mature forest. TRN can be used for early warning of deforestation and degradation risk. It is therefore a valuable tool in the effort to protect forests and prevent deforestation. Copyright © 2017 Elsevier B.V. All rights reserved.
Forest habitat types of central Idaho
Robert Steele; Robert D. Pfister; Russell A. Ryker; Jay A. Kittams
1981-01-01
A land-classification system based upon potential natural vegetation is presented for the forests of central Idaho. It is based on reconnaissance sampling of about 800 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. A total of eight climax series, 64 habitat types, and 55 additional phases of habitat types...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Feng R.; Meng, Ran; Huang, Chengquan
Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. Here in this study, the LTSS-VCT approach was applied to examine long-term (up to 24more » years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of ~80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. Lastly, with the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S.« less
Zhao, Feng R.; Meng, Ran; Huang, Chengquan; ...
2016-10-29
Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. Here in this study, the LTSS-VCT approach was applied to examine long-term (up to 24more » years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of ~80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. Lastly, with the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S.« less
Impacts of forest restoration on water yield: A systematic review
Filoso, Solange; Bezerra, Maíra Ometto; Weiss, Katherine C. B.; Palmer, Margaret A.
2017-01-01
Background Enhancing water provision services is a common target in forest restoration projects worldwide due to growing concerns over freshwater scarcity. However, whether or not forest cover expansion or restoration can improve water provision services is still unclear and highly disputed. Purpose The goal of this review is to provide a balanced and impartial assessment of the impacts of forest restoration and forest cover expansion on water yields as informed by the scientific literature. Potential sources of bias on the results of papers published are also examined. Data sources English, Spanish and Portuguese peer-review articles in Agricola, CAB Abstracts, ISI Web of Science, JSTOR, Google Scholar, and SciELO. Databases were searched through 2015. Search terms Intervention terms included forest restoration, regeneration/regrowth, forest second-growth, forestation/afforestation, and forestry. Target terms included water yield/quantity, streamflow, discharge, channel runoff, and annual flow. Study selection and eligibility criteria Articles were pre-selected based on key words in the title, abstract or text. Eligible articles addressed relevant interventions and targets and included quantitative information. Results Most studies reported decreases in water yields following the intervention, while other hydrological benefits have been observed. However, relatively few studies focused specifically on forest restoration, especially with native species, and/or on projects done at large spatial or temporal scales. Information is especially limited for the humid tropics and subtropics. Conclusions and implications of key findings While most studies reported a decrease in water yields, meta-analyses from a sub-set of studies suggest the potential influence of temporal and/or spatial scales on the outcomes of forest cover expansion or restoration projects. Given the many other benefits of forest restoration, improving our understanding of when and why forest restoration can lead to recovery of water yields is crucial to help improve positive outcomes and prevent unintended consequences. Our study identifies the critical types of studies and associated measurements needed. PMID:28817639
Ren, Xinyu; Lv, Yingying; Li, Mingshi
2017-03-01
Changes in forest ecosystem structure and functions are considered some of the research issues in landscape ecology. In this study, advancing Forman's theory, we considered five spatially explicit processes associated with fragmentation, including perforation, dissection, subdivision, shrinkage, and attrition, and two processes associated with restoration, i.e., increment and expansion processes. Following this theory, a forest fragmentation and restoration process model that can detect the spatially explicit processes and ecological consequences of forest landscape change was developed and tested in the current analysis. Using the National Land Cover Databases (2001, 2006 and 2011), the forest fragmentation and restoration process model was applied to US western natural forests and southeastern plantation forests to quantify and classify forest patch losses into one of the four fragmentation processes (the dissection process was merged into the subdivision process) and to classify the newly gained forest patches based on the two restoration processes. At the same time, the spatio-temporal differences in fragmentation and restoration patterns and trends between natural forests and plantations were further compared. Then, through overlaying the forest fragmentation/restoration processes maps with targeting year land cover data and land ownership vectors, the results from forest fragmentation and the contributors to forest restoration in federal and nonfederal lands were identified. Results showed that, in natural forests, the forest change patches concentrated around the urban/forest, cultivated/forest, and shrubland/forest interfaces, while the patterns of plantation change patches were scattered sparsely and irregularly. The shrinkage process was the most common type in forest fragmentation, and the average size was the smallest. Expansion, the most common restoration process, was observed in both natural forests and plantations and often occurred around the previous expansion or covered the previous subdivision or shrinkage processes. The overall temporal fragmentation pattern of natural forests had a "perforation-subdivision/shrinkage-attrition" pathway, which corresponded to Forman's landscape fragmentation rule, while the plantation forests did not follow the rule strictly. The main land cover types resulted from forest fragmentation in natural forests and plantation forests were shrubland and herbaceous, mainly through subdivision and shrinkages process. The processes and effects of restoration of plantation forests were more diverse and efficient, compared to the natural forest, which were simpler with a lower regrowth rate. The fragmentation mostly occurred in nonfederal lands. In natural forests, forest fragmentation pattern differed in different land tenures, yet plantations remained the same in federal and nonfederal lands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stoleson, Scott H.; King, D.I.; Tomosy, M.
2011-01-01
Since 1908, U.S. Forest Service Experimental Forests and Ranges have been dedicated to long-term interdisciplinary research on a variety of ecological and management questions. They encompass a wide diversity of life zones and ecoregions, and provide access to research infrastructure, opportunities for controlled manipulations, and integration with other types of long-term data. These features have facilitated important advances in a number of areas of avian research, including furthering our understanding of population dynamics, the effects of forest management on birds, avian responses to disturbances such as fire and hurricanes, and other aspects of avian ecology and conservation. However, despite these contributions, this invaluable resource has been underutilized by ornithologists. Most of the Experimental Forests and Ranges have had no ornithological work done on them. We encourage the ornithological community, especially graduate students and new faculty, to take advantage of this largely untapped potential for long-term work, linkage with long-term data sets, multiple disciplines, and active forest management. ?? 2010 Elsevier B.V.
Nebraska's Forest Resources in 2005
Dacia M. Meneguzzo; Gary J. Brand; William R. Lovett
2007-01-01
Results of the 2005 annual inventory of Nebraska show an estimated 1.24 million acres of forest land. Softwoods comprise one-third of this forested area, with ponderosa pine being the primary component by acreage and volume. Hardwoods comprise more than half (58 percent) of all forested acreage. Overall, the elm/ash/cottonwood type is the predominant forest-type group...
Indiana's forest resources in 2002.
W. Keith Moser; Gary J. Brand; Philip T. Marshall; Joey Gallion
2004-01-01
Results of the 2002 annual inventory of Indiana show 4.5 million acres of forest land. The oak-hickory type is the largest forest type on the landscape, making up over 46.5 percent of all forested land. Softwoods (or "conifers") comprise approximately 2.5 percent of Indiana''s forested acreage. Between 1998 and 1999-2002, the net volume of all live...
North Carolina’s forests, 2013
Mark J. Brown; James T. Vogt
2015-01-01
The principal findings from five panels of the ninth forest survey of North Carolina are presented. In 2013, forests covered 18.6 million acres of the State, of which 17.9 million were classified as timberland. Oak-hickory was the most common forest-type group and covered 7.0 million acres of the timberland. The second most common forest-type group was...
Christopher M. Oswalt; Sonja N. Oswalt; Tony G. Johnson; James L. Chamberlain; KaDonna C. Randolph; John W. Coulston
2009-01-01
Forest land area in Tennessee amounted to 13.78 million acres. About 125 different species, mostly hardwood, account for an estimated 22.6 billion cubic feet of all growing-stock volume on timberland in the State. Hardwood forest types occupy the vast majority of the State's forest land, and oak-hickory is the dominant forest-type group, accounting for about 10.1...
Evaluation of open source data mining software packages
Bonnie Ruefenacht; Greg Liknes; Andrew J. Lister; Haans Fisk; Dan Wendt
2009-01-01
Since 2001, the USDA Forest Service (USFS) has used classification and regression-tree technology to map USFS Forest Inventory and Analysis (FIA) biomass, forest type, forest type groups, and National Forest vegetation. This prior work used Cubist/See5 software for the analyses. The objective of this project, sponsored by the Remote Sensing Steering Committee (RSSC),...
Peng, Wei; Dong, Li Hu; Li, Feng Ri
2016-12-01
Based on the biomass investigation data of main forest types in the east of Daxing'an Mountains, the additive biomass models of 3 main tree species were developed and the changes of carbon storage and allocation of forest community of tree layer, shrub layer, herb layer and litter layer from different forest types were discussed. The results showed that the carbon storage of tree layer, shrub layer, herb layer and litter layer for Rhododendron dauricum-Larix gmelinii forest was 71.00, 0.34, 0.05 and 11.97 t·hm -2 , respectively. Similarly, the carbon storage of the four layers of Ledum palustre-L. gmelinii forest was 47.82, 0.88, 0, 5.04 t·hm -2 , 56.56, 0.44, 0.04, 8.72 t·hm -2 for R. dauricum-mixed forest of L. gmelinii-Betula platyphylla, 46.21, 0.66, 0.07, 6.16 t·hm -2 for L. palustre-mixed forest of L. gmelinii-B. platyphylla, 40.90, 1.37, 0.04, 3.67 t·hm -2 for R. dauricum-B. platyphylla forest, 36.28, 1.12, 0.18, 4.35 t·hm -2 for L. palustre-B. platyphylla forest. The carbon storage of forest community for the understory vegetation of R. dauricum was higher than that of the forest with L. palustre. In the condition of similar circumstances for the understory, the order of carbon storage for forest community was L. gmelinii forest > the mixed forest of L. gmelinii-B. platyphylla > B. platyphylla forest. The carbon storage of different forest types was different with the order of R. dauricum-L. gmelinii forest (83.36 t·hm -2 )> R. dauricum-mixed forest of L. gmelinii-B. platyphylla (65.76 t·hm -2 ) > L. palustre-L. gmelinii forest (53.74 t·hm -2 )> L. palustre-mixed forest of L. gmelinii-B. platyphylla (53.10 t·hm -2 )> R. dauricum-B. platyphylla forest (45.98 t·hm -2 ) > L. palustre-B. platyphylla forest (41.93 t·hm -2 ). The order of carbon storage for the vertical distribution in forest communities with diffe-rent forest types was the tree layer (85.2%-89.0%) > litter layer (8.0%-14.4%) > shrub layer (0.4%-2.7%) > herb layer (0-0.4%).
Bieber, Ana Gabriela D.; Silva, Paulo S. D.; Sendoya, Sebastián F.; Oliveira, Paulo S.
2014-01-01
Ants frequently interact with fleshy fruits on the ground of tropical forests. This interaction is regarded as mutualistic because seeds benefit from enhanced germination and dispersal to nutrient-rich microsites, whereas ants benefit from consuming the nutritious pulp/aril. Considering that the process of deforestation affects many attributes of the ecosystem such as species abundance and composition, and interspecific interactions, we asked whether the interaction between ants and fallen fleshy fruits in the Brazilian Atlantic forest differs between human-created fragments and undisturbed forests. We controlled diaspore type and quantity by using synthetic fruits (a plastic ‘seed’ covered by a lipid-rich ‘pulp’), which were comparable to lipid-rich fruits. Eight independent areas (four undisturbed forests, and four disturbed forest fragments) were used in the field experiment, in which we recorded the attracted ant species, ant behaviour, and fruit removal distance. Fruits in undisturbed forest sites attracted a higher number of species than those in disturbed forests. Moreover, the occurrence of large, fruit-carrying ponerine ants (Pachycondyla, Odontomachus; 1.1 to 1.4 cm) was higher in undisturbed forests. Large species (≥3 mm) of Pheidole (Myrmicinae), also able to remove fruits, did not differ between forest types. Following these changes in species occurrence, fruit displacement was more frequent in undisturbed than in disturbed forests. Moreover, displacement distances were also greater in the undisturbed forests. Our data suggest that fallen fleshy fruits interacting with ants face different fates depending on the conservation status of the forest. Together with the severe loss of their primary dispersers in human-disturbed tropical forest sites, vertebrate-dispersed fruits may also be deprived of potential ant-derived benefits in these habitats due to shifts in the composition of interacting ant species. Our data illustrate the use of synthetic fruits to better understand the ecology of ant-fruit interactions in variable ecological settings, including human-disturbed landscapes. PMID:24587341
Bieber, Ana Gabriela D; Silva, Paulo S D; Sendoya, Sebastián F; Oliveira, Paulo S
2014-01-01
Ants frequently interact with fleshy fruits on the ground of tropical forests. This interaction is regarded as mutualistic because seeds benefit from enhanced germination and dispersal to nutrient-rich microsites, whereas ants benefit from consuming the nutritious pulp/aril. Considering that the process of deforestation affects many attributes of the ecosystem such as species abundance and composition, and interspecific interactions, we asked whether the interaction between ants and fallen fleshy fruits in the Brazilian Atlantic forest differs between human-created fragments and undisturbed forests. We controlled diaspore type and quantity by using synthetic fruits (a plastic 'seed' covered by a lipid-rich 'pulp'), which were comparable to lipid-rich fruits. Eight independent areas (four undisturbed forests, and four disturbed forest fragments) were used in the field experiment, in which we recorded the attracted ant species, ant behaviour, and fruit removal distance. Fruits in undisturbed forest sites attracted a higher number of species than those in disturbed forests. Moreover, the occurrence of large, fruit-carrying ponerine ants (Pachycondyla, Odontomachus; 1.1 to 1.4 cm) was higher in undisturbed forests. Large species (≥3 mm) of Pheidole (Myrmicinae), also able to remove fruits, did not differ between forest types. Following these changes in species occurrence, fruit displacement was more frequent in undisturbed than in disturbed forests. Moreover, displacement distances were also greater in the undisturbed forests. Our data suggest that fallen fleshy fruits interacting with ants face different fates depending on the conservation status of the forest. Together with the severe loss of their primary dispersers in human-disturbed tropical forest sites, vertebrate-dispersed fruits may also be deprived of potential ant-derived benefits in these habitats due to shifts in the composition of interacting ant species. Our data illustrate the use of synthetic fruits to better understand the ecology of ant-fruit interactions in variable ecological settings, including human-disturbed landscapes.
Acácio, Vanda; Dias, Filipe S; Catry, Filipe X; Rocha, Marta; Moreira, Francisco
2017-03-01
The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dynamics and species-specific responses to multiple drivers. We compared the long-term (1966-2006) forest persistence and land cover change among evergreen (cork oak and holm oak) and deciduous oak forests and evaluated the importance of anthropogenic and environmental drivers on observed changes for Portugal. We used National Forest Inventories to quantify the changes in oak forests and explored the drivers of change using multinomial logistic regression analysis and an information theoretical approach. We found distinct trends among oak forest types, reflecting the differences in oak economic value, protection status and management schemes: cork oak forests were the most persistent (62%), changing mostly to pines and eucalypt; holm oak forests were less persistent (53.2%), changing mostly to agriculture; and deciduous oak forests were the least persistent (45.7%), changing mostly to shrublands. Drivers of change had distinct importance across oak forest types, but drivers from anthropogenic origin (wildfires, population density, and land accessibility) were always among the most important. Climatic extremes were also important predictors of oak forest changes, namely extreme temperatures for evergreen oak forests and deficit of precipitation for deciduous oak forests. Our results indicate that under increasing human pressure and forecasted climate change, evergreen oak forests will continue declining and deciduous oak forests will be replaced by forests dominated by more xeric species. In the long run, multiple disturbances may change competitive dominance from oak forests to pyrophytic shrublands. A better understanding of forest dynamics and the inclusion of anthropogenic drivers on models of vegetation change will improve predicting the future of Mediterranean oak forests. © 2016 John Wiley & Sons Ltd.
Factors influencing leaf litter decomposition: An intersite decomposition experiment across China
Zhou, G.; Guan, L.; Wei, X.; Tang, X.; Liu, S.; Liu, J.; Zhang, Dongxiao; Yan, J.
2008-01-01
The Long-Term Intersite Decomposition Experiment in China (hereafter referred to as LTIDE-China) was established in 2002 to study how substrate quality and macroclimate factors affect leaf litter decomposition. The LTIDE-China includes a wide variety of natural and managed ecosystems, consisting of 12 forest types (eight regional broadleaf forests, three needle-leaf plantations and one broadleaf plantation) at eight locations across China. Samples of mixed leaf litter from the south subtropical evergreen broadleaf forest in Dinghushan (referred to as the DHS sample) were translocated to all 12 forest types. The leaf litter from each of other 11 forest types was placed in its original forest to enable comparison of decomposition rates of DHS and local litters. The experiment lasted for 30 months, involving collection of litterbags from each site every 3 months. Our results show that annual decomposition rate-constants, as represented by regression fitted k-values, ranged from 0.169 to 1.454/year. Climatic factors control the decomposition rate, in which mean annual temperature and annual actual evapotranspiration are dominant and mean annual precipitation is subordinate. Initial C/N and N/P ratios were demonstrated to be important factors of regulating litter decomposition rate. Decomposition process may apparently be divided into two phases controlled by different factors. In our study, 0.75 years is believed to be the dividing line of the two phases. The fact that decomposition rates of DHS litters were slower than those of local litters may have been resulted from the acclimation of local decomposer communities to extraneous substrate. ?? 2008 Springer Science+Business Media B.V.
How does forest disturbance and succession affect summer streamflow recession?
NASA Astrophysics Data System (ADS)
Brena, A.; Stahl, K.; Weiler, M.
2011-12-01
Streamflow recession is a main signature of catchment behavior during dry conditions. The storage-discharge relationship of every catchment reflects the aquifer properties and land surface processes including evapotranspiration rates. Commonly, the storage-discharge relationship in watersheds is analyzed through the recession limb of the hydrograph, which generally follows a nonlinear pattern. It is, however, unknown how forest disturbance and succession may modify the degree of nonlinearity of baseflow recession and the magnitude of baseflow. The presented study analyzes and characterizes streamflow recession during summer before and after forest disturbance using data from six experimental paired-watersheds with controlled forest disturbances across different climatic regions and ecozones of the USA. Characteristic non-linear recession parameters were fitted by a Monte Carlo resampling method. No systematic relationship was found between annual precipitation, drainage area, mean elevation, and recession characteristics. However, higher storage rates and low flows across the sites were detected following forest disturbance. Exceptions are the snow-dominated watersheds and changes appear to be stronger in watersheds with deciduous forests. The results are however dependent on the method of recession limb selection, including start level and time. Further research is needed over a wide range of forest sites and according to the type of disturbance (e.g. fire, disease), which may ultimately define the dynamics of forest succession and therefore the streamflow recession behavior.
Fire ecology of the forest habitat types of eastern Idaho and western Wyoming
Anne F. Bradley; William C. Fischer; Nonan V. Noste
1992-01-01
Provides information on fire as an ecological factor in the forest habitat types occurring in eastern Idaho and western Wyoming. Identifies Fire Groups based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.
Characteristics of Forests in Western Sayani Mountains, Siberia from SAR Data
NASA Technical Reports Server (NTRS)
Ranson, K. Jon; Sun, Guoqing; Kharuk, V. I.; Kovacs, Katalin
1998-01-01
This paper investigated the possibility of using spaceborne radar data to map forest types and logging in the mountainous Western Sayani area in Siberia. L and C band HH, HV, and VV polarized images from the Shuttle Imaging Radar-C instrument were used in the study. Techniques to reduce topographic effects in the radar images were investigated. These included radiometric correction using illumination angle inferred from a digital elevation model, and reducing apparent effects of topography through band ratios. Forest classification was performed after terrain correction utilizing typical supervised techniques and principal component analyses. An ancillary data set of local elevations was also used to improve the forest classification. Map accuracy for each technique was estimated for training sites based on Russian forestry maps, satellite imagery and field measurements. The results indicate that it is necessary to correct for topography when attempting to classify forests in mountainous terrain. Radiometric correction based on a DEM (Digital Elevation Model) improved classification results but required reducing the SAR (Synthetic Aperture Radar) resolution to match the DEM. Using ratios of SAR channels that include cross-polarization improved classification and
Information about old growth for selected forest type groups in the eastern United States.
Lucy E. Tyrrell; Gregory J. Nowacki; David S. Buckley; Elizabeth A. Nauertz; Jeffrey N. Niese; Jeanette L. Rollinger; John C. Zasada; John C. Zasada
1998-01-01
Compiles information about old-growth attributes for nine forest type groups that occur in the eastern United States. A range of values for each old-growth attribute for each forest type is summarized regionally from published and unpublished sources.
Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason
2015-01-01
The availability of land cover data at local scales is an important component in forest management and monitoring efforts. Regional land cover data seldom provide detailed information needed to support local management needs. Here we present a transferable framework to model forest cover by major plant functional type using aerial photos, multi-date Système Pour l’Observation de la Terre (SPOT) imagery, and topographic variables. We developed probability of occurrence models for deciduous broad-leaved forest and needle-leaved evergreen forest using logistic regression in the southern portion of the Wyoming Basin Ecoregion. The model outputs were combined into a synthesis map depicting deciduous and coniferous forest cover type. We evaluated the models and synthesis map using a field-validated, independent data source. Results showed strong relationships between forest cover and model variables, and the synthesis map was accurate with an overall correct classification rate of 0.87 and Cohen’s kappa value of 0.81. The results suggest our method adequately captures the functional type, size, and distribution pattern of forest cover in a spatially heterogeneous landscape.
Forest habitat types of eastern Idaho-western Wyoming
Robert Steele; Stephen V. Cooper; David M. Ondov; David W. Roberts; Robert D. Pfister
1983-01-01
A land-classification system based upon potential natural vegetation is presented for the forests of central Idaho. It is based on reconnaissance sampling of about 980 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. A total of six climax series, 58 habitat types, and 24 additional phases of habitat types are...
Fauna using nest boxes in four timber types in eastern Texas
Richard N. Conner; Daniel Saenz; D. Craig Rudolph
1995-01-01
Occupancy of 240 nest boxes in pure pine, pine-hardwood, upland hardwood, and bottomland hardwood forests (60 boxes in each forest type) were monitored for six years on the Stephen F. Austin Experimental Forest, Nacogdoches County in eastern Texas. Three boxes were placed at twenty sites in each forest type. Initially, each site had a box with 3.2, 4.7, or 5.7 cm...
BARBARA A. RICHARDSON; MICHAEL J. RICHARDSON; FELIPE N. SOTO-ADAMES
2005-01-01
1. The primary effects of climatic conditions on invertebrate litter communities, and the secondary effects of different forest types, were distinguished by using the sierra palm as a control in a natural experiment along an elevational gradient in the Luquillo Mountains. These mountains have three well-defined forest types along the gradient, with the palm occurring...
J. D. Shaw; J. N. Long; M. T. Thompson; R. J. DeRose
2010-01-01
A complex of drought, insects, and disease is causing widespread mortality in multiple forest types across western North America. These forest types range from dry Pinus-Juniperus woodlands to moist, montane Picea-Abies forests. Although large-scale mortality events are known from the past and considered part of natural cycles, recent events have largely been...
NASA Astrophysics Data System (ADS)
Milodowski, D. T.; Mitchard, E. T. A.; Williams, M.
2017-09-01
Accurate, consistent reporting of changing forest area, stratified by forest type, is required for all countries under their commitments to the Paris Agreement (UNFCCC 2015 Adoption of the Paris Agreement (Paris: UNFCCC)). Such change reporting may directly impact on payments through comparisons to national Reference (Emissions) Levels under the Reducing Emissions from Deforestation and forest Degradation (REDD+) framework. The emergence of global, satellite-based forest monitoring systems, including Global Forest Watch (GFW) and FORMA, have great potential in aiding this endeavour. However, the accuracy of these systems has been questioned and their uncertainties are poorly constrained, both in terms of the spatial extent of forest loss and timing of change. Here, using annual time series of 5 m optical imagery at two sites in the Brazilian Amazon, we demonstrate that GFW more accurately detects forest loss than the coarser-resolution FORMA or Brazil’s national-level PRODES product, though all underestimate the rate of loss. We conclude GFW provides robust indicators of forest loss, at least for larger-scale forest change, but under-predicts losses driven by small-scale disturbances (< 2 ha), even though these are much larger than its minimum mapping unit (0.09 ha).
NASA Astrophysics Data System (ADS)
Milodowski, D. T.; Mitchard, E. T. A.; Williams, M.
2016-09-01
Accurate, consistent reporting of changing forest area, stratified by forest type, is required for all countries under their commitments to the Paris Agreement (UNFCCC 2015 Adoption of the Paris Agreement (Paris: UNFCCC)). Such change reporting may directly impact on payments through comparisons to national Reference (Emissions) Levels under the Reducing Emissions from Deforestation and forest Degradation (REDD+) framework. The emergence of global, satellite-based forest monitoring systems, including Global Forest Watch (GFW) and FORMA, have great potential in aiding this endeavour. However, the accuracy of these systems has been questioned and their uncertainties are poorly constrained, both in terms of the spatial extent of forest loss and timing of change. Here, using annual time series of 5 m optical imagery at two sites in the Brazilian Amazon, we demonstrate that GFW more accurately detects forest loss than the coarser-resolution FORMA or Brazil’s national-level PRODES product, though all underestimate the rate of loss. We conclude GFW provides robust indicators of forest loss, at least for larger-scale forest change, but under-predicts losses driven by small-scale disturbances (< 2 ha), even though these are much larger than its minimum mapping unit (0.09 ha).
Kansas's forest resources in 2002
W. Keith Moser; Robert L. Atchison; Gary J. Brand
2004-01-01
Results of the 2002 annual inventory of Kansas shows an estimated 2.2 million acres of forest land. The oak-hickory type is the most widespread forest type on the landscape, covering over 45.4 percent of all forested land. Softwoods make up approximately 6.4 percent of Kansas's forested acreage. In 2001-2002, the net volume of all live trees and salvable dead...
What does it take to get family forest owners to enroll in a forest stewardship-type program?
Michael A. Kilgore; Stephanie A. Snyder; Joseph Schertz; Steven J. Taff
2008-01-01
We estimated the probability of enrollment and factors influencing participation in a forest stewardship-type program, Minnesota's Sustainable Forest Incentives Act, using data from a mail survey of over 1000 randomly-selected Minnesota family forest owners. Of the 15 variables tested, only five were significant predictors of a landowner's interest in...
A preview of West Virginia's forest resource
Joseph E. Barnard; Teresa M. Bowers
1977-01-01
Forest land occupies 75 percent of the total land area of West Virginia. Sixty percent of the forest land is classified in the oak-hickory forest type and only 6 percent in all the softwood forest types. Since 1961, growing-stock volume increased 24 percent. Yellow-poplar increased 39 percent in volume and is now the prevalent species in the State.
North Carolina’s forests, 2007
Mark J. Brown; Barry D. New; Tony G. Johnson; James L. Chamberlain
2014-01-01
The principal findings of the eighth forest survey of North Carolina are presented. In 2007, forests covered 18.6 million acres of the State, of which 18.1 million were classified as timberland. Oak-hickory was the most common forest-type group and covered 7.3 million acres of the timberland. The second most common forest-type group was loblolly-shortleaf pine, which...
Quantification of soil respiration in forest ecosystems across China
NASA Astrophysics Data System (ADS)
Song, Xinzhang; Peng, Changhui; Zhao, Zhengyong; Zhang, Zhiting; Guo, Baohua; Wang, Weifeng; Jiang, Hong; Zhu, Qiuan
2014-09-01
We collected 139 estimates of the annual forest soil CO2 flux and 173 estimates of the Q10 value (the temperature sensitivity) assembled from 90 published studies across Chinese forest ecosystems. We analyzed the annual soil respiration (Rs) rates and the temperature sensitivities of seven forest ecosystems, including evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), broadleaf and needleleaf mixed forests (BNMF), evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), bamboo forests (BF) and shrubs (SF). The results showed that the mean annual Rs rate was 33.65 t CO2 ha-1 year-1 across Chinese forest ecosystems. Rs rates were significantly different (P < 0.001) among the seven forest types, and were significantly and positively influenced by mean annual temperature (MAT), mean annual precipitation (MAP), and actual evapotranspiration (AET); but negatively affected by latitude and elevation. The mean Q10 value of 1.28 was lower than the world average (1.4-2.0). The Q10 values derived from the soil temperature at a depth of 5 cm varied among forest ecosystems by an average of 2.46 and significantly decreased with the MAT but increased with elevation and latitude. Moreover, our results suggested that an artificial neural network (ANN) model can effectively predict Rs across Chinese forest ecosystems. This study contributes to better understanding of Rs across Chinese forest ecosystems and their possible responses to global warming.
Jacobs, Jenna M.; Bergeron, J. A. Colin
2017-01-01
Abstract Quedius (Raphirus) spencei Jacobs and Bergeron, new species, (Coleoptera: Staphylinidae), is described based on specimens from two localities (type locality: 35 km. E Dixonville, Alberta, Canada) in the Boreal Forest. Male genitalia are illustrated, compared with congeners (Q. rusticus Smetana and Q. simulator Smetana) in the Aenescens species group, and included in a slightly modified key to the species of Quedius. PMID:28769643
Biology, ecology, and economics at play: land use and land cover changes in the 21st century.
Sally Duncan
2003-01-01
In making choices about how to manage the countryâs wealth of forest land, stakeholders including U.S. taxpayersâhave many choices, all of them with ripple effects that extend far beyond the immediate stands of trees. In the Pacific Northwest, as elsewhere, biophysical, ecological, and socioeconomic factors combine to influence the areas of forest cover types and their...
Effects of biotic disturbances on forest carbon cycling in the United States and Canada
Vogelmann, James E.; Allen, Craig D.; Hicke, Jeffrey A.; Desai, Ankur R.; Dietze, Michael C.; Hall, Ronald J.; ,
2012-01-01
Forest insects and pathogens are major disturbance agents that have affected millions of hectares in North America in recent decades, implying significant impacts to the carbon (C) cycle. Here, we review and synthesize published studies of the effects of biotic disturbances on forest C cycling in the United States and Canada. Primary productivity in stands was reduced, sometimes considerably, immediately following insect or pathogen attack. After repeated growth reductions caused by some insects or pathogens or a single infestation by some bark beetle species, tree mortality occurred, altering productivity and decomposition. In the years following disturbance, primary productivity in some cases increased rapidly as a result of enhanced growth by surviving vegetation, and in other cases increased slowly because of lower forest regrowth. In the decades following tree mortality, decomposition increased as a result of the large amount of dead organic matter. Net ecosystem productivity decreased immediately following attack, with some studies reporting a switch to a C source to the atmosphere, and increased afterward as the forest regrew and dead organic matter decomposed. Large variability in C cycle responses arose from several factors, including type of insect or pathogen, time since disturbance, number of trees affected, and capacity of remaining vegetation to increase growth rates following outbreak. We identified significant knowledge gaps, including limited understanding of carbon cycle impacts among different biotic disturbance types (particularly pathogens), their impacts at landscape and regional scales, and limited capacity to predict disturbance events and their consequences for carbon cycling. We conclude that biotic disturbances can have major impacts on forest C stocks and fluxes and can be large enough to affect regional C cycling. However, additional research is needed to reduce the uncertainties associated with quantifying biotic disturbance effects on the North American C budget.
Richness and Abundance of Ichneumonidae in a Fragmented Tropical Rain Forest.
Ruiz-Guerra, B; Hanson, P; Guevara, R; Dirzo, R
2013-10-01
Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September-October) and rainy (March-April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes.
NASA Technical Reports Server (NTRS)
Pope, Kevin; Masuoka, Penny; Rejmankova, Eliska; Grieco, John; Johnson, Sarah; Roberts, Donald
2004-01-01
The distribution of Anopheles mosquito habitats and land use in northern Belize is examined with satellite data. -A land cover classification based on multispectral SPOT and multitemporal Radarsat images identified eleven land cover classes, including agricultural, forest, and marsh types. Two of the land cover types, Typha domingensis marsh and flooded forest, are Anopheles vestitipennis larval habitats. Eleocharis spp. marsh is the larval habitat for Anopheles albimanus. Geographic Information Systems (GIS) analyses of land cover demonstrate that the amount of T-ha domingensis in a marsh is positively correlated with the amount of agricultural land in the adjacent upland, and negatively correlated with the amount of adjacent forest. This finding is consistent with the hypothesis that nutrient (phosphorus) runoff from agricultural lands is causing an expansion of Typha domingensis in northern Belize. This expansion of Anopheles vestitipennis larval habitat may in turn cause an increase in malaria risk in the region.
NASA Astrophysics Data System (ADS)
Wasser, L. A.; Chasmer, L. E.
2012-12-01
Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse types. Results suggest that 1) the spatial configuration of riparian forests has a strong influence on forest structure compared to a weaker association with adjacent landuse type 2) developed landuse types are often associated with increased understory vegetation density 3) that riparian vegetation canopy cover is dense regardless of corridor width or adjacent landuse type and 4) the degree to which edge effects propagate into the buffer corridor is most influenced by corridor width. The study further demonstrates the utility of automated algorithms that sample lidar data in watershed-wide ecological analysis. Results suggest that landuse regulations should encourage wider buffers which will in turn support a greater range of ecosystem services including improved wildlife habitat, stream shading and detrital inputs.
Forest cover type analysis of New England forests using innovative WorldView-2 imagery
NASA Astrophysics Data System (ADS)
Kovacs, Jenna M.
For many years, remote sensing has been used to generate land cover type maps to create a visual representation of what is occurring on the ground. One significant use of remote sensing is the identification of forest cover types. New England forests are notorious for their especially complex forest structure and as a result have been, and continue to be, a challenge when classifying forest cover types. To most accurately depict forest cover types occurring on the ground, it is essential to utilize image data that have a suitable combination of both spectral and spatial resolution. The WorldView-2 (WV2) commercial satellite, launched in 2009, is the first of its kind, having both high spectral and spatial resolutions. WV2 records eight bands of multispectral imagery, four more than the usual high spatial resolution sensors, and has a pixel size of 1.85 meters at the nadir. These additional bands have the potential to improve classification detail and classification accuracy of forest cover type maps. For this reason, WV2 imagery was utilized on its own, and in combination with Landsat 5 TM (LS5) multispectral imagery, to evaluate whether these image data could more accurately classify forest cover types. In keeping with recent developments in image analysis, an Object-Based Image Analysis (OBIA) approach was used to segment images of Pawtuckaway State Park and nearby private lands, an area representative of the typical complex forest structure found in the New England region. A Classification and Regression Tree (CART) analysis was then used to classify image segments at two levels of classification detail. Accuracies for each forest cover type map produced were generated using traditional and area-based error matrices, and additional standard accuracy measures (i.e., KAPPA) were generated. The results from this study show that there is value in analyzing imagery with both high spectral and spatial resolutions, and that WV2's new and innovative bands can be useful for the classification of complex forest structures.
Valverde-Barrantes, Oscar J; Smemo, Kurt A; Feinstein, Larry M; Kershner, Mark W; Blackwood, Christopher B
2018-03-01
Functional differences between trees with arbuscular (AM) or ectomycorrhizal (ECM) partnerships influence important ecological processes including nutrient cycling, community assembly, and biomass allocation patterns. Although most broadleaf temperate forests show both mycorrhizal types, relatively few studies have addressed functional difference among coexisting mycorrhizal tree species. The maintenance of ECM associations usually requires higher C investment than AM, leading to (A) lower root biomass and (B) more conservative root trait syndromes in ECM tree species compared to AM species. Here we quantified the representation and trait syndromes of 14 canopy tree species associated with either AM or ECM fungi in a natural forest community. Our results showed that, whereas species root abundance was proportional to basal area, some ECM tree roots were largely under-represented (up to ~ 33%). Most of the under-representation was due to lower than expected root abundance of Quercus rubra and Fagus grandifolia. Functional root traits in tree species were similar, with the exception of higher tissue density in ECM species. Moreover, closely related AM and ECM exhibited similar traits, suggesting inherited trait syndrome from a common ancestor. Thus, we found little evidence of divergent functional root trait syndromes between mycorrhizal types. Cores dominated by ECM species influenced trait distribution at the community level, but not total biomass, suggesting that mycorrhizal affiliation may have a stronger effect on the spatial distribution of traits but not on biomass stocks. Our results present an important step toward relating belowground carbon dynamics to species traits, including mycorrhizal type, in broadleaf temperate forests.
Prediction of periodic basal area increment for young-growth mixed conifers in sierra Nevada
Leroy K. Dolph
1988-01-01
Mixed-conifer forests are the largest vegetation type in California, covering more than 13 million acres (Barbour and Major 1977). This type, the Sierra Nevada Mixed Conifer (Society of American Foresters Forest cover type 243, Tappeiner 1980) dominates mid-elevations of the Sierra Nevada's western slopes. The extent of the mixed-conifer type and the amount of...
Ignition potential of muzzle-loading firearms: An exploratory investigation
David V. Haston; Mark A. Finney; Andy Horcher; Philip A. Yates; Kahlil Detrich
2009-01-01
The National Technology and Development Program of the Forest Service, U.S. Department of Agriculture, was asked to conduct an exploratory study on the ignition potential of muzzle-loading firearms. The five independent variables investigated include projectile type, powder type, powder load, patch thickness, and patch lubricant treatment. Indoor testing was performed...
Carbon stocks of trees killed by bark beetles and wildfire in the western United States
Hicke, Jeffrey A.; Meddens, Arjan J.H.; Allen, Craig D.; Kolden, Crystal A.
2013-01-01
Forests are major components of the carbon cycle, and disturbances are important influences of forest carbon. Our objective was to contribute to the understanding of forest carbon cycling by quantifying the amount of carbon in trees killed by two disturbance types, fires and bark beetles, in the western United States in recent decades. We combined existing spatial data sets of forest biomass, burn severity, and beetle-caused tree mortality to estimate the amount of aboveground and belowground carbon in killed trees across the region. We found that during 1984-2010, fires killed trees that contained 5-11 Tg C year-1 and during 1997-2010, beetles killed trees that contained 2-24 Tg C year-1, with more trees killed since 2000 than in earlier periods. Over their periods of record, amounts of carbon in trees killed by fires and by beetle outbreaks were similar, and together these disturbances killed trees representing 9% of the total tree carbon in western forests, a similar amount to harvesting. Fires killed more trees in lower-elevation forest types such as Douglas-fir than higher-elevation forest types, whereas bark beetle outbreaks also killed trees in higher-elevation forest types such as lodgepole pine and Engelmann spruce. Over 15% of the carbon in lodgepole pine and spruce/fir forest types was in trees killed by beetle outbreaks; other forest types had 5-10% of the carbon in killed trees. Our results document the importance of these natural disturbances in the carbon budget of the western United States.
Reliability of the Forest Service type rain gage
G. L. Hayes
1942-01-01
The Forest Service type rain-gage was originated by W. B. Osborne of the Portland, Oreg., office of the U. S. Forest Service to meet a need for reliable rainfall measurements at low cost. Many hundreds of them, over 700 on the national forests of northern Idaho and western Montana alone, are now being used during the summer months as aids to forest-fire control...
Missouri's forest resources in 2001.
W. Keith Moser; Thomas Treiman; Bruce Moltzan; Robert Lawrence; Gary J. Brand
2003-01-01
Results of the 2001 fifth annual inventory of Missouri?s forest resources show an estimated 14.7 million acres of forest land in the State. The oak hickory type is the predominant forest type on the landscape, making up over 70 percent of all forested land. Between 1989 and 1999-2001, the net volume of all live trees on timberland increased by 29 percent, from 13.8...
Alexander Hernandez; Sean P. Healey; Chenquan Huang; R. Douglas Ramsey
2015-01-01
As part of the U.S. Forest Service (USFS), National Forest System (NFS) comprehensive plan for carbon monitoring, a detailed temporal mapping of forest disturbances across all National Forests in the United States has been conducted. A long-term annual time series of data layers that show the timing, extent, type, and magnitude of disturbance beginning in 1990 and...
T.A. Kennaway; E.H. Helmer; M.A. Lefsky; T.A. Brandeis; K.R. Sherill
2008-01-01
Current information on land cover, forest type and forest structure for the Virgin Islands is critical to land managers and researchers for accurate forest inventory and ecological monitoring. In this study, we use cloud free image mosaics of panchromatic sharpened Landsat ETM+ images and decision tree classification software to map land cover and forest type for the...
Todd Kennaway; Eileen Helmer; Michael Lefsky; Thomas Brandeis; Kirk Sherrill
2009-01-01
Current information on land cover, forest type and forest structure for the Virgin Islands is critical to land managers and researachers for accurate forest inverntory and ecological monitoring. In this study, we use cloud free image mosaics of panchromatic sharpened Landsat ETM+ images and decision tree classification software to map land cover and forest type for the...
Forest Vegetation Monitoring Protocol for National Parks in the North Coast and Cascades Network
Woodward, Andrea; Hutten, Karen M.; Boetsch, John R.; Acker, Steven A.; Rochefort, Regina M.; Bivin, Mignonne M.; Kurth, Laurie L.
2009-01-01
Plant communities are the foundation for terrestrial trophic webs and animal habitat, and their structure and species composition are an integrated result of biological and physical drivers (Gates, 1993). Additionally, they have a major role in geologic, geomorphologic and soil development processes (Jenny, 1941; Stevens and Walker, 1970). Throughout most of the Pacific Northwest, environmental conditions support coniferous forests as the dominant vegetation type. In the face of anthropogenic climate change, forests have a global role as potential sinks for atmospheric carbon (Goodale and others, 2002). Consequently, knowledge of the status of forests in the three large parks of the NCCN [that is, Mount Rainier (MORA), North Cascades (NOCA), and Olympic (OLYM) National Parks] is fundamental to understanding the condition of Pacific Northwest ecosystems. Diverse climate and soil properties across the Pacific Northwest result in a variety of forest types (Franklin and Dyrness, 1973; Franklin and others, 1988; Henderson and others, 1989, 1992). The mountainous terrain of Mount Rainier, North Cascades, and Olympic National Parks create steep elevational and precipitation gradients within and among the parks: collectively, these parks span from sea level to more than 4,200 m; and include areas with precipitation from 90 to more than 500 cm. The resulting forests range from coastal rainforests with dense understories and massive trees draped with epiphytes; to areas with drought-adapted Ponderosa pines; to high-elevation subalpine fir forests interspersed with meadows just below treeline (table 1). These forests, in turn, are the foundation for other biotic communities constituting Pacific Northwest ecosystems.
Plant hydraulic diversity buffers forest ecosystem responses to drought
NASA Astrophysics Data System (ADS)
Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.
2017-12-01
Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.
Biomass Allocation Patterns across China’s Terrestrial Biomes
Wang, Limei; Li, Longhui; Chen, Xi; Tian, Xin; Wang, Xiaoke; Luo, Geping
2014-01-01
Root to shoot ratio (RS) is commonly used to describe the biomass allocation between below- and aboveground parts of plants. Determining the key factors influencing RS and interpreting the relationship between RS and environmental factors is important for biological and ecological research. In this study, we compiled 2088 pairs of root and shoot biomass data across China’s terrestrial biomes to examine variations in the RS and its responses to biotic and abiotic factors including vegetation type, soil texture, climatic variables, and stand age. The median value of RS (RSm) for grasslands, shrublands, and forests was 6.0, 0.73, and 0.23, respectively. The range of RS was considerably wide for each vegetation type. RS values for all three major vegetation types were found to be significantly correlated to mean annual precipitation (MAP) and potential water deficit index (PWDI). Mean annual temperature (MAT) also significantly affect the RS for forests and grasslands. Soil texture and forest origin altered the response of RS to climatic factors as well. An allometric formula could be used to well quantify the relationship between aboveground and belowground biomass, although each vegetation type had its own inherent allometric relationship. PMID:24710503
Fire Impact on Phytomass and Carbon Emissions in the Forests of Siberia
NASA Astrophysics Data System (ADS)
Ivanova, Galina A.; Zhila, Sergei V.; Ivanov, Valery A.; Kovaleva, Nataly M.; Kukavskaya, Elena A.; Platonova, Irina A.; Conard, Susan G.
2014-05-01
Siberian boreal forests contribute considerably to the global carbon budget, since they take up vast areas, accumulate large amount of carbon, and are sensitive to climatic changes. Fire is the main forest disturbance factor, covering up to millions of hectares of boreal forests annually, of which the majority is in Siberia. Carbon emissions released from phytomass burning influence atmospheric chemistry and global carbon cycling. Changing climate and land use influence the number and intensity of wildfires, forest state, and productivity, as well as global carbon balance. Fire effects on forest overstory, subcanopy woody layer, and ground vegetation phytomass were estimated on sites in light-conifer forests of the Central Siberia as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). This study focuses on collecting quantitative data and modeling the influence of fires of varying intensity on fire emissions, carbon budget, and ecosystem processes in coniferous stands. Fires have a profound impact on forest-atmospheric carbon exchange and transform forests from carbon sinks to carbon sources lasting long after the time of burning. Our long-term experiments allowed us to identify vegetation succession patterns in taiga Scots pine stands after fires of known behavior. Estimating fire contributions to the carbon budget requires consideration of many factors, including vegetation type and fire type and intensity. Carbon emissions were found to depend on fire intensity and weather. In the first several years after fire, the above-ground phytomass appeared to be strongly controlled by fire intensity. However, the influence of burning intensity on organic matter accumulation was found to decrease with time.
NASA Astrophysics Data System (ADS)
Lupon, Anna; Gerber, Stefan; Sabater, Francesc; Bernal, Susana
2015-05-01
Future changes in climate may affect soil nitrogen (N) transformations, and consequently, plant nutrition and N losses from terrestrial to stream ecosystems. We investigated the response of soil N cycling to changes in soil moisture, soil temperature, and precipitation across three Mediterranean forest types (evergreen oak, beech, and riparian) by fusing a simple process-based model (which included climate modifiers for key soil N processes) with measurements of soil organic N content, mineralization, nitrification, and concentration of ammonium and nitrate. The model describes sources (atmospheric deposition and net N mineralization) and sinks (plant uptake and hydrological losses) of inorganic N from and to the 0-10 cm soil pool as well as net nitrification. For the three forest types, the model successfully recreated the magnitude and temporal pattern of soil N processes and N concentrations (Nash-Sutcliffe coefficient = 0.49-0.96). Changes in soil water availability drove net N mineralization and net nitrification at the oak and beech forests, while temperature and precipitation were the strongest climatic factors for riparian soil N processes. In most cases, net N mineralization and net nitrification showed a different sensitivity to climatic drivers (temperature, soil moisture, and precipitation). Our model suggests that future climate change may have a minimal effect on the soil N cycle of these forests (<10% change in mean annual rates) because positive warming and negative drying effects on the soil N cycle may counterbalance each other.
Ren, Yin; Yan, Jing; Wei, Xiaohua; Wang, Yajun; Yang, Yusheng; Hua, Lizhong; Xiong, Yongzhu; Niu, Xiang; Song, Xiaodong
2012-12-30
Research on the effects of urban sprawl on carbon stocks within urban forests can help support policy for sustainable urban design. This is particularly important given climate change and environmental deterioration as a result of rapid urbanization. The purpose of this study was to quantify the effects of urban sprawl on dynamics of forest carbon stock and density in Xiamen, a typical city experiencing rapid urbanization in China. Forest resource inventory data collected from 32,898 patches in 4 years (1972, 1988, 1996 and 2006), together with remotely sensed data (from 1988, 1996 and 2006), were used to investigate vegetation carbon densities and stocks in Xiamen, China. We classified the forests into four groups: (1) forest patches connected to construction land; (2) forest patches connected to farmland; (3) forest patches connected to both construction land and farmland and (4) close forest patches. Carbon stocks and densities of four different types of forest patches during different urbanization periods in three zones (urban core, suburb and exurb) were compared to assess the impact of human disturbance on forest carbon. In the urban core, the carbon stock and carbon density in all four forest patch types declined over the study period. In the suburbs, different urbanization processes influenced forest carbon density and carbon stock in all four forest patch types. Urban sprawl negatively affected the surrounding forests. In the exurbs, the carbon stock and carbon density in all four forest patch types tended to increase over the study period. The results revealed that human disturbance played the dominant role in influencing the carbon stock and density of forest patches close to the locations of human activities. In forest patches far away from the locations of human activities, natural forest regrowth was the dominant factor affecting carbon stock and density. Copyright © 2012 Elsevier Ltd. All rights reserved.
Can global navigation satellite system signals reveal the ecological attributes of forests?
NASA Astrophysics Data System (ADS)
Liu, Jingbin; Hyyppä, Juha; Yu, Xiaowei; Jaakkola, Anttoni; Liang, Xinlian; Kaartinen, Harri; Kukko, Antero; Zhu, Lingli; Wang, Yunsheng; Hyyppä, Hannu
2016-08-01
Forests have important impacts on the global carbon cycle and climate, and they are also related to a wide range of industrial sectors. Currently, one of the biggest challenges in forestry research is effectively and accurately measuring and monitoring forest variables, as the exploitation potential of forest inventory products largely depends on the accuracy of estimates and on the cost of data collection. A low-cost crowdsourcing solution is needed for forest inventory to collect forest variables. Here, we propose global navigation satellite system (GNSS) signals as a novel type of observables for predicting forest attributes and show the feasibility of utilizing GNSS signals for estimating important attributes of forest plots, including mean tree height, mean diameter at breast height, basal area, stem volume and tree biomass. The prediction accuracies of the proposed technique were better in boreal forest conditions than those of the conventional techniques of 2D remote sensing. More importantly, this technique provides a novel, cost-effective way of collecting large-scale forest measurements in the crowdsourcing context. This technique can be applied by, for example, harvesters or persons hiking or working in forests because GNSS devices are widely used, and the field operation of this technique is simple and does not require professional forestry skills.
NASA Astrophysics Data System (ADS)
Burcsu, Theresa Katherine
Edge effects are among the most serious threats to forest integrity because as global forest cover decreases overall, forest edge influence increases proportionally, driving habitat change and loss. Edge effects occur at the division between adjacent habitat types. Our understanding of edge effects comes mainly from tropical wet, temperate and boreal forests. Because forest structure in moisture-limited forests differs from wetter forest types, edge dynamics are likely to differ as well. Moreover, dry forests in the tropics have been nearly eliminated or exist only as forest fragments, making edge influence an important conservation and management concern for remaining dry forests. This study addresses this gap in the edge influence knowledge by examining created, regenerating edges associated with forest management in a seasonally dry pine-oak forest of Oaxaca, creating a new data point in edge effects research. In this study I used Landsat TM imagery and a modified semivariance analysis to estimate the distance of edge influence for vegetation. I also used field methods to characterize forest structure and estimate edge influence on canopy and subcanopy vegetation. To finalize the project I extended the study to bird assemblages to identify responses and habitat preferences to local-scale changes associated with regenerating edges created by group-selection timber harvest. Remote sensing analysis estimated that the distance of edge influence was 30-90 m from the edge. Vegetation analysis suggested that edge effects were weak relative to wetter forest types and that remote sensing data did not provide an estimate that was directly applicable to field-measured vegetative edge effects. The bird assemblages likewise responded weakly to habitat change associated with edge effect. Open canopy structure, simple vertical stratigraphy, and topographic variation create forest conditions in which small openings do not create a high contrast to undisturbed forest. Thus, in this seasonally dry, open forest, vegetation and bird communities respond less to small openings than they do in wetter, more closed-canopy forests. Management practices and historical land-use interact and interfere with the detectability of edge influence in our study area. These results support hypotheses proposed for open forest types and suggest that patterns in edge influence in wet forest types may not be applicable to dry sites.
[Effects of road construction on regional vegetation types].
Liu, Shi-Liang; Liu, Qi; Wang, Cong; Yang, Jue-Jie; Deng, Li
2013-05-01
As a regional artificial disturbance component, road exerts great effects on vegetation types, and plays a substantial role in defining vegetation distribution to a certain extent. Aiming at the tropical rainforest degradation and artificial forest expansion in Yunnan Province of Southwest China, this paper analyzed the effects of road network extension on regional vegetation types. In the Province, different classes of roads had different effects on the vegetation types, but no obvious regularity was observed in the effects on the patch areas of different vegetation types due to the great variations of road length and affected distance. However, the vegetation patch number was more affected by lower class roads because of their wide distribution. As for different vegetation types, the vegetations on cultivated land were most affected by roads, followed by Castanopsis hystrix and Schima wallichii forests. Road network formation contributed most to the vegetation fragmentation, and there existed significant correlations between the human disturbance factors including village- and road distributions.
Henry A. Pearson; Fred E. Smeins; Ronald E. Thill
1987-01-01
The results of 43 projects, which evaluated the flora, fauna, watersheds, socioeconomics,and forest pests located on southern National Forests were presented and discussed in 4 major categories: Management Outlook and Evaluation, Loblolly-Shortleaf Pine Type, Longleaf-Slash Pine Type, and Watersheds, Socioeconomics,and Forest Pests.
Steven W. Oak; James R. Steinman; Dale A. Starkey; Edwin K. Yockey
2004-01-01
Forest Inventory and Analysis data for twelve southern states were used to evaluate regional oak decline status. Total host type, vulnerable host type, and affected areas were determined. The attributes used for classification were forest type, predominant stem size class, oak basal area percent, and dieback damage coding. Host type totaled 104.7 million acres in the...
Changes in the Carbon Cycle of Amazon Ecosystems During the 2010 Drought
NASA Technical Reports Server (NTRS)
Potter, Christophera; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubino, Juan Carlos
2011-01-01
Satellite remote sensing was combined with the NASA-CASA carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production (NPP) in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon River basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to forests outside the main river floodplains.
Adams, Amy L; Dickinson, Katharine J M; Robertson, Bruce C; van Heezik, Yolanda
2013-01-01
Invasive species are often favoured in fragmented, highly-modified, human-dominated landscapes such as urban areas. Because successful invasive urban adapters can occupy habitat that is quite different from that in their original range, effective management programmes for invasive species in urban areas require an understanding of distribution, habitat and resource requirements at a local scale that is tailored to the fine-scale heterogeneity typical of urban landscapes. The common brushtail possum (Trichosurus vulpecula) is one of New Zealand's most destructive invasive pest species. As brushtail possums traditionally occupy forest habitat, control in New Zealand has focussed on rural and forest habitats, and forest fragments in cities. However, as successful urban adapters, possums may be occupying a wider range of habitats. Here we use site occupancy methods to determine the distribution of brushtail possums across five distinguishable urban habitat types during summer, which is when possums have the greatest impacts on breeding birds. We collected data on possum presence/absence and habitat characteristics, including possible sources of supplementary food (fruit trees, vegetable gardens, compost heaps), and the availability of forest fragments from 150 survey locations. Predictive distribution models constructed using the programme PRESENCE revealed that while occupancy rates were highest in forest fragments, possums were still present across a large proportion of residential habitat with occupancy decreasing as housing density increased and green cover decreased. The presence of supplementary food sources was important in predicting possum occupancy, which may reflect the high nutritional value of these food types. Additionally, occupancy decreased as the proportion of forest fragment decreased, indicating the importance of forest fragments in determining possum distribution. Control operations to protect native birds from possum predation in cities should include well-vegetated residential areas; these modified habitats not only support possums but provide a source for reinvasion of fragments.
Aerial photo guide to New England forest cover types
Rachel Riemann Hershey; William A. Befort
1995-01-01
NOTE large file size. Presents color infrared photos in stereo pairs for the identification of New England forest cover types. Depicts range maps, ecological relations, and range of composition for each forest cover type described. The guide is designed to assist the needs of interpreters of medium to large-scale color infrared aerial photography.
The Use of Sun Elevation Angle for Stereogrammetric Boreal Forest Height in Open Canopies
NASA Technical Reports Server (NTRS)
Montesano, Paul M.; Neigh, Christopher; Sun, Guoqing; Duncanson, Laura Innice; Van Den Hoek, Jamon; Ranson, Kenneth Jon
2017-01-01
Stereogrammetry applied to globally available high resolution spaceborne imagery (HRSI; less than 5 m spatial resolution) yields fine-scaled digital surface models (DSMs) of elevation. These DSMs may represent elevations that range from the ground to the vegetation canopy surface, are produced from stereoscopic image pairs (stereo pairs) that have a variety of acquisition characteristics, and have been coupled with lidar data of forest structure and ground surface elevation to examine forest height. This work explores surface elevations from HRSI DSMs derived from two types of acquisitions in open canopy forests. We (1) apply an automated mass-production stereogrammetry workflow to along-track HRSI stereo pairs, (2) identify multiple spatially coincident DSMs whose stereo pairs were acquired under different solar geometry, (3) vertically co-register these DSMs using coincident spaceborne lidar footprints (from ICESat-GLAS) as reference, and(4) examine differences in surface elevations between the reference lidar and the co-registered HRSI DSMs associated with two general types of acquisitions (DSM types) from different sun elevation angles. We find that these DSM types, distinguished by sun elevation angle at the time of stereo pair acquisition, are associated with different surface elevations estimated from automated stereogrammetry in open canopy forests. For DSM values with corresponding reference ground surface elevation from spaceborne lidar footprints in open canopy northern Siberian Larix forests with slopes less than10, our results show that HRSI DSM acquired with sun elevation angles greater than 35deg and less than 25deg (during snow-free conditions) produced characteristic and consistently distinct distributions of elevation differences from reference lidar. The former include DSMs of near-ground surfaces with root mean square errors less than 0.68 m relative to lidar. The latter, particularly those with angles less than 10deg, show distributions with larger differences from lidar that are associated with open canopy forests whose vegetation surface elevations are captured. Terrain aspect did not have a strong effect on the distribution of vegetation surfaces. Using the two DSM types together, the distribution of DSM-differenced heights in forests (6.0 m, sigma = 1.4 m) was consistent with the distribution of plot-level mean tree heights (6.5m, sigma = 1.2 m). We conclude that the variation in sun elevation angle at time of stereo pair acquisition can create illumination conditions conducive for capturing elevations of surfaces either near the ground or associated with vegetation canopy. Knowledge of HRSI acquisition solar geometry and snow cover can be used to understand and combine stereogrammetric surface elevation estimates to co-register rand difference overlapping DSMs, providing a means to map forest height at fine scales, resolving the vertical structure of groups of trees from spaceborne platforms in open canopy forests.
NASA Astrophysics Data System (ADS)
Zhang, M.; Liu, S.
2017-12-01
Despite extensive studies on hydrological responses to forest cover change in small watersheds, the hydrological responses to forest change and associated mechanisms across multiple spatial scales have not been fully understood. This review thus examined about 312 watersheds worldwide to provide a generalized framework to evaluate hydrological responses to forest cover change and to identify the contribution of spatial scale, climate, forest type and hydrological regime in determining the intensity of forest change related hydrological responses in small (<1000 km2) and large watersheds (≥1000 km2). Key findings include: 1) the increase in annual runoff associated with forest cover loss is statistically significant at multiple spatial scales whereas the effect of forest cover gain is statistically inconsistent; 2) the sensitivity of annual runoff to forest cover change tends to attenuate as watershed size increases only in large watersheds; 3) annual runoff is more sensitive to forest cover change in water-limited watersheds than in energy-limited watersheds across all spatial scales; and 4) small mixed forest-dominated watersheds or large snow-dominated watersheds are more hydrologically resilient to forest cover change. These findings improve the understanding of hydrological response to forest cover change at different spatial scales and provide a scientific underpinning to future watershed management in the context of climate change and increasing anthropogenic disturbances.
Application of remote sensing to state and regional problems
NASA Technical Reports Server (NTRS)
Miller, W. F. (Principal Investigator); Tingle, J.; Wright, L. H.; Tebbs, B.
1984-01-01
Progress was made in the hydroclimatology, habitat modeling and inventory, computer analysis, wildlife management, and data comparison programs that utilize LANDSAT and SEASAT data provided to Mississippi researchers through the remote sensing applications program. Specific topics include water runoff in central Mississippi, habitat models for the endangered gopher tortoise, coyote, and turkey Geographic Information Systems (GIS) development, forest inventory along the Mississipppi River, and the merging of LANDSAT and SEASAT data for enhanced forest type discrimination.
NASA Astrophysics Data System (ADS)
Di Vittorio, A. V.; Simmonds, M.; Nico, P. S.
2017-12-01
Land-based carbon sequestration and GreenHouse Gas (GHG) reduction strategies are often implemented in small patches and evaluated independently from each other, which poses several challenges to determining their potential benefits at the regional scales at which carbon/GHG targets are defined. These challenges include inconsistent methods, uncertain scalability to larger areas, and lack of constraints such as land ownership and competition among multiple strategies. To address such challenges we have developed an integrated carbon and GHG budget model of California's entire landscape, delineated by geographic region, land type, and ownership. This empirical model has annual time steps and includes net ecosystem carbon exchange, wildfire, multiple forest management practices including wood and bioenergy production, cropland and rangeland soil management, various land type restoration activities, and land cover change. While the absolute estimates vary considerably due to uncertainties in initial carbon densities and ecosystem carbon exchange rates, the estimated effects of particular management activities with respect to baseline are robust across these uncertainties. Uncertainty in land use/cover change data is also critical, as different rates of shrubland to grassland conversion can switch the system from a carbon source to a sink. The results indicate that reducing urban area expansion has substantial and consistent benefits, while the effects of direct land management practices vary and depend largely on the available management area. Increasing forest fuel reduction extent over the baseline contributes to annual GHG costs during increased management, and annual benefits after increased management ceases. Cumulatively, it could take decades to recover the cost of 14 years of increased fuel reduction. However, forest carbon losses can be completely offset within 20 years through increases in urban forest fraction and marsh restoration. Additionally, highly uncertain black carbon estimates dominate the overall GHG budget due to wildfire, forest management, and bioenergy production. Overall, this tool is well suited for exploring suites of management options and extents throughout California in order to quantify potential regional carbon sequestration and GHG emission benefits.
Determination of Land Use/ Land Cover Changes in Igneada Alluvial (Longos) Forest Ecosystem, Turkey
NASA Astrophysics Data System (ADS)
Bektas Balcik, F.
2012-12-01
Alluvial (Longos) forests are one of the most fragile and threatened ecosystems in the world. Typically, these types of ecosystems have high biological diversity, high productivity, and high habitat dynamism. In this study, Igneada, Kirklareli was selected as study area. The region, lies between latitudes 41° 46' N and 41° 59' N and stretches between longitudes 27° 50' E and 28° 02' E and it covers approximately 24000 (ha). Igneada Longos ecosystems include mixed forests, streams, flooded (alluvial) forests, marshes, wetlands, lakes and coastal sand dunes with different types of flora and fauna. Igneada was classified by Conservation International as one of the world's top 122 Important Plant Areas, and 185 Important Bird Areas. These types of wild forest in other parts of Turkey and in Europe have been damaged due to anthropogenic effects. Remote sensing is very effective tool to monitor these types of sensitive regions for sustainable management. In this study, 1984 and 2011 dated Landsat 5 TM data were used to determine land cover/land use change detection of the selected region by using six vegetation indices such as Tasseled Cap index of greenness (TCG), brightness (TCB), and wetness (TCW), ratios of near-infrared to red image (RVI), normalized difference vegetation index (NDVI), and soil-adjusted vegetation index (SAVI). Geometric and radiometric corrections were applied in image pre-processing step. Selective Principle Component Analysis (PCA) change detection method was applied to the selected vegetation index imagery to generate change imagery for extracting the changed features between the year of 1984 and 2011. Accuracy assessment was applied based on error matrix by calculating overall accuracy and Kappa statistics.
Williams, Jennifer M.; Brown, Donald J.; Wood, Petra B.
2017-01-01
Mountaintop removal mining is a large-scale surface mining technique that removes entire floral and faunal communities, along with soil horizons located above coal seams. In West Virginia, the majority of this mining occurs on forested mountaintops. However, after mining ceases the land is typically reclaimed to grasslands and shrublands, resulting in novel ecosystems. In this study, we examined responses of herpetofauna to these novel ecosystems 10–28 y postreclamation. We quantified differences in species-specific habitat associations, (sub)order-level abundances, and habitat characteristics in four habitat types: reclaimed grassland, reclaimed shrubland, forest fragments in mined areas, and nonmined intact forest. Habitat type accounted for 33.2% of the variation in species-specific captures. With few exceptions, forest specialists were associated with intact forest and fragmented forest sites, while habitat generalists were either associated with grassland and shrubland sites or were distributed among all habitat types. At the (sub)order level, salamander (Order Urodela) captures were highest at fragmented and intact forest sites, frog and toad (Order Anura) captures were lowest at intact forest sites, and snake (Suborder Serpentes) captures were highest at shrubland sites. Habitat type was a strong predictor for estimated total abundance of urodeles, but not for anurans or snakes. Tree stem densities in grasslands differed from the other three habitat types, and large trees (>38 cm diameter at breast height) were only present at forest sites. Overstory vegetation cover was greater in forested than in reclaimed habitat types. Ground cover in reclaimed grasslands was distinct from forest treatments with generally less woody debris and litter cover and more vegetative cover. It is important to consider the distributions of habitat specialists of conservation concern when delineating potential mountaintop mine sites, as these sites will likely contain unsuitable habitat for forest specialists for decades or centuries when reclaimed to grassland or shrubland.
Methane production potential and microbial community structure for different forest soils
NASA Astrophysics Data System (ADS)
Matsumoto, Y.; Ueyama, M.; Kominami, Y.; Endo, R.; Tokumoto, H.; Hirano, T.; Takagi, K.; Takahashi, Y.; Iwata, H.; Harazono, Y.
2017-12-01
Forest soils are often considered as a methane (CH4) sink, but anaerobic microsites potentially decrease the sink at the ecosystem scale. In this study, we measured biological CH4 production potential of soils at various ecosystems, including upland forests, a lowland forest, and a bog, and analyzed microbial community structure using 16S ribosomal RNA (rRNA) genes. Three different types of soil samples (upland, bank of the stream, and center of the stream) were collected from Yamashiro forest meteorology research site (YMS) at Kyoto, Japan, on 11 May 2017. The soils were incubated at dark and anaerobic conditions under three different temperatures (37°C, 25°C, and 10°C) from 9 June 2017. The upland soils emitted CH4 with largest yields among the three soils at 37°C and 25°C, although no CH4 emission was observed at 10°C. For all temperature ranges, the emission started to increase with a 14- to 20-days lag after the start of the incubation. The lag indicates a slow transition to anaerobic conditions; as dissolved oxygen in water decreased, the number and/or activity of anaerobic bacteria like methanogens increased. The soils at the bank and center of the stream emitted CH4 with smaller yields than the upland soils in the three temperature ranges. The microbial community analyses indicate that methanogenic archaea presented at the three soils including the aerobic upland soil, but compositions of methanogenic archaea were different among the soils. In upland soils, hydrogenotrophic methanogens, such as Methanobacterium and Methanothermobacter, consisted almost all of the total methanogen detected. In the bank and center of the stream, soils contained approximately 10-25% of acetoclastic methanogens, such as Methanosarcina and Methanosaeta, among the total methanogen detected. Methanotrophs, a genus of Methanobacteriaceae, was appeared in the all types of soils. We will present results from same incubation and 16S rRNA analyses for other ecosystems, including a larch forest on volcanic soils, a young larch forest on Gleyic Cambisol, and a boreal bog and a lowland forest on permafrost. Comparing various soils from temperate and boreal ecosystems, we will discuss differences of biogenic CH4 production potential among the soils with the microbial community analyses.
Moose habitat in Massachusetts: Assessing use at the southern edge of the range
Wattles, David W.; DeStefano, Stephen
2013-01-01
Moose (Alces alces) have recently re-occupied a portion of their range in the temperate deciduous forest of the northeastern United States after a more than 200 year absence. In southern New England, moose are exposed to a variety of forest types, increasing development, and higher ambient temperatures as compared to other parts of their geographic range. Additionally, large-scale disturbances that shape forest structure and expansive naturally occurring shrub-willow communities used commonly elsewhere are lacking. We used utilization distributions to determine third order habitat selection (selection within the home range) of GPS-collared moose. In central Massachusetts, forests regenerating from logging were the most heavily used cover type in all seasons (48 - 63% of core area use). Habitat use of moose in western Massachusetts varied more seasonally, with regenerating forests used most heavily in summer and fall (57 and 46%, respectively), conifer and mixed forests in winter (47 - 65%), and deciduous forests in spring (41%). This difference in habitat selection reflected the transition from northern forest types to more southern forest types across the state. The intensive use of patches of regenerating forest emphasizes the importance of sustainable forest harvesting to moose. This study provides the first assessment of habitat requirements in this southern portion of moose range and provides insights into re-establishment of moose in unoccupied portions of its historic range in New York and Pennsylvania.
Developing Land Surface Type Map with Biome Classification Scheme Using Suomi NPP/JPSS VIIRS Data
NASA Astrophysics Data System (ADS)
Zhang, Rui; Huang, Chengquan; Zhan, Xiwu; Jin, Huiran
2016-08-01
Accurate representation of actual terrestrial surface types at regional to global scales is an important element for a wide range of applications, such as land surface parameterization, modeling of biogeochemical cycles, and carbon cycle studies. In this study, in order to meet the requirement of the retrieval of global leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by the vegetation (fPAR) and other studies, a global map generated from Suomi National Polar- orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) surface reflectance data in six major biome classes based on their canopy structures, which include: Grass/Cereal Crops, Shrubs, Broadleaf Crops, Savannas, Broadleaf Forests, and Needleleaf Forests, was created. The primary biome classes were converted from an International Geosphere-Biosphere Program (IGBP) legend global surface type data that was created in previous study, and the separation of two crop types are based on a secondary classification.
Spatial occurrence of a habitat-tracking saproxylic beetle inhabiting a managed forest landscape.
Schroeder, L Martin; Ranius, Thomas; Ekbom, Barbara; Larsson, Stig
2007-04-01
Because of the dynamic nature of many managed habitats, proper evaluation of conservation efforts calls for models that take into account both spatial and temporal habitat dynamics. We develop a metapopulation model for successional-type systems, in which habitat quality changes over time in a predictable fashion. The occupancy and recruitment of the predatory saproxylic (dependent on dead wood) beetle Harminius undulatus was studied in a managed boreal forest landscape, covering 24,449 ha, in central Sweden. In a first step, we analyzed the beetle's occupancy pattern in relation to stand characteristics, and the amounts of present and past habitat in the surrounding landscape. Managed forest is suitable habitat when > or =60 years old, and immediately after cutting, but not between the ages of 10 and 60 years. The observed occupancy of H. undulatus was positively correlated with the stand's age as habitat. We used a metapopulation model to predict the current probability of occurrence in each forest stand, given the spatiotemporal distribution of suitable forest stands during the last 50 years. Metapopulation parameters were estimated by matching predicted spatial distributions with observed spatial distributions. The model predicted observed spatial distributions better than a similar model that assumed constant habitat quality of each forest stand. Thus, metapopulation models for successional-type systems, such as dead wood dependent organisms in managed forest landscapes, should include habitat dynamics. An estimated 82% of the landscape-wide recruitment took place in managed stands, which covered 87% of the forest area, in comparison with 18% in unmanaged stands, which covered 13% of the forest area. Among the managed stand types, > or =60-year-old stands and 3-7-year-old clear-cuttings contributed to 79% of the total recruitment while 8-59-year-old stands only contributed 3%. The results suggest the following guidelines to improve conditions for H. undulatus and other species with similar habitat requirements: (1) the proportion of the landscape constituted by younger stands should not be allowed to grow too large, (2) the rotation period of managed stands should not be allowed to be too short, and (3) dead wood should be retained and created at final cutting.
Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.
2013-01-01
While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.
Indiana's forest resources in 2003.
Christopher Woodall; Gary Brand; John Vissage; Joey Gallion
2004-01-01
This publication presents the initial results of the fifth inventory of Indiana's forest resources, marking the first complete cycle of the new annual inventory system. Since 1998, total forest land area has increased by a little over 50,000 acres. As in every inventory since 1950, the oak/hickory type is the largest forest type on the landscape, making up over 59...
Silvicultural systems for the major forest types of the United States
Russell M. Burns
1983-01-01
The current trend toward the establishment and care of forests for a wide combination of uses requires flexibility in forest culture and a knowledge of the silvicultural choices available to the resource manager. This publication summarizes the silvicultural systems that appear biologically feasible, on the basis of present knowledge, for each of 48 major forest types...
S. Palmroth; Chris A. Maier; Heather R. McCarthy; A. C. Oishi; H. S. Kim; Kurt H. Johnsen; Gabrial G. Katul; Ram Oren
2005-01-01
Forest floor C02 efflux (Fff) depends on vegetation type, climate, and soil physical properties. We assessed the effects of biological factors on Fff by comparing a maturing pine plantation (PP) and a nearby mature Oak-Hickory-type hardwood forest (HW). Fff was measured...
Wildlife species composition in various forest types on Sebuku Island, South Kalimantan
NASA Astrophysics Data System (ADS)
Kusmana, C.; Manshur, A.; Rusdian, O.; Putro, H. R.; Hakim, F.; Ermyanyla, M.
2017-01-01
Sebuku is one of the small islands in South Kalimantan Provincehaving various forest types with high potential economic in mining sector. Based on it’s business permit, the island has been divided up into several mining concessions. So that biological diversity studies in this island is an interesting in order to serve biological baseline data if someday this island to be extractedfor mining. This research was conducted on 28th November to 5th December 2015 aims to explore wildlife species inhabit mangrove forest, beach forest, and lowland forest usinga rectangle transect (40 x 1000 meter) in each forest type. The results show there are 90 wildlife species identified in Sebuku Island. The beach forest has the highest wildlife species richness (36 species), while the area having the highest protected wildlife species isthe lowland forest. Mangrove forests generally have a lower wildlife species richness. Nevertheless, in Sebuku Island, can be found mangrove forest that have a quite high wildlife species richness (28 species, 50% protected). It is due to silt sedimentation in the estuary area, so that this area become feeding ground for shore and migratory birds.
Angle to grain strength of dowel-type fasteners
Lawrence A. Soltis; Suparman Karnasudirdja; James K. Little
1987-01-01
Timber structures require adequate connections between components. Connection design is based on the performance criterion of a single fastener. This study is part of a research effort by the Forest Products Laboratory to establish a common basis design criteria for lateral strength of dowel-type fasteners that includes nails, screws, lag screws, and bolts. A general...
36 CFR 1206.50 - What types of funding and cost sharing arrangements does the Commission make?
Code of Federal Regulations, 2010 CFR
2010-07-01
... opportunity announcements. (2) Cost sharing may include cash or in-kind contributions provided by the... cost sharing arrangements does the Commission make? 1206.50 Section 1206.50 Parks, Forests, and Public... RECORDS COMMISSION Applying for NHPRC Grants § 1206.50 What types of funding and cost sharing arrangements...
A user's guide to nursery stock types
R. Kasten Dumroese; Peyton W. Owston
2003-01-01
Foresters must consider many factors when selecting nursery stock types for their planting projects. Forest nurseries can now produce a vast array of stock types to meet any challenge in the field - these target seedlings can be defined for particular sites. It is important that foresters work with a nursery that is known from experience or reputation to provide a...
Hewlette S. Crawford
1976-01-01
The impacts of forest cutting upon understory vegetation were evaluated for Ozark oak-hickory and Appalachian oak-pine stands. These findings were related to similar information from other eastern forest types. Production of understory vegetation is related to stand type, stand structure, stand disturbance, and site. Stand type, structure, and site operate together to...
Coniferous forest habitat types of central and southern Utah
Andrew P. Youngblood; Ronald L. Mauk
1985-01-01
A land-classification system based upon potential natural vegetation is presented for the coniferous forests of central and southern Utah. It is based on reconnaissance sampling of about 720 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. Seven climax series, 37 habitat types, and six additional phases of...
Forest habitat types of Montana
Robert D. Pfister; Bernard L. Kovalchik; Stephen F. Arno; Richard C. Presby
1977-01-01
A land-classification system based upon potential natural vegetation is presented for the forests of Montana. It is based on an intensive 4-year study and reconnaissance sampling of about 1,500 stands. A hierarchical classification of forest sites was developed using the habitat type concept. A total of 9 climax series, 64 habitat types, and 37 additional phases of...
Logging residues in principal forest types of the Northern Rocky Mountains
Robert E. Benson; Joyce A. Schlieter
1980-01-01
An estimated 466 million ft 3 of forest residue material (nonmerchantable, 3 inches diameter and larger) is generated annually in the Northern Rocky Mountains (Montana, Idaho, Wyoming). Extensive studies of residues in the major forest types show a considerable portion is suited for various products. The lodgepole pine type has the greatest potential for increased...
Renner, Swen C; Lüdtke, Bruntje; Kaiser, Sonja; Kienle, Julia; Schaefer, H Martin; Segelbacher, Gernot; Tschapka, Marco; Santiago-Alarcon, Diego
2016-08-01
Habitat characteristics determine the presence of individuals through resource availability, but at the same time, such features also influence the occurrence of parasites. We analyzed how birds respond to changes in interior forest structures, to forest management regimes, and to the risk of haemosporidian infections. We captured and took blood samples from blackcaps (Sylvia atricapilla) and chaffinches (Fringilla coelebs) in three different forest types (beech, mixed deciduous, spruce). We measured birds' body asymmetries, detected avian haemosporidians, and counted white blood cells as an immune measure of each individual per forest type. We used, to our knowledge for the first time, continuous forest structural parameters to quantify habitat structure, and found significant effects of habitat structure on parasite prevalence that previously have been undetected. We found three times higher prevalence for blackcaps compared with chaffinches. Parasite intensity varied significantly within host species depending on forest type, being lowest in beech forests for both host species. Structurally complex habitats with a high degree of entropy had a positive effect on the likelihood of acquiring an infection, but the effect on prevalence was negative for forest sections with a south facing aspect. For blackcaps, forest gaps also had a positive effect on prevalence, but canopy height had a negative one. Our results suggest that forest types and variations in forest structure influence the likelihood of acquiring an infection, which subsequently has an influence on host health status and body condition; however, responses to some environmental factors are host-specific. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Breeding bird assemblages associated with stages of forest succession in large river floodplains
Knutson, M.G.; McColl, L.E.; Suarez, S.A.
2005-01-01
Floodplain forests rival all other habitat types in bird density and diversity. However, major successional changes are predicted for floodplain forests along the Mississippi River in the coming decades; young forests may replace the existing mature silver maple (Acer saccharinum L.) forests in some areas. We wanted to assess how the breeding bird community might respond to these changes. We studied stands of young forests along the middle Mississippi River, comparing the breeding bird assemblages among three stages of forest succession: shrub/scrub, young cottonwood (Populus deltoides Marshall) and willow (Salix nigra Marshall) forests, and mature silver maple dominated forests. We recorded a total of 54 bird species; the most frequently observed species were the indigo bunting (Passerina cyanea), red-winged blackbird (Agelaius phoeniceus), and yellow-billed cuckoo (Coccyzus americanus). Bird species richness differed among the habitat types, with mature forests supporting the largest number of species and the most species of management concern. The shrub/scrub and mature forest bird assemblages were distinct and shared few species, but the young forests had no identifiable bird species assemblage, sharing species found in both of the other habitat types. The bird assemblages we observed in young forests may become more prevalent as aging floodplain forests are replaced with younger stages of forest succession. Under this scenario, we would expect a temporary local decrease in bird species richness and habitat for species of management concern.
NASA Astrophysics Data System (ADS)
Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis L.; Griffith, Glenn E.; Riegle, Jodi L.; Hester, David J.; Soulard, Christopher E.; McBeth, Jamie L.
2015-11-01
The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.
Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis L.; Griffith, Glenn E.; Hester, David J.; Riegle, Jodi L.; Soulard, Christopher E.; McBeth, Jamie L.
2015-01-01
The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.
Drummond, Mark A; Stier, Michael P; Auch, Roger F; Taylor, Janis L; Griffith, Glenn E; Riegle, Jodi L; Hester, David J; Soulard, Christopher E; McBeth, Jamie L
2015-11-01
The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8% of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15% of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83%. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3% of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.
Hernández-Ramírez, Angélica María; García-Méndez, Socorro
2015-09-01
Seasonally dry tropical forests are considered as the most endangered ecosystem in lowland tropics. The aim of this study was to characterize the floristic composition, richness, diversity, structure and regeneration of a seasonally dry tropical forest landscape constituted by mature forest, secondary forest and seasonally inundated forest located in the Northeastern part of the Yucatán Peninsula, Mexico. We used the Gentry's standard inventory plot methodology (0.1 ha per forest type in 2007) for facilitating comparison with other Mesoamerican seasonally dry tropical forests. A total of 77 species belonging to 32 families were observed in the study area. Fabaceae and Euphorbiaceae were the families with the largest taxonomic richness in the three forest types. Low levels of β diversity were observed among forest types (0.19-0.40), suggesting a high turnover of species at landscape level. The non-regenerative species were dominant (50-51 %), followed by regenerative species (30- 28 %), and colonizer species (14-21 %) in the three forest types. Zoochory was the most common dispersal type in the study area. The 88 % of the observed species in the study area were distributed in Central America. Some floristic attributes of the seasonally dry tropical forest of the Yucatán Peninsula, fall into the values reported for Mesoamerican seasonally dry tropical forests. Natural disturbances contributed to explain the high number of individuals, the low number of liana species, as well as the low values of basal area observed in this study. Our results suggested that the seasonally dry tropical forest of Yucatán Peninsula seems to be resilient to natural disturbances (hurricane) in terms of the observed number of species and families, when compared with the reported values in Mesoamerican seasonally dry tropical forests. Nonetheless, the recovery and regeneration of vegetation in long-term depends on animal-dispersed species. This study highlights the importance of establishing multiple protected areas throughout the Mesoamerican seasonally dry tropical forest in order to conserve both α- and β- diversity.
Effects of oil-palm plantations on diversity of tropical anurans.
Faruk, Aisyah; Belabut, Daicus; Ahmad, Norhayati; Knell, Robert J; Garner, Trenton W J
2013-06-01
Agriculturally altered vegetation, especially oil-palm plantations, is rapidly increasing in Southeast Asia. Low species diversity is associated with this commodity, but data on anuran diversity in oil-palm plantations are lacking. We investigated how anuran biological diversity differs between forest and oil-palm plantation, and whether observed differences in biological diversity of these areas is linked to specific environmental factors. We hypothesized that biological diversity is lower in plantations and that plantations support a larger proportion of disturbance-tolerant species than forest. We compared species richness, abundance, and community composition between plantation and forest areas and between site types within plantation and forest (forest stream vs. plantation stream, forest riparian vs. plantation riparian, forest terrestrial vs. plantation terrestrial). Not all measures of biological diversity differed between oil-palm plantations and secondary forest sites. Anuran community composition, however, differed greatly between forest and plantation, and communities of anurans in plantations contained species that prosper in disturbed areas. Although plantations supported large numbers of breeding anurans, we concluded the community consisted of common species that were of little conservation concern (commonly found species include Fejervarya limnocharis, Microhyla heymonsi, and Hylarana erythrea). We believe that with a number of management interventions, oil-palm plantations can provide habitat for species that dwell in secondary forests. © 2013 Society for Conservation Biology.
Low tortoise abundances in pine forest plantations in forest-shrubland transition areas
Rodríguez-Caro, Roberto C.; Oedekoven, Cornelia S.; Graciá, Eva; Anadón, José D.; Buckland, Stephen T.; Esteve-Selma, Miguel A.; Martinez, Julia; Giménez, Andrés
2017-01-01
In the transition between Mediterranean forest and the arid subtropical shrublands of the southeastern Iberian Peninsula, humans have transformed habitat since ancient times. Understanding the role of the original mosaic landscapes in wildlife species and the effects of the current changes as pine forest plantations, performed even outside the forest ecological boundaries, are important conservation issues. We studied variation in the density of the endangered spur-thighed tortoise (Testudo graeca) in three areas that include the four most common land types within the species’ range (pine forests, natural shrubs, dryland crop fields, and abandoned crop fields). Tortoise densities were estimated using a two-stage modeling approach with line transect distance sampling. Densities in dryland crop fields, abandoned crop fields and natural shrubs were higher (>6 individuals/ha) than in pine forests (1.25 individuals/ha). We also found large variation in density in the pine forests. Recent pine plantations showed higher densities than mature pine forests where shrub and herbaceous cover was taller and thicker. We hypothesize that mature pine forest might constrain tortoise activity by acting as partial barriers to movements. This issue is relevant for management purposes given that large areas in the tortoise’s range have recently been converted to pine plantations. PMID:28273135
Low tortoise abundances in pine forest plantations in forest-shrubland transition areas.
Rodríguez-Caro, Roberto C; Oedekoven, Cornelia S; Graciá, Eva; Anadón, José D; Buckland, Stephen T; Esteve-Selma, Miguel A; Martinez, Julia; Giménez, Andrés
2017-01-01
In the transition between Mediterranean forest and the arid subtropical shrublands of the southeastern Iberian Peninsula, humans have transformed habitat since ancient times. Understanding the role of the original mosaic landscapes in wildlife species and the effects of the current changes as pine forest plantations, performed even outside the forest ecological boundaries, are important conservation issues. We studied variation in the density of the endangered spur-thighed tortoise (Testudo graeca) in three areas that include the four most common land types within the species' range (pine forests, natural shrubs, dryland crop fields, and abandoned crop fields). Tortoise densities were estimated using a two-stage modeling approach with line transect distance sampling. Densities in dryland crop fields, abandoned crop fields and natural shrubs were higher (>6 individuals/ha) than in pine forests (1.25 individuals/ha). We also found large variation in density in the pine forests. Recent pine plantations showed higher densities than mature pine forests where shrub and herbaceous cover was taller and thicker. We hypothesize that mature pine forest might constrain tortoise activity by acting as partial barriers to movements. This issue is relevant for management purposes given that large areas in the tortoise's range have recently been converted to pine plantations.
Fire risk and adaptation strategies in Northern Eurasian forests
NASA Astrophysics Data System (ADS)
Shvidenko, Anatoly; Schepaschenko, Dmitry
2013-04-01
On-going climatic changes substantially accelerate current fire regimes in Northern Eurasian ecosystems, particularly in forests. During 1998-2012, wildfires enveloped on average ~10.5 M ha year-1 in Russia with a large annual variation (between 3 and 30 M ha) and average direct carbon emissions at ~150 Tg C year-1. Catastrophic fires, which envelope large areas, spread in usually incombustible wetlands, escape from control and provide extraordinary negative impacts on ecosystems, biodiversity, economics, infrastructure, environment, and health of population, become a typical feature of the current fire regimes. There are new evidences of correlation between catastrophic fires and large-scale climatic anomalies at a continental scale. While current climatic predictions suggest the dramatic warming (at the average at 6-7 °C for the country and up to 10-12°C in some northern continental regions), any substantial increase of summer precipitation does not expected. Increase of dryness and instability of climate will impact fire risk and severity of consequences. Current models suggest a 2-3 fold increase of the number of fires by the end of this century in the boreal zone. They predict increases of the number of catastrophic fires; a significant increase in the intensity of fire and amount of consumed fuel; synergies between different types of disturbances (outbreaks of insects, unregulated anthropogenic impacts); acceleration of composition of the gas emissions due to enhanced soil burning. If boreal forests would become a typing element, the mass mortality of trees would increase fire risk and severity. Permafrost melting and subsequent change of hydrological regimes very likely will lead to the degradation and destruction of boreal forests, as well as to the widespread irreversible replacement of forests by other underproductive vegetation types. A significant feedback between warming and escalating fire regimes is very probable in Russia and particularly in the permafrost areas. Overall, Russia should expect a disproportionate escalation of fire regimes compared to increasing climatic fire danger. Thus, development and implementation of an efficient adaptation strategy is a pressing problem of current forest management of the country. An appropriate system of forest fire protection which would be able to meet challenges of future climates is a corner stone of such a strategy. We consider possible systems solutions of this complex problem including (1) integrated ecological and socio-economic analysis of current and future fire regimes; (2) regional requirements to and specific features of a new paradigm of forest fire protection in the boreal zone of Northern Eurasia; (3) anticipatory strategy of the prevention of large-scale disturbances in forests, including adaptation of forest landscapes to the future climates (regulation of tree composition; setup of relevant spatial structure of forest landscapes; etc.); (4) implementation of an effective system of forest monitoring as part of integrated observing systems; (5) transition to ecologically-friendly systems of industrial development of northern territories; (6) development of new/ improvement of existing legislation and institutional frameworks of forest management which would be satisfactory to react on challenges of climate change; and (6) international cooperation.
Distribution of Aboveground Live Biomass in the Amazon Basin
NASA Technical Reports Server (NTRS)
Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.
2007-01-01
The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.
Lötter, Mervyn C; Beck, Hans T
2004-01-01
Background Mixed evergreen forests form the smallest, most widely distributed and fragmented biome in southern Africa. Within South Africa, 44% of this vegetation type has been transformed. Afromontane forest only covers 0.56 % of South Africa, yet it contains 5.35% of South Africa's plant species. Prior to this investigation of the indigenous forests on the Blyde River Canyon Nature Reserve (BRCNR), very little was known about the size, floristic composition and conservation status of the forest biome conserved within the reserve. We report here an inventory of the forest size, fragmentation, species composition and the basic floristic communities along environmental gradients. Results A total of 2111 ha of forest occurs on Blyde River Canyon Nature Reserve. The forest is fragmented, with a total of 60 forest patches recorded, varying from 0.21 ha to 567 ha in size. On average, patch size was 23 ha. Two forest communities – high altitude moist afromontane forest and low altitude dry afromontane forest – are identified. Sub-communities are recognized based on canopy development and slope, respectively. An altitudinal gradient accounts for most of the variation within the forest communities. Conclusion BRCNR has a fragmented network of small forest patches that together make up 7.3% of the reserve's surface area. These forest patches host a variety of forest-dependent trees, including some species considered rare, insufficiently known, or listed under the Red Data List of South African Plants. The fragmented nature of the relatively small forest patches accentuates the need for careful fire management and stringent alien plant control. PMID:15287991
Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L
2016-10-01
As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a heterogeneous tropical forest landscape: (i) rehabilitation of degraded forests aiming to provide global climate regulation and habitat provision ecosystem services and (ii) management intervention to sustain global climate regulation and habitat provision ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.
Simulation of Longwave Enhancement beneath Montane and Boreal Forests in CLM4.5
NASA Astrophysics Data System (ADS)
Todt, M.; Rutter, N.; Fletcher, C. G.; Wake, L. M.; Loranty, M. M.
2017-12-01
CMIP5 models have been shown to underestimate both trend and variability in northern hemisphere spring snow cover extent. A substantial fraction of this area is covered by boreal forests, in which the snow energy balance is dominated by radiation. Forest coverage impacts the surface radiation budget by shading the ground and enhancing longwave radiation. Longwave enhancement in boreal forests is a potential mechanism that contributes to uncertainty in snowmelt modelling, however, its impact on snowmelt in global land models has not been analysed yet. This study assesses the simulation of sub-canopy longwave radiation and longwave enhancement by CLM4.5, the land component of the NCAR Community Earth System Model, in which boreal forests are represented by three plant functional types (PFT): evergreen needleleaf trees (ENT), deciduous needleleaf trees (DNT), and deciduous broadleaf trees (DBT). Simulation of sub-canopy longwave enhancement is evaluated at boreal forest sites covering the three boreal PFT in CLM4.5 to assess the dependence of simulation errors on meteorological forcing, vegetation type and vegetation density. ENT are evaluated over a total of six snowmelt seasons in Swiss alpine and subalpine forests, as well as a single season at a Finnish arctic site with varying vegetation density. A Swedish artic site features varying vegetation density for DBT for a single winter, and two sites in Eastern Siberia are included covering a total of four snowmelt seasons in DNT forests. CLM4.5 overestimates the diurnal range of sub-canopy longwave radiation and consequently longwave enhancement, overestimating daytime values and underestimating nighttime values. Simulation errors result mainly from clear sky conditions, due to high absorption of shortwave radiation during daytime and radiative cooling during nighttime. Using recent improvements to the canopy parameterisations of SNOWPACK as a guideline, CLM4.5 simulations of sub-canopy longwave radiation improved through the implementation of a heat mass parameterisation, i.e. including thermal inertia due to biomass. However, this improvement does not substantially reduce the amplitude of the diurnal cycle, a result also found during the development of SNOWPACK.
NASA Astrophysics Data System (ADS)
Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.
2016-05-01
Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.
Godoi, Mauricio N; Souza, Edivaldo O DE
2016-01-01
Different vegetation types are distributed in mountains according to altitude, topography and soil. The composition and structure of bird communities in these areas can change in relation to the vegetation gradient, with particular communities occupying each habitat type. In this study we present the changes in composition, species richness and bird abundance over the gradient of forests, savannas and altitudinal grasslands of Maciço do Urucum, a mountainous region located in the Chiquitano Dry Forests domain in western Brazil. We recorded 165 bird species through qualitative and quantitative methods. Forested savannas, riparian forests and submontane forests presented the highest richness and abundance of birds, while arboreal savannas and altitudinal grasslands had intermediate and low values, respectively. The bird composition was similar between riparian and submontane forests, while other vegetation types present more dissimilar bird communities. Our results show differences in composition, richness and bird abundance among the vegetation types present at Maciço do Urucum, and highlight an important function of vegetation gradients for the conservation of bird communities in mountains. Additionally, this is the first study of the bird communities in the Brazilian Chiquitano Dry Forests, an important domain in the west of Brazil which has been poorly studied.
Forest Dynamics in the Eastern Ghats of Tamil Nadu, India
NASA Astrophysics Data System (ADS)
Jayakumar, S.; Ramachandran, A.; Bhaskaran, G.; Heo, J.
2009-02-01
The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (<400 m MSL). However, the evergreen forests present at the upper slope (>900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have occurred after the implementation of a forest conservation act. The dependence of local people on forests for various purposes in this region is also considerably high, which might be a key factor for the changes in the forests. The results of this study not only provide an outlook on the present status of the forests and the change trends but also provide the basis for further studies on forests in the EG of TN.
Forest dynamics in the Eastern Ghats of Tamil Nadu, India.
Jayakumar, S; Ramachandran, A; Bhaskaran, G; Heo, J
2009-02-01
The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (<400 m MSL). However, the evergreen forests present at the upper slope (>900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have occurred after the implementation of a forest conservation act. The dependence of local people on forests for various purposes in this region is also considerably high, which might be a key factor for the changes in the forests. The results of this study not only provide an outlook on the present status of the forests and the change trends but also provide the basis for further studies on forests in the EG of TN.
Paul L. Hansen; George R. Hoffman
1988-01-01
A vegetation classification was developed, using the methods and concepts of Daubenmire, on the Ashland, Sioux, and Grand River/Cedar River Districts of the Custer National Forest. Of the 26 habitat types delimited and described, eight were steppe, nine shrub-steppe, four woodland, and five forest. Two community types also were described. A key to the habitat types and...
Information system of forest growth and productivity by site quality type and elements of forest
NASA Astrophysics Data System (ADS)
Khlyustov, V.
2012-04-01
Information system of forest growth and productivity by site quality type and elements of forest V.K. Khlustov Head of the Forestry Department of Russian State Agrarian University named after K.A.Timiryazev doctor of agricultural sciences, professor The efficiency of forest management can be improved substantially by development and introduction of principally new models of forest growth and productivity dynamics based on regionalized site specific parameters. Therefore an innovative information system was developed. It describes the current state and gives a forecast for forest stand parameters: growth, structure, commercial and biological productivity depend on type of site quality. In contrast to existing yield tables, the new system has environmental basis: site quality type. The information system contains set of multivariate statistical models and can work at the level of individual trees or at the stand level. The system provides a graphical visualization, as well as export of the emulation results. The System is able to calculate detailed description of any forest stand based on five initial indicators: site quality type, site index, stocking, composition, and tree age by elements of the forest. The results of the model run are following parameters: average diameter and height, top height, number of trees, basal area, growing stock (total, commercial with distribution by size, firewood and residuals), live biomass (stem, bark, branches, foliage). The system also provides the distribution of mentioned above forest stand parameters by tree diameter classes. To predict the future forest stand dynamics the system require in addition the time slot only. Full set of forest parameters mention above will be provided by the System. The most conservative initial parameters (site quality type and site index) can be kept in the form of geo referenced polygons. In this case the system would need only 3 dynamic initial parameters (stocking, composition and age) to simulate forest parameters and their dynamics. The system can substitute traditional processing of forest inventory field data and provide users with detailed information on the current state of forest and give a prediction. Implementation of the proposed system in combination with high resolution remote sensing is able to increase significantly the quality of forest inventory and at the same time reduce the costs. The system is a contribution to site oriented forest management. The System is registered in the Russian State Register of Computer Programs 12.07.2011, No 2011615418.
Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin
2013-01-01
The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.
Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J.; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin
2013-01-01
The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China. PMID:23977252
Amphibian and reptile abundance in riparian and upslope areas of five forest types in western Oregon
Gomez, D.M.; Anthony, R.G.
1996-01-01
We compared species composition and relative abundance of herpetofauna between riparian and upslope habitats among 5 forest types (shrub, open sapling-pole, large sawtimber and old-growth conifer forests, and deciduous forests) in Western Oregon. Riparian- and upslope- associated species were identified based on capture frequencies from pitfall trapping. Species richness was similar among forest types but slightly greater in the shrub stands. The abundances of 3 species differed among forest types. Total captures was highest in deciduous forests, intermediate in the mature conifer forests, and lowest in the 2 young coniferous forests. Species richness was similar between stream and upslope habitats; however, captures were higher in riparian than upslope habitat. Tailed frogs (Ascaphus truei), Dunn's salamanders (Plethodon dunni), roughskin newts(Tanicha granulosa), Pacific giant salamanders (Dicamptodon tenebrosus) and red-legged frogs(Rana aurora) were captured more frequently in riparian than upslope habitats. Of these species the red-legged frog and Pacific giant salamander may depend on riparian habitat for at least part of their life requirements, while tailed frogs, Dunn's salamanders and roughskin newts appear to be riparian associated species. In addition, we found Oregon salamanders (Ensatina eschscholtzi) were associated with upslope habitats. We suggest riparian management zones should be al least 75-100 m on each side of the stream and that management for upslope/and or old forest associates may be equally as important as for riparian species.
NASA Astrophysics Data System (ADS)
Liu, Chunwei; Sun, Ge; McNulty, Steven G.; Noormets, Asko; Fang, Yuan
2017-01-01
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. This study aimed at deriving monthly Kc for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly Kc data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), Kc values had large seasonal variation across all land covers. The spatial variability of Kc was well explained by latitude, suggesting site factors are a major control on Kc. Seasonally, Kc increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly Kc in all land covers, except in EBF. During the peak growing season, forests had the highest Kc values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for Kc by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. The Kc models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunwei; Sun, Ge; McNulty, Steven G.
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less
Liu, Chunwei; Sun, Ge; McNulty, Steven G.; ...
2017-01-18
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less
2008-06-01
complex, formally known as the Birch Creek Shist. Figure 3-3 – Proposed Donnelly Ridge Tower Site 3.1.4 Soils 3.1.4.1 The Delta Creek channel...in elevation, and fire history. Major vegetation types include white and black spruce coniferous forests; paper birch and poplar broadleaf forests...consists primarily of black spruce, dwarf birch , willow, sedges, and grasses (Figure 3-4). 3.2.2 Wildlife 3.2.2.1 The lands associated
Volume distribution in saw-timber types in the ponderosa pine region.
Stephen N. Wyckoff
1939-01-01
The forest survey, a Nation-wide project authorized by Congress in 1928, consists of a complete and detailed investigation of the country's present and future forest resources in five major parts: (1) an inventory of the country's existing forest resources in terms of areas occupied by forest-cover types and of timber volumes, by species, in board feet and...
Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada, California, USA
Brandon M. Collins; Gary B. Roller
2013-01-01
There is considerable concern over the occurrence of stand-replacing fire in forest types historically associated with low- to moderate-severity fire. The concern is largely over whether contemporary levels of stand-replacing fire are outside the historical range of variability, and what natural forest recovery is in these forest types following stand-replacing fire....
Map of distribution of six forest ownership types in the conterminous United States
Jaketon H. Hewes; Brett J. Butler; Greg C. Liknes; Mark D. Nelson; Stephanie A. Snyder
2014-01-01
This map depicts the spatial distribution of ownership types across forest land in the conterminous United States circa 2009. The distribution is derived, in part, from Forest Inventory and Analysis (FIA) data that are collected at a sample intensity of approximately one plot per 2400 ha across the United States (U.S. Forest Service 2012). Ownership categories were...
Response of Brown Creepers to elevation and forest edges in the southern Sierra Nevada, California
Kathryn Purcell; Craig Thompson; Douglas Drynan
2012-01-01
We studied the responses of the Brown Creeper (Certhia americana) to forest edges in the southern Sierra Nevada, California. We censused birds and monitored nests in four forest types over an elevational gradient. We identified habitat patches homogeneous in terms of forest type, seral stage, and canopy cover and rated edges between adjoining...
David N. Wear; Robert Huggett
2011-01-01
This chapter describes how forest type and age distributions might be expected to change in the Appalachian-Cumberland portions of the Central Hardwood Region over the next 50 years. Forecasting forest conditions requires accounting for a number of biophysical and socioeconomic dynamics within an internally consistent modeling framework. We used the US Forest...
Light intensity related to stand density in mature stands of the western white pine type
C. A. Wellner
1948-01-01
Where tolerance of forest trees or subordinate vegetation is a factor in management, the forester needs a simple field method of Estimating or forecasting light intensities in forest stands. The following article describes a method developed for estimating light intensity beneath the canopy in western white pine forests which may have application in other types.
Selective Logging, Fire, and Biomass in Amazonia
NASA Technical Reports Server (NTRS)
Houghton, R. A.
1999-01-01
Biomass and rates of disturbance are major factors in determining the net flux of carbon between terrestrial ecosystems and the atmosphere, and neither of them is well known for most of the earth's surface. Satellite data over large areas are beginning to be used systematically to measure rates of two of the most important types of disturbance, deforestation and reforestation, but these are not the only types of disturbance that affect carbon storage. Other examples include selective logging and fire. In northern mid-latitude forests, logging and subsequent regrowth of forests have, in recent decades, contributed more to the net flux of carbon between terrestrial ecosystems and the atmosphere than any other type of land use. In the tropics logging is also becoming increasingly important. According to the FAO/UNEP assessment of tropical forests, about 25% of total area of productive forests have been logged one or more times in the 60-80 years before 1980. The fraction must be considerably greater at present. Thus, deforestation by itself accounts for only a portion of the emissions carbon from land. Furthermore, as rates of deforestation become more accurately measured with satellites, uncertainty in biomass will become the major factor accounting for the remaining uncertainty in estimates of carbon flux. An approach is needed for determining the biomass of terrestrial ecosystems. 3 Selective logging is increasingly important in Amazonia, yet it has not been included in region-wide, satellite-based assessments of land-cover change, in part because it is not as striking as deforestation. Nevertheless, logging affects terrestrial carbon storage both directly and indirectly. Besides the losses of carbon directly associated with selective logging, logging also increases the likelihood of fire.
ATLANTIC BATS: a data set of bat communities from the Atlantic Forests of South America.
Muylaert, Renata D L; Stevens, Richard D; Esbérard, Carlos E L; Mello, Marco A R; Garbino, Guilherme S T; Varzinczak, Luiz H; Faria, Deborah; Weber, Marcelo D M; Kerches Rogeri, Patricia; Regolin, André L; Oliveira, Hernani F M D; Costa, Luciana D M; Barros, Marília A S; Sabino-Santos, Gilberto; Crepaldi de Morais, Mara Ariane; Kavagutti, Vinicius S; Passos, Fernando C; Marjakangas, Emma-Liina; Maia, Felipe G M; Ribeiro, Milton C; Galetti, Mauro
2017-12-01
Bats are the second most diverse mammal order and they provide vital ecosystem functions (e.g., pollination, seed dispersal, and nutrient flux in caves) and services (e.g., crop pest suppression). Bats are also important vectors of infectious diseases, harboring more than 100 different virus types. In the present study, we compiled information on bat communities from the Atlantic Forests of South America, a species-rich biome that is highly threatened by habitat loss and fragmentation. The ATLANTIC BATS data set comprises 135 quantitative studies carried out in 205 sites, which cover most vegetation types of the tropical and subtropical Atlantic Forest: dense ombrophilous forest, mixed ombrophilous forest, semideciduous forest, deciduous forest, savanna, steppe, and open ombrophilous forest. The data set includes information on more than 90,000 captures of 98 bat species of eight families. Species richness averaged 12.1 per site, with a median value of 10 species (ranging from 1 to 53 species). Six species occurred in more than 50% of the communities: Artibeus lituratus, Carollia perspicillata, Sturnira lilium, Artibeus fimbriatus, Glossophaga soricina, and Platyrrhinus lineatus. The number of captures divided by sampling effort, a proxy for abundance, varied from 0.000001 to 0.77 individuals·h -1 ·m -2 (0.04 ± 0.007 individuals·h -1 ·m -2 ). Our data set reveals a hyper-dominance of eight species that together that comprise 80% of all captures: Platyrrhinus lineatus (2.3%), Molossus molossus (2.8%), Artibeus obscurus (3.4%), Artibeus planirostris (5.2%), Artibeus fimbriatus (7%), Sturnira lilium (14.5%), Carollia perspicillata (15.6%), and Artibeus lituratus (29.2%). © 2017 by the Ecological Society of America.
Do forest community types provide a sufficient basis to evaluate biological diversity?
Samuel A. Cushman; Kevin S. McKelvey; Curtis H. Flather; Kevin McGarigal
2008-01-01
Forest communities, defined by the size and configuration of cover types and stand ages, have commonly been used as proxies for the abundance or viability of wildlife populations. However, for community types to succeed as proxies for species abundance, several assumptions must be met. We tested these assumptions for birds in an Oregon forest environment. Measured...
Postfire Forest Recovery in California's National Forests
NASA Astrophysics Data System (ADS)
Welch, K.; Young, T.; Safford, H.
2012-12-01
Due to fire suppression policies and other management practices over the last century, many low- to mid-elevation forest types in the Sierra Nevada have accumulated high fuel loads that promote stand-replacing high-intensity fires. Current and future projected trends in climate are predicted to increase the occurrence of such fires. We established over 1,000 plots in a range of elevations, environments, forest types, climate zones and fire severity classes to provide insight into the factors that promote natural tree regeneration after wildfires, the limiting factors in species establishment, and the differences in post-fire responses of conifers and hardwoods. We employed a standardized protocol that measured site characteristics, seedling densities, and woody plant growth. Preliminary results reveal that fire severity generally has a unimodal relationship with rates of natural regeneration, although effects of site and local environment act to modulate the shape of the relationship. Above low to moderate severities, natural regeneration rates of all tree species decrease with increasing severity, possibly due to a combination of factors including seed mortality, increasing distance to the nearest living seed tree, and more severe microclimatic conditions. Though hardwoods (oaks) are able to both seed and resprout from top-killed root crowns in a postfire environment, conifers still have the numerical advantage over hardwoods through seeding alone. We did not find evidence that shrubs have a strong either facilitative or competitive effect on conifer seedling establishment or growth in the first five years of forest recovery. Understanding forest recovery and regeneration processes after high severity fires is critical to appropriately applying management strategies on National Forest lands.
NASA Astrophysics Data System (ADS)
Kennedy, R. E.; Hughes, J.; Neeti, N.; Yang, Z.; Gregory, M.; Roberts, H.; Kane, V. R.; Powell, S. L.; Ohmann, J.
2016-12-01
Because carbon pools and fluxes on wooded landscapes are constrained by their type, age and health, understanding the causes and consequences of carbon change requires frequent observation of forest condition and of disturbance, mortality, and growth processes. As part of USDA and NASA funded efforts, we built empirical monitoring system that integrates time-series Landsat imagery, Forest Inventory and Analysis (FIA) plot data, small-footprint lidar data, and aerial photos to characterize key carbon dynamics in forested ecosystems of Washington, Oregon and California. Here we report yearly biomass estimates for every forested 30 by 30m pixel in the states of Washington, Oregon, and California from 1990 to 2010, including spatially explicit estimates of uncertainty in our yearly predictions. Total biomass at the ecoregion scale agrees well with estimates from FIA plot data alone, currently the only method for reliable monitoring in the forests of the region. Comparisons with estimates of biomass modeled from four small-footprint lidar acquisitions in overlapping portions of our study area show general patterns of agreement between the two types of estimation, but also reveal some disparities in spatial pattern potentially attributable to age and vegetation condition. Using machine-learning techniques based on both Landsat image time series and high resolution aerial photos, we then modeled the agent causing change in biomass for every change event in the region, and report the relative distribution of carbon loss attributable to natural disturbances (primarily fire and insect-related mortality) versus anthropogenic causes (forest management and development).
Indiana's forests 1999-2003 (Part A)
Christopher Woodall; Dan Johnson; Joey Gallion; Charles Perry; Brett Butler; Ron Piva; Ed Jepsen; Dave Nowak; Phil Marshall
2005-01-01
The first completed annual inventory of Indiana's forests reports more than 4.5 million acres of forest land with a diverse array of forest types, substantial growth of economically valuable tree species, and future forest health concerns such as invasive species, forest fragmentation, and oak forest decline.
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li; Xu, Zhenfeng
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.
Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.
2008-01-01
Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering lowland forest clearing for agriculture. Copyright 2008 College of Arts and Sciences.
NASA Astrophysics Data System (ADS)
Razali, Nor Bazilah; Abdul-Rahim, Ahmad Rizal; Md-Nor, Shukor; Mohd-Taib, Farah Shafawati
2018-04-01
Exploitation of forest for commercial agriculture has taken toll on wildlife species worldwide. A forest farm project with the aim of compensating the forest loss has been implemented in Kemasul Forest Reserve, of Pahang State, Malaysia through plantation of fast growing and adaptable plant species. The objective of this study is to determine the impact of this practice on diversity. The study was conducted in a long strip of forest fragment, where two study sites with different landscape matrix types were chosen; oil palm plantation (JR) and Acacia mangium plantations (CM). A total of 75 individuals from 13 species and six families were collected at both sites. The result shows forest with A. mangium plantations matrix types yield higher species diversity. There are 10 shared species that can be found at both study sites including Callosciurus notatus, Hystrix brachyura, Macaca nemestrina, and Tupaia glis. However, some species only existed at selected sites such as Leopoldamys sabanus which can only be found at JR. On the other hand, Callosciurus nigrovittatus, Viverra tangalunga and Paradoxurus hermaphroditus were only recorded at CM. Out of all individuals collected, four of them are protected species as reported by IUCN. Callosciurus nigrovittatus is listed as Near Threatened while the other three species (Maxomys rajah, Maxomys whiteheadi, and Macaca nemestrina) are Vulnerable. If conservation efforts in Kemasul Forest Reserved are neglected, these four species would be exposed to critical threats that might cause them facing extinction in the future. Mann Whitney U test shows no significant difference of distribution and species richness of small to medium-sized mammals in both study sites (U=51.5, p=0.59). This study therefore reveals that although the compensatory forest plantation initiatives yield positive effect on diversity of mammal's species, it does not necessarily provide ample food resources to the wildlife, instead it serves as important buffer zones for wildlife movement.
Fire ecology of the forest habitat types of northern Idaho
Jane Kapler Smith; William C. Fischer
1997-01-01
Provides information on fire ecology in forest habitat and community types occurring in northern Idaho. Identifies fire groups based on presettlement fire regimes and patterns of succession and stand development after fire. Describes forest fuels and suggests considerations for fire management.
Clearcut mapping and forest type mapping in eastern forests with LANDSAT data
NASA Technical Reports Server (NTRS)
Sutherland, K.
1981-01-01
The development and use of signature packages which provide a forest type map and which identify clearcut areas is discussed. The type map divides the forest land into three categories: softwood, mixed wood, and hardwood. The user defines each of these categories and adjusts the signature package to fit his needs. Success in identifying clearcuts and their stage of regrowth was demonstrated in New Hampshire where clearcuts range in size from 5 to 100 acres with between 30 and 40 acres being the most common.
Application of China's National Forest Continuous Inventory database.
Xie, Xiaokui; Wang, Qingli; Dai, Limin; Su, Dongkai; Wang, Xinchuang; Qi, Guang; Ye, Yujing
2011-12-01
The maintenance of a timely, reliable and accurate spatial database on current forest ecosystem conditions and changes is essential to characterize and assess forest resources and support sustainable forest management. Information for such a database can be obtained only through a continuous forest inventory. The National Forest Continuous Inventory (NFCI) is the first level of China's three-tiered inventory system. The NFCI is administered by the State Forestry Administration; data are acquired by five inventory institutions around the country. Several important components of the database include land type, forest classification and ageclass/ age-group. The NFCI database in China is constructed based on 5-year inventory periods, resulting in some of the data not being timely when reports are issued. To address this problem, a forest growth simulation model has been developed to update the database for years between the periodic inventories. In order to aid in forest plan design and management, a three-dimensional virtual reality system of forest landscapes for selected units in the database (compartment or sub-compartment) has also been developed based on Virtual Reality Modeling Language. In addition, a transparent internet publishing system for a spatial database based on open source WebGIS (UMN Map Server) has been designed and utilized to enhance public understanding and encourage free participation of interested parties in the development, implementation, and planning of sustainable forest management.
Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime
2015-01-01
We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.
Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida
2017-01-01
Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies. PMID:28617841
Imani, Gérard; Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida
2017-01-01
Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies.
Where do forests influence rainfall?
NASA Astrophysics Data System (ADS)
Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line
2017-04-01
Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.
Knutson, M.G.; Hoover, J.P.; Klaas, E.E.; Thompson, Frank R.
1996-01-01
Bottomland forests of the Central Forest Region of the Upper Midwest are found primarily on the floodplains of large rivers and include at least six types of forest communities. Birds breeding in bottomland forests are affected by extensive variation in latitude, climate, hydrology, forest succession, and change caused by anthropogenic disturbances. The floodplain forest bird community differs in species composition and in relative abundance from adjacent upland habitats. High abundances of some species are found in the floodplain and some species, such as the prothonotary warbler, brown creeper, yellow-billed cuckoo, yellow-bellied sapsucker, and great crested flycatcher, show a clear preference for floodplain forests. Studies of nesting success indicate that, for some species, nest success may be higher in the floodplain than in the uplands. Floodplain birds face threats due to large-scale loss of floodplain forest habitat. Conservation efforts should focus on restoring degraded floodplains by maintaining high tree species diversity and wide corridors. To accomplish this, the underlying hydrodynamics which support a diverse floodplain forest habitat may need to be restored. Large, contiguous tracts of floodplain and upland forests should be maintained where they exist and restored in other locations. This will provide some high quality habitat for area-sensitive neotropical migratory birds (NTMBs) in agricultural landscapes where small, scattered forest fragments are the rule. Future research efforts should examine the importance of floodplain forests in maintaining populations of neotropical migrants, especially birds experiencing population declines in adjacent uplands.
Chen, Han Y H; Luo, Yong
2015-10-01
Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1) year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1) year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1) year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1) year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass. © 2015 John Wiley & Sons Ltd.
Ronald J. Piva; W. Keith Moser; Douglas D. Haugan; Gregory J. Josten; Gary J. Brand; Brett J. Butler; Susan J. Crocker; Mark H. Hansen; Dacia M. Meneguzzo; Charles H. Perry; Christopher W. Woodall
2009-01-01
The first completed annual inventory of South Dakota's forests reports almost 1.7 million acres of forest land. Softwood forests make up 74 percent of the total forest land area; the ponderosa pine forest type by itself accounts for 69 percent of the total.
Ronald J. Piva; Brian F. Walters; Douglas D. Haugan; Gregory J. Josten; Brett J. Butler; Susan J. Crocker; Grant M. Domke; Mark A. Hatfield; Cassandra M. Kurtz; Andrew J. Lister; Tonya W. Lister; W. Keith Moser; Mark D. Nelson; Christopher W. Woodall
2013-01-01
The second completed annual inventory of South Dakota's forests reports 1.9 million acres of forest land. Softwood forests make up 68 percent of the total forest land area, with the ponderosa pine forest type by itself accounting for 60 percent of the total.
The woody biomass resource of East Oklahoma, 1993
James F. Rosson
1993-01-01
Tables are presented for fresh and dry biomass estimates of major trees in east Oklahoma by forest type, ownership, species, stand basal area, tree class, diameter, and height. Information for total tree, stem, and crown components is included.
Joseph L. Ganey; Scott C. Vojta
2012-01-01
Down logs provide important ecosystem services in forests and affect surface fuel loads and fire behavior. Amounts and kinds of logs are influenced by factors such as forest type, disturbance regime, forest man-agement, and climate. To quantify potential short-term changes in log populations during a recent global- climate-change type drought, we sampled logs in mixed-...
Modeling small-scale variability in the composition of goshawk habitat on the Kaibab National Forest
Suzanne M. Joy; Robin M. Reich; Richard T. Reynolds
2000-01-01
We used field data, topographical information (elevation, slope, aspect, landform), and Landsat Thematic Mapper imagery to model forest vegetative types to a 10-m resolution on the Kaibab National Forest in northern Arizona. Forest types were identified by clustering the field data and then using a decision tree based on the spectral characteristics of a Landsat image...
James Legilisho-Kiyiapi
2000-01-01
Through combined use of satellite imagery, aerial photographs, and ground truthing, a multilevel assessment was conducted in a forest block that forms a unique dispersal zone to the Maasai Mara National Reserve ecosystem. Results of the survey revealed considerable ecological diversity on an area-scale basis - in terms of ecotypes. Forest types ranged from Afro-montane...
Habitat types of the Tenderfoot Creek Experimental Forest
David M. Ondov
1975-01-01
In May 1974, a review draft of the Forest Habitat Types of Montana (Pfister et al. 1974) was released for use by Forest Service personnel and others requiring a method of ecosystem classification as a means to stratify forest environments in Montana. With the use of this review draft in mind, an objective was outlined to develop a vegetation map of the Tenderfoot Creek...
Crystal L. Raymond; Sean P. Healey; Alicia Peduzzi; Paul L. Patterson
2015-01-01
Disturbance is a key driver of carbon (C) dynamics in forests. Insect epidemics, wildfires, and timber harvest have greatly affected North American C budgets in the last century. Research is needed to understand how forest C dynamics (source duration and recovery time) following disturbance vary as a function of disturbance type, severity, forest type, and...
Quantifying tropical dry forest type and succession: substantial improvement with LiDAR
Sebastian Martinuzzi; William A. Gould; Lee A. Vierling; Andrew T. Hudak; Ross F. Nelson; Jeffrey S. Evans
2012-01-01
Improved technologies are needed to advance our knowledge of the biophysical and human factors influencing tropical dry forests, one of the worldâs most threatened ecosystems. We evaluated the use of light detection and ranging (LiDAR) data to address two major needs in remote sensing of tropical dry forests, i.e., classification of forest types and delineation of...
Oil palm monoculture induces drastic erosion of an Amazonian forest mammal fauna
Maués, Paula Cristina R. de A.; Oliveira, Geovana Linhares; Mineiro, Ivo G. B.; de Maria, Susanne L. Silva; Lima, Renata C. S.
2017-01-01
Oil palm monoculture comprises one of the most financially attractive land-use options in tropical forests, but cropland suitability overlaps the distribution of many highly threatened vertebrate species. We investigated how forest mammals respond to a landscape mosaic, including mature oil palm plantations and primary forest patches in Eastern Amazonia. Using both line-transect censuses (LTC) and camera-trapping (CT), we quantified the general patterns of mammal community structure and attempted to identify both species life-history traits and the environmental and spatial covariates that govern species intolerance to oil palm monoculture. Considering mammal species richness, abundance, and species composition, oil palm plantations were consistently depauperate compared to the adjacent primary forest, but responses differed between functional groups. The degree of forest habitat dependency was a leading trait, determining compositional dissimilarities across habitats. Considering both the LTC and CT data, distance from the forest-plantation interface had a significant effect on mammal assemblages within each habitat type. Approximately 87% of all species detected within oil palm were never farther than 1300 m from the forest edge. Our study clearly reinforces the notion that conventional oil palm plantations are extremely hostile to native tropical forest biodiversity, which does not bode well given prospects for oil palm expansion in both aging and new Amazonian deforestation frontiers. PMID:29117202
Forest Pest Control. Bulletin 759.
ERIC Educational Resources Information Center
Coleman, V. Rodney
This manual describes the major forest types, the major species, seed orchards, and tree nurseries. Methods of identifying forest insect pests and diseases are given. The most common types of insecticides, fungicides, and herbicides are described. Both sprayer and granular applicator methods are discussed. Environmental considerations are…
Schnell, Sebastian; Altrell, Dan; Ståhl, Göran; Kleinn, Christoph
2015-01-01
In contrast to forest trees, trees outside forests (TOF) often are not included in the national monitoring of tree resources. Consequently, data about this particular resource is rare, and available information is typically fragmented across the different institutions and stakeholders that deal with one or more of the various TOF types. Thus, even if information is available, it is difficult to aggregate data into overall national statistics. However, the National Forest Monitoring and Assessment (NFMA) programme of FAO offers a unique possibility to study TOF resources because TOF are integrated by default into the NFMA inventory design. We have analysed NFMA data from 11 countries across three continents. For six countries, we found that more than 10% of the national above-ground tree biomass was actually accumulated outside forests. The highest value (73%) was observed for Bangladesh (total forest cover 8.1%, average biomass per hectare in forest 33.4 t ha(-1)) and the lowest (3%) was observed for Zambia (total forest cover 63.9%, average biomass per hectare in forest 32 t ha(-1)). Average TOF biomass stocks were estimated to be smaller than 10 t ha(-1). However, given the large extent of non-forest areas, these stocks sum up to considerable quantities in many countries. There are good reasons to overcome sectoral boundaries and to extend national forest monitoring programmes on a more systematic basis that includes TOF. Such an approach, for example, would generate a more complete picture of the national tree biomass. In the context of climate change mitigation and adaptation, international climate mitigation programmes (e.g. Clean Development Mechanism and Reduced Emission from Deforestation and Degradation) focus on forest trees without considering the impact of TOF, a consideration this study finds crucial if accurate measurements of national tree biomass and carbon pools are required.
Central States forest management guides as applied in STEMS.
Nancy R. Walters
1988-01-01
Describes a management prescription system for Central States cover types developed for use in the Central States Stand and Tree Evaluation and Modeling System (STEMS). It includes one management guide for each of the six major cover types in the region. Each guide consists of a decision key that prescribes management, based on stand characteristics and a set of...
Neil H. Berg; David L. Azuma
2010-01-01
Accelerated erosion commonly occurs after wildfires on forested lands. As burned areas recover, erosion returns towards prefire rates depending on many site-specific characteristics, including fire severity, vegetation type, soil type and climate. In some areas, erosion recovery can be rapid, particularly where revegetation is quick. Erosion recovery is less well...
Red Pine in the Northern Lake States
Thomas L. Schmidt
2003-01-01
Red pine is an important tree species for the Northern Lake States. About 4 percent of the total area of timberland is dominated by red pine but most other forest types also have red pine as a component. The red pine forest type in the region has dramatically increased in area since the 1930s. Stand-size class distribution of the red pine forest type has changed over...
NASA Astrophysics Data System (ADS)
di Porcia e Brugnera, M.; Longo, M.; Verbeek, H.
2017-12-01
Lianas are an important component of tropical forests, constituting up to 40% of the woody stems and about 35% of the woody species. Tropical forests have been experiencing large-scale structural changes, including an increase in liana abundance and biomass. This may eventually reduce the projected carbon sink of tropical forests. Despite their crucial role no single terrestrial ecosystem model has included lianas so far. Here, we present the very first implementation of lianas in the Ecosystem Demography model (ED2). ED2 is able to represent the competition for water and light between different vegetation types at the regional level. Our new implementation of ED2 is hence suitable to address important questions such as the impact of lianas on the tropical forest carbon balance. We validated the model against forest inventory and eddy covariance flux data at a dry seasonal site (Barro Colorado Island, Panama), and at a wet rainforest site (Paracou, French Guiana). The model was able to represent size structure and carbon accumulation rates. We also evaluated the impact of the unique allocation strategy of lianas on their competitive ability. Lianas invest only a small fraction of their carbon for structural tissues when compared to trees. As a result, lianas benefit from an extra amount of available carbon, however the trade-offs of low allocation on structural tissues are not yet well understood. We are currently investigating a number of hypotheses, including the possibility for lianas to have high turnover rates for leaves and fine roots, or to have high mortality rates due to the loss of structural support when trees die. As such our model allows us to get a better understanding of the role of lianas in the tropical forest carbon cycle.
Communications: Mosquito Habitats, Land Use, and Malaria Risk in Belize from Satellite Imagery
NASA Technical Reports Server (NTRS)
Pope, Kevin; Masuoka, Penny; Rejmankova, Eliska; Grieco, John; Johnson, Sarah; Roberts, Donald
2004-01-01
Satellite imagery of northern Belize is used to examine the distribution of land use and breeding habitats of the malaria vector the Anopheles mosquito. A land cover classification based on multispectral SPOT and multitemporal Radarsat images identified eleven land cover classes, including agricultural, forest, and marsh types. Two of the land cover types, Typha domingensis marsh and flooded forest, are Anopheles vestitipennis larval habitats, and one, Eleocharis spp. marsh, is the larval habitat for Anopheles albimanus. Geographic Information Systems (GIS) analyses of land cover demonstrate that the amount of Typha domingensis in a marsh is positively correlated with the amount of agricultural land in the adjacent upland, and negatively correlated with the amount of adjacent forest. This finding is consistent with the hypothesis that nutrient (phosphorus) runoff from agricultural lands is causing an expansion of Typha domingensis in northern Belize. Thus, land use induced expansion of Anopheles vestitipennis larval habitat is potentially increasing malaria risk in Belize, and in other regions where Anopheles vestitipennis is a major malaria vector.
African Savanna-Forest Boundary Dynamics: A 20-Year Study
Cuni-Sanchez, Aida; White, Lee J. T.; Calders, Kim; Jeffery, Kathryn J.; Abernethy, Katharine; Burt, Andrew; Disney, Mathias; Gilpin, Martin; Gomez-Dans, Jose L.; Lewis, Simon L.
2016-01-01
Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types. PMID:27336632
African Savanna-Forest Boundary Dynamics: A 20-Year Study.
Cuni-Sanchez, Aida; White, Lee J T; Calders, Kim; Jeffery, Kathryn J; Abernethy, Katharine; Burt, Andrew; Disney, Mathias; Gilpin, Martin; Gomez-Dans, Jose L; Lewis, Simon L
2016-01-01
Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types.
Stand-level variation in evapotranspiration in non-water-limited eucalypt forests
NASA Astrophysics Data System (ADS)
Benyon, Richard G.; Nolan, Rachael H.; Hawthorn, Sandra N. D.; Lane, Patrick N. J.
2017-08-01
To better understand water and energy cycles in forests over years to decades, measurements of spatial and long-term temporal variability in evapotranspiration (Ea) are needed. In mountainous terrain, plot-level measurements are important to achieving this. Forest inventory data including tree density and size measurements, often collected repeatedly over decades, sample the variability occurring within the geographic and topographic range of specific forest types. Using simple allometric relationships, tree stocking and size data can be used to estimate variables including sapwood area index (SAI), which may be strongly correlated with annual Ea. This study analysed plot-level variability in SAI and its relationship with overstorey and understorey transpiration, interception and evaporation over a 670 m elevation gradient, in non-water-limited, even-aged stands of Eucalyptus regnans F. Muell. to determine how well spatial variation in annual Ea from forests can be mapped using SAI. Over the 3 year study, mean sap velocity in five E. regnans stands was uncorrelated with overstorey sapwood area index (SAI) or elevation: annual transpiration was predicted well by SAI (R2 0.98). Overstorey and total annual interception were positively correlated with SAI (R2 0.90 and 0.75). Ea from the understorey was strongly correlated with vapour pressure deficit (VPD) and net radiation (Rn) measured just above the understorey, but relationships between understorey Ea and VPD and Rn differed between understorey types and understorey annual Ea was not correlated with SAI. Annual total Ea was also strongly correlated with SAI: the relationship being similar to two previous studies in the same region, despite differences in stand age and species. Thus, spatial variation in annual Ea can be reliably mapped using measurements of SAI.
Schmeelk, Thomas C; Millar, Jocelyn G; Hanks, Lawrence M
2016-08-01
We assessed how height of panel traps above the forest floor, and the type of trap bait used, influenced the abundance and diversity of cerambycid beetles caught in forested areas of east-central Illinois. Panel traps were suspended from branches of hardwood trees at three heights above the ground: understory (∼1.5 m), lower canopy (∼6 m), and midcanopy (∼12 m). Traps were baited with either a multispecies blend of synthesized cerambycid pheromones or a fermenting bait mixture. Traps captured a total of 848 beetles of 50 species in the cerambycid subfamilies Cerambycinae, Lamiinae, Lepturinae, and Parandrinae, and one species in the closely related family Disteniidae. The species caught in highest numbers was the cerambycine Anelaphus pumilus (Newman), represented by 349 specimens. The 17 most abundant species (mean ± 1 SD: 45 ± 80 specimens per species) included 12 cerambycine and five lamiine species. Of these most abundant species, 13 (77%) were attracted to traps baited with the pheromone blend. Only the cerambycine Eburia quadrigeminata (Say) was attracted by the fermenting bait. Three species were captured primarily in understory traps, and another five species primarily in midcanopy traps. Variation among cerambycid species in their vertical distribution in forests accounted for similar overall abundances and species richness across trap height treatments. These findings suggest that trapping surveys of native communities of cerambycids, and quarantine surveillance for newly introduced exotic species, would be optimized by including a variety of trap baits and distributing traps across vertical strata of forests. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kuttner, Benjamin George
Natural fire return intervals are relatively long in eastern Canadian boreal forests and often allow for the development of stands with multiple, successive cohorts of trees. Multi-cohort forest management (MCM) provides a strategy to maintain such multi-cohort stands that focuses on three broad phases of increasingly complex, post-fire stand development, termed "cohorts", and recommends different silvicultural approaches be applied to emulate different cohort types. Previous research on structural cohort typing has relied upon primarily subjective classification methods; in this thesis, I develop more comprehensive and objective methods for three common boreal mixedwood and black spruce forest types in northeastern Ontario. Additionally, I examine relationships between cohort types and stand age, productivity, and disturbance history and the utility of airborne LiDAR to retrieve ground-based classifications and to extend structural cohort typing from plot- to stand-levels. In both mixedwood and black spruce forest types, stand age and age-related deadwood features varied systematically with cohort classes in support of an age-based interpretation of increasing cohort complexity. However, correlations of stand age with cohort classes were surprisingly weak. Differences in site productivity had a significant effect on the accrual of increasingly complex multi-cohort stand structure in both forest types, especially in black spruce stands. The effects of past harvesting in predictive models of class membership were only significant when considered in isolation of age. As an age-emulation strategy, the three cohort model appeared to be poorly suited to black spruce forests where the accrual of structural complexity appeared to be more a function of site productivity than age. Airborne LiDAR data appear to be particularly useful in recovering plot-based cohort types and extending them to the stand-level. The main gradients of structural variability detected using LiDAR were similar between boreal mixedwood and black spruce forest types; the best LiDAR-based models of cohort type relied upon combinations of tree size, size heterogeneity, and tree density related variables. The methods described here to measure, classify, and predict cohort-related structural complexity assist in translating the conceptual three cohort model to a more precise, measurement-based management system. In addition, the approaches presented here to measure and classify stand structural complexity promise to significantly enhance the detail of structural information in operational forest inventories in support of a wide array of forest management and conservation applications.
[Remote sensing estimation of urban forest carbon stocks based on QuickBird images].
Xu, Li-Hua; Zhang, Jie-Cun; Huang, Bo; Wang, Huan-Huan; Yue, Wen-Ze
2014-10-01
Urban forest is one of the positive factors that increase urban carbon sequestration, which makes great contribution to the global carbon cycle. Based on the high spatial resolution imagery of QuickBird in the study area within the ring road in Yiwu, Zhejiang, the forests in the area were divided into four types, i. e., park-forest, shelter-forest, company-forest and others. With the carbon stock from sample plot as dependent variable, at the significance level of 0.01, the stepwise linear regression method was used to select independent variables from 50 factors such as band grayscale values, vegetation index, texture information and so on. Finally, the remote sensing based forest carbon stock estimation models for the four types of forest were established. The estimation accuracies for all the models were around 70%, with the total carbon reserve of each forest type in the area being estimated as 3623. 80, 5245.78, 5284.84, 5343.65 t, respectively. From the carbon density map, it was found that the carbon reserves were mainly in the range of 25-35 t · hm(-2). In the future, urban forest planners could further improve the ability of forest carbon sequestration through afforestation and interplanting of trees and low shrubs.
NASA Astrophysics Data System (ADS)
Younger, S. E.; Jackson, C. R.
2017-12-01
In the Southeastern United States, evapotranspiration (ET) typically accounts for 60-70% of precipitation. Watershed and plot scale experiments show that evergreen forests have higher ET rates than hardwood forests and pastures. However, some plot experiments indicate that certain hardwood species have higher ET than paired evergreens. The complexity of factors influencing ET in mixed land cover watersheds makes identifying the relative influences difficult. Previous watershed scale studies have relied on regression to understand the influences or low flow analysis to indicate growing season differences among watersheds. Existing studies in the southeast investigating ET rates for watersheds with multiple forest cover types have failed to identify a significant forest type effect, but these studies acknowledge small sample sizes. Trends of decreasing streamflow have been recognized in the region and are generally attributed to five key factors, 1.) influences from multiple droughts, 2.) changes in distribution of precipitation, 3.) reforestation of agricultural land, 4.) increasing consumptive uses, or 5.) a combination of these and other factors. This study attempts to address the influence of forest type on long term average annual streamflow and on stream low flows. Long term annual ET rates were calculated as ET = P-Q for 46 USGS gaged basins with daily data for the 1982 - 2014 water years, >40% forest cover, and no large reservoirs. Land cover data was regressed against ET to describe the relationship between each of the forest types in the National Land Cover Database. Regression analysis indicates evergreen land cover has a positive relationship with ET while deciduous and total forest have a negative relationship with ET. Low flow analysis indicates low flows tend to be lower in watersheds with more evergreen cover, and that low flows increase with increasing deciduous cover, although these relationships are noisy. This work suggests considering forest cover type improves understanding of watershed scale ET at annual and seasonal levels which is consistent with historic paired watershed experiments and some plot scale data.
Melliger, Ramona Laila; Rusterholz, Hans-Peter; Baur, Bruno
2018-01-01
Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species’ response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important. PMID:29920553
Melliger, Ramona Laila; Braschler, Brigitte; Rusterholz, Hans-Peter; Baur, Bruno
2018-01-01
Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species' response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important.
Dar, Javid Ahmad; Sundarapandian, Somaiah
2015-02-01
An accurate characterization of tree, understory, deadwood, floor litter, and soil organic carbon (SOC) pools in temperate forest ecosystems is important to estimate their contribution to global carbon (C) stocks. However, this information on temperate forests of the Himalayas is lacking and fragmented. In this study, we measured C stocks of tree (aboveground and belowground biomass), understory (shrubs and herbaceous), deadwood (standing and fallen trees and stumps), floor litter, and soil from 111 plots of 50 m × 50 m each, in seven forest types: Populus deltoides (PD), Juglans regia (JR), Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), Abies pindrow (AP), and Betula utilis (BU) in temperate forests of Kashmir Himalaya, India. The main objective of the present study is to quantify the ecosystem C pool in these seven forest types. The results showed that the tree biomass ranged from 100.8 Mg ha(-1) in BU forest to 294.8 Mg ha(-1) for the AP forest. The understory biomass ranged from 0.16 Mg ha(-1) in PD forest to 2.36 Mg ha(-1) in PW forest. Deadwood biomass ranged from 1.5 Mg ha(-1) in PD forest to 14.9 Mg ha(-1) for the AP forest, whereas forest floor litter ranged from 2.5 Mg ha(-1) in BU and JR forests to 3.1 Mg ha(-1) in MC forest. The total ecosystem carbon stocks varied from 112.5 to 205.7 Mg C ha(-1) across all the forest types. The C stocks of tree, understory, deadwood, litter, and soil ranged from 45.4 to 135.6, 0.08 to 1.18, 0.7 to 6.8, 1.1 to 1.4, and 39.1-91.4 Mg ha(-1), respectively, which accounted for 61.3, 0.2, 1.4, 0.8, and 36.3 % of the total carbon stock. BU forest accounted 65 % from soil C and 35 % from biomass, whereas PD forest contributed only 26 % from soil C and 74 % from biomass. Of the total C stock in the 0-30-cm soil, about 55 % was stored in the upper 0-10 cm. Soil C stocks in BU forest were significantly higher than those in other forests. The variability of C pools of different ecosystem components is influenced by vegetation type, stand structure, management history, and altitude. Our results reveal that a higher percentage (63 %) of C is stored in biomass and less in soil in these temperate forests except at the higher elevation broad-leaved BU forest. Results from this study will enhance our ability to evaluate the role of these forests in regional and global C cycles and have great implications for planning strategies for conservation. The study provides important data for developing and validating C cycling models for temperate forests.
NASA Astrophysics Data System (ADS)
Horsák, Michal; Juřičková, Lucie; Horsáková, Veronika; Pokorná, Adéla; Pokorný, Petr; Šizling, Arnošt L.; Chytrý, Milan
2018-04-01
Diversity patterns of forest snail assemblages have been studied mainly in Europe. Siberian snail faunas have different evolutionary history and colonization dynamics than European faunas, but studies of forest snail diversity are almost missing from Siberia. Therefore, we collected snails at 173 forest sites in the Russian Altai and adjacent areas, encompassing broad variation in climate and forest types. We found 51 species, with a maximum of 15 and an average of seven species per site. The main gradient in species composition was related to soil pH, a variable that also positively correlates with snail abundances. The second gradient was associated with climate characteristics of winter. We observed significant differences in both species richness and composition among six forest types defined based on vegetation classification. Hemiboreal continental forests were the poorest of these types but hosted several species characteristic of European full-glacial stages of the Late Pleistocene. A high snow cover in Temperate coniferous and mixed forests, protecting the soil from freezing, allowed the frost-sensitive large-bodied (>10 mm) species to inhabit this forest type. In contrast to most of the European snail assemblages studied so far we found that the factors responsible for the variation in species richness differed from those driving species composition. This may be attributed to the sharp climatic gradient and the presence of the cold-adapted species typical of the Pleistocene cold stages. We suggest that southern Siberian forests hosting these species can serve as modern analogues of full-glacial forests in periglacial Central and Eastern Europe.
Missouri's forests 1999-2003 (Part A)
W. Keith Moser; Mark H. Hansen; Thomas B. Treiman; Earl C. Leatherberry; Ed Jepsen; Cassandra L. Olson; Charles H. Perry; Ronald J. Piva; Christopher W. Woodall; Gary J. Brand
2007-01-01
The first completed annual inventory of Missouri's forests reports more than 14.6 million acres of forest land. Softwood forests make up 4 percent of the total forest land area; oak/hickory forest types make up about three-fourths of the total hardwood forest land area. Missouri's forests have continued to increase in volume, with all-live tree volume on...
Kotliar, N.B.; Hejl, S.J.; Hutto, R.L.; Saab, V.; Melcher, Cynthia; McFadzen, M.E.; George, T.L.; Dobkin, D.S.
2002-01-01
Historically, fire was one of the most widespread natural disturbances in the western United States. More recently, however, significant anthropogenic activities, especially fire suppression and silvicultural practices, have altered fire regimes; as a result, landscapes and associated communities have changed as well. Herein, we review current knowledge of how fire and postfire salvaging practices affect avian communities in conifer-dominated forests of the western United States. Specifically, we contrast avian communities in (1) burned vs. unburned forest, and (2) unsalvaged vs. salvage-logged burns. We also examine how variation in burn characteristics (e.g., severity, age, size) and salvage logging can alter avian communities in burns.Of the 41 avian species observed in three or more studies comparing early postfire and adjacent unburned forests, 22% are consistently more abundant in burned forests, 34% are usually more abundant in unburned forests, and 44% are equally abundant in burned and unburned forests or have varied responses. In general, woodpeckers and aerial foragers are more abundant in burned forest, whereas most foliage-gleaning species are more abundant in unburned forests. Bird species that are frequently observed in stand-replacement burns are less common in understory burns; similarly, species commonly observed in unburned forests often decrease in abundance with increasing burn severity. Granivores and species common in open-canopy forests exhibit less consistency among studies. For all species, responses to tire may be influenced by a number of factors including burn severity, fire size and shape, proximity to unburned forests, pre-and post-fire cover types, and time since fire. In addition, postfire management can alter species’ responses to burns. Most cavity-nesting species do not use severely salvaged burns, whereas some cavity-nesters persist in partially salvaged burns. Early post fire specialists, in particular, appear to prefer unsalvaged burns. We discuss several alternatives to severe salvage-logging that will help provide habitat for cavity nesters.We provide an overview of critical research questions and design considerations crucial for evaluating the effects of prescribed fire and other anthropogenic disturbances, such as forest fragmentation. Management of native avifaunas may be most successful if natural disturbance regimes, including fire, are permitted to occur when possible. Natural fires could be augmented with practices, such as prescribed fire (including high-severity fire), that mimic inherent disturbance regimes.
NASA Astrophysics Data System (ADS)
Ewers, B. E.; Mackay, D. S.; Ahl, D. E.; Burrows, S. N.; Samanta, S. S.; Gower, S. T.
2001-05-01
Land use change has created a diversity of forest cover types in northern Wisconsin. Our objective was to determine if changes in forest cover would result in a significant change in regional water flux. To adequately sample these forest cover types we chose four cover types red pine, sugar maple/basswood, quaking aspen/balsam fir, and northern white-cedar/balsam fir/green alder that represent more than 80 percent of the ground area. The remainder of the ground area is mostly non-forested grassland, shrubland, and open water. Within each cover type we measured sap flux of 8 trees of each species. We scaled point measurements of sap flux to tree transpiration using sensors positioned radially into the conducting sapwood and on both the north and south sides of the tree. We found that aspen/balsam fir had the highest average daily transpiration rates. There was no difference in the northern white-cedar/balsam fir/green alder and red pine cover types. The sugar maple/basswood cover type had the lowest daily average transpiration rate. These changes in transpiration could not be explained by differences in leaf area index. Thus, we calculated canopy average stomatal conductance (GS) using an inversion of the Penman-Monteith equation and tree leaf area. We modified a regional hydrology model to include a simple tree hydraulic sub-model that assumes stomatal regulation of leaf water potential. We tested the behavior of the sub-model by evaluating GS response to vapor pressure deficit, radiation, temperature, and soil moisture for each species. We hypothesize that species with a high canopy average stomatal conductance at low vapor pressure deficit will have to have greater sensitivity to vapor pressure deficit in order to maintain minimal leaf water potential as suggested by the model. Our results indicate that changes to forest cover such as conversion from low transpiring sugar maple/basswood to high transpiring aspen/fir will result in predictable changes to the regional water balance of northern Wisconsin.
Salk, Carl F; Frey, Ulrich; Rusch, Hannes
2014-01-01
Communities, policy actors and conservationists benefit from understanding what institutions and land management regimes promote ecosystem services like carbon sequestration and biodiversity conservation. However, the definition of success depends on local conditions. Forests' potential carbon stock, biodiversity and rate of recovery following disturbance are known to vary with a broad suite of factors including temperature, precipitation, seasonality, species' traits and land use history. Methods like tracking over-time changes within forests, or comparison with "pristine" reference forests have been proposed as means to compare the structure and biodiversity of forests in the face of underlying differences. However, data from previous visits or reference forests may be unavailable or costly to obtain. Here, we introduce a new metric of locally weighted forest intercomparison to mitigate the above shortcomings. This method is applied to an international database of nearly 300 community forests and compared with previously published techniques. It is particularly suited to large databases where forests may be compared among one another. Further, it avoids problematic comparisons with old-growth forests which may not resemble the goal of forest management. In most cases, the different methods produce broadly congruent results, suggesting that researchers have the flexibility to compare forest conditions using whatever type of data is available. Forest structure and biodiversity are shown to be independently measurable axes of forest condition, although users' and foresters' estimations of seemingly unrelated attributes are highly correlated, perhaps reflecting an underlying sentiment about forest condition. These findings contribute new tools for large-scale analysis of ecosystem condition and natural resource policy assessment. Although applied here to forestry, these techniques have broader applications to classification and evaluation problems using crowdsourced or repurposed data for which baselines or external validations are not available.
Salk, Carl F.; Frey, Ulrich; Rusch, Hannes
2014-01-01
Communities, policy actors and conservationists benefit from understanding what institutions and land management regimes promote ecosystem services like carbon sequestration and biodiversity conservation. However, the definition of success depends on local conditions. Forests' potential carbon stock, biodiversity and rate of recovery following disturbance are known to vary with a broad suite of factors including temperature, precipitation, seasonality, species' traits and land use history. Methods like tracking over-time changes within forests, or comparison with “pristine” reference forests have been proposed as means to compare the structure and biodiversity of forests in the face of underlying differences. However, data from previous visits or reference forests may be unavailable or costly to obtain. Here, we introduce a new metric of locally weighted forest intercomparison to mitigate the above shortcomings. This method is applied to an international database of nearly 300 community forests and compared with previously published techniques. It is particularly suited to large databases where forests may be compared among one another. Further, it avoids problematic comparisons with old-growth forests which may not resemble the goal of forest management. In most cases, the different methods produce broadly congruent results, suggesting that researchers have the flexibility to compare forest conditions using whatever type of data is available. Forest structure and biodiversity are shown to be independently measurable axes of forest condition, although users' and foresters' estimations of seemingly unrelated attributes are highly correlated, perhaps reflecting an underlying sentiment about forest condition. These findings contribute new tools for large-scale analysis of ecosystem condition and natural resource policy assessment. Although applied here to forestry, these techniques have broader applications to classification and evaluation problems using crowdsourced or repurposed data for which baselines or external validations are not available. PMID:24743325
David Nowak
2016-01-01
Urban forests (and trees) constitute the second forest resource considered in this report. We specifically emphasize the fact that agricultural and urban forests exist on a continuum defined by their relationship (and interrelationship) with a given landscape. These two forest types generally serve different purposes, however. Whereas agricultural forests are...
How extreme weather events can influence the way of thinking about forest management?
NASA Astrophysics Data System (ADS)
Ziemblińska, Klaudia; Merbold, Lutz; Urbaniak, Marek; Haeni, Matthias; Olejnik, Janusz
2014-05-01
One third of the total area of Poland, which is covered by forests, is currently managed by "The State National Forest Holding" - the biggest organization in Europe managing forests. Common management practice is based on clear-cutting the vegetation to maintaining forests and ensuring regrowth. While sufficient information exists on the quantity of harvested biomass and particularly its economic value, little knowledge exists on the overall environmental impact of such management including the carbon budgets of forests in Poland. At the same time these forests are very vulnerable to extreme events such as wind throws. Large wind throws can be used as an experimental platform to study both, the effects of extreme events itself but also the effects of management such as clear-cuts, due to the fact that after such kind of natural disasters similar steps then following clear-cuts are implemented. These activities include the removal of whole trees, collection of branches and pulling out stems with heavy machinery, causing additional disturbance. In this study, we aim at providing information to fill the current knowledge gap of changing C budget after clear-cuts and wind throws. We hypothesize large C losses after clear-cuts and ask whether one can improve current forest management to "save" C and/or enhance C sequestration? To answer this specific question we used the eddy covariance (EC) method to adequately measure the net ecosystem exchange of carbon dioxide (NEE) between a deforested area and the atmosphere (treatment) and compare it to measurements from an intact forest of the same type (control). Both sites have the same soil type (brunic arenosoil - after FAO classification) which is sandy and relatively not fertile. Moreover, main species and composition were similar. The treatment area was chosen after the occurrence of a 20min-lasting tornado in July 2012 in Western Poland. The storm resulted in the destruction of more than 500 ha of 75-year old pine forest and provided a unique situation to assess the C budget of a pine forest after wind throw leading to the construction of the Trzebciny EC tower (treatment site). Measurements of CO2 and H2O exchange continue since the beginning of 2013. Measurements from both sites were directly compared to an already established monitoring station (65-year old Tuczno forest, control). We observed a huge difference in NEE between an intact middle age coniferous forest (control site, net gain of 463 g(C-CO2) m-2 in 2013) and an area of similar forest that was destroyed by a tornado and cleared thereafter (treatment site, net loss of about 518 g(C-CO2) m-2 in 2013). Our results provide a great opportunity to re-evaluate current forest management in Poland and will provide a first step towards adjusting forestry management and policy to become less susceptible to climate change (especially extreme events).
A dynamic ecosystem growth model for forests at high complexity structure
NASA Astrophysics Data System (ADS)
Collalti, A.; Perugini, L.; Chiti, T.; Matteucci, G.; Oriani, A.; Santini, M.; Papale, D.; Valentini, R.
2012-04-01
Forests ecosystem play an important role in carbon cycle, biodiversity conservation and for other ecosystem services and changes in their structure and status perturb a delicate equilibrium that involves not only vegetation components but also biogeochemical cycles and global climate. The approaches to determine the magnitude of these effects are nowadays various and one of those include the use of models able to simulate structural changes and the variations in forests yield The present work shows the development of a forest dynamic model, on ecosystem spatial scale using the well known light use efficiency to determine Gross Primary Production. The model is predictive and permits to simulate processes that determine forest growth, its dynamic and the effects of forest management using eco-physiological parameters easy to be assessed and to be measured. The model has been designed to consider a tri-dimensional cell structure composed by different vertical layers depending on the forest type that has to be simulated. These features enable the model to work on multi-layer and multi-species forest types, typical of Mediterranean environment, at the resolution of one hectare and at monthly time-step. The model simulates, for each layer, a value of available Photosynthetic Active Radiation (PAR) through Leaf Area Index, Light Extinction Coefficient and cell coverage, the transpiration rate that is closely linked to the intercepted light and the evaporation from soil. Using this model it is possible to evaluate the possible impacts of climate change on forests that may result in decrease or increase of productivity as well as the feedback of one or more dominated layers in terms of CO2 uptake in a forest stand and the effects of forest management activities during the forest harvesting cycle. The model has been parameterised, validated and applied in a multi-layer, multi-age and multi-species Italian turkey oak forest (Q. cerris L., C. betulus L. and C. avellana L.) where the medium-term (10 years) development of forest parameters were simulated. The results obtained for net primary production and for stem, root and foliage compartments as well as for forest structure i.e. Diameter at Breast Height, height and canopy cover are in good accordance with field data (R2>0.95). These results show how the model is able to predict forest yield as well as forest dynamic with good accuracy and encourage testing the model capability on other sites with a more complex forest structure and for long-time period with an higher spatial resolution.
Dennis M. May
1990-01-01
The procedures by which the Southern Forest Inventory and Analysis unit calculates stocking from tree data collected on inventory sample plots are described in this report. Stocking is then used to ascertain two other important stand descriptors: forest type and stand size class. Inventory data for three plots from the recently completed 1989 Tennessee survey are used...
NASA Astrophysics Data System (ADS)
Younger, S. E.
2015-12-01
This study assessed the relationship between evapotranspiration (ET) and different types of forest for 74 gaged drainage basins in the Southeast United States with at least 29 years of data and greater than 40% forest cover. The objective was to determine if a difference in tree water use was detectible at the USGS gaged basin scale. It was hypothesized that ET rates are higher in Evergreen dominated watershed due to greater annual productivity. Discharge from United States Geological Survey (USGS) gages (D), landcover from the National Landcover Dataset (NLCD), and precipitation (P) from Daymet, Mauer, Observed Gridded, and PRISM. Annual ET was estimated using ET = P - D. To reduce geological influences the study basins were selected from an area of crystalline bedrock within the Piedmont and Southern Blue Ridge physiographic provinces. Correlations between ET and forest type show a significant difference between evergreen and deciduous forest cover. Evergreen forest dominated watersheds had a positive relationship with ET. Deciduous and Mixed forest dominated watersheds had a negative relationship with ET. These findings are similar to other studies looking at the effect of forest type on ET although other land uses in the basins have potentially indiscernible influences on discharge.
Black bear habitat use in relation to food availability in the Interior Highlands of Arkansas
Clark, Joseph D.; Clapp, Daniel L.; Smith, Kimberly G.; Ederington, Belinda
1994-01-01
A black bear (Ursus americanus) food value index (FVI) was developed and calculated for forest cover type classifications on Ozark Mountain (White Rock) and Ouachita Mountain (Dry Creek) study areas in western Arkansas. FVIs are estimates of bear food production capabilities of the major forest cover types and were calculated using percent cover, mean fruit production scorings, and the dietary percentage of each major plant food species as variables. Goodness-of-fit analyses were used to determine use of forest cover types by 23 radio-collared female bears. Habitat selection by forest cover type was not detected on White Rock but was detected on Dry Creek. Use of habitats on Dry Creek appeared to be related to food production with the exception of regeneration areas, which were used less than expected but had a high FVI ranking. In general, pine cover types had low FVI rankings and were used less than expected by bears. Forest management implications are discussed.
Huang, Zhigang; Ouyang, Zhiyun; Li, Fengrui; Zheng, Hua; Wang, Xiaoke
2010-01-01
To evaluate the long-term effects of reforestation types on soil erosion on degraded land, vegetation and soil properties under conventional sloping farmland (CSF) and three different reforestation types including a Pinus massoniana secondary forest (PSF), an Eucommia ulmoides artificial economic forest (EEF) and a natural succession type forest (NST), were investigated at runoff plot scale over a six-year period in a red soil region of southern China. One hundred and thirty erosive rainfall events generating runoff in plots were grouped into four rainfall types by means of K-mean clustering method. Erosive rainfall type I is the dominant rainfall type. The amount of runoff and the soil loss under erosive rainfall type III were the most, followed by rain-fall type II, IV and I. Compared with CSF treatment, reforestation treatments decreased the average annual runoff depth and the soil loss by 25.5%-61.8% and 93.9%-96.2% during the study period respectively. Meanwhile, runoff depth at PSF and EEF treatments was significantly lower than that in NST treatment, but no significant difference existed in soil erosion modulus among the three reforestation treatments. This is mainly due to the improved vegetation properties (i.e., vegetation coverage, biomass of above- and below-ground and litter-fall mass) and soil properties (i.e., bulk density, total porosity, infiltration rate and organic carbon content) in the three reforestation treatments compared to CSF treatment. The PSF and EEF are recommended as the preferred reforestation types to control runoff and soil erosion in the red soil region of southern China, with the NST potentially being used as an important supplement.
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion. PMID:28982191
NASA Astrophysics Data System (ADS)
Starrs, C.; Stewart, W.; Potts, M. D.
2016-12-01
As California experiences increasing rates of disturbance events such as wildfire, drought, and insect outbreaks, understanding how different management strategies affect long-term forest carbon stock changes in the forest and in harvested wood products used by society will be key to determining strategies to best maximize forest-related carbon sequestration in the future. California's forest area is roughly evenly split across three ownership types: private timberlands, National Forest timberlands, and reserved forests. Forest management strategies in California generally vary by these ownerships; management in reserved lands sequesters carbon within the forest (i.e. leaves wood in the forest), while on private and National Forest timberlands a significant amount of wood is removed from the forest and converted to harvested wood products. The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) is an IPCC-compliant full forest carbon accounting model developed for use in Canada that has been adapted for use in other countries. Changes in natural disturbances in the forest and technological innovation in the use of harvested wood products could substantially alter future carbon trajectories of forests under different management regimes. A key advantage of the CBM-CFS3 model is that in addition to tracking live tree, dead tree, and dead organic matter (DOM) carbon pools in the forest, it also tracks carbon stock changes in harvested wood products. We calibrated the CBM-CFS3 model with US Forest Service Forest Inventory and Analysis (FIA) data for seven forest types across three ownership types to predict carbon stock changes under different natural disturbance and harvested wood product utilization futures. Our results illustrate the importance of using a tractable model that can integrate future changes in forest carbon cycling to keep pace with our changing climate and usage of wood products.
Montenegro, Alba Lucía; Vargas Ríos, Orlando
2008-09-01
The growth of a forest patch through colonization of the adjacent matrix is mostly determined by the particular characteristics of the edge zone. Knowing how these characteristics are related to a specific edge type and how they influence the regeneration process, is important for High Andean forest edges restoration. This study aimed to characterize three types of High Andean forest edge in Cogua Forest Reserve (Colombia): 1) edge of Chusquea scandens, 2) "paramizado", and 3) old edge, characterized for being in a later successional state. Two forest patches were chosen for each edge type and 13 criteria were analyzed; these were of topographic order, micro-environmental order, vegetation structure and species composition. In each patch the vegetation was evaluated by means of two 60 m transects perpendicular to the edge and along the matrix-edge-interior of the forest gradient. All woody plant species were identified and counted to determine their abundance. Environmental variables (air temperature, relative humidity, wind speed, and light radiation) were measured in one of the transects. Three of the 13 criteria were of little importance in shaping the type of edge habitat (slope, patch shape and area). The others were closely related with the micro-environmental conditions and in turn with the vegetation structure and composition; this relationship confers particular characteristics to each edge type. The microclimate and floristic edge limits coincided; edges extend between 10 and 20 m into the forest depending on the edge type. The paramizado edge has the smallest environmental self-regulation capacity and is more exposed to fluctuations of the studied variables, because of its greatest exposition to the wind action and loss of the tallest trees (between 10 and 15 m) which regulate the understorey microclimate. This low environmental buffer capacity prevents the establishing of mature forest species (for example, Schefflera sp. and Oreopanax bogotensis) although they are found in other areas within the same patch. All these results show that the paramizado edge needs the most intervention for its restoration. The Chusquea scandens edge forest is the most sheltered since this species acts as a protecting shield. However it still needs to be controlled to allow the adjacent matrix colonization by the forest species and natural regeneration, as it does in the old edge type forest, which moreover has an intermediate self-regulating capacity relative to the other two. The vegetation composition reveals that most of the edge species can also grow inside, beyond the forest edge.
Assessing Forest NPP: BIOME-BGC Predictions versus BEF Derived Estimates
NASA Astrophysics Data System (ADS)
Hasenauer, H.; Pietsch, S. A.; Petritsch, R.
2007-05-01
Forest productivity has always been a major issue within sustainable forest management. While in the past terrestrial forest inventory data have been the major source for assessing forest productivity, recent developments in ecosystem modeling offer an alternative approach using ecosystem models such as Biome-BGC to estimate Net Primary Production (NPP). In this study we compare two terrestrial driven approaches for assessing NPP: (i) estimates from a species specific adaptation of the biogeochemical ecosystem model BIOME-BGC calibrated for Alpine conditions; and (ii) NPP estimates derived from inventory data using biomass expansion factors (BEF). The forest inventory data come from 624 sample plots across Austria and consist of repeated individual tree observations and include growth as well as soil and humus information. These locations are covered with spruce, beech, oak, pine and larch stands, thus addressing the main Austrian forest types. 144 locations were previously used in a validating effort to produce species-specific parameter estimates of the ecosystem model. The remaining 480 sites are from the Austrian National Forest Soil Survey carried out at the Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW). By using diameter at breast height (dbh) and height (h) volume and subsequently biomass of individual trees were calculated, aggregated for the whole forest stand and compared with the model output. Regression analyses were performed for both volume and biomass estimates.
Burivalova, Zuzana; Towsey, Michael; Boucher, Tim; Truskinger, Anthony; Apelis, Cosmas; Roe, Paul; Game, Edward T
2018-02-01
There is global concern about tropical forest degradation, in part, because of the associated loss of biodiversity. Communities and indigenous people play a fundamental role in tropical forest management and are often efficient at preventing forest degradation. However, monitoring changes in biodiversity due to degradation, especially at a scale appropriate to local tropical forest management, is plagued by difficulties, including the need for expert training, inconsistencies across observers, and lack of baseline or reference data. We used a new biodiversity remote-sensing technology, the recording of soundscapes, to test whether the acoustic saturation of a tropical forest in Papua New Guinea decreases as land-use intensity by the communities that manage the forest increases. We sampled soundscapes continuously for 24 hours at 34 sites in different land-use zones of 3 communities. Land-use zones where forest cover was fully retained had significantly higher soundscape saturation during peak acoustic activity times (i.e., dawn and dusk chorus) compared with land-use types with fragmented forest cover. We conclude that, in Papua New Guinea, the relatively simple measure of soundscape saturation may provide a cheap, objective, reproducible, and effective tool for monitoring tropical forest deviation from an intact state, particularly if it is used to detect the presence of intact dawn and dusk choruses. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
A checklist of the vascular plants in Abbott Creek Research Natural Area, Oregon.
Rod Mitchell
1979-01-01
This paper is a checklist of 277 vascular plant taxa that have been collected or encountered in Abbott Creek Research Natural Area, Oregon; a brief description of five forested and two nonforested vegetation types is included.
Keith, Heather; Mackey, Brendan G; Lindenmayer, David B
2009-07-14
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized.
Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests
Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.
2009-01-01
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199
Near real-time monitoring systems for adaptive management and improved forest governance
NASA Astrophysics Data System (ADS)
Musinsky, J.; Tabor, K.; Cano, A.
2012-12-01
The destruction and degradation of the world's forests from deforestation, illegal logging and fire has wide-ranging environmental and economic impacts, including biodiversity loss, the degradation of ecosystem services and the emission of greenhouse gases. In an effort to strengthen local capacity to respond to these threats, Conservation International has developed a suite of near real-time satellite monitoring systems generating daily alerts, maps and reports of forest fire, fire risk, deforestation and degradation that are used by national and sub-national government agencies, NGO's, scientists, communities, and the media to respond to and report on threats to forest resources. Currently, the systems support more than 1000 subscribers from 45 countries, focusing on Madagascar, Indonesia, Bolivia and Peru. This presentation will explore the types of innovative applications users have found for these data, challenges they've encountered in data acquisition and accuracy, and feedback they've given on the usefulness of these systems for REDD+ implementation, protected areas management and improved forest governance.;
Small mammal habitat associations in poletimber and sawtimber stands of four forest cover types
Richard M. DeGraaf; Dana P. Snyder; Barbara J. Hill
1991-01-01
Small mammal distribution was examined in poletimber and sawtimber stands of four forest cover types in northern New England: northern hardwoods, red maple, balsam fir, and red spruce-balsam fir. During 1980 and 1981, eight stands on the White Mountain National Forest, NH, were sampled with four trap types (three sizes of snap traps and one pit-fall) for 16 000 trap-...
Paul L. Patterson; Mark Finco
2011-01-01
This paper explores the information forest inventory data can produce regarding forest types that were not sampled and develops the equations necessary to define the upper confidence bounds on not-sampled forest types. The problem is reduced to a Bernoulli variable. This simplification allows the upper confidence bounds to be calculated based on Cochran (1977)....
Impact of professional foresters on timber harvests on West Virginia nonindustrial private forests
Stuart A. Moss; Eric Heitzman
2013-01-01
Timber harvests conducted on 90 nonindustrial private forest properties in West Virginia were investigated to determine the effects that professional foresters have on harvest and residual stand attributes. Harvests were classified based on the type of forester involved: (1) consulting/state service foresters representing landowners, (2) industry foresters representing...
Coast redwood ecological types of southern Monterey County, California
Mark Borchert; Daniel Segotta; Michael D. Purser
1988-01-01
An ecological classification system has been developed for the Pacific Southwest Region of the Forest Service. As part of this classification effort, coast redwood (Sequoia sempervirens) forests of southern Monterey County in the Los Padres National Forest were classified into six ecological types using vegetation, soils and geomorphology taken from...
Prasad, V Krishna; Anuradha, E; Badarinath, K V S
2005-09-01
Ten-day advanced very high resolution radiometer images from 1990 to 2000 were used to examine spatial patterns in the normalized difference vegetation index (NDVI) and their relationships with climatic variables for four contrasting forest types in India. The NDVI signal has been extracted from homogeneous vegetation patches and has been found to be distinct for deciduous and evergreen forest types, although the mixed-deciduous signal was close to the deciduous ones. To examine the decadal response of the satellite-measured vegetation phenology to climate variability, seven different NDVI metrics were calculated using the 11-year NDVI data. Results suggested strong spatial variability in forest NDVI metrics. Among the forest types studied, wet evergreen forests of north-east India had highest mean NDVI (0.692) followed by evergreen forests of the Western Ghats (0.529), mixed deciduous forests (0.519) and finally dry deciduous forests (0.421). The sum of NDVI (SNDVI) and the time-integrated NDVI followed a similar pattern, although the values for mixed deciduous forests were closer to those for evergreen forests of the Western Ghats. Dry deciduous forests had higher values of inter-annual range (RNDVI) and low mean NDVI, also coinciding with a high SD and thus a high coefficient of variation (CV) in NDVI (CVNDVI). SNDVI has been found to be high for wet evergreen forests of north-east India, followed by evergreen forests of the Western Ghats, mixed deciduous forests and dry deciduous forests. Further, the maximum NDVI values of wet evergreen forests of north-east India (0.624) coincided with relatively high annual total precipitation (2,238.9 mm). The time lags had a strong influence in the correlation coefficients between annual total rainfall and NDVI. The correlation coefficients were found to be comparatively high (R2=0.635) for dry deciduous forests than for evergreen forests and mixed deciduous forests, when the precipitation data with a lag of 30 days was correlated against NDVI. Using multiple regression approach models were developed for individual forest types using 16 different climatic indices. A high proportion of the temporal variance (>90%) has been accounted for by three of the precipitation parameters (maximum precipitation, precipitation of the wettest quarter and driest quarter) and two of the temperature parameters (annual mean temperature and temperature of the coldest quarter) for mixed deciduous forests. Similarly, in the case of deciduous forests, four precipitation parameters and three temperature parameters explained nearly 83.6% of the variance. These results suggest differences in the relationship between NDVI and climatic variables based upon the time of growing season, time interval and climatic indices over which they were summed. These results have implications for forest cover mapping and monitoring in tropical regions of India.
Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J.; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin
2014-01-01
Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha−1 in 1980 to 31.0 Mg ha−1 in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations. PMID:24586881
Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin
2014-01-01
Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha(-1) in 1980 to 31.0 Mg ha(-1) in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations.
Reddy, C Sudhakar; Jha, C S; Dadhwal, V K
2013-05-01
Deforestation and fragmentation are important concerns in managing and conserving tropical forests and have global significance. In the Indian context, in the last one century, the forests have undergone significant changes due to several policies undertaken by government as well as increased population pressure. The present study has brought out spatiotemporal changes in forest cover and variation in forest type in the state of Odisha (Orissa), India, during the last 75 years period. The mapping for the period of 1924-1935, 1975, 1985, 1995 and 2010 indicates that the forest cover accounts for 81,785.6 km(2) (52.5 %), 56,661.1 km(2) (36.4 %), 51,642.3 km(2) (33.2 %), 49,773 km(2) (32 %) and 48,669.4 km(2) (31.3 %) of the study area, respectively. The study found the net forest cover decline as 40.5 % of the total forest and mean annual rate of deforestation as 0.69 % year(-1) during 1935 to 2010. There is a decline in annual rate of deforestation during 1995 to 2010 which was estimated as 0.15 %. Forest type-wise quantitative loss of forest cover reveals large scale deforestation of dry deciduous forests. The landscape analysis shows that the number of forest patches (per 1,000) are 2.463 in 1935, 10.390 in 1975, 11.899 in 1985, 12.193 in 1995 and 15.102 in 2010, which indicates high anthropogenic pressure on the forests. The mean patch size (km(2)) of forest decreased from 33.2 in 1935 to 5.5 in 1975 and reached to 3.2 by 2010. The study demonstrated that monitoring of long term forest changes, quantitative loss of forest types and landscape metrics provides critical inputs for management of forest resources.
Wang, Xiao-Li; Chang, Yu; Chen, Hong-Wei; Hu, Yuan-Man; Jiao, Lin-Lin; Feng, Yu-Ting; Wu, Wen; Wu, Hai-Feng
2014-04-01
Based on field inventory data and vegetation index EVI (enhanced vegetation index), the spatial pattern of the forest biomass in the Great Xing'an Mountains, Heilongjiang Province was quantitatively analyzed. Using the spatial analysis and statistics tools in ArcGIS software, the impacts of climatic zone, elevation, slope, aspect and vegetation type on the spatial pattern of forest biomass were explored. The results showed that the forest biomass in the Great Xing'an Mountains was 350 Tg and spatially aggregated with great increasing potentials. Forest biomass density in the cold temperate humid zone (64.02 t x hm(-2)) was higher than that in the temperate humid zone (60.26 t x hm(-2)). The biomass density of each vegetation type was in the order of mixed coniferous forest (65.13 t x hm(-2)) > spruce-fir forest (63.92 t x hm(-2)) > Pinus pumila-Larix gmelinii forest (63.79 t x hm(-2)) > Pinus sylvestris var. mongolica forest (61.97 t x hm(-2)) > Larix gmelinii forest (61.40 t x hm(-2)) > deciduous broadleaf forest (58.96 t x hm(-2)). With the increasing elevation and slope, the forest biomass density first decreased and then increased. The forest biomass density in the shady slopes was greater than that in the sunny slopes. The spatial pattern of forest biomass in the Great Xing' an Mountains exhibited a heterogeneous pattern due to the variation of climatic zone, vegetation type and topographical factor. This spatial heterogeneity needs to be accounted when evaluating forest biomass at regional scales.
Chen, Xuexia; Liu, Shuguang; Zhu, Zhiliang; Vogelmann, James E.; Li, Zhengpeng; Ohlen, Donald O.
2011-01-01
The concentrations of CO2 and other greenhouse gases in the atmosphere have been increasing and greatly affecting global climate and socio-economic systems. Actively growing forests are generally considered to be a major carbon sink, but forest wildfires lead to large releases of biomass carbon into the atmosphere. Aboveground forest biomass carbon (AFBC), an important ecological indicator, and fire-induced carbon emissions at regional scales are highly relevant to forest sustainable management and climate change. It is challenging to accurately estimate the spatial distribution of AFBC across large areas because of the spatial heterogeneity of forest cover types and canopy structure. In this study, Forest Inventory and Analysis (FIA) data, Landsat, and Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) data were integrated in a regression tree model for estimating AFBC at a 30-m resolution in the Utah High Plateaus. AFBC were calculated from 225 FIA field plots and used as the dependent variable in the model. Of these plots, 10% were held out for model evaluation with stratified random sampling, and the other 90% were used as training data to develop the regression tree model. Independent variable layers included Landsat imagery and the derived spectral indicators, digital elevation model (DEM) data and derivatives, biophysical gradient data, existing vegetation cover type and vegetation structure. The cross-validation correlation coefficient (r value) was 0.81 for the training model. Independent validation using withheld plot data was similar with r value of 0.82. This validated regression tree model was applied to map AFBC in the Utah High Plateaus and then combined with burn severity information to estimate loss of AFBC in the Longston fire of Zion National Park in 2001. The final dataset represented 24 forest cover types for a 4 million ha forested area. We estimated a total of 353 Tg AFBC with an average of 87 MgC/ha in the Utah High Plateaus. We also estimated that 8054 Mg AFBC were released from 2.24 km2 burned forest area in the Longston fire. These results demonstrate that an AFBC spatial map and estimated biomass carbon consumption can readily be generated using existing database. The methodology provides a consistent, practical, and inexpensive way for estimating AFBC at 30-m resolution over large areas throughout the United States.
Mathematical model of forest succession and land use for the North Carolina Piedmont
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, W.C.
1977-01-01
A linear, constant-coefficient compartment model was constructed to simulate temporal changes in the areal extent of major forest types in the North Carolina Piedmont. Model structure and transfer coefficients were derived from published ecological literature and available USDA Forest Service statistical summaries. The results show the importance of old-field abandonment to the perpetuation of extensive loblolly pine (Pinus taeda) forests in the Piedmont. Should abandonment cease, post-harvest treatment and planting of loblolly pine would have to be increased considerably over current levels to maintain an extensive loblolly pine forest type. Extrapolation of current rates of change forward 250 years wouldmore » result in a sizeable increase in the area of loblolly pine and loblolly pine-oak types, a slight increase in oak-hickory, a sizeable decline in shortleaf and Virginia pine (Pinus echinata, Pinus virginiana, resp.) types and a slight decline for other mixed pine-hardwood and lowland and dry upland hardwood categories compared to current conditions. The technique can be a useful tool either to assess some long-term effects of present management and use trends or to suggest strategies necessary to obtain a desired regional mixture of forest types.« less
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-03-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-01-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871
Ramsey, Elijah W.; Hodgson, M.E.; Sapkota, S.K.; Nelson, G.A.
2001-01-01
An empirical model was used to relate forest type and hurricane-impact distribution with wind speed and duration to explain the variation of hurricane damage among forest types along the Atchafalaya River basin of coastal Louisiana. Forest-type distribution was derived from Landsat Thematic Mapper image data, hurricane-impact distribution from a suite of transformed advanced very high resolution radiometer images, and wind speed and duration from a wind-field model. The empirical model explained 73%, 84%, and 87% of the impact variances for open, hardwood, and cypress-tupelo forests, respectively. These results showed that the estimated impact for each forest type was highly related to the duration and speed of extreme winds associated with Hurricane Andrew in 1992. The wind-field model projected that the highest wind speeds were in the southern basin, dominated by cypress-tupelo and open forests, while lower wind speeds were in the northern basin, dominated by hardwood forests. This evidence could explain why, on average, the impact to cypress-tupelos was more severe than to hardwoods, even though cypress-tupelos are less susceptible to wind damage. Further, examination of the relative importance of wind speed in explaining the impact severity to each forest type showed that the impact to hardwood forests was mainly related to tropical-depression to tropical-storm force wind speeds. Impacts to cypress-tupelo and open forests (a mixture of willows and cypress-tupelo) were broadly related to tropical-storm force wind speeds and by wind speeds near and somewhat in excess of hurricane force. Decoupling the importance of duration from speed in explaining the impact severity to the forests could not be fully realized. Most evidence, however, hinted that impact severity was positively related to higher durations at critical wind speeds. Wind-speed intervals, which were important in explaining the impact severity on hardwoods, showed that higher durations, but not the highest wind speeds, were concentrated in the northern basin, dominated by hardwoods. The extreme impacts associated with the cypress-tupelo forests in the southeast corner of the basin intersected the highest durations as well as the highest wind speeds. ?? 2001 Published by Elsevier Science Inc.
Estimation of biogeochemical climate regulation services in Chinese forest ecosystems
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, S.
2016-12-01
As the global climate is changing, the climate regulation service of terrestrial ecosystem has been widely studied. Forests, as one of the most important terrestrial ecosystem types, is the biggest carbon pool or sink on land and can regulate climate through both biophysical and biogeochemical means. China is a country with vast forested areas and a variety of forest ecosystems types. Although current studies have related the climate regulation service of forest in China with biophysical or biogeochemical mechanism, there is still a lack of quantitative estimation of climate regulation services, especially for the biogeochemical climate regulation service. The GHGV (greenhouse gas value) is an indicator that can quantify the biochemical climate regulation service using ecosystems' stored organic matter, annual greenhouse gas flux, and potential greenhouse gas exchange rates during disturbances over a multiple year time frame. Therefore, we used GHGV to estimate the contribution of China's ten main forest types to biogeochemical climate regulation and generate the pattern of biochemical climate regulation service in Chinese forest ecosystems.
Muthukumar, T; Sha, Liqing; Yang, Xiaodong; Cao, Min; Tang, Jianwei; Zheng, Zheng
2003-12-01
We examined plants growing in four tropical vegetation types (primary forest, secondary forest, limestone forest and a slash and burn field) in Xishuangbanna, southwest China for mycorrhizal associations. Of the 103 plant species examined (belonging to 47 families), 81 had arbuscular mycorrhizal (AM) associations, while three species possessed orchid mycorrhiza. AM colonization levels ranged between 6% and 91% and spore numbers ranged between 1.36 spores and 25.71 spores per 10 g soil. Mean AM colonization level was higher in primary and secondary forest species than in plant species from limestone forests and a slash and burn field. In contrast, mean AM fungal spore numbers of the primary and limestone forest were lower than in the secondary forest or the slash and burn field. AM fungal spores belonging to Glomus and Acaulospora were the most frequent in soils of Xishuangbanna. AM fungal colonization and spore numbers were significantly correlated to each other and were significantly influenced by vegetation type.
NASA Astrophysics Data System (ADS)
Lv, Xizhi; Zuo, Zhongguo; Xiao, Peiqing
2017-06-01
With increasing demand for water resources and frequently a general deterioration of local water resources, water conservation by forests has received considerable attention in recent years. To evaluate water conservation capacities of different forest ecosystems in mountainous areas of Loess Plateau, the landscape of forests was divided into 18 types in Loess Plateau. Under the consideration of the factors such as climate, topography, plant, soil and land use, the water conservation of the forest ecosystems was estimated by means of InVEST model. The result showed that 486417.7 hm2 forests in typical mountain areas were divided into 18 forest types, and the total water conservation quantity was 1.64×1012m3, equaling an average of water conversation quantity of 9.09×1010m3. There is a great difference in average water conversation capacity among various forest types. The water conservation function and its evaluation is crucial and complicated issues in the study of ecological service function in modern times.
The Economic Value of Mangroves: A Meta-Analysis
Marwa Salem; D. Evan Mercer
2012-01-01
This paper presents a synthesis of the mangrove ecosystem valuation literature through a meta-regression analysis. The main contribution of this study is that it is the first meta-analysis focusing solely on mangrove forests, whereas previous studies have included different types of wetlands. The number of studies included in the regression analysis is 44 for a total...
A Practical and Automated Approach to Large Area Forest Disturbance Mapping with Remote Sensing
Ozdogan, Mutlu
2014-01-01
In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions. PMID:24717283
A practical and automated approach to large area forest disturbance mapping with remote sensing.
Ozdogan, Mutlu
2014-01-01
In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions.
[Canopy interception characteristics of main vegetation types in Liupan Mountains of China].
Xu, Li-hong; Shi, Zhong-jie; Wang, Yan-hui; Xiong, Wei; Yu, Peng-tao
2010-10-01
Based on field observation and modeling analysis, this paper studied the canopy interception, interception capacity, and some parameters for interception modeling of main forest types in Liupan Mountains of China. For the test main forest types, the ratio of their canopy interception to precipitation ranged from 8.59% to 17.94%, throughfall was more than 80%, and stemflow ranged from 0.23% to 3.10%. The canopy interception capacity was 0.78-1.88 mm, among which, leaf interception capacity was 0.62-1.63 mm, and stem interception capacity was 0.13-0.29 mm. Conifer forest had a higher canopy interception capacity than broad-leaved forest. The modified model considering the change of leaf area index, which was used in this paper, had a higher simulating precision than the interception model used before. The simulation results for Betula albo-sinensis forest, Pinus armandii forest, Prunus shrub, and Quercus liaotungensis-Tilia paucicostata forest were good, but those for Quercus liaotungensis forest, Pinus tabulaeformis forest, and Acer tetramerum and Euonymus sanguineus shrub were bad, which might be related to the differences in canopy structure, leaf area index, and precipitation characteristics.
Cerqueira, Gabriela R; Ilkiu-Borges, Anna Luiza; Ferreira, Leandro V
2016-05-13
This work aimed to recognize the reproductive biology of the epiphytic bryoflora of phorophytes of Virola surinamensis (Rol. ex. Rottb.) Warb. in várzea and igapó forests in the Caxiuanã National Forest, to answer the following question: The reproductive period of the bryophyte species is influenced by the environment due the climatic seasonality present in flooded forests, being higher the occurrence of the sexual and asexual reproduction in the rainiest months? The bryophytes were identified and analyzed for the type of reproduction, sexual system and reproductive structures. In total, 502 samples of bryophytes were analyzed, resulting in 54 species, of which 34 were fertile. The comparison of the fertility of the species in different environmental conditions (dry or rainy, and igapó or várzea forest) was assessed using the chi-square test. The fertility of the seven studied species could not be defined by a pattern, considering the forest type and the seasonality. However, two species were associated to the forest type and two further species to the seasonality, showing that, for some bryophyte species, invest in constant fertility may be favoring the maintenance of their populations in tropical forests.
Identifying Southern Forest Types on Aerial Photographs
Gene Avery
1960-01-01
This booklet has been prepared to assist photo interpreters in recognizing broad forest types on aerial photographs of the South, and to illustrate primary differences between panchromatic and infrared photography from the standpoint of timber type-mapping.
Ivan L. Sander; Burnell C. Fischer
1989-01-01
Each of the four broad forest types, often called associations, that you will read about in these Notes is a complex, highly variable mixture of trees, shrubs, and herbs. This Note describes the species you will generally find in each type.
Greenberg, Cathryn H.; Levey, Douglas J.; Kwit, Charles; ...
2012-02-06
Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995–2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly ( Pinus taeda) and longleaf pine ( P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual numbermore » of fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 ± 37,444 fruits; 12,009 ± 2,392 g/ha), upland hardwoods (60,769 ± 7,667 fruits; 5,079 ± 529 g/ha), and bottomland hardwoods (65,614 ± 8,351 fruits; 4,621 ± 677 g/ha), and lowest in longleaf pine (44,104 ± 8,301 fruits; 4,102 ± 877 g/ha) and loblolly (39,532 ± 5,034 fruits; 3,261 ± 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995–2003). Fruit availability was highest June–September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. As a result, land managers could enhance fruit availability for wildlife by creating and maintaining diverse forest types and age classes.« less
On the patterns and processes of wood in northern California streams
NASA Astrophysics Data System (ADS)
Benda, Lee; Bigelow, Paul
2014-03-01
Forest management and stream habitat can be improved by clarifying the primary riparian and geomorphic controls on streams. To this end, we evaluated the recruitment, storage, transport, and the function of wood in 95 km of streams (most drainage areas < 30 km2) in northern California, crossing four coastal to inland regions with different histories of forest management (managed, less-managed, unmanaged). The dominant source of variability in stream wood storage and recruitment is driven by local variation in rates of bank erosion, forest mortality, and mass wasting. These processes are controlled by changes in watershed structure, including the location of canyons, floodplains and tributary confluences; types of geology and topography; and forest types and management history. Average wood storage volumes in coastal streams are 5 to 20 times greater than inland sites primarily from higher riparian forest biomass and growth rates (productivity), with some influence by longer residence time of wood in streams and more wood from landsliding and logging sources. Wood recruitment by mortality (windthrow, disease, senescence) was substantial across all sites (mean 50%) followed by bank erosion (43%) and more locally by mass wasting (7%). The distances to sources of stream wood are controlled by recruitment process and tree height. Ninety percent of wood recruitment occurs within 10 to 35 m of channels in managed and less-managed forests and upward of 50 m in unmanaged Sequoia and coast redwood forests. Local landsliding extends the source distance. The recruitment of large wood pieces that create jams (mean diameter 0.7 m) is primarily by bank erosion in managed forests and by mortality in unmanaged forests. Formation of pools by wood is more frequent in streams with low stream power, indicating the further relevance of environmental context and watershed structure. Forest management influences stream wood dynamics, where smaller trees in managed forests often generate shorter distances to sources of stream wood, lower stream wood storage, and smaller diameter stream wood. These findings can be used to improve riparian protection and inform spatially explicit riparian management.
Hämäläinen, Aino; Strengbom, Joachim; Ranius, Thomas
2018-06-01
In many managed landscapes, low-productivity land comprises most of the remaining relatively untouched areas, and is often over-represented within protected areas. The relationship between the productivity and conservational value of a site is poorly known; however, it has been hypothesized that biodiversity increases with productivity due to higher resource abundance or heterogeneity, and that the species communities of low-productivity land are a nested subset of communities from more productive land. We tested these hypotheses for dead-wood-dependent beetles by comparing their species richness and composition, as well as the amount and diversity of dead wood, between low-productivity (potential forest growth <1 m 3 ·ha -1 ·yr -1 ) and high-productivity Scots pine-dominated stands in Sweden. We included four stand types: stands situated on (1) thin soils and (2) mires (both low-productivity), (3) managed stands, and (4) unmanaged stands set aside for conservation purposes (both high-productivity). Beetle species richness and number of red-listed species were highest in the high-productivity set-asides. Species richness was positively correlated with the volume and diversity of dead wood, but volume appeared to be a better predictor than diversity for the higher species richness in set-asides. Beetle species composition was similar among stand types, and the assemblages in low-productivity stands were largely subsets of those in high-productivity set-asides. However, 11% of all species and 40% of red-listed species only occurred in high-productivity stands, while no species were unique to low-productivity stands. We conclude that low-productivity forests are less valuable for conservation than high-productivity forest land. Given the generally similar species composition among stand types, a comparable conservational effect could be obtained by setting aside a larger area of low-productivity forest in comparison to the high-productivity. In terms of dead wood volumes, 1.8-3.6 ha of low-productivity forest has the same value as 1 ha of unmanaged high-productivity forest. This figure can be used to estimate the conservation value of low-productivity forests; however, as high-productivity forests harbored some unique species, they are not completely exchangeable. © 2018 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
Tree diversity does not always improve resistance of forest ecosystems to drought.
Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien; Gessler, Arthur
2014-10-14
Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.
Thomas L. Castonguay
1984-01-01
The 1982 forest inventory of Nebraska showed that 1.5 percent of the total land area is forested. Commercial forest land accounted for 75 percent or 537,837 acres of the forest land and ponderosa pine is the major forest type. An important Nebraska resouce is the 262,230 acres of natural wooded strips.
Projecting large-scale area changes in land use and land cover for terrestrial carbon analyses.
Ralph J. Alig; Brett J. Butler
2004-01-01
One of the largest changes in US forest type areas over the last half-century has involved pine types in the South. The area of planted pine has increased more than 10-fold since 1950, mostly on private lands. Private landowners have responded to market incentives and government programs, including subsidized afforestation on marginal agricultural land. Timber harvest...
D.N. Swanston
1974-01-01
Natural soil-mass-movements on forested slopes in the Western United States can be divided into two major groups of closely related landslide types. These include, in order of decreasing importance and regional frequency of occurrence: (1) debris slides, debris avalanches, debris flows, and debris torrents; and (2) creep, slumps, and earth flows. Each type requires the...
Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright
2007-01-01
Two series of single and stereo photographs display a range of natural conditions and fuel loadings in sagebrush with grass and ponderosa pinejuniper types in central Montana. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and density by size class; forest floor depth and loading;...
Ahmad Dar, Javid; Somaiah, Sundarapandian
2015-02-01
Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.
Forest discrimination with multipolarization imaging radar
NASA Technical Reports Server (NTRS)
Ford, J. P.; Wickland, D. E.
1985-01-01
The use of radar polarization diversity for discriminating forest canopy variables on airborne synthetic-aperture radar (SAR) images is evaluated. SAR images were acquired at L-Band (24.6 cm) simultaneously in four linear polarization states (HH, HV, VH, and VV) in South Carolina on March 1, 1984. In order to relate the polarization signatures to biophysical properties, false-color composite images were compared to maps of forest stands in the timber compartment. In decreasing order, the most useful correlative forest data are stand basal area, forest age, site condition index, and forest management type. It is found that multipolarization images discriminate variation in tree density and difference in the amount of understory, but do not discriminate between evergreen and deciduous forest types.
EnviroAtlas - Austin, TX - Land Cover by Block Group
This EnviroAtlas dataset describes the percentage of each block group that is classified as impervious, forest, green space, and agriculture. Forest is defined as Trees & Forest. Green space is defined as Trees & Forest, Grass & Herbaceous, and Agriculture. This dataset also includes the area per capita for each block group for some land cover types. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Cathryn H. Greenberg; Douglas J. Levey; Charles Kwit; John P. McCarty; Scott F. Pearson; Sarah Sargent; John Kilgo
2012-01-01
Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995â2003) in 56 0.1-ha plots in 5 forest types of South...
Patrick D. Miles; David Heinzen; Manfred E. Mielke; Christopher W. Woodall; Brett J. Butler; Ron J. Piva; Dacia M. Meneguzzo; Charles H. Perry; Dale D. Gormanson; Charles J. Barnett
2011-01-01
The second full annual inventory of Minnesota's forests reports 17 million acres of forest land with an average volume of more than 1,000 cubic feet per acre. Forest land is dominated by the aspen forest type, which occupies nearly 30 percent of the total forest land area. Twenty-eight percent of forest land consists of sawtimber, 35 percent poletimber, 35 percent...
Susan J. Crocker; Gary J. Brand; Brett J. Butler; David E. Haugen; Dick C. Little; Dacia M. Meneguzzo; Charles H. Perry; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall
2009-01-01
The first full, annualized inventory of Illinois' forests reports more than 4.5 million acres of forest land with an average of 459 trees per acre. Forest land is dominated by oak/hickory forest types, which occupy 65 percent of total forest land area. Seventy-two percent of forest land consists of sawtimber, 20 percent contains poletimber, and 8 percent contains...
Randall S. Morin; Chuck J. Barnett; Gary J. Brand; Brett J. Butler; Robert De Geus; Mark H. Hansen; Mark A. Hatfield; Cassandra M. Kurtz; W. Keith Moser; Charles H. Perry; Ron Piva; Rachel Riemann; Richard Widmann; Sandy Wilmot; Chris W. Woodall
2011-01-01
The first full annual inventory of Vermont's forests reports more than 4.5 million acres of forest land with an average volume of more than 2,200 cubic feet per acre. Forest land is dominated by the maple/beech/birch forest-type group, which occupies 70 percent of total forest land area. Sixty-three percent of forest land consists of large-diameter trees, 27...
Randall S. Morin; Chuck J. Barnett; Gary J. Brand; Brett J. Butler; Grant M. Domke; Susan Francher; Mark H. Hansen; Mark A. Hatfield; Cassandra M. Kurtz; W. Keith Moser; Charles H. Perry; Ron Piva; Rachel Riemann; Chris W. Woodall
2011-01-01
The first full annual inventory of New Hampshire's forests reports nearly 4.8 million acres of forest land with an average volume of nearly 2,200 cubic feet per acre. Forest land is dominated by the maple/beech/birch forest-type group, which occupies 53 percent of total forest land area. Fifty-seven percent of forest land consists of large-diameter trees, 32...
Richard H. Widmann; Sloane Crawford; Cassandra M. Kurtz; Mark D. Nelson; Patrick D. Miles; Randall S. Morin; Rachel. Riemann
2015-01-01
This report summarizes the second annual inventory of New York's forests, conducted in 2008-2012. New York's forests cover 19.0 million acres; 15.9 million acres are classified as timberland and 3.1 million acres as reserved and other forest land. Forest land is dominated by the maple/beech/birch forest-type group that occupies more than half of the forest...
Patrick D. Miles; Curtis L. VanderSchaaf; Charles Barnett; Brett J. Butler; Susan J. Crocker; Dale D. Gormanson; Cassandra M. Kurtz; Tonya W. Lister; William H. McWilliams; Randall S. Morin; Mark D. Nelson; Charles H. (Hobie) Perry; Rachel I. Riemann; James E. Smith; Brian F. Walters; Jim Westfall; Christopher W. Woodall
2016-01-01
The third full annual inventory of Minnesota forests reports 17.4 million acres of forest land with an average live tree volume of 1,096 cubic feet per acre. Forest land is dominated by the aspen forest type, which occupies 29 percent of the total forest land area. Twenty-eight percent of forest land consists of sawtimber, 35 percent poletimber, 36 percent sapling/...