Science.gov

Sample records for forest virus fusion

  1. Mechanisms of mutations inhibiting fusion and infection by Semliki Forest virus

    PubMed Central

    1996-01-01

    Semliki Forest virus (SFV) infects cells by an acid-dependent membrane fusion reaction catalyzed by the virus spike protein, a complex containing E1 and E2 transmembrane subunits. E1 carries the putative virus fusion peptide, and mutations in this domain of the spike protein were previously shown to shift the pH threshold of cell-cell fusion (G91A), or block cell-cell fusion (G91D). We have used an SFV infectious clone to characterize virus particles containing these mutations. In keeping with the previous spike protein results, G91A virus showed limited secondary infection and an acid-shifted fusion threshold, while G91D virus was noninfectious and inactive in both cell- cell and virus-liposome fusion assays. During the low pH- induced SFV fusion reaction, the E1 subunit exposes new epitopes for monoclonal antibody (mAb) binding and forms an SDS-resistant homotrimer, the virus associates hydrophobically with the target membrane, and fusion of the virus and target membranes occurs. After low pH treatment, G91A spike proteins were shown to bind conformation-specific mAbs, associate with target liposome membranes, and form the E1 homotrimer. However, both G91A membrane association and homotrimer formation had an acid-shifted pH threshold and reduced efficiency compared to wt virus. In contrast, studies of the fusion-defective G91D mutant showed that the virus efficiently reacted with low pH as assayed by mAb binding and liposome association, but was essentially inactive in homotrimer formation. These results suggest that the G91D mutant is noninfectious due to a block in a late step in membrane fusion, separate from the initial reaction to low pH and interaction with the target membrane, and involving the lack of efficient formation of the E1 homotrimer. PMID:8769412

  2. Fusion induced by a class II viral fusion protein, semliki forest virus E1, is dependent on the voltage of the target cell.

    PubMed

    Markosyan, Ruben M; Kielian, Margaret; Cohen, Fredric S

    2007-10-01

    Cells expressing the low pH-triggered class II viral fusion protein E1 of Semliki Forest virus (SFV) were fused to target cells. Fusion was monitored by electrical capacitance and aqueous dye measurements. Electrical voltage-clamp measurements showed that SFV E1-induced cell-cell fusion occurred quickly after acidification for a trans-negative potential across the target membrane (i.e., negative potential inside the target cell) but that a trans-positive potential eliminated all fusion. Use of an ionophore to control potentials for a large population of cells confirmed the dependence of fusion on voltage polarity. In contrast, fusion induced by the class I fusion proteins of human immunodeficiency virus, avian sarcoma leukosis virus, and influenza virus was independent of the voltage polarity across the target cell. Initial pore size and pore growth were also independent of voltage polarity for the class I proteins. An intermediate of SFV E1-induced fusion was created by transient acidification at low temperature. Membranes were hemifused at this intermediate state, and raising the temperature at neutral pH allowed full fusion to occur. Capacitance measurements showed that maintaining a trans-positive potential definitely blocked fusion at steps following the creation of the hemifusion intermediate and may have inhibited fusion at prior steps. It is proposed that the trans-negative voltage across the endosomal membrane facilitates fusion after low-pH-induced conformational changes of SFV E1 have occurred.

  3. Herpes simplex virus Membrane Fusion.

    PubMed

    Weed, Darin J; Nicola, Anthony V

    2017-01-01

    Herpes simplex virus mediates multiple distinct fusion events during infection. HSV entry is initiated by fusion of the viral envelope with either the limiting membrane of a host cell endocytic compartment or the plasma membrane. In the infected cell during viral assembly, immature, enveloped HSV particles in the perinuclear space fuse with the outer nuclear membrane in a process termed de-envelopment. A cell infected with some strains of HSV with defined mutations spread to neighboring cells by a fusion event called syncytium formation. Two experimental methods, the transient cell-cell fusion approach and fusion from without, are useful surrogate assays of HSV fusion. These five fusion processes are considered in terms of their requirements, mechanism, and regulation. The execution and modulation of these events require distinct yet often overlapping sets of viral proteins and host cell factors. The core machinery of HSV gB, gD, and the heterodimer gH/gL is required for most if not all of the HSV fusion mechanisms.

  4. Fusion of Enveloped Viruses in Endosomes.

    PubMed

    White, Judith M; Whittaker, Gary R

    2016-06-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion-triggering mechanisms. A key take-home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Fusion of Enveloped Viruses in Endosomes

    PubMed Central

    White, Judith M.; Whittaker, Gary R.

    2016-01-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH, and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion triggering mechanisms. A key take home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors, and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion. PMID:26935856

  6. Rabies Virus-Induced Membrane Fusion Pathway

    PubMed Central

    Gaudin, Yves

    2000-01-01

    Fusion of rabies virus with membranes is triggered at low pH and is mediated by the viral glycoprotein (G). The rabies virus-induced fusion pathway was studied by investigating the effects of exogenous lipids having various dynamic molecular shapes on the fusion process. Inverted cone-shaped lysophosphatidylcholines (LPCs) blocked fusion at a stage subsequent to fusion peptide insertion into the target membrane. Consistent with the stalk-hypothesis, LPC with shorter alkyl chains inhibited fusion at lower membrane concentrations and this inhibition was compensated by the presence of oleic acid. However, under suboptimal fusion conditions, short chain LPCs, which were translocated in the inner leaflet of the membranes, considerably reduced the lag time preceding membrane merging, resulting in faster kinetics of fusion. This indicated that the rate limiting step for fusion is the formation of a fusion pore in a diaphragm of restricted hemifusion. The previously described cold-stabilized prefusion complex was also characterized. This intermediate is at a well-advanced stage of the fusion process when the hemifusion diaphragm is destabilized, but lipid mixing is still restricted, probably by a ring-like complex of glycoproteins. I provide evidence that this state has a dynamic character and that its lipid organization can reverse back to two lipid bilayers. PMID:10931871

  7. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    SciTech Connect

    Huang, Claire Y.-H.; Butrapet, Siritorn; Moss, Kelly J.; Childers, Thomas; Erb, Steven M.; Calvert, Amanda E.; Silengo, Shawn J.; Kinney, Richard M.; Blair, Carol D.; Roehrig, John T.

    2010-01-20

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could not re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.

  8. The Dynamic Envelope of a Fusion Class II Virus

    PubMed Central

    Wu, Shang-Rung; Haag, Lars; Sjöberg, Mathilda; Garoff, Henrik; Hammar, Lena

    2008-01-01

    In alphaviruses, here represented by Semliki Forest virus, infection requires an acid-responsive spike configuration to facilitate membrane fusion. The creation of this relies on the chaperon function of glycoprotein E2 precursor (p62) and its maturation cleavage into the small external E3 and the membrane-anchored E2 glycoproteins. To reveal how the E3 domain of p62 exerts its control of spike functions, we determine the structure of a p62 cleavage-impaired mutant virus particle (SQL) by electron cryomicroscopy. A comparison with the earlier solved wild type virus structure reveals that the E3 domain of p62SQL forms a bulky side protrusion in the spike head region. This establishes a gripper over part of domain II of the fusion protein, with a cotter-like connection downward to a hydrophobic cluster in its central β-sheet. This finding reevaluates the role of the precursor from being only a provider of a shield over the fusion loop to a structural playmate in formation of the fusogenic architecture. PMID:18596032

  9. [Forest ecosystems and Ebola virus].

    PubMed

    Morvan, J M; Nakouné, E; Deubel, V; Colyn, M

    2000-07-01

    Despite data collected since the emergence of the Ebola virus in 1976, its natural transmission cycle and especially the nature of its reservoirs and means of transmission are still an enigma. This means that effective epidemiological surveillance and prevention are difficult to implement. The location of outbreak areas has suggested that the reservoir and the transmission cycle of the Ebola virus are closely linked to the rainforest ecosystem. The fact that outbreaks seldom occur suggests the presence of a rare animal reservoir having few contacts with man. Paradoxically, various serological investigations have shown a high prevalence in human beings, especially in forest areas of the Central African Republic (CAR), with no pathology associated. This would appear to suggest a circulation of both pathogenic and non-pathogenic strains as well as frequent contacts with man. The ecological changes resulting from human activity (agriculture and logging) account for the modification of the fauna (movement of rainforest fauna, introduction of savannah species) and could explain a multiplication of contacts. Likewise, it is interesting to note that the centre of outbreaks has always been in areas bordering on forests (ecotone foreset-savannah in the Democratic Republic of Congo, savannah in Sudan). All these considerations have led us to establish a permanent "watch" in areas bordering on forests in the CAR, involving a multidisciplinary approach to the virological study (strain isolation, molecular biology) of the biodiversity of small terrestrial mammals. The results of a study conducted on 947 small mammals has shown for the first time the presence of the Ebola virus genome in two species of rodents and one species of shrew living in forest border areas. These animals must be considered as intermediary hosts and research should now focus on reservoirs in the ecosystem of forest border areas where contacts with man are likely to be more frequent.

  10. Conservation of hydrophobicity within viral envelope glycoproteins reveals a putative hepatitis C virus fusion peptide.

    PubMed

    Taylor, A; O'Leary, J M; Pollock, S; Zitzmann, N

    2009-01-01

    The mechanism(s) by which hepatitis C virus (HCV) enters and infects cells remains unknown. Identifying the HCV fusion peptide(s) and understanding the early stages of infection may provide new opportunities for improved antiviral therapy. The HCV envelope glycoprotein E2 is thought to be a class II fusion protein. Class II fusion proteins are exemplified by the E protein of the tick-borne encephalitis virus (TBEV) and the E1 protein of the Semliki Forest virus (SFV). Analysis of the hydrophobicity profiles of four HCV E2 envelope glycoproteins revealed a region with a conserved three-pronged pattern of hydrophobicity, termed the tridentate (TD) region. The primary sequence of the TD region is highly conserved in all 490 HCV strains currently reported. The known fusion peptide loops of TBEV and SFV share the characteristic TD region hydrophobicity profile and significant sequence conservation in the TD region was identified in the E and E1 glycoproteins of members of the Flaviviridae and Togaviridae families, respectively. The HCV TD region peptides have membranotropic activity; in molecular dynamics (MD) simulations, the HCV TD region peptides insert into in a biomimetic bilayer in a similar manner to the TBEV fusion peptide and the peptides induce effective mixing of lipid membranes in a liposome fusion assay. Together these results indicate that the highly conserved TD region of the HCV E2 protein is a fusion peptide candidate and may be an important factor in the class II fusion mechanism.

  11. Structural characterization of Mumps virus fusion protein core

    SciTech Connect

    Liu Yueyong; Xu Yanhui; Lou Zhiyong; Zhu Jieqing; Hu Xuebo; Gao, George F.; Qiu Bingsheng . E-mail: Qiubs@sun.im.ac.cn; Rao Zihe . E-mail: raozh@xtal.tsinghua.edu.cn; Tien, Po . E-mail: tienpo@sun.im.ac.cn

    2006-09-29

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus, forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins.

  12. Cross-Inhibition of Chikungunya Virus Fusion and Infection by Alphavirus E1 Domain III Proteins

    PubMed Central

    Sánchez-San Martín, Claudia; Nanda, Soumya; Zheng, Yan; Fields, Whitney

    2013-01-01

    Alphaviruses are small enveloped RNA viruses that include important emerging human pathogens, such as chikungunya virus (CHIKV). These viruses infect cells via a low-pH-triggered membrane fusion reaction, making this step a potential target for antiviral therapies. The E1 fusion protein inserts into the target membrane, trimerizes, and refolds to a hairpin-like conformation in which the combination of E1 domain III (DIII) and the stem region (DIII-stem) pack against a core trimer composed of E1 domains I and II (DI/II). Addition of exogenous DIII proteins from Semliki Forest virus (SFV) has been shown to inhibit E1 hairpin formation and SFV fusion and infection. Here we produced and characterized DIII and DI/II proteins from CHIKV and SFV. Unlike SFV DIII, both core trimer binding and fusion inhibition by CHIKV DIII required the stem region. CHIKV DIII-stem and SFV DIII-stem showed efficient cross-inhibition of SFV, Sindbis virus, and CHIKV infections. We developed a fluorescence anisotropy-based assay for the binding of SFV DIII-stem to the core trimer and used it to demonstrate the relatively high affinity of this interaction (Kd [dissociation constant], ∼85 nM) and the importance of the stem region. Together, our results support the conserved nature of the key contacts of DIII-stem in the alphavirus E1 homotrimer and describe a sensitive and quantitative in vitro assay for this step in fusion protein refolding. PMID:23637415

  13. Entry of enveloped viruses into host cells: membrane fusion.

    PubMed

    Más, Vicente; Melero, José A

    2013-01-01

    Viruses are intracellular parasites that hijack the cellular machinery for their own replication. Therefore, an obligatory step in the virus life cycle is the delivery of the viral genome inside the cell. Enveloped viruses (i.e., viruses with a lipid envelope) use a two-step procedure to release their genetic material into the cell: (i) they first bind to specific surface receptors of the target cell membrane and then, (ii) they fuse the viral and cell membranes. This last step may occur at the cell surface or after internalization of the virus particle by endocytosis or by some other route (e.g., macropinocytosis). Remarkably, the virus-cell membrane fusion process goes essentially along the same intermediate steps as other membrane fusions that occur for instance in vesicular fusion at the nerve synapsis or cell-cell fusion in yeast mating. Specialized viral proteins, fusogens, promote virus-cell membrane fusion. The viral fusogens experience drastic structural rearrangements during fusion, liberating the energy required to overcome the repulsive forces that prevent spontaneous fusion of the two membranes. This chapter describes the different types of viral fusogens and their mode of action, as are currently known.

  14. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein

    PubMed Central

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-01-01

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the viral-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of HA tag addition varied with other fusion proteins, as parainfluenza virus 5 F-HA showed decreased surface expression and no stimulation in fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223

  15. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.

    PubMed

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca

    2017-04-07

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith, E. C., Smith, S. E., Carter, J. R., Webb, S. R., Gibson, K. M., Hellman, L. M., Fried, M. G., and Dutch, R. E. (2013) J. Biol. Chem. 288, 35726-35735). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found, and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together, our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Influenza Virus-Mediated Membrane Fusion: Determinants of Hemagglutinin Fusogenic Activity and Experimental Approaches for Assessing Virus Fusion

    PubMed Central

    Hamilton, Brian S.; Whittaker, Gary R.; Daniel, Susan

    2012-01-01

    Hemagglutinin (HA) is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future. PMID:22852045

  17. Structural and functional properties of an unusual internal fusion peptide in a nonenveloped virus membrane fusion protein.

    PubMed

    Shmulevitz, Maya; Epand, Raquel F; Epand, Richard M; Duncan, Roy

    2004-03-01

    The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.

  18. Hemagglutinin-esterase-fusion (HEF) protein of influenza C virus.

    PubMed

    Wang, Mingyang; Veit, Michael

    2016-01-01

    Influenza C virus, a member of the Orthomyxoviridae family, causes flu-like disease but typically only with mild symptoms. Humans are the main reservoir of the virus, but it also infects pigs and dogs. Very recently, influenza C-like viruses were isolated from pigs and cattle that differ from classical influenza C virus and might constitute a new influenza virus genus. Influenza C virus is unique since it contains only one spike protein, the hemagglutinin-esterase-fusion glycoprotein HEF that possesses receptor binding, receptor destroying and membrane fusion activities, thus combining the functions of Hemagglutinin (HA) and Neuraminidase (NA) of influenza A and B viruses. Here we briefly review the epidemiology and pathology of the virus and the morphology of virus particles and their genome. The main focus is on the structure of the HEF protein as well as on its co- and post-translational modification, such as N-glycosylation, disulfide bond formation, S-acylation and proteolytic cleavage into HEF1 and HEF2 subunits. Finally, we describe the functions of HEF: receptor binding, esterase activity and membrane fusion.

  19. Characterization of Potent Fusion Inhibitors of Influenza Virus

    PubMed Central

    Rowse, Michael; Qiu, Shihong; Tsao, Jun; Xian, Tongmei; Khawaja, Sarah; Yamauchi, Yohei; Yang, Zhen; Wang, Guoxin; Luo, Ming

    2015-01-01

    New inhibitors of influenza viruses are needed to combat the potential emergence of novel human influenza viruses. We have identified a class of small molecules that inhibit replication of influenza virus at picomolar concentrations in plaque reduction assays. The compound also inhibits replication of vesicular stomatitis virus. Time of addition and dilution experiments with influenza virus indicated that an early time point of infection was blocked and that inhibitor 136 tightly bound to virions. Using fluorescently labeled influenza virus, inhibition of viral fusion to cellular membranes by blocked lipid mixing was established as the mechanism of action for this class of inhibitors. Stabilization of the neutral pH form of hemagglutinin (HA) was ruled out by trypsin digestion studies in vitro and with conformation specific HA antibodies within cells. Direct visualization of 136 treated influenza virions at pH 7.5 or acidified to pH 5.0 showed that virions remain intact and that glycoproteins become disorganized as expected when HA undergoes a conformational change. This suggests that exposure of the fusion peptide at low pH is not inhibited but lipid mixing is inhibited, a different mechanism than previously reported fusion inhibitors. We hypothesize that this new class of inhibitors intercalate into the virus envelope altering the structure of the viral envelope required for fusion to cellular membranes. PMID:25803288

  20. Molecular mechanism of respiratory syncytial virus fusion inhibitors

    SciTech Connect

    Battles, Michael B.; Langedijk, Johannes P.; Furmanova-Hollenstein, Polina; Chaiwatpongsakorn, Supranee; Costello, Heather M.; Kwanten, Leen; Vranckx, Luc; Vink, Paul; Jaensch, Steffen; Jonckers, Tim H. M.; Koul, Anil; Arnoult, Eric; Peeples, Mark E.; Roymans, Dirk; McLellan, Jason S.

    2015-12-07

    Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. In this paper, we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Finally and collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors.

  1. Molecular mechanism of respiratory syncytial virus fusion inhibitors

    PubMed Central

    Battles, Michael B; Langedijk, Johannes P; Furmanova-Hollenstein, Polina; Chaiwatpongsakorn, Supranee; Costello, Heather M; Kwanten, Leen; Vranckx, Luc; Vink, Paul; Jaensch, Steffen; Jonckers, Tim H M; Koul, Anil; Arnoult, Eric; Peeples, Mark E; Roymans, Dirk; McLellan, Jason S

    2016-01-01

    Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. Here we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors. PMID:26641933

  2. La Crosse virus (LACV) Gc fusion peptide mutants have impaired growth and fusion phenotypes, but remain neurotoxic

    SciTech Connect

    Soldan, Samantha S.; Hollidge, Bradley S.; Wagner, Valentina; Weber, Friedemann; Gonzalez-Scarano, Francisco

    2010-09-01

    La Crosse virus is a leading cause of pediatric encephalitis in the Midwestern United States and an emerging pathogen in the American South. The LACV glycoprotein Gc plays a critical role in entry as the virus attachment protein. A 22 amino acid hydrophobic region within Gc (1066-1087) was recently identified as the LACV fusion peptide. To further define the role of Gc (1066-1087) in virus entry, fusion, and neuropathogenesis, a panel of recombinant LACV (rLACV) fusion peptide mutant viruses was generated. Replication of mutant rLACVs was significantly reduced. In addition, the fusion peptide mutants demonstrated decreased fusion phenotypes relative to LACV-WT. Interestingly, these viruses maintained their ability to cause neuronal loss in culture, suggesting that the fusion peptide of LACV Gc is a determinant of properties associated with neuroinvasion (growth to high titer in muscle cells and a robust fusion phenotype), but not necessarily of neurovirulence.

  3. Measles Virus Fusion Protein: Structure, Function and Inhibition

    PubMed Central

    Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C.

    2016-01-01

    Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options. PMID:27110811

  4. Reversible conformational changes and fusion activity of rabies virus glycoprotein.

    PubMed Central

    Gaudin, Y; Tuffereau, C; Segretain, D; Knossow, M; Flamand, A

    1991-01-01

    In an attempt to understand the implication of the rabies virus glycoprotein (G) in the first steps of the viral cycle, we studied the pH dependence of virus-induced fusion and hemagglutination, as well as modifications of the structure and properties of the viral glycoprotein following pH acidification. Our results suggest that the G protein adopts at least three distinct configurations, each associated with different properties. At neutral pH, G did not fuse membranes or hemagglutinate erythrocytes. It was insensitive to digestion with bromelain and trypsin. At pH 6.4, the glycoprotein became sensitive to proteases. Hemagglutination was at its maximum and then sharply decreased with the pH. No fusion was detected. Aggregation of virus was also observed. The third configuration, at below pH 6.1, was associated with the appearance of fusion. Some neutralizing monoclonal antibodies were able to differentiate these three configurations. Preincubation of the virus at below pH 6 inhibited fusion, but this inhibition, like the structural modifications of the glycoprotein, was reversible when G was reincubated at neutral pH. Images PMID:1870204

  5. Herpes Virus Fusion and Entry: A Story with Many Characters

    PubMed Central

    Eisenberg, Roselyn J.; Atanasiu, Doina; Cairns, Tina M.; Gallagher, John R.; Krummenacher, Claude; Cohen, Gary H.

    2012-01-01

    Herpesviridae comprise a large family of enveloped DNA viruses all of whom employ orthologs of the same three glycoproteins, gB, gH and gL. Additionally, herpesviruses often employ accessory proteins to bind receptors and/or bind the heterodimer gH/gL or even to determine cell tropism. Sorting out how these proteins function has been resolved to a large extent by structural biology coupled with supporting biochemical and biologic evidence. Together with the G protein of vesicular stomatitis virus, gB is a charter member of the Class III fusion proteins. Unlike VSV G, gB only functions when partnered with gH/gL. However, gH/gL does not resemble any known viral fusion protein and there is evidence that its function is to upregulate the fusogenic activity of gB. In the case of herpes simplex virus, gH/gL itself is upregulated into an active state by the conformational change that occurs when gD, the receptor binding protein, binds one of its receptors. In this review we focus primarily on prototypes of the three subfamilies of herpesviruses. We will present our model for how herpes simplex virus (HSV) regulates fusion in series of highly regulated steps. Our model highlights what is known and also provides a framework to address mechanistic questions about fusion by HSV and herpesviruses in general. PMID:22754650

  6. Kinetics of endosome acidification detected by mutant and wild-type Semliki Forest virus.

    PubMed Central

    Kielian, M C; Marsh, M; Helenius, A

    1986-01-01

    The fusogenic properties of Semliki Forest virus (SFV) and its mutants were used to follow the kinetics of acidification during the endocytic uptake of virus by BHK-21 cells. It has previously been shown that the low pH of endocytic vacuoles triggers a conformational change in the SFV spike glycoprotein, activating membrane fusion and initiating virus infection. This conformational alteration was here shown to occur in endosomes and to follow the same time course as the intracellular fusion reaction, demonstrating that fusion occurs rapidly after virus exposure to endosome acidity. The kinetics of endosome acidification were monitored using wild type (wt) SFV and fus-1, an SFV mutant with a lower fusion pH threshold. The results presented here demonstrated that wt and mutant virus were internalized with a t1/2 of 10 min, and that endosomes were acidified to the wt threshold of pH 6.2 with a t1/2 of 15 min. In contrast, endosome pH reached the fus-1 threshold of 5.3 with a much longer t1/2 of 45 min. The subsequent degradation of SFV in lysosomes had a t1/2 of 90 min. It was found that after the initial uptake of virus from the plasma membrane, its transit through the endocytic pathway, exposure to endosome acidity and eventual delivery to lysosomes were markedly asynchronous. Images Fig. 2. Fig. 6. PMID:3816755

  7. Association of Vaccinia Virus Fusion Regulatory Proteins with the Multicomponent Entry/Fusion Complex▿

    PubMed Central

    Wagenaar, Timothy R.; Moss, Bernard

    2007-01-01

    The proteins encoded by the A56R and K2L genes of vaccinia virus form a heterodimer (A56/K2) and have a fusion regulatory role as deletion or mutation of either causes infected cells to form large syncytia spontaneously. Here, we showed that syncytia formation is dependent on proteins of the recently described entry fusion complex (EFC), which are also required for virus-cell fusion and low-pH-triggered cell-cell fusion. This finding led us to consider that A56/K2 might prevent fusion by direct or indirect interaction with the EFC. To test this hypothesis, we made a panel of recombinant vaccinia viruses that have a tandem affinity purification tag attached to A56, K2, or the A28 EFC protein. Interaction between A56/K2 and the EFC was demonstrated by their copurification from detergent-treated lysates of infected cells and identification by mass spectrometry or Western blotting. In addition, a purified soluble transmembrane-deleted form of A56/K2 was shown to interact with the EFC. Tagged A56 did not interact with the EFC in the absence of K2, nor did tagged K2 interact with the EFC in the absence of A56. The finding that both A56 and K2 are required for efficient binding to the EFC fits well with prior experiments showing that mutation of either A56 or K2 results in spontaneous fusion of infected cells. Because A56 and K2 are located on the surface of infected cells, they are in position to interact with the EFC of released progeny virions and prevent back-fusion and syncytia formation. PMID:17409143

  8. Association of vaccinia virus fusion regulatory proteins with the multicomponent entry/fusion complex.

    PubMed

    Wagenaar, Timothy R; Moss, Bernard

    2007-06-01

    The proteins encoded by the A56R and K2L genes of vaccinia virus form a heterodimer (A56/K2) and have a fusion regulatory role as deletion or mutation of either causes infected cells to form large syncytia spontaneously. Here, we showed that syncytia formation is dependent on proteins of the recently described entry fusion complex (EFC), which are also required for virus-cell fusion and low-pH-triggered cell-cell fusion. This finding led us to consider that A56/K2 might prevent fusion by direct or indirect interaction with the EFC. To test this hypothesis, we made a panel of recombinant vaccinia viruses that have a tandem affinity purification tag attached to A56, K2, or the A28 EFC protein. Interaction between A56/K2 and the EFC was demonstrated by their copurification from detergent-treated lysates of infected cells and identification by mass spectrometry or Western blotting. In addition, a purified soluble transmembrane-deleted form of A56/K2 was shown to interact with the EFC. Tagged A56 did not interact with the EFC in the absence of K2, nor did tagged K2 interact with the EFC in the absence of A56. The finding that both A56 and K2 are required for efficient binding to the EFC fits well with prior experiments showing that mutation of either A56 or K2 results in spontaneous fusion of infected cells. Because A56 and K2 are located on the surface of infected cells, they are in position to interact with the EFC of released progeny virions and prevent back-fusion and syncytia formation.

  9. Intracellular processing of the Newcastle disease virus fusion glycoprotein

    SciTech Connect

    Morrison, T.; Ward, L.J.; Semerjian, A.

    1985-03-01

    The fusion glycoprotein (Fo) of Newcastle disease virus is cleaved at an intracellular site into F1 and F2. This result was confirmed by comparing the transit time of the fusion protein to the cell surface with the time course of cleavage of Fo. The time required for cleavage of half of the pulse-labeled Fo protein is ca. 40 min faster than the half time of the transit of the fusion protein to the cell surface. To determine the cell compartment in which cleavage occurs, use was made of inhibitors which block glycoprotein migration at specific points and posttranslational modifications known to occur in specific cell membranes. Cleavage of Fo is inhibited by carbonyl cyanide m-chlorophenylhydrazone; thus, cleavage does not occur in the rough endoplasmic reticulum. Monensin blocks the incorporation of Newcastle disease virus glycoproteins into virions and blocks the cleavage of the fusion glycoprotein. However, Fo cannot be radioactively labeled with (/sup 3/H) fucose, whereas F1 is readily labeled. These results argue that cleavage occurs in the trans Golgi membranes or in a cell compartment occupied by glycoproteins quite soon after their transit through the trans Golgi membranes. The implications of the results presented for the transit times of the fusion protein between subcellular organelles are discussed.

  10. The interaction of alphavirus E1 protein with exogenous domain III defines stages in virus-membrane fusion.

    PubMed

    Roman-Sosa, Gleyder; Kielian, Margaret

    2011-12-01

    Alphaviruses such as Semliki Forest virus (SFV) are enveloped viruses that infect cells through a low-pH-triggered membrane fusion reaction mediated by the transmembrane fusion protein E1. E1 drives fusion by insertion of its hydrophobic fusion loop into the cell membrane and refolding to a stable trimeric hairpin. In this postfusion conformation, the immunoglobulin-like domain III (DIII) and the stem region pack against the central core of the trimer. Membrane fusion and infection can be specifically inhibited by exogenous DIII, which binds to an intermediate in the E1 refolding pathway. Here we characterized the properties of the E1 target for interaction with exogenous DIII. The earliest target for DIII binding was an extended membrane-inserted E1 trimer, which was not detectable by assays for the stable postfusion hairpin. DIII binding provided a tool to detect this extended trimer and to define a series of SFV fusion-block mutants. DIII binding studies showed that the mutants were blocked in distinct steps in fusion protein refolding. Our results suggested that formation of the initial extended trimer was reversible and that it was stabilized by the progressive fold-back of the DIII and stem regions.

  11. Dual Wavelength Imaging Allows Analysis of Membrane Fusion of Influenza Virus inside Cells

    PubMed Central

    Sakai, Tatsuya; Ohuchi, Masanobu; Imai, Masaki; Mizuno, Takafumi; Kawasaki, Kazunori; Kuroda, Kazumichi; Yamashina, Shohei

    2006-01-01

    Influenza virus hemagglutinin (HA) is a determinant of virus infectivity. Therefore, it is important to determine whether HA of a new influenza virus, which can potentially cause pandemics, is functional against human cells. The novel imaging technique reported here allows rapid analysis of HA function by visualizing viral fusion inside cells. This imaging was designed to detect fusion changing the spectrum of the fluorescence-labeled virus. Using this imaging, we detected the fusion between a virus and a very small endosome that could not be detected previously, indicating that the imaging allows highly sensitive detection of viral fusion. PMID:16439557

  12. Molecular mechanism of respiratory syncytial virus fusion inhibitors

    DOE PAGES

    Battles, Michael B.; Langedijk, Johannes P.; Furmanova-Hollenstein, Polina; ...

    2015-12-07

    Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. In this paper, we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitorsmore » or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Finally and collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors.« less

  13. Crystal Structure of the Pre-fusion Nipah Virus Fusion Glycoprotein Reveals a Novel Hexamer-of-Trimers Assembly

    PubMed Central

    Dutta, Somnath; Yan, Lianying; Feng, YanRu; Wang, Lin-Fa; Skiniotis, Georgios; Lee, Benhur; Zhou, Z. Hong; Broder, Christopher C.; Aguilar, Hector C.; Nikolov, Dimitar B.

    2015-01-01

    Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein. PMID:26646856

  14. Mutations in the parainfluenza virus 5 fusion protein reveal domains important for fusion triggering and metastability.

    PubMed

    Bose, Sayantan; Heath, Carissa M; Shah, Priya A; Alayyoubi, Maher; Jardetzky, Theodore S; Lamb, Robert A

    2013-12-01

    Paramyxovirus membrane glycoproteins F (fusion protein) and HN, H, or G (attachment protein) are critical for virus entry, which occurs through fusion of viral and cellular envelopes. The F protein folds into a homotrimeric, metastable prefusion form that can be triggered by the attachment protein to undergo a series of structural rearrangements, ultimately folding into a stable postfusion form. In paramyxovirus-infected cells, the F protein is activated in the Golgi apparatus by cleavage adjacent to a hydrophobic fusion peptide that inserts into the target membrane, eventually bringing the membranes together by F refolding. However, it is not clear how the attachment protein, known as HN in parainfluenza virus 5 (PIV5), interacts with F and triggers F to initiate fusion. To understand the roles of various F protein domains in fusion triggering and metastability, single point mutations were introduced into the PIV5 F protein. By extensive study of F protein cleavage activation, surface expression, and energetics of fusion triggering, we found a role for an immunoglobulin-like (Ig-like) domain, where multiple hydrophobic residues on the PIV5 F protein may mediate F-HN interactions. Additionally, destabilizing mutations of PIV5 F that resulted in HN trigger-independent mutant F proteins were identified in a region along the border of F trimer subunits. The positions of the potential HN-interacting region and the region important for F stability in the lower part of the PIV5 F prefusion structure provide clues to the receptor-binding initiated, HN-mediated F trigger.

  15. Mutations in the Parainfluenza Virus 5 Fusion Protein Reveal Domains Important for Fusion Triggering and Metastability

    PubMed Central

    Bose, Sayantan; Heath, Carissa M.; Shah, Priya A.; Alayyoubi, Maher; Jardetzky, Theodore S.

    2013-01-01

    Paramyxovirus membrane glycoproteins F (fusion protein) and HN, H, or G (attachment protein) are critical for virus entry, which occurs through fusion of viral and cellular envelopes. The F protein folds into a homotrimeric, metastable prefusion form that can be triggered by the attachment protein to undergo a series of structural rearrangements, ultimately folding into a stable postfusion form. In paramyxovirus-infected cells, the F protein is activated in the Golgi apparatus by cleavage adjacent to a hydrophobic fusion peptide that inserts into the target membrane, eventually bringing the membranes together by F refolding. However, it is not clear how the attachment protein, known as HN in parainfluenza virus 5 (PIV5), interacts with F and triggers F to initiate fusion. To understand the roles of various F protein domains in fusion triggering and metastability, single point mutations were introduced into the PIV5 F protein. By extensive study of F protein cleavage activation, surface expression, and energetics of fusion triggering, we found a role for an immunoglobulin-like (Ig-like) domain, where multiple hydrophobic residues on the PIV5 F protein may mediate F-HN interactions. Additionally, destabilizing mutations of PIV5 F that resulted in HN trigger-independent mutant F proteins were identified in a region along the border of F trimer subunits. The positions of the potential HN-interacting region and the region important for F stability in the lower part of the PIV5 F prefusion structure provide clues to the receptor-binding initiated, HN-mediated F trigger. PMID:24089572

  16. A neutron study of the feline leukaemia virus fusion peptide: Implications for biological fusion?

    NASA Astrophysics Data System (ADS)

    Davies, Sarah M. A.; Darkes, Malcolm J. M.; Bradshaw, Jeremy P.

    Neutron diffraction studies were performed on stacked phospholipid bilayers to determine the effects of the feline leukaemia virus (FeLV) fusion peptide on membrane structure. Bilayers were composed of dioleoylphosphatidylcholine with 50% (mol) dioleoylphosphatidylglycerol. Neutron scattering profiles with peptide present showed an increase in scattering density in the lipid-tails region, whilst scattering by the lipid headgroup region was decreased. This is interpreted as a lowering of the packing density of the lipid headgroups and an increase in the packing density of the lipid tails. Modelling studies and experimental evidence have suggested that fusion peptides catalyse fusion by increasing the negative curvature of the target membrane's outer monolayer. Our results presented here add support to this hypothesis for the fusion mechanism. The 2H 2O scattering profile was also slightly perturbed in the lipid headgroup region with 1% (mol)FeLV fusion peptide present. The FeLV peptide had no significant effect on the organisation of bilayers containing only dioleoylphosphatidylcholine.

  17. Base of the Measles Virus Fusion Trimer Head Receives the Signal That Triggers Membrane Fusion*

    PubMed Central

    Apte-Sengupta, Swapna; Negi, Surendra; Leonard, Vincent H. J.; Oezguen, Numan; Navaratnarajah, Chanakha K.; Braun, Werner; Cattaneo, Roberto

    2012-01-01

    The measles virus (MV) fusion (F) protein trimer executes membrane fusion after receiving a signal elicited by receptor binding to the hemagglutinin (H) tetramer. Where and how this signal is received is understood neither for MV nor for other paramyxoviruses. Because only the prefusion structure of the parainfluenza virus 5 (PIV5) F-trimer is available, to study signal receipt by the MV F-trimer, we generated and energy-refined a homology model. We used two approaches to predict surface residues of the model interacting with other proteins. Both approaches measured interface propensity values for patches of residues. The second approach identified, in addition, individual residues based on the conservation of physical chemical properties among F-proteins. Altogether, about 50 candidate interactive residues were identified. Through iterative cycles of mutagenesis and functional analysis, we characterized six residues that are required specifically for signal transmission; their mutation interferes with fusion, although still allowing efficient F-protein processing and cell surface transport. One residue is located adjacent to the fusion peptide, four line a cavity in the base of the F-trimer head, while the sixth residue is located near this cavity. Hydrophobic interactions in the cavity sustain the fusion process and contacts with H. The cavity is flanked by two different subunits of the F-trimer. Tetrameric H-stalks may be lodged in apposed cavities of two F-trimers. Because these insights are based on a PIV5 homology model, the signal receipt mechanism may be conserved among paramyxoviruses. PMID:22859308

  18. Henipavirus Mediated Membrane Fusion, Virus Entry and Targeted Therapeutics

    PubMed Central

    Steffen, Deborah L.; Xu, Kai; Nikolov, Dimitar B.; Broder, Christopher C.

    2012-01-01

    The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G) and class I fusion (F) envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins. PMID:22470837

  19. Henipavirus mediated membrane fusion, virus entry and targeted therapeutics.

    PubMed

    Steffen, Deborah L; Xu, Kai; Nikolov, Dimitar B; Broder, Christopher C

    2012-02-01

    The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G) and class I fusion (F) envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins.

  20. A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance

    PubMed Central

    Watterson, Daniel; Robinson, Jodie; Chappell, Keith J.; Butler, Mark S.; Edwards, David J.; Fry, Scott R.; Bermingham, Imogen M.; Cooper, Matthew A.; Young, Paul R.

    2016-01-01

    Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus. PMID:26976324

  1. Regional distribution of forest height and biomass from multisensor data fusion

    Treesearch

    Yifan Yu; Sassan Saatch; Linda S. Heath; Elizabeth LaPoint; Ranga Myneni; Yuri. Knyazikhin

    2010-01-01

    Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM...

  2. Inhibition of Sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides

    SciTech Connect

    Kelsey, D.R.; Flanagan, T.D.; Young, J.E.; Yeagle, P.L. )

    1991-06-01

    Hydrophobic di- and tripeptides which are capable of inhibiting enveloped virus infection of cells are also capable of inhibiting at least three different types of membrane fusion events. Large unilamellar vesicles (LUV) of N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE), containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and/or p-xylene bis(pyridinium bromide) (DPX), were formed by extrusion. Vesicle fusion and leakage were then monitored with the ANTS/DPX fluorescence assay. Sendai virus fusion with lipid vesicles and Sendai virus fusion with human erythrocyte membranes were measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride (R18). This study found that the effectiveness of the peptides carbobenzoxy-L-Phe-L-Phe (Z-L-Phe-L-Phe), Z-L-Phe, Z-D-Phe, and Z-Gly-L-Phe-L-Phe in inhibiting N-methyl DOPE LUV fusion or fusion of virus with N-methyl DOPE LUV also paralleled their reported ability to block viral infectivity. Furthermore, Z-D-Phe-L-PheGly and Z-Gly-L-Phe inhibited Sendai virus fusion with human erythrocyte membranes with the same relative potency with which they inhibited vesicle-vesicle and virus-vesicle fusion. The evidence suggests a mechanism by which these peptides exert their inhibition of plaque formation by enveloped viruses. This class of inhibitors apparently acts by inhibiting fusion of the viral envelope with the target cell membrane, thereby preventing viral infection. The physical pathway by which these peptides inhibit membrane fusion was investigated. {sup 31}P nuclear magnetic resonance (NMR) of proposed intermediates in the pathway for membrane fusion in LUV revealed that the potent fusion inhibitor Z-D-Phe-L-PheGly selectively altered the structure (or dynamics) of the hypothesized fusion intermediates and that the poor inhibitor Z-Gly-L-Phe did not.

  3. Early Events in Chikungunya Virus Infection—From Virus Cell Binding to Membrane Fusion

    PubMed Central

    van Duijl-Richter, Mareike K. S.; Hoornweg, Tabitha E.; Rodenhuis-Zybert, Izabela A.; Smit, Jolanda M.

    2015-01-01

    Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research. PMID:26198242

  4. Efficient multiplication of a Semliki Forest virus chimera containing Sindbis virus spikes.

    PubMed Central

    Smyth, J; Suomalainen, M; Garoff, H

    1997-01-01

    Using the Semliki Forest virus (SFV) and Sindbis virus (SIN) cDNAs we have constructed recombinants in which the spike genes were exchanged. Analyses of expression showed that the SFV/SIN(spike) RNA directed efficient assembly of infectious virus, whereas the reciprocal SIN/SFV(spike) RNA was completely unable to assemble virus. This was apparently due to a defective capsid-spike interaction. PMID:8985423

  5. Imaging Single Retrovirus Entry through Alternative Receptor Isoforms and Intermediates of Virus-Endosome Fusion

    PubMed Central

    Jha, Naveen K.; Latinovic, Olga; Martin, Erik; Novitskiy, Gennadiy; Marin, Mariana; Miyauchi, Kosuke; Naughton, John; Young, John A. T.; Melikyan, Gregory B.

    2011-01-01

    A large group of viruses rely on low pH to activate their fusion proteins that merge the viral envelope with an endosomal membrane, releasing the viral nucleocapsid. A critical barrier to understanding these events has been the lack of approaches to study virus-cell membrane fusion within acidic endosomes, the natural sites of virus nucleocapsid capsid entry into the cytosol. Here we have investigated these events using the highly tractable subgroup A avian sarcoma and leukosis virus envelope glycoprotein (EnvA)-TVA receptor system. Through labeling EnvA pseudotyped viruses with a pH-sensitive fluorescent marker, we imaged their entry into mildly acidic compartments. We found that cells expressing the transmembrane receptor (TVA950) internalized the virus much faster than those expressing the GPI-anchored receptor isoform (TVA800). Surprisingly, TVA800 did not accelerate virus uptake compared to cells lacking the receptor. Subsequent steps of virus entry were visualized by incorporating a small viral content marker that was released into the cytosol as a result of fusion. EnvA-dependent fusion with TVA800-expressing cells occurred shortly after endocytosis and delivery into acidic endosomes, whereas fusion of viruses internalized through TVA950 was delayed. In the latter case, a relatively stable hemifusion-like intermediate preceded the fusion pore opening. The apparent size and stability of nascent fusion pores depended on the TVA isoforms and their expression levels, with TVA950 supporting more robust pores and a higher efficiency of infection compared to TVA800. These results demonstrate that surface receptor density and the intracellular trafficking pathway used are important determinants of efficient EnvA-mediated membrane fusion, and suggest that early fusion intermediates play a critical role in establishing low pH-dependent virus entry from within acidic endosomes. PMID:21283788

  6. Regional Distribution of Forest Height and Biomass from Multisensor Data Fusion

    NASA Technical Reports Server (NTRS)

    Yu, Yifan; Saatchi, Sassan; Heath, Linda S.; LaPoint, Elizabeth; Myneni, Ranga; Knyazikhin, Yuri

    2010-01-01

    Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM derived elevation (30 m), Landsat Enhanced Thematic Mapper (ETM) bands (30 m), derived vegetation index (VI) and NLCD2001 land cover map. The first fusion algorithm corrects for missing or erroneous NED data using an iterative interpolation approach and produces distribution of scattering phase centers from SRTM-NED in three dominant forest types of evergreen conifers, deciduous, and mixed stands. The second fusion technique integrates the USDA Forest Service, Forest Inventory and Analysis (FIA) ground-based plot data to develop an algorithm to transform the scattering phase centers into mean forest height and aboveground biomass. Height estimates over evergreen (R2 = 0.86, P < 0.001; RMSE = 1.1 m) and mixed forests (R2 = 0.93, P < 0.001, RMSE = 0.8 m) produced the best results. Estimates over deciduous forests were less accurate because of the winter acquisition of SRTM data and loss of scattering phase center from tree ]surface interaction. We used two methods to estimate AGLB; algorithms based on direct estimation from the scattering phase center produced higher precision (R2 = 0.79, RMSE = 25 Mg/ha) than those estimated from forest height (R2 = 0.25, RMSE = 66 Mg/ha). We discuss sources of uncertainty and implications of the results in the context of mapping regional and continental scale forest biomass distribution.

  7. Regional Distribution of Forest Height and Biomass from Multisensor Data Fusion

    NASA Technical Reports Server (NTRS)

    Yu, Yifan; Saatchi, Sassan; Heath, Linda S.; LaPoint, Elizabeth; Myneni, Ranga; Knyazikhin, Yuri

    2010-01-01

    Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM derived elevation (30 m), Landsat Enhanced Thematic Mapper (ETM) bands (30 m), derived vegetation index (VI) and NLCD2001 land cover map. The first fusion algorithm corrects for missing or erroneous NED data using an iterative interpolation approach and produces distribution of scattering phase centers from SRTM-NED in three dominant forest types of evergreen conifers, deciduous, and mixed stands. The second fusion technique integrates the USDA Forest Service, Forest Inventory and Analysis (FIA) ground-based plot data to develop an algorithm to transform the scattering phase centers into mean forest height and aboveground biomass. Height estimates over evergreen (R2 = 0.86, P < 0.001; RMSE = 1.1 m) and mixed forests (R2 = 0.93, P < 0.001, RMSE = 0.8 m) produced the best results. Estimates over deciduous forests were less accurate because of the winter acquisition of SRTM data and loss of scattering phase center from tree ]surface interaction. We used two methods to estimate AGLB; algorithms based on direct estimation from the scattering phase center produced higher precision (R2 = 0.79, RMSE = 25 Mg/ha) than those estimated from forest height (R2 = 0.25, RMSE = 66 Mg/ha). We discuss sources of uncertainty and implications of the results in the context of mapping regional and continental scale forest biomass distribution.

  8. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein

    PubMed Central

    Kim, Irene S.; Jenni, Simon; Stanifer, Megan L.; Roth, Eatai; Whelan, Sean P. J.; van Oijen, Antoine M.; Harrison, Stephen C.

    2017-01-01

    The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) and related rhabdoviruses (e.g., rabies virus) mediate both cell attachment and membrane fusion. The reversibility of their fusogenic conformational transitions differentiates them from many other low-pH-induced viral fusion proteins. We report single-virion fusion experiments, using methods developed in previous publications to probe fusion of influenza and West Nile viruses. We show that a three-stage model fits VSV single-particle fusion kinetics: (i) reversible, pH-dependent, G-protein conformational change from the known prefusion conformation to an extended, monomeric intermediate; (ii) reversible trimerization and clustering of the G-protein fusion loops, leading to an extended intermediate that inserts the fusion loops into the target-cell membrane; and (iii) folding back of a cluster of extended trimers into their postfusion conformations, bringing together the viral and cellular membranes. From simulations of the kinetic data, we conclude that the critical number of G-protein trimers required to overcome membrane resistance is 3 to 5, within a contact zone between the virus and the target membrane of 30 to 50 trimers. This sequence of conformational events is similar to those shown to describe fusion by influenza virus hemagglutinin (a “class I” fusogen) and West Nile virus envelope protein (“class II”). Our study of VSV now extends this description to “class III” viral fusion proteins, showing that reversibility of the low-pH-induced transition and architectural differences in the fusion proteins themselves do not change the basic mechanism by which they catalyze membrane fusion. PMID:27974607

  9. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein.

    PubMed

    Kim, Irene S; Jenni, Simon; Stanifer, Megan L; Roth, Eatai; Whelan, Sean P J; van Oijen, Antoine M; Harrison, Stephen C

    2017-01-03

    The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) and related rhabdoviruses (e.g., rabies virus) mediate both cell attachment and membrane fusion. The reversibility of their fusogenic conformational transitions differentiates them from many other low-pH-induced viral fusion proteins. We report single-virion fusion experiments, using methods developed in previous publications to probe fusion of influenza and West Nile viruses. We show that a three-stage model fits VSV single-particle fusion kinetics: (i) reversible, pH-dependent, G-protein conformational change from the known prefusion conformation to an extended, monomeric intermediate; (ii) reversible trimerization and clustering of the G-protein fusion loops, leading to an extended intermediate that inserts the fusion loops into the target-cell membrane; and (iii) folding back of a cluster of extended trimers into their postfusion conformations, bringing together the viral and cellular membranes. From simulations of the kinetic data, we conclude that the critical number of G-protein trimers required to overcome membrane resistance is 3 to 5, within a contact zone between the virus and the target membrane of 30 to 50 trimers. This sequence of conformational events is similar to those shown to describe fusion by influenza virus hemagglutinin (a "class I" fusogen) and West Nile virus envelope protein ("class II"). Our study of VSV now extends this description to "class III" viral fusion proteins, showing that reversibility of the low-pH-induced transition and architectural differences in the fusion proteins themselves do not change the basic mechanism by which they catalyze membrane fusion.

  10. Internalization and fusion mechanism of vesicular stomatitis virus and related rhabdoviruses

    PubMed Central

    Sun, Xiangjie; Roth, Shoshannah L; Bialecki, Michele A; Whittaker, Gary R

    2013-01-01

    Members of the Rhabdoviridae infect a wide variety of animals and plants, and are the causative agents of many important diseases. Rhabdoviruses enter host cells following internalization into endosomes, with the glycoprotein (G protein) mediating both receptor binding to host cells and fusion with the cellular membrane. The recently solved crystal structure of vesicular stomatitis virus G has allowed considerable insight into the mechanism of rhabdovirus entry, in particular the low pH-dependent conformational changes that lead to fusion activation. Rhabdovirus entry shows several distinct features compared with other enveloped viruses; first, the entry process appears to consist of two distinct fusion events, initial fusion into vesicles within endosomes followed by back-fusion into the cytosol; second, the conformational changes in the G protein that lead to fusion activation are reversible; and third, the G protein is structurally distinct from other viral fusion proteins and is not proteolytically cleaved. The internalization and fusion mechanisms of rhabdoviruses are discussed in this article, with a focus on viral systems where the G protein has been studied extensively: vesicular stomatitis virus and rabies virus, as well as viral hemorrhagic septicemia virus. PMID:23516023

  11. Genetic studies of cell fusion induced by herpes simplex virus type 1

    SciTech Connect

    Read, G.S.; Person, S.; Keller, P.M.

    1980-07-01

    Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was a significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.

  12. Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion

    PubMed Central

    Gui, Long; Ebner, Jamie L.; Mileant, Alexander; Williams, James A.

    2016-01-01

    ABSTRACT Protein-mediated membrane fusion is an essential step in many fundamental biological events, including enveloped virus infection. The nature of protein and membrane intermediates and the sequence of membrane remodeling during these essential processes remain poorly understood. Here we used cryo-electron tomography (cryo-ET) to image the interplay between influenza virus and vesicles with a range of lipid compositions. By following the population kinetics of membrane fusion intermediates imaged by cryo-ET, we found that membrane remodeling commenced with the hemagglutinin fusion protein spikes grappling onto the target membrane, followed by localized target membrane dimpling as local clusters of hemagglutinin started to undergo conformational refolding. The local dimples then transitioned to extended, tightly apposed contact zones where the two proximal membrane leaflets were in most cases indistinguishable from each other, suggesting significant dehydration and possible intermingling of the lipid head groups. Increasing the content of fusion-enhancing cholesterol or bis-monoacylglycerophosphate in the target membrane led to an increase in extended contact zone formation. Interestingly, hemifused intermediates were found to be extremely rare in the influenza virus fusion system studied here, most likely reflecting the instability of this state and its rapid conversion to postfusion complexes, which increased in population over time. By tracking the populations of fusion complexes over time, the architecture and sequence of membrane reorganization leading to efficient enveloped virus fusion were thus resolved. IMPORTANCE Enveloped viruses employ specialized surface proteins to mediate fusion of cellular and viral membranes that results in the formation of pores through which the viral genetic material is delivered to the cell. For influenza virus, the trimeric hemagglutinin (HA) glycoprotein spike mediates host cell attachment and membrane fusion. While

  13. Antibodies to CD9, a tetraspan transmembrane protein, inhibit canine distemper virus-induced cell-cell fusion but not virus-cell fusion.

    PubMed

    Schmid, E; Zurbriggen, A; Gassen, U; Rima, B; ter Meulen, V; Schneider-Schaulies, J

    2000-08-01

    Canine distemper virus (CDV) causes a life-threatening disease in several carnivores including domestic dogs. Recently, we identified a molecule, CD9, a member of the tetraspan transmembrane protein family, which facilitates, and antibodies to which inhibit, the infection of tissue culture cells with CDV (strain Onderstepoort). Here we describe that an anti-CD9 monoclonal antibody (MAb K41) did not interfere with binding of CDV to cells and uptake of virus. In addition, in single-step growth experiments, MAb K41 did not induce differences in the levels of viral mRNA and proteins. However, the virus release of syncytium-forming strains of CDV, the virus-induced cell-cell fusion in lytically infected cultures, and the cell-cell fusion of uninfected with persistently CDV-infected HeLa cells were strongly inhibited by MAb K41. These data indicate that anti-CD9 antibodies selectively block virus-induced cell-cell fusion, whereas virus-cell fusion is not affected.

  14. Fusion of imaging spectroscopy and airborne laser scanning data for characterization of forest ecosystems - A review

    NASA Astrophysics Data System (ADS)

    Torabzadeh, Hossein; Morsdorf, Felix; Schaepman, Michael E.

    2014-11-01

    Forest ecosystems play an important role in the global carbon cycle and it is largely unknown how this role might be altered by transients imposed by global change and deforestation. Remote sensing can provide information on ecosystem state and functioning and, among others, two remote sensing techniques, airborne laser scanning (ALS) and imaging spectroscopy (IS), have been used to characterize forest ecosystems, both independently and combined in fusion approaches. However, the fusion of these datasets should make the best use of the complementarity of both sensors and provide better and more robust vegetation products in forested ecosystems. Similar to other data fusion approaches, satisfying results depend on choosing appropriate fusion levels and methods. In this review paper, we summarize and classify relevant studies that focused on forest characterization using combined ALS and IS data, limited to the last decade. We classified the approaches by fusion level (data or product level) and by choice of methods (physical or empirical methods). Five different categories of products (landcover maps, aboveground biomass, biophysical parameters, gross/net primary productivity and biochemical parameters), have been found as the main aspects of forest ecosystems studied so far. A qualitative accuracy analysis of the products exposed that currently landcover maps are profiting the most from ALS and IS data fusion, while there is room for improvements in respect to the other products, such as biophysical parameters. Only few studies using physical approaches were found, but we expect the use of such approaches will increase with the growing availability of physically based radiative transfer models that can simulate both, ALS and IS data.

  15. Fusion between a content labelled liposome and an enveloped virus particle

    NASA Astrophysics Data System (ADS)

    Wessels, Laura; Weninger, Keith

    2008-10-01

    Membrane fusion is critical during enveloped virus entry into cells for release of the viral genome to the cell. We have developed a fluorescence assay to observe individual virus particles fusing with immobilized liposomes. Dye encapsulated inside a liposome will be released into the virus particle's interior through a fusion pore that is created between the liposome's bilayer and the viral envelope. We used Total Internal Reflection Microscopy (TIRFM) to observe fusion between a liposome with calcein in the intravescular buffer and an influenza particle. A sudden buffer exchange to acidic pH is used to trigger the fusion event. TIRFM allows a time resolution of ˜100ms. We plan to use confocal microscopy to improve the time resolution of our measurements of the opening of the fusion pore.

  16. Cytoplasmic Motifs in the Nipah Virus Fusion Protein Modulate Virus Particle Assembly and Egress.

    PubMed

    Johnston, Gunner P; Contreras, Erik M; Dabundo, Jeffrey; Henderson, Bryce A; Matz, Keesha M; Ortega, Victoria; Ramirez, Alfredo; Park, Arnold; Aguilar, Hector C

    2017-05-15

    Nipah virus (NiV), a paramyxovirus in the genus Henipavirus, has a mortality rate in humans of approximately 75%. While several studies have begun our understanding of NiV particle formation, the mechanism of this process remains to be fully elucidated. For many paramyxoviruses, M proteins drive viral assembly and egress; however, some paramyxoviral glycoproteins have been reported as important or essential in budding. For NiV the matrix protein (M), the fusion glycoprotein (F) and, to a much lesser extent, the attachment glycoprotein (G) autonomously induce the formation of virus-like particles (VLPs). However, functional interactions between these proteins during assembly and egress remain to be fully understood. Moreover, if the F-driven formation of VLPs occurs through interactions with host cell machinery, the cytoplasmic tail (CT) of F is a likely interactive domain. Therefore, we analyzed NiV F CT deletion and alanine mutants and report that several but not all regions of the F CT are necessary for efficient VLP formation. Two of these regions contain YXXØ or dityrosine motifs previously shown to interact with cellular machinery involved in F endocytosis and transport. Importantly, our results showed that F-driven, M-driven, and M/F-driven viral particle formation enhanced the recruitment of G into VLPs. By identifying key motifs, specific residues, and functional viral protein interactions important for VLP formation, we improve our understanding of the viral assembly/egress process and point to potential interactions with host cell machinery.IMPORTANCE Henipaviruses can cause deadly infections of medical, veterinary, and agricultural importance. With recent discoveries of new henipa-like viruses, understanding the mechanisms by which these viruses reproduce is paramount. We have focused this study on identifying the functional interactions of three Nipah virus proteins during viral assembly and particularly on the role of one of these proteins, the fusion

  17. Intrinsic temperature sensitivity of influenza C virus hemagglutinin-esterase-fusion protein.

    PubMed

    Takashita, Emi; Muraki, Yasushi; Sugawara, Kanetsu; Asao, Hironobu; Nishimura, Hidekazu; Suzuki, Koji; Tsuji, Takashi; Hongo, Seiji; Ohara, Yoshiro; Ohara, Yoshihiro; Kawaoka, Yoshihiro; Ozawa, Makoto; Matsuzaki, Yoko

    2012-12-01

    Influenza C virus replicates more efficiently at 33°C than at 37°C. To determine whether hemagglutinin-esterase-fusion protein (HEF), a surface glycoprotein of influenza C virus, is a restricting factor for this temperature sensitivity, we analyzed the biological and biochemical properties of HEF at 33°C and 37°C. We found that HEF exhibits intrinsic temperature sensitivities for surface expression and fusion activity.

  18. Membrane penetration of Sendai virus glycoproteins during the early stages of fusion with liposomes as determined by hydrophobic photoaffinity labeling

    SciTech Connect

    Novick, S.L.; Hoekstra, D.

    1988-10-01

    The hydrophobic photoaffinity label 3-(trifluoromethyl)-3-(m-(/sup 125/I)iodophenyl)diazirine was used to label Sendai virus proteins during fusion with cardiolipin and phosphatidylserine liposomes. Preferential labeling of the viral fusion protein during the initial stages of fusion demonstrated that this protein interacts with the hydrophobic core of the target membrane as an initiating event of virus-liposome fusion. Labeling showed time, temperature, and pH dependence consistent with earlier fluorescent measurements of fusion kinetics. The present method provides conclusive evidence supporting the hypothesis that hydrophobic interaction of the fusion protein with the target bilayer is an initial event in the fusion mechanism of viral membranes.

  19. Sendai virus-erythrocyte membrane interaction: quantitative and kinetic analysis of viral binding, dissociation, and fusion.

    PubMed

    Hoekstra, D; Klappe, K

    1986-04-01

    A kinetic and quantitative analysis of the binding and fusion of Sendai virus with erythrocyte membranes was performed by using a membrane fusion assay based on the relief of fluorescence self-quenching. At 37 degrees C, the process of virus association displayed a half time of 2.5 min; at 4 degrees C, the half time was 3.0 min. The fraction of the viral dose which became cell associated was independent of the incubation temperature and increased with increasing target membrane concentration. On the average, one erythrocyte ghost can accommodate ca. 1,200 Sendai virus particles. The stability of viral attachment was sensitive to a shift in temperature: a fraction of the virions (ca. 30%), attached at 4 degrees C, rapidly (half time, ca. 2.5 min) eluted from the cell surface at 37 degrees C, irrespective of the presence of free virus in the medium. The elution can be attributed to a spontaneous, temperature-induced release, rather than to viral neuraminidase activity. Competition experiments with nonlabeled virus revealed that viruses destined to fuse do not exchange with free particles in the medium but rather bind in a rapid and irreversible manner. The fusion rate of Sendai virus was affected by the density of the virus particles on the cell surface and became restrained when more than 170 virus particles were attached per ghost. In principle, all virus particles added displayed fusion activity. However, at high virus-to-ghost ratios, only a fraction actually fused, indicating that a limited number of fusion sites exist on the erythrocyte membrane. We estimate that ca. 180 virus particles maximally can fuse with one erythrocyte ghost.

  20. The Fusion Loops of the Initial Prefusion Conformation of Herpes Simplex Virus 1 Fusion Protein Point Toward the Membrane.

    PubMed

    Fontana, Juan; Atanasiu, Doina; Saw, Wan Ting; Gallagher, John R; Cox, Reagan G; Whitbeck, J Charles; Brown, Lauren M; Eisenberg, Roselyn J; Cohen, Gary H

    2017-08-22

    All enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV), a model system for herpesviruses, causes diseases ranging from mild skin lesions to serious encephalitis and neonatal infections. Using cryo-electron tomography and subtomogram averaging, we have characterized the structure of the prefusion conformation and fusion intermediates of HSV-1 gB. To this end, we have set up a system that generates microvesicles displaying full-length gB on their envelope. We confirmed proper folding of gB by nondenaturing electrophoresis-Western blotting with a panel of monoclonal antibodies (MAbs) covering all gB domains. To elucidate the arrangement of gB domains, we labeled them by using (i) mutagenesis to insert fluorescent proteins at specific positions, (ii) coexpression of gB with Fabs for a neutralizing MAb with known binding sites, and (iii) incubation of gB with an antibody directed against the fusion loops. Our results show that gB starts in a compact prefusion conformation with the fusion loops pointing toward the viral membrane and suggest, for the first time, a model for gB's conformational rearrangements during fusion. These experiments further illustrate how neutralizing antibodies can interfere with the essential gB structural transitions that mediate viral entry and therefore infectivity.IMPORTANCE The herpesvirus family includes herpes simplex virus (HSV) and other human viruses that cause lifelong infections and a variety of diseases, like skin lesions, encephalitis, and cancers. As enveloped viruses, herpesviruses must fuse their envelope

  1. Radiation inactivation analysis of fusion and hemolysis by vesicular stomatitis virus

    SciTech Connect

    Bundo-Morita, K.; Gibson, S.; Lenard, J.

    1988-04-01

    Radiation inactivation analysis was used to determine the size of the functional unit responsible for fusion of vesicular stomatitis virus (VSV) with cardiolipin or phosphatidylcholine-phosphatidylethanolamine (1:1) liposomes, and for VSV-induced hemolysis. When radiation-insensitive background values were subtracted, the calculated functional units for all three activities were similar, ranging from 866 to 957 kDa, equivalent to about 15 G protein molecules. This is in striking contrast to results of similar studies with influenza and Sendai viruses, in which the functional unit corresponded in size to a single fusion protein monomer, and suggests that VSV fusion may occur by a different mechanism.

  2. A sensor fusion field experiment in forest ecosystem dynamics

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ranson, K. Jon; Williams, Darrel L.; Levine, Elissa R.; Goltz, Stewart M.

    1990-01-01

    The background of the Forest Ecosystem Dynamics field campaign is presented, a progress report on the analysis of the collected data and related modeling activities is provided, and plans for future experiments at different points in the phenological cycle are outlined. The ecological overview of the study site is presented, and attention is focused on forest stands, needles, and atmospheric measurements. Sensor deployment and thermal and microwave observations are discussed, along with two examples of the optical radiation measurements obtained during the experiment in support of radiative transfer modeling. Future activities pertaining to an archival system, synthetic aperture radar, carbon acquisition modeling, and upcoming field experiments are considered.

  3. A sensor fusion field experiment in forest ecosystem dynamics

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ranson, K. Jon; Williams, Darrel L.; Levine, Elissa R.; Goltz, Stewart M.

    1990-01-01

    The background of the Forest Ecosystem Dynamics field campaign is presented, a progress report on the analysis of the collected data and related modeling activities is provided, and plans for future experiments at different points in the phenological cycle are outlined. The ecological overview of the study site is presented, and attention is focused on forest stands, needles, and atmospheric measurements. Sensor deployment and thermal and microwave observations are discussed, along with two examples of the optical radiation measurements obtained during the experiment in support of radiative transfer modeling. Future activities pertaining to an archival system, synthetic aperture radar, carbon acquisition modeling, and upcoming field experiments are considered.

  4. The Forest, The Fly, and the Virus?

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.; Pinzon, Jorge E.; Wilson, James M.

    2003-01-01

    All known outbreaks of Ebola have been linked to tropical forests. We undertook a study of environmental conditions associated with Ebola hemorrhagic fever after preliminary reports strongly suggested that simultaneous outbreaks occurred, during two limited time periods in the 1970s and 1990s, immediately following sudden transitions between dry and wet seasons.

  5. The Forest, The Fly, and the Virus?

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.; Pinzon, Jorge E.; Wilson, James M.

    2003-01-01

    All known outbreaks of Ebola have been linked to tropical forests. We undertook a study of environmental conditions associated with Ebola hemorrhagic fever after preliminary reports strongly suggested that simultaneous outbreaks occurred, during two limited time periods in the 1970s and 1990s, immediately following sudden transitions between dry and wet seasons.

  6. Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer

    DTIC Science & Technology

    2008-07-01

    constitute the family Filoviridae. The most pathogenic strain ( Zaire ) of Ebola virus causes a severe form of hemorrhagic fever in humans and nonhuman...in the membrane-fusion process. Very recently, a NMR structure was reported of a 16-residue Zaire Ebola virus fusion peptide (Ebo-16) of GP2 [1...Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer Mark A. Olson1, In

  7. Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids

    PubMed Central

    Melikov, Kamran; Pourmal, Sergei; Chernomordik, Leonid V.

    2010-01-01

    Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. PMID:20949067

  8. Refining the Mechanisms of Heniparvirus-Mediated Membrane Fusion Through Mutagenesis of Hendra virus Envelope Glycoproteins

    DTIC Science & Technology

    2007-09-06

    membrane, followed by tightly controlled conformational changes. Prototypical Class I fusion glycoproteins include Influenza HA and HIV Env... Influenza virus HA and Human Immunodeficiency Virus (HIV) Env (73). The presence of HRA and HRB domains is conserved across the family of...studied for as many years as other viruses, such as Influenza and HIV. Therefore, fewer antibodies have been available for use in characterizing the

  9. Side Chain Packing below the Fusion Peptide Strongly Modulates Triggering of the Hendra Virus F Protein ▿

    PubMed Central

    Smith, Everett Clinton; Dutch, Rebecca Ellis

    2010-01-01

    Triggering of the Hendra virus fusion (F) protein is required to initiate the conformational changes which drive membrane fusion, but the factors which control triggering remain poorly understood. Mutation of a histidine predicted to lie near the fusion peptide to alanine greatly reduced fusion despite wild-type cell surface expression levels, while asparagine substitution resulted in a moderate restoration in fusion levels. Slowed kinetics of six-helix bundle formation, as judged by sensitivity to heptad repeat B-derived peptides, was observed for all H372 mutants. These data suggest that side chain packing beneath the fusion peptide is an important regulator of Hendra virus F triggering. PMID:20702638

  10. IFITM3 Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores following Virus-Endosome Hemifusion

    PubMed Central

    Chin, Christopher R.; Savidis, George; Brass, Abraham L.; Melikyan, Gregory B.

    2014-01-01

    Interferon-induced transmembrane proteins (IFITMs) inhibit infection of diverse enveloped viruses, including the influenza A virus (IAV) which is thought to enter from late endosomes. Recent evidence suggests that IFITMs block virus hemifusion (lipid mixing in the absence of viral content release) by altering the properties of cell membranes. Consistent with this mechanism, excess cholesterol in late endosomes of IFITM-expressing cells has been reported to inhibit IAV entry. Here, we examined IAV restriction by IFITM3 protein using direct virus-cell fusion assay and single virus imaging in live cells. IFITM3 over-expression did not inhibit lipid mixing, but abrogated the release of viral content into the cytoplasm. Although late endosomes of IFITM3-expressing cells accumulated cholesterol, other interventions leading to aberrantly high levels of this lipid did not inhibit virus fusion. These results imply that excess cholesterol in late endosomes is not the mechanism by which IFITM3 inhibits the transition from hemifusion to full fusion. The IFITM3's ability to block fusion pore formation at a post-hemifusion stage shows that this protein stabilizes the cytoplasmic leaflet of endosomal membranes without adversely affecting the lumenal leaflet. We propose that IFITM3 interferes with pore formation either directly, through partitioning into the cytoplasmic leaflet of a hemifusion intermediate, or indirectly, by modulating the lipid/protein composition of this leaflet. Alternatively, IFITM3 may redirect IAV fusion to a non-productive pathway, perhaps by promoting fusion with intralumenal vesicles within multivesicular bodies/late endosomes. PMID:24699674

  11. Determination of the minimal fusion peptide of bovine leukemia virus gp30

    SciTech Connect

    Lorin, Aurelien; Lins, Laurence; Stroobant, Vincent; Brasseur, Robert . E-mail: brasseur.r@fsagx.ac.be; Charloteaux, Benoit

    2007-04-13

    In this study, we determined the minimal N-terminal fusion peptide of the gp30 of the bovine leukemia virus on the basis of the tilted peptide theory. We first used molecular modelling to predict that the gp30 minimal fusion peptide corresponds to the 15 first residues. Liposome lipid-mixing and leakage assays confirmed that the 15-residue long peptide induces fusion in vitro and that it is the shortest peptide inducing optimal fusion since longer peptides destabilize liposomes to the same extent but not shorter ones. The 15-residue long peptide can thus be considered as the minimal fusion peptide. The effect of mutations reported in the literature was also investigated. Interestingly, mutations related to glycoproteins unable to induce syncytia in cell-cell fusion assays correspond to peptides predicted as non-tilted. The relationship between obliquity and fusogenicity was also confirmed in vitro for one tilted and one non-tilted mutant peptide.

  12. The temperature arrested intermediate of virus-cell fusion is a functional step in HIV infection.

    PubMed

    Henderson, Hamani I; Hope, Thomas J

    2006-05-25

    HIV entry occurs via membrane-mediated fusion of virus and target cells. Interactions between gp120 and cellular co-receptors lead to both the formation of fusion pores and release of the HIV genome into target cells. Studies using cell-cell fusion assays have demonstrated that a temperature-arrested state (TAS) can generate a stable intermediate in fusion related events. Other studies with MLV pseudotyped with HIV envelope also found that a temperature sensitive intermediate could be generated as revealed by the loss of a fluorescently labeled membrane. However, such an intermediate has never been analyzed in the context of virus infection. Therefore, we used virus-cell infection with replication competent HIV to gain insights into virus-cell fusion. We find that the TAS is an intermediate in the process culminating in the HIV infection of a target cell. In the virion-cell TAS, CD4 has been engaged, the heptad repeats of gp41 are exposed and the complex is kinetically predisposed to interact with coreceptor to complete the fusion event leading to infection.

  13. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol

    SciTech Connect

    Kadam, Rameshwar U.; Wilson, Ian A.

    2016-12-21

    The broad-spectrum antiviral drug Arbidol shows efficacy against influenza viruses by targeting the hemagglutinin (HA) fusion machinery. However, the structural basis of the mechanism underlying fusion inhibition by Arbidol has remained obscure, thereby hindering its further development as a specific and optimized influenza therapeutic. We determined crystal structures of Arbidol in complex with influenza virus HA from pandemic 1968 H3N2 and recent 2013 H7N9 viruses. Arbidol binds in a hydrophobic cavity in the HA trimer stem at the interface between two protomers. This cavity is distal to the conserved epitope targeted by broadly neutralizing stem antibodies and is ~16 Å from the fusion peptide. Arbidol primarily makes hydrophobic interactions with the binding site but also induces some conformational rearrangements to form a network of inter- and intraprotomer salt bridges. By functioning as molecular glue, Arbidol stabilizes the prefusion conformation of HA that inhibits the large conformational rearrangements associated with membrane fusion in the low pH of the endosome. This unique binding mode compared with the small-molecule inhibitors of other class I fusion proteins enhances our understanding of how small molecules can function as fusion inhibitors and guides the development of broad-spectrum therapeutics against influenza virus.

  14. Intermediates in influenza virus PR/8 haemagglutinin-induced membrane fusion.

    PubMed

    Pak, C C; Krumbiegel, M; Blumenthal, R

    1994-02-01

    The fusion kinetics with erythrocyte ghosts of two influenza A virus strains, A/Aichi/2/68 (X:31) and A/PR/8/34 (PR/8), were compared and correlated with the kinetics of haemagglutinin (HA) conformational change. Previously it had been shown that X:31 fuses with liposomes or erythrocytes at 4 degrees C, pH 5 after a lag time of 5 to 10 min whereas PR/8 displayed no fusion with liposomes at that temperature. We have confirmed the absence of cold fusion by PR/8 with erythrocyte ghosts. In contrast to X:31, PR/8 could not be committed to fuse at neutral pH and 37 degrees C by a preincubation at low pH and 4 degrees C. To examine whether the lack of commitment and cold fusion were due to a failure of PR/8 HA to undergo conformational changes at low temperature and pH, we analysed susceptibility of HA to proteinase K digestion, liposome binding to the virus, and immunoprecipitations of HA with conformation-specific antibodies. Although there was little binding of PR/8 to liposomes at 4 degrees C and pH 5, we did observe exposure of the fusion peptide. This study reveals a low temperature intermediate in membrane fusion exhibited by the HA of influenza virus strain PR/8, which involves low pH-induced conformational changes including exposure of the fusion peptide with little interaction of HA with the target membrane.

  15. Human immunodeficiency virus envelope-dependent cell-cell fusion: a quantitative fluorescence cytometric assay.

    PubMed

    Huerta, Leonor; Lamoyi, Edmundo; Báez-Saldaña, Armida; Larralde, Carlos

    2002-02-01

    In vitro fusion of transfected cells expressing the human immunodeficiency virus (HIV) envelope proteins gp120/gp41, with target cells expressing CD4, and a suitable chemokine coreceptor is used widely to investigate the mechanisms of molecular recognition and membrane fusion involved in the entry of the HIV genome into cells and in syncytia formation. We developed an assay that uses two different fluorescent lipophilic probes to single label each reacting cell population and flow cytometry to quantify the extent of cellular fusion after coculture. Fused cells are detected as double-fluorescent particles in this assay, therefore permitting measurement of their proportion in the total cell population. The time course and extent of HIV-glycoprotein-related cellular fusion, the optimal cell ratio, the size and cell composition of the fusion products, and the inhibition of fusion caused by soluble CD4 and anti-CXCR4 antibody 12G5 were determined. The assay was applied to measure fusion between gp120/gp41 and CD4-expressing cells growing as monolayers (HeLa/CHO fusion), as well as to suspension lymphocyte cultures (Jurkat/Jurkat fusion). The method's simple technical and minimal cell-invasive procedures, as well as its non-ambiguous automatic numerical quantification should be useful for the study of factors influencing cell-cell fusion. Copyright 2002 Wiley-Liss, Inc.

  16. Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates

    PubMed Central

    Ivanovic, Tijana; Choi, Jason L; Whelan, Sean P; van Oijen, Antoine M; Harrison, Stephen C

    2013-01-01

    Influenza virus penetrates cells by fusion of viral and endosomal membranes catalyzed by the viral hemagglutinin (HA). Structures of the initial and final states of the HA trimer define the fusion endpoints, but do not specify intermediates. We have characterized these transitions by analyzing low-pH-induced fusion kinetics of individual virions and validated the analysis by computer simulation. We detect initial engagement with the target membrane of fusion peptides from independently triggered HAs within the larger virus-target contact patch; fusion then requires engagement of three or four neighboring HA trimers. Effects of mutations in HA indicate that withdrawal of the fusion peptide from a pocket in the pre-fusion trimer is rate-limiting for both events, but the requirement for cooperative action of several HAs to bring the fusing membranes together leads to a long-lived intermediate state for single, extended HA trimers. This intermediate is thus a fundamental aspect of the fusion mechanism. DOI: http://dx.doi.org/10.7554/eLife.00333.001 PMID:23550179

  17. Fusion and infection of influenza and Sendai viruses as modulated by dextran sulfate: a comparative study.

    PubMed

    Ramalho-Santos, J; de Lima, M C

    2001-06-01

    We have directly compared the effect of two types of dextran sulfate with distinct molecular weights (500 kDa and 5 kDa) on the fusion activity and infectivity of both Sendai and influenza viruses, two lipid-enveloped viruses that differ in their routes of entry into target cells. To correlate membrane merging and infectivity MDCK cells were used as targets for the viruses in both approaches. In either case pronounced inhibition of virus-cell interactions by dextran sulfate was only observed at low pH, even though Sendai virus fuses maximally at pH 7.4. Although membrane merging could not be fully abolished, the inhibitory effect was always greater when the higher molecular weight dextran sulfate was used. The presence of this residual fusion activity, that could not be reduced even with high concentrations of agent, suggests that a limited number of binding sites for dextran sulfate may exist on the viral envelopes. The compounds also inhibited fusion of bound virions, and all results could be reproduced using erythrocyte ghosts as target membranes in the fusion assay, instead of MDCK cells. In agreement with these observations only the infectivity of influenza virus (which requires a low pH-dependent step to enter target cells) was affected by dextran sulfate, again the higher molecular weight compound showing a more pronounced inhibitory effect.

  18. Acid-induced membrane fusion by the hemagglutinin protein and its role in influenza virus biology.

    PubMed

    Russell, Charles J

    2014-01-01

    Membrane fusion is not spontaneous. Therefore, enveloped viruses have evolved membrane-fusion mediating glycoproteins that, once activated, refold, and release energy that fuses viral and cellular membranes. The influenza A virus hemagglutinin (HA) protein is a prototypic structural class I viral fusion glycoprotein that, once primed by proteolytic cleavage, is activated by endosomal low pH to form a fusogenic "leash-in-grooves" hairpin structure. Low-pH induced HA protein refolding is an irreversible process, so acid exposure in the absence of a target membrane leads to virus inactivation. The HA proteins of diverse influenza virus subtypes isolated from a variety of species differ in their acid stabilities, or pH values at which irreversible HA protein conformational changes are triggered. Recently, efficient replication of highly pathogenic avian influenza (HPAI) viruses such as H5N1 in avian species has been associated with a relatively high HA activation pH. In contrast, a decrease in H5N1 HA activation pH has been shown to enhance replication and airborne transmission in mammals. Mutations that alter the acid stabilities of H1 and H3 HA proteins have also been discovered that influence the amantadine susceptibilities, replication rates, and pathogenicities of human influenza viruses. An understanding of the role of HA acid stability in influenza virus biology is expected to aid in identifying emerging viruses with increased pandemic potential and assist in developing live attenuated virus vaccines. Acid-induced HA protein activation, which has provided a paradigm for protein-mediated membrane fusion, is now identified as a novel determinant of influenza virus biology.

  19. Structure of a Dengue Virus Envelope Protein Late-Stage Fusion Intermediate

    PubMed Central

    Klein, Daryl E.; Choi, Jason L.

    2013-01-01

    The final stages of dengue virus fusion are thought to occur when the membrane-proximal stem drives the transmembrane anchor of the viral envelope protein (E) toward the fusion loop, buried in the target cell membrane. Crystal structures of E have lacked this essential stem region. We expressed and crystallized soluble mutant forms of the dengue virus envelope protein (sE) that include portions of the juxtamembrane stem. Their structures represent late-stage fusion intermediates. The proximal part of the stem has both intra- and intermolecular interactions, so the chain “zips up” along the trimer seam. The penultimate interaction we detected involves the conserved residue F402, which has hydrophobic contacts with a conserved surface on domain II. These interactions do not require any larger-scale changes in trimer packing. The techniques for expression and crystallization of sE containing stem reported here may allow further characterization of the final stages of flavivirus fusion. PMID:23236058

  20. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING

    PubMed Central

    Holm, Christian K; Jensen, Søren B; Jakobsen, Martin R; Cheshenko, Natalia; Horan, Kristy A; Moeller, Hanne B; Gonzalez-Dosal, Regina; Rasmussen, Simon B; Christensen, Maria H.; Yarovinsky, Timur O; Rixon, Frazer J; Herold, Betsy C; Fitzgerald, Katherine A; Paludan, Søren R

    2012-01-01

    The innate immune system senses infection by detecting evolutionarily conserved molecules essential for microbial survival or abnormal location of molecules. Here we demonstrate the existence of a novel innate detection mechanism, which is induced by fusion between viral envelopes and target cells. Virus-cell fusion specifically stimulated a type I interferon (IFN) response with expression of IFN-stimulated genes (ISGs), in vivo recruitment of leukocytes, and potentiation of Toll-like receptor 7 and 9 signaling. The fusion dependent response was dependent on stimulator of interferon genes (STING) but independent of DNA, RNA and viral capsid. We suggest that membrane fusion is sensed as a danger signal with potential implications for defense against enveloped viruses and various conditions of giant cell formation. PMID:22706339

  1. Herpes Simplex Virus 1 Glycoprotein M and the Membrane-Associated Protein UL11 Are Required for Virus-Induced Cell Fusion and Efficient Virus Entry

    PubMed Central

    Kim, In-Joong; Chouljenko, Vladimir N.; Walker, Jason D.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) facilitates virus entry into cells and cell-to-cell spread by mediating fusion of the viral envelope with cellular membranes and fusion of adjacent cellular membranes. Although virus strains isolated from herpetic lesions cause limited cell fusion in cell culture, clinical herpetic lesions typically contain large syncytia, underscoring the importance of cell-to-cell fusion in virus spread in infected tissues. Certain mutations in glycoprotein B (gB), gK, UL20, and other viral genes drastically enhance virus-induced cell fusion in vitro and in vivo. Recent work has suggested that gB is the sole fusogenic glycoprotein, regulated by interactions with the viral glycoproteins gD, gH/gL, and gK, membrane protein UL20, and cellular receptors. Recombinant viruses were constructed to abolish either gM or UL11 expression in the presence of strong syncytial mutations in either gB or gK. Virus-induced cell fusion caused by deletion of the carboxyl-terminal 28 amino acids of gB or the dominant syncytial mutation in gK (Ala to Val at amino acid 40) was drastically reduced in the absence of gM. Similarly, syncytial mutations in either gB or gK did not cause cell fusion in the absence of UL11. Neither the gM nor UL11 gene deletion substantially affected gB, gC, gD, gE, and gH glycoprotein synthesis and expression on infected cell surfaces. Two-way immunoprecipitation experiments revealed that the membrane protein UL20, which is found as a protein complex with gK, interacted with gM while gM did not interact with other viral glycoproteins. Viruses produced in the absence of gM or UL11 entered into cells more slowly than their parental wild-type virus strain. Collectively, these results indicate that gM and UL11 are required for efficient membrane fusion events during virus entry and virus spread. PMID:23678175

  2. Measuring the Strength of Interaction between the Ebola Fusion Peptide and Lipid Rafts: Implications for Membrane Fusion and Virus Infection

    PubMed Central

    Freitas, Mônica S.; Follmer, Cristian; Costa, Lilian T.; Vilani, Cecília; Bianconi, M. Lucia; Achete, Carlos Alberto; Silva, Jerson L.

    2011-01-01

    The Ebola fusion peptide (EBO16) is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently, several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO16 and its mutant W8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM), a good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of EBO16 to induce lipid mixing. On the other hand, EBO16 was structurally sensitive to interaction with lipid rafts (DRMs), but the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote membrane aggregation in comparison to EBO16. Single molecule AFM experiments showed a high affinity force pattern for the interaction of EBO16 and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases. PMID:21249196

  3. Modification of the Cytoplasmic Domain of Influenza Virus Hemagglutinin Affects Enlargement of the Fusion Pore

    PubMed Central

    Kozerski, Christine; Ponimaskin, Evgeni; Schroth-Diez, Britta; Schmidt, Michael F. G.; Herrmann, Andreas

    2000-01-01

    The fusion activity of chimeras of influenza virus hemagglutinin (HA) (from A/fpv/Rostock/34; subtype H7) with the transmembrane domain (TM) and/or cytoplasmic tail (CT) either from the nonviral, nonfusogenic T-cell surface protein CD4 or from the fusogenic Sendai virus F-protein was studied. Wild-type or chimeric HA was expressed in CV-1 cells by the transient T7-RNA-polymerase vaccinia virus expression system. Subsequently, the fusion activity of the expression products was monitored with red blood cells or ghosts as target cells. To assess the different steps of fusion, target cells were labeled with the fluorescent membrane label octadecyl rhodamine B-chloride (R18) (membrane fusion) and with the cytoplasmic fluorophores calcein (molecular weight [MW], 623; formation of small aqueous fusion pore) and tetramethylrhodamine-dextran (MW, 10,000; enlargement of fusion pore). All chimeric HA/F-proteins, as well as the chimera with the TM of CD4 and the CT of HA, were able to mediate the different steps of fusion very similarly to wild-type HA. Quite differently, chimeric proteins with the CT of CD4 were strongly impaired in mediating pore enlargement. However, membrane fusion and formation of small pores were similar to those of wild-type HA, indicating that the conformational change of the ectodomain and earlier fusion steps were not inhibited. Various properties of the CT which may affect pore enlargement are considered. We surmise that the hydrophobicity of the sequence adjacent to the transmembrane domain is important for pore dilation. PMID:10906206

  4. The rigid amphipathic fusion inhibitor dUY11 acts through photosensitization of viruses.

    PubMed

    Vigant, Frederic; Hollmann, Axel; Lee, Jihye; Santos, Nuno C; Jung, Michael E; Lee, Benhur

    2014-02-01

    Rigid amphipathic fusion inhibitors (RAFIs) are lipophilic inverted-cone-shaped molecules thought to antagonize the membrane curvature transitions that occur during virus-cell fusion and are broad-spectrum antivirals against enveloped viruses (Broad-SAVE). Here, we show that RAFIs act like membrane-binding photosensitizers: their antiviral effect is dependent on light and the generation of singlet oxygen ((1)O(2)), similar to the mechanistic paradigm established for LJ001, a chemically unrelated class of Broad-SAVE. Photosensitization of viral membranes is a common mechanism that underlies these Broad-SAVE.

  5. Fatal Measles Virus Infection Prevented by Brain-Penetrant Fusion Inhibitors

    PubMed Central

    Welsch, Jeremy C.; Talekar, Aparna; Mathieu, Cyrille; Pessi, Antonello; Moscona, Anne

    2013-01-01

    Measles virus (MV) infection causes an acute childhood disease that can include infection of the central nervous system and can rarely progress to severe neurological disease for which there is no specific treatment. We generated potent antiviral peptide inhibitors of MV entry and spreading and MV-induced cell fusion. Dimers of MV-specific peptides derived from the C-terminal heptad repeat region of the MV fusion protein, conjugated to cholesterol, efficiently protect SLAM transgenic mice from fatal MV infection. Fusion inhibitors hold promise for the prophylaxis of MV infection in unvaccinated and immunocompromised people, as well as potential for the treatment of grave neurological complications of measles. PMID:24109233

  6. Fatal measles virus infection prevented by brain-penetrant fusion inhibitors.

    PubMed

    Welsch, Jeremy C; Talekar, Aparna; Mathieu, Cyrille; Pessi, Antonello; Moscona, Anne; Horvat, Branka; Porotto, Matteo

    2013-12-01

    Measles virus (MV) infection causes an acute childhood disease that can include infection of the central nervous system and can rarely progress to severe neurological disease for which there is no specific treatment. We generated potent antiviral peptide inhibitors of MV entry and spreading and MV-induced cell fusion. Dimers of MV-specific peptides derived from the C-terminal heptad repeat region of the MV fusion protein, conjugated to cholesterol, efficiently protect SLAM transgenic mice from fatal MV infection. Fusion inhibitors hold promise for the prophylaxis of MV infection in unvaccinated and immunocompromised people, as well as potential for the treatment of grave neurological complications of measles.

  7. ESTIMATION OF TROPICAL FOREST STRUCTURE AND BIOMASS FROM FUSION OF RADAR AND LIDAR MEASUREMENTS (Invited)

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Dubayah, R.; Clark, D. B.; Chazdon, R.

    2009-12-01

    Radar and Lidar instruments are active remote sensing sensors with the potential of measuring forest vertical and horizontal structure and the aboveground biomass (AGB). In this paper, we present the analysis of radar and lidar data acquired over the La Selva Biological Station in Costa Rica. Radar polarimetry at L-band (25 cm wavelength), P-band (70 cm wavelength) and interferometry at C-band (6 cm wavelength) and VV polarization were acquired by the NASA/JPL airborne synthetic aperture radar (AIRSAR) system. Lidar images were provided by a large footprint airborne scanning Lidar known as the Laser Vegetation Imaging Sensor (LVIS). By including field measurements of structure and biomass over a variety of forest types, we examined: 1) sensitivity of radar and lidar measurements to forest structure and biomass, 2) accuracy of individual sensors for AGB estimation, and 3) synergism of radar imaging measurements with lidar imaging and sampling measurements for improving the estimation of 3-dimensional forest structure and AGB. The results showed that P-band radar combined with any interformteric measurement of forest height can capture approximately 85% of the variation of biomass in La Selva at spatial scales larger than 1 hectare. Similar analysis at L-band frequency captured only 70% of the variation. However, combination of lidar and radar measurements improved estimates of forest three-dimensional structure and biomass to above 90% for all forest types. We present a novel data fusion approach based on a Baysian estimation model with the capability of incorporating lidar samples and radar imagery. The model was used to simulate the potential of data fusion in future satellite mission scenarios as in BIOMASS (planned by ESA) at P-band and DESDynl (planned by NASA) at L-band. The estimation model was also able to quantify errors and uncertainties associated with the scale of measurements, spatial variability of forest structure, and differences in radar and lidar

  8. Residues in the Hendra Virus Fusion Protein Transmembrane Domain Are Critical for Endocytic Recycling

    PubMed Central

    Popa, Andreea; Carter, James R.; Smith, Stacy E.; Hellman, Lance; Fried, Michael G.

    2012-01-01

    Hendra virus is a highly pathogenic paramyxovirus classified as a biosafety level four agent. The fusion (F) protein of Hendra virus is critical for promoting viral entry and cell-to-cell fusion. To be fusogenically active, Hendra virus F must undergo endocytic recycling and cleavage by the endosomal/lysosomal protease cathepsin L, but the route of Hendra virus F following internalization and the recycling signals involved are poorly understood. We examined the intracellular distribution of Hendra virus F following endocytosis and showed that it is primarily present in Rab5- and Rab4-positive endosomal compartments, suggesting that cathepsin L cleavage occurs in early endosomes. Hendra virus F transmembrane domain (TMD) residues S490 and Y498 were found to be important for correct Hendra virus F recycling, with the hydroxyl group of S490 and the aromatic ring of Y498 important for this process. In addition, changes in association of isolated Hendra virus F TMDs correlated with alterations to Hendra virus F recycling, suggesting that appropriate TMD interactions play an important role in endocytic trafficking. PMID:22238299

  9. Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli

    PubMed Central

    Lee, Chien-Der; Yan, Yao-Pei; Liang, Shu-Mei; Wang, Ting-Fang

    2009-01-01

    Virus-like particles (VLPs) are formed by the self-assembly of envelope and/or capsid proteins from many viruses. Some VLPs have been proven successful as vaccines, and others have recently found applications as carriers for foreign antigens or as scaffolds in nanoparticle biotechnology. However, production of VLP was usually impeded due to low water-solubility of recombinant virus capsid proteins. Previous studies revealed that virus capsid and envelope proteins were often posttranslationally modified by SUMO in vivo, leading into a hypothesis that SUMO modification might be a common mechanism for virus proteins to retain water-solubility or prevent improper self-aggregation before virus assembly. We then propose a simple approach to produce VLPs of viruses, e.g., foot-and-mouth disease virus (FMDV). An improved SUMO fusion protein system we developed recently was applied to the simultaneous expression of three capsid proteins of FMDV in E. coli. The three SUMO fusion proteins formed a stable heterotrimeric complex. Proteolytic removal of SUMO moieties from the ternary complexes resulted in VLPs with size and shape resembling the authentic FMDV. The method described here can also apply to produce capsid/envelope protein complexes or VLPs of other disease-causing viruses. PMID:19671144

  10. Mechanism of reduction of virus release and cell-cell fusion in persistent canine distemper virus infection.

    PubMed

    Meertens, Nadine; Stoffel, Michael H; Cherpillod, Pascal; Wittek, Riccardo; Vandevelde, Marc; Zurbriggen, Andreas

    2003-10-01

    Canine distemper virus (CDV), a mobillivirus related to measles virus causes a chronic progressive demyelinating disease, associated with persistence of the virus in the central nervous system (CNS). CNS persistence of morbilliviruses has been associated with cell-to-cell spread, thereby limiting immune detection. The mechanism of cell-to-cell spread remains uncertain. In the present study we studied viral spread comparing a cytolytic (non-persistent) and a persistent CDV strain in cell cultures. Cytolytic CDV spread in a compact concentric manner with extensive cell fusion and destruction of the monolayer. Persistent CDV exhibited a heterogeneous cell-to-cell pattern of spread without cell fusion and 100-fold reduction of infectious viral titers in supernatants as compared to the cytolytic strain. Ultrastructurally, low infectious titers correlated with limited budding of persistent CDV as compared to the cytolytic strain, which shed large numbers of viral particles. The pattern of heterogeneous cell-to-cell viral spread can be explained by low production of infectious viral particles in only few areas of the cell membrane. In this way persistent CDV only spreads to a small proportion of the cells surrounding an infected one. Our studies suggest that both cell-to-cell spread and limited production of infectious virus are related to reduced expression of fusogenic complexes in the cell membrane. Such complexes consist of a synergistic configuration of the attachment (H) and fusion (F) proteins on the cell surface. F und H proteins exhibited a marked degree of colocalization in cytolytic CDV infection but not in persistent CDV as seen by confocal laser microscopy. In addition, analysis of CDV F protein expression using vaccinia constructs of both strains revealed an additional large fraction of uncleaved fusion protein in the persistent strain. This suggests that the paucity of active fusion complexes is due to restricted intracellular processing of the viral fusion

  11. Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens

    USDA-ARS?s Scientific Manuscript database

    The fusion (F) protein of Newcastle disease virus (NDV) plays an important role in viral infection and pathogenicity through mediating membrane fusion between the virion and host cells in the presence of the hemagglutinin-neuraminidase (HN). Previously, we obtained a velogenic NDV genotype VII muta...

  12. Identification of Novel Fusion Inhibitors of Influenza A Virus by Chemical Genetics

    PubMed Central

    Lai, Kin Kui; Cheung, Nam Nam; Yang, Fang; Dai, Jun; Liu, Li; Chen, Zhiwei; Sze, Kong Hung; Chen, Honglin

    2015-01-01

    ABSTRACT A previous screening of more than 50,000 compounds led to the identification of a pool of bioactive small molecules with inhibitory effect on the influenza A virus. One of these compounds, now widely known as nucleozin, is a small molecule that targets the influenza A virus nucleoprotein. Here we identify and characterize two structurally different novel fusion inhibitors of the influenza A virus group 1 hemagglutinin (HA), FA-583 and FA-617, with low nanomolar activities. Escape mutants that are highly resistant to each of these compounds were generated, and both were found to carry mutations localized in close proximity to the B-loop of the hemagglutinin 2 protein, which plays a crucial role in the virion-host cell fusion process. Recombinant virus, generated through reverse genetics, confirmed the resistance phenotype. In addition, the proposed binding pockets predicted by molecular docking studies are in accordance with the resistance-bearing mutation sites. We show through mechanistic studies that FA-583 and FA-617 act as fusion inhibitors by prohibiting the low-pH-induced conformational change of hemagglutinin. Our study has offered concrete biological and mechanistic explorations for the strategic development of novel fusion inhibitors of influenza A viruses. IMPORTANCE Here we report two structurally distinctive novel fusion inhibitors of influenza A virus that act by interfering with the structural change of HA at acidic pH, a process necessary for successful entry of the virus. Mutational and molecular docking studies have identified their binding pockets situated in close proximity to the B-loop region of hemagglutinin 2. The reduced sensitivity of FA-583- or FA-617-associated mutants to another compound suggests a close proximity and even partial overlap of their binding sites on hemagglutinin. Amino acid sequence alignments and crystal structure analyses of group 1 and group 2 hemagglutinins have shed light on the possible binding mode of

  13. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    SciTech Connect

    Hashem, Anwar M.; Van Domselaar, Gary; Li, Changgui; Wang, Junzhi; She, Yi-Min; Cyr, Terry D.; Sui, Jianhua; He, Runtao; Marasco, Wayne A.; Li, Xuguang

    2010-12-10

    Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  14. Single-Virus Fusion Experiments Reveal Proton Influx into Vaccinia Virions and Hemifusion Lag Times

    PubMed Central

    Schmidt, Florian I.; Kuhn, Phillip; Robinson, Tom; Mercer, Jason; Dittrich, Petra S.

    2013-01-01

    Recent studies have revealed new insights into the endocytosis of vaccinia virus (VACV). However, the mechanism of fusion between viral and cellular membranes remains unknown. We developed a microfluidic device with a cell-trap array for immobilization of individual cells, with which we analyzed the acid-dependent fusion of single virions. VACV particles incorporating enhanced green fluorescent protein (EGFP) and labeled with self-quenching concentrations of R18 membrane dye were used in combination with total internal reflection fluorescence microscopy to measure the kinetics of R18 dequenching and thus single hemifusion events initiated by a fast low-pH trigger. These studies revealed unexpectedly long lag phases between pH change and hemifusion. In addition, we found that EGFP fluorescence in the virus was quenched upon acidification, indicating that protons could access the virus core, possibly through a proton channel. In a fraction of virus particles, EGFP fluorescence was recovered, presumably after fusion-pore formation and exposure of the core to the physiological pH of the host-cell cytosol. Given that virus-encoded cation channels play a crucial role in the life cycle of many viruses and can serve as antiviral drug targets, further investigations into a potential VACV viroporin are justified. Our findings indicate that the microfluidic device described may be highly beneficial to similar studies requiring fast kinetic measurements. PMID:23870263

  15. Mayaro virus: a forest virus primed for a trip to the city?

    PubMed

    Mackay, Ian M; Arden, Katherine E

    2016-12-01

    Mayaro virus (MAYV) is an emerging arthropod-borne virus (arbovirus). Infection by MAYV can produce Mayaro virus disease (MAYVD) which is usually a clinically diagnosed, acute, febrile illness associated with prolonged and painful joint inflammation and swelling. MAYVD may be clinically indistinguishable from dengue, chikungunya fever, malaria, rabies, measles or other arboviral diseases. The full spectrum of disease, sequelae, routes of infection, virus shedding and any rarer means of transmission remain undefined. MAYVD cases in humans have so far been localised to Central and South America, particularly regions in and around the Amazon basin. MAYV usually circulates in a sylvan cycle of forest mosquitoes and vertebrates, however it has also been found in more urban locations alongside anthropophilic (preferring humans) insect vectors. If transmission via anthropophilic mosquitoes becomes more efficient following viral change, or existing vectors change their habitat and biting habits, the risk of urban establishment and further spread into non-forested areas will grow. Surveillance, testing and vector control remain key to monitoring and preventing global spread and establishment. The possibility of MAYV becoming further urbanized is worthy of note, consideration and action to ensure MAYV does not spread beyond the forests and establish in the world's cities.

  16. A novel pre-fusion conformation-specific neutralizing epitope on the respiratory syncytial virus fusion protein.

    PubMed

    Mousa, Jarrod J; Kose, Nurgun; Matta, Pranathi; Gilchuk, Pavlo; Crowe, James E

    2017-01-30

    Respiratory syncytial virus (RSV) remains a major human pathogen, infecting the majority of infants before age two and causing re-infection throughout life. Despite decades of RSV research, there is no licensed RSV vaccine. Most candidate vaccines studied to date have incorporated the RSV fusion (F) surface glycoprotein, because the sequence of F is highly conserved among strains of RSV. To better define the human B cell response to RSV F, we isolated from a single donor 13 new neutralizing human monoclonal antibodies (mAbs) that recognize the RSV F protein in the pre-fusion conformation. Epitope binning studies showed that the majority of neutralizing mAbs targeted a new antigenic site on the globular head domain of F, designated here antigenic site VIII, which occupies an intermediate position between the previously defined major antigenic sites II and site Ø. Antibodies to site VIII competed for binding with antibodies to both of those adjacent neutralizing sites. The new mAbs exhibited unusual breadth for pre-fusion F-specific antibodies, cross-reacting with F proteins from both RSV subgroups A and B viruses. We solved the X-ray crystal structure of one site VIII mAb, hRSV90, in complex with pre-fusion RSV F protein. The structure revealed a large footprint of interaction for hRSV90 on RSV F, in which the heavy chain and light chain both have specific interactions mediating binding to site VIII, the heavy chain overlaps with site Ø, and the light chain interacts partially with site II.

  17. Fusogenic activity of reconstituted newcastle disease virus envelopes: a role for the hemagglutinin-neuraminidase protein in the fusion process.

    PubMed

    Cobaleda, C; Muñoz-Barroso, I; Sagrera, A; Villar, E

    2002-04-01

    Enveloped viruses, such as newcastle disease virus (NDV), make their entry into the host cell by membrane fusion. In the case of NDV, the fusion step requires both transmembrane hemagglutinin-neuraminidase (HN) and fusion (F) viral envelope glycoproteins. The HN protein should show fusion promotion activity. To date, the nature of HN-F interactions is a controversial issue. In this work, we aim to clarify the role of the HN glycoprotein in the membrane fusion step. Four types of reconstituted detergent-free NDV envelopes were used, on differing in their envelope protein contents. Fusion of the different virosomes and erythrocyte ghosts was monitored using the octadecyl rhodamine B chloride assay. Only the reconstituted envelopes having the F protein, even in the absence of HN protein, displayed residual fusion activity. Treatment of such virosomes with denaturing agents affecting the F protein abolished fusion, indicating that the fusion detected was viral protein-dependent. Interestingly, the rate of fusion in the reconstituted systems was similar to that of intact viruses in the presence of the inhibitor of HN sialidase activity 2,3-dehydro-2-deoxy-N-acetylneuraminic acid. The results show that the residual fusion activity detected in the reconstituted systems was exclusively due to F protein activity, with no contribution from the fusion promotion activity of HN protein.

  18. Deltabaculoviruses encode a functional type I budded virus envelope fusion protein

    USDA-ARS?s Scientific Manuscript database

    Envelope fusion proteins (F proteins) are major constituents of budded viruses (BVs) of alpha- and betabaculoviruses (Baculoviridae) and are essential for the systemic infection of insect larvae and insect cells in culture. An F protein homolog gene was absent in gammabaculoviruses. Here we show tha...

  19. Inhibition of endosomal fusion activity of influenza virus by Rheum tanguticum (da-huang)

    PubMed Central

    Lin, Ta-Jen; Lin, Chwan-Fwu; Chiu, Cheng-Hsun; Lee, Ming-Chung; Horng, Jim-Tong

    2016-01-01

    Rhubarb (Rheum tanguticum; da-huang in Chinese medicine) is a herbal medicine that has been used widely for managing fever and removing toxicity. In this study, we investigated how rhubarb inhibits influenza virus during the early stage of the infectious cycle using different functional assays. A non-toxic ethanolic extract of rhubarb (Rex) inhibited several H1N1 subtypes of influenza A viruses in Madin–Darby canine kidney cells, including strains that are clinically resistant to oseltamivir. Time course analysis of Rex addition showed that viral entry was one of the steps that was inhibited by Rex. We also confirmed that Rex effectively inhibited viral attachment and penetration into the host cells. The inhibition of red blood cell haemolysis and cell–cell fusion by Rex suggests that Rex may block haemagglutinin-mediated fusion (virus–endosome fusion) during the fusion/uncoating step. Rex has the capacity to inhibit influenza viruses by blocking viral endocytosis. Thus, rhubarb might provide an alternative therapeutic approach when resistant viruses become more prevalent. PMID:27302738

  20. Nipah Virus Attachment Glycoprotein Stalk C-Terminal Region Links Receptor Binding to Fusion Triggering

    PubMed Central

    Liu, Qian; Bradel-Tretheway, Birgit; Monreal, Abrrey I.; Saludes, Jonel P.; Lu, Xiaonan; Nicola, Anthony V.

    2014-01-01

    ABSTRACT Membrane fusion is essential for paramyxovirus entry into target cells and for the cell-cell fusion (syncytia) that results from many paramyxoviral infections. The concerted efforts of two membrane-integral viral proteins, the attachment (HN, H, or G) and fusion (F) glycoproteins, mediate membrane fusion. The emergent Nipah virus (NiV) is a highly pathogenic and deadly zoonotic paramyxovirus. We recently reported that upon cell receptor ephrinB2 or ephrinB3 binding, at least two conformational changes occur in the NiV-G head, followed by one in the NiV-G stalk, that subsequently result in F triggering and F execution of membrane fusion. However, the domains and residues in NiV-G that trigger F and the specific events that link receptor binding to F triggering are unknown. In the present study, we identified a NiV-G stalk C-terminal region (amino acids 159 to 163) that is important for multiple G functions, including G tetramerization, conformational integrity, G-F interactions, receptor-induced conformational changes in G, and F triggering. On the basis of these results, we propose that this NiV-G region serves as an important structural and functional linker between the NiV-G head and the rest of the stalk and is critical in propagating the F-triggering signal via specific conformational changes that open a concealed F-triggering domain(s) in the G stalk. These findings broaden our understanding of the mechanism(s) of receptor-induced paramyxovirus F triggering during viral entry and cell-cell fusion. IMPORTANCE The emergent deadly viruses Nipah virus (NiV) and Hendra virus belong to the Henipavirus genus in the Paramyxoviridae family. NiV infections target endothelial cells and neurons and, in humans, result in 40 to 75% mortality rates. The broad tropism of the henipaviruses and the unavailability of therapeutics threaten the health of humans and livestock. Viral entry into host cells is the first step of henipavirus infections, which ultimately cause

  1. Cell-Cell Fusion Induced by Measles Virus Amplifies the Type I Interferon Response▿ †

    PubMed Central

    Herschke, F.; Plumet, S.; Duhen, T.; Azocar, O.; Druelle, J.; Laine, D.; Wild, T. F.; Rabourdin-Combe, C.; Gerlier, D.; Valentin, H.

    2007-01-01

    Measles virus (MeV) infection is characterized by the formation of multinuclear giant cells (MGC). We report that beta interferon (IFN-β) production is amplified in vitro by the formation of virus-induced MGC derived from human epithelial cells or mature conventional dendritic cells. Both fusion and IFN-β response amplification were inhibited in a dose-dependent way by a fusion-inhibitory peptide after MeV infection of epithelial cells. This effect was observed at both low and high multiplicities of infection. While in the absence of virus replication, the cell-cell fusion mediated by MeV H/F glycoproteins did not activate any IFN-α/β production, an amplified IFN-β response was observed when H/F-induced MGC were infected with a nonfusogenic recombinant chimerical virus. Time lapse microscopy studies revealed that MeV-infected MGC from epithelial cells have a highly dynamic behavior and an unexpected long life span. Following cell-cell fusion, both of the RIG-I and IFN-β gene deficiencies were trans complemented to induce IFN-β production. Production of IFN-β and IFN-α was also observed in MeV-infected immature dendritic cells (iDC) and mature dendritic cells (mDC). In contrast to iDC, MeV infection of mDC induced MGC, which produced enhanced amounts of IFN-α/β. The amplification of IFN-β production was associated with a sustained nuclear localization of IFN regulatory factor 3 (IRF-3) in MeV-induced MGC derived from both epithelial cells and mDC, while the IRF-7 up-regulation was poorly sensitive to the fusion process. Therefore, MeV-induced cell-cell fusion amplifies IFN-α/β production in infected cells, and this indicates that MGC contribute to the antiviral immune response. PMID:17898060

  2. Endocytosis Plays a Critical Role in Proteolytic Processing of the Hendra Virus Fusion Protein

    PubMed Central

    Meulendyke, Kelly Ann; Wurth, Mark Allen; McCann, Richard O.; Dutch, Rebecca Ellis

    2005-01-01

    The Hendra virus fusion (F) protein is synthesized as a precursor protein, F0, which is proteolytically processed to the mature form, F1+F2. Unlike the case for the majority of paramyxovirus F proteins, the processing event is furin independent, does not require the addition of exogenous proteases, is not affected by reductions in intracellular Ca2+, and is strongly affected by conditions that raise the intracellular pH (C. T. Pager, M. A. Wurth, and R. E. Dutch, J. Virol. 78:9154-9163, 2004). The Hendra virus F protein cytoplasmic tail contains a consensus motif for endocytosis, YXXΦ. To analyze the potential role of endocytosis in the processing and membrane fusion promotion of the Hendra virus F protein, mutation of tyrosine 525 to alanine (Hendra virus F Y525A) or phenylalanine (Hendra virus F Y525F) was performed. The rate of endocytosis of Hendra virus F Y525A was significantly reduced compared to that of the wild-type (wt) F protein, confirming the functional importance of the endocytosis motif. An intermediate level of endocytosis was observed for Hendra virus F Y525F. Surprisingly, dramatic reductions in the rate of proteolytic processing were observed for Hendra virus F Y525A, although initial transport to the cell surface was not affected. The levels of surface expression for both Hendra virus F Y525A and Hendra virus F Y525F were higher than that of the wt protein, and these mutants displayed enhanced syncytium formation. These results suggest that endocytosis is critically important for Hendra virus F protein cleavage, representing a new paradigm for proteolytic processing of paramyxovirus F proteins. PMID:16188966

  3. Acid phosphatase 2 (ACP2) is required for membrane fusion during influenza virus entry

    PubMed Central

    Lee, Jihye; Kim, Jinhee; Son, Kidong; d’Alexandry d’Orengiani, Anne-Laure Pham Humg; Min, Ji-Young

    2017-01-01

    Influenza viruses exploit host factors to successfully replicate in infected cells. Using small interfering RNA (siRNA) technology, we identified six human genes required for influenza A virus (IAV) replication. Here we focused on the role of acid phosphatase 2 (ACP2), as its knockdown showed the greatest inhibition of IAV replication. In IAV-infected cells, depletion of ACP2 resulted in a significant reduction in the expression of viral proteins and mRNA, and led to the attenuation of virus multi-cycle growth. ACP2 knockdown also decreased replication of seasonal influenza A and B viruses and avian IAVs of the H7 subtype. Interestingly, ACP2 depletion had no effect on the replication of Ebola or hepatitis C virus. Because ACP2 is known to be a lysosomal acid phosphatase, we assessed the role of ACP2 in influenza virus entry. While neither binding of the viral particle to the cell surface nor endosomal acidification was affected in ACP2-depleted cells, fusion of the endosomal and viral membranes was impaired. As a result, downstream steps in viral entry were blocked, including nucleocapsid uncoating and nuclear import of viral ribonucleoproteins. Our results established ACP2 as a necessary host factor for regulating the fusion step of influenza virus entry. PMID:28272419

  4. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia.

    PubMed

    Wang, Wei; Yang, Lianwei; Huang, Xiumin; Fu, Wenkun; Pan, Dequan; Cai, Linli; Ye, Jianghui; Liu, Jian; Xia, Ningshao; Cheng, Tong; Zhu, Hua

    2017-09-11

    Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cotton rat immune responses to virus-like particles containing the pre-fusion form of respiratory syncytial virus fusion protein.

    PubMed

    Cullen, Lori McGinnes; Blanco, Jorge C G; Morrison, Trudy G

    2015-11-05

    Virus-like particles (VLPs) based on Newcastle disease virus (NDV) core proteins, M and NP, and containing two chimera proteins, F/F and H/G, composed of the respiratory syncytial virus (RSV) fusion protein (F) and glycoprotein (G) ectodomains fused to the transmembrane and cytoplasmic domains of the NDV F and HN proteins, respectively, stimulate durable, protective anti-RSV neutralizing antibodies in mice. Furthermore, immunization of mice with a VLP containing a F/F chimera protein with modifications previously reported to stabilize the pre-fusion form of the RSV F protein resulted in significantly improved neutralizing antibody titers over VLPs containing the wild type F protein. The goal of this study was to determine if VLPs containing the pre-fusion form of the RSV F protein stimulated protective immune responses in cotton rats, a more RSV permissive animal model than mice. Cotton rats were immunized intramuscularly with VLPs containing stabilized pre-fusion F/F chimera protein as well as the H/G chimera protein. The anti-RSV F and RSV G antibody responses were determined by ELISA. Neutralizing antibody titers in sera of immunized animals were determined in plaque reduction assays. Protection of the animals from RSV challenge was assessed. The safety of the VLP vaccine was determined by monitoring lung pathology upon RSV challenge of immunized animals. The Pre-F/F VLP induced neutralizing titers that were well above minimum levels previously proposed to be required for a successful vaccine and titers significantly higher than those stimulated by RSV infection. In addition, Pre-F/F VLP immunization stimulated higher IgG titers to the soluble pre-fusion F protein than RSV infection. Cotton rats immunized with Pre-F/F VLPs were protected from RSV challenge, and, importantly, the VLP immunization did not result in enhanced respiratory disease upon RSV challenge. VLPs containing the pre-fusion RSV F protein have characteristics required for a safe, effective RSV

  6. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    SciTech Connect

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga; Luque, Daniel; Terrón, María C.; Calder, Lesley J.; Melero, José A.

    2014-07-15

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV{sub F} occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV{sub F}, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV{sub F} at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy.

  7. The compound DATEM inhibits respiratory syncytial virus fusion activity with epithelial cells.

    PubMed

    Ohki, Shinpei; Liu, Jin-Zhou; Schaller, Joseph; Welliver, Robert C

    2003-04-01

    The effect of diacetyltartaric acid esters of mono and diglycerides (DATEM) on fusion of respiratory syncytial virus (RSV) with HEp-2 cells was studied using the R18 fluorescence dequenching fusion assay. At DATEM concentrations less than 2.0 microg/ml, the inhibition of fusion increased with the concentration of DATEM. At 2 microg/ml of DATEM, the fusion was suppressed by 80-90%. Studies examining possible mechanism of fusion-inhibition indicated that DATEM was likely adsorbed onto lipid membranes of both viral envelope and target cell membranes. Quantitative measurements of DATEM adsorption onto membranes were also performed using lipid monolayers and vesicles. The surface pressure of lipid monolayer formed at the air/aqueous interface increased as the concentration of DATEM in the monolayer subphase increased, suggesting that DATEM was inserted into the monolayer. As the concentration of DATEM in vesicle suspensions increased, electrophoretic mobility of initially uncharged lipid vesicles also increased, reflective of increased negative charge at vesicle surfaces. These results strongly suggest that the insertion of DATEM onto membranes inhibited viral fusion. DATEM may prove to be effective in limiting the infectivity of RSV by interference with the fusion of the viral envelope with target cell membranes.

  8. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  9. Measles virus attachment proteins with impaired ability to bind CD46 interact more efficiently with the homologous fusion protein

    SciTech Connect

    Corey, Elizabeth A.; Iorio, Ronald M.

    2009-01-05

    Fusion promotion by measles virus (MV) depends on an interaction between the hemagglutinin (H) and fusion (F) glycoproteins. Amino acid substitutions in MV H that drastically reduce hemagglutinating activity result in an increase in the amount of H (primarily the 74 kDa isoform) detectable in a complex with F at the cell surface. This is in direct contrast to the loss of the ability to detect a complex between the fusion protein of Newcastle disease virus and most attachment proteins that lack receptor binding activity. These opposing results provide support for the existence of different mechanisms for the regulation of fusion by these two paramyxoviruses.

  10. New Small Molecule Entry Inhibitors Targeting Hemagglutinin-Mediated Influenza A Virus Fusion

    PubMed Central

    Antanasijevic, Aleksandar; Wang, Minxiu; Li, Bing; Mills, Debra M.; Ames, Jessica A.; Nash, Peter J.; Williams, John D.; Peet, Norton P.; Moir, Donald T.; Prichard, Mark N.; Keith, Kathy A.; Barnard, Dale L.; Caffrey, Michael; Rong, Lijun; Bowlin, Terry L.

    2014-01-01

    Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 μM); (ii) are selective (50% cytotoxicity concentration [CC50] of >100 μM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 μM2 % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process. PMID:24198411

  11. Proteolytic Cleavage of the Fusion Protein but Not Membrane Fusion Is Required for Measles Virus-Induced Immunosuppression In Vitro

    PubMed Central

    Weidmann, Armin; Maisner, Andrea; Garten, Wolfgang; Seufert, Marion; ter Meulen, Volker; Schneider-Schaulies, Sibylle

    2000-01-01

    Immunosuppression induced by measles virus (MV) is associated with unresponsiveness of peripheral blood lymphocytes (PBL) to mitogenic stimulation ex vivo and in vitro. In mixed lymphocyte cultures and in an experimental animal model, the expression of the MV glycoproteins on the surface of UV-inactivated MV particles, MV-infected cells, or cells transfected to coexpress the MV fusion (F) and the hemagglutinin (H) proteins was found to be necessary and sufficient for this phenomenon. We now show that MV fusion-inhibitory peptides do not interfere with the induction of immunosuppression in vitro, indicating that MV F-H-mediated fusion is essentially not involved in this process. Proteolytic cleavage of MV F0 protein by cellular proteases, such as furin, into the F1-F2 subunits is, however, an absolute requirement, since (i) the inhibitory activity of MV-infected BJAB cells was significantly impaired in the presence of a furin-inhibitory peptide and (ii) cells expressing or viruses containing uncleaved F0 proteins revealed a strongly reduced inhibitory activity which was improved following trypsin treatment. The low inhibitory activity of effector structures containing mainly F0 proteins was not due to an impaired F0-H interaction, since both surface expression and cocapping efficiencies were similar to those found with the authentic MV F and H proteins. These results indicate that the fusogenic activity of the MV F-H complexes can be uncoupled from their immunosuppressive activity and that the immunosuppressive domains of these proteins are exposed only after proteolytic activation of the MV F0 protein. PMID:10644371

  12. Chikungunya, Influenza, Nipah, and Semliki Forest Chimeric Viruses with Vesicular Stomatitis Virus: Actions in the Brain.

    PubMed

    van den Pol, Anthony N; Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K; Davis, John N

    2017-03-15

    Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain.IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah

  13. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease.

    PubMed

    Khurana, Surender; Loving, Crystal L; Manischewitz, Jody; King, Lisa R; Gauger, Phillip C; Henningson, Jamie; Vincent, Amy L; Golding, Hana

    2013-08-28

    Vaccine-induced disease enhancement has been described in connection with several viral vaccines in animal models and in humans. We investigated a swine model to evaluate mismatched influenza vaccine-associated enhanced respiratory disease (VAERD) after pH1N1 infection. Vaccinating pigs with whole inactivated H1N2 (human-like) virus vaccine (WIV-H1N2) resulted in enhanced pneumonia and disease after pH1N1 infection. WIV-H1N2 immune sera contained high titers of cross-reactive anti-pH1N1 hemagglutinin (HA) antibodies that bound exclusively to the HA2 domain but not to the HA1 globular head. No hemagglutination inhibition titers against pH1N1 (challenge virus) were measured. Epitope mapping using phage display library identified the immunodominant epitope recognized by WIV-H1N2 immune sera as amino acids 32 to 77 of pH1N1-HA2 domain, close to the fusion peptide. These cross-reactive anti-HA2 antibodies enhanced pH1N1 infection of Madin-Darby canine kidney cells by promoting virus membrane fusion activity. The enhanced fusion activity correlated with lung pathology in pigs. This study suggests a role for fusion-enhancing anti-HA2 antibodies in VAERD, in the absence of receptor-blocking virus-neutralizing antibodies. These findings should be considered during the evaluation of universal influenza vaccines designed to elicit HA2 stem-targeting antibodies.

  14. Structural and Functional Studies on the Marburg Virus GP2 Fusion Loop.

    PubMed

    Liu, Nina; Tao, Yisong; Brenowitz, Michael D; Girvin, Mark E; Lai, Jonathan R

    2015-10-01

    Marburg virus (MARV) and the ebolaviruses belong to the family Filoviridae (the members of which are filoviruses) that cause severe hemorrhagic fever. Infection requires fusion of the host and viral membranes, a process that occurs in the host cell endosomal compartment and is facilitated by the envelope glycoprotein fusion subunit, GP2. The N-terminal fusion loop (FL) of GP2 is a hydrophobic disulfide-bonded loop that is postulated to insert and disrupt the host endosomal membrane during fusion. Here, we describe the first structural and functional studies of a protein corresponding to the MARV GP2 FL. We found that this protein undergoes a pH-dependent conformational change, as monitored by circular dichroism and nuclear magnetic resonance. Furthermore, we report that, under low pH conditions, the MARV GP2 FL can induce content leakage from liposomes. The general aspects of this pH-dependent structure and lipid-perturbing behavior are consistent with previous reports on Ebola virus GP2 FL. However, nuclear magnetic resonance studies in lipid bicelles and mutational analysis indicate differences in structure exist between MARV and Ebola virus GP2 FL. These results provide new insight into the mechanism of MARV GP2-mediated cell entry.

  15. Isolation of Kyasanur Forest Disease Virus from Febrile Patient, Yunnan, China

    PubMed Central

    Wang, Jinglin; Zhang, Hailin; Fu, Shihong; Wang, Huanyu; Ni, Daxin; Nasci, Roger; Tang, Qing

    2009-01-01

    We recently determined that Nanjianyin virus, isolated from serum of a patient in Yunnan Province, China, in 1989, is a type of Kyasanur Forest disease virus. Results of a 1987–1990 seroepidemiologic investigation in Yunnan Province had shown that residents of the Hengduan Mountain region had been infected with Nanjianyin virus. PMID:19193286

  16. Mechanism of Inhibition of Enveloped Virus Membrane Fusion by the Antiviral Drug Arbidol

    PubMed Central

    Teissier, Elodie; Zandomeneghi, Giorgia; Loquet, Antoine; Lavillette, Dimitri; Lavergne, Jean-Pierre; Montserret, Roland; Cosset, François-Loïc; Böckmann, Anja; Meier, Beat H.; Penin, François; Pécheur, Eve-Isabelle

    2011-01-01

    The broad-spectrum antiviral arbidol (Arb) inhibits cell entry of enveloped viruses by blocking viral fusion with host cell membrane. To better understand Arb mechanism of action, we investigated its interactions with phospholipids and membrane peptides. We demonstrate that Arb associates with phospholipids in the micromolar range. NMR reveals that Arb interacts with the polar head-group of phospholipid at the membrane interface. Fluorescence studies of interactions between Arb and either tryptophan derivatives or membrane peptides reconstituted into liposomes show that Arb interacts with tryptophan in the micromolar range. Interestingly, apparent binding affinities between lipids and tryptophan residues are comparable with those of Arb IC50 of the hepatitis C virus (HCV) membrane fusion. Since tryptophan residues of membrane proteins are known to bind preferentially at the membrane interface, these data suggest that Arb could increase the strength of virus glycoprotein's interactions with the membrane, due to a dual binding mode involving aromatic residues and phospholipids. The resulting complexation would inhibit the expected viral glycoprotein conformational changes required during the fusion process. Our findings pave the way towards the design of new drugs exhibiting Arb-like interfacial membrane binding properties to inhibit early steps of virus entry, i.e., attractive targets to combat viral infection. PMID:21283579

  17. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Sanchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego; Vásquez, Rafael E.

    2016-08-01

    Fault diagnosis is an effective tool to guarantee safe operations in gearboxes. Acoustic and vibratory measurements in such mechanical devices are all sensitive to the existence of faults. This work addresses the use of a deep random forest fusion (DRFF) technique to improve fault diagnosis performance for gearboxes by using measurements of an acoustic emission (AE) sensor and an accelerometer that are used for monitoring the gearbox condition simultaneously. The statistical parameters of the wavelet packet transform (WPT) are first produced from the AE signal and the vibratory signal, respectively. Two deep Boltzmann machines (DBMs) are then developed for deep representations of the WPT statistical parameters. A random forest is finally suggested to fuse the outputs of the two DBMs as the integrated DRFF model. The proposed DRFF technique is evaluated using gearbox fault diagnosis experiments under different operational conditions, and achieves 97.68% of the classification rate for 11 different condition patterns. Compared to other peer algorithms, the addressed method exhibits the best performance. The results indicate that the deep learning fusion of acoustic and vibratory signals may improve fault diagnosis capabilities for gearboxes.

  18. Sequential Monte Carlo tracking of the marginal artery by multiple cue fusion and random forest regression.

    PubMed

    Cherry, Kevin M; Peplinski, Brandon; Kim, Lauren; Wang, Shijun; Lu, Le; Zhang, Weidong; Liu, Jianfei; Wei, Zhuoshi; Summers, Ronald M

    2015-01-01

    Given the potential importance of marginal artery localization in automated registration in computed tomography colonography (CTC), we have devised a semi-automated method of marginal vessel detection employing sequential Monte Carlo tracking (also known as particle filtering tracking) by multiple cue fusion based on intensity, vesselness, organ detection, and minimum spanning tree information for poorly enhanced vessel segments. We then employed a random forest algorithm for intelligent cue fusion and decision making which achieved high sensitivity and robustness. After applying a vessel pruning procedure to the tracking results, we achieved statistically significantly improved precision compared to a baseline Hessian detection method (2.7% versus 75.2%, p<0.001). This method also showed statistically significantly improved recall rate compared to a 2-cue baseline method using fewer vessel cues (30.7% versus 67.7%, p<0.001). These results demonstrate that marginal artery localization on CTC is feasible by combining a discriminative classifier (i.e., random forest) with a sequential Monte Carlo tracking mechanism. In so doing, we present the effective application of an anatomical probability map to vessel pruning as well as a supplementary spatial coordinate system for colonic segmentation and registration when this task has been confounded by colon lumen collapse.

  19. Recombinant mumps viruses expressing the batMuV fusion glycoprotein are highly fusion active and neurovirulent.

    PubMed

    Krüger, Nadine; Sauder, Christian; Hoffmann, Markus; Örvell, Claes; Drexler, Jan Felix; Rubin, Steven; Herrler, Georg

    2016-11-01

    A recent study reported the detection of a bat-derived virus (BatPV/Epo_spe/AR1/DCR/2009, batMuV) with phylogenetic relatedness to human mumps virus (hMuV). Since all efforts to isolate infectious batMuV have reportedly failed, we generated recombinant mumps viruses (rMuVs) in which the open reading frames (ORFs) of the fusion (F) and haemagglutinin-neuraminidase (HN) glycoproteins of an hMuV strain were replaced by the corresponding ORFs of batMuV. The batMuV F and HN proteins were successfully incorporated into viral particles and the resultant chimeric virus was able to mediate infection of Vero cells. Distinct differences were observed between the fusogenicity of rMuVs expressing one or both batMuV glycoproteins: viruses expressing batMuV F were highly fusogenic, regardless of the origin of HN. In contrast, rMuVs expressing human F and bat-derived HN proteins were less fusogenic compared to hMuV. The growth kinetics of chimeric MuVs expressing batMuV HN in combination with either hMuV or batMuV F were similar to that of the backbone virus, whereas a delay in virus replication was obtained for rMuVs harbouring batMuV F and hMuV HN. Replacement of the hMuV F and HN genes or the HN gene alone by the corresponding batMuV genes led to a slight reduction in neurovirulence of the highly neurovirulent backbone strain. Neutralizing antibodies inhibited infection mediated by all recombinant viruses generated. Furthermore, group IV anti-MuV antibodies inhibited the neuraminidase activity of bat-derived HN. Our study reports the successful generation of chimeric MuVs expressing the F and HN proteins of batMuV, providing a means for further examination of this novel batMuV.

  20. Mutagenesis of the La Crosse Virus glycoprotein supports a role for Gc (1066-1087) as the fusion peptide

    SciTech Connect

    Plassmeyer, Matthew L.; Soldan, Samantha S.; Stachelek, Karen M.; Roth, Susan M.; Martin-Garcia, Julio; Gonzalez-Scarano, Francisco . E-mail: scarano@mail.med.upenn.edu

    2007-02-20

    The La Crosse Virus (LACV) M segment encodes two glycoproteins (Gn and Gc), and plays a critical role in the neuropathogenesis of LACV infection as the primary determinant of neuroinvasion. A recent study from our group demonstrated that the region comprising the membrane proximal two-thirds of Gc, amino acids 860-1442, is critical in mediating LACV fusion and entry. Furthermore, computational analysis identified structural similarities between a portion of this region, amino acids 970-1350, and the E1 fusion protein of two alphaviruses: Sindbis virus and Semliki Forrest virus (SFV). Within the region 970-1350, a 22-amino-acid hydrophobic segment (1066-1087) is predicted to correlate structurally with the fusion peptides of class II fusion proteins. We performed site-directed mutagenesis of key amino acids in this 22-amino acid segment and determined the functional consequences of these mutations on fusion and entry. Several mutations within this hydrophobic domain affected glycoprotein expression to some extent, but all mutations either shifted the pH threshold of fusion below that of the wild-type protein, reduced fusion efficiency, or abrogated cell-to-cell fusion and pseudotype entry altogether. These results, coupled with the aforementioned computational modeling, suggest that the LACV Gc functions as a class II fusion protein and support a role for the region Gc 1066-1087 as a fusion peptide.

  1. Regulation of Herpes Simplex Virus Glycoprotein-Induced Cascade of Events Governing Cell-Cell Fusion

    PubMed Central

    Saw, Wan Ting; Eisenberg, Roselyn J.; Cohen, Gary H.

    2016-01-01

    ABSTRACT Receptor-dependent herpes simplex virus (HSV)-induced cell-cell fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion, receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers the transformation of the prefusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor-dependent cell-cell fusion, we took advantage of our discovery that fusion by wild-type herpes simplex virus 2 (HSV-2) glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH/gL of HSV-2 (gH2/gL2), thereby enhancing their activity. We also found that deregulated forms of gD of HSV-1 (gD1) and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor, and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. IMPORTANCE Cell-cell fusion mediated by HSV glycoproteins requires gD, gH/gL, gB, and a gD receptor. Here, we show that fusion by wild-type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we found that the fusion process was controlled by gH/gL. Restrictions imposed on the gB structure by mutations could be overcome by gH2/gL2, enhancing the activity of the mutants. Under low-pH conditions or when

  2. [Construction of prokaryotic expression vector for Ag85A-HA2 fusion gene and studies on the immunity efficacy of fusion protein against influenza A virus].

    PubMed

    Shao, Jing-Jing; Yang, Jing; Dai, Jun; Meng, Jun-Jie; Pei, De-Cui; Li, Hong; Pan, Xing; Li, Wan-Yi

    2014-07-01

    To construct Ag85A-HA2 prokaryotic expression vector, express the fusion protein and study the immunity efficacy of fusion protein against influenza A virus. Ag85A-HA2 prokaryotic expression vector was constructed and induced with IPTG. The fusion protein was identified by SDS-PAGE and purified with His-Tag affinity chromatography. The BALB/c mice were immunized with fusion protein. Then the pathological section, lung index, lung inhibitory rate and death-protection rate were tested to evaluate the immunity efficacy of fusion protein. pET-32a(+)/Ag85A-HA2 prokaryotic expression vector was constructed successfully. And SDS-PAGE indicated that fusion protein was expressed correctly with a molecular mass of 70 x 10(3). The lung index and death-protection rate in experimental group were 39.30% and 80%, higher than that of control group. The pathological section also demonstrated that Ag85A-HA2 fusion protein had a protective effect on murine lungs. Ag85A-HA2 prokaryotic expression vector was successfully constructed, inducible expression and the fusion protein had an immunity efficacy against influenza A virus in animal experiment.

  3. Phosphorylation of Nonmuscle myosin II-A regulatory light chain resists Sendai virus fusion with host cells

    PubMed Central

    Das, Provas; Saha, Shekhar; Chandra, Sunandini; Das, Alakesh; Dey, Sumit K.; Das, Mahua R.; Sen, Shamik; Sarkar, Debi P.; Jana, Siddhartha S.

    2015-01-01

    Enveloped viruses enter host cells through membrane fusion and the cells in turn alter their shape to accommodate components of the virus. However, the role of nonmuscle myosin II of the actomyosin complex of host cells in membrane fusion is yet to be understood. Herein, we show that both (−) blebbistatin, a specific inhibitor of nonmuscle myosin II (NMII) and small interfering RNA markedly augment fusion of Sendai virus (SeV), with chinese hamster ovary cells and human hepatocarcinoma cells. Inhibition of RLC phosphorylation using inhibitors against ROCK, but not PKC and MRCK, or overexpression of phospho-dead mutant of RLC enhances membrane fusion. SeV infection increases cellular stiffness and myosin light chain phosphorylation at two hour post infection. Taken together, the present investigation strongly indicates that Rho-ROCK-NMII contractility signaling pathway may provide a physical barrier to host cells against viral fusion. PMID:25993465

  4. Function of fusion regulatory proteins (FRPs) in immune cells and virus-infected cells.

    PubMed

    Tsurudome, M; Ito, Y

    2000-01-01

    Two molecules that regulate cell fusion have been identified and designated fusion regulatory protein-1 (FRP-1) and FRP-2. FRP-1 is a complex composed of a glycosylated heavy chain and a nonglycosylated light chain that are disulfide linked. FRP-1 heavy chain is identical to 4F2/CD98 heavy chain, whereas FRP-2 is identical to integrin alpha3 subunit. The FRP-1 heavy chain is a multifunctional molecule: that is, fusion regulator, amino acid transporter, integrin regulator, comitogenic factor, Na+-Ca2+ exchanger, oncogenic protein, and so on. Several aspects of the structure and function of the FRP-1 system are reviewed: fusion regulatory molecular mechanisms, cross-talk between the FRP-1 and integrin, the FRP-1 system as amino acid transporter, and FRP-1-mediated T-cell activation. The FRP-1 system is involved in virus-mediated cell fusion and multinucleated giant cell formation of blood monocytes. Monoclonal antibodies against human FRP-1 heavy chain induce polykaryocytes that have properties as osteoclasts. Multiple steps participate in molecular mechanisms regulating cell fusion. The FRP-1 heavy chain supports amino acid transport activity and the FRP-1 light chains have recently been cloned as amino acid transporters that require association with the heavy chain to exhibit their activity. Novel pathways for monocyte-dependent regulation of T-cell activation have recently been found that are mediated by the FRP-1 system. In conclusion, the FRP-1 molecules are essential factors for basic cellular functions.

  5. The role of stearate attachment to the hemagglutinin-esterase-fusion glycoprotein HEF of influenza C virus.

    PubMed

    Wang, Mingyang; Ludwig, Kai; Böttcher, Christoph; Veit, Michael

    2016-05-01

    The only spike of influenza C virus, the hemagglutinin-esterase-fusion glycoprotein (HEF) combines receptor binding, receptor hydrolysis and membrane fusion activities. Like other hemagglutinating glycoproteins of influenza viruses HEF is S-acylated, but only with stearic acid at a single cysteine located at the cytosol-facing end of the transmembrane region. Previous studies established the essential role of S-acylation of hemagglutinin for replication of influenza A and B virus by affecting budding and/or membrane fusion, but the function of acylation of HEF was hitherto not investigated. Using reverse genetics we rescued a virus containing non-stearoylated HEF, which was stable during serial passage and showed no competitive fitness defect, but the growth rate of the mutant virus was reduced by one log. Deacylation of HEF does neither affect the kinetics of its plasma membrane transport nor the protein composition of virus particles. Cryo-electron microscopy showed that the shape of viral particles and the hexagonal array of spikes typical for influenza C virus were not influenced by this mutation indicating that virus budding was not disturbed. However, the extent and kinetics of haemolysis were reduced in mutant virus at 37°C, but not at 33°C, the optimal temperature for virus growth, suggesting that non-acylated HEF has a defect in membrane fusion under suboptimal conditions.

  6. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA

    USGS Publications Warehouse

    Sankey, Temuulen T.; Donager, Jonathon; McVay, Jason L.; Sankey, Joel B.

    2017-01-01

    Forest vegetation classification and structure measurements are fundamental steps for planning, monitoring, and evaluating large-scale forest changes including restoration treatments. High spatial and spectral resolution remote sensing data are critically needed to classify vegetation and measure their 3-dimensional (3D) canopy structure at the level of individual species. Here we test high-resolution lidar, hyperspectral, and multispectral data collected from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone environment to represent a gradient of vegetation and topography in northern Arizona, U.S.A. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signatures, but different canopy sizes. The lidar data provides estimates of individual tree height (R2 = 0.90; RMSE = 2.3 m) and crown diameter (R2 = 0.72; RMSE = 0.71 m) as well as total tree canopy cover (R2 = 0.87; RMSE = 9.5%) and tree density (R2 = 0.77; RMSE = 0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22 and 50% and 1–3.5 trees/cell, respectively. The lidar data also produces highly accurate digital elevation model (DEM) (R2 = 0.92; RMSE = 0.75 m). In comparison, 3D data derived from the multispectral data via structure-from-motion produced lower correlations with field-measured variables, especially in dense and structurally complex forests. The lidar, hyperspectral, and multispectral sensors, and the methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring landscapes undergoing large-scale changes such as the forests in the southwestern U.S.A.

  7. Isolation of virus-cell fusion inhibitory components from the stem bark of Styrax japonica S. et Z.

    PubMed

    Lee, Dung Gun; Jin, Qinglong; Jin, Hong-Guang; Shin, Ji Eun; Choi, Eun Jin; Woo, Eun-Rhan

    2010-06-01

    Five compounds, styraxjaponoside A (1), matairesinoside (2), egonol glucoside (3), dihydrodehydrodiconiferyl alcohol 9'-O-glucoside (4), and styraxjaponoside B (5) were isolated from the stem bark of Styrax japonica. Among them, compounds 1 and 5 showed significantly high virus-cell fusion inhibitory activity. In addition, compound 5 exhibited almost equivalent virus-cell fusion inhibitory activity to that of dextran sulfate, which is used as a positive control.

  8. Monitoring Forest Carbon Dynamics for REDD: A Landsat-Lidar Fusion Approach

    NASA Astrophysics Data System (ADS)

    Huang, C.; Dubayah, R.; Hurtt, G. C.; Goward, S. N.; Masek, J. G.; Zhu, Z.

    2010-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests and to offer incentives for developing countries to reduce emissions from forested lands. Implementing this effort requires methods for quantifying forest carbon and change. Such methods should be accurate enough to allow reliable reporting and efficient enough to enable timely verification and monitoring. Here we present a Landsat-lidar fusion approach for monitoring the dynamics of forest carbon. In this approach, time series Landsat observations are used to detect and date forest disturbance and to track the spectral trajectory of post-disturbance recovery using a vegetation change tracker (VCT) algorithm. Biomass estimates derived from LVIS lidar samples will then be used to establish relationships between standing biomass and age since disturbance and the recovery trajectory. Such relationships can be used to estimate forest biomass not only during the model year, but also for the years after the model year. This is because each disturbance has a time stamp, which can be used to calculate the age since disturbance and the post-disturbance recovery trajectory for any year after the disturbance year using available Landsat images. Therefore, it can not only be used to establish baseline estimates, but also to monitor changes due to both disturbances and recovery. Furthermore, the fine spatial resolutions of the Landsat and LVIS data allow the biomass and biomass change estimates to be derived at hectare or sub-hectare levels. Such fine grain sizes will allow reliable reporting at patch or individual land owner level, which is required for fine scale carbon management and carbon trade at individual land owner level. Critical environmental variables controlling biomass recovery rates may also be revealed by analyzing the variability of age/biomass relationships among patches. The effectiveness of the described approach has

  9. Structure-function analysis of herpes simplex virus glycoprotein B with fusion-from-without activity

    SciTech Connect

    Roller, Devin G.; Dollery, Stephen J.; Doyle, James L.; Nicola, Anthony V.

    2008-12-20

    Fusion-from-without (FFWO) is the rapid induction of cell fusion by virions in the absence of viral protein synthesis. The combination of two amino acid mutations in envelope glycoprotein B (gB), one in the ectodomain and one in the cytoplasmic tail, can confer FFWO activity to wild type herpes simplex virus (HSV). In this report, we analyzed the entry and cell fusion phenotypes of HSV that contains FFWO gB, with emphasis on the cellular receptors for HSV, nectin-1, nectin-2 and HVEM. The ability of an HSV strain with FFWO gB to efficiently mediate FFWO via a specific gD-receptor correlated with its ability to mediate viral entry by that receptor. A FFWO form of gB was not sufficient to switch the entry of HSV from a pH-dependent, endocytic pathway to a direct fusion, pH-independent pathway. The conformation of gB with FFWO activity was not globally altered relative to wild type. However, distinct monoclonal antibodies had reduced reactivity with FFWO gB, suggesting an altered antigenic structure relative to wild type. FFWO was blocked by preincubation of virions with neutralizing antibodies to gB or gD. Together with previous studies, the results indicate that the roles of gB in FFWO and in virus-cell fusion during entry are related but not identical. This study also suggests that the FFWO function of gB is not a specific determinant for the selection of HSV entry pathway and that antigenic differences in FFWO gB may reflect its enhanced fusion activity.

  10. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein.

    PubMed

    Welch, Brett D; Liu, Yuanyuan; Kors, Christopher A; Leser, George P; Jardetzky, Theodore S; Lamb, Robert A

    2012-10-09

    The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein.

  11. Role of a Putative gp41 Dimerization Domain in Human Immunodeficiency Virus Type 1 Membrane Fusion

    SciTech Connect

    Liu, J.; Deng, Y; Li, Q; Dey, A; Moore, J; Lu, M

    2010-01-01

    The entry of human immunodeficiency virus type 1 (HIV-1) into a target cell entails a series of conformational changes in the gp41 transmembrane glycoprotein that mediates the fusion of the viral and target cell membranes. A trimer-of-hairpins structure formed by the association of two heptad repeat (HR) regions of the gp41 ectodomain has been implicated in a late step of the fusion pathway. Earlier native and intermediate states of the protein are postulated to mediate the antiviral activity of the fusion inhibitor enfuvirtide and of broadly neutralizing monoclonal antibodies (NAbs), but the details of these structures remain unknown. Here, we report the identification and crystal structure of a dimerization domain in the C-terminal ectodomain of gp41 (residues 630 to 683, or C54). Two C54 monomers associate to form an asymmetric, antiparallel coiled coil with two distinct C-terminal {alpha}-helical overhangs. This dimer structure is conferred largely by interactions within a central core that corresponds to the sequence of enfuvirtide. The mutagenic alteration of the dimer interface severely impairs the infectivity of Env-pseudotyped viruses. Moreover, the C54 structure binds tightly to both the 2F5 and 4E10 NAbs and likely represents a potential intermediate conformation of gp41. These results should enhance our understanding of the molecular basis of the gp41 fusogenic structural transitions and thereby guide rational, structure-based efforts to design new fusion inhibitors and vaccine candidates intended to induce broadly neutralizing antibodies.

  12. Specific and efficient cleavage of fusion proteins by recombinant plum pox virus NIa protease.

    PubMed

    Zheng, Nuoyan; Pérez, José de Jesús; Zhang, Zhonghui; Domínguez, Elvira; Garcia, Juan Antonio; Xie, Qi

    2008-02-01

    Site-specific proteases are the most popular kind of enzymes for removing the fusion tags from fused target proteins. Nuclear inclusion protein a (NIa) proteases obtained from the family Potyviridae have become promising due to their high activities and stringencies of sequences recognition. NIa proteases from tobacco etch virus (TEV) and tomato vein mottling virus (TVMV) have been shown to process recombinant proteins successfully in vitro. In this report, recombinant PPV (plum pox virus) NIa protease was employed to process fusion proteins with artificial cleavage site in vitro. Characteristics such as catalytic ability and affecting factors (salt, temperature, protease inhibitors, detergents, and denaturing reagents) were investigated. Recombinant PPV NIa protease expressed and purified from Escherichia coli demonstrated efficient and specific processing of recombinant GFP and SARS-CoV nucleocapsid protein, with site F (N V V V H Q black triangle down A) for PPV NIa protease artificially inserted between the fusion tags and the target proteins. Its catalytic capability is similar to those of TVMV and TEV NIa protease. Recombinant PPV NIa protease reached its maximal proteolytic activity at approximately 30 degrees C. Salt concentration and only one of the tested protease inhibitors had minor influences on the proteolytic activity of PPV NIa protease. Recombinant PPV NIa protease was resistant to self-lysis for at least five days.

  13. Membrane fusion-competent virus-like proteoliposomes and proteinaceous supported bilayers made directly from cell plasma membranes.

    PubMed

    Costello, Deirdre A; Hsia, Chih-Yun; Millet, Jean K; Porri, Teresa; Daniel, Susan

    2013-05-28

    Virus-like particles are useful materials for studying virus-host interactions in a safe manner. However, the standard production of pseudovirus based on the vesicular stomatitis virus (VSV) backbone is an intricate procedure that requires trained laboratory personnel. In this work, a new strategy for creating virus-like proteoliposomes (VLPLs) and virus-like supported bilayers (VLSBs) is presented. This strategy uses a cell blebbing technique to induce the formation of nanoscale vesicles from the plasma membrane of BHK cells expressing the hemagglutinin (HA) fusion protein of influenza X-31. These vesicles and supported bilayers contain HA and are used to carry out single particle membrane fusion events, monitored using total internal reflection fluorescence microscopy. The results of these studies show that the VLPLs and VLSBs contain HA proteins that are fully competent to carry out membrane fusion, including the formation of a fusion pore and the release of fluorophores loaded into vesicles. This new strategy for creating spherical and planar geometry virus-like membranes has many potential applications. VLPLs could be used to study fusion proteins of virulent viruses in a safe manner, or they could be used as therapeutic delivery particles to transport beneficial proteins coexpressed in the cells to a target cell. VLSBs could facilitate high throughput screening of antiviral drugs or pathogen-host cell interactions.

  14. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors

    SciTech Connect

    Filone, Claire Marie; Heise, Mark; Doms, Robert W. . E-mail: doms@mail.med.upenn.edu; Bertolotti-Ciarlet, Andrea . E-mail: aciarlet@mail.med.upenn.edu

    2006-12-20

    Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expression of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by {beta}-galactosidase {alpha}-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.

  15. Evaluation of fusion protein cleavage site sequences of Newcastle disease virus in genotype matched vaccines

    PubMed Central

    Kim, Shin-Hee; Chen, Zongyan; Yoshida, Asuka; Paldurai, Anandan; Xiao, Sa; Samal, Siba K.

    2017-01-01

    Newcastle disease virus (NDV) causes a devastating poultry disease worldwide. Frequent outbreaks of NDV in chickens vaccinated with conventional live vaccines suggest a need to develop new vaccines that are genetically matched against circulating NDV strains, such as the genotype V virulent strains currently circulating in Mexico and Central America. In this study, a reverse genetics system was developed for the virulent NDV strain Mexico/01/10 strain and used to generate highly attenuated vaccine candidates by individually modifying the cleavage site sequence of fusion (F) protein. The cleavage site sequence of parental virus was individually changed to those of the avirulent NDV strain LaSota and other serotypes of avian paramyxoviruses (APMV serotype-2, -3, -4, -6, -7, -8, and -9). In general, these mutations affected cell-to-cell fusion activity in vitro and the efficiency of the F protein cleavage and made recombinant Mexico/01/10 (rMex) virus highly attenuated in chickens. When chickens were immunized with the rMex mutant viruses and challenged with the virulent parent virus, there was reduced challenge virus shedding compared to birds immunized with the heterologous vaccine strain LaSota. Among the vaccine candidates, rMex containing the cleavage site sequence of APMV-2 induced the highest neutralizing antibody titer and completely protected chickens from challenge virus shedding. These results show the role of the F protein cleavage site sequence of each APMV type in generating genotype V-matched vaccines and the efficacy of matched vaccine strains to provide better protection against NDV strains currently circulating in Mexico. PMID:28339499

  16. Kinetics and extent of fusion between Sendai virus and erythrocyte ghosts: application of a mass action kinetic model.

    PubMed

    Nir, S; Klappe, K; Hoekstra, D

    1986-04-22

    The kinetics and extent of fusion between Sendai virus and erythrocyte ghosts were investigated with an assay for lipid mixing based on the relief of self-quenching of fluorescence. The results were analyzed in terms of a mass action kinetic model, which views the overall fusion reaction as a sequence of a second-order process of virus-cell adhesion followed by the first-order fusion reaction itself. The fluorescence development during the course of the fusion process was calculated by numerical integration, employing separate rate constants for the adhesion step and for the subsequent fusion reaction. Dissociation of virus particles from the cells was found to be of minor importance when fusion was initiated by mixing the particles at 37 degrees C. However, besides the initiation of fusion, extensive dissociation does occur after a preincubation of a concentrated suspension of particles at 4 degrees C followed by a transfer of the sample to 37 degrees C. The conclusion drawn from the levels of fluorescence increase obtained after 20 h of incubation is that in principle most virus particles can fuse with the ghosts at 37 degrees C and pH 7.4. However, the number of Sendai virus particles that actually fuse with a single ghost is limited to 100-200, despite the fact more than 1000 particles can bind to one cell. This finding may imply that 100-200 specific fusion sites for Sendai virus exist on the erythrocyte membrane. A simple equation can yield predictions for the final levels of fluorescence for a wide range of ratios of virus particles to ghosts.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Achieving Accuracy Requirements for Forest Biomass Mapping: A Data Fusion Method for Estimating Forest Biomass and LiDAR Sampling Error with Spaceborne Data

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.

    2012-01-01

    The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized

  18. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion.

    PubMed

    Suenaga, Tadahiro; Matsumoto, Maki; Arisawa, Fuminori; Kohyama, Masako; Hirayasu, Kouyuki; Mori, Yasuko; Arase, Hisashi

    2015-08-07

    Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection.

  19. Multiple Strategies Reveal a Bidentate Interaction between the Nipah Virus Attachment and Fusion Glycoproteins

    PubMed Central

    Stone, Jacquelyn A.; Vemulapati, Bhadra M.; Bradel-Tretheway, Birgit

    2016-01-01

    ABSTRACT The paramyxoviral family contains many medically important viruses, including measles virus, mumps virus, parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the deadly zoonotic henipaviruses Hendra and Nipah virus (NiV). To both enter host cells and spread from cell to cell within infected hosts, the vast majority of paramyxoviruses utilize two viral envelope glycoproteins: the attachment glycoprotein (G, H, or hemagglutinin-neuraminidase [HN]) and the fusion glycoprotein (F). Binding of G/H/HN to a host cell receptor triggers structural changes in G/H/HN that in turn trigger F to undergo a series of conformational changes that result in virus-cell (viral entry) or cell-cell (syncytium formation) membrane fusion. The actual regions of G/H/HN and F that interact during the membrane fusion process remain relatively unknown though it is generally thought that the paramyxoviral G/H/HN stalk region interacts with the F head region. Studies to determine such interactive regions have relied heavily on coimmunoprecipitation approaches, whose limitations include the use of detergents and the micelle-mediated association of proteins. Here, we developed a flow-cytometric strategy capable of detecting membrane protein-protein interactions by interchangeably using the full-length form of G and a soluble form of F, or vice versa. Using both coimmunoprecipitation and flow-cytometric strategies, we found a bidentate interaction between NiV G and F, where both the stalk and head regions of NiV G interact with F. This is a new structural-biological finding for the paramyxoviruses. Additionally, our studies disclosed regions of the NiV G and F glycoproteins dispensable for the G and F interactions. IMPORTANCE Nipah virus (NiV) is a zoonotic paramyxovirus that causes high mortality rates in humans, with no approved treatment or vaccine available for human use. Viral entry into host cells relies on two viral envelope glycoproteins: the attachment (G

  20. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  1. Fabrication of influenza virus-like particles using M2 fusion proteins for imaging single viruses and designing vaccines.

    PubMed

    Wei, Hung-Ju; Chang, Weihau; Lin, Shih-Chang; Liu, Wen-Chun; Chang, Ding-Kao; Chong, Pele; Wu, Suh-Chin

    2011-09-22

    Influenza virus-like particles (VLPs) are noninfectious and the assembly of influenza VLPs depends on the interactions of M1 proteins and/or other viral surface proteins, such as HA, NA, and M2, with the cellular lipid membranes. In this study we propose that M2 protein can be used as a molecular fabricator without disrupting the assembly of VLPs and while retaining the native structures of HA and NA envelope protein oligomers on the particle surfaces. First, we demonstrated that influenza VLPs can be fabricated by the M2 fusion of enhanced green fluorescent protein for imaging single virus entering A549 cells. Second, we engineered two molecular adjuvants (flagellin and profilin) fused to M2 protein to generate molecular adjuvanted VLPs. Theses molecular adjuvanted VLPs had stimulatory functions, including increasing TNF-α production and promoting the maturation of dendritic cells. Immunization of mice with molecular adjuvanted VLPs also enhanced the response of the neutralizing antibodies against homologous and heterologous H5N1 viruses. The results can provide useful information for imaging single viruses and designing novel vaccines against influenza virus infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. GS-5806 Inhibits a Broad Range of Respiratory Syncytial Virus Clinical Isolates by Blocking the Virus-Cell Fusion Process

    PubMed Central

    Stray, Kirsten; Kinkade, April; Theodore, Dorothy; Lee, Gary; Eisenberg, Eugene; Sangi, Michael; Gilbert, Brian E.; Jordan, Robert; Piedra, Pedro A.; Toms, Geoffery L.; Mackman, Richard; Cihlar, Tomas

    2015-01-01

    Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections in infants and young children. In addition, RSV causes significant morbidity and mortality in hospitalized elderly and immunocompromised patients. Currently, only palivizumab, a monoclonal antibody against the RSV fusion (F) protein, and inhaled ribavirin are approved for the prophylactic and therapeutic treatment of RSV, respectively. Therefore, there is a clinical need for safe and effective therapeutic agents for RSV infections. GS-5806, discovered via chemical optimization of a hit from a high-throughput antiviral-screening campaign, selectively inhibits a diverse set of 75 RSV subtype A and B clinical isolates (mean 50% effective concentration [EC50] = 0.43 nM). The compound maintained potency in primary human airway epithelial cells and exhibited low cytotoxicity in human cell lines and primary cell cultures (selectivity > 23,000-fold). Time-of-addition and temperature shift studies demonstrated that GS-5806 does not block RSV attachment to cells but interferes with virus entry. Follow-up experiments showed potent inhibition of RSV F-mediated cell-to-cell fusion. RSV A and B variants resistant to GS-5806, due to mutations in F protein (RSV A, L138F or F140L/N517I, and RSV B, F488L or F488S), were isolated and showed cross-resistance to other RSV fusion inhibitors, such as VP-14637, but remained fully sensitive to palivizumab and ribavirin. In summary, GS-5806 is a potent and selective RSV fusion inhibitor with antiviral activity against a diverse set of RSV clinical isolates. The compound is currently under clinical investigation for the treatment of RSV infection in pediatric, immunocompromised, and elderly patients. PMID:26666922

  3. Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus.

    PubMed

    Lee, Kelly K; Pessi, Antonello; Gui, Long; Santoprete, Alessia; Talekar, Aparna; Moscona, Anne; Porotto, Matteo

    2011-12-09

    We previously described fusion-inhibitory peptides that are targeted to the cell membrane by cholesterol conjugation and potently inhibit enveloped viruses that fuse at the cell surface, including HIV, parainfluenza, and henipaviruses. However, for viruses that fuse inside of intracellular compartments, fusion-inhibitory peptides have exhibited very low antiviral activity. We propose that for these viruses, too, membrane targeting via cholesterol conjugation may yield potent compounds. Here we compare the activity of fusion-inhibitory peptides derived from the influenza hemagglutinin (HA) and show that although the unconjugated peptides are inactive, the cholesterol-conjugated compounds are effective inhibitors of infectivity and membrane fusion. We hypothesize that the cholesterol moiety, by localizing the peptides to the target cell membrane, allows the peptides to follow the virus to the intracellular site of fusion. The cholesterol-conjugated peptides trap HA in a transient intermediate state after fusion is triggered but before completion of the refolding steps that drive the merging of the viral and cellular membranes. These results provide proof of concept for an antiviral strategy that is applicable to intracellularly fusing viruses, including known and emerging viral pathogens.

  4. Capturing a Fusion Intermediate of Influenza Hemagglutinin with a Cholesterol-conjugated Peptide, a New Antiviral Strategy for Influenza Virus*

    PubMed Central

    Lee, Kelly K.; Pessi, Antonello; Gui, Long; Santoprete, Alessia; Talekar, Aparna; Moscona, Anne; Porotto, Matteo

    2011-01-01

    We previously described fusion-inhibitory peptides that are targeted to the cell membrane by cholesterol conjugation and potently inhibit enveloped viruses that fuse at the cell surface, including HIV, parainfluenza, and henipaviruses. However, for viruses that fuse inside of intracellular compartments, fusion-inhibitory peptides have exhibited very low antiviral activity. We propose that for these viruses, too, membrane targeting via cholesterol conjugation may yield potent compounds. Here we compare the activity of fusion-inhibitory peptides derived from the influenza hemagglutinin (HA) and show that although the unconjugated peptides are inactive, the cholesterol-conjugated compounds are effective inhibitors of infectivity and membrane fusion. We hypothesize that the cholesterol moiety, by localizing the peptides to the target cell membrane, allows the peptides to follow the virus to the intracellular site of fusion. The cholesterol-conjugated peptides trap HA in a transient intermediate state after fusion is triggered but before completion of the refolding steps that drive the merging of the viral and cellular membranes. These results provide proof of concept for an antiviral strategy that is applicable to intracellularly fusing viruses, including known and emerging viral pathogens. PMID:21994935

  5. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides.

    PubMed

    Kordyukova, Larisa

    2017-01-02

    Two enveloped virus families, Orthomyxoviridae and Paramyxoviridae, comprise a large number of dangerous pathogens that enter the host cell via fusion of their envelope with a target cell membrane at acidic or neutral pH. The Class I prototypic glycoproteins responsible for this reaction are the Influenza virus haemagglutinin (HA) protein or paramyxovirus fusion (F) protein. X-ray crystallography and cryoelectron microscopy data are available for the HA and F ectodomains in pre- and post-fusion conformations, revealing similar spiky architectures, albeit with clear differences in the details. In contrast, their anchoring segments, which possess a linker region, transmembrane domain and cytoplasmic tail that is specifically modified with long fatty acids (highly conserved in HA and occasional in F), are not resolved. Recent experimental, bioinformatics and molecular modelling data showing the primary, secondary and quaternary organization of the HA and F anchoring segments are summarized in this review. Some amino acid patterns that are crucial for protein thermal stability or lipid membrane order/cholesterol binding are addressed, and new achievements in vaccine practice using HA transmembrane domain chimaeras are discussed. The oligomerization properties of the transmembrane domains are considered in the context of Group-1 and Group-2 antigenic HA subtypes and various genera/subfamilies of paramyxoviruses. A specific focus is the late steps of fusion that are reportedly facilitated by (1) β-sheet-promoting β-branched amino acids (valine and isoleucine) that are enriched in the transmembrane domain of paramyxovirus F or (2) a post-translational modification of C-terminal cysteines with palmitate/stearate (differential S-acylation) that is highly conserved in Influenza virus HA. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. C-E1 fusion protein synthesized by rubella virus DI RNAs maintained during serial passage

    SciTech Connect

    Tzeng, W.-P.; Frey, Teryl K. . E-mail: tfrey@gsu.edu

    2006-12-20

    Rubella virus (RUB) replicons are derivatives of the RUB infectious cDNA clone that retain the nonstructural open reading frame (NS-ORF) that encodes the replicase proteins but not the structural protein ORF (SP-ORF) that encodes the virion proteins. RUB defective interfering (DI) RNAs contain deletions within the SP-ORF and thus resemble replicons. DI RNAs often retain the 5' end of the capsid protein (C) gene that has been shown to modulate virus-specific RNA synthesis. However, when replicons either with or without the C gene were passaged serially in the presence of wt RUB as a source of the virion proteins, it was found that neither replicon was maintained and DI RNAs were generated. The majority DI RNA species contained in-frame deletions in the SP-ORF leading to a fusion between the 5' end of the C gene and the 3' end of the E1 glycoprotein gene. DI infectious cDNA clones were constructed and transcripts from these DI infectious cDNA clones were maintained during serial passage with wt RUB. The C-E1 fusion protein encoded by the DI RNAs was synthesized and was required for maintenance of the DI RNA during serial passage. This is the first report of a functional novel gene product resulting from deletion during DI RNA generation. Thus far, the role of the C-E1 fusion protein in maintenance of DI RNAs during serial passage remained elusive as it was found that the fusion protein diminished rather than enhanced DI RNA synthesis and was not incorporated into virus particles.

  7. Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal.

    PubMed Central

    Gombold, J L; Hingley, S T; Weiss, S R

    1993-01-01

    Infection of primary mouse glial cell cultures with mouse hepatitis virus strain A59 results in a productive, persistent infection, but without any obvious cytopathic effect. Mutant viruses isolated from infected glial cultures 16 to 18 weeks postinfection replicate with kinetics similar to those of wild-type virus but produce small plaques on fibroblasts and cause only minimal levels of cell-to-cell fusion under conditions in which wild type causes nearly complete cell fusion. However, since extensive fusion is present in mutant-infected cells at late times postinfection, the defect is actually a delay in kinetics rather than an absolute block in activity. Addition of trypsin to mutant-infected fibroblast cultures enhanced cell fusion a small (two- to fivefold) but significant degree, indicating that the defect could be due to a lack of cleavage of the viral spike (fusion) protein. Sequencing of portions of the spike genes of six fusion-defective mutants revealed that all contained the same single nucleotide mutation resulting in a substitution of aspartic acid for histidine in the spike cleavage signal. Mutant virions contained only the 180-kDa form of spike protein, suggesting that this mutation prevented the normal proteolytic cleavage of the 180-kDa protein into the 90-kDa subunits. Examination of revertants of the mutants supports this hypothesis. Acquisition of fusion competence correlates with the replacement of the negatively charged aspartic acid with either the wild-type histidine or a nonpolar amino acid and the restoration of spike protein cleavage. These data confirm and extend previous reports concluding cleavage of S is required for efficient cell-cell fusion by mouse hepatitis virus but not for virus-cell fusion (infectivity). Images PMID:8392595

  8. The hr1 and Fusion Peptide Regions of the Subgroup B Avian Sarcoma and Leukosis Virus Envelope Glycoprotein Influence Low pH-Dependent Membrane Fusion

    PubMed Central

    Babel, Angeline Rose; Bruce, James; Young, John A.T.

    2007-01-01

    The avian sarcoma and leukosis virus (ASLV) envelope glycoprotein (Env) is activated to trigger fusion by a two-step mechanism involving receptor-priming and low pH fusion activation. In order to identify regions of ASLV Env that can regulate this process, a genetic selection method was used to identify subgroup B (ASLV-B) virus-infected cells resistant to low pH-triggered fusion when incubated with cells expressing the cognate TVB receptor. The subgroup B viral Env (envB) genes were then isolated from these cells and characterized by DNA sequencing. This led to identification of two frequent EnvB alterations which allowed TVB receptor-binding but altered the pH-threshold of membrane fusion activation: a 13 amino acid deletion in the host range 1 (hr1) region of the surface (SU) EnvB subunit, and the A32V amino acid change within the fusion peptide of the transmembrane (TM) EnvB subunit. These data indicate that these two regions of EnvB can influence the pH threshold of fusion activation. PMID:17245447

  9. Radiation inactivation analysis of influenza virus reveals different target sizes for fusion, leakage, and neuraminidase activities

    SciTech Connect

    Gibson, S.; Jung, C.Y.; Takahashi, M.; Lenard, J.

    1986-10-07

    The size of the functional units responsible for several activities carried out by the influenza virus envelope glycoproteins was determined by radiation inactivation analysis. Neuraminidase activity, which resides in the glycoprotein NA, was inactivated exponentially with an increasing radiation dose, yielding a target size of 94 +/- 5 kilodaltons (kDa), in reasonable agreement with that of the disulfide-bonded dimer (120 kDa). All the other activities studied are properties of the HA glycoprotein and were normalized to the known molecular weight of the neuraminidase dimer. Virus-induced fusion activity was measured by two phospholipid dilution assays: relief of energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)dipalmitoyl-L-alpha- phosphatidylethanolamine (N-NBD-PE) and N-(lissamine rhodamine B sulfonyl)-dioleoyl-L-alpha-phosphatidylethanolamine (N-Rh-PE) in target liposomes and relief of self-quenching of N-Rh-PE in target liposomes. Radiation inactivation of fusion activity proceeded exponentially with radiation dose, yielding normalized target sizes of 68 +/- 6 kDa by assay i and 70 +/- 4 kDa by assay ii. These values are close to the molecular weight of a single disulfide-bonded (HA1 + HA2) unit (75 kDa), the monomer of the HA trimer. A single monomer is thus inactivated by each radiation event, and each monomer (or some part of it) constitutes a minimal functional unit capable of mediating fusion. Virus-induced leakage of calcein from target liposomes and virus-induced leakage of hemoglobin from erythrocytes (hemolysis) both showed more complex inactivation behavior: a pronounced shoulder was present in both inactivation curves, followed by a steep drop in activity at higher radiation levels.

  10. Quantifying Urban Forest Structure Using Crown-Level Fusion of Imaging Spectroscopy and LiDAR

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Bookhagen, B.; McFadden, J. P.; Roberts, D. A.

    2013-12-01

    The magnitude and distribution of ecosystem services provided by urban trees depend largely on canopy fractional cover, leaf area index, and species. Most efforts to quantify the structure and function of urban forests have been limited to measuring canopy extent or extrapolation of forest structure and function from plot sample inventories. Hyperspectral remote sensing has shown promise as a means for discriminating tree species. However, in many urban settings, tree species diversity and within-class spectral variability are both high, resulting in low classification accuracies. Canopy structural variables derived from LiDAR can provide additional information, such as tree height and crown width, that do not duplicate the information contained in the spectral variables. In this research we use crown-level fusion of hyperspectral and airborne LiDAR data to map 29 common tree species in Santa Barbara, California. From a discretized, full-waveform lidar dataset, we isolate canopy and, using watershed segmentation, delineate individual crowns. The crown segments are overlaid on Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data and all suitable vegetation spectra are extracted. These same segments are used to extract lidar variables. The two datasets are fused at the crown-object level and classified using canonical discriminant analysis. Overall accuracy for the 29 species, based on correctly classified canopy area, is 83%. When including species outside of the training set, the overall classification accuracy to the tree type level was 90%. At the pixel level, using only spectral data, the classification accuracy of the trained species was 68%. These results indicate the potential for wall-to-wall mapping of an urban forest to the species or tree type level, depending on species diversity and availability of training data. Further, we find that imperfect segmentation is not an insurmountable obstacle to crown-level analysis.

  11. Crystal structure of the conserved herpes virus fusion regulator complex gH-gL

    SciTech Connect

    Chowdary, Tirumala K; Cairns, Tina M; Atanasiu, Doina; Cohen, Gary H; Eisenberg, Roselyn J; Heldwein, Ekaterina E

    2010-09-13

    Herpesviruses, which cause many incurable diseases, infect cells by fusing viral and cellular membranes. Whereas most other enveloped viruses use a single viral catalyst called a fusogen, herpesviruses, inexplicably, require two conserved fusion-machinery components, gB and the heterodimer gH-gL, plus other nonconserved components. gB is a class III viral fusogen, but unlike other members of its class, it does not function alone. We determined the crystal structure of the gH ectodomain bound to gL from herpes simplex virus 2. gH-gL is an unusually tight complex with a unique architecture that, unexpectedly, does not resemble any known viral fusogen. Instead, we propose that gH-gL activates gB for fusion, possibly through direct binding. Formation of a gB-gH-gL complex is critical for fusion and is inhibited by a neutralizing antibody, making the gB-gH-gL interface a promising antiviral target.

  12. Crystal Structure of the Conserved Herpes Virus Fusion Regulator Complex gH–gL

    SciTech Connect

    Chowdary, T.; Cairns, T; Atanasiu, D; Cohen, G; Eisenberg, R; Heldwein, E

    2010-01-01

    Herpesviruses, which cause many incurable diseases, infect cells by fusing viral and cellular membranes. Whereas most other enveloped viruses use a single viral catalyst called a fusogen, herpesviruses, inexplicably, require two conserved fusion-machinery components, gB and the heterodimer gH-gL, plus other nonconserved components. gB is a class III viral fusogen, but unlike other members of its class, it does not function alone. We determined the crystal structure of the gH ectodomain bound to gL from herpes simplex virus 2. gH-gL is an unusually tight complex with a unique architecture that, unexpectedly, does not resemble any known viral fusogen. Instead, we propose that gH-gL activates gB for fusion, possibly through direct binding. Formation of a gB-gH-gL complex is critical for fusion and is inhibited by a neutralizing antibody, making the gB-gH-gL interface a promising antiviral target.

  13. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger

    PubMed Central

    Zheng, Yi-Min; Melikyan, Gregory B.; Liu, Shan-Lu; Cohen, Fredric S.

    2016-01-01

    Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge—a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry. PMID:26730950

  14. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.

    PubMed

    Markosyan, Ruben M; Miao, Chunhui; Zheng, Yi-Min; Melikyan, Gregory B; Liu, Shan-Lu; Cohen, Fredric S

    2016-01-01

    Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.

  15. Avian sarcoma and leukosis virus-receptor interactions: From classical genetics to novel insights into virus-cell membrane fusion

    SciTech Connect

    Barnard, R.J.O.; Elleder, D.; Young, J.A.T. . E-mail: jyoung@salk.edu

    2006-01-05

    For over 40 years, avian sarcoma and leukosis virus (ASLV)-receptor interactions have been employed as a useful model system to study the mechanism of retroviral entry into cells. Pioneering studies on this system focused upon the genetic basis of the differential susceptibilities of different lines of chickens to infection by distinct subgroups of ASLV. These studies led to the definition of three distinct autosomal recessive genes that were predicted to encode cellular receptors for different viral subgroups. They also led to the concept of viral interference, i.e. the mechanism by which infection by one virus can render cells resistant to reinfection by other viruses that use the same cellular receptor. Here, we review the contributions that analyses of the ASLV-receptor system have made in unraveling the mechanisms of retroviral entry into cells and focus on key findings such as identification and characterization of the ASLV receptor genes and the subsequent elucidation of an unprecedented mechanism of virus-cell fusion. Since many of the initial findings on this system were published in the early volumes of Virology, this subject is especially well suited to this special anniversary issue of the journal.

  16. Flexibility of the Head-Stalk Linker Domain of Paramyxovirus HN Glycoprotein Is Essential for Triggering Virus Fusion

    PubMed Central

    Adu-Gyamfi, Emmanuel; Kim, Lori S.; Jardetzky, Theodore S.

    2016-01-01

    ABSTRACT The Paramyxoviridae comprise a large family of enveloped, negative-sense, single-stranded RNA viruses with significant economic and public health implications. For nearly all paramyxoviruses, infection is initiated by fusion of the viral and host cell plasma membranes in a pH-independent fashion. Fusion is orchestrated by the receptor binding protein hemagglutinin-neuraminidase (HN; also called H or G depending on the virus type) protein and a fusion (F) protein, the latter undergoing a major refolding process to merge the two membranes. Mechanistic details regarding the coupling of receptor binding to F activation are not fully understood. Here, we have identified the flexible loop region connecting the bulky enzymatically active head and the four-helix bundle stalk to be essential for fusion promotion. Proline substitution in this region of HN of parainfluenza virus 5 (PIV5) and Newcastle disease virus HN abolishes cell-cell fusion, whereas HN retains receptor binding and neuraminidase activity. By using reverse genetics, we engineered recombinant PIV5-EGFP viruses with mutations in the head-stalk linker region of HN. Mutations in this region abolished virus recovery and infectivity. In sum, our data suggest that the loop region acts as a “hinge” around which the bulky head of HN swings to-and-fro to facilitate timely HN-mediate F-triggering, a notion consistent with the stalk-mediated activation model of paramyxovirus fusion. IMPORTANCE Paramyxovirus fusion with the host cell plasma membrane is essential for virus infection. Membrane fusion is orchestrated via interaction of the receptor binding protein (HN, H, or G) with the viral fusion glycoprotein (F). Two distinct models have been suggested to describe the mechanism of fusion: these include “the clamp” and the “provocateur” model of activation. By using biochemical and reverse genetics tools, we have obtained strong evidence in favor of the HN stalk-mediated activation of paramyxovirus

  17. Difference in Bgp-independent fusion activity among mouse hepatitis viruses.

    PubMed

    Taguchi, F; Matsuyama, S; Saeki, K

    1999-01-01

    Mouse hepatitis virus (MHV) utilizes a mouse biliary glycoprotein (Bgp) as a receptor. Co-cultivation of MHV-nonpermissive hamster BHK cells devoid of mouse Bgp with mouse DBT cells infected with MHV-A59 or JHMV induces syncytia formation on BHK cells (Bgp-independent fusion). This study shows the difference in Bgp-independent fusion activity among various MHV strains. Under a phase contrast microscopy, JHMV (cl-2, sp-4) induced the Bgp-independent syncytia on BHK cells similar to those observed on DBT cells, while such syncytia were not seen with the infection of other MHV strains (MHV-1, MHV-3, MHV-A59, MHV-S, srr7, srr11 and srr18). Tiny syncytia detectable only by immunofluorescence were produced with the latter MHV strains except for srr7 which failed to produce syncytia. MHVs except for srr7 grew in BHK cells after Bgp-independent infection. The Bgp-independent fusion by JHMV was inhibited either by anti-S1 or anti-S2 antibodies. These results showed that the JHMV spike protein had a remarkably high Bgp-independent fusion activity.

  18. A residue located at the junction of the head and stalk regions of measles virus fusion protein regulates membrane fusion by controlling conformational stability.

    PubMed

    Satoh, Yuto; Yonemori, Saeka; Hirose, Mitsuhiro; Shogaki, Hiroko; Wakimoto, Hiroshi; Kitagawa, Yoshinori; Gotoh, Bin; Shirai, Tsuyoshi; Takahashi, Ken-Ichi; Itoh, Masae

    2017-02-01

    The fusion (F) protein of measles virus performs refolding from the thermodynamically metastable prefusion form to the highly stable postfusion form via an activated unstable intermediate stage, to induce membrane fusion. Some amino acids involved in the fusion regulation cluster in the heptad repeat B (HR-B) domain of the stalk region, among which substitution of residue 465 by various amino acids revealed that fusion activity correlates well with its side chain length from the Cα (P<0.01) and van der Waals volume (P<0.001), except for Phe, Tyr, Trp, Pro and His carrying ring structures. Directed towards the head region, longer side chains of the non-ring-type 465 residues penetrate more deeply into the head region and may disturb the hydrophobic interaction between the stalk and head regions and cause destabilization of the molecule by lowering the energy barrier for refolding, which conferred the F protein enhanced fusion activity. Contrarily, the side chain of ring-type 465 residues turned away from the head region, resulting in not only no contact with the head region but also extensive coverage of the HR-B surface, which may prevent the dissociation of the HR-B bundle for initiation of membrane fusion and suppress fusion activity. Located in the HR-B domain just at the junction between the head and stalk regions, amino acid 465 is endowed with a possible ability to either destabilize or stabilize the F protein depending on its molecular volume and the direction of the side chain, regulating fusion activity of measles virus F protein.

  19. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    SciTech Connect

    Bernard, Eric; Simmons, Graham; Chazal, Nathalie; and others

    2015-02-15

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV.

  20. Canine Distemper Virus Fusion Activation: Critical Role of Residue E123 of CD150/SLAM.

    PubMed

    Khosravi, Mojtaba; Bringolf, Fanny; Röthlisberger, Silvan; Bieringer, Maria; Schneider-Schaulies, Jürgen; Zurbriggen, Andreas; Origgi, Francesco; Plattet, Philippe

    2015-11-25

    Measles virus (MeV) and canine distemper virus (CDV) possess tetrameric attachment proteins (H) and trimeric fusion proteins, which cooperate with either SLAM or nectin 4 receptors to trigger membrane fusion for cell entry. While the MeV H-SLAM cocrystal structure revealed the binding interface, two distinct oligomeric H assemblies were also determined. In one of the conformations, two SLAM units were sandwiched between two discrete H head domains, thus spotlighting two binding interfaces ("front" and "back"). Here, we investigated the functional relevance of both interfaces in activating the CDV membrane fusion machinery. While alanine-scanning mutagenesis identified five critical regulatory residues in the front H-binding site of SLAM, the replacement of a conserved glutamate residue (E at position 123, replaced with A [E123A]) led to the most pronounced impact on fusion promotion. Intriguingly, while determination of the interaction of H with the receptor using soluble constructs revealed reduced binding for the identified SLAM mutants, no effect was recorded when physical interaction was investigated with the full-length counterparts of both molecules. Conversely, although mutagenesis of three strategically selected residues within the back H-binding site of SLAM did not substantially affect fusion triggering, nevertheless, the mutants weakened the H-SLAM interaction recorded with the membrane-anchored protein constructs. Collectively, our findings support a mode of binding between the attachment protein and the V domain of SLAM that is common to all morbilliviruses and suggest a major role of the SLAM residue E123, located at the front H-binding site, in triggering the fusion machinery. However, our data additionally support the hypothesis that other microdomain(s) of both glycoproteins (including the back H-binding site) might be required to achieve fully productive H-SLAM interactions. A complete understanding of the measles virus and canine distemper virus

  1. Canine Distemper Virus Fusion Activation: Critical Role of Residue E123 of CD150/SLAM

    PubMed Central

    Khosravi, Mojtaba; Bringolf, Fanny; Röthlisberger, Silvan; Bieringer, Maria; Schneider-Schaulies, Jürgen; Zurbriggen, Andreas; Origgi, Francesco

    2015-01-01

    ABSTRACT Measles virus (MeV) and canine distemper virus (CDV) possess tetrameric attachment proteins (H) and trimeric fusion proteins, which cooperate with either SLAM or nectin 4 receptors to trigger membrane fusion for cell entry. While the MeV H-SLAM cocrystal structure revealed the binding interface, two distinct oligomeric H assemblies were also determined. In one of the conformations, two SLAM units were sandwiched between two discrete H head domains, thus spotlighting two binding interfaces (“front” and “back”). Here, we investigated the functional relevance of both interfaces in activating the CDV membrane fusion machinery. While alanine-scanning mutagenesis identified five critical regulatory residues in the front H-binding site of SLAM, the replacement of a conserved glutamate residue (E at position 123, replaced with A [E123A]) led to the most pronounced impact on fusion promotion. Intriguingly, while determination of the interaction of H with the receptor using soluble constructs revealed reduced binding for the identified SLAM mutants, no effect was recorded when physical interaction was investigated with the full-length counterparts of both molecules. Conversely, although mutagenesis of three strategically selected residues within the back H-binding site of SLAM did not substantially affect fusion triggering, nevertheless, the mutants weakened the H-SLAM interaction recorded with the membrane-anchored protein constructs. Collectively, our findings support a mode of binding between the attachment protein and the V domain of SLAM that is common to all morbilliviruses and suggest a major role of the SLAM residue E123, located at the front H-binding site, in triggering the fusion machinery. However, our data additionally support the hypothesis that other microdomain(s) of both glycoproteins (including the back H-binding site) might be required to achieve fully productive H-SLAM interactions. IMPORTANCE A complete understanding of the measles virus

  2. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state

    PubMed Central

    Rossey, Iebe; Gilman, Morgan S. A.; Kabeche, Stephanie C.; Sedeyn, Koen; Wrapp, Daniel; Kanekiyo, Masaru; Chen, Man; Mas, Vicente; Spitaels, Jan; Melero, José A.; Graham, Barney S.; Schepens, Bert; McLellan, Jason S.; Saelens, Xavier

    2017-01-01

    Human respiratory syncytial virus (RSV) is the main cause of lower respiratory tract infections in young children. The RSV fusion protein (F) is highly conserved and is the only viral membrane protein that is essential for infection. The prefusion conformation of RSV F is considered the most relevant target for antiviral strategies because it is the fusion-competent form of the protein and the primary target of neutralizing activity present in human serum. Here, we describe two llama-derived single-domain antibodies (VHHs) that have potent RSV-neutralizing activity and bind selectively to prefusion RSV F with picomolar affinity. Crystal structures of these VHHs in complex with prefusion F show that they recognize a conserved cavity formed by two F protomers. In addition, the VHHs prevent RSV replication and lung infiltration of inflammatory monocytes and T cells in RSV-challenged mice. These prefusion F-specific VHHs represent promising antiviral agents against RSV. PMID:28194013

  3. Karyophilic properties of Semliki Forest virus nucleocapsid protein.

    PubMed Central

    Michel, M R; Elgizoli, M; Dai, Y; Jakob, R; Koblet, H; Arrigo, A P

    1990-01-01

    Semliki Forest virus capsid (C) protein molecules (Mr, 33,000) can be introduced efficiently into the cytoplasm of various target cells by electroporation, liposome, and erythrocyte ghost-mediated delivery (M. Elgizoli, Y. Dai, C. Kempf, H. Koblet, and M.R. Michel, J. Virol. 63:2921-2928, 1989). Here, we show that the transferred C protein molecules partition rapidly from the cytosolic compartment into the nucleus. Transport of the C protein molecules into the nucleus was reversibly arrested by metabolic inhibitors, indicating that the transfer process is energy dependent. Fractionation of isolated nuclei revealed that the delivered C protein preferentially associates with the nucleoli. This finding was confirmed by morphological studies, showing that in an in vitro system containing ATP isolated nuclei rapidly accumulated rhodamine-labeled C protein in their nucleoli. Furthermore, in this assay system, the lectin wheat germ agglutinin prevented transfer of C protein through nuclear pores. These results are in agreement with our observation that nucleoli contain measurable amounts of newly synthesized C protein as early as 5 h after infection of cells with SFV. Thereafter, nucleolar-associated C protein increased progressively during the course of infection. Images PMID:2398536

  4. Structural Characterization of an Early Fusion Intermediate of Influenza Virus Hemagglutinin

    SciTech Connect

    Xu, Rui; Wilson, Ian A.

    2011-12-07

    The hemagglutinin (HA) envelope protein of influenza virus mediates viral entry through membrane fusion in the acidic environment of the endosome. Crystal structures of HA in pre- and postfusion states have laid the foundation for proposals for a general fusion mechanism for viral envelope proteins. The large-scale conformational rearrangement of HA at low pH is triggered by a loop-to-helix transition of an interhelical loop (B loop) within the fusion domain and is often referred to as the 'spring-loaded' mechanism. Although the receptor-binding HA1 subunit is believed to act as a 'clamp' to keep the B loop in its metastable prefusion state at neutral pH, the 'pH sensors' that are responsible for the clamp release and the ensuing structural transitions have remained elusive. Here we identify a mutation in the HA2 fusion domain from the influenza virus H2 subtype that stabilizes the HA trimer in a prefusion-like state at and below fusogenic pH. Crystal structures of this putative early intermediate state reveal reorganization of ionic interactions at the HA1-HA2 interface at acidic pH and deformation of the HA1 membrane-distal domain. Along with neutralization of glutamate residues on the B loop, these changes cause a rotation of the B loop and solvent exposure of conserved phenylalanines, which are key residues at the trimer interface of the postfusion structure. Thus, our study reveals the possible initial structural event that leads to release of the B loop from its prefusion conformation, which is aided by unexpected structural changes within the membrane-distal HA1 domain at low pH.

  5. Structural Characterization of an Early Fusion Intermediate of Influenza Virus Hemagglutinin ▿ †

    PubMed Central

    Xu, Rui; Wilson, Ian A.

    2011-01-01

    The hemagglutinin (HA) envelope protein of influenza virus mediates viral entry through membrane fusion in the acidic environment of the endosome. Crystal structures of HA in pre- and postfusion states have laid the foundation for proposals for a general fusion mechanism for viral envelope proteins. The large-scale conformational rearrangement of HA at low pH is triggered by a loop-to-helix transition of an interhelical loop (B loop) within the fusion domain and is often referred to as the “spring-loaded” mechanism. Although the receptor-binding HA1 subunit is believed to act as a “clamp” to keep the B loop in its metastable prefusion state at neutral pH, the “pH sensors” that are responsible for the clamp release and the ensuing structural transitions have remained elusive. Here we identify a mutation in the HA2 fusion domain from the influenza virus H2 subtype that stabilizes the HA trimer in a prefusion-like state at and below fusogenic pH. Crystal structures of this putative early intermediate state reveal reorganization of ionic interactions at the HA1-HA2 interface at acidic pH and deformation of the HA1 membrane-distal domain. Along with neutralization of glutamate residues on the B loop, these changes cause a rotation of the B loop and solvent exposure of conserved phenylalanines, which are key residues at the trimer interface of the postfusion structure. Thus, our study reveals the possible initial structural event that leads to release of the B loop from its prefusion conformation, which is aided by unexpected structural changes within the membrane-distal HA1 domain at low pH. PMID:21367895

  6. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-10-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses.

  7. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    PubMed Central

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-01-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses. PMID:27752100

  8. Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens.

    PubMed

    Ji, Yanhong; Liu, Tao; Jia, Yane; Liu, Bin; Yu, Qingzhong; Cui, Xiaole; Guo, Fengfeng; Chang, Huiyun; Zhu, Qiyun

    2017-09-01

    The fusion (F) protein of Newcastle disease virus (NDV) affects viral infection and pathogenicity through mediating membrane fusion. Previously, we found NDV with increased fusogenic activity in which contained T458D or G459D mutation in the F protein. Here, we investigated the effects of these two mutations on viral infection, fusogenicity and pathogenicity. Syncytium formation assays indicated that T458D or G459D increased the F protein cleavage activity and enhanced cell fusion with or without the presence of HN protein. The T458D- or G459D-mutated NDV resulted in a decrease in virus replication or release from cells. The animal study showed that the pathogenicity of the mutated NDVs was attenuated in chickens. These results indicate that these two single mutations in F altered or diminished the requirement of HN for promoting membrane fusion. The increased fusogenic activity may disrupt the cellular machinery and consequently decrease the virus replication and pathogenicity in chickens. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Mechanism of Neutralization of Herpes Simplex Virus by Antibodies Directed at the Fusion Domain of Glycoprotein B

    PubMed Central

    Fontana, Juan; Huang, Zhen-Yu; Whitbeck, J. Charles; Atanasiu, Doina; Rao, Samhita; Shelly, Spencer S.; Lou, Huan; Ponce de Leon, Manuel; Steven, Alasdair C.; Eisenberg, Roselyn J.; Cohen, Gary H.

    2014-01-01

    ABSTRACT Glycoprotein B (gB), the fusogen of herpes simplex virus (HSV), is a class III fusion protein with a trimeric ectodomain of known structure for the postfusion state. Seen by negative-staining electron microscopy, it presents as a rod with three lobes (base, middle, and crown). gB has four functional regions (FR), defined by the physical location of epitopes recognized by anti-gB neutralizing monoclonal antibodies (MAbs). Located in the base, FR1 contains two internal fusion loops (FLs) and is the site of gB-lipid interaction (the fusion domain). Many of the MAbs to FR1 are neutralizing, block cell-cell fusion, and prevent the association of gB with lipid, suggesting that these MAbs affect FL function. Here we characterize FR1 epitopes by using electron microscopy to visualize purified Fab-gB ectodomain complexes, thus confirming the locations of several epitopes and localizing those of MAbs DL16 and SS63. We also generated MAb-resistant viruses in order to localize the SS55 epitope precisely. Because none of the epitopes of our anti-FR1 MAbs mapped to the FLs, we hyperimmunized rabbits with FL1 or FL2 peptides to generate polyclonal antibodies (PAbs). While the anti-FL1 PAb failed to bind gB, the anti-FL2 PAb had neutralizing activity, implying that the FLs become exposed during virus entry. Unexpectedly, the anti-FL2 PAb (and the anti-FR1 MAbs) bound to liposome-associated gB, suggesting that their epitopes are accessible even when the FLs engage lipid. These studies provide possible mechanisms of action for HSV neutralization and insight into how gB FR1 contributes to viral fusion. IMPORTANCE For herpesviruses, such as HSV, entry into a target cell involves transfer of the capsid-encased genome of the virus to the target cell after fusion of the lipid envelope of the virus with a lipid membrane of the host. Virus-encoded glycoproteins in the envelope are responsible for fusion. Antibodies to these glycoproteins are important biological tools, providing a

  10. Evaluation of Measles Vaccine Virus as a Vector to Deliver Respiratory Syncytial Virus Fusion Protein or Epstein-Barr Virus Glycoprotein gp350

    PubMed Central

    Mok, Hoyin; Cheng, Xing; Xu, Qi; Zengel, James R; Parhy, Bandita; Zhao, Jackie; Wang, C. Kathy; Jin, Hong

    2012-01-01

    Live attenuated recombinant measles vaccine virus (MV) Edmonston-Zagreb (EZ) strain was evaluated as a viral vector to express the ectodomains of fusion protein of respiratory syncytial virus (RSV F) or glycoprotein 350 of Epstein-Barr virus (EBV gp350) as candidate vaccines for prophylaxis of RSV and EBV. The glycoprotein gene was inserted at the 1st or the 3rd position of the measles virus genome and the recombinant viruses were generated. Insertion of the foreign gene at the 3rd position had a minimal impact on viral replication in vitro. RSV F or EBV gp350 protein was secreted from infected cells. In cotton rats, EZ-RSV F and EZ-EBV gp350 induced MV- and insert-specific antibody responses. In addition, both vaccines also induced insert specific interferon gamma (IFN-γ) secreting T cell response. EZ-RSV F protected cotton rats from pulmonary replication of RSV A2 challenge infection. In rhesus macaques, although both EZ-RSV F and EZ-EBV gp350 induced MV specific neutralizing antibody responses, only RSV F specific antibody response was detected. Thus, the immunogenicity of the foreign antigens delivered by measles vaccine virus is dependent on the nature of the insert and the animal models used for vaccine evaluation. PMID:22383906

  11. Evaluation of Measles Vaccine Virus as a Vector to Deliver Respiratory Syncytial Virus Fusion Protein or Epstein-Barr Virus Glycoprotein gp350.

    PubMed

    Mok, Hoyin; Cheng, Xing; Xu, Qi; Zengel, James R; Parhy, Bandita; Zhao, Jackie; Wang, C Kathy; Jin, Hong

    2012-01-01

    Live attenuated recombinant measles vaccine virus (MV) Edmonston-Zagreb (EZ) strain was evaluated as a viral vector to express the ectodomains of fusion protein of respiratory syncytial virus (RSV F) or glycoprotein 350 of Epstein-Barr virus (EBV gp350) as candidate vaccines for prophylaxis of RSV and EBV. The glycoprotein gene was inserted at the 1(st) or the 3(rd) position of the measles virus genome and the recombinant viruses were generated. Insertion of the foreign gene at the 3(rd) position had a minimal impact on viral replication in vitro. RSV F or EBV gp350 protein was secreted from infected cells. In cotton rats, EZ-RSV F and EZ-EBV gp350 induced MV- and insert-specific antibody responses. In addition, both vaccines also induced insert specific interferon gamma (IFN-γ) secreting T cell response. EZ-RSV F protected cotton rats from pulmonary replication of RSV A2 challenge infection. In rhesus macaques, although both EZ-RSV F and EZ-EBV gp350 induced MV specific neutralizing antibody responses, only RSV F specific antibody response was detected. Thus, the immunogenicity of the foreign antigens delivered by measles vaccine virus is dependent on the nature of the insert and the animal models used for vaccine evaluation.

  12. A bispecific antibody effectively neutralizes all four serotypes of dengue virus by simultaneous blocking virus attachment and fusion

    PubMed Central

    Shi, Xin; Deng, Yongqiang; Wang, Huajing; Ji, Guanghui; Tan, Wenlong; Jiang, Tao; Li, Xiaofeng; Zhao, Hui; Xia, Tian; Meng, Yanchun; Wang, Chao; Yu, Xiaojie; Yang, Yang; Li, Bohua; Qin, E-De; Dai, Jianxin; Qin, Cheng-Feng; Guo, Yajun

    2016-01-01

    ABSTRACT Although dengue virus (DENV) infection severely threatens the health of humans, no specific antiviral drugs are currently approved for clinical use against DENV infection. Attachment and fusion are 2 critical steps for the flavivirus infection, and the corresponding functional epitopes are located at E protein domain III (E-DIII) and domain II (E-DII), respectively. Here, we constructed a bispecific antibody (DVD-1A1D-2A10) based on the 2 well-characterized anti-DENV monoclonal antibodies 1A1D-2 (1A1D) and 2A10G6 (2A10). The 1A1D antibody binds E-DIII and can block the virus attaching to the cell surface, while the 2A10 antibody binds E-DII and is able to prevent the virus from fusing with the endosomal membrane. Our data showed that DVD-1A1D-2A10 retained the antigen-binding activity of both parental antibodies. Importantly, it was demonstrated to be significantly more effective at neutralizing DENV than its parental antibodies both in vitro and in vivo, even better than the combination of them. To eliminate the potential antibody-dependent enhancement (ADE) effect, this bispecific antibody was successfully engineered to prevent Fc-γ-R interaction. Overall, we generated a bispecific anti-DENV antibody targeting both attachment and fusion stages, and this bispecific antibody broadly neutralized all 4 serotypes of DENV without risk of ADE, suggesting that it has great potential as a novel antiviral strategy against DENV. PMID:26905804

  13. Interaction between the Hemagglutinin-Neuraminidase and Fusion Glycoproteins of Human Parainfluenza Virus Type III Regulates Viral Growth In Vivo

    PubMed Central

    Xu, Rui; Palmer, Samantha G.; Porotto, Matteo; Palermo, Laura M.; Niewiesk, Stefan; Wilson, Ian A.; Moscona, Anne

    2013-01-01

    ABSTRACT Paramyxoviruses, enveloped RNA viruses that include human parainfluenza virus type 3 (HPIV3), cause the majority of childhood viral pneumonia. HPIV3 infection starts when the viral receptor-binding protein engages sialic acid receptors in the lung and the viral envelope fuses with the target cell membrane. Fusion/entry requires interaction between two viral surface glycoproteins: tetrameric hemagglutinin-neuraminidase (HN) and fusion protein (F). In this report, we define structural correlates of the HN features that permit infection in vivo. We have shown that viruses with an HN-F that promotes growth in cultured immortalized cells are impaired in differentiated human airway epithelial cell cultures (HAE) and in vivo and evolve in HAE into viable viruses with less fusogenic HN-F. In this report, we identify specific structural features of the HN dimer interface that modulate HN-F interaction and fusion triggering and directly impact infection. Crystal structures of HN, which promotes viral growth in vivo, show a diminished interface in the HN dimer compared to the reference strain’s HN, consistent with biochemical and biological data indicating decreased dimerization and decreased interaction with F protein. The crystallographic data suggest a structural explanation for the HN’s altered ability to activate F and reveal properties that are critical for infection in vivo. IMPORTANCE Human parainfluenza viruses cause the majority of childhood cases of croup, bronchiolitis, and pneumonia worldwide. Enveloped viruses must fuse their membranes with the target cell membranes in order to initiate infection. Parainfluenza fusion proceeds via a multistep reaction orchestrated by the two glycoproteins that make up its fusion machine. In vivo, viruses adapt for survival by evolving to acquire a set of fusion machinery features that provide key clues about requirements for infection in human beings. Infection of the lung by parainfluenzavirus is determined by

  14. Chemical studies of viral entry mechanisms: I. Hydrophobic protein-lipid interactions during Sendai virus membrane fusion. II. Kinetics of bacteriophage. lambda. DNA injection

    SciTech Connect

    Novick, S.L.

    1990-01-01

    Sendai virus glycoprotein interactions with target membranes during the early stages of fusion were examined using time-resolved hydrophobic photoaffinity labeling with the lipid-soluble carbene generator 3-(trifluoromethyl)-3-(m({sup 125}I) iodophenyl)diazirine. During Sendai virus fusion with liposomes composed of cardiolipin or phosphatidylserine, the viral fusion (F) protein is preferentially labeled at early time points, supporting the hypothesis that hydrophobic interaction of the fusion peptide at the N-terminus of the F{sub 1} subunit with the target membrane is an initiating event in fusion. Correlation of hydrophobic interactions with independently monitored fusion kinetics further supports this conclusion. The F{sub 1} subunit, containing the putative hydrophobic fusion sequence, is exclusively labeled, and the F{sub 2} subunit does not participate in fusion. Labeling shows temperature and pH dependence consistent with a need for protein conformational mobility and fusion at neutral pH. Higher amounts of labeling during fusion with CL vesicles than during virus-PS vesicle fusion reflects membrane packing regulation of peptide insertion into target membranes. Labeling of the viral hemagglutinin/neuraminidase (HN) at low pH indicates that HN-mediated fusion is triggered by hydrophobic interactions. Controls for diffusional labeling exclude a major contribution from this source. Labeling during reconstituted Sendai virus envelope-liposome fusion shows that functional reconstitution involves protein retention of the ability to undergo hydrophobic interactions. Examination of Sendai virus fusion with erythrocyte membranes indicates that hydrophobic interactions also trigger fusion between biological membranes. The data show that hydrophobic fusion protein interaction with both artificial and biological membranes is a triggering event in fusion.

  15. Hepatitis C virus is primed by CD81 protein for low pH-dependent fusion.

    PubMed

    Sharma, Nishi R; Mateu, Guaniri; Dreux, Marlene; Grakoui, Arash; Cosset, François-Loïc; Melikyan, Gregory B

    2011-09-02

    Hepatitis C virus (HCV) entry into permissive cells is a complex process that involves interactions with at least four co-factors followed by endocytosis and low pH-dependent fusion with endosomes. The precise sequence of receptor engagement and their roles in promoting HCV E1E2 glycoprotein-mediated fusion are poorly characterized. Because cell-free HCV tolerates an acidic environment, we hypothesized that binding to one or more receptors on the cell surface renders E1E2 competent to undergo low pH-induced conformational changes and promote fusion with endosomes. To test this hypothesis, we examined the effects of low pH and of the second extracellular loop (ECL2) of CD81, one of the four entry factors, on HCV infectivity. Pretreatment with an acidic buffer or with ECL2 enhanced infection through changing the E1E2 conformation, as evidenced by the altered reactivity of these proteins with conformation-specific antibodies and stable association with liposomes. However, neither of the two treatments alone permitted direct fusion with the cell plasma membrane. Sequential HCV preincubation with ECL2 and acidic buffer in the absence of target cells resulted in a marked loss of infectivity, implying that the receptor-bound HCV is primed for low pH-dependent conformational changes. Indeed, soluble receptor-pretreated HCV fused with the cell plasma membrane at low pH under conditions blocking an endocytic entry pathway. These findings suggest that CD81 primes HCV for low pH-dependent fusion early in the entry process. The simple triggering paradigm and intermediate conformations of E1E2 identified in this study could help guide future vaccine and therapeutic efforts to block HCV infection.

  16. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L

    SciTech Connect

    Pager, Cara Theresia; Craft, Willie Warren; Patch, Jared; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2006-03-15

    The Nipah virus fusion (F) protein is proteolytically processed to F{sub 1} + F{sub 2} subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsins can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form.

  17. A Mechanistic Paradigm for Broad-Spectrum Antivirals that Target Virus-Cell Fusion

    PubMed Central

    Hollmann, Axel; Tanner, Lukas B.; Akyol Ataman, Zeynep; Yun, Tatyana; Shui, Guanghou; Aguilar, Hector C.; Zhang, Dong; Meriwether, David; Roman-Sosa, Gleyder; Robinson, Lindsey R.; Juelich, Terry L.; Buczkowski, Hubert; Chou, Sunwen; Castanho, Miguel A. R. B.; Wolf, Mike C.; Smith, Jennifer K.; Banyard, Ashley; Kielian, Margaret; Reddy, Srinivasa; Wenk, Markus R.; Selke, Matthias; Santos, Nuno C.; Freiberg, Alexander N.; Jung, Michael E.; Lee, Benhur

    2013-01-01

    LJ001 is a lipophilic thiazolidine derivative that inhibits the entry of numerous enveloped viruses at non-cytotoxic concentrations (IC50≤0.5 µM), and was posited to exploit the physiological difference between static viral membranes and biogenic cellular membranes. We now report on the molecular mechanism that results in LJ001's specific inhibition of virus-cell fusion. The antiviral activity of LJ001 was light-dependent, required the presence of molecular oxygen, and was reversed by singlet oxygen (1O2) quenchers, qualifying LJ001 as a type II photosensitizer. Unsaturated phospholipids were the main target modified by LJ001-generated 1O2. Hydroxylated fatty acid species were detected in model and viral membranes treated with LJ001, but not its inactive molecular analog, LJ025. 1O2-mediated allylic hydroxylation of unsaturated phospholipids leads to a trans-isomerization of the double bond and concurrent formation of a hydroxyl group in the middle of the hydrophobic lipid bilayer. LJ001-induced 1O2-mediated lipid oxidation negatively impacts on the biophysical properties of viral membranes (membrane curvature and fluidity) critical for productive virus-cell membrane fusion. LJ001 did not mediate any apparent damage on biogenic cellular membranes, likely due to multiple endogenous cytoprotection mechanisms against phospholipid hydroperoxides. Based on our understanding of LJ001's mechanism of action, we designed a new class of membrane-intercalating photosensitizers to overcome LJ001's limitations for use as an in vivo antiviral agent. Structure activity relationship (SAR) studies led to a novel class of compounds (oxazolidine-2,4-dithiones) with (1) 100-fold improved in vitro potency (IC50<10 nM), (2) red-shifted absorption spectra (for better tissue penetration), (3) increased quantum yield (efficiency of 1O2 generation), and (4) 10–100-fold improved bioavailability. Candidate compounds in our new series moderately but significantly (p≤0.01) delayed the

  18. Role of Metastability and Acidic pH in Membrane Fusion by Tick-Borne Encephalitis Virus

    PubMed Central

    Stiasny, Karin; Allison, Steven L.; Mandl, Christian W.; Heinz, Franz X.

    2001-01-01

    The envelope protein E of the flavivirus tick-borne encephalitis (TBE) virus is, like the alphavirus E1 protein, a class II viral fusion protein that differs structurally and probably mechanistically from class I viral fusion proteins. The surface of the native TBE virion is covered by an icosahedrally symmetrical network of E homodimers, which mediate low-pH-induced fusion in endosomes. At the pH of fusion, the E homodimers are irreversibly converted to a homotrimeric form, which we have found by intrinsic fluorescence measurements to be more stable than the native dimers. Thus, the TBE virus E protein is analogous to the prototypical class I fusion protein, the influenza virus hemagglutinin (HA), in that it is initially synthesized in a metastable state that is energetically poised to be converted to the fusogenic state by exposure to low pH. However, in contrast to what has been observed with influenza virus HA, this transition could not be triggered by input of heat energy alone and membrane fusion could be induced only when the virus was exposed to an acidic pH. In a previous study we showed that the dimer-to-trimer transition appears to be a two-step process involving a reversible dissociation of the dimer followed by an irreversible trimerization of the dissociated monomeric subunits. Because the dimer-monomer equilibrium in the first step apparently depends on the protonation state of E, the lack of availability of monomers for the trimerization step at neutral pH could explain why low pH is essential for fusion in spite of the metastability of the native E dimer. PMID:11462011

  19. Genetic diversity of fusion gene (ORF 117), an analogue of vaccinia virus A27L gene of capripox virus isolates.

    PubMed

    Dashprakash, M; Venkatesan, Gnanavel; Ramakrishnan, Muthannan Andavar; Muthuchelvan, Dhanavelu; Sankar, Muthu; Pandey, Awadh Bihari; Mondal, Bimelendu

    2015-04-01

    The fusion gene (ORF 117) sequences of twelve (n = 12) capripox virus isolates namely sheeppox (SPPV) and goatpox (GTPV) viruses from India were demonstrated for their genetic and phylogenetic relationship among them. All the isolates were confirmed for their identity by routine PCR before targeting ORF 117 gene for sequence analysis. The designed primers specifically amplified ORF 117 gene as 447 bp fragment from total genomic DNA extracted from all the isolates. Sequence analysis revealed a significant percentage of identity among GTPV, SPPV and between them at both nucleotide and amino acid levels. The topology of the phylogenetic tree revealed that three distinct clusters corresponding to SPPV, GTPV and lumpy skin disease virus was formed. However, SPPV Pune/08 and SPPV Roumanian Fanar isolates were clustered into GTPV group as these two isolates showed a 100 and 99.3 % identity with GTPV isolates of India at nt and aa levels, respectively. Protein secondary structure and 3D view was predicted and found that it has high antigenic index and surface probability with low hydrophobicity, and it can be targeted for expression and its evaluation to explore its diagnostic potential in epidemiological investigation in future.

  20. Different Regions of the Newcastle Disease Virus Fusion Protein Modulate Pathogenicity

    PubMed Central

    Heiden, Sandra; Grund, Christian; Röder, Anja; Granzow, Harald; Kühnel, Denis; Mettenleiter, Thomas C.; Römer-Oberdörfer, Angela

    2014-01-01

    Newcastle disease virus (NDV), also designated as Avian paramyxovirus type 1 (APMV-1), is the causative agent of a notifiable disease of poultry but it exhibits different pathogenicity dependent on the virus strain. The molecular basis for this variability is not fully understood. The efficiency of activation of the fusion protein (F) is determined by presence or absence of a polybasic amino acid sequence at an internal proteolytic cleavage site which is a major determinant of NDV virulence. However, other determinants of pathogenicity must exist since APMV-1 of high (velogenic), intermediate (mesogenic) and low (lentogenic) virulence specify a polybasic F cleavage site. We aimed at elucidation of additional virulence determinants by constructing a recombinant virus that consists of a lentogenic NDV Clone 30 backbone and the F protein gene from a mesogenic pigeon paramyxovirus-1 (PPMV-1) isolate with an intracerebral pathogenicity index (ICPI) of 1.1 specifying the polybasic sequence R-R-K-K-R*F motif at the cleavage site. The resulting virus was characterized by an ICPI of 0.6, indicating a lentogenic pathotype. In contrast, alteration of the cleavage site G-R-Q-G-R*L of the lentogenic Clone 30 to R-R-K-K-R*F resulted in a recombinant virus with an ICPI of 1.36 which was higher than that of parental PPMV-1. Substitution of different regions of the F protein of Clone 30 by those of PPMV-1, while maintaining the polybasic amino acid sequence at the F cleavage site, resulted in recombinant viruses with ICPIs ranging from 0.59 to 1.36 suggesting that virulence is modulated by regions of the F protein other than the polybasic cleavage site. PMID:25437176

  1. Constructing seasonal LAI trajectory by data-model fusion for global evergreen needle-leaf forests

    NASA Astrophysics Data System (ADS)

    Wang, R.; Chen, J.; Mo, G.

    2010-12-01

    For decades, advancements in optical remote sensors made it possible to produce maps of a biophysical parameter--the Leaf Area Index (LAI), which is critically necessary in regional and global modeling of exchanges of carbon, water, energy and other substances, across large areas in a fast way. Quite a few global LAI products have been generated since 2000, e.g. GLOBCARBON (Deng et al., 2006), MODIS Collection 5 (Shabanov et al., 2007), CYCLOPES (Baret et al., 2007), etc. Albeit these progresses, the basic physics behind the technology restrains it from accurate estimation of LAI in winter, especially for northern high-latitude evergreen needle-leaf forests. Underestimation of winter LAI in these regions has been reported in literature (Yang et al., 2000; Cohen et al., 2003; Tian et al., 2004; Weiss et al., 2007; Pisek et al., 2007), and the distortion is usually attributed to the variations of canopy reflectance caused by understory change (Weiss et al., 2007) as well as by the presence of ice and snow on leaves and ground (Cohen, 2003; Tian et al., 2004). Seasonal changes in leaf pigments can also be another reason for low LAI retrieved in winter. Low conifer LAI values in winter retrieved from remote sensing make them unusable for surface energy budget calculations. To avoid these drawbacks of remote sensing approaches, we attempt to reconstruct the seasonal LAI trajectory through model-data fusion. A 1-degree LAI map of global evergreen needle-leaf forests at 10-day interval is produced based on the carbon allocation principle in trees. With net primary productivity (NPP) calculated by the Boreal Ecosystems Productivity Simulator (BEPS) (Chen et al., 1999), carbon allocated to needles is quantitatively evaluated and then can be further transformed into LAI using the specific leaf area (SLA). A leaf-fall scheme is developed to mimic the carbon loss caused by falling needles throughout the year. The seasonally maximum LAI from remote sensing data for each pixel

  2. Fusion Peptide Improves Stability and Bioactivity of Single Chain Antibody against Rabies Virus.

    PubMed

    Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Shi, Linqing; Zhang, Renxia; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2017-04-28

    The combination of rabies immunoglobulin (RIG) with a vaccine is currently effective against rabies infections, but improvements are needed. Genetic engineering antibody technology is an attractive approach for developing novel antibodies to replace RIG. In our previous study, a single-chain variable fragment, scFv57R, against rabies virus glycoprotein was constructed. However, its inherent weak stability and short half-life compared with the parent RIG may limit its diagnostic and therapeutic application. Therefore, an acidic tail of synuclein (ATS) derived from the C-terminal acidic tail of human alpha-synuclein protein was fused to the C-terminus of scFv57R in order to help it resist adverse stress and improve the stability and halflife. The tail showed no apparent effect on the preparation procedure and affinity of the protein, nor did it change the neutralizing potency in vitro. In the ELISA test of molecular stability, the ATS fusion form of the protein, scFv57R-ATS, showed an increase in thermal stability and longer half-life in serum than scFv57R. The protection against fatal rabies virus challenge improved after fusing the tail to the scFv, which may be attributed to the improved stability. Thus, the ATS fusion approach presented here is easily implemented and can be used as a new strategy to improve the stability and half-life of engineered antibody proteins for practical applications.

  3. Full Conversion of the Hemagglutinin-Neuraminidase Specificity of the Parainfluenza Virus 5 Fusion Protein by Replacement of 21 Amino Acids in Its Head Region with Those of the Simian Virus 41 Fusion Protein

    PubMed Central

    Nakahashi, Mito; Matsushima, Yoshiaki; Ito, Morihiro; Nishio, Machiko; Kawano, Mitsuo; Komada, Hiroshi; Nosaka, Tetsuya

    2013-01-01

    For most parainfluenza viruses, a virus type-specific interaction between the hemagglutinin-neuraminidase (HN) and fusion (F) proteins is a prerequisite for mediating virus-cell fusion and cell-cell fusion. The molecular basis of this functional interaction is still obscure partly because it is unknown which region of the F protein is responsible for the physical interaction with the HN protein. Our previous cell-cell fusion assay using the chimeric F proteins of parainfluenza virus 5 (PIV5) and simian virus 41 (SV41) indicated that replacement of two domains in the head region of the PIV5 F protein with the SV41 F counterparts bestowed on the PIV5 F protein the ability to induce cell-cell fusion on coexpression with the SV41 HN protein while retaining its ability to induce fusion with the PIV5 HN protein. In the study presented here, we furthered the chimeric analysis of the F proteins of PIV5 and SV41, finding that the PIV5 F protein could be converted to an SV41 HN-specific chimeric F protein by replacing five domains in the head region with the SV41 F counterparts. The five SV41 F-protein-derived domains of this chimera were then divided into 16 segments; 9 out of 16 proved to be not involved in determining its specificity for the SV41 HN protein. Finally, mutational analyses of a chimeric F protein, which harbored seven SV41 F-protein-derived segments, revealed that replacement of at most 21 amino acids of the PIV5 F protein with the SV41 F-protein counterparts was enough to convert its HN protein specificity. PMID:23698295

  4. Full conversion of the hemagglutinin-neuraminidase specificity of the parainfluenza virus 5 fusion protein by replacement of 21 amino acids in its head region with those of the simian virus 41 fusion protein.

    PubMed

    Tsurudome, Masato; Nakahashi, Mito; Matsushima, Yoshiaki; Ito, Morihiro; Nishio, Machiko; Kawano, Mitsuo; Komada, Hiroshi; Nosaka, Tetsuya

    2013-08-01

    For most parainfluenza viruses, a virus type-specific interaction between the hemagglutinin-neuraminidase (HN) and fusion (F) proteins is a prerequisite for mediating virus-cell fusion and cell-cell fusion. The molecular basis of this functional interaction is still obscure partly because it is unknown which region of the F protein is responsible for the physical interaction with the HN protein. Our previous cell-cell fusion assay using the chimeric F proteins of parainfluenza virus 5 (PIV5) and simian virus 41 (SV41) indicated that replacement of two domains in the head region of the PIV5 F protein with the SV41 F counterparts bestowed on the PIV5 F protein the ability to induce cell-cell fusion on coexpression with the SV41 HN protein while retaining its ability to induce fusion with the PIV5 HN protein. In the study presented here, we furthered the chimeric analysis of the F proteins of PIV5 and SV41, finding that the PIV5 F protein could be converted to an SV41 HN-specific chimeric F protein by replacing five domains in the head region with the SV41 F counterparts. The five SV41 F-protein-derived domains of this chimera were then divided into 16 segments; 9 out of 16 proved to be not involved in determining its specificity for the SV41 HN protein. Finally, mutational analyses of a chimeric F protein, which harbored seven SV41 F-protein-derived segments, revealed that replacement of at most 21 amino acids of the PIV5 F protein with the SV41 F-protein counterparts was enough to convert its HN protein specificity.

  5. Iterative structure-based improvement of a respiratory syncytial virus fusion glycoprotein vaccine

    PubMed Central

    Ou, Li; Chen, Man; Chuang, Gwo-Yu; Druz, Aliaksandr; Kong, Wing-Pui; Lai, Yen-Ting; Rundlet, Emily J.; Tsybovsky, Yaroslav; Yang, Yongping; Georgiev, Ivelin S.; Guttman, Miklos; Lees, Christopher R.; Pancera, Marie; Sastry, Mallika; Soto, Cinque; Stewart-Jones, Guillaume B.E.; Thomas, Paul V.; Van Galen, Joseph G.; Baxa, Ulrich; Lee, Kelly K.; Mascola, John R.; Graham, Barney S.; Kwong, Peter D.

    2016-01-01

    Structure-based design of vaccines has been a long-sought goal, especially the iterative optimization used so successfully with structure-based design of drugs. We previously developed a 1st-generation vaccine antigen called DS-Cav1, comprising a pre-fusion-stabilized form of the fusion (F) glycoprotein, which elicited high titers of protective responses against respiratory syncytial virus (RSV) in mice and macaques. Here we report the improvement of DS-Cav1 through iterative cycles of structure-based design that significantly increased the titer of RSV-protective responses. The resultant 2nd-generation “DS2”-stabilized immunogens have F subunits genetically linked, fusion peptide deleted, and interprotomer movements stabilized by an additional disulfide bond. These DS2-immunogens are promising vaccine candidates with superior attributes, such as the absence of a requirement for furin cleavage and increased antigenic stability to heat inactivation. The iterative structure-based improvement described here may have utility in the optimization of other vaccine antigens. PMID:27478931

  6. Structure of Respiratory Syncytial Virus Fusion Glycoprotein in the Postfusion Conformation Reveals Preservation of Neutralizing Epitopes

    SciTech Connect

    McLellan, Jason S.; Yang, Yongping; Graham, Barney S.; Kwong, Peter D.

    2011-09-16

    Respiratory syncytial virus (RSV) invades host cells via a type I fusion (F) glycoprotein that undergoes dramatic structural rearrangements during the fusion process. Neutralizing monoclonal antibodies, such as 101F, palivizumab, and motavizumab, target two major antigenic sites on the RSV F glycoprotein. The structures of these sites as peptide complexes with motavizumab and 101F have been previously determined, but a structure for the trimeric RSV F glycoprotein ectodomain has remained elusive. To address this issue, we undertook structural and biophysical studies on stable ectodomain constructs. Here, we present the 2.8-{angstrom} crystal structure of the trimeric RSV F ectodomain in its postfusion conformation. The structure revealed that the 101F and motavizumab epitopes are present in the postfusion state and that their conformations are similar to those observed in the antibody-bound peptide structures. Both antibodies bound the postfusion F glycoprotein with high affinity in surface plasmon resonance experiments. Modeling of the antibodies bound to the F glycoprotein predicts that the 101F epitope is larger than the linear peptide and restricted to a single protomer in the trimer, whereas motavizumab likely contacts residues on two protomers, indicating a quaternary epitope. Mechanistically, these results suggest that 101F and motavizumab can bind to multiple conformations of the fusion glycoprotein and can neutralize late in the entry process. The structural preservation of neutralizing epitopes in the postfusion state suggests that this conformation can elicit neutralizing antibodies and serve as a useful vaccine antigen.

  7. A suicidal DNA vaccine expressing the fusion protein of peste des petits ruminants virus induces both humoral and cell-mediated immune responses in mice.

    PubMed

    Wang, Yong; Yue, Xiaolin; Jin, Hongyan; Liu, Guangqing; Pan, Ling; Wang, Guijun; Guo, Hao; Li, Gang; Li, Yongdong

    2015-12-01

    Peste des petits ruminants (PPR), a highly contagious disease induced by PPR virus (PPRV), affects sheep and goats. PPRV fusion (F) protein is important for the induction of immune responses against PPRV. We constructed a Semliki Forest virus (SFV) replicon-vectored DNA vaccine ("suicidal DNA vaccine") and evaluated its immunogenicity in BALB/c mice. The F gene of PPRV was cloned and inserted into the SFV replicon-based vector pSCA1. The antigenicity of the resultant plasmid pSCA1/F was identified by indirect immunofluorescence and western blotting. BALB/c mice were then intramuscularly injected with pSCA1/F three times at 14-d intervals. Specific antibodies and virus-neutralizing antibodies against PPRV were quantified by indirect ELISA and microneutralization tests, respectively. Cell-mediated immune responses were examined by cytokine and lymphocyte proliferation assays. The pSCA1/F expressed F protein in vitro and induced specific and neutralizing antibody production, and lymphocyte proliferation in mice. Mice vaccinated with pSCA1/F had increased IL-2 and IL-10 levels after 24-h post first immunization. IFN-γ and TNF-α levels increased from that time point and gradually decreased thereafter. Thus, the Semliki Forest virus replicon-vectored DNA vaccine expressing the F protein of PPRV induced both humoral and cell-mediated immune responses in mice. This could be considered as a novel strategy for vaccine development against PPR. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Recombinant Sendai viruses expressing fusion proteins with two furin cleavage sites mimic the syncytial and receptor-independent infection properties of respiratory syncytial virus.

    PubMed

    Rawling, Joanna; Cano, Olga; Garcin, Dominique; Kolakofsky, Daniel; Melero, José A

    2011-03-01

    Cell entry by paramyxoviruses requires fusion between viral and cellular membranes. Paramyxovirus infection also gives rise to the formation of multinuclear, fused cells (syncytia). Both types of fusion are mediated by the viral fusion (F) protein, which requires proteolytic processing at a basic cleavage site in order to be active for fusion. In common with most paramyxoviruses, fusion mediated by Sendai virus F protein (F(SeV)) requires coexpression of the homologous attachment (hemagglutinin-neuraminidase [HN]) protein, which binds to cell surface sialic acid receptors. In contrast, respiratory syncytial virus fusion protein (F(RSV)) is capable of fusing membranes in the absence of the viral attachment (G) protein. Moreover, F(RSV) is unique among paramyxovirus fusion proteins since F(RSV) possesses two multibasic cleavage sites, which are separated by an intervening region of 27 amino acids. We have previously shown that insertion of both F(RSV) cleavage sites in F(SeV) decreases dependency on the HN attachment protein for syncytium formation in transfected cells. We now describe recombinant Sendai viruses (rSeV) that express mutant F proteins containing one or both F(RSV) cleavage sites. All cleavage-site mutant viruses displayed reduced thermostability, with double-cleavage-site mutants exhibiting a hyperfusogenic phenotype in infected cells. Furthermore, insertion of both F(RSV) cleavage sites in F(SeV) reduced dependency on the interaction of HN with sialic acid for infection, thus mimicking the unique ability of RSV to fuse and infect cells in the absence of a separate attachment protein.

  9. Susceptibility to virus-cell fusion at the plasma membrane is reduced through expression of HIV gp41 cytoplasmic domains

    SciTech Connect

    Malinowsky, Katharina; Luksza, Julia; Dittmar, Matthias T.

    2008-06-20

    The cytoplasmic tail of the HIV transmembrane protein plays an important role in viral infection. In this study we analyzed the role of retroviral cytoplasmic tails in modulating the cytoskeleton and interfering with virus-cell fusion. HeLaP4 cells expressing different HIV cytoplasmic tail constructs showed reduced acetylated tubulin levels whereas the cytoplasmic tail of MLV did not alter microtubule stability indicating a unique function for the lentiviral cytoplasmic tail. The effect on tubulin is mediated through the membrane proximal region of the HIV cytoplasmic tail and was independent of membrane localization. Site-directed mutagenesis identified three motifs in the HIV-2 cytoplasmic tail required to effect the reduction in acetylated tubulin. Both the Yxx{phi} domain and amino acids 21 to 45 of the HIV-2 cytoplasmic tail need to be present to change the level of acetylated tubulin in transfected cells. T-cells stably expressing one HIV-2 cytoplasmic tail derived construct showed also a reduction in acetylated tubulin thus confirming the importance of this effect not only for HeLaP4 and 293T cells. Challenge experiments using transiently transfected HeLaP4 cells and T cells stably expressing an HIV cytoplasmic tail construct revealed both reduced virus-cell fusion and replication of HIV-1{sub NL4.3} compared to control cells. In the virus-cell fusion assay only virions pseudotyped with either HIV or MLV envelopes showed reduced fusion efficiency, whereas VSV-G pseudotyped virions where not affected by the expression of HIV derived cytoplasmic tail constructs, indicating that fusion at the plasma but not endosomal membrane is affected. Overexpression of human histone-deacetylase 6 (HDAC6) and constitutively active RhoA resulted in a reduction of acetylated tubulin and reduced virus-cell fusion as significant as that observed following expression of HIV cytoplasmic tail constructs. Inhibition of HDAC6 showed a strong increase in acetylated tubulin and

  10. Expression of the A56 and K2 proteins is sufficient to inhibit vaccinia virus entry and cell fusion.

    PubMed

    Wagenaar, Timothy R; Moss, Bernard

    2009-02-01

    Many animal viruses induce cells to fuse and form syncytia. For vaccinia virus, this phenomenon is associated with mutations affecting the A56 and K2 proteins, which form a multimer (A56/K2) on the surface of infected cells. Recent evidence that A56/K2 interacts with the entry/fusion complex (EFC) and that the EFC is necessary for syncytium formation furnishes a strong connection between virus entry and cell fusion. Among the important remaining questions are whether A56/K2 can prevent virus entry as well as cell-cell fusion and whether these two viral proteins are sufficient as well as necessary for this. To answer these questions, we transiently and stably expressed A56 and K2 in uninfected cells. Uninfected cells expressing A56 and K2 exhibited resistance to fusing with A56 mutant virus-infected cells, whereas expression of A56 or K2 alone induced little or no resistance, which fits with the need for both proteins to bind the EFC. Furthermore, transient or stable expression of A56/K2 interfered with virus entry and replication as determined by inhibition of early expression of a luciferase reporter gene, virus production, and plaque formation. The specificity of this effect was demonstrated by restoring entry after enzymatically removing a chimeric glycophosphatidylinositol-anchored A56/K2 or by binding a monoclonal antibody to A56. Importantly, the antibody disrupted the interaction between A56/K2 and the EFC without disrupting the A56-K2 interaction itself. Thus, we have shown that A56/K2 is sufficient to prevent virus entry and fusion as well as formation of syncytia through interaction with the EFC.

  11. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection.

    PubMed

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-07-08

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV.

  12. Multi-sensor data fusion for estimating forest species composition and abundance in northern Minnesota

    Treesearch

    Peter P. Wolter; Phillip A. Townsend

    2011-01-01

    The magnitude, duration, and frequency of forest disturbance caused by the spruce budworm and forest tent caterpillar in northern Minnesota and neighboring Ontario, Canada have increased over the last century due to a shift in forest species composition linked to historical fire suppression, forest management, and pesticide application that has fostered increased...

  13. Membrane Structures of the Hemifusion-Inducing Fusion Peptide Mutant G1S and the Fusion-Blocking Mutant G1V of Influenza Virus Hemagglutinin Suggest a Mechanism for Pore Opening in Membrane Fusion

    PubMed Central

    Li, Yinling; Han, Xing; Lai, Alex L.; Bushweller, John H.; Cafiso, David S.; Tamm, Lukas K.

    2005-01-01

    Influenza virus hemagglutinin (HA)-mediated membrane fusion is initiated by a conformational change that releases a V-shaped hydrophobic fusion domain, the fusion peptide, into the lipid bilayer of the target membrane. The most N-terminal residue of this domain, a glycine, is highly conserved and is particularly critical for HA function; G1S and G1V mutant HAs cause hemifusion and abolish fusion, respectively. We have determined the atomic resolution structures of the G1S and G1V mutant fusion domains in membrane environments. G1S forms a V with a disrupted “glycine edge” on its N-terminal arm and G1V adopts a slightly tilted linear helical structure in membranes. Abolishment of the kink in G1V results in reduced hydrophobic penetration of the lipid bilayer and an increased propensity to form β-structures at the membrane surface. These results underline the functional importance of the kink in the fusion peptide and suggest a structural role for the N-terminal glycine ridge in viral membrane fusion. PMID:16140782

  14. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    SciTech Connect

    Yue, Xiao-shan; Fujishiro, Masako; Toyoda, Masashi; Akaike, Toshihiro; Ito, Yoshihiro

    2010-04-16

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  15. Synergistic inhibition in cell-cell fusion mediated by the matrix and nucleocapsid protein of canine distemper virus.

    PubMed

    Wiener, Dominique; Plattet, Philippe; Cherpillod, Pascal; Zipperle, Ljerka; Doherr, Marcus G; Vandevelde, Marc; Zurbriggen, Andreas

    2007-11-01

    Canine distemper virus (CDV) causes a chronic, demyelinating, progressive or relapsing neurological disease in dogs, because CDV persists in the CNS. Persistence of virulent CDV, such as the A75/17 strain has been reproduced in cell cultures where it is associated with a non-cytolytic infection with very limited cell-cell fusion. This is in sharp contrast to attenuated CDV infection in cell cultures, such as the Onderstepoort (OP) CDV strain, which produces extensive fusion activity and cytolysis. Fusion efficiency may be determined by the structure of the viral fusion protein per se but also by its interaction with other structural proteins of CDV. This was studied by combining genes derived from persistent and non-persistent CDV strains in transient transfection experiments. It was found that fusion efficiency was markedly attenuated by the structure of the fusion protein of the neurovirulent A75/17-CDV. Moreover, we showed that the interaction of the surface glycoproteins with the M protein of the persistent strain greatly influenced fusion activity. Site directed mutagenesis showed that the c-terminus of the M protein is of particular importance in this respect. Interestingly, although the nucleocapsid protein alone did not affect F/H-induced cell-cell fusion, maximal inhibition occurred when the latter was added to combined glycoproteins with matrix protein. Thus, the present study suggests that very limited fusogenicity in virulent CDV infection, which favours persistence by limiting cell destruction involves complex interactions between all viral structural proteins.

  16. Mutation analysis of the fusion domain region of St. Louis encephalitis virus envelope protein

    SciTech Connect

    Trainor, Nicole B.; Crill, Wayne D. . E-mail: wcrill@cdc.gov; Roberson, Jill A.; Chang, Gwong-Jen J.

    2007-04-10

    The immune response to flavivirus infections produces both species-specific and flavivirus cross-reactive antibodies. The presence of cross-reactive antibodies complicates serodiagnosis of flavivirus infections, especially secondary infections caused by a heterologous virus. A successful public health response to the growing global threat posed by flaviviruses necessitates the development of virus-specific diagnostic antigens. The flavivirus envelope (E) glycoprotein is the principle antigen stimulating protective immunity during infection. Using recombinant St. Louis encephalitis virus-like particles (VLPs), we have identified amino acid residues involved in flavivirus cross-reactive epitope determinants. Most significant among the residues studied are three highly conserved amino acids in the fusion peptide: Gly104, Gly106, and Leu107. Substitutions of these residues dramatically influenced VLP secretion and cross-reactive monoclonal antibody reactivity. These results provide critical insight into the antigenic structure of the flaviviral E protein and toward development of species-specific diagnostic antigens that should improve both flavivirus diagnosis and estimates of disease burden.

  17. Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion.

    PubMed

    Veazey, Ronald S; Klasse, Per Johan; Schader, Susan M; Hu, Qinxue; Ketas, Thomas J; Lu, Min; Marx, Preston A; Dufour, Jason; Colonno, Richard J; Shattock, Robin J; Springer, Martin S; Moore, John P

    2005-11-03

    Human immunodeficiency virus type 1 (HIV-1) continues to spread, principally by heterosexual sex, but no vaccine is available. Hence, alternative prevention methods are needed to supplement educational and behavioural-modification programmes. One such approach is a vaginal microbicide: the application of inhibitory compounds before intercourse. Here, we have evaluated the microbicide concept using the rhesus macaque 'high dose' vaginal transmission model with a CCR5-receptor-using simian-human immunodeficiency virus (SHIV-162P3) and three compounds that inhibit different stages of the virus-cell attachment and entry process. These compounds are BMS-378806, a small molecule that binds the viral gp120 glycoprotein and prevents its attachment to the CD4 and CCR5 receptors, CMPD167, a small molecule that binds to CCR5 to inhibit gp120 association, and C52L, a bacterially expressed peptide inhibitor of gp41-mediated fusion. In vitro, all three compounds inhibit infection of T cells and cervical tissue explants, and C52L acts synergistically with CMPD167 or BMS-378806 to inhibit infection of cell lines. In vivo, significant protection was achieved using each compound alone and in combinations. CMPD167 and BMS-378806 were protective even when applied 6 h before challenge.

  18. Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion

    SciTech Connect

    Yu, I.-M.; Holdaway, H.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J.; Purdue

    2010-07-27

    Flavivirus assembles into an inert particle that requires proteolytic activation by furin to enable transmission to other hosts. We previously showed that immature virus undergoes a conformational change at low pH that renders it accessible to furin (I. M. Yu, W. Zhang, H. A. Holdaway, L. Li, V. A. Kostyuchenko, P. R. Chipman, R. J. Kuhn, M. G. Rossmann, and J. Chen, Science 319:1834-1837, 2008). Here we show, using cryoelectron microscopy, that the structure of immature dengue virus at pH 6.0 is essentially the same before and after the cleavage of prM. The structure shows that after cleavage, the proteolytic product pr remains associated with the virion at acidic pH, and that furin cleavage by itself does not induce any major conformational changes. We also show by liposome cofloatation experiments that pr retention prevents membrane insertion, suggesting that pr is present on the virion in the trans-Golgi network to protect the progeny virus from fusion within the host cell.

  19. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation.

    PubMed

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga; Luque, Daniel; Terrón, María C; Calder, Lesley J; Melero, José A

    2014-07-01

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV_F occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV_F, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV_F at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule.

  20. Role of Ca++ in virus-induced membrane fusion. Ca++ accumulation and ultrastructural changes induced by Sendai virus in chicken erythrocytes

    PubMed Central

    1978-01-01

    Some of the ultrastructural (freeze-etching technique), morphological, and biochemical effects of Sendai virus interaction with chicken erythrocytes have been studied under fusogenic (in the presence of CaCl2) and nonfusogenic (in the presence of ethyleneglycol-bis-N,N'- tetraacetic acid, [EGTA]) conditions. The following phenomena occur, irrespective of the presence of CaCl2 or EGTA: (a) binding of iodinated virus particles to chicken erythrocytes at 4 degrees C and their partial release from the cells at 37 degrees C; (b) gradual incorporation of the viral envelope and viral M-protein into plasma membrane, as visualized in the protoplasmic and exoplasmic fracture (P and E, respectively) faces of the membrane; and (c) virus-dependent transient clustering of intramembrane particles at 4 degrees C, which is reversible after transferring the cells back to 37 degrees C. The following virus-induced phenomena occur only in the presence of CaCl2: (a) rounding of cells followed by their fusion; (b) transient decrease in the density of intramembrane particles; and (c) the virus induces uptake of 45CaCl2 by chicken erythrocytes. The uptake is specific as it is inhibited by LaCl3, and no accumulation of [14C]glucose-1-phosphate ([14C]G-1-P) could be observed under the 45 CaCl2 uptake conditions. The data show that fusion of virus with plasma membrane is a Ca++- independent process and, as such, it should be distinguished from the virus-induced membrane-membrane and cell fusion processes. The latter is absolutely dependent on the rise of intracellular Ca++, as reflected by the fact that Ca++-induced rounding of chicken erythrocytes always precedes fusion (Volsky, D. and A. Loyter. 1977.Biochim. Biophys. Acta 471:253--259). PMID:211140

  1. Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity.

    PubMed

    Lee, Jinwoo; Nyenhuis, David A; Nelson, Elizabeth A; Cafiso, David S; White, Judith M; Tamm, Lukas K

    2017-09-19

    Ebolavirus (EBOV), an enveloped filamentous RNA virus causing severe hemorrhagic fever, enters cells by macropinocytosis and membrane fusion in a late endosomal compartment. Fusion is mediated by the EBOV envelope glycoprotein GP, which consists of subunits GP1 and GP2. GP1 binds to cellular receptors, including Niemann-Pick C1 (NPC1) protein, and GP2 is responsible for low pH-induced membrane fusion. Proteolytic cleavage and NPC1 binding at endosomal pH lead to conformational rearrangements of GP2 that include exposing the hydrophobic fusion loop (FL) for insertion into the cellular target membrane and forming a six-helix bundle structure. Although major portions of the GP2 structure have been solved in pre- and postfusion states and although current models place the transmembrane (TM) and FL domains of GP2 in close proximity at critical steps of membrane fusion, their structures in membrane environments, and especially interactions between them, have not yet been characterized. Here, we present the structure of the membrane proximal external region (MPER) connected to the TM domain: i.e., the missing parts of the EBOV GP2 structure. The structure, solved by solution NMR and EPR spectroscopy in membrane-mimetic environments, consists of a helix-turn-helix architecture that is independent of pH. Moreover, the MPER region is shown to interact in the membrane interface with the previously determined structure of the EBOV FL through several critical aromatic residues. Mutation of aromatic and neighboring residues in both binding partners decreases fusion and viral entry, highlighting the functional importance of the MPER/TM-FL interaction in EBOV entry and fusion.

  2. Fusion activation by a headless parainfluenza virus 5 hemagglutinin-neuraminidase stalk suggests a modular mechanism for triggering.

    PubMed

    Bose, Sayantan; Zokarkar, Aarohi; Welch, Brett D; Leser, George P; Jardetzky, Theodore S; Lamb, Robert A

    2012-09-25

    The Paramyxoviridae family of enveloped viruses enters cells through the concerted action of two viral glycoproteins. The receptor-binding protein, hemagglutinin-neuraminidase (HN), H, or G, binds its cellular receptor and activates the fusion protein, F, which, through an extensive refolding event, brings viral and cellular membranes together, mediating virus-cell fusion. However, the underlying mechanism of F activation on receptor engagement remains unclear. Current hypotheses propose conformational changes in HN, H, or G propagating from the receptor-binding site in the HN, H, or G globular head to the F-interacting stalk region. We provide evidence that the receptor-binding globular head domain of the paramyxovirus parainfluenza virus 5 HN protein is entirely dispensable for F activation. Considering together the crystal structures of HN from different paramyxoviruses, varying energy requirements for fusion activation, F activation involving the parainfluenza virus 5 HN stalk domain, and properties of a chimeric paramyxovirus HN protein, we propose a simple model for the activation of paramyxovirus fusion.

  3. Structure of a Major Antigenic Site on the Respiratory Syncytial Virus Fusion Glycoprotein in Complex with Neutralizing Antibody 101F

    SciTech Connect

    McLellan, Jason S.; Chen, Man; Chang, Jung-San; Yang, Yongping; Kim, Albert; Graham, Barney S.; Kwong, Peter D.

    2010-11-19

    Respiratory syncytial virus (RSV) is a major cause of pneumonia and bronchiolitis in infants and elderly people. Currently there is no effective vaccine against RSV, but passive prophylaxis with neutralizing antibodies reduces hospitalizations. To investigate the mechanism of antibody-mediated RSV neutralization, we undertook structure-function studies of monoclonal antibody 101F, which binds a linear epitope in the RSV fusion glycoprotein. Crystal structures of the 101F antigen-binding fragment in complex with peptides from the fusion glycoprotein defined both the extent of the linear epitope and the interactions of residues that are mutated in antibody escape variants. The structure allowed for modeling of 101F in complex with trimers of the fusion glycoprotein, and the resulting models suggested that 101F may contact additional surfaces located outside the linear epitope. This hypothesis was supported by surface plasmon resonance experiments that demonstrated 101F bound the peptide epitope {approx}16,000-fold more weakly than the fusion glycoprotein. The modeling also showed no substantial clashes between 101F and the fusion glycoprotein in either the pre- or postfusion state, and cell-based assays indicated that 101F neutralization was not associated with blocking virus attachment. Collectively, these results provide a structural basis for RSV neutralization by antibodies that target a major antigenic site on the fusion glycoprotein.

  4. Identification of a Potent and Broad-Spectrum Hepatitis C Virus Fusion Inhibitory Peptide from the E2 Stem Domain

    PubMed Central

    Chi, Xiaojing; Niu, Yuqiang; Cheng, Min; Liu, Xiuying; Feng, Yetong; Zheng, Fuxiang; Fan, Jingjing; Li, Xiang; Jin, Qi; Zhong, Jin; Li, Yi-Ping; Yang, Wei

    2016-01-01

    Hepatitis C virus (HCV) envelope proteins E1 and E2 play an essential role in virus entry. However, the fusion mechanisms of HCV remain largely unclear, hampering the development of efficient fusion inhibitors. Here, we developed two cell-based membrane fusion models that allow for screening a peptide library covering the full-length E1 and E2 amino acid sequences. A peptide from the E2 stem domain, named E27, was found to possess the ability to block E1E2-mediated cell-cell fusion and inhibit cell entry of HCV pseudoparticles and infection of cell culture-derived HCV at nanomolar concentrations. E27 demonstrated broad-spectrum inhibition of the major genotypes 1 to 6. A time-of-addition experiment revealed that E27 predominantly functions in the late steps during HCV entry, without influencing the expression and localization of HCV co-receptors. Moreover, we demonstrated that E27 interfered with hetero-dimerization of ectopically expressed E1E2 in cells, and mutational analysis suggested that E27 might target a conserved region in E1. Taken together, our findings provide a novel candidate as well as a strategy for developing potent and broad-spectrum HCV fusion inhibitors, which may complement the current direct-acting antiviral medications for chronic hepatitis C, and shed light on the mechanism of HCV membrane fusion. PMID:27121372

  5. A p6Pol-protease fusion protein is present in mature particles of human immunodeficiency virus type 1.

    PubMed Central

    Almog, N; Roller, R; Arad, G; Passi-Even, L; Wainberg, M A; Kotler, M

    1996-01-01

    Human immunodeficiency virus type 1 (HIV-1) protease (PR) and p6(Pol) are translated as part of the Gag-Pol polyprotein after a ribosomal frameshift. PR is essential to virus replication and is responsible for cleaving Gag and Gag-Pol precursors, but the role of p6(Pol) in HIV-1 infection is poorly understood. Here, we report that (i) PR is present in mature HIV-1 virions primarily as a p6(Pol)-PR fusion protein; (ii) HIV-1 PR cleaves viral precursor proteins expressed in bacterial cells at the Phe-Leu bond (positions 1639 to 1642) located at the junction of the NC and p6(Pol) proteins, releasing the p6(Pol)-PR fusion protein; and (iii) purified p6(Pol)-PR fusion protein undergoes autocleavage in vitro at at least three sites. PMID:8794372

  6. Role for the αV Integrin Subunit in Varicella-Zoster Virus-Mediated Fusion and Infection

    PubMed Central

    Arvin, Ann M.; Oliver, Stefan L.

    2016-01-01

    ABSTRACT Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella and herpes zoster. Membrane fusion is essential for VZV entry and the distinctive syncytium formation in VZV-infected skin and neuronal tissue. Herpesvirus fusion is mediated by a complex of glycoproteins gB and gH-gL, which are necessary and sufficient for VZV to induce membrane fusion. However, the cellular requirements of fusion are poorly understood. Integrins have been implicated to facilitate entry of several human herpesviruses, but their role in VZV entry has not yet been explored. To determine the involvement of integrins in VZV fusion, a quantitative cell-cell fusion assay was developed using a VZV-permissive melanoma cell line. The cells constitutively expressed a reporter protein and short hairpin RNAs (shRNAs) to knock down the expression of integrin subunits shown to be expressed in these cells by RNA sequencing. The αV integrin subunit was identified as mediating VZV gB/gH-gL fusion, as its knockdown by shRNAs reduced fusion levels to 60% of that of control cells. A comparable reduction in fusion levels was observed when an anti-αV antibody specific to its extracellular domain was tested in the fusion assay, confirming that the domain was important for VZV fusion. In addition, reduced spread was observed in αV knockdown cells infected with the VZV pOka strain relative to that of the control cells. This was demonstrated by reductions in plaque size, replication kinetics, and virion entry in the αV subunit knockdown cells. Thus, the αV integrin subunit is important for VZV gB/gH-gL fusion and infection. IMPORTANCE Varicella-zoster virus (VZV) is a highly infectious pathogen that causes chickenpox and shingles. A common complication of shingles is the excruciating condition called postherpetic neuralgia, which has proven difficult to treat. While a vaccine is now available, it is not recommended for immunocompromised individuals and its efficacy decreases with the

  7. A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses

    DTIC Science & Technology

    2013-09-12

    crystals which are solubilized by detergent . Absorbance was read at 570 nm with a 96-well plate spectrophotometer (Promega/Turner Biosystems, Madison, WI...beads were washed with TBS (or low pH medium for the pH treated beads) to remove unbound virus, and SDS -PAGE loading buffer (Life Technologies, Grand...Island, NY) was added to the beads. After a 5 min incubation at 70uC, samples were resolved on a SDS -PAGE gel. The resolved proteins were transferred to a

  8. Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: inhibition of fusion and syncytia formation.

    PubMed Central

    Lenard, J; Rabson, A; Vanderoef, R

    1993-01-01

    The mechanism of the antiviral activity of hypericin was characterized and compared with that of rose bengal. Both compounds inactivate enveloped (but not unenveloped) viruses upon illumination by visible light. Human immunodeficiency and vesicular stomatitis viruses were photodynamically inactivated by both dyes at nanomolar concentrations. Photodynamic inactivation of fusion (hemolysis) by vesicular stomatitis, influenza, and Sendai viruses was induced by both dyes under similar conditions (e.g., I50 = 20-50 nM for vesicular stomatitis virus), suggesting that loss of infectivity resulted from inactivation of fusion. Syncytium formation, between cells activated to express human immunodeficiency virus gp120 on their surfaces and CD4+ cells, was inhibited by illumination in the presence of 1 microM hypericin. Hypericin and rose bengal thus exert similar virucidal effects. Both presumably act by the same mechanism--namely, the inactivation of the viral fusion function by singlet oxygen produced upon illumination. The implications of this photodynamic antiviral action for the potential therapeutic usefulness of both hypericin and rose bengal are discussed. Images PMID:7678335

  9. Blocking by anti-idiotypic antibodies of monoclonal antibody-mediated protection against lethal Semliki Forest virus in mice.

    PubMed

    Oosterlaken, T A; Harmsen, M; Kraaijeveld, C A; Snippe, H

    1990-02-01

    Semliki Forest virus-(SEV) neutralizing monoclonal antibodies (MoAbs), produced after fusion of spleen cells from BALB/c mice and myeloma cell line P3-X63-AG8. 653 or SP2/0, were used for anti-idiotypic immunization of female BALB/c mice. Two intracutaneous immunizations (2 x 40 micrograms per animal), 3 weeks apart, with keyhole limpet haemocyanin-conjugated MoAbs mixed with the saponin Quil A were sufficient to induce high levels of anti-idiotypic antibodies in the circulation of these mice with the capacity to block specifically in vitro MoAb-mediated virus neutralization. Anti-idiotypic antibodies against SFV-neutralizing MoAbs, either passively transferred or actively acquired by immunization, are also able to abrogate (specifically) passive immunity, mediated by critical protective doses of MoAb, in mice against infection with a lethal strain of SFV. Furthermore we confirmed by intervention with anti-idiotypic serum in vivo that an SFV-neutralizing MoAb exerts its greatest protective effect during the first 2 days of infection.

  10. China Forest Aboveground Biomass Estimation by Fusion of Inventory and Remote Sensing Data: 1st results from Heilongjiang Province and Yunnan Province

    NASA Astrophysics Data System (ADS)

    Pang, Y.; Li, Z.; Huang, G.; Sun, G.; Cheng, Z.; Zhang, Z.; Zhang, G.

    2013-12-01

    Forests play an irreplaceable role in maintaining regional ecological environment, global carbon balance and mitigating global climate change. Forest aboveground biomass (AGB) is an important indicator of forest carbon stocks. Estimating forest aboveground biomass accurately could significantly reduce the uncertainties in terrestrial ecosystem carbon cycle. LIDAR provides accurate information on the vertical structure of forests (Lefsky et al., 2007; Naesset et al., 2004; Pang et al., 2008). Combining airborne LiDAR and spaceborne LiDAR for regional forest biomass retrieval could provide a more reliable and accurate quantitative information in regional forest biomass estimate (Boudreau et al., 2008; Nelson et al., 2009; Pang et al., 2011; Saatchi et al., 2011). The Heilongjiang Province and Yunnan Province are rich in forest resources and suffers intensive forest management activities for timber products. The Heilongjiang Province is typical in temperate forest and the Yunnan Province contains multiple forest types including tropical forest. These two provinces also have good ground inventory system with thousands of permanent field plots. Two campaign consists of in-situ measurement, airborne Lidar data and spaceborne data fusion were designed and implemented. First results show that i). Both spaceborne lidar and forest inventory data are useful for AGB mapping at province level. ii). The combination of spaceborne lidar and forest inventory data gave better biomass estimation with less bias. iii). A pixel level bias mapping was also proposed and gave spatial explicit map of estimation uncertainties. This method will be investigated further with more reference data and tested in other area.

  11. Real-time analysis of human immunodeficiency virus type 1 Env-mediated membrane fusion by fluorescence resonance energy transfer.

    PubMed

    Furuta, Rika A; Nishikawa, Masao; Fujisawa, Jun-ichi

    2006-02-01

    Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env)-mediated membrane fusion occurs as a sequence of events that is triggered by CD4 binding to the Env gp120 subunit. In this study, we analyzed the dynamics of Env-mediated membrane fusion at the single-cell level using fluorescent fusion proteins and confocal laser fluorescent microscopy. Either enhanced cyan or yellow fluorescent protein (CFP and YFP, respectively) was fused to the end of the cytoplasmic regions of the HIV-1 receptors (CD4 and CCR5) and Env proteins. Real-time imaging of membrane fusion mediated by these recombinant proteins revealed that the kinetics of fusion in our system was faster than that previously reported. Analysis of the receptor interaction by fluorescence resonance energy transfer (FRET) at the single-cell level demonstrated a tendency for oligomerization of CD4-CD4, but not of CD4-CCR5, in the absence of Env-expressing cells. However, when Env-expressing cells attached to the receptor cells, FRET produced by CD4-CCR5 interaction was increased; the FRET intensity began to decline before the formation of the fusion pore. These changes in FRET may represent the temporal association of these receptors, triggered by gp120 binding, and their dissociation during the formation of the fusion pore. In addition, the FRET analysis of receptor interactions in the presence of fusion inhibitors showed that not only inhibitors acting on CCR5 but also the gp41-derived peptide T-20 interfered with CD4-CCR5 interaction during fusion. These data suggest that T-20 could affect the formation of Env-receptors complexes during the membrane fusion.

  12. Inhibitory effects of a peptide-fusion protein (Latarcin-PAP1-Thanatin) against chikungunya virus.

    PubMed

    Rothan, Hussin A; Bahrani, Hirbod; Shankar, Esaki M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2014-08-01

    Chikungunya virus (CHIKV) outbreaks have led to a serious economic burden, as the available treatment strategies can only alleviate disease symptoms, and no effective therapeutics or vaccines are currently available for human use. Here, we report the use of a new cost-effective approach involving production of a recombinant antiviral peptide-fusion protein that is scalable for the treatment of CHIKV infection. A peptide-fusion recombinant protein LATA-PAP1-THAN that was generated by joining Latarcin (LATA) peptide with the N-terminus of the PAP1 antiviral protein, and the Thanatin (THAN) peptide to the C-terminus, was produced in Escherichia coli as inclusion bodies. The antiviral LATA-PAP1-THAN protein showed 89.0% reduction of viral plaque formation compared with PAP1 (46.0%), LATA (67.0%) or THAN (79.3%) peptides alone. The LATA-PAP1-THAN protein reduced the viral RNA load that was 0.89-fold compared with the untreated control cells. We also showed that PAP1 resulted in 0.44-fold reduction, and THAN and LATA resulting in 0.78-fold and 0.73-fold reductions, respectively. The LATA-PAP1-THAN protein inhibited CHIKV replication in the Vero cells at an EC50 of 11.2μg/ml, which is approximately half of the EC50 of PAP1 (23.7μg/ml) and protected the CHIKV-infected mice at the dose of 0.75mg/ml. We concluded that production of antiviral peptide-fusion protein in E. coli as inclusion bodies could accentuate antiviral activities, enhance cellular internalisation, and could reduce product toxicity to host cells and is scalable to epidemic response quantities.

  13. Adhesion and fusion efficiencies of human immunodeficiency virus type 1 (HIV-1) surface proteins

    NASA Astrophysics Data System (ADS)

    Dobrowsky, Terrence M.; Rabi, S. Alireza; Nedellec, Rebecca; Daniels, Brian R.; Mullins, James I.; Mosier, Donald E.; Siliciano, Robert F.; Wirtz, Denis

    2013-10-01

    In about half of patients infected with HIV-1 subtype B, viral populations shift from utilizing the transmembrane protein CCR5 to CXCR4, as well as or instead of CCR5, during late stage progression of the disease. How the relative adhesion efficiency and fusion competency of the viral Env proteins relate to infection during this transition is not well understood. Using a virus-cell fusion assay and live-cell single-molecule force spectroscopy, we compare the entry competency of viral clones to tensile strengths of the individual Env-receptor bonds of Env proteins obtained from a HIV-1 infected patient prior to and during coreceptor switching. The results suggest that the genetic determinants of viral entry were predominantly enriched in the C3, HR1 and CD regions rather than V3. Env proteins can better mediate entry into cells after coreceptor switch; this effective entry capacity does not correlate with the bond strengths between viral Env and cellular receptors.

  14. Unraveling a Three-Step Spatiotemporal Mechanism of Triggering of Receptor-Induced Nipah Virus Fusion and Cell Entry

    PubMed Central

    Liu, Qian; Stone, Jacquelyn A.; Bradel-Tretheway, Birgit; Dabundo, Jeffrey; Benavides Montano, Javier A.; Santos-Montanez, Jennifer; Biering, Scott B.; Nicola, Anthony V.; Iorio, Ronald M.; Lu, Xiaonan; Aguilar, Hector C.

    2013-01-01

    Membrane fusion is essential for entry of the biomedically-important paramyxoviruses into their host cells (viral-cell fusion), and for syncytia formation (cell-cell fusion), often induced by paramyxoviral infections [e.g. those of the deadly Nipah virus (NiV)]. For most paramyxoviruses, membrane fusion requires two viral glycoproteins. Upon receptor binding, the attachment glycoprotein (HN/H/G) triggers the fusion glycoprotein (F) to undergo conformational changes that merge viral and/or cell membranes. However, a significant knowledge gap remains on how HN/H/G couples cell receptor binding to F-triggering. Via interdisciplinary approaches we report the first comprehensive mechanism of NiV membrane fusion triggering, involving three spatiotemporally sequential cell receptor-induced conformational steps in NiV-G: two in the head and one in the stalk. Interestingly, a headless NiV-G mutant was able to trigger NiV-F, and the two head conformational steps were required for the exposure of the stalk domain. Moreover, the headless NiV-G prematurely triggered NiV-F on virions, indicating that the NiV-G head prevents premature triggering of NiV-F on virions by concealing a F-triggering stalk domain until the correct time and place: receptor-binding. Based on these and recent paramyxovirus findings, we present a comprehensive and fundamentally conserved mechanistic model of paramyxovirus membrane fusion triggering and cell entry. PMID:24278018

  15. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    PubMed

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  16. A Heptad Repeat in Herpes Simplex Virus 1 gH, Located Downstream of the α-Helix with Attributes of a Fusion Peptide, Is Critical for Virus Entry and Fusion

    PubMed Central

    Gianni, Tatiana; Menotti, Laura; Campadelli-Fiume, Gabriella

    2005-01-01

    Entry of herpes simplex virus 1 (HSV-1) into cells occurs by fusion with cell membranes; it requires gD as the receptor binding glycoprotein and the trigger of fusion, and the trio of the conserved glycoproteins gB, gH, and gL to execute fusion. Recently, we reported that the ectodomain of HSV-1 gH carries a hydrophobic α-helix (residues 377 to 397) with attributes of an internal fusion peptide (T. Gianni, P. L. Martelli, R. Casadio, and G. Campadelli-Fiume, J. Virol. 79:2931-2940, 2005). Downstream of this α-helix, a heptad repeat (HR) with a high propensity to form a coiled coil was predicted between residues 443 and 471 and was designated HR-1. The simultaneous substitution of two amino acids in HR-1 (E450G and L453A), predicted to abolish the coiled coil, abolished the ability of gH to complement the infectivity of a gH-null HSV mutant. When coexpressed with gB, gD, and gL, the mutant gH was unable to promote cell-cell fusion. These defects were not attributed to a defect in heterodimer formation with gL, the gH chaperone, or in trafficking to the plasma membrane. A 25-amino-acid synthetic peptide with the sequence of HR-1 (pep-gHwt25) inhibited HSV replication if present at the time of virus entry into the cell. A scrambled peptide had no effect. The effect was specific, as pep-gHwt25 did not reduce HSV-2 and pseudorabies virus infection. The presence of a functional HR in the HSV-1 gH ectodomain strengthens the view that gH has attributes typical of a viral fusion glycoprotein. PMID:15890943

  17. Automated segmentation of thyroid gland on CT images with multi-atlas label fusion and random classification forest

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Chang, Kevin; Kim, Lauren; Turkbey, Evrim; Lu, Le; Yao, Jianhua; Summers, Ronald

    2015-03-01

    The thyroid gland plays an important role in clinical practice, especially for radiation therapy treatment planning. For patients with head and neck cancer, radiation therapy requires a precise delineation of the thyroid gland to be spared on the pre-treatment planning CT images to avoid thyroid dysfunction. In the current clinical workflow, the thyroid gland is normally manually delineated by radiologists or radiation oncologists, which is time consuming and error prone. Therefore, a system for automated segmentation of the thyroid is desirable. However, automated segmentation of the thyroid is challenging because the thyroid is inhomogeneous and surrounded by structures that have similar intensities. In this work, the thyroid gland segmentation is initially estimated by multi-atlas label fusion algorithm. The segmentation is refined by supervised statistical learning based voxel labeling with a random forest algorithm. Multiatlas label fusion (MALF) transfers expert-labeled thyroids from atlases to a target image using deformable registration. Errors produced by label transfer are reduced by label fusion that combines the results produced by all atlases into a consensus solution. Then, random forest (RF) employs an ensemble of decision trees that are trained on labeled thyroids to recognize features. The trained forest classifier is then applied to the thyroid estimated from the MALF by voxel scanning to assign the class-conditional probability. Voxels from the expert-labeled thyroids in CT volumes are treated as positive classes; background non-thyroid voxels as negatives. We applied this automated thyroid segmentation system to CT scans of 20 patients. The results showed that the MALF achieved an overall 0.75 Dice Similarity Coefficient (DSC) and the RF classification further improved the DSC to 0.81.

  18. Changing the surface of a virus shell fusion of an enzyme to polyoma VP1.

    PubMed Central

    Gleiter, S.; Stubenrauch, K.; Lilie, H.

    1999-01-01

    Recent developments on virus-like particles have demonstrated their potential in transfecting eucaryotic cells. In the case of particles based on the major coat protein VP1 of polyoma virus, transfection occurs via binding of VP1 to sialic acids. Since sialic acid is present on almost every eucaryotic cell line, this results in an unspecific cell targeting. Generation of a cell-type specificity of this system would imply the presentation of a new function on the surface of VP1. To analyze whether a new functional protein can be placed on VP1, we inserted dihydrofolate reductase from Escherichia coli as a model protein. The effect of such an insertion on both VP1 and the inserted protein was investigated, respectively. The function of VP1, like the formation of pentameric capsomers and its ability to assemble into capsids, was not influenced by the insertion. The inserted dihydrofolate reductase showed major changes when compared to the wild-type form. The thermal stability of the enzyme was dramatically reduced in the fusion protein; nevertheless, the dihydrofolate reductase proved to be a fully active enzyme with only slightly increased K(M) values for its substrates. This model system provides the basis for further modifications of the VP1 protein to achieve an altered surface of VP1 with new properties. PMID:10631971

  19. Pre-fusion F is absent on the surface of formalin-inactivated respiratory syncytial virus

    PubMed Central

    Killikelly, April M.; Kanekiyo, Masaru; Graham, Barney S.

    2016-01-01

    The lack of a licensed vaccine for respiratory syncytial virus (RSV) can be partly attributed to regulatory hurdles resulting from vaccine enhanced respiratory disease (ERD) subsequent to natural RSV infection that was observed in clinical trials of formalin-inactivated RSV (FI-RSV) in antigen-naïve infants. To develop an effective vaccine that does not enhance RSV illness, it is important to understand how formalin and heat inactivation affected the antigenicity and immunogenicity of FI-RSV compared to native virus. Informed by atomic structures of RSV fusion (F) glycoprotein in prefusion (pre-F) and postfusion (post-F) conformations, we demonstrate that FI-RSV predominately presents post-F on the virion surface, whereas infectious RSV presents both pre-F and post-F conformations. This significant antigenic distinction has not been previously appreciated. Thus, a stabilized pre-F antigen is more representative of live RSV than F in its post-F conformation, as displayed on the surface of FI-RSV. This finding has major implications for discriminating current pre-F-based immunogens from FI-RSV used in historical vaccine trials. PMID:27682426

  20. Amino-terminal precursor sequence modulates canine distemper virus fusion protein function.

    PubMed

    von Messling, Veronika; Cattaneo, Roberto

    2002-05-01

    The fusion (F) proteins of most paramyxoviruses are classical type I glycoproteins with a short hydrophobic leader sequence closely following the translation initiation codon. The predicted reading frame of the canine distemper virus (CDV) F protein is more complex, with a short hydrophobic sequence beginning 115 codons downstream of the first AUG. To verify if the sequence between the first AUG and the hydrophobic region is translated, we produced a specific antiserum that indeed detected a short-lived F protein precursor that we named PreF(0). A peptide resulting from PreF(0) cleavage was identified and named Pre, and its half-life was measured to be about 30 min. PreF(0) cleavage was completed before proteolytic activation of F(0) into its F(1) and F(2) subunits by furin. To test the hypothesis that the Pre peptide may influence protein activity, we compared the function of F proteins synthesized with that peptide to that of F proteins synthesized with a shorter amino-terminal signal sequence. F proteins synthesized with the Pre peptide were more stable and less active. Thus, the Pre peptide modulates the function of the CDV F protein. Interestingly, a distinct two-hit activation process has been recently described for human respiratory syncytial virus, another paramyxovirus.

  1. Inhibition of Nipah Virus Infectin In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry

    SciTech Connect

    M Porotto; B Rockx; C Yokoyama; A Talekar; I DeVito; l Palermo; J Liu; R Cortese; M Lu; et al.

    2011-12-31

    In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.

  2. Mimivirus reveals Mre11/Rad50 fusion proteins with a sporadic distribution in eukaryotes, bacteria, viruses and plasmids.

    PubMed

    Yoshida, Takashi; Claverie, Jean-Michel; Ogata, Hiroyuki

    2011-09-07

    The Mre11/Rad50 complex and the homologous SbcD/SbcC complex in bacteria play crucial roles in the metabolism of DNA double-strand breaks, including DNA repair, genome replication, homologous recombination and non-homologous end-joining in cellular life forms and viruses. Here we investigated the amino acid sequence of the Mimivirus R555 gene product, originally annotated as a Rad50 homolog, and later shown to have close homologs in marine microbial metagenomes. Our bioinformatics analysis revealed that R555 protein sequence is constituted from the fusion of an N-terminal Mre11-like domain with a C-terminal Rad50-like domain. A systematic database search revealed twelve additional cases of Mre11/Rad50 (or SbcD/SbcC) fusions in a wide variety of unrelated organisms including unicellular and multicellular eukaryotes, the megaplasmid of a bacterium associated to deep-sea hydrothermal vents (Deferribacter desulfuricans) and the plasmid of Clostridium kluyveri. We also showed that R555 homologs are abundant in the metagenomes from different aquatic environments and that they most likely belong to aquatic viruses. The observed phyletic distribution of these fusion proteins suggests their recurrent creation and lateral gene transfers across organisms. The existence of the fused version of protein sequences is consistent with known functional interactions between Mre11 and Rad50, and the gene fusion probably enhanced the opportunity for lateral transfer. The abundance of the Mre11/Rad50 fusion genes in viral metagenomes and their sporadic phyletic distribution in cellular organisms suggest that viruses, plasmids and transposons played a crucial role in the formation of the fusion proteins and their propagation into cellular genomes.

  3. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes

    PubMed Central

    Hernáez, Bruno; Guerra, Milagros; Salas, María L.

    2016-01-01

    African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs. PMID:27110717

  4. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    PubMed

    Hernáez, Bruno; Guerra, Milagros; Salas, María L; Andrés, Germán

    2016-04-01

    African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  5. A Structurally Unresolved Head Segment of Defined Length Favors Proper Measles Virus Hemagglutinin Tetramerization and Efficient Membrane Fusion Triggering

    PubMed Central

    Navaratnarajah, Chanakha K.; Rosemarie, Quincy

    2015-01-01

    ABSTRACT Paramyxoviruses include several insidious and ubiquitous pathogens of humans and animals, with measles virus (MeV) being a prominent one. The MeV membrane fusion apparatus consists of a receptor binding protein (hemagglutinin [H]) tetramer and a fusion (F) protein trimer. Four globular MeV H heads are connected to a tetrameric stalk through flexible linkers. We sought here to characterize the function of a 17-residue H-head segment proximal to the stalk that was unresolved in all five MeV H-head crystal or cocrystal structures. In particular, we assessed whether its primary sequence and length are critical for proper protein oligomerization and intracellular transport or for membrane fusion triggering. Extensive alanine substitutions had no effect on fusion triggering, suggesting that sequence identity is not critical for this function. Excessive shortening of this segment reduced or completely abrogated fusion trigger function, while length compensation restored it. We then characterized the mechanism of function loss. Mutated H proteins were efficiently transported to the cell surface, but certain alterations enhancing linker flexibility resulted in accumulation of high-molecular-weight H oligomers. Some oligomers had reduced fusion trigger capacity, while others retained this function. Thus, length and rigidity of the unresolved head segment favor proper H tetramerization and counteract interactions between subunits from different tetramers. The structurally unresolved H-head segment, together with the top of the stalk, may act as a leash to provide the right degree of freedom for the heads of individual tetramers to adopt a triggering-permissive conformation while avoiding improper contacts with heads of neighboring tetramers. IMPORTANCE Understanding the molecular mechanism of membrane fusion triggering may allow development of new antiviral strategies. The fusion apparatus of paramyxoviruses consists of a receptor binding tetramer and a fusion

  6. Antibody-Induced Internalization of the Human Respiratory Syncytial Virus Fusion Protein.

    PubMed

    Leemans, A; De Schryver, M; Van der Gucht, W; Heykers, A; Pintelon, I; Hotard, A L; Moore, M L; Melero, J A; McLellan, J S; Graham, B S; Broadbent, L; Power, U F; Caljon, G; Cos, P; Maes, L; Delputte, P

    2017-07-15

    Respiratory syncytial virus (RSV) infections remain a major cause of respiratory disease and hospitalizations among infants. Infection recurs frequently and establishes a weak and short-lived immunity. To date, RSV immunoprophylaxis and vaccine research is mainly focused on the RSV fusion (F) protein, but a vaccine remains elusive. The RSV F protein is a highly conserved surface glycoprotein and is the main target of neutralizing antibodies induced by natural infection. Here, we analyzed an internalization process of antigen-antibody complexes after binding of RSV-specific antibodies to RSV antigens expressed on the surface of infected cells. The RSV F protein and attachment (G) protein were found to be internalized in both infected and transfected cells after the addition of either RSV-specific polyclonal antibodies (PAbs) or RSV glycoprotein-specific monoclonal antibodies (MAbs), as determined by indirect immunofluorescence staining and flow-cytometric analysis. Internalization experiments with different cell lines, well-differentiated primary bronchial epithelial cells (WD-PBECs), and RSV isolates suggest that antibody internalization can be considered a general feature of RSV. More specifically for RSV F, the mechanism of internalization was shown to be clathrin dependent. All RSV F-targeted MAbs tested, regardless of their epitopes, induced internalization of RSV F. No differences could be observed between the different MAbs, indicating that RSV F internalization was epitope independent. Since this process can be either antiviral, by affecting virus assembly and production, or beneficial for the virus, by limiting the efficacy of antibodies and effector mechanism, further research is required to determine the extent to which this occurs in vivo and how this might impact RSV replication.IMPORTANCE Current research into the development of new immunoprophylaxis and vaccines is mainly focused on the RSV F protein since, among others, RSV F-specific antibodies are

  7. Detecting Changes in Functional Traits of Forest after Extreme Climate Episode using Model Data Fusion

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Kawai, Y.; Toda, M.

    2016-12-01

    The increase in extreme climate episodes associated with ongoing climate change may induce extensive damage to terrestrial ecosystems, changing plant functional traits that regulate ecosystem carbon budget. Over the last two decades, an advanced observational operation of tower-based eddy covariance has enhanced our ability to understand spatial and temporal features of ecosystem carbon exchange worldwide. In contrast, there remain several unresolved issues regarding plant function responses to extreme climate episodes and the resulting effects on the terrestrial carbon balance. In this work, we examined the effects of an extreme climatic event (typhoon) on plant functional traits of a cool-temperate forest in Japan using a model data fusion technique. We used a semi-process model to describes the time changes in net ecosystem exchange (NEE) of CO2 between atmosphere and ecosystem based on the distributions of foliage and size of an individual in a plant population, assuming the diameter profile and the pipe model theory (Shinozaki et al., 1964). The canopy photosynthesis model (Yokozawa et al., 1996) provides us the vertical distribution of gross photosynthetic rates within stand. It can allow us to examine the differences in photosynthetic rate with plant functional traits changed by climate disturbance. The DREAM(ZS) algorithm (ter Braak & Vrugt, 2008) was used to estimate the model parameters. To reduce the effects of heteroscedastic error, a generalized likelihood function was adopted (Schoup & Vrugt, 2010). The estimated annual parameter which represents the initial slope of light-photosynthetic rate curve, significantly changed after typhoon disturbance in 2004. Time changes in the profile of the maximum photosynthetic rate also shows the intensive response to the disturbance. After the disturbance, the values at upper foliage layer are higher than at lower foliage layer in contrast to that before disturbance. Specifically, just after disturbance in 2004b-5a

  8. Different requirements for membrane fusion mediated by the envelopes of human immunodeficiency virus types 1 and 2.

    PubMed Central

    Dragic, T; Alizon, M

    1993-01-01

    CD4+ cells derived from the human cell lines U87MG and SCL1 cannot be infected by human immunodeficiency virus type 1 (HIV-1) or fuse with cells expressing the HIV-1 envelope. This block was complemented in heterokaryons with HeLa cells and probably reflects the absence of cellular factors necessary for membrane fusion. Since U87MG cells expressing CD4 are permissive to HIV-2, distinct cellular factors could be required for fusion mediated by two related human retroviruses. Images PMID:8095307

  9. N-Glycans on the Nipah Virus Attachment Glycoprotein Modulate Fusion and Viral Entry as They Protect against Antibody Neutralization

    PubMed Central

    Biering, Scott B.; Huang, Andrew; Vu, Andy T.; Robinson, Lindsey R.; Bradel-Tretheway, Birgit; Choi, Eric

    2012-01-01

    Nipah virus (NiV) is the deadliest known paramyxovirus. Membrane fusion is essential for NiV entry into host cells and for the virus' pathological induction of cell-cell fusion (syncytia). The mechanism by which the attachment glycoprotein (G), upon binding to the cell receptors ephrinB2 or ephrinB3, triggers the fusion glycoprotein (F) to execute membrane fusion is largely unknown. N-glycans on paramyxovirus glycoproteins are generally required for proper protein conformational integrity, transport, and sometimes biological functions. We made conservative mutations (Asn to Gln) at the seven potential N-glycosylation sites in the NiV G ectodomain (G1 to G7) individually or in combination. Six of the seven N-glycosylation sites were found to be glycosylated. Moreover, pseudotyped virions carrying these N-glycan mutants had increased antibody neutralization sensitivities. Interestingly, our results revealed hyperfusogenic and hypofusogenic phenotypes for mutants that bound ephrinB2 at wild-type levels, and the mutant's cell-cell fusion phenotypes generally correlated to viral entry levels. In addition, when removing multiple N-glycans simultaneously, we observed synergistic or dominant-negative membrane fusion phenotypes. Interestingly, our data indicated that 4- to 6-fold increases in fusogenicity resulted from multiple mechanisms, including but not restricted to the increase of F triggering. Altogether, our results suggest that NiV-G N-glycans play a role in shielding virions against antibody neutralization, while modulating cell-cell fusion and viral entry via multiple mechanisms. PMID:22915812

  10. Protection of Mice from Fatal Measles Encephalitis by Vaccination with Vaccinia Virus Recombinants Encoding Either the Hemagglutinin or the Fusion Protein

    NASA Astrophysics Data System (ADS)

    Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre

    1988-02-01

    Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.

  11. Characterization of foot-and-mouth disease virus gene products with antisera against bacterially synthesized fusion proteins

    SciTech Connect

    Strebel, K.; Beck, E.; Strohmaier, K.; Schaller, H.

    1986-03-01

    Defined segments of the cloned foot-and-mouth disease virus genome corresponding to all parts of the coding region were expressed in Escherichia coli as fusions to the N-terminal part of the MS2-polymerase gene under the control of the inducible lambdaPL promoter. All constructs yielded large amounts of proteins, which were purified and used to raise sequence-specific antisera in rabbits. These antisera were used to identify the corresponding viral gene products in /sup 35/S-labeled extracts from foot-and-mouth disease virus-infected BHK cells. This allowed us to locate unequivocally all mature foot-and-mouth disease virus gene products in the nucleotide sequence, to identify precursor-product relationships, and to detect several foot-and mouth disease virus gene products not previously identified in vivo or in vitro.

  12. Engineering of a parainfluenza virus type 5 fusion protein (PIV-5 F): development of an autonomous and hyperfusogenic protein by a combinational mutagenesis approach.

    PubMed

    Terrier, O; Durupt, F; Cartet, G; Thomas, L; Lina, B; Rosa-Calatrava, M

    2009-12-01

    The entry of enveloped viruses into host cells is accomplished by fusion of the viral envelope with the target cell membrane. For the paramyxovirus parainfluenza virus type 5 (PIV-5), this fusion involves an attachment protein (HN) and a class I viral fusion protein (F). We investigated the effect of 20 different combinations of 12 amino-acid substitutions within functional domains of the PIV-5 F glycoprotein, by performing cell surface expression measurements, quantitative fusion and syncytia assays. We found that combinations of mutations conferring an autonomous phenotype with mutations leading to an increased fusion activity were compatible and generated functional PIV-5 F proteins. The addition of mutations in the heptad-repeat domains led to both autonomous and hyperfusogenic phenotypes, despite the low cell surface expression of the corresponding mutants. Such engineering approach may prove useful not only for deciphering the fundamental mechanism behind viral-mediated membrane fusion but also in the development of potential therapeutic applications.

  13. Antibody-Dependent Enhancement of Dengue Virus Infection in Primary Human Macrophages; Balancing Higher Fusion against Antiviral Responses

    PubMed Central

    Flipse, Jacky; Diosa-Toro, Mayra A.; Hoornweg, Tabitha E.; van de Pol, Denise P. I.; Urcuqui-Inchima, Silvio; Smit, Jolanda M.

    2016-01-01

    The dogma is that the human immune system protects us against pathogens. Yet, several viruses, like dengue virus, antagonize the hosts’ antibodies to enhance their viral load and disease severity; a phenomenon called antibody-dependent enhancement of infection. This study offers novel insights in the molecular mechanism of antibody-mediated enhancement (ADE) of dengue virus infection in primary human macrophages. No differences were observed in the number of bound and internalized DENV particles following infection in the absence and presence of enhancing concentrations of antibodies. Yet, we did find an increase in membrane fusion activity during ADE of DENV infection. The higher fusion activity is coupled to a low antiviral response early in infection and subsequently a higher infection efficiency. Apparently, subtle enhancements early in the viral life cycle cascades into strong effects on infection, virus production and immune response. Importantly, and in contrast to other studies, the antibody-opsonized virus particles do not trigger immune suppression and remain sensitive to interferon. Additionally, this study gives insight in how human macrophages interact and respond to viral infections and the tight regulation thereof under various conditions of infection. PMID:27380892

  14. A mutation in the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 strain of West Nile virus

    SciTech Connect

    Zhang Shuliu; Li Li; Woodson, Sara E.; Huang, Claire Y.-H.; Kinney, Richard M.; Barrett, Alan D.T. ||||; Beasley, David W.C. |||. E-mail: d.beasley@utmb.edu

    2006-09-15

    Substitutions were engineered individually and in combinations at the fusion loop, receptor-binding domain and a stem-helix structure of the envelope protein of a West Nile virus strain, NY99, and their effects on mouse virulence and presentation of epitopes recognized by monoclonal antibodies (MAbs) were assessed. A single substitution within the fusion loop (L107F) attenuated mouse neuroinvasiveness of NY99. No substitutions attenuated NY99 neurovirulence. The L107F mutation also abolished binding of a non-neutralizing MAb, 3D9, whose epitope had not been previously identified. MAb 3D9 was subsequently shown to be broadly cross-reactive with other flaviviruses, consistent with binding near the highly conserved fusion loop.

  15. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry

    SciTech Connect

    Janas, Alicia M.; Dong, Chunsheng; Wang Jianhua; Wu Li

    2008-06-05

    Human immunodeficiency virus type 1 (HIV-1) enters dendritic cells (DCs) through endocytosis and viral receptor-mediated fusion. Although endocytosis-mediated HIV-1 entry can generate productive infection in certain cell types, including human monocyte-derived macrophages, productive HIV-1 infection in DCs appears to be dependent on fusion-mediated viral entry. It remains to be defined whether endocytosed HIV-1 in DCs can initiate productive infection. Using HIV-1 infection and cellular fractionation assays to measure productive viral infection and entry, here we show that HIV-1 enters monocyte-derived DCs predominately through endocytosis; however, endocytosed HIV-1 cannot initiate productive HIV-1 infection in DCs. In contrast, productive HIV-1 infection in DCs requires fusion-mediated viral entry. Together, these results provide functional evidence in understanding HIV-1 cis-infection of DCs, suggesting that different pathways of HIV-1 entry into DCs determine the outcome of viral infection.

  16. Data fusion of Landsat TM and IRS images in forest classification

    Treesearch

    Guangxing Wang; Markus Holopainen; Eero Lukkarinen

    2000-01-01

    Data fusion of Landsat TM images and Indian Remote Sensing satellite panchromatic image (IRS-1C PAN) was studied and compared to the use of TM or IRS image only. The aim was to combine the high spatial resolution of IRS-1C PAN to the high spectral resolution of Landsat TM images using a data fusion algorithm. The ground truth of the study was based on a sample of 1,020...

  17. Assessing Structure and Condition of Temperate And Tropical Forests: Fusion of Terrestrial Lidar and Airborne Multi-Angle and Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Saenz, Edward J.

    Forests provide vital ecosystem functions and services that maintain the integrity of our natural and human environment. Understanding the structural components of forests (extent, tree density, heights of multi-story canopies, biomass, etc.) provides necessary information to preserve ecosystem services. Increasingly, remote sensing resources have been used to map and monitor forests globally. However, traditional satellite and airborne multi-angle imagery only provide information about the top of the canopy and little about the forest structure and understory. In this research, we investigative the use of rapidly evolving lidar technology, and how the fusion of aerial and terrestrial lidar data can be utilized to better characterize forest stand information. We further apply a novel terrestrial lidar methodology to characterize a Hemlock Woolly Adelgid infestation in Harvard Forest, Massachusetts, and adapt a dynamic terrestrial lidar sampling scheme to identify key structural vegetation profiles of tropical rainforests in La Selva, Costa Rica.

  18. The Highly Conserved Proline at Position 438 in Pseudorabies Virus gH Is Important for Regulation of Membrane Fusion

    PubMed Central

    Schröter, Christina; Klupp, Barbara G.; Fuchs, Walter; Gerhard, Marika; Backovic, Marija; Rey, Felix A.

    2014-01-01

    ABSTRACT Membrane fusion in herpesviruses requires viral glycoproteins (g) gB and gH/gL. While gB is considered the actual fusion protein but is nonfusogenic per se, the function of gH/gL remains enigmatic. Crystal structures for different gH homologs are strikingly similar despite only moderate amino acid sequence conservation. A highly conserved sequence motif comprises the residues serine-proline-cysteine corresponding to positions 437 to 439 in pseudorabies virus (PrV) gH. The PrV-gH structure shows that proline438 induces bending at the end of an alpha-helix, thereby placing cysteine404 and cysteine439 in juxtaposition to allow formation of a strictly conserved disulfide bond. However, PrV vaccine strain Bartha unexpectedly carries a serine at this conserved position. To test the influence of this substitution, we constructed different gH chimeras carrying proline or serine at position 438 in gH derived from either PrV strain Kaplan or strain Bartha. Mutants expressing gH with serine438 showed reduced fusion activity in transient-fusion assays and during infection, with delayed penetration kinetics and a small-plaque phenotype which indicates that proline438 is important for efficient fusion. A more drastic effect was observed when disulfide bond formation was completely blocked by mutation of cysteine404 to serine. Although PrV expressing gHC404S was viable, plaque size and penetration kinetics were drastically reduced. Alteration of serine438 to proline in gH of strain Bartha enhanced cell-to-cell spread and penetration kinetics, but restoration of full activity required additional alteration of aspartic acid to valine at position 59. IMPORTANCE The role of the gH/gL complex in herpesvirus membrane fusion is still unclear. Structural studies predicted a critical role for proline438 in PrV gH to allow the formation of a conserved disulfide bond and correct protein folding. Functional analyses within this study corroborated these structural predictions

  19. Structure-Based Design of Head-Only Fusion Glycoprotein Immunogens for Respiratory Syncytial Virus

    PubMed Central

    Boyington, Jeffrey C.; Chen, Man; Kong, Wing-Pui; Ngwuta, Joan O.; Thomas, Paul V.; Tsybovsky, Yaroslav; Yang, Yongping; Zhang, Baoshan; Chen, Lei; Druz, Aliaksandr; Georgiev, Ivelin S.; Ko, Kiyoon; Zhou, Tongqing; Mascola, John R.; Graham, Barney S.; Kwong, Peter D.

    2016-01-01

    Respiratory syncytial virus (RSV) is a significant cause of severe respiratory illness worldwide, particularly in infants, young children, and the elderly. Although no licensed vaccine is currently available, an engineered version of the metastable RSV fusion (F) surface glycoprotein—stabilized in the pre-fusion (pre-F) conformation by “DS-Cav1” mutations—elicits high titer RSV-neutralizing responses. Moreover, pre-F-specific antibodies, often against the neutralization-sensitive antigenic site Ø in the membrane-distal head region of trimeric F glycoprotein, comprise a substantial portion of the human response to natural RSV infection. To focus the vaccine-elicited response to antigenic site Ø, we designed a series of RSV F immunogens that comprised the membrane-distal head of the F glycoprotein in its pre-F conformation. These “head-only” immunogens formed monomers, dimers, and trimers. Antigenic analysis revealed that a majority of the 70 engineered head-only immunogens displayed reactivity to site Ø-targeting antibodies, which was similar to that of the parent RSV F DS-Cav1 trimers, often with increased thermostability. We evaluated four of these head-only immunogens in detail, probing their recognition by antibodies, their physical stability, structure, and immunogenicity. When tested in naïve mice, a head-only trimer, half the size of the parent RSV F trimer, induced RSV titers, which were statistically comparable to those induced by DS-Cav1. When used to boost DS-Cav1-primed mice, two head-only RSV F immunogens, a dimer and a trimer, boosted RSV-neutralizing titers to levels that were comparable to those boosted by DS-Cav1, although with higher site Ø-directed responses. Our results provide proof-of-concept for the ability of the smaller head-only RSV F immunogens to focus the vaccine-elicited response to antigenic site Ø. Decent primary immunogenicity, enhanced physical stability, potential ease of manufacture, and potent immunogenicity

  20. Molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B.

    PubMed

    Kimura, Hirokazu; Nagasawa, Koo; Kimura, Ryusuke; Tsukagoshi, Hiroyuki; Matsushima, Yuki; Fujita, Kiyotaka; Hirano, Eiko; Ishiwada, Naruhiko; Misaki, Takako; Oishi, Kazunori; Kuroda, Makoto; Ryo, Akihide

    2017-08-01

    In this study, we examined the molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B (HRSV-B). First, we performed time-scale evolution analyses using the Bayesian Markov chain Monte Carlo (MCMC) method. Next, we performed genetic distance, linear B-cell epitope prediction, N-glycosylation, positive/negative selection site, and Bayesian skyline plot analyses. We also constructed a structural model of the F protein and mapped the amino acid substitutions and the predicted B-cell epitopes. The MCMC-constructed phylogenetic tree indicated that the HRSV F gene diverged from the bovine respiratory syncytial virus gene approximately 580years ago and had a relatively low evolutionary rate (7.14×10(-4)substitutions/site/year). Furthermore, a common ancestor of HRSV-A and -B diverged approximately 290years ago, while HRSV-B diverged into three clusters for approximately 60years. The genetic similarity of the present strains was very high. Although a maximum of 11 amino acid substitutions were observed in the structural model of the F protein, only one strain possessed an amino acid substitution located within the palivizumab epitope. Four epitopes were predicted, although these did not correspond to the neutralization sites of the F protein including the palivizumab epitope. In addition, five N-glycosylation sites of the present HRSV-B strains were inferred. No positive selection sites were identified; however, many sites were found to be under negative selection. The effective population size of the gene has remained almost constant. On the basis of these results, it can be concluded that the HRSV-B F gene is highly conserved, as is the F protein of HRSV-A. Moreover, our prediction of B-cell epitopes does not show that the palivizumab reaction site may be recognized as an epitope during naturally occurring infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Molecular Epidemiology and Phylodynamics of the Human Respiratory Syncytial Virus Fusion Protein in Northern Taiwan

    PubMed Central

    Chi, Hsin; Liu, Hsin-Fu; Weng, Li-Chuan; Wang, Nai-Yu; Chiu, Nan-Chang; Lai, Mei-Ju; Lin, Yung-Cheng; Chiu, Yu-Ying; Hsieh, Wen-Shyang; Huang, Li-Min

    2013-01-01

    Background and Aims The glycoprotein (G protein) and fusion protein (F protein) of respiratory syncytial virus (RSV) both show genetic variability, but few studies have examined the F protein gene. This study aimed to characterize the molecular epidemiology and phylodynamics of the F protein gene in clinical RSV strains isolated in northern Taiwan from 2000–2011. Methods RSV isolates from children presenting with acute respiratory symptoms between July 2000 and June 2011 were typed based on F protein gene sequences. Phylogeny construction and evaluation were performed using the neighbor-joining (NJ) and maximum likelihood (ML) methods. Phylodynamic patterns in RSV F protein genes were analyzed using the Bayesian Markov Chain Monte Carlo framework. Selection pressure on the F protein gene was detected using the Datamonkey website interface. Results From a total of 325 clinical RSV strains studied, phylogenetic analysis showed that 83 subgroup A strains (RSV-A) could be further divided into three clusters, whereas 58 subgroup B strains (RSV-B) had no significant clustering. Three amino acids were observed to differ between RSV-A and -B (positions 111, 113, and 114) in CTL HLA-B*57- and HLA-A*01-restricted epitopes. One positive selection site was observed in RSV-B, while none was observed in RSV-A. The evolution rate of the virus had very little change before 2000, then slowed down between 2000 and 2005, and evolved significantly faster after 2005. The dominant subtypes of RSV-A in each epidemic were replaced by different subtypes in the subsequent epidemic. Conclusions Before 2004, RSV-A infections were involved in several small epidemics and only very limited numbers of strains evolved and re-emerged in subsequent years. After 2005, the circulating RSV-A strains were different from those of the previous years and continued evolving through 2010. Phylodynamic pattern showed the evolutionary divergence of RSV increased significantly in the recent 5 years in

  2. Baculovirus expression of the respiratory syncytial virus fusion protein using Trichoplusia ni insect cells.

    PubMed

    Parrington, M; Cockle, S; Wyde, P; Du, R P; Snell, E; Yan, W Y; Wang, Q; Gisonni, L; Sanhueza, S; Ewasyshyn, M; Klein, M

    1997-01-01

    Respiratory syncytial virus (RSV) is a major viral pathogen responsible for severe respiratory tract infections in infants, young children, and the elderly. The RSV fusion (F) protein is highly conserved among RSV subgroups A and B and is the major protective immunogen. A genetically-engineered version of the RSV F protein was produced in insect cells using the baculovirus expression system. To express a secreted form of this protein, the transmembrane domain was eliminated by removing the region of the gene encoding 48 amino acids at the C-terminus. Production of the truncated RSV F protein (RSV-Fs) was compared in two different insect cell lines, Spodoptera frugiperda (Sf9) and Trichoplusia ni (High Five). The yield of RSV-Fs secreted from High Five insect cells was over 7-fold higher than that from Sf9 insect cells. Processing of the RSV-Fs protein was also different in the two insect cell lines. N-terminal sequencing demonstrated that while most of the RSV-Fs protein secreted by High Five cells was correctly processed at the F2-F1 proteolytic cleavage site, most of the RSV-Fs protein secreted by Sf9 cells was unprocessed or incorrectly processed. Antigenicity of the major RSV F neutralization epitopes was maintained in the RSV-Fs protein secreted from High Five cells. The RSV-specific neutralizing antibody titres in the sera of cotton rats immunized with the RSV-Fs protein were equivalent to those in the sera of animals intranasally inoculated with live RSV. Animals immunized with either live RSV or the immunoaffinity purified RSV-Fs protein from High Five cells were completely protected against live virus challenge.

  3. Restricted Semliki Forest virus replication in perforin and Fas-ligand double-deficient mice.

    PubMed

    Alsharifi, Mohammed; Lobigs, Mario; Bettadapura, Jayaram; Koskinen, Aulikki; Müllbacher, Arno

    2008-08-01

    Previously, we have shown that mice defective in granule exocytosis and/or Fas.L/Fas-mediated cytolytic pathways are significantly more resistant to alphavirus, Semliki Forest virus (SFV), infection compared with wild-type mice. Here, we evaluated SFV replication in different tissues of mice defective in both cytolytic pathways (perf(-/-)xgld) relative to that in wild-type counterparts and found that viral replication in perf(-/-)xgld mice is remarkably restricted. Although the mechanism responsible for this observation is yet to be established, the lower virus titres found in these mice indicate that the role of cytolytic effector molecules in antiviral immunity needs to be re-evaluated.

  4. The SNARE Protein Syp71 Is Essential for Turnip Mosaic Virus Infection by Mediating Fusion of Virus-Induced Vesicles with Chloroplasts

    PubMed Central

    Hou, Xilin; Sanfaçon, Hélène; Wang, Aiming

    2013-01-01

    All positive-strand RNA viruses induce the biogenesis of cytoplasmic membrane-bound virus factories for viral genome multiplication. We have previously demonstrated that upon plant potyvirus infection, the potyviral 6K2 integral membrane protein induces the formation of ER-derived replication vesicles that subsequently target chloroplasts for robust genome replication. Here, we report that following the trafficking of the Turnip mosaic potyvirus (TuMV) 6K2 vesicles to chloroplasts, 6K2 vesicles accumulate at the chloroplasts to form chloroplast-bound elongated tubular structures followed by chloroplast aggregation. A functional actomyosin motility system is required for this process. As vesicle trafficking and fusion in planta are facilitated by a superfamily of proteins known as SNAREs (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors), we screened ER-localized SNARES or SNARE-like proteins for their possible involvement in TuMV infection. We identified Syp71 and Vap27-1 that colocalize with the chloroplast-bound 6K2 complex. Knockdown of their expression using a Tobacco rattle virus (TRV)-based virus-induced gene silencing vector showed that Syp71 but not Vap27-1 is essential for TuMV infection. In Syp71-downregulated plant cells, the formation of 6K2-induced chloroplast-bound elongated tubular structures and chloroplast aggregates is inhibited and virus accumulation is significantly reduced, but the trafficking of the 6K2 vesicles from the ER to chloroplast is not affected. Taken together, these data suggest that Syp71 is a host factor essential for successful virus infection by mediating the fusion of the virus-induced vesicles with chloroplasts during TuMV infection. PMID:23696741

  5. The SNARE protein Syp71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts.

    PubMed

    Wei, Taiyun; Zhang, Changwei; Hou, Xilin; Sanfaçon, Hélène; Wang, Aiming

    2013-01-01

    All positive-strand RNA viruses induce the biogenesis of cytoplasmic membrane-bound virus factories for viral genome multiplication. We have previously demonstrated that upon plant potyvirus infection, the potyviral 6K2 integral membrane protein induces the formation of ER-derived replication vesicles that subsequently target chloroplasts for robust genome replication. Here, we report that following the trafficking of the Turnip mosaic potyvirus (TuMV) 6K2 vesicles to chloroplasts, 6K2 vesicles accumulate at the chloroplasts to form chloroplast-bound elongated tubular structures followed by chloroplast aggregation. A functional actomyosin motility system is required for this process. As vesicle trafficking and fusion in planta are facilitated by a superfamily of proteins known as SNAREs (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors), we screened ER-localized SNARES or SNARE-like proteins for their possible involvement in TuMV infection. We identified Syp71 and Vap27-1 that colocalize with the chloroplast-bound 6K2 complex. Knockdown of their expression using a Tobacco rattle virus (TRV)-based virus-induced gene silencing vector showed that Syp71 but not Vap27-1 is essential for TuMV infection. In Syp71-downregulated plant cells, the formation of 6K2-induced chloroplast-bound elongated tubular structures and chloroplast aggregates is inhibited and virus accumulation is significantly reduced, but the trafficking of the 6K2 vesicles from the ER to chloroplast is not affected. Taken together, these data suggest that Syp71 is a host factor essential for successful virus infection by mediating the fusion of the virus-induced vesicles with chloroplasts during TuMV infection.

  6. Vaccinia Mature Virus Fusion Regulator A26 Protein Binds to A16 and G9 Proteins of the Viral Entry Fusion Complex and Dissociates from Mature Virions at Low pH

    PubMed Central

    Chang, Shu-Jung; Shih, Ao-Chun; Tang, Yin-Liang

    2012-01-01

    Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422–8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive. PMID:22278246

  7. Vaccinia mature virus fusion regulator A26 protein binds to A16 and G9 proteins of the viral entry fusion complex and dissociates from mature virions at low pH.

    PubMed

    Chang, Shu-Jung; Shih, Ao-Chun; Tang, Yin-Liang; Chang, Wen

    2012-04-01

    Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422-8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive.

  8. Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus.

    PubMed

    Bossart, Katharine N; Crameri, Gary; Dimitrov, Antony S; Mungall, Bruce A; Feng, Yan-Ru; Patch, Jared R; Choudhary, Anil; Wang, Lin-Fa; Eaton, Bryan T; Broder, Christopher C

    2005-06-01

    Hendra virus (HeV) and Nipah virus (NiV) are closely related emerging viruses comprising the Henipavirus genus of the Paramyxovirinae, which are distinguished by their ability to cause fatal disease in both animal and human hosts. These viruses infect cells by a pH-independent membrane fusion event mediated by their attachment (G) and fusion (F) glycoproteins. Previously, we reported on HeV- and NiV-mediated fusion activities and detailed their host-cell tropism characteristics. These studies also suggested that a common cell surface receptor, which could be destroyed by protease, was utilized by both viruses. To further characterize the G glycoprotein and its unknown receptor, soluble forms of HeV G (sG) were constructed by replacing its cytoplasmic tail and transmembrane domains with an immunoglobulin kappa leader sequence coupled to either an S-peptide tag (sG(S-tag)) or myc-epitope tag (sG(myc-tag)) to facilitate purification and detection. Expression of sG was verified in cell lysates and culture supernatants by specific affinity precipitation. Analysis of sG by size exclusion chromatography and sucrose gradient centrifugation demonstrated tetrameric, dimeric, and monomeric species, with the majority of the sG released as a disulfide-linked dimer. Immunofluorescence staining revealed that sG specifically bound to HeV and NiV infection-permissive cells but not to a nonpermissive HeLa cell line clone, suggesting that it binds to virus receptor on host cells. Preincubation of host cells with sG resulted in dose-dependent inhibition of both HeV and NiV cell fusion as well as infection by live virus. Taken together, these data indicate that sG retains important native structural features, and we further demonstrate that administration of sG to rabbits can elicit a potent cross-reactive neutralizing antibody response against infectious HeV and NiV. This HeV sG glycoprotein will be exceedingly useful for structural studies, receptor identification strategies, and

  9. pH-dependent vesicle fusion induced by the ectodomain of the human immunodeficiency virus membrane fusion protein gp41: Two kinetically distinct processes and fully-membrane-associated gp41 with predominant β sheet fusion peptide conformation.

    PubMed

    Ratnayake, Punsisi U; Sackett, Kelly; Nethercott, Matthew J; Weliky, David P

    2015-01-01

    The gp41 protein of the Human Immunodeficiency Virus (HIV) catalyzes fusion between HIV and host cell membranes. The ~180-residue ectodomain of gp41 is outside the virion and is the most important gp41 region for membrane fusion. The ectodomain consists of an apolar fusion peptide (FP) region hypothesized to bind to the host cell membrane followed by N-heptad repeat (NHR), loop, and C-heptad repeat (CHR) regions. The present study focuses on the large gp41 ectodomain constructs "Hairpin" (HP) containing NHR+loop+CHR and "FP-Hairpin" (FP-HP) containing FP+NHR+loop+CHR. Both proteins induce rapid and extensive fusion of anionic vesicles at pH4 where the protein is positively-charged but do not induce fusion at pH7 where the protein is negatively charged. This observation, along with lack of fusion of neutral vesicles at either pH supports the significance of attractive protein/membrane electrostatics in fusion. There are two kinetically distinct fusion processes at pH4: (1) a faster ~100 ms⁻¹ process with rate strongly positively correlated with vesicle charge; and (2) a slower ~5 ms⁻¹ process with extent strongly inversely correlated with this charge. The slower process may be more physiologically relevant because HIV/host cell fusion occurs at physiologic pH with gp41 restricted to the narrow region between the two membranes. Previous solid-state NMR (SSNMR) of membrane-associated FP-HP has supported protein oligomers with FP's in an intermolecular antiparallel sheet. There was an additional population of molecules with α helical FPs and the samples likely contained a mixture of membrane-bound and -unbound proteins. For the present study, samples were prepared with fully membrane-bound FP-HP and subsequent SSNMR showed dominant β FP conformation at both low and neutral pH. SSNMR also showed close contact of the FP with the lipid headgroups at both low and neutral pH whereas the NHR+CHR regions had contact at low pH and were more distant at neutral p

  10. Molecular evolution of the fusion protein gene in human respiratory syncytial virus subgroup A.

    PubMed

    Kimura, Hirokazu; Nagasawa, Koo; Tsukagoshi, Hiroyuki; Matsushima, Yuki; Fujita, Kiyotaka; Yoshida, Lay Myint; Tanaka, Ryota; Ishii, Haruyuki; Shimojo, Naoki; Kuroda, Makoto; Ryo, Akihide

    2016-09-01

    We studied the molecular evolution of the fusion protein (F) gene in the human respiratory syncytial virus subgroup A (HRSV-A). We performed time-scaled phylogenetic analyses using the Bayesian Markov chain Monte Carlo (MCMC) method. We also conducted genetic distance (p-distance), positive/negative selection, and Bayesian skyline plot analyses. Furthermore, we mapped the amino acid substitutions of the protein. The MCMC-constructed tree indicated that the HRSV F gene diverged from the bovine RSV (BRSV) gene approximately 550years ago and had a relatively low substitution rate (7.59×10(-4) substitutions/site/year). Moreover, a common ancestor of HRSV-A and -B diverged approximately 280years ago, which has since formed four distinct clusters. The present HRSV-A strains were assigned six genotypes based on F gene sequences and attachment glycoprotein gene sequences. The present strains exhibited high F gene sequence similarity values and low genetic divergence. No positive selection sites were identified; however, 50 negative selection sites were identified. F protein amino acid substitutions at 17 sites were distributed in the F protein. The effective population size of the gene has remained relatively constant, but the population size of the prevalent genotype (GA2) has increased in the last 10years. These results suggest that the HRSV-AF gene has evolved independently and formed some genotypes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Stability Characterization of a Vaccine Antigen Based on the Respiratory Syncytial Virus Fusion Glycoprotein.

    PubMed

    Flynn, Jessica A; Durr, Eberhard; Swoyer, Ryan; Cejas, Pedro J; Horton, Melanie S; Galli, Jennifer D; Cosmi, Scott A; Espeseth, Amy S; Bett, Andrew J; Zhang, Lan

    2016-01-01

    Infection with Respiratory Syncytial Virus (RSV) causes both upper and lower respiratory tract disease in humans, leading to significant morbidity and mortality in both young children and older adults. Currently, there is no licensed vaccine available, and therapeutic options are limited. During the infection process, the type I viral fusion (F) glycoprotein on the surface of the RSV particle rearranges from a metastable prefusion conformation to a highly stable postfusion form. In people naturally infected with RSV, most potent neutralizing antibodies are directed to the prefusion form of the F protein. Therefore, an engineered RSV F protein stabilized in the prefusion conformation (DS-Cav1) is an attractive vaccine candidate. Long-term stability at 4°C or higher is a desirable attribute for a commercial subunit vaccine antigen. To assess the stability of DS-Cav1, we developed assays using D25, an antibody which recognizes the prefusion F-specific antigenic site Ø, and a novel antibody 4D7, which was found to bind antigenic site I on the postfusion form of RSV F. Biophysical analysis indicated that, upon long-term storage at 4°C, DS-Cav1 undergoes a conformational change, adopting alternate structures that concomitantly lose the site Ø epitope and gain the ability to bind 4D7.

  12. Serotype specificity of recombinant fusion protein containing domain III and capsid protein of dengue virus 2.

    PubMed

    Izquierdo, Alienys; Valdés, Iris; Gil, Lázaro; Hermida, Lisset; Gutiérrez, Sheila; García, Angélica; Bernardo, Lidice; Pavón, Alekis; Guillén, Gerardo; Guzmán, María G

    2012-07-01

    Recombinant fusion protein containing domain III of the dengue envelope protein fused to capsid protein from dengue 2 virus was immunogenic and conferred protection in mice against lethal challenge in previously report. Here, the antigenic specificity of this recombinant protein using anti-dengue antibodies from mice and humans and the cross-reactive humoral and cellular response induced in immunized mice were evaluated. The homologous anti-dengue antibodies showed a higher reactivity to the recombinant protein compared to the wide cross-reactivity observed for viral antigen as determined by ELISA. The IgG anti-dengue and functional antibodies, induced by the recombinant proteins in mice, were highly serotype specific by ELISA, hemaglutination inhibition and plaque reduction neutralizing tests. Accordingly, the cellular immune response determined by the IFNγ and TNFα secretion, was serotype specific. The specificity of serotype associated to this recombinant protein in addition to its high antigenicity, immunogenicity and protecting capacity suggest its advantage as a possible functional and safe vaccine candidate against dengue in a future tetravalent formulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Mutational analysis of the subgroup A avian sarcoma and leukosis virus putative fusion peptide domain.

    PubMed

    Balliet, J W; Gendron, K; Bates, P

    2000-04-01

    Short hydrophobic regions referred to as fusion peptide domains (FPDs) at or near the amino terminus of the membrane-anchoring subunit of viral glycoproteins are believed to insert into the host membrane during the initial stage of enveloped viral entry. Avian sarcoma and leukosis viruses (ASLV) are unusual among retroviruses in that the region in the envelope glycoprotein (EnvA) proposed to be the FPD is internal and contains a centrally located proline residue. To begin analyzing the function of this region of EnvA, 20 substitution mutations were introduced into the putative FPD. The mutant envelope glycoproteins were evaluated for effects on virion incorporation, receptor binding, and infection. Interestingly, most of the single-substitution mutations had little effect on any of these processes. In contrast, a bulky hydrophobic substitution for the central proline reduced viral titers 15-fold without affecting virion incorporation or receptor binding, whereas substitution of glycine for the proline had only a nominal effect on EnvA function. Similar to other viral FPDs, the putative ASLV FPD has been modeled as an amphipathic helix where most of the bulky hydrophobic residues form a patch on one face of the helix. A series of alanine insertion mutations designed to interrupt the hydrophobic patch on the helix had differential effects on infectivity, and the results of that analysis together with the results observed with the substitution mutations suggest no correlation between maintenance of the hydrophobic patch and glycoprotein function.

  14. Pharmacokinetics-Pharmacodynamics of a Respiratory Syncytial Virus Fusion Inhibitor in the Cotton Rat Model▿

    PubMed Central

    Rouan, Marie-Claude; Gevers, Tom; Roymans, Dirk; de Zwart, Loeckie; Nauwelaers, David; De Meulder, Marc; van Remoortere, Pieter; Vanstockem, Marc; Koul, Anil; Simmen, Kenny; Andries, Koen

    2010-01-01

    Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in infants, young children, elderly persons, and severely immunocompromised patients. Effective postinfection treatments are not widely available, and currently there is no approved vaccine. TMC353121 is a potent RSV fusion inhibitor in vitro, and its ability to reduce viral loads in vivo was demonstrated in cotton rats following prophylactic intravenous administration. Here, the pharmacokinetics of TMC353121 in the cotton rat, which is semipermissive for RSV replication, were further explored to build a pharmacokinetic-pharmacodynamic (PK-PD) model and to estimate the plasma drug levels needed for significant antiviral efficacy. TMC353121 reduced the viral titers in bronchoalveolar lavage fluid in a dose-dependent manner after a single subcutaneous administration and intranasal RSV inoculation 24 h after compound administration. The viral titer reduction and plasma TMC353121 concentration at the time of RSV inoculation were well described using a simple Emax model with a maximal viral titer reduction (Emax) of 1.5 log10. The plasma drug level required to achieve 50% of the Emax (200 ng/ml) was much higher than the 50% inhibitory concentration observed in vitro in HeLaM cells (0.07 ng/ml). In conclusion, this simple PK-PD approach may be useful in predicting efficacious exposure levels for future RSV inhibitors. PMID:20823290

  15. The Fusion Protein of Respiratory Syncytial Virus Triggers p53-Dependent Apoptosis▿

    PubMed Central

    Eckardt-Michel, Julia; Lorek, Markus; Baxmann, Diane; Grunwald, Thomas; Keil, Günther M.; Zimmer, Gert

    2008-01-01

    Infection with respiratory syncytial virus (RSV) frequently causes inflammation and obstruction of the small airways, leading to severe pulmonary disease in infants. We show here that the RSV fusion (F) protein, an integral membrane protein of the viral envelope, is a strong elicitor of apoptosis. Inducible expression of F protein in polarized epithelial cells triggered caspase-dependent cell death, resulting in rigorous extrusion of apoptotic cells from the cell monolayer and transient loss of epithelial integrity. A monoclonal antibody directed against F protein inhibited apoptosis and was also effective if administered to A549 lung epithelial cells postinfection. F protein expression in epithelial cells caused phosphorylation of tumor suppressor p53 at serine 15, activation of p53 transcriptional activity, and conformational activation of proapoptotic Bax. Stable expression of dominant-negative p53 or p53 knockdown by RNA interference inhibited the apoptosis of RSV-infected A549 cells. HEp-2 tumor cells with low levels of p53 were not sensitive to RSV-triggered apoptosis. We propose a new model of RSV disease with the F protein as an initiator of epithelial cell shedding, airway obstruction, secondary necrosis, and consequent inflammation. This makes the RSV F protein a key target for the development of effective postinfection therapies. PMID:18216092

  16. Role of the Simian Virus 5 Fusion Protein N-Terminal Coiled-Coil Domain in Folding and Promotion of Membrane Fusion

    PubMed Central

    West, Dava S.; Sheehan, Michael S.; Segeleon, Patrick K.; Dutch, Rebecca Ellis

    2005-01-01

    Formation of a six-helix bundle comprised of three C-terminal heptad repeat regions in antiparallel orientation in the grooves of an N-terminal coiled-coil is critical for promotion of membrane fusion by paramyxovirus fusion (F) proteins. We have examined the effect of mutations in four residues of the N-terminal heptad repeat in the simian virus 5 (SV5) F protein on protein folding, transport, and fusogenic activity. The residues chosen have previously been shown from study of isolated peptides to have differing effects on stability of the N-terminal coiled-coil and six-helix bundle (R. E. Dutch, G. P. Leser, and R. A. Lamb, Virology 254:147-159, 1999). The mutant V154M showed reduced proteolytic cleavage and surface expression, indicating a defect in intracellular transport, though this mutation had no effect when studied in isolated peptides. The mutation I137M, previously shown to lower thermostability of the six-helix bundle, resulted in an F protein which was properly processed and transported to the cell surface but which had reduced fusogenic activity. Finally, mutations at L140M and L161M, previously shown to disrupt α-helix formation of isolated N-1 peptides but not to affect six-helix bundle formation, resulted in F proteins that were properly processed. Interestingly, the L161M mutant showed increased syncytium formation and promoted fusion at lower temperatures than the wild-type F protein. These results indicate that interactions separate from formation of an N-terminal coiled-coil or six-helix bundle are important in the initial folding and transport of the SV5 F protein and that mutations that destabilize the N-terminal coiled-coil can result in stimulation of membrane fusion. PMID:15650180

  17. H1N1 Swine Influenza Viruses Differ from Avian Precursors by a Higher pH Optimum of Membrane Fusion

    PubMed Central

    Baumann, Jan; Kouassi, Nancy Mounogou; Foni, Emanuela; Klenk, Hans-Dieter

    2015-01-01

    ABSTRACT The H1N1 Eurasian avian-like swine (EAsw) influenza viruses originated from an avian H1N1 virus. To characterize potential changes in the membrane fusion activity of the hemagglutinin (HA) during avian-to-swine adaptation of the virus, we studied EAsw viruses isolated in the first years of their circulation in pigs and closely related contemporary H1N1 viruses of wild aquatic birds. Compared to the avian viruses, the swine viruses were less sensitive to neutralization by lysosomotropic agent NH4Cl in MDCK cells, had a higher pH optimum of hemolytic activity, and were less stable at acidic pH. Eight amino acid substitutions in the HA were found to separate the EAsw viruses from their putative avian precursor; four substitutions—T492S, N722D, R752K, and S1132F—were located in the structural regions of the HA2 subunit known to play a role in acid-induced conformational transition of the HA. We also studied low-pH-induced syncytium formation by cell-expressed HA proteins and found that the HAs of the 1918, 1957, 1968, and 2009 pandemic viruses required a lower pH for fusion induction than did the HA of a representative EAsw virus. Our data show that transmission of an avian H1N1 virus to pigs was accompanied by changes in conformational stability and fusion promotion activity of the HA. We conclude that distinctive host-determined fusion characteristics of the HA may represent a barrier for avian-to-swine and swine-to-human transmission of influenza viruses. IMPORTANCE Continuing cases of human infections with zoonotic influenza viruses highlight the necessity to understand which viral properties contribute to interspecies transmission. Efficient binding of the HA to cellular receptors in a new host species is known to be essential for the transmission. Less is known about required adaptive changes in the membrane fusion activity of the HA. Here we show that adaptation of an avian influenza virus to pigs in Europe in 1980s was accompanied by mutations in

  18. Beyond Anchoring: the Expanding Role of the Hendra Virus Fusion Protein Transmembrane Domain in Protein Folding, Stability, and Function

    PubMed Central

    Smith, Everett Clinton; Culler, Megan R.; Hellman, Lance M.; Fried, Michael G.; Creamer, Trevor P.

    2012-01-01

    While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that β-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion. PMID:22238302

  19. Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion

    NASA Astrophysics Data System (ADS)

    Yang, Yun; Anderson, Martha C.; Gao, Feng; Hain, Christopher R.; Semmens, Kathryn A.; Kustas, William P.; Noormets, Asko; Wynne, Randolph H.; Thomas, Valerie A.; Sun, Ge

    2017-02-01

    As a primary flux in the global water cycle, evapotranspiration (ET) connects hydrologic and biological processes and is directly affected by water and land management, land use change and climate variability. Satellite remote sensing provides an effective means for diagnosing ET patterns over heterogeneous landscapes; however, limitations on the spatial and temporal resolution of satellite data, combined with the effects of cloud contamination, constrain the amount of detail that a single satellite can provide. In this study, we describe an application of a multi-sensor ET data fusion system over a mixed forested/agricultural landscape in North Carolina, USA, during the growing season of 2013. The fusion system ingests ET estimates from the Two-Source Energy Balance Model (TSEB) applied to thermal infrared remote sensing retrievals of land surface temperature from multiple satellite platforms: hourly geostationary satellite data at 4 km resolution, daily 1 km imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) and biweekly Landsat thermal data sharpened to 30 m. These multiple ET data streams are combined using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to estimate daily ET at 30 m resolution to investigate seasonal water use behavior at the level of individual forest stands and land cover patches. A new method, also exploiting the STARFM algorithm, is used to fill gaps in the Landsat ET retrievals due to cloud cover and/or the scan-line corrector (SLC) failure on Landsat 7. The retrieved daily ET time series agree well with observations at two AmeriFlux eddy covariance flux tower sites in a managed pine plantation within the modeling domain: US-NC2 located in a mid-rotation (20-year-old) loblolly pine stand and US-NC3 located in a recently clear-cut and replanted field site. Root mean square errors (RMSEs) for NC2 and NC3 were 0.99 and 1.02 mm day-1, respectively, with mean absolute errors of approximately 29 % at the

  20. The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; Santini, Monia; Hayman, David T. S.; D’Odorico, Paolo

    2017-02-01

    Tropical forests are undergoing land use change in many regions of the world, including the African continent. Human populations living close to forest margins fragmented and disturbed by deforestation may be particularly exposed to zoonotic infections because of the higher likelihood for humans to be in contact with disease reservoirs. Quantitative analysis of the nexus between deforestation and the emergence of Ebola virus disease (EVD), however, is still missing. Here we use land cover change data in conjunction with EVD outbreak records to investigate the association between recent (2004–2014) outbreaks in West and Central Africa, and patterns of land use change in the region. We show how in these EVD outbreaks the index cases in humans (i.e. spillover from wildlife reservoirs) occurred mostly in hotspots of forest fragmentation.

  1. The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks.

    PubMed

    Rulli, Maria Cristina; Santini, Monia; Hayman, David T S; D'Odorico, Paolo

    2017-02-14

    Tropical forests are undergoing land use change in many regions of the world, including the African continent. Human populations living close to forest margins fragmented and disturbed by deforestation may be particularly exposed to zoonotic infections because of the higher likelihood for humans to be in contact with disease reservoirs. Quantitative analysis of the nexus between deforestation and the emergence of Ebola virus disease (EVD), however, is still missing. Here we use land cover change data in conjunction with EVD outbreak records to investigate the association between recent (2004-2014) outbreaks in West and Central Africa, and patterns of land use change in the region. We show how in these EVD outbreaks the index cases in humans (i.e. spillover from wildlife reservoirs) occurred mostly in hotspots of forest fragmentation.

  2. The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks

    PubMed Central

    Rulli, Maria Cristina; Santini, Monia; Hayman, David T. S.; D’Odorico, Paolo

    2017-01-01

    Tropical forests are undergoing land use change in many regions of the world, including the African continent. Human populations living close to forest margins fragmented and disturbed by deforestation may be particularly exposed to zoonotic infections because of the higher likelihood for humans to be in contact with disease reservoirs. Quantitative analysis of the nexus between deforestation and the emergence of Ebola virus disease (EVD), however, is still missing. Here we use land cover change data in conjunction with EVD outbreak records to investigate the association between recent (2004–2014) outbreaks in West and Central Africa, and patterns of land use change in the region. We show how in these EVD outbreaks the index cases in humans (i.e. spillover from wildlife reservoirs) occurred mostly in hotspots of forest fragmentation. PMID:28195145

  3. Analysis of the selective advantage conferred by a C-E1 fusion protein synthesized by rubella virus DI RNAs

    SciTech Connect

    Claus, Claudia; Tzeng, W.-P.; Liebert, Uwe Gerd; Frey, Teryl K.

    2007-12-05

    During serial passaging of rubella virus (RUB) in cell culture, the dominant species of defective-interfering RNA (DI) generated contains an in-frame deletion between the capsid protein (C) gene and E1 glycoprotein gene resulting in production of a C-E1 fusion protein that is necessary for the maintenance of the DI [Tzeng, W.P., Frey, T.K. (2006). C-E1 fusion protein synthesized by rubella virus DI RNAs maintained during serial passage. Virology 356 198-207.]. A BHK cell line stably expressing the RUB structural proteins was established which was used to package DIs into virus particles following transfection with in vitro transcripts from DI infectious cDNA constructs. Packaging of a DI encoding an in-frame C-GFP-E1 reporter fusion protein corresponding to the C-E1 fusion protein expressed in a native DI was only marginally more efficient than packaging of a DI encoding GFP, indicating that the C-E1 fusion protein did not function by enhancing packaging. However, infection with the DI encoding the C-GFP-E1 fusion protein (in the absence of wt RUB helper virus) resulted in formation of clusters of GFP-positive cells and the percentage of GFP-positive cells in the culture following infection remained relatively constant. In contrast, a DI encoding GFP did not form GFP-positive clusters and the percentage of GFP-positive cells declined by roughly half from 2 to 4 days post-infection. Cluster formation and sustaining the percentage of infected (GFP-positive) cells required the C part of the fusion protein, including the downstream but not the upstream of two arginine clusters (both of which are associated with RNA binding and association with mitochondrial p32 protein) and the E1 part through the transmembrane sequence, but not the C-terminal cytoplasmic tail. Among a collection of mutant DI constructs, cluster formation and sustaining infected cell percentage correlated with maintenance during serial passage with wt RUB. We hypothesize that cluster formation and

  4. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    PubMed Central

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu, Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Pöhlmann, Stefan

    2011-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S-activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation. PMID:21435673

  5. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion.

    PubMed

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu, Kai; Rennekamp, Andrew J; Hofmann, Heike; Bates, Paul; Pöhlmann, Stefan

    2011-05-10

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    SciTech Connect

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Poehlmann, Stefan

    2011-05-10

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation.

  7. Forests

    Treesearch

    Louis R. Iverson; Mark W. Schwartz

    1994-01-01

    Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.

  8. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks.

    PubMed

    Ge, Jinying; Wang, Xijun; Tian, Meijie; Gao, Yuwei; Wen, Zhiyuan; Yu, Guimei; Zhou, Weiwei; Zu, Shulong; Bu, Zhigao

    2015-05-15

    Canine Distemper Virus (CDV) infects many carnivores and cause several high-mortality disease outbreaks. The current CDV live vaccine cannot be safely used in some exotic species, such as mink and ferret. Here, we generated recombinant lentogenic Newcastle disease virus (NDV) LaSota expressing either envelope glycoproyein, heamagglutinine (H) or fusion protein (F), named as rLa-CDVH and rLa-CDVF, respectively. The feasibility of these recombinant NDVs to serve as live virus-vectored CD vaccine was evaluated in minks. rLa-CDVH induced significant neutralization antibodies (NA) to CDV and provided solid protection against virulent CDV challenge. On the contrast, rLa-CDVF induced much lower NA to CDV and fail to protected mink from virulent CDV challenge. Results suggest that recombinant NDV expressing CDV H is safe and efficient candidate vaccine against CDV in mink, and maybe other host species.

  9. Dominant negative selection of vaccinia virus using a thymidine kinase/thymidylate kinase fusion gene and the prodrug azidothymidine

    SciTech Connect

    Holzer, Georg W. . E-mail: falknef@baxter.com

    2005-07-05

    The Escherichia coli thymidine kinase/thymidylate kinase (tk/tmk) fusion gene encodes an enzyme that efficiently converts the prodrug 3'-azido-2',3'-dideoxythymidine (AZT) into its toxic triphosphate derivative, a substance which stops DNA chain elongation. Integration of this marker gene into vaccinia virus that normally is not inhibited by AZT allowed the establishment of a powerful selection procedure for recombinant viruses. In contrast to the conventional vaccinia thymidine kinase (tk) selection that is performed in tk-negative cell lines, AZT selection can be performed in normal (tk-positive) cell lines. The technique is especially useful for the generation of replication-deficient vaccinia viruses and may also be used for gene knock-out studies of essential vaccinia genes.

  10. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    SciTech Connect

    Zheng Min; Jin Ningyi; Liu Qi; Huo Xiaowei; Li Yang; Hu Bo; Ma Haili; Zhu Zhanbo; Cong Yanzhao; Li Xiao; Jin Minglan; Zhu Guangze

    2009-08-15

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AAL and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.

  11. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins.

    PubMed

    Zheng, Min; Jin, Ningyi; Liu, Qi; Huo, Xiaowei; Li, Yang; Hu, Bo; Ma, Haili; Zhu, Zhanbo; Cong, Yanzhao; Li, Xiao; Jin, Minglan; Zhu, Guangze

    2009-08-15

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AAL and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.

  12. The Epstein-Barr virus (EBV) glycoprotein B cytoplasmic C-terminal tail domain regulates the energy requirement for EBV-induced membrane fusion.

    PubMed

    Chen, Jia; Zhang, Xianming; Jardetzky, Theodore S; Longnecker, Richard

    2014-10-01

    The entry of enveloped viruses into host cells is preceded by membrane fusion, which in Epstein-Barr virus (EBV) is thought to be mediated by the refolding of glycoprotein B (gB) from a prefusion to a postfusion state. In our current studies, we characterized a gB C-terminal tail domain (CTD) mutant truncated at amino acid 843 (gB843). This truncation mutant is hyperfusogenic as monitored by syncytium formation and in a quantitative fusion assay and is dependent on gH/gL for fusion activity. gB843 can rescue the fusion function of other glycoprotein mutants that have null or decreased fusion activity in epithelial and B cells. In addition, gB843 requires less gp42 and gH/gL for fusion, and can function in fusion at a lower temperature than wild-type gB, indicating a lower energy requirement for fusion activation. Since a key step in fusion is the conversion of gB from a prefusion to an active postfusion state by gH/gL, gB843 may access this activated gB state more readily. Our studies indicate that the gB CTD may participate in the fusion function by maintaining gB in an inactive prefusion form prior to activation by receptor binding. Importance: Diseases resulting from Epstein-Barr virus (EBV) infection in humans range from the fairly benign disease infectious mononucleosis to life-threatening cancer. As an enveloped virus, EBV must fuse with a host cell membrane for entry and infection by using glycoproteins gH/gL, gB, and gp42. Among these glycoproteins, gB is thought to be the protein that executes fusion. To further characterize the function of the EBV gB cytoplasmic C-terminal tail domain (CTD) in fusion, we used a previously constructed CTD truncation mutant and studied its fusion activity in the context of other EBV glycoprotein mutants. From these studies, we find that the gB CTD regulates fusion by altering the energy requirements for the triggering of fusion mediated by gH/gL or gp42. Overall, our studies may lead to a better understanding of EBV fusion

  13. The Epstein-Barr Virus (EBV) Glycoprotein B Cytoplasmic C-Terminal Tail Domain Regulates the Energy Requirement for EBV-Induced Membrane Fusion

    PubMed Central

    Chen, Jia; Zhang, Xianming; Jardetzky, Theodore S.

    2014-01-01

    ABSTRACT The entry of enveloped viruses into host cells is preceded by membrane fusion, which in Epstein-Barr virus (EBV) is thought to be mediated by the refolding of glycoprotein B (gB) from a prefusion to a postfusion state. In our current studies, we characterized a gB C-terminal tail domain (CTD) mutant truncated at amino acid 843 (gB843). This truncation mutant is hyperfusogenic as monitored by syncytium formation and in a quantitative fusion assay and is dependent on gH/gL for fusion activity. gB843 can rescue the fusion function of other glycoprotein mutants that have null or decreased fusion activity in epithelial and B cells. In addition, gB843 requires less gp42 and gH/gL for fusion, and can function in fusion at a lower temperature than wild-type gB, indicating a lower energy requirement for fusion activation. Since a key step in fusion is the conversion of gB from a prefusion to an active postfusion state by gH/gL, gB843 may access this activated gB state more readily. Our studies indicate that the gB CTD may participate in the fusion function by maintaining gB in an inactive prefusion form prior to activation by receptor binding. IMPORTANCE Diseases resulting from Epstein-Barr virus (EBV) infection in humans range from the fairly benign disease infectious mononucleosis to life-threatening cancer. As an enveloped virus, EBV must fuse with a host cell membrane for entry and infection by using glycoproteins gH/gL, gB, and gp42. Among these glycoproteins, gB is thought to be the protein that executes fusion. To further characterize the function of the EBV gB cytoplasmic C-terminal tail domain (CTD) in fusion, we used a previously constructed CTD truncation mutant and studied its fusion activity in the context of other EBV glycoprotein mutants. From these studies, we find that the gB CTD regulates fusion by altering the energy requirements for the triggering of fusion mediated by gH/gL or gp42. Overall, our studies may lead to a better understanding of EBV

  14. Mapping forest biomass from space - Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models

    NASA Astrophysics Data System (ADS)

    Kattenborn, Teja; Maack, Joachim; Faßnacht, Fabian; Enßle, Fabian; Ermert, Jörg; Koch, Barbara

    2015-03-01

    Spaceborne sensors allow for wide-scale assessments of forest ecosystems. Combining the products of multiple sensors is hypothesized to improve the estimation of forest biomass. We applied interferometric (Tandem-X) and photogrammetric (WorldView-2) based predictors, e.g. canopy height models, in combination with hyperspectral predictors (EO1-Hyperion) by using 4 different machine learning algorithms for biomass estimation in temperate forest stands near Karlsruhe, Germany. An iterative model selection procedure was used to identify the optimal combination of predictors. The most accurate model (Random Forest) reached a r2 of 0.73 with a RMSE of 14.9% (29.4 t/ha). Further results revealed that the predictive accuracy depended highly on the statistical model and the area size of the field samples. We conclude that a fusion of canopy height and spectral information allows for accurate estimations of forest biomass from space.

  15. New model for cardiomyocyte sheet transplantation using a virus-cell fusion technique

    PubMed Central

    Takahashi, Yuto; Tomotsune, Daihachiro; Takizawa, Sakiko; Yue, Fengming; Nagai, Mika; Yokoyama, Tadayuki; Hirashima, Kanji; Sasaki, Katsunori

    2015-01-01

    AIM: To facilitate close contacts between transplanted cardiomyocytes and host skeletal muscle using cell fusion mediated by hemagglutinating virus of Japan envelope (HVJ-E) and tissue maceration. METHODS: Cardiomyocytes (1.5 × 106) from fetal rats were first cultured. After proliferation, some cells were used for fusion with adult muscle fibers using HVJ-E. Other cells were used to create cardiomyocyte sheets (area: about 3.5 cm2 including 2.1 × 106 cells), which were then treated with Nile blue, separated, and transplanted between the latissimus dorsi and intercostal muscles of adult rats with four combinations of HVJ-E and/or NaOH maceration: G1: HVJ-E(+), NaOH(+), Cardiomyocytes(+); G2: HVJ-E(-), NaOH(+), Cardiomyocytes(+); G3: HVJ-E(+), NaOH(-), Cardiomyocytes(+); G4: HVJ-E(-), NaOH(-), Cardiomyocytes(-). At 1 and 2 wk after transplantation, the four groups were compared by detection of beating domains, motion images using moving target analysis software, action potentials, gene expression of MLC-2v and Mesp1 by reverse transcription-polymerase chain reaction, hematoxylin-eosin staining, and immunostaining for cardiac troponin and skeletal myosin. RESULTS: In vitro cardiomyocytes were fused with skeletal muscle fibers using HVJ-E. Cardiomyocyte sheets remained in the primary transplanted sites for 2 wk. Although beating domains were detected in G1, G2, and G3 rats, G1 rats prevailed in the number, size, motion image amplitudes, and action potential compared with G2 and G3 rats. Close contacts were only found in G1 rats. At 1 wk after transplantation, the cardiomyocyte sheets showed adhesion at various points to the myoblast layer in the latissimus dorsi muscle. At 2 wk after transplantation, close contacts were seen over a broad area. Part of the skeletal muscle sarcoplasma seemed to project into the myocardiocyte plasma and some nuclei appeared to share both sarcoplasmas. CONCLUSION: The present results show that close contacts were acquired and facilitated

  16. Fusion of optical and SAR remote sensing images for tropical forests monitoring

    NASA Astrophysics Data System (ADS)

    Wang, C.; Yu, M.; Gao, Q.; Wang, X.

    2016-12-01

    Although tropical deforestation prevails in South America and Southeast Asia, reforestation appeared in some tropical regions due to economic changes. After the economic shift from agriculture to industry, the tropical island of Puerto Rico has experienced rapid reforestation as well as urban expansion since the late 1940s. Continued urban growth without the guide of sustainable planning might prevent further forest regrowth. Accurate and timely mapping of LULC is of great importance for evaluating the consequences of reforestation and urban expansion on the coupled human and nature systems. However, owning to persistent cloud cover in tropics, it remains a challenge to produce reliable LULC maps in fine spatial resolution. Here, we retrieved cloud-free Landsat surface reflectance composite data by removing clouds and shades from the USGS Landsat Surface Reflectance (SR) product for each scene using the CFmask and Fmask algorithms in Google Earth Engine. We then produced high accuracy land cover classification maps using SR optical data for the year of 2000 and fused optical and ALOS SAR data for 2010 and 2015, with an overall accuracy of 92.0%, 92.5%, and 91.6%, respectively. The classification result indicated that a successive forest gain of 6.52% and 1.03% occurred between the first (2000-2010) and second (2010-2015) study periods, respectively. We also conducted a comparative spatial analysis of patterns of deforestation and reforestation based on a series of forest cover zones (50 × 50 pixels, 150 ha). The annual rates of deforestation and reforestation against forest cover presented the similar trends during two periods: decreasing with the forest cover increasing. However, the annual net forest change rate was different in the zones with forest cover less than 30%, presenting significant gain (2.2-8.4% yr-1) for the first period and significant loss (2.3-6.4% yr-1) for the second period. It indicated that both deforestation and reforestation mostly

  17. Dual Split Protein-Based Fusion Assay Reveals that Mutations to Herpes Simplex Virus (HSV) Glycoprotein gB Alter the Kinetics of Cell-Cell Fusion Induced by HSV Entry Glycoproteins

    PubMed Central

    Atanasiu, Doina; Saw, Wan Ting; Gallagher, John R.; Hannah, Brian P.; Matsuda, Zene; Whitbeck, J. Charles; Cohen, Gary H.

    2013-01-01

    Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, “slow and fast,” emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a “hair trigger.” Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion. PMID:23946457

  18. Structural and Functional Studies on the Fusion and Attachment Envelope Glycoproteins of Nipah Virus and Hendra Virus

    DTIC Science & Technology

    2003-01-01

    the animal may simply serve as an amplifying host. For example, avian influenza viruses primarily infect birds and do not normally propagate in...humans. The receptor specificities of avian and human influenza viruses restrict the ability of these viruses to replicate in humans ands birds...of infecting humans. Recent evidence supports a hypothesis that avian and human influenza viruses are both capable of replicating in the pig (9

  19. Heptad repeat 2-based peptides inhibit avian sarcoma and leukosis virus subgroup a infection and identify a fusion intermediate.

    PubMed

    Netter, Robert C; Amberg, Sean M; Balliet, John W; Biscone, Mark J; Vermeulen, Arwen; Earp, Laurie J; White, Judith M; Bates, Paul

    2004-12-01

    Fusion proteins of enveloped viruses categorized as class I are typified by two distinct heptad repeat domains within the transmembrane subunit. These repeats are important structural elements that assemble into the six-helix bundles characteristic of the fusion-activated envelope trimer. Peptides derived from these domains can be potent and specific inhibitors of membrane fusion and virus infection. To facilitate our understanding of retroviral entry, peptides corresponding to the two heptad repeat domains of the avian sarcoma and leukosis virus subgroup A (ASLV-A) TM subunit of the envelope protein were characterized. Two peptides corresponding to the C-terminal heptad repeat (HR2), offset from one another by three residues, were effective inhibitors of infection, while two overlapping peptides derived from the N-terminal heptad repeat (HR1) were not. Analysis of envelope mutants containing substitutions within the HR1 domain revealed that a single amino acid change, L62A, significantly reduced sensitivity to peptide inhibition. Virus bound to cells at 4 degrees C became sensitive to peptide within the first 5 min of elevating the temperature to 37 degrees C and lost sensitivity to peptide after 15 to 30 min, consistent with a transient intermediate in which the peptide binding site is exposed. In cell-cell fusion experiments, peptide inhibitor sensitivity occurred prior to a fusion-enhancing low-pH pulse. Soluble receptor for ASLV-A induces a lipophilic character in the envelope which can be measured by stable liposome binding, and this activation was found to be unaffected by inhibitory HR2 peptide. Finally, receptor-triggered conformational changes in the TM subunit were also found to be unaffected by inhibitory peptide. These changes are marked by a dramatic shift in mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, from a subunit of 37 kDa to a complex of about 80 kDa. Biotinylated HR2 peptide bound specifically to the 80-kDa complex

  20. The fusion protein of wild-type canine distemper virus is a major determinant of persistent infection

    SciTech Connect

    Plattet, Philippe; Rivals, Jean-Paul; Zuber, BenoIt; Brunner, Jean-Marc; Zurbriggen, Andreas; Wittek, Riccardo . E-mail: Riccardo.Wittek@unil.ch

    2005-07-05

    The wild-type A75/17 canine distemper virus (CDV) strain induces a persistent infection in the central nervous system but infects cell lines very inefficiently. In contrast, the genetically more distant Onderstepoort CDV vaccine strain (OP-CDV) induces extensive syncytia formation. Here, we investigated the roles of wild-type fusion (F{sub WT}) and attachment (H{sub WT}) proteins in Vero cells expressing, or not, the canine SLAM receptor by transfection experiments and by studying recombinants viruses expressing different combinations of wild-type and OP-CDV glycoproteins. We show that low fusogenicity is not due to a defect of the envelope proteins to reach the cell surface and that H{sub WT} determines persistent infection in a receptor-dependent manner, emphasizing the role of SLAM as a potent enhancer of fusogenicity. However, importantly, F{sub WT} reduced cell-to-cell fusion independently of the cell surface receptor, thus demonstrating that the fusion protein of the neurovirulent A75/17-CDV strain plays a key role in determining persistent infection.

  1. The fusion protein of wild-type canine distemper virus is a major determinant of persistent infection.

    PubMed

    Plattet, Philippe; Rivals, Jean-Paul; Zuber, Benoît; Brunner, Jean-Marc; Zurbriggen, Andreas; Wittek, Riccardo

    2005-07-05

    The wild-type A75/17 canine distemper virus (CDV) strain induces a persistent infection in the central nervous system but infects cell lines very inefficiently. In contrast, the genetically more distant Onderstepoort CDV vaccine strain (OP-CDV) induces extensive syncytia formation. Here, we investigated the roles of wild-type fusion (F(WT)) and attachment (H(WT)) proteins in Vero cells expressing, or not, the canine SLAM receptor by transfection experiments and by studying recombinants viruses expressing different combinations of wild-type and OP-CDV glycoproteins. We show that low fusogenicity is not due to a defect of the envelope proteins to reach the cell surface and that H(WT) determines persistent infection in a receptor-dependent manner, emphasizing the role of SLAM as a potent enhancer of fusogenicity. However, importantly, F(WT) reduced cell-to-cell fusion independently of the cell surface receptor, thus demonstrating that the fusion protein of the neurovirulent A75/17-CDV strain plays a key role in determining persistent infection.

  2. Fusion of Protegrin-1 and Plectasin to MAP30 Shows Significant Inhibition Activity against Dengue Virus Replication

    PubMed Central

    Rothan, Hussin A.; Bahrani, Hirbod; Mohamed, Zulqarnain; Abd Rahman, Noorsaadah; Yusof, Rohana

    2014-01-01

    Dengue virus (DENV) broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1) and plectasin (PLSN) were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN) as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro) with half-maximal inhibitory concentration (IC50) 0.5±0.1 μM. The real-time proliferation assay (RTCA) and the end-point proliferation assay (MTT assay) showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities. PMID:24722532

  3. HIV cell-to-cell transmission requires the production of infectious virus particles and does not proceed through env-mediated fusion pores.

    PubMed

    Monel, Blandine; Beaumont, Elodie; Vendrame, Daniela; Schwartz, Olivier; Brand, Denys; Mammano, Fabrizio

    2012-04-01

    Direct cell-to-cell transmission of human immunodeficiency virus (HIV) is a more potent and efficient means of virus propagation than infection by cell-free virus particles. The aim of this study was to determine whether cell-to-cell transmission requires the assembly of enveloped virus particles or whether nucleic acids with replication potential could translocate directly from donor to target cells through envelope glycoprotein (Env)-induced fusion pores. To this end, we characterized the transmission properties of viruses carrying mutations in the matrix protein (MA) that affect the incorporation of Env into virus particles but do not interfere with Env-mediated cell-cell fusion. By use of cell-free virus, the infectivity of MA mutant viruses was below the detection threshold both in single-cycle and in multiple-cycle assays. Truncation of the cytoplasmic tail (CT) of Env restored the incorporation of Env into MA mutant viruses and rescued their cell-free infectivity to different extents. In cell-to-cell transmission assays, MA mutations prevented HIV transmission from donor to target cells, despite efficient Env-dependent membrane fusion. HIV transmission was blocked at the level of virus core translocation into the cytosol of target cells. As in cell-free assays, rescue of Env incorporation by truncation of the Env CT restored the virus core translocation and cell-to-cell infectivity of MA mutant viruses. These data show that HIV cell-to-cell transmission requires the assembly of enveloped virus particles. The increased efficiency of this infection route may thus be attributed to the high local concentrations of virus particles at sites of cellular contacts rather than to a qualitatively different transmission process.

  4. Functional Properties and Genetic Relatedness of the Fusion and Hemagglutinin-Neuraminidase Proteins of a Mumps Virus-Like Bat Virus

    PubMed Central

    Krüger, Nadine; Hoffmann, Markus; Drexler, Jan Felix; Müller, Marcel Alexander; Corman, Victor Max; Sauder, Christian; Rubin, Steven; He, Biao; Örvell, Claes; Drosten, Christian

    2015-01-01

    ABSTRACT A bat virus with high phylogenetic relatedness to human mumps virus (MuV) was identified recently at the nucleic acid level. We analyzed the functional activities of the hemagglutinin-neuraminidase (HN) and the fusion (F) proteins of the bat virus (batMuV) and compared them to the respective proteins of a human isolate. Transfected cells expressing the F and HN proteins of batMuV were recognized by antibodies directed against these proteins of human MuV, indicating that both viruses are serologically related. Fusion, hemadsorption, and neuraminidase activities were demonstrated for batMuV, and either bat-derived protein could substitute for its human MuV counterpart in inducing syncytium formation when coexpressed in different mammalian cell lines, including chiropteran cells. Cells expressing batMuV glycoproteins were shown to have lower neuraminidase activity. The syncytia were smaller, and they were present in lower numbers than those observed after coexpression of the corresponding glycoproteins of a clinical isolate of MuV (hMuV). The phenotypic differences in the neuraminidase and fusion activity between the glycoproteins of batMuV and hMuV are explained by differences in the expression level of the HN and F proteins of the two viruses. In the case of the F protein, analysis of chimeric proteins revealed that the signal peptide of the bat MuV fusion protein is responsible for the lower surface expression. These results indicate that the surface glycoproteins of batMuV are serologically and functionally related to those of hMuV, raising the possibility of bats as a reservoir for interspecies transmission. IMPORTANCE The recently described MuV-like bat virus is unique among other recently identified human-like bat-associated viruses because of its high sequence homology (approximately 90% in most genes) to its human counterpart. Although it is not known if humans can be infected by batMuV, the antigenic relatedness between the bat and human forms of

  5. Functional properties and genetic relatedness of the fusion and hemagglutinin-neuraminidase proteins of a mumps virus-like bat virus.

    PubMed

    Krüger, Nadine; Hoffmann, Markus; Drexler, Jan Felix; Müller, Marcel Alexander; Corman, Victor Max; Sauder, Christian; Rubin, Steven; He, Biao; Örvell, Claes; Drosten, Christian; Herrler, Georg

    2015-04-01

    A bat virus with high phylogenetic relatedness to human mumps virus (MuV) was identified recently at the nucleic acid level. We analyzed the functional activities of the hemagglutinin-neuraminidase (HN) and the fusion (F) proteins of the bat virus (batMuV) and compared them to the respective proteins of a human isolate. Transfected cells expressing the F and HN proteins of batMuV were recognized by antibodies directed against these proteins of human MuV, indicating that both viruses are serologically related. Fusion, hemadsorption, and neuraminidase activities were demonstrated for batMuV, and either bat-derived protein could substitute for its human MuV counterpart in inducing syncytium formation when coexpressed in different mammalian cell lines, including chiropteran cells. Cells expressing batMuV glycoproteins were shown to have lower neuraminidase activity. The syncytia were smaller, and they were present in lower numbers than those observed after coexpression of the corresponding glycoproteins of a clinical isolate of MuV (hMuV). The phenotypic differences in the neuraminidase and fusion activity between the glycoproteins of batMuV and hMuV are explained by differences in the expression level of the HN and F proteins of the two viruses. In the case of the F protein, analysis of chimeric proteins revealed that the signal peptide of the bat MuV fusion protein is responsible for the lower surface expression. These results indicate that the surface glycoproteins of batMuV are serologically and functionally related to those of hMuV, raising the possibility of bats as a reservoir for interspecies transmission. The recently described MuV-like bat virus is unique among other recently identified human-like bat-associated viruses because of its high sequence homology (approximately 90% in most genes) to its human counterpart. Although it is not known if humans can be infected by batMuV, the antigenic relatedness between the bat and human forms of the virus suggests

  6. Inhibition of neuraminidase inhibitor-resistant influenza virus by DAS181, a novel sialidase fusion protein.

    PubMed

    Triana-Baltzer, Gallen B; Gubareva, Larisa V; Klimov, Alexander I; Wurtman, David F; Moss, Ronald B; Hedlund, Maria; Larson, Jeffrey L; Belshe, Robert B; Fang, Fang

    2009-11-06

    Antiviral drug resistance for influenza therapies remains a concern due to the high prevalence of H1N1 2009 seasonal influenza isolates which display H274Y associated oseltamivir-resistance. Furthermore, the emergence of novel H1N1 raises the potential that additional reassortments can occur, resulting in drug resistant virus. Thus, additional antiviral approaches are urgently needed. DAS181 (Fludase), a sialidase fusion protein, has been shown to have inhibitory activity against a large number of seasonal influenza strains and a highly pathogenic avian influenza (HPAI) strain (H5N1). Here, we examine the in vitro activity of DAS181 against a panel of 2009 oseltamivir-resistant seasonal H1N1 clinical isolates. The activity of DAS181 against nine 2009, two 2007, and two 2004 clinical isolates of seasonal IFV H1N1 was examined using plaque number reduction assay on MDCK cells. DAS181 strongly inhibited all tested isolates. EC50 values remained constant against isolates from 2004, 2007, and 2009, suggesting that there was no change in DAS181 sensitivity over time. As expected, all 2007 and 2009 isolates were resistant to oseltamivir, consistent with the identification of the H274Y mutation in the NA gene of all these isolates. Interestingly, several of the 2007 and 2009 isolates also exhibited reduced sensitivity to zanamivir, and accompanying HA mutations near the sialic acid binding site were observed. DAS181 inhibits IFV that is resistant to NAIs. Thus, DAS181 may offer an alternative therapeutic option for seasonal or pandemic IFVs that become resistant to currently available antiviral drugs.

  7. Full-Length Trimeric Influenza Virus Hemagglutinin II Membrane Fusion Protein and Shorter Constructs Lacking the Fusion Peptide or Transmembrane Domain: Hyperthermostability of the Full-Length Protein and the Soluble Ectodomain and Fusion Peptide Make Significant Contributions to Fusion of Membrane Vesicles†

    PubMed Central

    Ratnayake, Punsisi U.; Ekanayaka, E. A. Prabodha; Komanduru, Sweta S.; Weliky, David P.

    2015-01-01

    Influenza virus is a Class I enveloped virus which is initially endocytosed into a host respiratory epithelial cell. Subsequent reduction of the pH to the 5–6 range triggers a structural change of the viral hemagglutinin II (HA2) protein, fusion of the viral and endosomal membranes, and release of the viral nucleocapsid into the cytoplasm. HA2 contains fusion peptide (FP), soluble ectodomain (SE), transmembrane (TM), and intraviral domains with respective lengths of ~25, ~160, ~25, and ~10 residues. The present work provides a straightforward protocol for producing and purifying mg quantities of full-length HA2 from expression in bacteria. Biophysical and structural comparisons are made between full-length HA2 and shorter constructs including SHA2 ≡ SE, FHA2 ≡ FP + SE, and SHA2-TM ≡ SE + TM constructs. The constructs are helical in detergent at pH 7.4 and the dominant trimer species. The proteins are highly thermostable in decylmaltoside detergent with Tm > 90 °C for HA2 with stabilization provided by the SE, FP, and TM domains. The proteins are likely in a trimer-of-hairpins structure, the final protein state during fusion. All constructs induce fusion of negatively-charged vesicles at pH 5.0 with much less fusion at pH 7.4. Attractive protein/vesicle electrostatics play a role in fusion, as the proteins are positively-charged at pH 5.0 and negatively-charged at pH 7.4 and the pH-dependence of fusion is reversed for positively-charged vesicles. Comparison of fusion between constructs supports significant contributions to fusion from the SE and the FP with little effect from the TM. PMID:26297995

  8. Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion

    SciTech Connect

    Butrapet, Siritorn; Childers, Thomas; Moss, Kelley J.; Erb, Steven M.; Luy, Betty E.; Calvert, Amanda E.; Blair, Carol D.; Roehrig, John T.; Huang, Claire Y.-H.

    2011-04-25

    Fifteen mutant dengue viruses were engineered and used to identify AAs in the molecular hinge of the envelope protein that are critical to viral infection. Substitutions at Q52, A54, or E133 reduced infectivity in mammalian cells and altered the pH threshold of fusion. Mutations at F193, G266, I270, or G281 affected viral replication in mammalian and mosquito cells, but only I270W had reduced fusion activity. T280Y affected the pH threshold for fusion and reduced replication in C6/36 cells. Three different mutations at L135 were lethal in mammalian cells. Among them, L135G abrogated fusion and reduced replication in C6/36 cells, but only slightly reduced the mosquito infection rate. Conversely, L135W replicated well in C6/36 cells, but had the lowest mosquito infection rate. Possible interactions between hinge residues 52 and 277, or among 53, 135, 170, 186, 265, and 276 required for hinge function were discovered by sequence analysis to identify compensatory mutations.

  9. Computational modeling and functional analysis of Herpes simplex virus type-1 thymidine kinase and Escherichia coli cytosine deaminase fusion protein

    SciTech Connect

    Zhang, Jufeng; Wang, Zhanli; Wei, Fang; Qiu, Wei; Zhang, Liangren; Huang, Qian . E-mail: qhuang@sjtu.edu.cn

    2007-08-17

    Herpes simplex virus type-1 thymidine kinase (HSV-1TK) and Escherichia coli cytosine deaminase (CD) fusion protein was designed using InsightII software. The structural rationality of the fusion proteins incorporating a series of flexible linker peptide was analyzed, and a suitable linker peptide was chosen for further investigated. The recombinant plasmid containing the coding regions of HSV-1TK and CD cDNA connected by this linker peptide coding sequence was generated and subsequently transfected into the human embryonic kidney 293 cells (HEK293). The Western blotting indicated that the recombinant fusion protein existed as a dimer with a molecular weight of approximately 90 kDa. The toxicity of the prodrug on the recombinant plasmid-transfected human lung cancer cell line NCIH460 was evaluated, which showed that TKglyCD-expressing cells conferred upon cells prodrug sensitivities equivalent to that observed for each enzyme independently. Most noteworthy, cytotoxicity could be enhanced by concurrently treating TKglyCD-expressing cells with prodrugs GCV and 5-FC. The results indicate that we have successfully constructed a HSV-1TKglyCD fusion gene which might have a potential application for cancer gene therapy.

  10. Vaccinia Virus A56/K2 Fusion Regulatory Protein Interacts with the A16 and G9 Subunits of the Entry Fusion Complex▿

    PubMed Central

    Wagenaar, Timothy R.; Ojeda, Suany; Moss, Bernard

    2008-01-01

    Deletion of the A56R or K2L gene of vaccinia virus (VACV) results in the spontaneous fusion of infected cells to form large multinucleated syncytia. A56 and K2 polypeptides bind to one another (A56/K2) and together are required for interaction with the VACV entry fusion complex (EFC); this association has been proposed to prevent the fusion of infected cells. At least eight viral polypeptides comprise the EFC, but no information has been available regarding their interactions either with each other or with A56/K2. Utilizing a panel of recombinant VACVs designed to repress expression of individual EFC subunits, we demonstrated that A56/K2 interacted with two polypeptides: A16 and G9. Both A16 and G9 were required for the efficient binding of each to A56/K2, suggesting that the two polypeptides interact with each other within the EFC. Such an interaction was established by the copurification of A16 and G9 from infected cells under conditions in which a stable EFC complex failed to assemble and from detergent-treated lysates of uninfected cells that coexpressed A16 and G9. A recombinant VACV that expressed G9 modified with an N-terminal epitope tag induced the formation of syncytia, suggesting partial interference with the functional interaction of A56/K2 with the EFC during infection. These data suggest that A16 and G9 are physically associated within the EFC and that their interaction with A56/K2 suppresses spontaneous syncytium formation and possibly “fuse-back” superinfection of cells. PMID:18353946

  11. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    SciTech Connect

    Maric, Martina; Haugo, Alison C.; Dauer, William; Johnson, David; Roller, Richard J.

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  12. [Fusion proteins encoded by orf 129L of ectromelia and orf A30L of smallpox viruses cross-react with neutralizing monoclonal antibodies].

    PubMed

    razumov, I A; Gileva, I P; Vasil'eva, M A; Nepomniashchikh, T S; Mishina, M N; Belanov, E F; Kochneva, G V; Konovalov, E E; Shchelkunov, S N; Loktev, V B

    2005-01-01

    Open reading frame (orf) 129L of ectromelia (EV) and orf A30L of smallpox viruses (SPV) encoding fusion proteins were cloned and expressed in E. coli cells. The recombinant polypeptides (prA30L H pr129L) were purified from cell lysates by Ni-NTA chromatography. Recombinant polypeptides were able to form trimers in buffered saline and they destroyed under treatment with SDS and 2-mercaptoethanol. Reactivity of prA30L, pr129L and orthopoxvirus proteins was analyzed by ELISA and Western blotting with panel of 22 monoclonal antibodies (MAbs) against orthopoxviruses (19 against EV, 2 MAbs against vaccinia virus and 1 Mabs against cowpox virus). This data allowed us to conclude that there are 12 EV-specific epitopes of pr129L and EV fusion proteins, ten orthopox-specific epitopes of EV, VV, CPV fusion proteins, from them 9 orthopox-specific epitopes of prA30L and SPV fusion proteins. Five Mabs, which cross-reacted with orthopox-specific epitopes, were able to neutralize the VV on Vero cells and from them two MAbs has neutralizing activity against smallpox virus. Our findings demonstrate that 129L fusion protein have EV-specific epitopes, that EV 129L and SPV A30L fusion proteins have a several orthopox-specific epitopes to induce a neutralizing antibodies against human pathogenic orthopoxviruses.

  13. pH-Dependent Vesicle Fusion Induced by the Ectodomain of the Human Immunodeficiency Virus Membrane Fusion Protein gp41: Two Kinetically Distinct Processes and Fully-Membrane-Associated gp41 with Predominant β Sheet Fusion Peptide Conformation

    PubMed Central

    Ratnayake, Punsisi U.; Sackett, Kelly; Nethercott, Matthew J.; Weliky, David P.

    2014-01-01

    The gp41 protein of the Human Immunodeficiency Virus (HIV) catalyzes fusion between HIV and host cell membranes. The ~180-residue ectodomain of gp41 is outside the virion and is the most important gp41 region for membrane fusion. The ectodomain consists of an apolar fusion peptide (FP) region followed by N-heptad repeat (NHR), loop, and C-heptad repeat (CHR) regions. The FP is critical for fusion and is hypothesized to bind to the host cell membrane. Large ectodomain constructs either with or without the FP are highly aggregated at physiologic pH but soluble in the pH 3–4 range with hyperthermostable hairpin structure with antiparallel NHR and CHR helices. The present study focuses on the large gp41 ectodomain constructs “Hairpin” (HP) containing NHR+loop+CHR and “FP-Hairpin” (FP-HP) containing FP+NHR+loop+CHR. Both proteins induce rapid and extensive fusion of anionic vesicles at pH 4 where the protein is positively-charged but do not induce fusion at pH 7 where the protein is negatively charged. This observation, along with lack of fusion of neutral vesicles at either pH supports the significance of attractive protein/membrane electrostatics in fusion. The functional role of the hydrophobic FP is supported by increases in the rate and extent of fusion for FP-HP relative to HP. There are two kinetically distinct fusion processes at pH 4: (1) a faster ~100 ms−1 process with rate strongly positively correlated with vesicle charge; and (2) a slower ~5 ms−1 process with extent strongly inversely correlated with this charge. The faster charge-dependent process is likely related to the electrostatic energy released upon initial monomer protein binding to the vesicle. After dissipation of this energy, the subsequent slower process is likely due to the equilibrium membrane-associated structure of the protein. The slower process may be more physiologically relevant because HIV/host cell fusion occurs at physiologic pH with gp41 restricted to the narrow region

  14. Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression.

    PubMed

    Anderson, Danielle E; von Messling, Veronika

    2008-11-01

    Morbilliviruses, including measles and canine distemper virus (CDV), are nonsegmented, negative-stranded RNA viruses that cause severe diseases in humans and animals. The transcriptional units in their genomes are separated by untranslated regions (UTRs), which contain essential transcription and translation signals. Due to its increased length, the region between the matrix (M) protein and fusion (F) protein open reading frames is of particular interest. In measles virus, the entire F 5' region is untranslated, while several start codons are found in most other morbilliviruses, resulting in a long F protein signal peptide (Fsp). To characterize the role of this region in morbillivirus pathogenesis, we constructed recombinant CDVs, in which either the M-F UTR was replaced with that between the nucleocapsid (N) and phosphoprotein (P) genes, or 106 Fsp residues were deleted. The Fsp deletion alone had no effect in vitro and in vivo. In contrast, substitution of the UTR was associated with a slight increase in F gene and protein expression. Animals infected with this virus either recovered completely or experienced prolonged disease and death due to neuroinvasion. The combination of both changes resulted in a virus with strongly increased F gene and protein expression and complete attenuation. Taken together, our results provide evidence that the region between the morbillivirus M and F genes modulates virulence through transcriptional control of the F gene expression.

  15. Occurrence of Ross River virus and Barmah Forest virus in mosquitoes at Shoalwater Bay military training area, Queensland, Australia.

    PubMed

    Frances, S P; Cooper, R D; Rowcliffe, K L; Chen, N; Cheng, Q

    2004-01-01

    Shoalwater Bay military training area (SWBTA), 2,713 km2 of land located 50-80 km north of Rockhampton, Queensland, Australia, is used by Australian and allied forces for training purposes. Between March 1998 and February 2000, monthly collections of mosquitoes at 15 sites were conducted using carbon dioxide-baited traps to study the seasonal occurrence of mosquitoes and Ross River virus (RRV) and Barmah Forest virus (BFV) in mosquitoes. A total of 72,616 mosquitoes, comprising 3,897 pools were collected, and 2,428 pools were tested using a reverse transcriptase-polymerase chain reaction. A total of 15 pools of mosquitoes were positive for virus, 10 RRV and five BFV. Blood meals from an additional 763 mosquitoes were tested by a gel diffusion assay, and the majority (96%) of those identified were from kangaroo, which was the most common mammal in the study area. The results indicate that Culex annulirostris Skuse and Ochlerotatus vigilax (Skuse) are the main vectors of RRV at SWBTA.

  16. Requirement of N-terminal amino acid residues of gp41 for human immunodeficiency virus type 1-mediated cell fusion.

    PubMed Central

    Schaal, H; Klein, M; Gehrmann, P; Adams, O; Scheid, A

    1995-01-01

    An expression vector was designed to test the structural requirements of the gp41 N terminus for human immunodeficiency virus type 1-induced membrane fusion. Mutations in the region coding for the N terminus of gp41 were found to disrupt glycoprotein expression because of deleterious effects on the Rev-responsive element (RRE). Insertion of an additional RRE in the 3'-noncoding sequence of env made possible efficient glycoprotein expression, irrespective of the mutations introduced into the RRE in the natural location. This permitted the insertion of the unique restriction site SpeI within the N-terminal sequences of gp41, allowing convenient and efficient mutation of the gp41 N terminus by using double-stranded synthetic oligonucleotides. Mutants with deletions of 1 to 7 amino acids of the N terminus were constructed. Expression and cleavage of all mutants were confirmed by Western immunoblot analysis with anti-gp41 antibodies. The capability of mutants to induce membrane fusion was monitored following transfection of HeLa-T4+ cell lines with wild-type and mutant expression vectors by electroporation and microinjection. The efficiency of cell-fusing activity decreased drastically with deletion of 3 and 4 amino acids and was completely lost with deletion of 5 amino acids. Cotransfection of the parent and mutant expression vectors resulted in reduced cell-fusing activity. The extent of this dominant interference by mutant glycoprotein paralleled the decrease in cell-fusing activity of the mutants alone. This suggests the existence of a specific N-terminal structure required for fusing activity. However, there does not appear to be a stringent requirement for the precise length of the N terminus. This finding is supported by the length variation of this region among natural human immunodeficiency virus type 1 isolates and is in contrast to the apparent stringency in the length of analogous N-terminal structures of influenza A virus and paramyxovirus fusion

  17. Membrane Requirement for Folding of the Herpes Simplex Virus 1 gB Cytodomain Suggests a Unique Mechanism of Fusion Regulation

    PubMed Central

    Silverman, Jessica L.; Greene, Neil G.; King, David S.

    2012-01-01

    Herpes simplex virus type 1 (HSV-1) enters cells by fusion of its envelope with a host cell membrane, which requires four viral glycoproteins and a cellular receptor. Viral fusion glycoprotein B (gB) mediates membrane fusion through the action of its ectodomain, while its cytoplasmic domain (cytodomain) regulates fusion from the opposite face of the membrane by an unknown mechanism. The gB cytodomain appears to restrict fusion, because point or truncation mutations within it increase the extent of fusion (syn mutations). Previously, we showed that the hyperfusion phenotype correlated with reduced membrane binding in gB syn truncation mutants and proposed that membrane binding was important in regulating fusion. Here, we extended our analysis to three syn point mutants: A855V, R858H, and A874P. These mutations produce local conformational changes, with some affecting membrane interaction, which suggests that while syn mutants may deregulate fusion by somewhat different mechanisms, maintaining the wild-type (WT) conformation is critical for fusion regulation. We further show that the presence of a membrane is necessary for the cytodomain to achieve its fully folded conformation and propose that the membrane-bound form of the cytodomain represents its native conformation. Taken together, our data suggest that the cytodomain of gB regulates fusion by a novel mechanism in which membrane interaction plays a key role. PMID:22623783

  18. Quantitative RT-PCR for titration of replication-defective recombinant Semliki Forest virus.

    PubMed

    Puglia, Ana L P; Rezende, Alexandre G; Jorge, Soraia A C; Wagner, Renaud; Pereira, Carlos A; Astray, Renato M

    2013-11-01

    Virus titration may constitute a drawback in the development and use of replication-defective viral vectors like Semliki Forest virus (SFV). The standardization and validation of a reverse transcription quantitative PCR (qRT-PCR) method for SFV titration is presented here. The qRT-PCR target is located within the nsp1 gene of the non-structural polyprotein SFV region (SFV RNA), which allows the strategy to be used for several different recombinant SFV constructs. Titer determinations were carried out by performing virus titration and infection assays with SFVs containing an RNA coding region for the rabies virus glycoprotein (RVGP) or green fluorescent protein (GFP). Results showed that the standardized qRT-PCR is applicable for different SFV constructs, and showed good reproducibility. To evaluate the correlation between the amount of functional SFV RNA in a virus lot and its infectivity in BHK-21 cell cultures, a temperature mediated titer decrease was performed and successfully quantitated by qRT-PCR. When used for cell infection at the same multiplicity of infection (MOI), the temperature treated SFV-RVGP samples induced the same levels of RVGP expression. Similarly, when different SFV-GFP lots with different virus titers, as accessed by qRT-PCR, were used for cell infection at the same MOI, the cultures showed comparable amounts of fluorescent cells. The data demonstrate a good correlation between the amount of virus used for infection, as measured by its SFV RNA, and the protein synthesis in the cells. In conclusion, the qRT-PCR method developed here is accurate and enables the titration of replication-defective SFV vectors, an essential aid for viral vector development as well as for establishment of production bioprocesses.

  19. Identification of a Region in the Stalk Domain of the Nipah Virus Receptor Binding Protein That Is Critical for Fusion Activation

    PubMed Central

    Talekar, Aparna; DeVito, Ilaria; Salah, Zuhair; Palmer, Samantha G.; Chattopadhyay, Anasuya; Rose, John K.; Xu, Rui; Wilson, Ian A.; Moscona, Anne

    2013-01-01

    Paramyxoviruses, including the emerging lethal human Nipah virus (NiV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral and target cell membranes. For paramyxoviruses, membrane fusion is the result of the concerted action of two viral envelope glycoproteins: a receptor binding protein and a fusion protein (F). The NiV receptor binding protein (G) attaches to ephrin B2 or B3 on host cells, whereas the corresponding hemagglutinin-neuraminidase (HN) attachment protein of NDV interacts with sialic acid moieties on target cells through two regions of its globular domain. Receptor-bound G or HN via its stalk domain triggers F to undergo the conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We show that chimeric proteins containing the NDV HN receptor binding regions and the NiV G stalk domain require a specific sequence at the connection between the head and the stalk to activate NiV F for fusion. Our findings are consistent with a general mechanism of paramyxovirus fusion activation in which the stalk domain of the receptor binding protein is responsible for F activation and a specific connecting region between the receptor binding globular head and the fusion-activating stalk domain is required for transmitting the fusion signal. PMID:23903846

  20. Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus.

    PubMed

    Lavillette, Dimitri; Pécheur, Eve-Isabelle; Donot, Peggy; Fresquet, Judith; Molle, Jennifer; Corbau, Romuald; Dreux, Marlène; Penin, François; Cosset, François-Loïc

    2007-08-01

    Infection of eukaryotic cells by enveloped viruses requires the merging of viral and cellular membranes. Highly specific viral surface glycoproteins, named fusion proteins, catalyze this reaction by overcoming inherent energy barriers. Hepatitis C virus (HCV) is an enveloped virus that belongs to the genus Hepacivirus of the family Flaviviridae. Little is known about the molecular events that mediate cell entry and membrane fusion for HCV, although significant progress has been made due to recent developments in infection assays. Here, using infectious HCV pseudoparticles (HCVpp), we investigated the molecular basis of HCV membrane fusion. By searching for classical features of fusion peptides through the alignment of sequences from various HCV genotypes, we identified six regions of HCV E1 and E2 glycoproteins that present such characteristics. We introduced conserved and nonconserved amino acid substitutions in these regions and analyzed the phenotype of HCVpp generated with mutant E1E2 glycoproteins. This was achieved by (i) quantifying the infectivity of the pseudoparticles, (ii) studying the incorporation of E1E2 and their capacity to mediate receptor binding, and (iii) determining their fusion capacity in cell-cell and liposome/HCVpp fusion assays. We propose that at least three of these regions (i.e., at positions 270 to 284, 416 to 430, and 600 to 620) play a role in the membrane fusion process. These regions may contribute to the merging of viral and cellular membranes either by interacting directly with lipid membranes or by assisting the fusion process through their involvement in the conformational changes of the E1E2 complex at low pH.

  1. Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion.

    PubMed

    Phillips, Judith M; Gallagher, Tom; Weiss, Susan R

    2017-04-15

    The coronavirus (CoV) S protein requires cleavage by host cell proteases to mediate virus-cell and cell-cell fusion. Many strains of the murine coronavirus mouse hepatitis virus (MHV) have distinct, S-dependent organ and tissue tropisms despite using a common receptor, suggesting that they employ different cellular proteases for fusion. In support of this hypothesis, we found that inhibition of endosomal acidification only modestly decreased entry, and overexpression of the cell surface protease TMPRSS2 greatly enhanced entry, of the highly neurovirulent MHV strain JHM.SD relative to their effects on the reference strain, A59. However, TMPRSS2 overexpression decreased MHV structural protein expression, release of infectious particles, and syncytium formation, and endogenous serine protease activity did not contribute greatly to infection. We therefore investigated the importance of other classes of cellular proteases and found that inhibition of matrix metalloproteinase (MMP)- and a disintegrin and metalloprotease (ADAM)-family zinc metalloproteases markedly decreased both entry and cell-cell fusion. Suppression of virus by metalloprotease inhibition varied among tested cell lines and MHV S proteins, suggesting a role for metalloprotease use in strain-dependent tropism. We conclude that zinc metalloproteases must be considered potential contributors to coronavirus fusion.IMPORTANCE The family Coronaviridae includes viruses that cause two emerging diseases of humans, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), as well as a number of important animal pathogens. Because coronaviruses depend on host protease-mediated cleavage of their S proteins for entry, a number of protease inhibitors have been proposed as antiviral agents. However, it is unclear which proteases mediate in vivo infection. For example, SARS-CoV infection of cultured cells depends on endosomal acid pH-dependent proteases rather than on the cell surface acid p

  2. Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.

    2004-01-01

    The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.

  3. Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.

    2004-01-01

    The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.

  4. Cysteines in the Stalk of the Nipah Virus G Glycoprotein Are Located in a Distinct Subdomain Critical for Fusion Activation

    PubMed Central

    Maar, Dianna; Harmon, Brooke; Chu, David; Schulz, Belinda; Aguilar, Hector C.; Lee, Benhur

    2012-01-01

    Paramyxoviruses initiate entry through the concerted action of the tetrameric attachment glycoprotein (HN, H, or G) and the trimeric fusion glycoprotein (F). The ectodomains of HN/H/G contain a stalk region important for oligomeric stability and for the F triggering resulting in membrane fusion. Paramyxovirus HN, H, and G form a dimer-of-dimers consisting of disulfide-linked dimers through their stalk domain cysteines. The G attachment protein stalk domain of the highly pathogenic Nipah virus (NiV) contains a distinct but uncharacterized cluster of three cysteine residues (C146, C158, C162). On the basis of a panoply of assays, we report that C158 and C162 of NiV-G likely mediate covalent subunit dimerization, while C146 mediates the stability of higher-order oligomers. For HN or H, mutation of stalk cysteines attenuates but does not abrogate the ability to trigger fusion. In contrast, the NiV-G stalk cysteine mutants were completely deficient in triggering fusion, even though they could still bind the ephrinB2 receptor and associate with F. Interestingly, all cysteine stalk mutants exhibited constitutive exposure of the Mab45 receptor binding-enhanced epitope, previously implicated in F triggering. The enhanced binding of Mab45 to the cysteine mutants relative to wild-type NiV-G, without the addition of the receptor, implicates the stalk cysteines in the stabilization of a pre-receptor-bound conformation and the regulation of F triggering. Sequence alignments revealed that the stalk cysteines were adjacent to a proline-rich microdomain unique to the Henipavirus genus. Our data propose that the cysteine cluster in the NiV-G stalk functions to maintain oligomeric stability but is more importantly involved in stabilizing a unique microdomain critical for triggering fusion. PMID:22496210

  5. Cysteines in the stalk of the nipah virus G glycoprotein are located in a distinct subdomain critical for fusion activation.

    PubMed

    Maar, Dianna; Harmon, Brooke; Chu, David; Schulz, Belinda; Aguilar, Hector C; Lee, Benhur; Negrete, Oscar A

    2012-06-01

    Paramyxoviruses initiate entry through the concerted action of the tetrameric attachment glycoprotein (HN, H, or G) and the trimeric fusion glycoprotein (F). The ectodomains of HN/H/G contain a stalk region important for oligomeric stability and for the F triggering resulting in membrane fusion. Paramyxovirus HN, H, and G form a dimer-of-dimers consisting of disulfide-linked dimers through their stalk domain cysteines. The G attachment protein stalk domain of the highly pathogenic Nipah virus (NiV) contains a distinct but uncharacterized cluster of three cysteine residues (C146, C158, C162). On the basis of a panoply of assays, we report that C158 and C162 of NiV-G likely mediate covalent subunit dimerization, while C146 mediates the stability of higher-order oligomers. For HN or H, mutation of stalk cysteines attenuates but does not abrogate the ability to trigger fusion. In contrast, the NiV-G stalk cysteine mutants were completely deficient in triggering fusion, even though they could still bind the ephrinB2 receptor and associate with F. Interestingly, all cysteine stalk mutants exhibited constitutive exposure of the Mab45 receptor binding-enhanced epitope, previously implicated in F triggering. The enhanced binding of Mab45 to the cysteine mutants relative to wild-type NiV-G, without the addition of the receptor, implicates the stalk cysteines in the stabilization of a pre-receptor-bound conformation and the regulation of F triggering. Sequence alignments revealed that the stalk cysteines were adjacent to a proline-rich microdomain unique to the Henipavirus genus. Our data propose that the cysteine cluster in the NiV-G stalk functions to maintain oligomeric stability but is more importantly involved in stabilizing a unique microdomain critical for triggering fusion.

  6. The Roles of Histidines and Charged Residues as Potential Triggers of a Conformational Change in the Fusion Loop of Ebola Virus Glycoprotein.

    PubMed

    Lee, Jinwoo; Gregory, Sonia M; Nelson, Elizabeth A; White, Judith M; Tamm, Lukas K

    2016-01-01

    Ebola virus (EBOV) enters cells from late endosomes/lysosomes under mildly acidic conditions. Entry by fusion with the endosomal membrane requires the fusion loop (FL, residues 507-560) of the EBOV surface glycoprotein to undergo a pH-dependent conformational change. To find the pH trigger for this reaction we mutated multiple conserved histidines and charged and uncharged hydrophilic residues in the FL and measured their activity by liposome fusion and cell entry of virus-like particles. The FL location in the membrane was assessed by NMR using soluble and lipid-bound paramagnetic relaxation agents. While we could not identify a single residue to be alone responsible for pH triggering, we propose that a distributed pH effect over multiple residues induces the conformational change that enhances membrane insertion and triggers the fusion activity of the EBOV FL.

  7. The Roles of Histidines and Charged Residues as Potential Triggers of a Conformational Change in the Fusion Loop of Ebola Virus Glycoprotein

    PubMed Central

    Lee, Jinwoo; Gregory, Sonia M.; Nelson, Elizabeth A.; White, Judith M.; Tamm, Lukas K.

    2016-01-01

    Ebola virus (EBOV) enters cells from late endosomes/lysosomes under mildly acidic conditions. Entry by fusion with the endosomal membrane requires the fusion loop (FL, residues 507–560) of the EBOV surface glycoprotein to undergo a pH-dependent conformational change. To find the pH trigger for this reaction we mutated multiple conserved histidines and charged and uncharged hydrophilic residues in the FL and measured their activity by liposome fusion and cell entry of virus-like particles. The FL location in the membrane was assessed by NMR using soluble and lipid-bound paramagnetic relaxation agents. While we could not identify a single residue to be alone responsible for pH triggering, we propose that a distributed pH effect over multiple residues induces the conformational change that enhances membrane insertion and triggers the fusion activity of the EBOV FL. PMID:27023721

  8. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry

    SciTech Connect

    Ruel, Nancy . E-mail: n-ruel@northwestern.edu; Zago, Anna . E-mail: anna_zago@acgtinc.com; Spear, Patricia G. . E-mail: p-spear@northwestern.edu

    2006-03-01

    Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutant forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.

  9. Dual Mutation Events in the Haemagglutinin-Esterase and Fusion Protein from an Infectious Salmon Anaemia Virus HPR0 Genotype Promote Viral Fusion and Activation by an Ubiquitous Host Protease.

    PubMed

    Fourrier, Mickael; Lester, Katherine; Markussen, Turhan; Falk, Knut; Secombes, Christopher J; McBeath, Alastair; Collet, Bertrand

    2015-01-01

    In Infectious salmon anaemia virus (ISAV), deletions in the highly polymorphic region (HPR) in the near membrane domain of the haemagglutinin-esterase (HE) stalk, influence viral fusion. It is suspected that selected mutations in the associated Fusion (F) protein may also be important in regulating fusion activity. To better understand the underlying mechanisms involved in ISAV fusion, several mutated F proteins were generated from the Scottish Nevis and Norwegian SK779/06 HPR0. Co-transfection with constructs encoding HE and F were performed, fusion activity assessed by content mixing assay and the degree of proteolytic cleavage by western blot. Substitutions in Nevis F demonstrated that K276 was the most likely cleavage site in the protein. Furthermore, amino acid substitutions at three sites and two insertions, all slightly upstream of K276, increased fusion activity. Co-expression with HE harbouring a full-length HPR produced high fusion activities when trypsin and low pH were applied. In comparison, under normal culture conditions, groups containing a mutated HE with an HPR deletion were able to generate moderate fusion levels, while those with a full length HPR HE could not induce fusion. This suggested that HPR length may influence how the HE primes the F protein and promotes fusion activation by an ubiquitous host protease and/or facilitate subsequent post-cleavage refolding steps. Variations in fusion activity through accumulated mutations on surface glycoproteins have also been reported in other orthomyxoviruses and paramyxoviruses. This may in part contribute to the different virulence and tissue tropism reported for HPR0 and HPR deleted ISAV genotypes.

  10. Evidence that maturation of the N-linked glycans of the respiratory syncytial virus (RSV) glycoproteins is required for virus-mediated cell fusion: The effect of {alpha}-mannosidase inhibitors on RSV infectivity

    SciTech Connect

    McDonald, Terence P.; Jeffree, Chris E.; Li, Ping; Rixon, Helen W. McL.; Brown, Gaie; Aitken, James D.; MacLellan, Kirsty; Sugrue, Richard J. . E-mail: rjsugrue@ntu.edu.sg

    2006-07-05

    Glycan heterogeneity of the respiratory syncytial virus (RSV) fusion (F) protein was demonstrated by proteomics. The effect of maturation of the virus glycoproteins-associated glycans on virus infectivity was therefore examined using the {alpha}-mannosidase inhibitors deoxymannojirimycin (DMJ) and swainsonine (SW). In the presence of SW the N-linked glycans on the F protein appeared in a partially mature form, whereas in the presence of DMJ no maturation of the glycans was observed. Neither inhibitor had a significant effect on G protein processing or on the formation of progeny virus. Although the level of infectious virus and syncytia formation was not significantly affected by SW-treatment, DMJ-treatment correlated with a one hundred-fold reduction in virus infectivity. Our data suggest that glycan maturation of the RSV glycoproteins, in particular those on the F protein, is an important step in virus maturation and is required for virus infectivity.

  11. DC-SIGN Facilitates Fusion of Dendritic Cells with Human T-Cell Leukemia Virus Type 1-Infected Cells

    PubMed Central

    Ceccaldi, Pierre-Emmanuel; Delebecque, Frédéric; Prevost, Marie-Christine; Moris, Arnaud; Abastado, Jean-Pierre; Gessain, Antoine; Schwartz, Olivier; Ozden, Simona

    2006-01-01

    Interactions between the oncogenic retrovirus human T-cell leukemia virus type 1 (HTLV-1) and dendritic cells (DCs) are poorly characterized. We show here that monocyte-derived DCs form syncytia and are infected upon coculture with HTLV-1-infected lymphocytes. We examined the role of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a C-type lectin expressed in DCs, in HTLV-1-induced syncytium formation. DC-SIGN is known to bind with high affinity to various viral envelope glycoproteins, including human immunodeficiency virus (HIV) and hepatitis C virus, as well as to the cellular receptors ICAM-2 and ICAM-3. After cocultivating DCs and HTLV-1-infected cells, we found that anti-DC-SIGN monoclonal antibodies (MAbs) were able to decrease the number and size of HTLV-1-induced syncytia. Moreover, expression of the lectin in epithelial-cell lines dramatically enhanced the ability to fuse with HTLV-1-positive cells. Interestingly, in contrast to the envelope (Env) glycoproteins of HIV and other viruses, that of HTLV-1 does not bind directly to DC-SIGN. The facilitating role of the lectin in HTLV-1 syncytium formation is mediated by its interaction with ICAM-2 and ICAM-3, as demonstrated by use of MAbs directed against these adhesion molecules. Altogether, our results indicate that DC-SIGN facilitates HTLV-1 infection and fusion of DCs through an ICAM-dependent mechanism. PMID:16641270

  12. Identification of Linear Heparin-Binding Peptides Derived from Human Respiratory Syncytial Virus Fusion Glycoprotein That Inhibit Infectivity▿

    PubMed Central

    Crim, Roberta L.; Audet, Susette A.; Feldman, Steven A.; Mostowski, Howard S.; Beeler, Judy A.

    2007-01-01

    It has been shown previously that the fusion glycoprotein of human respiratory syncytial virus (RSV-F) interacts with cellular heparan sulfate. Synthetic overlapping peptides derived from the F-protein sequence of RSV subtype A (strain A2) were tested for their ability to bind heparin using heparin-agarose affinity chromatography (HAAC). This evaluation identified 15 peptides representing eight linear heparin-binding domains (HBDs) located within F1 and F2 and spanning the protease cleavage activation site. All peptides bound to Vero and A549 cells, and binding was inhibited by soluble heparins and diminished by either enzymatic treatment to remove cell surface glycosaminoglycans or by treatment with sodium chlorate to decrease cellular sulfation. RSV-F HBD peptides were less likely to bind to glycosaminoglycan-deficient CHO-745 cells than parental CHO-K1 cells that express these molecules. Three RSV-F HBD peptides (F16, F26, and F55) inhibited virus infectivity; two of these peptides (F16 and F55) inhibited binding of virus to Vero cells, while the third (F26) did not. These studies provided evidence that two of the linear HBDs mapped by peptides F16 and F55 may mediate one of the first steps in the attachment of virus to cells while the third, F26, inhibited infectivity at a postattachment step, suggesting that interactions with cell surface glycosaminoglycans may play a role in infectivity of some RSV strains. PMID:17050595

  13. Development of a subgenomic clone system for Kyasanur Forest disease virus.

    PubMed

    Cook, Bradley W M; Nikiforuk, Aidan M; Cutts, Todd A; Kobasa, Darwyn; Court, Deborah A; Theriault, Steven S

    2016-07-01

    Emerging tropical viruses pose an increasing threat to public health because social, economic and environmental factors such as global trade and deforestation allow for their migration into previously unexposed populations and ecological niches. Among such viruses, Kyasanur Forest disease virus (KFDV) deserves particular recognition because it causes hemorrhagic fever. This work describes the completion of an antiviral testing platform (subgenomic system) for KFDV that could be used to quickly and safely screen compounds capable of inhibiting KFDV replication without the requirement for high containment, as the structural genes have been replaced with a luciferase reporter gene precluding the generation of infectious particles. The coordination of KFDV kinetics with the replication characteristics of the subgenomic system has provided additional insight into the timing of flavivirus replication events, as the genetically engineered KFDV genome began replication as early as 2h post cellular entry. Possession of such antiviral testing platforms by public health agencies should accelerate the testing of antiviral drugs against emerging or recently emerged viruses mitigating the effects of their disease and transmission. Copyright © 2016. Published by Elsevier GmbH.

  14. Viruses accumulate in aging infection centers of a fungal forest pathogen

    PubMed Central

    Vainio, Eeva J; Müller, Michael M; Korhonen, Kari; Piri, Tuula; Hantula, Jarkko

    2015-01-01

    Fungal viruses (mycoviruses) with RNA genomes are believed to lack extracellular infective particles. These viruses are transmitted laterally among fungal strains through mycelial anastomoses or vertically via their infected spores, but little is known regarding their prevalence and patterns of dispersal under natural conditions. Here, we examined, in detail, the spatial and temporal changes in a mycovirus community and its host fungus Heterobasidion parviporum, the most devastating fungal pathogen of conifers in the Boreal forest region. During the 7-year sampling period, viruses accumulated in clonal host individuals as a result of indigenous viruses spreading within and between clones as well as novel strains arriving via airborne spores. Viral community changes produced pockets of heterogeneity within large H. parviporum clones. The appearance of novel viral infections in aging clones indicated that transient cell-to-cell contacts between Heterobasidion strains are likely to occur more frequently than what was inferred from genotypic analyses. Intraspecific variation was low among the three partitivirus species at the study site, whereas the unassigned viral species HetRV6 was highly polymorphic. The accumulation of point mutations during persistent infections resulted in viral diversification, that is, the presence of nearly identical viral sequence variants within single clones. Our results also suggest that co-infections by distantly related viral species are more stable than those between conspecific strains, and mutual exclusion may play a role in determining mycoviral communities. PMID:25126757

  15. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.

    PubMed

    Budimir, Natalija; Huckriede, Anke; Meijerhof, Tjarko; Boon, Louis; Gostick, Emma; Price, David A; Wilschut, Jan; de Haan, Aalzen

    2012-01-01

    The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored. In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity and full immunogenicity of the vaccine.

  16. Canine Distemper Virus Envelope Protein Interactions Modulated by Hydrophobic Residues in the Fusion Protein Globular Head

    PubMed Central

    Avila, Mislay; Khosravi, Mojtaba; Alves, Lisa; Ader-Ebert, Nadine; Bringolf, Fanny; Zurbriggen, Andreas; Plemper, Richard K.

    2014-01-01

    Membrane fusion for morbillivirus cell entry relies on critical interactions between the viral fusion (F) and attachment (H) envelope glycoproteins. Through extensive mutagenesis of an F cavity recently proposed to contribute to F's interaction with the H protein, we identified two neighboring hydrophobic residues responsible for severe F-to-H binding and fusion-triggering deficiencies when they were mutated in combination. Since both residues reside on one side of the F cavity, the data suggest that H binds the F globular head domain sideways. PMID:25355896

  17. Electrostatic Architecture of the Infectious Salmon Anemia Virus (ISAV) Core Fusion Protein Illustrates a Carboxyl-Carboxylate pH Sensor*

    PubMed Central

    Cook, Jonathan D.; Soto-Montoya, Hazel; Korpela, Markus K.; Lee, Jeffrey E.

    2015-01-01

    Segment 5, ORF 1 of the infectious salmon anemia virus (ISAV) genome, encodes for the ISAV F protein, which is responsible for viral-host endosomal membrane fusion during a productive ISAV infection. The entry machinery of ISAV is composed of a complex of the ISAV F and ISAV hemagglutinin esterase (HE) proteins in an unknown stoichiometry prior to receptor engagement by ISAV HE. Following binding of the receptor to ISAV HE, dissociation of the ISAV F protein from HE, and subsequent endocytosis, the ISAV F protein resolves into a fusion-competent oligomeric state. Here, we present a 2.1 Å crystal structure of the fusion core of the ISAV F protein determined at low pH. This structure has allowed us to unambiguously demonstrate that the ISAV entry machinery exhibits typical class I viral fusion protein architecture. Furthermore, we have determined stabilizing factors that accommodate the pH-dependent mode of ISAV transmission, and our structure has allowed the identification of a central coil that is conserved across numerous and varied post-fusion viral glycoprotein structures. We then discuss a mechanistic model of ISAV fusion that parallels the paramyxoviral class I fusion strategy wherein attachment and fusion are relegated to separate proteins in a similar fashion to ISAV fusion. PMID:26082488

  18. Electrostatic Architecture of the Infectious Salmon Anemia Virus (ISAV) Core Fusion Protein Illustrates a Carboxyl-Carboxylate pH Sensor.

    PubMed

    Cook, Jonathan D; Soto-Montoya, Hazel; Korpela, Markus K; Lee, Jeffrey E

    2015-07-24

    Segment 5, ORF 1 of the infectious salmon anemia virus (ISAV) genome, encodes for the ISAV F protein, which is responsible for viral-host endosomal membrane fusion during a productive ISAV infection. The entry machinery of ISAV is composed of a complex of the ISAV F and ISAV hemagglutinin esterase (HE) proteins in an unknown stoichiometry prior to receptor engagement by ISAV HE. Following binding of the receptor to ISAV HE, dissociation of the ISAV F protein from HE, and subsequent endocytosis, the ISAV F protein resolves into a fusion-competent oligomeric state. Here, we present a 2.1 Å crystal structure of the fusion core of the ISAV F protein determined at low pH. This structure has allowed us to unambiguously demonstrate that the ISAV entry machinery exhibits typical class I viral fusion protein architecture. Furthermore, we have determined stabilizing factors that accommodate the pH-dependent mode of ISAV transmission, and our structure has allowed the identification of a central coil that is conserved across numerous and varied post-fusion viral glycoprotein structures. We then discuss a mechanistic model of ISAV fusion that parallels the paramyxoviral class I fusion strategy wherein attachment and fusion are relegated to separate proteins in a similar fashion to ISAV fusion.

  19. Prediction of antiviral peptides derived from viral fusion proteins potentially active against herpes simplex and influenza A viruses

    PubMed Central

    Jesús, Torres; Rogelio, López; Abraham, Cetina; Uriel, López; J- Daniel, García; Alfonso, Méndez-Tenorio; Lilia, Barrón Blanca

    2012-01-01

    There are very few antiviral drugs available to fight viral infections and the appearance of viral strains resistant to these antivirals is not a rare event. Hence, the design of new antiviral drugs is important. We describe the prediction of peptides with antiviral activity (AVP) derived from the viral glycoproteins involved in the entrance of herpes simplex (HSV) and influenza A viruses into their host cells. It is known, that during this event viral glycoproteins suffer several conformational changes due to protein-protein interactions, which lead to membrane fusion between the viral envelope and the cellular membrane. Our hypothesis is that AVPs can be derived from these viral glycoproteins, specifically from regions highly conserved in amino acid sequences, which at the same time have the physicochemical properties of being highly exposed (antigenic), hydrophilic, flexible, and charged, since these properties are important for protein-protein interactions. For that, we separately analyzed the HSV glycoprotein H and B, and influenza A viruses hemagglutinin (HA), using several bioinformatics tools. A set of multiple alignments was carried out, to find the most conserved regions in the amino acid sequences. Then, the physicochemical properties indicated above were analyzed. We predicted several peptides 12-20 amino acid length which by docking analysis were able to interact with the fusion viral glycoproteins and thus may prevent conformational changes in them, blocking the viral infection. Our strategy to design AVPs seems to be very promising since the peptides were synthetized and their antiviral activities have produced very encouraging results. PMID:23144542

  20. Downregulation of human immunodeficiency virus type 1 Gag expression by a gp41 cytoplasmic domain fusion protein

    SciTech Connect

    Chan, W.-E.; Chen, Steve S.-L. . E-mail: schen@ibms.sinica.edu.tw

    2006-05-10

    The cytoplasmic domain of human immunodeficiency virus type 1 (HIV-1) envelope (Env) transmembrane protein gp41 interacts with the viral matrix MA protein, which facilitates incorporation of the trimeric Env complex into the virus. It is thus feasible to design an anti-HIV strategy targeting this interaction. We herein describe that Gag expression can be downregulated by a cytoplasmic domain fusion protein of the Env transmembrane protein, {beta}-galactosidase ({beta}-gal)/706-856, which contains the cytoplasmic tail of gp41 fused at the C terminus of Escherichia coli {beta}-gal. This mediator depleted intracellular Gag molecules in a dose-dependent manner. Sucrose gradient ultracentrifugation and confocal microscopy revealed that Gag and {beta}-gal/706-856 had stable interactions and formed aggregated complexes in perinuclear, intracellular sites. Pulse-chase and cycloheximide chase analyses demonstrated that this mediator enhanced unmyristylated Gag degradation. The results demonstrate a novel mode of HIV-1 Gag downregulation by directing Gag to an intracellular site via the interaction of Gag with a gp41 cytoplasmic domain fusion protein.

  1. Membrane insertion of fusion peptides from Ebola and Marburg viruses studied by replica-exchange molecular dynamics simulations.

    PubMed

    Olson, Mark A; Lee, Michael S; Yeh, In-Chul

    2017-01-28

    This work presents replica-exchange molecular dynamics simulations of inserting a 16-residue Ebola virus fusion peptide into a membrane bilayer. A computational approach is applied for modeling the peptide at the explicit all-atom level and the membrane-aqueous bilayer by a generalized Born continuum model with a smoothed switching function (GBSW). We provide an assessment of the model calculations in terms of three metrics: (1) the ability to reproduce the NMR structure of the peptide determined in the presence of SDS micelles and comparable structural data on other fusion peptides; (2) determination of the effects of the mutation Trp-8 to Ala and sequence discrimination of the homologous Marburg virus; and (3) calculation of potentials of mean force for estimating the partitioning free energy and their comparison to predictions from the Wimley-White interfacial hydrophobicity scale. We found the GBSW implicit membrane model to produce results of limited accuracy in conformational properties of the peptide when compared to the NMR structure, yet the model resolution is sufficient to determine the effect of sequence differentiation on peptide-membrane integration. © 2016 Wiley Periodicals, Inc.

  2. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    SciTech Connect

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.; Fletcher, P.; O’Donnell, V.; Holinka, L.G.; Carey, L.B.; Lu, X.; Nieva, J.L.; Borca, M.V.

    2014-05-15

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.

  3. Computational analysis of perturbations in the post-fusion Dengue virus envelope protein highlights known epitopes and conserved residues in the Zika virus

    PubMed Central

    Chakraborty, Sandeep

    2016-01-01

    The dramatic transformation of the Zika virus (ZIKV) from a relatively unknown virus to a pathogen generating global-wide panic has exposed the dearth of detailed knowledge about this virus. Decades of research in the related Dengue virus (DENV), finally culminating in a vaccine registered for use in endemic regions (CYD-TDV) in three countries, provides key insights in developing strategies for tackling ZIKV, which has caused global panic to microcephaly and Guillain-Barre Syndrome. Dengue virus (DENV), a member of the family Flaviviridae, the causal agent of the self-limiting Dengue fever and the potentially fatal hemorrhagic fever/dengue shock syndrome, has been a scourge in tropical countries for many centuries. The recently solved structure of mature ZIKV (PDB ID:5IRE) has provided key insights into the structure of the envelope (E) and membrane (M) proteins, the primary target of neutralizing antibodies. The previously established MEPP methodology compares two conformations of the same protein and identifies residues with significant spatial and electrostatic perturbations. In the current work, MEPP analyzed the pre-and post-fusion DENV type 2 envelope (E) protein, and identified several known epitopes (His317, Tyr299, Glu26, Arg188, etc.) (MEPPitope). These residues are overwhelmingly conserved in ZIKV and all DENV serotypes, and also enumerates residue pairs that undergo significant polarity reversal. Characterization of α-helices in E-proteins show that α1 is not conserved in the sequence space of ZIKV and DENV. Furthermore, perturbation of α1 in the post-fusion DENV structure includes a known epitope Asp215, a residue absent in the pre-fusion α1. A cationic β-sheet in the GAG-binding domain that is stereochemically equivalent in ZIKV and all DENV serotypes is also highlighted due to a residue pair (Arg286-Arg288) that has a significant electrostatic polarity reversal upon fusion. Finally, two highly conserved residues (Thr32 and Thr40), with little

  4. Fusion of AIRSAR and TM Data for Parameter Classification and Estimation in Dense and Hilly Forests

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta; Dungan, J. L.; Coughlan, J. C.

    2000-01-01

    The expanded remotely sensed data space consisting of coincident radar backscatter and optical reflectance data provides for a more complete description of the Earth surface. This is especially useful where many parameters are needed to describe a certain scene, such as in the presence of dense and complex-structured vegetation or where there is considerable underlying topography. The goal of this paper is to use a combination of radar and optical data to develop a methodology for parameter classification for dense and hilly forests, and further, class-specific parameter estimation. The area to be used in this study is the H. J. Andrews Forest in Oregon, one of the Long-Term Ecological Research (LTER) sites in the US. This area consists of various dense old-growth conifer stands, and contains significant topographic relief. The Andrews forest has been the subject of many ecological studies over several decades, resulting in an abundance of ground measurements. Recently, biomass and leaf-area index (LAI) values for approximately 30 reference stands have also become available which span a large range of those parameters. The remote sensing data types to be used are the C-, L-, and P-band polarimetric radar data from the JPL airborne SAR (AIRSAR), the C-band single-polarization data from the JPL topographic SAR (TOPSAR), and the Thematic Mapper (TM) data from Landsat, all acquired in late April 1998. The total number of useful independent data channels from the AIRSAR is 15 (three frequencies, each with three unique polarizations and amplitude and phase of the like-polarized correlation), from the TOPSAR is 2 (amplitude and phase of the interferometric correlation), and from the TM is 6 (the thermal band is not used). The range pixel spacing of the AIRSAR is 3.3m for C- and L-bands and 6.6m for P-band. The TOPSAR pixel spacing is 10m, and the TM pixel size is 30m. To achieve parameter classification, first a number of parameters are defined which are of interest to

  5. Human parainfluenza virus infection of the airway epithelium: viral hemagglutinin-neuraminidase regulates fusion protein activation and modulates infectivity.

    PubMed

    Palermo, Laura M; Porotto, Matteo; Yokoyama, Christine C; Palmer, Samantha G; Mungall, Bruce A; Greengard, Olga; Niewiesk, Stefan; Moscona, Anne

    2009-07-01

    Three discrete activities of the paramyxovirus hemagglutinin-neuraminidase (HN) protein, receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein, each affect the promotion of viral fusion and entry. For human parainfluenza virus type 3 (HPIV3), the effects of specific mutations that alter these functions of the receptor-binding protein have been well characterized using cultured monolayer cells, which have identified steps that are potentially relevant to pathogenesis. In the present study, proposed mechanisms that are relevant to pathogenesis were tested in natural host cell cultures, a model of the human airway epithelium (HAE) in which primary HAE cells are cultured at an air-liquid interface and retain functional properties. Infection of HAE cells with wild-type HPIV3 and variant viruses closely reflects that seen in an animal model, the cotton rat, suggesting that HAE cells provide an ideal system for assessing the interplay of host cell and viral factors in pathogenesis and for screening for inhibitory molecules that would be effective in vivo. Both HN's receptor avidity and the function and timing of F activation by HN require a critical balance for the establishment of ongoing infection in the HAE, and these HN functions independently modulate the production of active virions. Alterations in HN's F-triggering function lead to the release of noninfectious viral particles and a failure of the virus to spread. The finding that the dysregulation of F triggering prohibits successful infection in HAE cells suggests that antiviral strategies targeted to HN's F-triggering activity may have promise in vivo.

  6. Relationship between SU Subdomains That Regulate the Receptor-Mediated Transition from the Native (Fusion-Inhibited) to the Fusion-Active Conformation of the Murine Leukemia Virus Glycoprotein

    PubMed Central

    Lavillette, Dimitri; Ruggieri, Alessia; Boson, Bertrand; Maurice, Marielle; Cosset, François-Loïc

    2002-01-01

    Envelope glycoproteins (Env) of retroviruses are trimers of SU (surface) and TM (transmembrane) heterodimers and are expressed on virions in fusion-competent forms that are likely to be metastable. Activation of the viral receptor-binding domain (RBD) via its interaction with a cell surface receptor is thought to initiate a cascade of events that lead to refolding of the Env glycoprotein into its stable fusion-active conformation. While the fusion-active conformation of the TM subunit has been described in detail for several retroviruses, little is known about the fusion-competent structure of the retroviral glycoproteins or the molecular events that mediate the transition between the two conformations. By characterizing Env chimeras between the ecotropic and amphotropic murine leukemia virus (MLV) SUs as well as a set of point mutants, we show that alterations of the conformation of the SU glycoprotein strongly elevate Env fusogenicity by disrupting the stability of the Env complex. Compensatory mutations that restored both Env stability and fusion control were also identified, allowing definition of interactions within the Env complex that maintain the stability of the native Env complex. We show that, in the receptor-unbound form, structural interactions between the N terminus of the viral RBD (NTR domain), the proline-rich region (PRR), and the distal part of the C-terminal domain of the SU subunit maintain a conformation of the glycoprotein that is fusion inhibitory. Additionally, we identified mutations that disrupt this fusion-inhibitory conformation and allow fusion activation in the absence of viral receptors, provided that receptor-activated RBD fragments are added in trans during infection. Other mutations were identified that allow fusion activation in the absence of receptors for both the viral glycoprotein and the trans-acting RBD. Finally, we found mutations of the SU that bypass in cis the requirement for the NTR domain in fusion activation. All

  7. Relationship between SU subdomains that regulate the receptor-mediated transition from the native (fusion-inhibited) to the fusion-active conformation of the murine leukemia virus glycoprotein.

    PubMed

    Lavillette, Dimitri; Ruggieri, Alessia; Boson, Bertrand; Maurice, Marielle; Cosset, François-Loïc

    2002-10-01

    Envelope glycoproteins (Env) of retroviruses are trimers of SU (surface) and TM (transmembrane) heterodimers and are expressed on virions in fusion-competent forms that are likely to be metastable. Activation of the viral receptor-binding domain (RBD) via its interaction with a cell surface receptor is thought to initiate a cascade of events that lead to refolding of the Env glycoprotein into its stable fusion-active conformation. While the fusion-active conformation of the TM subunit has been described in detail for several retroviruses, little is known about the fusion-competent structure of the retroviral glycoproteins or the molecular events that mediate the transition between the two conformations. By characterizing Env chimeras between the ecotropic and amphotropic murine leukemia virus (MLV) SUs as well as a set of point mutants, we show that alterations of the conformation of the SU glycoprotein strongly elevate Env fusogenicity by disrupting the stability of the Env complex. Compensatory mutations that restored both Env stability and fusion control were also identified, allowing definition of interactions within the Env complex that maintain the stability of the native Env complex. We show that, in the receptor-unbound form, structural interactions between the N terminus of the viral RBD (NTR domain), the proline-rich region (PRR), and the distal part of the C-terminal domain of the SU subunit maintain a conformation of the glycoprotein that is fusion inhibitory. Additionally, we identified mutations that disrupt this fusion-inhibitory conformation and allow fusion activation in the absence of viral receptors, provided that receptor-activated RBD fragments are added in trans during infection. Other mutations were identified that allow fusion activation in the absence of receptors for both the viral glycoprotein and the trans-acting RBD. Finally, we found mutations of the SU that bypass in cis the requirement for the NTR domain in fusion activation. All

  8. Predicting host tropism of influenza A virus proteins using random forest.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2014-01-01

    Majority of influenza A viruses reside and circulate among animal populations, seldom infecting humans due to host range restriction. Yet when some avian strains do acquire the ability to overcome species barrier, they might become adapted to humans, replicating efficiently and causing diseases, leading to potential pandemic. With the huge influenza A virus reservoir in wild birds, it is a cause for concern when a new influenza strain emerges with the ability to cross host species barrier, as shown in light of the recent H7N9 outbreak in China. Several influenza proteins have been shown to be major determinants in host tropism. Further understanding and determining host tropism would be important in identifying zoonotic influenza virus strains capable of crossing species barrier and infecting humans. In this study, computational models for 11 influenza proteins have been constructed using the machine learning algorithm random forest for prediction of host tropism. The prediction models were trained on influenza protein sequences isolated from both avian and human samples, which were transformed into amino acid physicochemical properties feature vectors. The results were highly accurate prediction models (ACC>96.57; AUC>0.980; MCC>0.916) capable of determining host tropism of individual influenza proteins. In addition, features from all 11 proteins were used to construct a combined model to predict host tropism of influenza virus strains. This would help assess a novel influenza strain's host range capability. From the prediction models constructed, all achieved high prediction performance, indicating clear distinctions in both avian and human proteins. When used together as a host tropism prediction system, zoonotic strains could potentially be identified based on different protein prediction results. Understanding and predicting host tropism of influenza proteins lay an important foundation for future work in constructing computation models capable of directly

  9. Predicting host tropism of influenza A virus proteins using random forest

    PubMed Central

    2014-01-01

    Background Majority of influenza A viruses reside and circulate among animal populations, seldom infecting humans due to host range restriction. Yet when some avian strains do acquire the ability to overcome species barrier, they might become adapted to humans, replicating efficiently and causing diseases, leading to potential pandemic. With the huge influenza A virus reservoir in wild birds, it is a cause for concern when a new influenza strain emerges with the ability to cross host species barrier, as shown in light of the recent H7N9 outbreak in China. Several influenza proteins have been shown to be major determinants in host tropism. Further understanding and determining host tropism would be important in identifying zoonotic influenza virus strains capable of crossing species barrier and infecting humans. Results In this study, computational models for 11 influenza proteins have been constructed using the machine learning algorithm random forest for prediction of host tropism. The prediction models were trained on influenza protein sequences isolated from both avian and human samples, which were transformed into amino acid physicochemical properties feature vectors. The results were highly accurate prediction models (ACC>96.57; AUC>0.980; MCC>0.916) capable of determining host tropism of individual influenza proteins. In addition, features from all 11 proteins were used to construct a combined model to predict host tropism of influenza virus strains. This would help assess a novel influenza strain's host range capability. Conclusions From the prediction models constructed, all achieved high prediction performance, indicating clear distinctions in both avian and human proteins. When used together as a host tropism prediction system, zoonotic strains could potentially be identified based on different protein prediction results. Understanding and predicting host tropism of influenza proteins lay an important foundation for future work in constructing computation

  10. Enhanced growth of influenza vaccine seed viruses in vero cells mediated by broadening the optimal pH range for virus membrane fusion.

    PubMed

    Murakami, Shin; Horimoto, Taisuke; Ito, Mutsumi; Takano, Ryo; Katsura, Hiroaki; Shimojima, Masayuki; Kawaoka, Yoshihiro

    2012-02-01

    Vaccination is one of the most effective preventive measures to combat influenza. Prospectively, cell culture-based influenza vaccines play an important role for robust vaccine production in both normal settings and urgent situations, such as during the 2009 pandemic. African green monkey Vero cells are recommended by the World Health Organization as a safe substrate for influenza vaccine production for human use. However, the growth of influenza vaccine seed viruses is occasionally suboptimal in Vero cells, which places limitations on their usefulness for enhanced vaccine production. Here, we present a strategy for the development of vaccine seed viruses with enhanced growth in Vero cells by changing an amino acid residue in the stem region of the HA2 subunit of the hemagglutinin (HA) molecule. This mutation optimized the pH for HA-mediated membrane fusion in Vero cells and enhanced virus growth 100 to 1,000 times in the cell line, providing a promising strategy for cell culture-based influenza vaccines.

  11. Trivalency of a Nanobody Specific for the Human Respiratory Syncytial Virus Fusion Glycoprotein Drastically Enhances Virus Neutralization and Impacts Escape Mutant Selection.

    PubMed

    Palomo, Concepción; Mas, Vicente; Detalle, Laurent; Depla, Erik; Cano, Olga; Vázquez, Mónica; Stortelers, Catelijne; Melero, José A

    2016-11-01

    ALX-0171 is a trivalent Nanobody derived from monovalent Nb017 that binds to antigenic site II of the human respiratory syncytial virus (hRSV) fusion (F) glycoprotein. ALX-0171 is about 6,000 to 10,000 times more potent than Nb017 in neutralization tests with strains of hRSV antigenic groups A and B. To explore the effect of this enhanced neutralization on escape mutant selection, viruses resistant to either ALX-0171 or Nb017 were isolated after serial passage of the hRSV Long strain in the presence of suboptimal concentrations of the respective Nanobodies. Resistant viruses emerged notably faster with Nb017 than with ALX-0171 and in both cases contained amino acid changes in antigenic site II of hRSV F. Detailed binding and neutralization analyses of these escape mutants as well as previously described mutants resistant to certain monoclonal antibodies (MAbs) offered a comprehensive description of site II mutations which are relevant for neutralization by MAbs and Nanobodies. Notably, ALX-0171 showed a sizeable neutralization potency with most escape mutants, even with some of those selected with the Nanobody, and these findings make ALX-0171 an attractive antiviral for treatment of hRSV infections.

  12. The Hemagglutinin-Esterase Fusion Glycoprotein Is a Primary Determinant of the Exceptional Thermal and Acid Stability of Influenza D Virus.

    PubMed

    Yu, Jieshi; Hika, Busha; Liu, Runxia; Sheng, Zizhang; Hause, Ben M; Li, Feng; Wang, Dan

    2017-01-01

    Influenza D virus (IDV) is unique among four types of influenza viruses in that it utilizes cattle as a primary reservoir. The thermal and acid stability of IDV were examined and directly compared with those of influenza A virus (IAV), influenza B virus (IBV), and influenza C virus (ICV). The results of our experiments demonstrated that only IDV had a high residual infectivity (~2.5 log units of 50% tissue culture infective dose [TCID50]/ml) after a 60-min exposure to 53°C in solution at a neutral pH, and remarkably, IDV retained this infectivity even after exposure to 53°C for 120 min. Furthermore, the data showed that IDV was extremely resistant to inactivation by low pH. After being treated at pH 3.0 for 30 min, IDV lost only approximately 20% of its original infectiousness, while all other types of influenza viruses were completely inactivated. Finally, replacement of the hemagglutinin (HA) and neuraminidase (NA) proteins of a temperature- and acid-sensitive IAV with the hemagglutinin-esterase fusion (HEF) protein of a stable IDV through a reverse genetic system largely rendered the recombinant IAVs resistant to high-temperature and low-pH treatments. Together, these results indicated that the HEF glycoprotein is a primary determinant of the exceptional temperature and acid tolerance of IDV. Further investigation into the viral entry and fusion mechanism mediated by the intrinsically stable HEF protein of IDV may offer novel insights into how the fusion machinery of influenza viruses evolve to achieve acid and thermal stability, which as a result promotes the potential to transmit across mammal species. IMPORTANCE Influenza D virus (IDV) utilizes cattle as a primary reservoir. Increased outbreaks in pigs and serological evidence of human infection have raised a concern about the potential of IDV adapting to humans. Here, we directly compared IDV's stability to that of other influenza types (A, B, and C) following prolonged incubation at high temperatures

  13. pH-Dependent Formation and Disintegration of the Influenza A Virus Protein Scaffold To Provide Tension for Membrane Fusion

    PubMed Central

    Shilova, L. A.; Kachala, M. V.; Tashkin, V. Y.; Sokolov, V. S.; Fedorova, N. V.; Baratova, L. A.; Knyazev, D. G.; Zimmerberg, J.; Chizmadzhev, Y. A.

    2015-01-01

    ABSTRACT Influenza virus is taken up from a pH-neutral extracellular milieu into an endosome, whose contents then acidify, causing changes in the viral matrix protein (M1) that coats the inner monolayer of the viral lipid envelope. At a pH of ∼6, M1 interacts with the viral ribonucleoprotein (RNP) in a putative priming stage; at this stage, the interactions of the M1 scaffold coating the lipid envelope are intact. The M1 coat disintegrates as acidification continues to a pH of ∼5 to clear a physical path for the viral genome to transit from the viral interior to the cytoplasm. Here we investigated the physicochemical mechanism of M1's pH-dependent disintegration. In neutral media, the adsorption of M1 protein on the lipid bilayer was electrostatic in nature and reversible. The energy of the interaction of M1 molecules with each other in M1 dimers was about 10 times as weak as that of the interaction of M1 molecules with the lipid bilayer. Acidification drives conformational changes in M1 molecules due to changes in the M1 charge, leading to alterations in their electrostatic interactions. Dropping the pH from 7.1 to 6.0 did not disturb the M1 layer; dropping it lower partially desorbed M1 because of increased repulsion between M1 monomers still stuck to the membrane. Lipid vesicles coated with M1 demonstrated pH-dependent rupture of the vesicle membrane, presumably because of the tension generated by this repulsive force. Thus, the disruption of the vesicles coincident with M1 protein scaffold disintegration at pH 5 likely stretches the lipid membrane to the point of rupture, promoting fusion pore widening for RNP release. IMPORTANCE Influenza remains a top killer of human beings throughout the world, in part because of the influenza virus's rapid binding to cells and its uptake into compartments hidden from the immune system. To attack the influenza virus during this time of hiding, we need to understand the physical forces that allow the internalized virus to

  14. pH-Dependent Formation and Disintegration of the Influenza A Virus Protein Scaffold To Provide Tension for Membrane Fusion.

    PubMed

    Batishchev, O V; Shilova, L A; Kachala, M V; Tashkin, V Y; Sokolov, V S; Fedorova, N V; Baratova, L A; Knyazev, D G; Zimmerberg, J; Chizmadzhev, Y A

    2015-10-14

    Influenza virus is taken up from a pH-neutral extracellular milieu into an endosome, whose contents then acidify, causing changes in the viral matrix protein (M1) that coats the inner monolayer of the viral lipid envelope. At a pH of ~6, M1 interacts with the viral ribonucleoprotein (RNP) in a putative priming stage; at this stage, the interactions of the M1 scaffold coating the lipid envelope are intact. The M1 coat disintegrates as acidification continues to a pH of ~5 to clear a physical path for the viral genome to transit from the viral interior to the cytoplasm. Here we investigated the physicochemical mechanism of M1's pH-dependent disintegration. In neutral media, the adsorption of M1 protein on the lipid bilayer was electrostatic in nature and reversible. The energy of the interaction of M1 molecules with each other in M1 dimers was about 10 times as weak as that of the interaction of M1 molecules with the lipid bilayer. Acidification drives conformational changes in M1 molecules due to changes in the M1 charge, leading to alterations in their electrostatic interactions. Dropping the pH from 7.1 to 6.0 did not disturb the M1 layer; dropping it lower partially desorbed M1 because of increased repulsion between M1 monomers still stuck to the membrane. Lipid vesicles coated with M1 demonstrated pH-dependent rupture of the vesicle membrane, presumably because of the tension generated by this repulsive force. Thus, the disruption of the vesicles coincident with M1 protein scaffold disintegration at pH 5 likely stretches the lipid membrane to the point of rupture, promoting fusion pore widening for RNP release. Influenza remains a top killer of human beings throughout the world, in part because of the influenza virus's rapid binding to cells and its uptake into compartments hidden from the immune system. To attack the influenza virus during this time of hiding, we need to understand the physical forces that allow the internalized virus to infect the cell. In

  15. A computational approach identifies two regions of Hepatitis C Virus E1 protein as interacting domains involved in viral fusion process.

    PubMed

    Bruni, Roberto; Costantino, Angela; Tritarelli, Elena; Marcantonio, Cinzia; Ciccozzi, Massimo; Rapicetta, Maria; El Sawaf, Gamal; Giuliani, Alessandro; Ciccaglione, Anna Rita

    2009-07-29

    The E1 protein of Hepatitis C Virus (HCV) can be dissected into two distinct hydrophobic regions: a central domain containing an hypothetical fusion peptide (FP), and a C-terminal domain (CT) comprising two segments, a pre-anchor and a trans-membrane (TM) region. In the currently accepted model of the viral fusion process, the FP and the TM regions are considered to be closely juxtaposed in the post-fusion structure and their physical interaction cannot be excluded. In the present study, we took advantage of the natural sequence variability present among HCV strains to test, by purely sequence-based computational tools, the hypothesis that in this virus the fusion process involves the physical interaction of the FP and CT regions of E1. Two computational approaches were applied. The first one is based on the co-evolution paradigm of interacting peptides and consequently on the correlation between the distance matrices generated by the sequence alignment method applied to FP and CT primary structures, respectively. In spite of the relatively low random genetic drift between genotypes, co-evolution analysis of sequences from five HCV genotypes revealed a greater correlation between the FP and CT domains than respect to a control HCV sequence from Core protein, so giving a clear, albeit still inconclusive, support to the physical interaction hypothesis.The second approach relies upon a non-linear signal analysis method widely used in protein science called Recurrence Quantification Analysis (RQA). This method allows for a direct comparison of domains for the presence of common hydrophobicity patterns, on which the physical interaction is based upon. RQA greatly strengthened the reliability of the hypothesis by the scoring of a lot of cross-recurrences between FP and CT peptides hydrophobicity patterning largely outnumbering chance expectations and pointing to putative interaction sites. Intriguingly, mutations in the CT region of E1, reducing the fusion process in

  16. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins.

    PubMed

    Maric, Martina; Haugo, Alison C; Dauer, William; Johnson, David; Roller, Richard J

    2014-07-01

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Protective immunity provided by HLA-A2 epitopes for fusion and hemagglutinin proteins of measles virus

    SciTech Connect

    Oh, Sang Kon . E-mail: sangkono@baylorhealth.edu; Stegman, Brian; Pendleton, C. David; Ota, Martin O.; Pan, C.-H.; Griffin, Diane E.; Burke, Donald S.; Berzofsky, Jay A. . E-mail: berzofsk@helix.nih.gov

    2006-09-01

    Natural infection and vaccination with a live-attenuated measles virus (MV) induce CD8{sup +} T-cell-mediated immune responses that may play a central role in controlling MV infection. In this study, we show that newly identified human HLA-A2 epitopes from MV hemagglutinin (H) and fusion (F) proteins induced protective immunity in HLA-A2 transgenic mice challenged with recombinant vaccinia viruses expressing F or H protein. HLA-A2 epitopes were predicted and synthesized. Five and four peptides from H and F, respectively, bound to HLA-A2 molecules in a T2-binding assay, and four from H and two from F could induce peptide-specific CD8{sup +} T cell responses in HLA-A2 transgenic mice. Further experiments proved that three peptides from H (H9-567, H10-250, and H10-516) and one from F protein (F9-57) were endogenously processed and presented on HLA-A2 molecules. All peptides tested in this study are common to 5 different strains of MV including Edmonston. In both A2K{sup b} and HHD-2 mice, the identified peptide epitopes induced protective immunity against recombinant vaccinia viruses expressing H or F. Because F and H proteins induce neutralizing antibodies, they are major components of new vaccine strategies, and therefore data from this study will contribute to the development of new vaccines against MV infection.

  18. Identification of novel Newcastle disease virus sub-genotype VII-(j) based on the fusion protein.

    PubMed

    Esmaelizad, Majid; Mayahi, Vafa; Pashaei, Maryam; Goudarzi, Hossein

    2017-04-01

    Newcastle disease virus (NDV) is believed to be the cause of fatal poultry disease worldwide. The fusion (F) protein plays a key role in virus pathogenesis, and it is also used for Newcastle disease virus classification. In this study, we determined the complete coding sequence of the F gene in new velogenic NDV isolates with an intravenous pathogenicity index (IVPI) of 1.8 and a mean death time (MDT) of 72 or 48 h. Complete sequences of the F genes of new Iranian isolates were amplified and sequenced in both directions. These isolates were compared to 195 nucleotide sequences from GenBank (available as of 07/17/2016). A phylogenetic tree was constructed for the F gene, using MEGA6 software with statistical analysis based on 500 bootstrap replicates. Evolutionary distances revealed that the new virulent isolates from Iran belonged to genotype VII in a new distinct sub-genotype named VII-(j). This new sub-genotype showed 3% divergence from genotype VIId. Recombination analysis showed that these new isolates were not recombinant NDVs.

  19. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins.

    PubMed

    Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina

    2015-11-15

    Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion.

  20. Using a Split Luciferase Assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins

    PubMed Central

    Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina

    2015-01-01

    Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion. PMID:26022509

  1. Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection.

    PubMed

    Oliver, Stefan L; Yang, Edward; Arvin, Ann M

    2017-01-01

    The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection. The highly infectious, human-restricted pathogen varicella-zoster virus (VZV) causes chickenpox and shingles. Postherpetic

  2. Mutations located on both F1 and F2 subunits of the Newcastle disease virus fusion protein confer resistance to neutralization with monoclonal antibodies.

    PubMed Central

    Neyt, C; Geliebter, J; Slaoui, M; Morales, D; Meulemans, G; Burny, A

    1989-01-01

    The fusion gene sequence of six Newcastle disease virus escape mutants revealed that residues important for the integrity of antigenic site 1 and antigenic site 2 were located, respectively, on the F2 subunit and within the cysteine-rich domain of the F1 subunit. We further report the antibody-binding capacity of these mutants. PMID:2463386

  3. TWELVE ISOLATIONS OF ZIKA VIRUS FROM AEDES (STEGOMYIA) AFRICANUS (THEOBALD) TAKEN IN AND ABOVE A UGANDA FOREST.

    PubMed

    HADDOW, A J; WILLIAMS, M C; WOODALL, J P; SIMPSON, D I; GOMA, L K

    1964-01-01

    In continuation of a series of studies of arboreal mosquitos as virus vectors in Uganda, 12 strains of Zika virus and one strain of another Group B arbovirus were isolated between November 1961 and June 1963 from pools of Aedes (Stegomyia) africanus caught on a 120-foot (36.5-m) tower in Zika forest. For five strains it is known at what height the mosquitos were caught: one was from mosquitos taken at ground level, and the other four were from mosquitos taken in or above the upper canopy after sunset. No small mammal trapped in the forest either on the ground or in the trees showed serum antibody for Zika virus.These findings suggest that in Zika forest, A. (S.) africanus becomes infected from a virus reservoir that is probably not among the small animals tested and that infected mosquitos are liable to be spread widely beyond the forest by convection currents above the tree-tops in the first two or three hours after sunset.

  4. Thermal denaturation of influenza virus and its relationship to membrane fusion.

    PubMed Central

    Epand, Richard M; Epand, Raquel F

    2002-01-01

    The X-31 strain of influenza virus was studied by differential scanning calorimetry (DSC), CD and SDS/PAGE analysis as a function of both temperature and pH. A bromelain-treated virus was also studied by these methods. The major transition observed in the intact virus was a result of the denaturation of the haemagglutinin (HA) protein. At pH 7.4, this transition was similar in the intact virus and the isolated HA, but was absent in the bromelain-treated virus. However, at pH 5 the denaturation temperature and enthalpy were both higher for HA in the virus than in the isolated protein, indicating that HA interacts with other molecular components in the intact virus. The transition observed by DSC occurs at a higher temperature than does the thermal transition observed by CD. The temperature of the CD transition coincides with the temperature at which the fusogenicity of the virus increases, and probably corresponds to the formation of an extended coiled-coil conformation. Analysis by SDS/PAGE at neutral pH under non-reducing conditions demonstrates a selective loss of the HA protein trimer, resulting in the formation of aggregates in the range of temperatures of 55 to 70 degrees C. In contrast, at acidic pH, the HA protein is largely in the monomeric form at 25 degrees C, and there is little change with temperature. There is thus a weakening of the quaternary structure of HA at acidic pH prior to heating. At the temperature at which the virus exhibits an increased fusogenicity at neutral pH, there is a loss of secondary structure and a beginning of a destabilization of the trimeric form of HA. This temperature is lower than that required for the major endothermic peak observed in DSC experiments. The results demonstrate that there is no kinetically trapped high-energy form of HA at neutral pH. PMID:11994048

  5. Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes.

    PubMed

    Firouzamandi, Masoumeh; Moeini, Hassan; Hosseini, Davood; Bejo, Mohd Hair; Omar, Abdul Rahman; Mehrbod, Parvaneh; Ideris, Aini

    2016-03-01

    The present study describes the development of DNA vaccines using the hemagglutinin-neuraminidase (HN) and fusion (F) genes from AF2240 Newcastle disease virus strain, namely pIRES/HN, pIRES/F and pIRES-F/HN. Transient expression analysis of the constructs in Vero cells revealed the successful expression of gene inserts in vitro. Moreover, in vivo experiments showed that single vaccination with the constructed plasmid DNA (pDNA) followed by a boost with inactivated vaccine induced a significant difference in enzyme-linked immunosorbent assay antibody levels (p < 0.05) elicited by either pIRES/F, pIRES/F+ pIRES/HN or pIRES-F/HN at one week after the booster in specific pathogen free chickens when compared with the inactivated vaccine alone. Taken together, these results indicated that recombinant pDNA could be used to increase the efficacy of the inactivated vaccine immunization procedure.

  6. A Histidine Residue of the Influenza Virus Hemagglutinin Controls the pH Dependence of the Conformational Change Mediating Membrane Fusion

    PubMed Central

    Mair, Caroline M.; Meyer, Tim; Schneider, Katjana; Huang, Qiang; Veit, Michael

    2014-01-01

    ABSTRACT The conformational change of the influenza virus hemagglutinin (HA) protein mediating the fusion between the virus envelope and the endosomal membrane was hypothesized to be induced by protonation of specific histidine residues since their pKas match the pHs of late endosomes (pKa of ∼6.0). However, such critical key histidine residues remain to be identified. We investigated the highly conserved His184 at the HA1-HA1 interface and His110 at the HA1-HA2 interface of highly pathogenic H5N1 HA as potential pH sensors. By replacing both histidines with different amino acids and analyzing the effect of these mutations on conformational change and fusion, we found that His184, but not His110, plays an essential role in the pH dependence of the conformational change of HA. Computational modeling of the protonated His184 revealed that His184 is central in a conserved interaction network possibly regulating the pH dependence of conformational change via its pKa. As the propensity of histidine to get protonated largely depends on its local environment, mutation of residues in the vicinity of histidine may affect its pKa. The HA of highly pathogenic H5N1 viruses carries a Glu-to-Arg mutation at position 216 close to His184. By mutation of residue 216 in the highly pathogenic as well as the low pathogenic H5 HA, we observed a significant influence on the pH dependence of conformational change and fusion. These results are in support of a pKa-modulating effect of neighboring residues. IMPORTANCE The main pathogenic determinant of influenza viruses, the hemagglutinin (HA) protein, triggers a key step of the infection process: the fusion of the virus envelope with the endosomal membrane releasing the viral genome. Whereas essential aspects of the fusion-inducing mechanism of HA at low pH are well understood, the molecular trigger of the pH-dependent conformational change inducing fusion has been unclear. We provide evidence that His184 regulates the pH dependence of

  7. Protection against lethal measles virus infection in mice by immune-stimulating complexes containing the hemagglutinin or fusion protein.

    PubMed Central

    Varsanyi, T M; Morein, B; Löve, A; Norrby, E

    1987-01-01

    The importance of each of the two surface glycoproteins of measles virus in active and passive immunization was examined in mice. Infected-cell lysates were depleted of either the hemagglutinin (H) or fusion (F) glycoprotein by using multiple cycles of immunoaffinity chromatography. The products were used to prepare immune-stimulating complexes (iscoms) containing either F or H glycoprotein. Such complexes are highly immunogenic, possibly as a result of effective presentation of viral proteins to the immune system [B. Morein, B. Sundquist, S. Höglund, K. Dalsgaard, and A. Osterhaus, Nature (London) 308:457-460, 1984]. Groups of 3-week-old BALB/c mice were inoculated with the iscom preparations. All animals developed hemolysis-inhibiting antibodies, whereas only sera of animals immunized with the iscoms containing the H glycoprotein had hemagglutination-inhibiting antibodies. Sera from animals immunized with the H or F preparation only precipitated the homologous glycoprotein in radioimmune precipitation assays. The immunized animals were challenged with a lethal dose of the hamster neurotropic variant of measles virus. Of the 7-week-old animals in the nonimmunized control group, 50% died within 10 days after challenge. No animals in the immunized groups showed symptoms of disease throughout the observation period of 3 months. Passive administration of anti-H monoclonal antibodies gave full protection against the 100% lethal acute infection with the hamster neurotropic variant of measles virus in newborn mice, whereas anti-F monoclonal antibodies failed to protect the animals. This study emphasizes that both H and F glycoproteins need to be considered in the development of measles virus subunit vaccines. Images PMID:2960833

  8. Fusion-defective gibbon ape leukemia virus vectors can be rescued by homologous but not heterologous soluble envelope proteins.

    PubMed

    Farrell, Karen B; Ting, Yuan-Tsang; Eiden, Maribeth V

    2002-05-01

    Murine leukemia virus (MLV)-derived envelope proteins containing alterations in or adjacent to the highly conserved PHQ motif present at the N terminus of the envelope surface subunit (SU) are incorporated into vector particles but are not infectious due to a postbinding block to viral entry. These mutants can be rendered infectious by the addition of soluble receptor-binding domain (RBD) proteins in the culture medium. The RBD proteins that rescue the infectivity of these defective MLV vectors can be derived from the same MLV or from other MLVs that use distinct receptors to mediate entry. We have now constructed functional immunologically reactive gibbon ape leukemia virus (GALV) envelope proteins, tagged with a feline leukemia virus (FeLV)-derived epitope tag, which are efficiently incorporated into infectious particles. Tagged GALV envelope proteins bind specifically to cells expressing the phosphate transporter protein Pit1, demonstrating for the first time that Pit1 is the binding receptor for GALV and not a coreceptor or another type of GALV entry factor. We have also determined that GALV particles bearing SU proteins with an insertion C-terminal to the PHQ motif (GALV I(10)) bind Pit1 but fail to infect cells. Incubation with soluble GALV RBD renders GALV I(10) particles infectious, whereas incubation with soluble RBDs from MLV or FeLV-B does not. This finding is consistent with the results obtained by Lauring et al. using FeLV-T, a virus that employs Pit1 as a receptor but requires soluble FeLV RBD for entry. MLV and GALV RBDs are not able to render FeLV-T infectious (A. S. Lauring, M. M. Anderson, and J. Overbaugh, J. Virol. 75:8888-8898, 2001). Together, these results suggest that fusion-defective FeLV-T and GALV are restricted to homologous RBD rescue of infectivity.

  9. Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment.

    PubMed Central

    Puri, A; Booy, F P; Doms, R W; White, J M; Blumenthal, R

    1990-01-01

    Marked differences were observed between the H2 and H3 strains of influenza virus in their sensitivity to pretreatment at low pH. Whereas viral fusion and hemolysis mediated by influenza virus X:31 (H3 subtype) were inactivated by pretreatment of the virus at low pH, influenza virus A/Japan/305/57 (H2 subtype) retained those activities even after a 15-min incubation at pH 5.0 and 37 degrees C. Fusion with erythrocytes was measured by using the octadecylrhodamine-dequenching assay with both intact virions and CV-1 monkey kidney cells expressing hemagglutinin (HA) on the plasma membrane. To study the nature of the differences between the two strains, we examined the effects of low-pH treatment on the conformational change of HA by its susceptibility to protease digestion, exposure of the fusion peptide, and electron microscopy of unstained, frozen, hydrated virus. We found that the respective HA molecules from the two strains assumed different conformational states after exposure to low pH. The relationship between the conformation of HA and its fusogenic activity is discussed in the context of these experiments. Images PMID:2196382

  10. Role for the disulfide-bonded region of human immunodeficiency virus type 1 gp41 in receptor-triggered activation of membrane fusion function

    SciTech Connect

    Bellamy-McIntyre, Anna K.; Baer, Severine; Ludlow, Louise; Drummer, Heidi E.; Poumbourios, Pantelis

    2010-04-16

    The conserved disulfide-bonded region (DSR) of the human immunodeficiency virus type 1 (HIV-1) fusion glycoprotein, gp41, mediates association with the receptor-binding glycoprotein, gp120. Interactions between gp120, CD4 and chemokine receptors activate the fusion activity of gp41. The introduction of W596L and W610F mutations to the DSR of HIV-1{sub QH1549.13} blocked viral entry and hemifusion without affecting gp120-gp41 association. The fusion defect correlated with inhibition of CD4-triggered gp41 pre-hairpin formation, consistent with the DSR mutations having decoupled receptor-induced conformational changes in gp120 from gp41 activation. Our data implicate the DSR in sensing conformational changes in the gp120-gp41 complex that lead to fusion activation.

  11. An investigation of the genetic basis of increased susceptibility to neutralization by anti-fusion glycoprotein antibody arising on passage of human respiratory syncytial virus in cell culture.

    PubMed

    Hiriote, W; Gias, E L Michael; Welsh, S H; Toms, G L

    2015-01-01

    Human respiratory syncytial virus isolates have previously been shown to exhibit resistance to neutralization by anti-fusion glycoprotein antibodies that is lost on passage in cell culture. Early passage resistant and late passage susceptible stocks of two virus isolates from different epidemics were cloned by plaque purification. Early passage stocks of both isolates yielded predominantly neutralization resistant clones while late passage stocks yielded predominantly susceptible clones. On further characterization of resistant and susceptible clones, resistant virus yields were lower and they were relatively resistant to both neutralization and fusion inhibition by anti-F murine monoclonal antibodies and were also resistant to neutralization by human sera and by Palivizumab. The full genome of resistant and susceptible clones from one of the isolates was sequenced. Four differences, confirmed by sequencing sister clones, were found between resistant and susceptible clones, one in each of the SH, G, F, and L genes.

  12. The large groove found in the gH/gL structure is an important functional domain for Epstein-Barr virus fusion.

    PubMed

    Chen, Jia; Jardetzky, Theodore S; Longnecker, Richard

    2013-04-01

    Epstein-Barr virus (EBV) mediates viral entry into cells using four glycoproteins-gB, the gH/gL complex, and gp42-and fusion is cell type specific. gB and gH/gL are required for epithelial cell fusion; B cell fusion also requires gp42. To investigate functional domains within the gH/gL structure, we constructed site-directed EBV gH/gL mutants with alterations of residues located in a large groove that separates domain I (D-I) from domain II (D-II) within the gH/gL structure. We found that substitution of alanine for leucine 207 reduces both epithelial and B cell fusion and is accompanied by reduced gp42 binding. We also observed that substitution of alanine for arginine 152, histidine 154, or threonine 174 reduces fusion with epithelial cells but not with B cells. To test whether flexibility of the region between D-I and D-II of gH/gL could be important for membrane fusion activity and to allow potential interactions across the D-I/D-II groove, we mutated D-I amino acids V47, P48, and G49 to cysteine, allowing novel intersubunit disulfide bonds to form with the free C153 located in D-II. We found that the G49C mutant, predicted to bridge D-I and D-II with C153 of gH/gL, had normal B cell fusion activity but reduced epithelial cell fusion activity, which was partially restored by treatment with dithiothreitol. We conclude that structural rearrangements and/or interactions across the D-I/D-II groove of gH/gL are required for fusion with epithelial cells but not for fusion with B cells.

  13. The Large Groove Found in the gH/gL Structure Is an Important Functional Domain for Epstein-Barr Virus Fusion

    PubMed Central

    Chen, Jia; Jardetzky, Theodore S.

    2013-01-01

    Epstein-Barr virus (EBV) mediates viral entry into cells using four glycoproteins—gB, the gH/gL complex, and gp42—and fusion is cell type specific. gB and gH/gL are required for epithelial cell fusion; B cell fusion also requires gp42. To investigate functional domains within the gH/gL structure, we constructed site-directed EBV gH/gL mutants with alterations of residues located in a large groove that separates domain I (D-I) from domain II (D-II) within the gH/gL structure. We found that substitution of alanine for leucine 207 reduces both epithelial and B cell fusion and is accompanied by reduced gp42 binding. We also observed that substitution of alanine for arginine 152, histidine 154, or threonine 174 reduces fusion with epithelial cells but not with B cells. To test whether flexibility of the region between D-I and D-II of gH/gL could be important for membrane fusion activity and to allow potential interactions across the D-I/D-II groove, we mutated D-I amino acids V47, P48, and G49 to cysteine, allowing novel intersubunit disulfide bonds to form with the free C153 located in D-II. We found that the G49C mutant, predicted to bridge D-I and D-II with C153 of gH/gL, had normal B cell fusion activity but reduced epithelial cell fusion activity, which was partially restored by treatment with dithiothreitol. We conclude that structural rearrangements and/or interactions across the D-I/D-II groove of gH/gL are required for fusion with epithelial cells but not for fusion with B cells. PMID:23325693

  14. Antiviral Efficacy of a Respiratory Syncytial Virus (RSV) Fusion Inhibitor in a Bovine Model of RSV Infection.

    PubMed

    Jordan, Robert; Shao, Matt; Mackman, Richard L; Perron, Michel; Cihlar, Tomas; Lewis, Sandy A; Eisenberg, Eugene J; Carey, Anne; Strickley, Robert G; Chien, Jason W; Anderson, Mark L; McEligot, Heather A; Behrens, Nicole E; Gershwin, Laurel J

    2015-08-01

    Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in infants. Effective treatment for RSV infection is a significant unmet medical need. While new RSV therapeutics are now in development, there are very few animal models that mimic the pathogenesis of human RSV, making it difficult to evaluate new disease interventions. Experimental infection of Holstein calves with bovine RSV (bRSV) causes a severe respiratory infection that is similar to human RSV infection, providing a relevant model for testing novel therapeutic agents. In this model, viral load is readily detected in nasal secretions by quantitative real-time PCR (qRT-PCR), and cumulative symptom scoring together with histopathology evaluations of infected tissue allow for the assessment of disease severity. The bovine RSV model was used to evaluate the antiviral activity of an RSV fusion inhibitor, GS1, which blocks virus entry by inhibiting the fusion of the viral envelope with the host cell membrane. The efficacy of GS1, a close structural analog of GS-5806 that is being developed to treat RSV infection in humans was evaluated in two randomized, blind, placebo-controlled studies in bRSV-infected calves. Intravenous administration of GS1 at 4 mg/kg of body weight/day for 7 days starting 24 h or 72 h postinoculation provided clear therapeutic benefit by reducing the viral load, disease symptom score, respiration rate, and lung pathology associated with bRSV infection. These data support the use of the bovine RSV model for evaluation of experimental therapeutics for treatment of RSV.

  15. Urokinase-Targeted Fusion by Oncolytic Sendai Virus Eradicates Orthotopic Glioblastomas by Pronounced Synergy With Interferon-β Gene

    PubMed Central

    Hasegawa, Yuzo; Kinoh, Hiroaki; Iwadate, Yasuo; Onimaru, Mitsuho; Ueda, Yasuji; Harada, Yui; Saito, Satoru; Furuya, Aki; Saegusa, Takashi; Morodomi, Yosuke; Hasegawa, Mamoru; Saito, Shigeyoshi; Aoki, Ichio; Saeki, Naokatsu; Yonemitsu, Yoshikazu

    2010-01-01

    Glioblastoma multiforme (GM), the most frequent primary malignant brain tumor, is highly invasive due to the expression of proteases, including urokinase-type plasminogen activator (uPA). Here, we show the potential of our new and powerful recombinant Sendai virus (rSeV) showing uPA-specific cell-to-cell fusion activity [rSeV/dMFct14 (uPA2), named “BioKnife”] for GM treatment, an effect that was synergistically enhanced by arming BioKnife with the interferon-β (IFN-β) gene. BioKnife killed human GM cell lines efficiently in a uPA-dependent fashion, and this killing was prevented by PA inhibitor-1. Rat gliosarcoma 9L cells expressing both uPA and its functional receptor uPAR (9L-L/R) exhibited high uPA activity on the cellular surface and were highly susceptible to BioKnife. Although parent 9L cells (9L-P) were resistant to BioKnife and to BioKnife expressing IFN-β (BioKnife-IFNβ), cell–cell fusion of 9L-L/R strongly facilitated the expression of IFN-β, and in turn, IFN-β significantly accelerated the fusion activity of BioKnife. A similar synergy was seen in a rat orthotopic brain GM model with 9L-L/R in vivo; therefore, these results suggest that BioKnife-IFNβ may have significant potential to improve the survival of GM patients in a clinical setting. PMID:20606645

  16. Interaction between the G3 and L5 proteins of the vaccinia virus entry-fusion complex

    SciTech Connect

    Wolfe, Cindy L.; Moss, Bernard

    2011-04-10

    The vaccinia virus entry-fusion complex (EFC) consists of 10 to 12 proteins that are embedded in the viral membrane and individually required for fusion with the cell and entry of the core into the cytoplasm. The architecture of the EFC is unknown except for information regarding two pair-wise interactions: A28 with H2 and A16 with G9. Here we used a technique to destabilize the EFC by repressing the expression of individual components and identified a third pair-wise interaction: G3 with L5. These two proteins remained associated under several different EFC destabilization conditions and in each case were immunopurified together as demonstrated by Western blotting. Further evidence for the specific interaction of G3 and L5 was obtained by mass spectrometry. This interaction also occurred when G3 and L5 were expressed in uninfected cells, indicating that no other viral proteins were required. Thus, the present study extends our knowledge of the protein interactions important for EFC assembly and stability.

  17. An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism

    PubMed Central

    Song, Hao; Qi, Jianxun; Khedri, Zahra; Diaz, Sandra; Yu, Hai; Chen, Xi; Varki, Ajit; Shi, Yi; Gao, George F.

    2016-01-01

    Influenza viruses cause seasonal flu each year and pandemics or epidemic sporadically, posing a major threat to public health. Recently, a new influenza D virus (IDV) was isolated from pigs and cattle. Here, we reveal that the IDV utilizes 9-O-acetylated sialic acids as its receptor for virus entry. Then, we determined the crystal structures of hemagglutinin-esterase-fusion glycoprotein (HEF) of IDV both in its free form and in complex with the receptor and enzymatic substrate analogs. The IDV HEF shows an extremely similar structural fold as the human-infecting influenza C virus (ICV) HEF. However, IDV HEF has an open receptor-binding cavity to accommodate diverse extended glycan moieties. This structural difference provides an explanation for the phenomenon that the IDV has a broad cell tropism. As IDV HEF is structurally and functionally similar to ICV HEF, our findings highlight the potential threat of the virus to public health. PMID:26816272

  18. An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism.

    PubMed

    Song, Hao; Qi, Jianxun; Khedri, Zahra; Diaz, Sandra; Yu, Hai; Chen, Xi; Varki, Ajit; Shi, Yi; Gao, George F

    2016-01-01

    Influenza viruses cause seasonal flu each year and pandemics or epidemic sporadically, posing a major threat to public health. Recently, a new influenza D virus (IDV) was isolated from pigs and cattle. Here, we reveal that the IDV utilizes 9-O-acetylated sialic acids as its receptor for virus entry. Then, we determined the crystal structures of hemagglutinin-esterase-fusion glycoprotein (HEF) of IDV both in its free form and in complex with the receptor and enzymatic substrate analogs. The IDV HEF shows an extremely similar structural fold as the human-infecting influenza C virus (ICV) HEF. However, IDV HEF has an open receptor-binding cavity to accommodate diverse extended glycan moieties. This structural difference provides an explanation for the phenomenon that the IDV has a broad cell tropism. As IDV HEF is structurally and functionally similar to ICV HEF, our findings highlight the potential threat of the virus to public health.

  19. E6 and E7 fusion immunoglobulin from human papilloma virus 16 induces dendritic cell maturation and antigen specific activation of T helper 1 response.

    PubMed

    Kim, Sang-Hoon; Hur, Yu Jin; Lee, Suk Jun; Kim, Sang Joon; Park, Chung-Gyu; Oh, Yu-Koung; Jung, Woon-Won; Seo, Jong Bok; Nam, Myung Hee; Choi, Inho; Chun, Taehoon

    2011-04-01

    Human papilloma virus (HPV) 16 causes cervical cancer. Induction of oncogenesis by HPV 16 is primarily dependent on the function of E6 and E7 proteins, which inactivate the function of p53 and pRB, respectively. Thus, blocking the activity of the E6 and E7 proteins from HPV 16 is critical to inhibiting oncogenesis during infection. We have expressed and purified soluble HPV 16 E6 and E7 fusion immunoglobulin (Ig), which were combined with the constant region of an Ig heavy chain, in a mammalian system. To assess whether soluble E6 and E7 fusion Igs induce effective cellular immune responses, immature dendritic cells (DCs) were treated with these fusion proteins. Soluble E6 and E7 fusion Igs effectively induced maturation of DCs. Furthermore, immunization with soluble E6 and E7 fusion Igs in mice resulted in antigen-specific activation of T helper 1 (Th1) cells. This is the first comprehensive study to show the molecular basis of how soluble HPV 16 E6 or E7 fusion Igs induces Th1 responses through the maturation of DCs. In addition, we show that DC therapy using soluble HPV E6 and E7 fusion Igs may be a valuable tool for controlling the progress of cervical cancer.

  20. The Fusion Protein Specificity of the Parainfluenza Virus Hemagglutinin-Neuraminidase Protein Is Not Solely Defined by the Primary Structure of Its Stalk Domain

    PubMed Central

    Ito, Morihiro; Ohtsuka, Junpei; Hara, Kenichiro; Komada, Hiroshi; Nishio, Machiko; Nosaka, Tetsuya

    2015-01-01

    ABSTRACT Virus-specific interaction between the attachment protein (HN) and the fusion protein (F) is prerequisite for the induction of membrane fusion by parainfluenza viruses. This HN-F interaction presumably is mediated by particular amino acids in the HN stalk domain and those in the F head domain. We found in the present study, however, that a simian virus 41 (SV41) F-specific chimeric HPIV2 HN protein, SCA, whose cytoplasmic, transmembrane, and stalk domains were derived from the SV41 HN protein, could not induce cell-cell fusion of BHK-21 cells when coexpressed with an SV41 HN-specific chimeric PIV5 F protein, no. 36. Similarly, a headless form of the SV41 HN protein failed to induce fusion with chimera no. 36, whereas it was able to induce fusion with the SV41 F protein. Interestingly, replacement of 13 amino acids of the SCA head domain, which are located at or around the dimer interface of the head domain, with SV41 HN counterparts resulted in a chimeric HN protein, SCA-RII, which induced fusion with chimera no. 36 but not with the SV41 F protein. More interestingly, retroreplacement of 11 out of the 13 amino acids of SCA-RII with the SCA counterparts resulted in another chimeric HN protein, IM18, which induced fusion either with chimera no. 36 or with the SV41 F protein, similar to the SV41 HN protein. Thus, we conclude that the F protein specificity of the HN protein that is observed in the fusion event is not solely defined by the primary structure of the HN stalk domain. IMPORTANCE It is appreciated that the HN head domain initially conceals the HN stalk domain but exposes it after the head domain has bound to the receptors, which allows particular amino acids in the stalk domain to interact with the F protein and trigger it to induce fusion. However, other regulatory roles of the HN head domain in the fusion event have been ill defined. We have shown in the current study that removal of the head domain or amino acid substitutions in a particular

  1. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease.

    PubMed

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-07-01

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. Copyright © 2016. Published by Elsevier Inc.

  2. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    SciTech Connect

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-07-15

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  3. Full inactivation of human influenza virus by high hydrostatic pressure preserves virus structure and membrane fusion while conferring protection to mice against infection.

    PubMed

    Dumard, Carlos H; Barroso, Shana P C; de Oliveira, Guilherme A P; Carvalho, Carlos A M; Gomes, Andre M O; Couceiro, José Nelson S S; Ferreira, Davis F; Nico, Dirlei; Oliveira, Andrea C; Silva, Jerson L; Santos, Patrícia S

    2013-01-01

    Whole inactivated vaccines (WIVs) possess greater immunogenicity than split or subunit vaccines, and recent studies have demonstrated that WIVs with preserved fusogenic activity are more protective than non-fusogenic WIVs. In this work, we describe the inactivation of human influenza virus X-31 by high hydrostatic pressure (HHP) and analyze the effects on the structure by spectroscopic measurements, light scattering, and electron microscopy. We also investigated the effects of HHP on the glycoprotein activity and fusogenic activity of the viral particles. The electron microscopy data showed pore formation on the viral envelope, but the general morphology was preserved, and small variations were seen in the particle structure. The activity of hemagglutinin (HA) during the process of binding and fusion was affected in a time-dependent manner, but neuraminidase (NA) activity was not affected. Infectious activity ceased after 3 hours of pressurization, and mice were protected from infection after being vaccinated. Our results revealed full viral inactivation with overall preservation of viral structure and maintenance of fusogenic activity, thereby conferring protection against infection. A strong response consisting of serum immunoglobulin IgG1, IgG2a, and serum and mucosal IgA was also detected after vaccination. Thus, our data strongly suggest that applying hydrostatic pressure may be an effective method for developing new vaccines against influenza A as well as other viruses.

  4. Full Inactivation of Human Influenza Virus by High Hydrostatic Pressure Preserves Virus Structure and Membrane Fusion While Conferring Protection to Mice against Infection

    PubMed Central

    Dumard, Carlos H.; Barroso, Shana P. C.; de Oliveira, Guilherme A. P.; Carvalho, Carlos A. M.; Gomes, Andre M. O.; Couceiro, José Nelson S. S.; Ferreira, Davis F.; Nico, Dirlei; Oliveira, Andrea C.; Silva, Jerson L.; Santos, Patrícia S.

    2013-01-01

    Whole inactivated vaccines (WIVs) possess greater immunogenicity than split or subunit vaccines, and recent studies have demonstrated that WIVs with preserved fusogenic activity are more protective than non-fusogenic WIVs. In this work, we describe the inactivation of human influenza virus X-31 by high hydrostatic pressure (HHP) and analyze the effects on the structure by spectroscopic measurements, light scattering, and electron microscopy. We also investigated the effects of HHP on the glycoprotein activity and fusogenic activity of the viral particles. The electron microscopy data showed pore formation on the viral envelope, but the general morphology was preserved, and small variations were seen in the particle structure. The activity of hemagglutinin (HA) during the process of binding and fusion was affected in a time-dependent manner, but neuraminidase (NA) activity was not affected. Infectious activity ceased after 3 hours of pressurization, and mice were protected from infection after being vaccinated. Our results revealed full viral inactivation with overall preservation of viral structure and maintenance of fusogenic activity, thereby conferring protection against infection. A strong response consisting of serum immunoglobulin IgG1, IgG2a, and serum and mucosal IgA was also detected after vaccination. Thus, our data strongly suggest that applying hydrostatic pressure may be an effective method for developing new vaccines against influenza A as well as other viruses. PMID:24282553

  5. Data fusion and machine learning to identify threat vectors for the Zika virus and classify vulnerability

    NASA Astrophysics Data System (ADS)

    Gentle, J. N., Jr.; Kahn, A.; Pierce, S. A.; Wang, S.; Wade, C.; Moran, S.

    2016-12-01

    With the continued spread of the zika virus in the United States in both Florida and Virginia, increased public awareness, prevention and targeted prediction is necessary to effectively mitigate further infection and propagation of the virus throughout the human population. The goal of this project is to utilize publicly accessible data and HPC resources coupled with machine learning algorithms to identify potential threat vectors for the spread of the zika virus in Texas, the United States and globally by correlating available zika case data collected from incident reports in medical databases (e.g., CDC, Florida Department of Health) with known bodies of water in various earth science databases (e.g., USGS NAQWA Data, NASA ASTER Data, TWDB Data) and by using known mosquito population centers as a proxy for trends in population distribution (e.g., WHO, European CDC, Texas Data) while correlating historical trends in the spread of other mosquito borne diseases (e.g., chikungunya, malaria, dengue, yellow fever, west nile, etc.). The resulting analysis should refine the identification of the specific threat vectors for the spread of the virus which will correspondingly increase the effectiveness of the limited resources allocated towards combating the disease through better strategic implementation of defense measures. The minimal outcome of this research is a better understanding of the factors involved in the spread of the zika virus, with the greater potential to save additional lives through more effective resource utilization and public outreach.

  6. Fusion activity of influenza virus PR8/34 correlates with a temperature-induced conformational change within the hemagglutinin ectodomain detected by photochemical labeling

    SciTech Connect

    Brunner, J.; Zugliani, C. ); Mischler, R. )

    1991-03-05

    Fusion of influenza viruses with membranes is catalyzed by the viral spike protein hemagglutinin (HA). Under mildly acidic conditions ({approximately}pH 5) this protein undergoes a conformational change that triggers the exposure of the fusion peptide, the hydrophobic N-terminal segment of the HA2 polypeptide chain. Insertion of this segment into the target membrane (or viral membrane ) is likely to represent a key step along the fusion pathway, but the details are far from being clear. The photoreactive phospholipid 1-palmitoyl-2-(11-(4-(3-(trifluoromethyl)diazirinyl)phenyl)(2-{sup 3}H)undecanoyl)-sn-glycero-3-phosphocholine (({sup 3}H)PTPC/11), inserted into the bilayer of large unilamellar vesicles (LUVs), allowed the authors to investigate both the interaction of viruses with the vesicles under perfusion conditions and the fusion process itself occurring at elevated temperatures only. Despite the observed binding of viruses to LUVs at pH 5 and 0C, labeling of HA2 was very weak. They have studied also the effect of temperature on the acid-induced (pH 5) interaction of bromelain-solubilized HA (BHA) with vesicles.

  7. Crystal Structure of Dengue Virus Type 1 Envelope Protein in the Postfusion Conformation and Its Implications for Membrane Fusion

    SciTech Connect

    Nayak, Vinod; Dessau, Moshe; Kucera, Kaury; Anthony, Karen; Ledizet, Michel; Modis, Yorgo

    2009-07-31

    Dengue virus relies on a conformational change in its envelope protein, E, to fuse the viral lipid membrane with the endosomal membrane and thereby deliver the viral genome into the cytosol. We have determined the crystal structure of a soluble fragment E (sE) of dengue virus type 1 (DEN-1). The protein is in the postfusion conformation even though it was not exposed to a lipid membrane or detergent. At the domain I-domain III interface, 4 polar residues form a tight cluster that is absent in other flaviviral postfusion structures. Two of these residues, His-282 and His-317, are conserved in flaviviruses and are part of the 'pH sensor' that triggers the fusogenic conformational change in E, at the reduced pH of the endosome. In the fusion loop, Phe-108 adopts a distinct conformation, forming additional trimer contacts and filling the bowl-shaped concavity observed at the tip of the DEN-2 sE trimer.

  8. Vaccinia virus entry/fusion complex subunit A28 is a target of neutralizing and protective antibodies

    SciTech Connect

    Nelson, Gretchen E.; Sisler, Jerry R.; Chandran, Dev; Moss, Bernard

    2008-10-25

    The vaccinia virus entry/fusion complex (EFC) is comprised of at least eight transmembrane proteins that are conserved in all poxviruses. However, neither the physical structure of the EFC nor the immunogenicity of the individual components has been determined. We prepared soluble forms of two EFC components, A28 and H2, by replacing the transmembrane domain with a signal peptide and adding a polyhistidine tail. The proteins were expressed by baculoviruses, secreted from insect cells, purified by affinity chromatography and used to raise antibodies in rabbits. The antibodies recognized the viral proteins but only the antibody to recombinant A28 bound intact virions and neutralized infectivity. Analyses with a set of overlapping peptides revealed a neutralizing epitope between residues 73 and 92 of A28. Passive immunization of mice with IgG purified from the anti-A28 serum provided partial protection against a vaccinia virus intranasal challenge, whereas IgG from the anti-H2 serum did not.

  9. What variables are important in predicting bovine viral diarrhea virus? A random forest approach.

    PubMed

    Machado, Gustavo; Mendoza, Mariana Recamonde; Corbellini, Luis Gustavo

    2015-07-24

    Bovine viral diarrhea virus (BVDV) causes one of the most economically important diseases in cattle, and the virus is found worldwide. A better understanding of the disease associated factors is a crucial step towards the definition of strategies for control and eradication. In this study we trained a random forest (RF) prediction model and performed variable importance analysis to identify factors associated with BVDV occurrence. In addition, we assessed the influence of features selection on RF performance and evaluated its predictive power relative to other popular classifiers and to logistic regression. We found that RF classification model resulted in an average error rate of 32.03% for the negative class (negative for BVDV) and 36.78% for the positive class (positive for BVDV).The RF model presented area under the ROC curve equal to 0.702. Variable importance analysis revealed that important predictors of BVDV occurrence were: a) who inseminates the animals, b) number of neighboring farms that have cattle and c) rectal palpation performed routinely. Our results suggest that the use of machine learning algorithms, especially RF, is a promising methodology for the analysis of cross-sectional studies, presenting a satisfactory predictive power and the ability to identify predictors that represent potential risk factors for BVDV investigation. We examined classical predictors and found some new and hard to control practices that may lead to the spread of this disease within and among farms, mainly regarding poor or neglected reproduction management, which should be considered for disease control and eradication.

  10. The Respiratory Syncytial Virus Phosphoprotein, Matrix Protein, and Fusion Protein Carboxy-Terminal Domain Drive Efficient Filamentous Virus-Like Particle Formation.

    PubMed

    Meshram, Chetan D; Baviskar, Pradyumna S; Ognibene, Cherie M; Oomens, Antonius G P

    2016-12-01

    Virus-like particles (VLPs) are attractive as a vaccine concept. For human respiratory syncytial virus (hRSV), VLP assembly is poorly understood and appears inefficient. Hence, hRSV antigens are often incorporated into foreign VLP systems to generate anti-RSV vaccine candidates. To better understand the assembly, and ultimately to enable efficient production, of authentic hRSV VLPs, we examined the associated requirements and mechanisms. In a previous analysis in HEp-2 cells, the nucleoprotein (N), phosphoprotein (P), matrix protein (M), and fusion protein (F) were required for formation of filamentous VLPs, which, similar to those of wild-type virus, were associated with the cell surface. Using fluorescence and electron microscopy combined with immunogold labeling, we examined the surfaces of transfected HEp-2 cells and further dissected the process of filamentous VLP formation. Our results show that N is not required. Coexpression of P plus M plus F, but not P plus M, M plus F, or P plus F, induced both viral protein coalescence and formation of filamentous VLPs that resembled wild-type virions. Despite suboptimal coalescence in the absence of P, the M and F proteins, when coexpressed, formed cell surface-associated filaments with abnormal morphology, appearing longer and thinner than wild-type virions. For F, only the carboxy terminus (Fstem) was required, and addition of foreign protein sequences to Fstem allowed incorporation into VLPs. Together, the data show that P, M, and the F carboxy terminus are sufficient for robust viral protein coalescence and filamentous VLP formation and suggest that M-F interaction drives viral filament formation, with P acting as a type of cofactor facilitating the process and exerting control over particle morphology.

  11. Viral membrane fusion

    PubMed Central

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. PMID:25866377

  12. Small-Molecule Fusion Inhibitors Bind the pH-Sensing Stable Signal Peptide-GP2 Subunit Interface of the Lassa Virus Envelope Glycoprotein

    PubMed Central

    Shankar, Sundaresh; Whitby, Landon R.; Casquilho-Gray, Hedi E.; York, Joanne; Boger, Dale L.

    2016-01-01

    ABSTRACT Arenavirus species are responsible for severe life-threatening hemorrhagic fevers in western Africa and South America. Without effective antiviral therapies or vaccines, these viruses pose serious public health and biodefense concerns. Chemically distinct small-molecule inhibitors of arenavirus entry have recently been identified and shown to act on the arenavirus envelope glycoprotein (GPC) to prevent membrane fusion. In the tripartite GPC complex, pH-dependent membrane fusion is triggered through a poorly understood interaction between the stable signal peptide (SSP) and the transmembrane fusion subunit GP2, and our genetic studies have suggested that these small-molecule inhibitors act at this interface to antagonize fusion activation. Here, we have designed and synthesized photoaffinity derivatives of the 4-acyl-1,6-dialkylpiperazin-2-one class of fusion inhibitors and demonstrate specific labeling of both the SSP and GP2 subunits in a native-like Lassa virus (LASV) GPC trimer expressed in insect cells. Photoaddition is competed by the parental inhibitor and other chemically distinct compounds active against LASV, but not those specific to New World arenaviruses. These studies provide direct physical evidence that these inhibitors bind at the SSP-GP2 interface. We also find that GPC containing the uncleaved GP1-GP2 precursor is not susceptible to photo-cross-linking, suggesting that proteolytic maturation is accompanied by conformational changes at this site. Detailed mapping of residues modified by the photoaffinity adducts may provide insight to guide the further development of these promising lead compounds as potential therapeutic agents to treat Lassa hemorrhagic fever. IMPORTANCE Hemorrhagic fever arenaviruses cause lethal infections in humans and, in the absence of licensed vaccines or specific antiviral therapies, are recognized to pose significant threats to public health and biodefense. Lead small-molecule inhibitors that target the

  13. Foamy Virus Pol Protein Expressed as a Gag-Pol Fusion Retains Enzymatic Activities, Allowing for Infectious Virus Production

    PubMed Central

    Lee, Eun-Gyung; Sinicrope, Amber; Jackson, Dana L.; Yu, Shuyuarn F.

    2012-01-01

    Foamy viruses (FV) synthesize Pol from a spliced pol mRNA independently of Gag, unlike orthoretroviruses, which synthesize Pol as a Gag-Pol protein that coassembles with Gag. We found that prototype FV (PFV) mutants expressing Gag and Pol only as a Gag-Pol protein without the spliced Pol contain protease activity equivalent to that of wild-type (WT) Pol. Regardless of the presence or absence of the spliced Pol, the PFV Gag-Pol proteins can assemble into virus-like particles (VLPs), in contrast to the orthoretroviral Gag-Pol proteins, which cannot form VLPs. However, the PFV Gag-Pol VLPs have aberrant morphologies and are not infectious. In the absence of the spliced Pol, coexpression of a PFV Gag-Pol protein with Gag can produce infectious virions. Our results suggest that enzymes encoded by PFV pol (protease, reverse transcriptase, and integrase) are enzymatically active if they are synthesized as part of a Gag-Pol protein. PMID:22491447

  14. Korean medicinal plants inhibiting to human immunodeficiency virus type 1 (HIV-1) fusion.

    PubMed

    Chang, Young-Su; Woo, Eun-Rhan

    2003-04-01

    In order to find novel anti-HIV agents from natural products, 80 MeOH extracts of Korean plants were applied to a syncytia formation inhibition assay, which is based on the interaction between the HIV-1 envelope glycoprotein gp120/41 and the cellular membrane protein CD4 of T lymphocytes. The most potent HIV-1 fusion inhibition was shown by the stem bark of Ailanthus altissima with 74.9 +/- 4.4% at a concentration of 100 microg/mL. Copyright 2003 John Wiley & Sons, Ltd.

  15. Visualization of the two-step fusion process of the retrovirus avian sarcoma/leukosis virus by cryo-electron tomography.

    PubMed

    Cardone, Giovanni; Brecher, Matthew; Fontana, Juan; Winkler, Dennis C; Butan, Carmen; White, Judith M; Steven, Alasdair C

    2012-11-01

    Retrovirus infection starts with the binding of envelope glycoproteins to host cell receptors. Subsequently, conformational changes in the glycoproteins trigger fusion of the viral and cellular membranes. Some retroviruses, such as avian sarcoma/leukosis virus (ASLV), employ a two-step mechanism in which receptor binding precedes low-pH activation and fusion. We used cryo-electron tomography to study virion/receptor/liposome complexes that simulate the interactions of ASLV virions with cells. Binding the soluble receptor at neutral pH resulted in virions capable of binding liposomes tightly enough to alter their curvature. At virion-liposome interfaces, the glycoproteins are ∼3-fold more concentrated than elsewhere in the viral envelope, indicating specific recruitment to these sites. Subtomogram averaging showed that the oblate globular domain in the prehairpin intermediate (presumably the receptor-binding domain) is connected to both the target and the viral membrane by 2.5-nm-long stalks and is partially disordered, compared with its native conformation. Upon lowering the pH, fusion took place. Fusion is a stochastic process that, once initiated, must be rapid, as only final (postfusion) products were observed. These fusion products showed glycoprotein spikes on their surface, with their interiors occupied by patches of dense material but without capsids, implying their disassembly. In addition, some of the products presented a density layer underlying and resolved from the viral membrane, which may represent detachment of the matrix protein to facilitate the fusion process.

  16. Stop codon insertion restores the particle formation ability of hepatitis B virus core-hantavirus nucleocapsid protein fusions.

    PubMed

    Kazaks, Andris; Lachmann, Sylvie; Koletzki, Diana; Petrovskis, Ivars; Dislers, Andris; Ose, Velta; Skrastina, Dace; Gelderblom, Hans R; Lundkvist, Ake; Meisel, Helga; Borisova, Galina; Krüger, Detlev H; Pumpens, Paul; Ulrich, Rainer

    2002-01-01

    In recent years, epitopes of various origin have been inserted into the core protein of hepatitis B virus (HBc), allowing the formation of chimeric HBc particles. Although the C-terminus of a C-terminally truncated HBc (HBc) tolerates the insertion of extended foreign sequences, the insertion capacity is still a limiting factor for the construction of multivalent vaccines. Previously, we described a new system to generate HBc mosaic particles based on a read-through mechanism in an Escherichia coli suppressor strain [J Gen Virol 1997;78:2049-2053]. Those mosaic particles allowed the insertion of a 114-amino acid (aa)-long segment of a Puumala hantavirus (PUUV) nucleocapsid (N) protein. To study the value and the potential limitations of the mosaic approach in more detail, we investigated the assembly capacity of 'non-mosaic' HBc fusion proteins and the corresponding mosaic constructs carrying 94, 213 and 433 aa of the hantaviral N protein. Whereas the fusion proteins carrying 94, 114, 213 or 433 aa were not assembled into HBc particles, or only at a low yield, the insertion of a stop codon-bearing linker restored the ability to form particles with 94, 114 and 213 foreign aa. The mosaic particles formed exhibited PUUV-N protein antigenicity. Immunization of BALB/c mice with these mosaic particles carrying PUUV-N protein aa 1-114, aa 1-213 and aa 340-433, respectively, induced HBc-specific antibodies, whereas PUUV-N protein-specific antibodies were detected only in mice immunized with particles carrying N-terminal aa 1-114 or aa 1-213 of the N protein. Both the anti-HBc and anti-PUUV antibody responses were IgG1 dominated. In conclusion, stop codon suppression allows the formation of mosaic core particles carrying large-sized and 'problematic', e.g. hydrophobic, hantavirus sequences.

  17. EGFR Interacts with the Fusion Protein of Respiratory Syncytial Virus Strain 2-20 and Mediates Infection and Mucin Expression

    PubMed Central

    Stobart, Christopher C.; Hotard, Anne L.; Villenave, Remi; Meng, Jia; Pretto, Carla D.; Shields, Michael D.; Nguyen, Minh Trang; Todd, Sean O.; Chi, Michael H.; Hammonds, Jason; Krumm, Stefanie A.; Spearman, Paul; Plemper, Richard K.; Sakamoto, Kaori; Peebles, R. Stokes; Power, Ultan F.; Moore, Martin L.

    2016-01-01

    Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2–20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore, we hypothesized that the RSV 2–20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2–20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2–20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from “mucogenic” strains. RSV 2–20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease. PMID:27152417

  18. EGFR Interacts with the Fusion Protein of Respiratory Syncytial Virus Strain 2-20 and Mediates Infection and Mucin Expression.

    PubMed

    Currier, Michael G; Lee, Sujin; Stobart, Christopher C; Hotard, Anne L; Villenave, Remi; Meng, Jia; Pretto, Carla D; Shields, Michael D; Nguyen, Minh Trang; Todd, Sean O; Chi, Michael H; Hammonds, Jason; Krumm, Stefanie A; Spearman, Paul; Plemper, Richard K; Sakamoto, Kaori; Peebles, R Stokes; Power, Ultan F; Moore, Martin L

    2016-05-01

    Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2-20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore, we hypothesized that the RSV 2-20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2-20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2-20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from "mucogenic" strains. RSV 2-20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease.

  19. Respiratory Syncytial Virus Fusion Protein Promotes TLR-4–Dependent Neutrophil Extracellular Trap Formation by Human Neutrophils

    PubMed Central

    Funchal, Giselle A.; Jaeger, Natália; Czepielewski, Rafael S.; Machado, Mileni S.; Muraro, Stéfanie P.; Stein, Renato T.; Bonorino, Cristina B. C.; Porto, Bárbara N.

    2015-01-01

    Acute viral bronchiolitis by Respiratory Syncytial Virus (RSV) is the most common respiratory illness in children in the first year of life. RSV bronchiolitis generates large numbers of hospitalizations and an important burden to health systems. Neutrophils and their products are present in the airways of RSV-infected patients who developed increased lung disease. Neutrophil Extracellular Traps (NETs) are formed by the release of granular and nuclear contents of neutrophils in the extracellular space in response to different stimuli and recent studies have proposed a role for NETs in viral infections. In this study, we show that RSV particles and RSV Fusion protein were both capable of inducing NET formation by human neutrophils. Moreover, we analyzed the mechanisms involved in RSV Fusion protein-induced NET formation. RSV F protein was able to induce NET release in a concentration-dependent fashion with both neutrophil elastase and myeloperoxidase expressed on DNA fibers and F protein-induced NETs was dismantled by DNase treatment, confirming that their backbone is chromatin. This viral protein caused the release of extracellular DNA dependent on TLR-4 activation, NADPH Oxidase-derived ROS production and ERK and p38 MAPK phosphorylation. Together, these results demonstrate a coordinated signaling pathway activated by F protein that led to NET production. The massive production of NETs in RSV infection could aggravate the inflammatory symptoms of the infection in young children and babies. We propose that targeting the binding of TLR-4 by F protein could potentially lead to novel therapeutic approaches to help control RSV-induced inflammatory consequences and pathology of viral bronchiolitis. PMID:25856628

  20. Membrane-Anchored Inhibitory Peptides Capture Human Immunodeficiency Virus Type 1 gp41 Conformations That Engage the Target Membrane prior to Fusion

    PubMed Central

    Melikyan, Gregory B.; Egelhofer, Marc; von Laer, Dorothee

    2006-01-01

    Soluble peptides derived from the C-terminal heptad repeat domain of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors of HIV-1 entry and gp41-induced fusion. Target membrane-anchored variants of these peptides have been shown to retain inhibitory activity. Both soluble and membrane-anchored C peptides (MACs) are thought to block fusion by binding to the N-terminal coiled coil domain of gp41 and preventing formation of the final six-helix bundle structure. However, interactions of target MACs with gp41 must be restricted to a subset of trimers that have their hydrophobic fusion peptides inserted into the target membrane. This unique feature of MACs was used to identify the intermediate step of fusion at which gp41 engaged the target membrane. Fusion between HIV envelope-expressing effector cells and target cells was measured by fluorescence microscopy. Expression of MACs in target cells led to less than twofold reduction in the extent of fusion. However, when reaction was first arrested by adding lysolipids that disfavored membrane merger, and the lipids were subsequently removed by washing, control cells supported fusion, whereas those that expressed MACs did not. The drastically improved potency of MACs implies that, at lipid-arrested stage, gp41 bridges the viral and target cell membranes and therefore more optimally binds the membrane-anchored peptides. Experimental demonstration of this intermediate shows that, similar to fusion induced by many other viral glycoproteins, engaging the target membrane by HIV-1 gp41 permits coupling between six-helix bundle formation and membrane merger. PMID:16537592

  1. Displacement of the C Terminus of Herpes Simplex Virus gD Is Sufficient To Expose the Fusion-Activating Interfaces on gD

    PubMed Central

    Gallagher, John R.; Saw, Wan Ting; Atanasiu, Doina; Lou, Huan; Eisenberg, Roselyn J.

    2013-01-01

    Viral entry by herpes simplex virus (HSV) is executed and tightly regulated by four glycoproteins. While several viral glycoproteins can mediate viral adhesion to host cells, only binding of gD to cellular receptor can activate core fusion proteins gB and gH/gL to execute membrane fusion and viral entry. Atomic structures of gD bound to receptor indicate that the C terminus of the gD ectodomain must be displaced before receptor can bind to gD, but it is unclear which conformational changes in gD activate membrane fusion. We rationally designed mutations in gD to displace the C terminus and observe if fusion could be activated without receptor binding. Using a cell-based fusion assay, we found that gD V231W induced cell-cell fusion in the absence of receptor. Using recombinant gD V231W protein, we observed binding to conformationally sensitive antibodies or HSV receptor and concluded that there were changes proximal to the receptor binding interface, while the tertiary structure of gD V231W was similar to that of wild-type gD. We used a biosensor to analyze the kinetics of receptor binding and the extent to which the C terminus blocks binding to receptor. We found that the C terminus of gD V231W was enriched in the open or displaced conformation, indicating a mechanism for its function. We conclude that gD V231W triggers fusion through displacement of its C terminus and that this motion is indicative of how gD links receptor binding to exposure of interfaces on gD that activate fusion via gH/gL and gB. PMID:24049165

  2. A soluble form of Epstein-Barr virus gH/gL inhibits EBV-induced membrane fusion and does not function in fusion

    SciTech Connect

    Rowe, Cynthia L.; Connolly, Sarah A.; Chen, Jia; Jardetzky, Theodore S.; Longnecker, Richard

    2013-02-05

    We investigated whether soluble EBV gH/gL (sgH/gL) functions in fusion and made a series of truncations of gH/gL domains based on the gH/gL crystal structure. We found sgH/gL failed to mediate cell-cell fusion both when co-expressed with the other entry glycoproteins and when added exogenously to fusion assays. Interestingly, sgH/gL inhibited cell-cell fusion in a dose dependent manner when co-expressed. sgH/gL from HSV was unable to inhibit EBV fusion, suggesting the inhibition was specific to EBV gH/gL. sgH/gL stably binds gp42, but not gB nor gH/gL. The domain mutants, DI/gL, DI-II/gL and DI-II-III/gL were unable to bind gp42. Instead, DI-II/gL, DI-II-III/gL and sgH/gL but not DI/gL decreased the expression of gp42, resulting in decreased overall fusion. Overall, our results suggest that domain IV may be required for proper folding and the transmembrane domain and cytoplasmic tail of EBV gH/gL are required for the most efficient fusion.

  3. Infection with Colorado tick fever virus among humans and ticks in a national park and forest, Wyoming, 2010.

    PubMed

    Geissler, Aimee L; Thorp, Emily; Van Houten, Clayton; Lanciotti, Robert S; Panella, Nicolas; Cadwell, Betsy L; Murphy, Tracy; Staples, J Erin

    2014-09-01

    Colorado tick fever (CTF) is an underreported tick-borne viral disease occurring in the western United States. CTF illness includes fever, headache, and severe myalgia lasting for weeks. Wyoming has one of the highest CTF incidence rates with approximately 30% of infected persons reporting tick exposure in a Wyoming National Park or Forest before symptom onset. We assessed CTF virus infections among humans and Dermacentor andersoni ticks in Grand Teton National Park (GRTE) and Bridger-Teton National Forest (BTNF). In June of 2010, 526 eligible employees were approached to participate in a baseline and 3-month follow-up serosurvey and risk behavior survey. Seropositivity was defined as antibody titers against CTF virus ≥10, as measured by the plaque reduction neutralization test. Ticks were collected at 27 sites within GRTE/BTNF and tested by RT-PCR for the CTF virus. A total of 126 (24%) employees participated in the baseline and follow-up study visits. Three (2%) employees were seropositive for CTF virus infection at baseline. During the study, 47 (37%) participants found unattached ticks on themselves, and 12 (10%) found attached ticks; however, no participants seroconverted against CTF virus. Walking through sagebrush (p=0.04) and spending time at ≥7000 feet elevation (p<0.01) were significantly associated with tick exposure. Ninety-nine percent (174/176) of ticks were D. andersoni, and all were found at ≥7000 feet elevation in sagebrush areas; 37 (21%) ticks tested positive for CTF virus and were found at 10 (38%) of 26 sites sampled. Although no GRTE or BTNF employees were infected with CTF virus during the study period, high rates of infected ticks were identified in areas with sagebrush at ≥7000 feet. CTF education and personal protection measures against tick exposure should be targeted to visitors and employees traveling to the high-risk environs identified in this study.

  4. Aqueous extract from a Chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes), prevents herpes simplex virus entry through inhibition of viral-induced membrane fusion.

    PubMed

    Pan, Hong-Hui; Yu, Xiong-Tao; Li, Ting; Wu, Hong-Ling; Jiao, Chun-Wei; Cai, Mian-Hua; Li, Xiang-Min; Xie, Yi-Zhen; Wang, Yi; Peng, Tao

    2013-01-01

    Chaga medicinal mushroom, Inonotus obliquus, a popular prescription in traditional medicine in Europe and Asia, was used to reduce inflammation in the nasopharynx and to facilitate breathing. The aqueous extract from I. obliquus (AEIO) exhibited marked decrease in herpes simplex virus (HSV) infection (the 50% inhibitory concentration was 3.82 μg/mL in the plaque reduction assay and 12.29 μg/mL in the HSV-1/blue assay) as well as safety in Vero cells (the 50% cellular cytotoxicity was > 1 mg/mL, and selection index was > 80). Using a time course assay, effective stage analysis, and fusion inhibition assay, the mechanism of anti-HSV activity was found against the early stage of viral infection through inhibition of viral-induced membrane fusion. Therefore, AEIO could effectively prevent HSV-1 entry by acting on viral glycoproteins, leading to the prevention of membrane fusion, which is different from nucleoside analog antiherpetics.

  5. Roles for the cytoplasmic tails of the fusion and hemagglutinin-neuraminidase proteins in budding of the paramyxovirus simian virus 5.

    PubMed

    Waning, David L; Schmitt, Anthony P; Leser, George P; Lamb, Robert A

    2002-09-01

    The efficient release of many enveloped viruses from cells involves the coalescence of viral components at sites of budding on the plasma membrane of infected cells. This coalescence is believed to require interactions between the cytoplasmic tails of surface glycoproteins and the matrix (M) protein. For the paramyxovirus simian virus 5 (SV5), the cytoplasmic tail of the hemagglutinin-neuraminidase (HN) protein has been shown previously to be important for normal virus budding. To investigate a role for the cytoplasmic tail of the fusion (F) protein in virus assembly and budding, we generated a series of F cytoplasmic tail-truncated recombinant viruses. Analysis of these viruses in tissue culture indicated that the cytoplasmic tail of the F protein was dispensable for normal virus replication and budding. To investigate further the requirements for assembly and budding of SV5, we generated two double-mutant recombinant viruses that lack 8 amino acids of the predicted 17-amino-acid HN protein cytoplasmic tail in combination with truncation of either 10 or 18 amino acids from the predicted 20-amino-acid F protein cytoplasmic tail. Both of the double mutant recombinant viruses displayed a replication defect in tissue culture and a budding defect, the extent of which was dependent on the length of the remaining F cytoplasmic tail. Taken together, this work and our earlier data on virus-like particle formation (A. P. Schmitt, G. P. Leser, D. L. Waning, and R. A. Lamb, J. Virol. 76:3953-3964, 2002) suggest a redundant role for the cytoplasmic tails of the HN and F proteins in virus assembly and budding.

  6. Parainfluenza Virus 5 Expressing Wild-Type or Prefusion Respiratory Syncytial Virus (RSV) Fusion Protein Protects Mice and Cotton Rats from RSV Challenge.

    PubMed

    Phan, Shannon I; Zengel, James R; Wei, Huiling; Li, Zhuo; Wang, Dai; He, Biao

    2017-10-01

    Human respiratory syncytial virus (RSV) is the leading cause of pediatric bronchiolitis and hospitalizations. RSV can also cause severe complications in elderly and immunocompromised individuals. There is no licensed vaccine. We previously generated a parainfluenza virus 5 (PIV5)-vectored vaccine candidate expressing the RSV fusion protein (F) that was immunogenic and protective in mice. In this work, our goal was to improve the original vaccine candidate by modifying the PIV5 vector or by modifying the RSV F antigen. We previously demonstrated that insertion of a foreign gene at the PIV5 small hydrophobic (SH)-hemagglutinin-neuraminidase (HN) junction or deletion of PIV5 SH increased vaccine efficacy. Additionally, other groups have demonstrated that antibodies against the prefusion conformation of RSV F have more potent neutralizing activity than antibodies against the postfusion conformation. Therefore, to improve on our previously developed vaccine candidate, we inserted RSV F at the PIV5 SH-HN gene junction or used RSV F to replace PIV5 SH. We also engineered PIV5 to express a prefusion-stabilized F mutant. The candidates were tested in BALB/c mice via the intranasal route and induced both humoral and cell-mediated immunity. They also protected against RSV infection in the mouse lung. When they were administered intranasally or subcutaneously in cotton rats, the candidates were highly immunogenic and reduced RSV loads in both the upper and lower respiratory tracts. PIV5-RSV F was equally protective when administered intranasally or subcutaneously. In all cases, the prefusion F mutant did not induce higher neutralizing antibody titers than wild-type F. These results show that antibodies against both pre- and postfusion F are important for neutralizing RSV and should be considered when designing a vectored RSV vaccine. The findings also that indicate PIV5-RSV F may be administered subcutaneously, which is the preferred route for vaccinating infants, who may

  7. Elicitation of anti-Sendai virus cytotoxic T lymphocytes by viral and H-2 antigens incorporated into the same lipid bilayer by membrane fusion and by reconstitution into liposomes.

    PubMed

    Hale, A H; Lyles, D S; Fan, D P

    1980-02-01

    We have investigated the minimal molecular requirements for elicitation of anti-Sendai virus cytotoxic T lymphocytes (CTL), and the minimal molecular requirements for the recognition and lysis processes associated with anti-Sendai virus CTL-target cell interactions. This report demonstrates a) that the hemagglutinin-neuraminidase and/or fusion glycoproteins of Sendai virus can elicit anti-Sendai virus CTL and b) that these glycoproteins and H-2 antigens must be within the same membrane lipid bilayer for effective elicitation of anti-Sendai-virus CTL and for effective recognition and lysis of target cells by anti-Sendai virus CTL.

  8. In Vivo Efficacy of Measles Virus Fusion Protein-Derived Peptides Is Modulated by the Properties of Self-Assembly and Membrane Residence.

    PubMed

    Figueira, T N; Palermo, L M; Veiga, A S; Huey, D; Alabi, C A; Santos, N C; Welsch, J C; Mathieu, C; Horvat, B; Niewiesk, S; Moscona, A; Castanho, M A R B; Porotto, M

    2017-01-01

    Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides. Copyright © 2016 American Society for Microbiology.

  9. Roles of the highly conserved amino acids in the globular head and stalk region of the Newcastle disease virus HN protein in the membrane fusion process.

    PubMed

    Sun, Chengxi; Wen, Hongling; Chen, Yuzhen; Chu, Fulu; Lin, Bin; Ren, Guijie; Song, Yanyan; Wang, Zhiyu

    2015-02-01

    Newcastle disease virus (NDV), an avain paramyxovirus, has been assigned to the genus Avulavirus within the family Paramyxoviridae. It causes Newcastle disease (ND) that is a highly contagious and fatal viral disease affecting poultry and most species of birds. The hemagglutinin-neuraminidase (HN) protein of NDV has multiple functions including mediating hemadsorption (HAD), neuraminidase (NA), and fusion promotion activities affecting the process of viral attachment, entry, replication and dissemination. Fusion ability of the NDV was highly correlated to its virulence. Mutations in the HN globular head and headless HN of NDV were constructed to determinate the impact of highly conserved amino acids in the globular head of paramyxovirus HN proteins and the roles of the stalk region of HN in the fusion process. It was found that the interaction between F and HN mutants E401A, G402A, G468A, V469A, Y526A, and T527A was equal to that in F and wt HN. The mutations of G402A, G468A, V469A, and T527A had various effects on cell fusion promotion, receptor binding ability, and NA activity, but the membrane merging rate was comparable to wt HN. The elimination of hemadsorption ability and NA activity of E401A and Y526A resulted in the loss of the fusion promotion function of HN. The conclusion was that receptor binding and NA had a common active site and E401 and Y526 amino acids were essential for virus attachment, entry, and dissemination. In addition, G468A mutation made different contributions to HAD and NA, which indicated that G468 was one of the potential key amino acids in switching the two functions between receptor binding and sialic acid destruction of HN. It was also proven that the headless HN of NDV could promote the fusion event mediated by F. Thus, it revealed a novel mechanism in F activation of NDV.

  10. A fusogenic dengue virus-derived peptide enhances antitumor efficacy of an antibody-ribonuclease fusion protein targeting the EGF receptor.

    PubMed

    Kiesgen, Stefan; Liebers, Nora; Cremer, Martin; Arnold, Ulrich; Weber, Tobias; Keller, Armin; Herold-Mende, Christel; Dyckhoff, Gerhard; Jäger, Dirk; Kontermann, Roland E; Arndt, Michaela A E; Krauss, Jürgen

    2014-10-01

    Due to its frequent overexpression in a variety of solid tumors the epidermal growth factor receptor (EGFR) is a well-established target for therapeutic interventions in epithelial cancers. In order to target EGFR in head and neck cancer, we have generated a ribonuclease (RNase) fusion protein comprising a humanized anti-EGFR antibody single-chain Fv fragment (scFv) and Ranpirnase, an RNase from Rana pipiens. Fusion of Ranpirnase to the N-terminus of the scFv via a flexible glycine-serine linker (G4S)3 resulted in very poor cytotoxicity of the fusion protein. As endosomal accumulation and lysosomal degradation have been reported to diminish the antitumor efficacy of ribonuclease or toxin-based immunoagents, we explored a fusion peptide from dengue virus that has been reported to be involved in the endosomal escape of the virus. This peptide was introduced as a linker between Ranpirnase and the scFv moiety. The modified immunoRNase exhibited exceptionally high cytotoxicity toward EGFR-expressing head and neck cell lines without affecting specificity. These results indicate that endosomal entrapment needs to be considered for Ranpirnase-based immunoagents and might be overcome by the use of tailored transduction domains from viral proteins.

  11. Limited Effects of Type I Interferons on Kyasanur Forest Disease Virus in Cell Culture

    PubMed Central

    Cook, Bradley W. M.; Ranadheera, Charlene; Nikiforuk, Aidan M.; Cutts, Todd A.; Kobasa, Darwyn; Court, Deborah A.; Theriault, Steven S.

    2016-01-01

    Background The tick-borne flavivirus, Kyasanur Forest disease virus (KFDV) causes seasonal infections and periodic outbreaks in south-west India. The current vaccine offers poor protection with reported issues of coverage and immunogenicity. Since there are no approved prophylactic therapeutics for KFDV, type I IFN-α/β subtypes were assessed for antiviral potency against KFDV in cell culture. Methodology/Principal Findings The continued passage of KFDV-infected cells with re-administered IFN-α2a treatment did not eliminate KFDV and had little effect on infectious particle production whereas the IFN-sensitive, green fluorescent protein-expressing vesicular stomatitis virus (VSV-GFP) infection was controlled. Further evaluation of the other IFN-α/β subtypes versus KFDV infection indicated that single treatments of either IFN-αWA and IFN-αΚ appeared to be more effective than IFN-α2a at reducing KFDV titres. Concentration-dependent analysis of these IFN-α/β subtypes revealed that regardless of subtype, low concentrations of IFN were able to limit cytopathic effects (CPE), while significantly higher concentrations were needed for inhibition of virion release. Furthermore, expression of the KFDV NS5 in cell culture before IFN addition enabled VSV-GFP to overcome the effects of IFN-α/β signalling, producing a robust infection. Conclusions/Significance Treatment of cell culture with IFN does not appear to be suitable for KFDV eradication and the assay used for such studies should be carefully considered. Further, it appears that the NS5 protein is sufficient to permit KFDV to bypass the antiviral properties of IFN. We suggest that other prophylactic therapeutics should be evaluated in place of IFN for treatment of individuals with KFDV disease. PMID:27479197

  12. Surveillance should be strengthened to improve epidemiological understandings of mosquito-borne Barmah Forest virus infection

    PubMed Central

    Eastwood, Keith; Webb, Cameron; Durrheim, David

    2012-01-01

    Introduction Barmah Forest virus (BFV) is a mosquito-borne virus causing epidemic polyarthritis in Australia. This study used case follow-up of cases from the surveillance system to demonstrate that routinely collected BFV notification data were an unreliable indicator of the true location of exposure. Methods BFV notifications from June 2001 to May 2011 were extracted from the New South Wales (NSW) Notifiable Conditions Information Management System to study case distribution. Disease cluster analysis was performed using spatial scan statistics. Exposure history data were collected from cases notified in 2010 and 2011 to accurately determine travel to high-risk areas. Results Cluster analysis using address data identified an area of increased BFV disease incidence in the mid-north coast of NSW contiguous with estuarine wetlands. When travel to this area was investigated, 96.7% (29/30) cases reported having visited coastal regions within four weeks of developing symptoms. Discussion Along the central NSW coastline, extensive wetlands occur in close proximity to populated areas. These wetlands provide ideal breeding habitats for a range of mosquito species implicated in the transmission of BFV. This is the first study to fully assess case exposure with findings suggesting that sporadic cases of BFV in people living further away from the coast do not reflect alternative exposure sites but are likely to result from travel to coastal regions. Spatial analysis by case address alone may lead to inaccurate understandings of the true distribution of arboviral diseases. Subsequently, this information has important implications for the collection of mosquito-borne disease surveillance information and public health response strategies. PMID:23908926

  13. Poor immune responses of newborn rhesus macaques to measles virus DNA vaccines expressing the hemagglutinin and fusion glycoproteins.

    PubMed

    Polack, Fernando P; Lydy, Shari L; Lee, Sok-Hyong; Rota, Paul A; Bellini, William J; Adams, Robert J; Robinson, Harriet L; Griffin, Diane E

    2013-02-01

    A vaccine that would protect young infants against measles could facilitate elimination efforts and decrease morbidity and mortality in developing countries. However, immaturity of the immune system is an important obstacle to the development of such a vaccine. In this study, DNA vaccines expressing the measles virus (MeV) hemagglutinin (H) protein or H and fusion (F) proteins, previously shown to protect juvenile macaques, were used to immunize groups of 4 newborn rhesus macaques. Monkeys were inoculated intradermally with 200 μg of each DNA at birth and at 10 months of age. As controls, 2 newborn macaques were similarly vaccinated with DNA encoding the influenza virus H5, and 4 received one dose of the current live attenuated MeV vaccine (LAV) intramuscularly. All monkeys were monitored for development of MeV-specific neutralizing and binding IgG antibody and cytotoxic T lymphocyte (CTL) responses. These responses were poor compared to the responses induced by LAV. At 18 months of age, all monkeys were challenged intratracheally with a wild-type strain of MeV. Monkeys that received the DNA vaccine encoding H and F, but not H alone, were primed for an MeV-specific CD8(+) CTL response but not for production of antibody. LAV-vaccinated monkeys were protected from rash and viremia, while DNA-vaccinated monkeys developed rashes, similar to control monkeys, but had 10-fold lower levels of viremia. We conclude that vaccination of infant macaques with DNA encoding MeV H and F provided only partial protection from MeV infection.

  14. Control of the rescue and replication of Semliki Forest virus recombinants by the insertion of miRNA target sequences.

    PubMed

    Ratnik, Kaspar; Viru, Liane; Merits, Andres

    2013-01-01

    Due to their broad cell- and tissue-tropism, alphavirus-based replication-competent vectors are of particular interest for anti-cancer therapy. These properties may, however, be potentially hazardous unless the virus infection is controlled. While the RNA genome of alphaviruses precludes the standard control techniques, host miRNAs can be used to down-regulate viral replication. In this study, target sites from ubiquitous miRNAs and those of miRNAs under-represented in cervical cancer cells were inserted into replication-competent DNA/RNA layered vectors of Semliki Forest virus. It was found that in order to achieve the most efficient suppression of recombinant virus rescue, the introduced target sequences must be fully complementary to those of the corresponding miRNAs. Target sites of ubiquitous miRNAs, introduced into the 3' untranslated region of the viral vector, profoundly reduced the rescue of recombinant viruses. Insertion of the same miRNA targets into coding region of the viral vector was approximately 300-fold less effective. Viruses carrying these miRNAs were genetically unstable and rapidly lost the target sequences. This process was delayed, but not completely prevented, by miRNA inhibitors. Target sites of miRNA under-represented in cervical cancer cells had much smaller but still significant effects on recombinant virus rescue in cervical cancer-derived HeLa cells. Over-expression of miR-214, one of these miRNAs, reduced replication of the targeted virus. Though the majority of rescued viruses maintained the introduced miRNA target sequences, genomes with deletions of these sequences were also detected. Thus, the low-level repression of rescue and replication of targeted virus in HeLa cells was still sufficient to cause genetic instability.

  15. Obatoclax Inhibits Alphavirus Membrane Fusion by Neutralizing the Acidic Environment of Endocytic Compartments.

    PubMed

    Varghese, Finny S; Rausalu, Kai; Hakanen, Marika; Saul, Sirle; Kümmerer, Beate M; Susi, Petri; Merits, Andres; Ahola, Tero

    2017-03-01

    As new pathogenic viruses continue to emerge, it is paramount to have intervention strategies that target a common denominator in these pathogens. The fusion of viral and cellular membranes during viral entry is one such process that is used by many pathogenic viruses, including chikungunya virus, West Nile virus, and influenza virus. Obatoclax, a small-molecule antagonist of the Bcl-2 family of proteins, was previously determined to have activity against influenza A virus and also Sindbis virus. Here, we report it to be active against alphaviruses, like chikungunya virus (50% effective concentration [EC50] = 0.03 μM) and Semliki Forest virus (SFV; EC50 = 0.11 μM). Obatoclax inhibited viral entry processes in an SFV temperature-sensitive mutant entry assay. A neutral red retention assay revealed that obatoclax induces the rapid neutralization of the acidic environment of endolysosomal vesicles and thereby most likely inhibits viral fusion. Characterization of escape mutants revealed that the L369I mutation in the SFV E1 fusion protein was sufficient to confer partial resistance against obatoclax. Other inhibitors that target the Bcl-2 family of antiapoptotic proteins inhibited neither viral entry nor endolysosomal acidification, suggesting that the antiviral mechanism of obatoclax does not depend on its anticancer targets. Obatoclax inhibited the growth of flaviviruses, like Zika virus, West Nile virus, and yellow fever virus, which require low pH for fusion, but not that of pH-independent picornaviruses, like coxsackievirus A9, echovirus 6, and echovirus 7. In conclusion, obatoclax is a novel inhibitor of endosomal acidification that prevents viral fusion and that could be pursued as a potential broad-spectrum antiviral candidate.

  16. Obatoclax Inhibits Alphavirus Membrane Fusion by Neutralizing the Acidic Environment of Endocytic Compartments

    PubMed Central

    Rausalu, Kai; Hakanen, Marika; Saul, Sirle; Kümmerer, Beate M.; Susi, Petri; Merits, Andres

    2016-01-01

    ABSTRACT As new pathogenic viruses continue to emerge, it is paramount to have intervention strategies that target a common denominator in these pathogens. The fusion of viral and cellular membranes during viral entry is one such process that is used by many pathogenic viruses, including chikungunya virus, West Nile virus, and influenza virus. Obatoclax, a small-molecule antagonist of the Bcl-2 family of proteins, was previously determined to have activity against influenza A virus and also Sindbis virus. Here, we report it to be active against alphaviruses, like chikungunya virus (50% effective concentration [EC50] = 0.03 μM) and Semliki Forest virus (SFV; EC50 = 0.11 μM). Obatoclax inhibited viral entry processes in an SFV temperature-sensitive mutant entry assay. A neutral red retention assay revealed that obatoclax induces the rapid neutralization of the acidic environment of endolysosomal vesicles and thereby most likely inhibits viral fusion. Characterization of escape mutants revealed that the L369I mutation in the SFV E1 fusion protein was sufficient to confer partial resistance against obatoclax. Other inhibitors that target the Bcl-2 family of antiapoptotic proteins inhibited neither viral entry nor endolysosomal acidification, suggesting that the antiviral mechanism of obatoclax does not depend on its anticancer targets. Obatoclax inhibited the growth of flaviviruses, like Zika virus, West Nile virus, and yellow fever virus, which require low pH for fusion, but not that of pH-independent picornaviruses, like coxsackievirus A9, echovirus 6, and echovirus 7. In conclusion, obatoclax is a novel inhibitor of endosomal acidification that prevents viral fusion and that could be pursued as a potential broad-spectrum antiviral candidate. PMID:27993855

  17. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs.

    PubMed

    Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Weber, Friedemann; Herold, Susanne; Pöhlmann, Stefan; Matrosovich, Mikhail

    2017-06-01

    The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins.IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN

  18. Genetically engineered colorimetric single-chain antibody fusion protein for rapid diagnosis of rabies virus.

    PubMed

    Mousli, M; Turki, I; Kharmachi, H; Dellagi, K

    2008-01-01

    The most widely used test for rabies diagnostics is the fluorescent antibody test, which is recommended by both the World Health Organization and the World Organisation for Animal Health (OIE). This test may be used directly on a smear, and can also be used to confirm the presence of rabies antigen in cell culture or in brain tissue for diagnosis. The colorimetric enzymes are usually coupled to an antibody by chemical means using cross-linking reagents. However, such non-specific procedures lead to heterogeneous conjugates, sometimes with reduced activity and specificity. To bypass these problems, genetic engineering has provided a way to create chimeric bifunctional molecules in which the variable domains of an antibody are genetically linked to unrelated protein tracers. In this study, we describe the successful production of a bifunctional chimeric protein based on alkaline phosphatase-fused anti-rabies virus glycoprotein scFv antibody fragment. We also report the antigen binding properties and the alkaline phosphatase activity of the recombinant conjugate protein. We established its value as a novel in vitro tool for detecting the rabies virus in brain smear in a one-step procedure; it presents a similar sensitivity and specificity to that obtained using standard reagents.

  19. Fusion of flagellin 2 with bivalent white spot syndrome virus vaccine increases survival in freshwater shrimp.

    PubMed

    Cho, Hansam; Park, Na Hye; Jang, Yuyeon; Gwon, Yong-Dae; Cho, Yeondong; Heo, Yoon-Ki; Park, Ki-Hoon; Lee, Hee-Jung; Choi, Tae Jin; Kim, Young Bong

    2017-03-01

    Despite large economic losses attributable to white spot syndrome virus (WSSV), an infectious pathogen of penaeid shrimp and other crustaceans worldwide, no efficient vaccines or antiviral agents to control the virus are available at present. Here, we designed and constructed baculovirus-based vaccines delivering genes encoding the WSSV envelope proteins, VP28 and VP19. To enhance the immunogenicity of the baculovirus-based vaccine, we fused a Salmonella typhimurium flagellin 2 (FL2) gene with VP28 or VP19 gene. Both vaccine constructs elicited similar high titlers of anti-WSSV IgG after oral immunization in mice. The protective effect of oral vaccines upon WSSV challenge was observed in Macrobrachium nipponense. Bivalent vaccine displaying WSSV envelope proteins, VP19 and VP28, led to enhanced more than 10% survival protection against WSSV infection, compared to monovalent vaccine containing WSSV envelope protein, VP19 or VP28. Furthermore, a baculovirus-based WSSV vaccine fused with FL2 gene, Ac-VP28-ie1VP19FL2, efficiently protected mice against WSSV challenge (89.5% survival rate). In support of the efficacy of FL2 in our vaccine, we verified FL2 enhanced survival rate and induced the NF-κB gene in Palaemon paucidens. The collective results strongly suggest that our recombinant baculoviral system displaying WSSV envelope protein and delivering FL2-fused WSSV envelope gene effectively induced protective responses, supporting the utility of a potential new oral DNA vaccine against WSSV.

  20. Palmitoylation of the feline immunodeficiency virus envelope glycoprotein and its effect on fusion activity and envelope incorporation into virions

    SciTech Connect

    Gonzalez, Silvia A.; Paladino, Monica G.; Affranchino, Jose L.

    2012-06-20

    The feline immunodeficiency virus (FIV) envelope glycoprotein (Env) possesses a short cytoplasmic domain of 53 amino acids containing four highly conserved cysteines at Env positions 804, 811, 815 and 848. Since palmitoylation of transmembrane proteins occurs at or near the membrane anchor, we investigated whether cysteines 804, 811 and 815 are acylated and analyzed the relevance of these residues for Env functions. Replacement of cysteines 804, 811 and 815 individually or in combination by serine residues resulted in Env glycoproteins that were efficiently expressed and processed. However, mutations C804S and C811S reduced Env fusogenicity by 93% and 84%, respectively, compared with wild-type Env. By contrast, mutant C815S exhibited a fusogenic capacity representing 50% of the wild-type value. Remarkably, the double mutation C804S/C811S abrogated both Env fusion activity and Env incorporation into virions. Finally, by means of Click chemistry assays we demonstrated that the four FIV Env cytoplasmic cysteines are palmitoylated.

  1. RT-PCR and sequence analysis of the full-length fusion protein of Canine Distemper Virus from domestic dogs.

    PubMed

    Romanutti, Carina; Gallo Calderón, Marina; Keller, Leticia; Mattion, Nora; La Torre, José

    2016-02-01

    During 2007-2014, 84 out of 236 (35.6%) samples from domestic dogs submitted to our laboratory for diagnostic purposes were positive for Canine Distemper Virus (CDV), as analyzed by RT-PCR amplification of a fragment of the nucleoprotein gene. Fifty-nine of them (70.2%) were from dogs that had been vaccinated against CDV. The full-length gene encoding the Fusion (F) protein of fifteen isolates was sequenced and compared with that of those of other CDVs, including wild-type and vaccine strains. Phylogenetic analysis using the F gene full-length sequences grouped all the Argentinean CDV strains in the SA2 clade. Sequence identity with the Onderstepoort vaccine strain was 89.0-90.6%, and the highest divergence was found in the 135 amino acids corresponding to the F protein signal-peptide, Fsp (64.4-66.7% identity). In contrast, this region was highly conserved among the local strains (94.1-100% identity). One extra putative N-glycosylation site was identified in the F gene of CDV Argentinean strains with respect to the vaccine strain. The present report is the first to analyze full-length F protein sequences of CDV strains circulating in Argentina, and contributes to the knowledge of molecular epidemiology of CDV, which may help in understanding future disease outbreaks.

  2. Expression of Glucose Transporter 1 Confers Susceptibility to Human T-Cell Leukemia Virus Envelope-Mediated Fusion

    PubMed Central

    Coskun, Ayse Kubra; Sutton, Richard E.

    2005-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus identified and causes both adult T-cell leukemia/lymphoma and tropical spastic paraparesis/HTLV-1-associated myelopathy, among other disorders. In vitro, HTLV-1 has an extremely broad host cell tropism in that it is capable of infecting most mammalian cell types, although at the same time viral titers remain relatively low. Despite years of study, only recently has a bona fide candidate cellular receptor, glucose transporter 1 (glut-1), been identified. Although glut-1 was shown to bind specifically to the ectodomain of HTLV-1 and HTLV-2 envelope glycoproteins, which was reversible with small interfering RNA directed against glut-1, cellular susceptibility to HTLV upon expression of glut-1 was not established. Here we show that expression of glut-1 in relatively resistant MDBK cells conferred increased susceptibility to both HTLV-1- and HTLV-2-pseudotyped particles. glut-1 also markedly increased syncytium formation in MDBK cells after exposure to HTLV-1. Another assay also demonstrated HTLV-1 envelope-cell fusion in the presence of glut-1. Taken together, these results provide additional evidence that glut-1 is a receptor for HTLV. PMID:15767416

  3. Sequence motif upstream of the Hendra virus fusion protein cleavage site is not sufficient to promote efficient proteolytic processing

    SciTech Connect

    Craft, Willie Warren; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2005-10-10

    The Hendra virus fusion (HeV F) protein is synthesized as a precursor, F{sub 0}, and proteolytically cleaved into the mature F{sub 1} and F{sub 2} heterodimer, following an HDLVDGVK{sub 109} motif. This cleavage event is required for fusogenic activity. To determine the amino acid requirements for processing of the HeV F protein, we constructed multiple mutants. Individual and simultaneous alanine substitutions of the eight residues immediately upstream of the cleavage site did not eliminate processing. A chimeric SV5 F protein in which the furin site was substituted for the VDGVK{sub 109} motif of the HeV F protein was not processed but was expressed on the cell surface. Another chimeric SV5 F protein containing the HDLVDGVK{sub 109} motif of the HeV F protein underwent partial cleavage. These data indicate that the upstream region can play a role in protease recognition, but is neither absolutely required nor sufficient for efficient processing of the HeV F protein.

  4. Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers

    SciTech Connect

    Swanson, Kurt A.; Settembre, Ethan C.; Shaw, Christine A.; Dey, Antu K.; Rappuoli, Rino; Mandl, Christian W.; Dormitzer, Philip R.; Carfi, Andrea

    2012-02-07

    Respiratory syncytial virus (RSV), the main cause of infant bronchiolitis, remains a major unmet vaccine need despite more than 40 years of vaccine research. Vaccine candidates based on a chief RSV neutralization antigen, the fusion (F) glycoprotein, have foundered due to problems with stability, purity, reproducibility, and potency. Crystal structures of related parainfluenza F glycoproteins have revealed a large conformational change between the prefusion and postfusion states, suggesting that postfusion F antigens might not efficiently elicit neutralizing antibodies. We have generated a homogeneous, stable, and reproducible postfusion RSV F immunogen that elicits high titers of neutralizing antibodies in immunized animals. The 3.2-{angstrom} X-ray crystal structure of this substantially complete RSV F reveals important differences from homology-based structural models. Specifically, the RSV F crystal structure demonstrates the exposure of key neutralizing antibody binding sites on the surface of the postfusion RSV F trimer. This unanticipated structural feature explains the engineered RSV F antigen's efficiency as an immunogen. This work illustrates how structural-based antigen design can guide the rational optimization of candidate vaccine antigens.

  5. Weather Variability, Tides, and Barmah Forest Virus Disease in the Gladstone Region, Australia

    PubMed Central

    Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S.; McMichael, Anthony J.; Dale, Pat; Tong, Shilu

    2006-01-01

    In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention. PMID:16675420

  6. Weather variability, tides, and Barmah Forest virus disease in the Gladstone region, Australia.

    PubMed

    Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S; McMichael, Anthony J; Dale, Pat; Tong, Shilu

    2006-05-01

    In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (b=0.15, p-value<0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (b=-1.03, p-value=0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.

  7. Forecasting the future risk of Barmah Forest virus disease under climate change scenarios in Queensland, Australia.

    PubMed

    Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu

    2013-01-01

    Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.

  8. Improved Semliki Forest virus vectors for receptor research and gene therapy.

    PubMed

    Lundstrom, K; Ziltener, P; Hermann, D; Schweitzer, C; Richards, J G; Jenck, F

    2001-02-01

    We have modified Semliki Forest virus (SFV) vectors to broaden their application range. Here we describe a series of site-directed mutagenesis experiments on the SFV subgenomic 26S promoter to down-regulate the heterologous gene expression. Several mutants showed a dramatic effect on transgene expression levels in BHK cells. The luciferase activity was reduced to approximately 30%, 3%, and 1% compared to the wild type promoter. Similarly, a decrease in beta-galactosidase activity was observed in BHK cells and after injection into the striatum of male Wistar rats. Novel non-cytopathogenic and temperature-sensitive SFV vectors have recently been developed by introduction of point mutations in the viral nonstructural genes nsP2 and nsP4. These vectors do not show the typical shut down of host cell protein synthesis after SFV infections and therefore allow for a substantially prolonged survival of host cells. Both the mutant vectors demonstrating lower and more physiological expression levels and the non-cytopathogenic vectors should be valuable tools for various applications within receptor research. Furthermore, recent studies suggest that SFV vectors can be efficient gene delivery vehicles for gene therapy applications.

  9. Engineering of papaya mosaic virus (PapMV) nanoparticles through fusion of the HA11 peptide to several putative surface-exposed sites.

    PubMed

    Rioux, Gervais; Babin, Cindy; Majeau, Nathalie; Leclerc, Denis

    2012-01-01

    Papaya mosaic virus has been shown to be an efficient adjuvant and vaccine platform in the design and improvement of innovative flu vaccines. So far, all fusions based on the PapMV platform have been located at the C-terminus of the PapMV coat protein. Considering that some epitopes might interfere with the self-assembly of PapMV CP when fused at the C-terminus, we evaluated other possible sites of fusion using the influenza HA11 peptide antigen. Two out of the six new fusion sites tested led to the production of recombinant proteins capable of self assembly into PapMV nanoparticles; the two functional sites are located after amino acids 12 and 187. Immunoprecipitation of each of the successful fusions demonstrated that the HA11 epitope was located at the surface of the nanoparticles. The stability and immunogenicity of the PapMV-HA11 nanoparticles were evaluated, and we could show that there is a direct correlation between the stability of the nanoparticles at 37°C (mammalian body temperature) and the ability of the nanoparticles to trigger an efficient immune response directed towards the HA11 epitope. This strong correlation between nanoparticle stability and immunogenicity in animals suggests that the stability of any nanoparticle harbouring the fusion of a new peptide should be an important criterion in the design of a new vaccine.

  10. A computational approach identifies two regions of Hepatitis C Virus E1 protein as interacting domains involved in viral fusion process

    PubMed Central

    Bruni, Roberto; Costantino, Angela; Tritarelli, Elena; Marcantonio, Cinzia; Ciccozzi, Massimo; Rapicetta, Maria; El Sawaf, Gamal; Giuliani, Alessandro; Ciccaglione, Anna Rita

    2009-01-01

    Background The E1 protein of Hepatitis C Virus (HCV) can be dissected into two distinct hydrophobic regions: a central domain containing an hypothetical fusion peptide (FP), and a C-terminal domain (CT) comprising two segments, a pre-anchor and a trans-membrane (TM) region. In the currently accepted model of the viral fusion process, the FP and the TM regions are considered to be closely juxtaposed in the post-fusion structure and their physical interaction cannot be excluded. In the present study, we took advantage of the natural sequence variability present among HCV strains to test, by purely sequence-based computational tools, the hypothesis that in this virus the fusion process involves the physical interaction of the FP and CT regions of E1. Results Two computational approaches were applied. The first one is based on the co-evolution paradigm of interacting peptides and consequently on the correlation between the distance matrices generated by the sequence alignment method applied to FP and CT primary structures, respectively. In spite of the relatively low random genetic drift between genotypes, co-evolution analysis of sequences from five HCV genotypes revealed a greater correlation between the FP and CT domains than respect to a control HCV sequence from Core protein, so giving a clear, albeit still inconclusive, support to the physical interaction hypothesis. The second approach relies upon a non-linear signal analysis method widely used in protein science called Recurrence Quantification Analysis (RQA). This method allows for a direct comparison of domains for the presence of common hydrophobicity patterns, on which the physical interaction is based upon. RQA greatly strengthened the reliability of the hypothesis by the scoring of a lot of cross-recurrences between FP and CT peptides hydrophobicity patterning largely outnumbering chance expectations and pointing to putative interaction sites. Intriguingly, mutations in the CT region of E1, reducing the

  11. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion.

    PubMed

    Roehrig, John T; Butrapet, Siritorn; Liss, Nathan M; Bennett, Susan L; Luy, Betty E; Childers, Thomas; Boroughs, Karen L; Stovall, Janae L; Calvert, Amanda E; Blair, Carol D; Huang, Claire Y-H

    2013-07-05

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion.

  12. On the entry of an emerging arbovirus into host cells: Mayaro virus takes the highway to the cytoplasm through fusion with early endosomes and caveolae-derived vesicles

    PubMed Central

    Carvalho, Carlos A.M.; Silva, Jerson L.; Oliveira, Andréa C.

    2017-01-01

    Mayaro virus (MAYV) is an emergent sylvatic alphavirus in South America, related to sporadic outbreaks of a chikungunya-like human febrile illness accompanied by severe arthralgia. Despite its high potential for urban emergence, MAYV is still an obscure virus with scarce information about its infection cycle, including the corresponding early events. Even for prototypical alphaviruses, the cell entry mechanism still has some rough edges to trim: although clathrin-mediated endocytosis is quoted as the putative route, alternative paths as distinct as direct virus genome injection through the cell plasma membrane seems to be possible. Our aim was to clarify crucial details on the entry route exploited by MAYV to gain access into the host cell. Tracking the virus since its first contact with the surface of Vero cells by fluorescence microscopy, we show that its entry occurs by a fast endocytic process and relies on fusion with acidic endosomal compartments. Moreover, blocking clathrin-mediated endocytosis or depleting cholesterol from the cell membrane leads to a strong inhibition of viral infection, as assessed by plaque assays. Following this clue, we found that early endosomes and caveolae-derived vesicles are both implicated as target membranes for MAYV fusion. Our findings unravel the very first events that culminate in a productive infection by MAYV and shed light on potential targets for a rational antiviral therapy, besides providing a better comprehension of the entry routes exploited by alphaviruses to get into the cell. PMID:28462045

  13. On the entry of an emerging arbovirus into host cells: Mayaro virus takes the highway to the cytoplasm through fusion with early endosomes and caveolae-derived vesicles.

    PubMed

    Carvalho, Carlos A M; Silva, Jerson L; Oliveira, Andréa C; Gomes, Andre M O

    2017-01-01

    Mayaro virus (MAYV) is an emergent sylvatic alphavirus in South America, related to sporadic outbreaks of a chikungunya-like human febrile illness accompanied by severe arthralgia. Despite its high potential for urban emergence, MAYV is still an obscure virus with scarce information about its infection cycle, including the corresponding early events. Even for prototypical alphaviruses, the cell entry mechanism still has some rough edges to trim: although clathrin-mediated endocytosis is quoted as the putative route, alternative paths as distinct as direct virus genome injection through the cell plasma membrane seems to be possible. Our aim was to clarify crucial details on the entry route exploited by MAYV to gain access into the host cell. Tracking the virus since its first contact with the surface of Vero cells by fluorescence microscopy, we show that its entry occurs by a fast endocytic process and relies on fusion with acidic endosomal compartments. Moreover, blocking clathrin-mediated endocytosis or depleting cholesterol from the cell membrane leads to a strong inhibition of viral infection, as assessed by plaque assays. Following this clue, we found that early endosomes and caveolae-derived vesicles are both implicated as target membranes for MAYV fusion. Our findings unravel the very first events that culminate in a productive infection by MAYV and shed light on potential targets for a rational antiviral therapy, besides providing a better comprehension of the entry routes exploited by alphaviruses to get into the cell.

  14. Attenuated human parainfluenza virus type 1 (HPIV1) expressing the respiratory syncytial virus (RSV) fusion F glycoprotein from an added gene: effects of pre-fusion stabilization and packaging of RSV F.

    PubMed

    Liu, Xiang; Liang, Bo; Ngwuta, Joan; Liu, Xueqiao; Surman, Sonja; Lingemann, Matthias; Kwong, Peter D; Graham, Barney S; Collins, Peter L; Munir, Shirin

    2017-08-23

    Human respiratory syncytial virus (RSV) is the most prevalent worldwide cause of severe respiratory tract infection in infants and young children. Human parainfluenza virus type 1 (HPIV1) also causes severe pediatric respiratory illness, especially croup. Both viruses lack vaccines. Here, we describe the preclinical development of a bivalent RSV/HPIV1 vaccine based on a recombinant HPIV1 vector, attenuated by a stabilized mutation, that expresses RSV F protein modified for increased stability in the pre-fusion (pre-F) conformation by previously-described disulfide bond (DS) and hydrophobic cavity-filling (Cav1) mutations. RSV F was expressed from the first or second gene position as the full-length protein or as a chimeric protein with its transmembrane (TM) and cytoplasmic tail (CT) domains substituted with those of HPIV1 F in an effort to direct packaging in the vector particles. All constructs were recovered by reverse genetics. The TMCT versions of RSV F were packaged in the rHPIV1 particles much more efficiently than their full-length counterparts. In hamsters, the presence of the RSV F gene, and in particular the TMCT versions, was attenuating and resulted in reduced immunogenicity. However, the vector expressing full-length RSV F from the pre-N position was immunogenic for RSV and HPIV1. It conferred complement-independent high-quality RSV-neutralizing antibodies at titers similar to those of wild type RSV and provided protection against RSV challenge. The vectors exhibited stable RSV F expression in vitro and in vivo In conclusion, an attenuated rHPIV1 vector expressing a pre-F-stabilized form of RSV F demonstrated promising immunogenicity and should be further developed as an intranasal pediatric vaccine.Importance. RSV and HPIV1 are major viral causes of acute pediatric respiratory illness for which no vaccines or suitable antiviral drugs are available. The RSV F glycoprotein is the major RSV neutralization antigen. We used a rHPIV1 vector, bearing a

  15. Comparative analysis of the fusion efficiency elicited by the envelope glycoprotein V1-V5 regions derived from human immunodeficiency virus type 1 transmitted perinatally.

    PubMed

    Guo, Hongyan; Abrahamyan, Levon G; Liu, Chang; Waltke, Mackenzie; Geng, Yunqi; Chen, Qimin; Wood, Charles; Kong, Xiaohong

    2012-12-01

    Understanding the properties of viruses preferentially establishing infection during perinatal transmission of human immunodeficiency virus type 1 (HIV-1) is critical for the development of effective measures to prevent transmission. A previous study demonstrated that the newly transmitted viruses (in infants) of chronically infected mother-infant pairs (MIPs) were fitter in terms of growth, which was imparted by their envelope (Env) glycoprotein V1-V5 regions, than those in the corresponding chronically infected mothers. In order to investigate whether the higher fitness of transmitted viruses was conferred by their higher entry efficiency directed by the V1-V5 regions during perinatal transmission, the fusogenicity of Env containing V1-V5 regions derived from transmitted and non-tranmsmitted viruses of five chronically infected MIPs and two acutely infected MIPs was analysed using two different cell-cell fusion assays. The results showed that, in one chronically infected MIP, a higher fusion efficiency was induced by the infant Env V1-V5 compared with that of the corresponding mother. Moreover, the V4-V5 regions played an important role in discriminating the transmitted and non-transmitted viruses in this pair. However, neither a consistent pattern nor significant differences in fusogenicity mediated by the V1-V5 regions between maternal and infant variants was observed in the other MIPs. This study suggests that there is no consistent and significant correlation between viral fitness selection and entry efficiency directed by the V1-V5 regions during perinatal transmission. Other factors such as the route and timing of transmission may also be involved.

  16. Enhanced immune response with foot and mouth disease virus VP1 and interleukin-1 fusion genes.

    PubMed

    Park, Jong Hyeon; Kim, Sun Jin; Oem, Jae Ku; Lee, Kwang Nyeong; Kim, Yong Joo; Kye, Soo Jeong; Park, Jee Yong; Joo, Yi Seok

    2006-09-01

    The capsid of the foot and mouth disease (FMD) virus carries the epitopes that are critical for inducing the immune response. In an attempt to enhance the specific immune response, plasmid DNA was constructed to express VP1/interleukin-1alpha (IL-1alpha) and precursor capsid (P1) in combination with 2A (P1-2A)/IL-1alpha under the control of the human cytomegalovirus (HCMV) immediateearly promoter and intron. After DNA transfection into MA104 (monkey kidney) cells, Western blotting and an immunofluorescence assay were used to confirm the expression of VP1 or P1-2A and IL-1alpha. Mice were inoculated with the encoding plasmids via the intradermal route, and the IgG1 and IgG2a levels were used to determine the immune responses. These results show that although the immunized groups did not carry a high level of neutralizing antibodies, the plasmids encoding the VP1/ IL-1alpha, and P1-2A /IL-1alpha fused genes were effective in inducing an enhanced immune response.

  17. Screening Analogs of β-OG Pocket Binder as Fusion Inhibitor of Dengue Virus 2

    PubMed Central

    Tambunan, Usman SF; Zahroh, Hilyatuz; Parikesit, Arli A; Idrus, Syarifuddin; Kerami, Djati

    2015-01-01

    Dengue is an infectious disease caused by dengue virus (DENV) and transmitted between human hosts by mosquitoes. Recently, Indonesia was listed as a country with the highest cases of dengue by the Association of Southeast Asian Nations. The current treatment for dengue disease is supportive therapy; there is no antiviral drug available in the market against dengue. Therefore, a research on antiviral drug against dengue is very important, especially to prevent outbreak explosion. In this research, the development of dengue antiviral is performed through the inhibition of n-octyl-β-D-glucoside (β-OG) binding pocket on envelope protein of DENV by using analogs of β-OG pocket binder. There are 828 compounds used in this study, and all of them were screened based on the analysis of molecular docking, pharmacological character prediction of the compounds, and molecular dynamics simulation. The result of these analyses revealed that the compound that can be used as an antiviral candidate against DENV is 5-(3,4-dichlorophenyl)-N-[2-(p-tolyl) benzotriazol-5-yl]furan-2-carboxamide. PMID:26617459

  18. Role of gag sequence in the biochemical properties and transforming activity of the avian sarcoma virus UR2-encoded gag-ros fusion protein.

    PubMed Central

    Jong, S M; Wang, L H

    1990-01-01

    The transforming protein P68gag-ros of avian sarcoma virus UR2 is a transmembrane tyrosine protein kinase molecule with the gag portion protruding extracellularly. To investigate the role of the gag moiety in the biochemical properties and biological functions of the P68gag-ros fusion protein, retroviruses containing the ros coding sequence of UR2 were constructed and analyzed. The gag-free ros protein was expressed from one of the mutant retroviruses at a level 10 to 50% of that of the wild-type UR2. However, the gag-free ros-containing viruses were not able to either transform chicken embryo fibroblasts or induce tumors in chickens. The specific tyrosine protein kinase activity of gag-free ros protein is about 10- to 20-fold reduced as judged by in vitro autophosphorylation. The gag-free ros protein is still capable of associating with membrane fractions including the plasma membrane, indicating that sequences essential for recognition and binding membranes must be located within ros. Upon passages of the gag-free mutants, transforming and tumorigenic variants occasionally emerged. The variants were found to have regained the gag sequence fused to the 5' end of the ros, apparently via recombination with the helper virus or through intramolecular recombination between ros and upstream gag sequences in the same virus construct. All three variants analyzed code for gag-ros fusion protein larger than 68 kDa. The gag-ros recombination junction of one of the transforming variants was sequenced and found to consist of a p19-p10-p27-ros fusion sequence. We conclude that the gag sequence is essential for the transforming activity of P68gag-ros but is not important for its membrane association. Images PMID:2173777

  19. Production and characterization of a fusion peptide derived from the rabies virus glycoprotein (RVG29).

    PubMed

    Yang, Yu-Jiao; Zhao, Ping-Sen; Wu, Hong-Xia; Wang, Hua-Lei; Zhao, Li-Li; Xue, Xiang-Hong; Gai, Wei-Wei; Gao, Yu-Wei; Yang, Song-Tao; Xia, Xian-Zhu

    2014-12-01

    Gene therapy targeting the brain holds great promise in curing nervous system degenerative diseases in clinical applications. With this in mind, in a previous study a 29 amino-acid peptide derived from the rabies virus glycoprotein (RVG29) with a nonamer stretch of arginine residues (RVG29-9R) at its carboxy-terminus was exploited as a ligand for brain-targeting gene delivery. Importantly, the report demonstrated that the RVG29-9R vector was able to cross the blood-brain barrier. RVG29-9R is currently synthesized by commercial companies with high associated costs. In this study, in order to reduce the costs of producing RVG29-9R, we have expressed and purified 6mg of a recombinant peptide (RVG29-9R-6His) from 0.4g of cultured Escherichia coli. We assessed the physiochemical properties of RVG29-9R-6His, its cytotoxicity, and the in vitro transfection efficiency in Neuro 2a cells (which express the acetylcholine receptor). Our results reveal that the RVG29-9R-6His peptide recognized Neuro 2a cells in a dose-dependent manner and it was also able to bind plasmid DNA and deliver it into the Neuro 2a cells effectively. Therefore, our study has demonstrated that the recombinant RVG29-9R-6His peptide retains the functions of RVG29-9R and so may provide an economically viable and alternative production method for the manufacture of RVG29-9R.

  20. Using multi-satellite data fusion to estimate daily high spatial resolution evapotranspiration over a forested site in North Carolina

    USDA-ARS?s Scientific Manuscript database

    Atmosphere-Land Exchange Inverse model and associated disaggregation scheme (ALEXI/DisALEXI). Satellite-based ET retrievals from both the Moderate Resolution Imaging Spectoradiometer (MODIS; 1km, daily) and Landsat (30m, bi-weekly) are fused with The Spatial and Temporal Adaptive Reflective Fusion ...