Magnetic nanoparticles for efficient cell transduction with Semliki Forest virus.
Kurena, Baiba; Vežāne, Aleksandra; Skrastiņa, Dace; Trofimova, Olga; Zajakina, Anna
2017-07-01
Semliki Forest virus (SFV) is a potential cancer gene therapy vector capable of providing high and transient expression of heterologous proteins in mammalian cells. However, SFV has shown suboptimal transduction levels in several cancer cell types as well as wide biodistribution of SFV has been observed after in vivo applications. Magnetic nanoparticles (MNPs) have been shown to increase cell transduction with several viral vectors in vitro under an external magnetic field and enhance magnetically guided viral vector delivery. Here, we examined a panel of MNPs for enhanced cancer cell transduction with SFV vector. Magneto-transduction using positively charged MNPs increased Semliki Forest virus transduction in TS/A mouse mammary carcinoma cells in vitro in the presence of fetal bovine serum. Positively charged MNPs efficiently captured SFV particles independently of capturing medium, and MNPs-SFV complexes were successfully separated from suspension by magnetic precipitation. These results reveal the potential application of MNPs for enhanced gene delivery by SFV vector as well as proposes magnetic precipitation for efficient concentration of SFV particles from different media. Copyright © 2017 Elsevier B.V. All rights reserved.
Vector Competence of New Zealand Mosquitoes for Selected Arboviruses
Kramer, Laura D.; Chin, Pam; Cane, Rachel P.; Kauffman, Elizabeth B.; Mackereth, Graham
2011-01-01
New Zealand (NZ) historically has been free of arboviral activity with the exception of Whataroa virus (Togaviridae: Alphavirus), which is established in bird populations and is transmitted by local mosquitoes. This naive situation is threatened by global warming, invasive mosquitoes, and tourism. To determine the threat of selected medically important arboviruses to NZ, vector competence assays were conducted using field collected endemic and introduced mosquito species. Four alphaviruses (Togaviridae): Barmah Forest virus, Chikungunya virus, Ross River virus, and Sindbis virus, and five flaviviruses (Flaviviridae): Dengue virus 2, Japanese encephalitis virus, Murray Valley encephalitis virus, West Nile virus, and Yellow fever virus were evaluated. Results indicate some NZ mosquito species are highly competent vectors of selected arboviruses, particularly alphaviruses, and may pose a threat were one of these arboviruses introduced at a time when the vector was prevalent and the climatic conditions favorable for virus transmission. PMID:21734146
Young, Katherine I; Mundis, Stephanie; Widen, Steven G; Wood, Thomas G; Tesh, Robert B; Cardosa, Jane; Vasilakis, Nikos; Perera, David; Hanley, Kathryn A
2017-08-31
Mosquito-borne dengue virus (DENV) is maintained in a sylvatic, enzootic cycle of transmission between canopy-dwelling non-human primates and Aedes mosquitoes in Borneo. Sylvatic DENV can spill over into humans living in proximity to forest foci of transmission, in some cases resulting in severe dengue disease. The most likely vectors of such spillover (bridge vectors) in Borneo are Ae. albopictus and Ae. niveus. Borneo is currently experiencing extensive forest clearance. To gauge the effect of this change in forest cover on the likelihood of sylvatic DENV spillover, it is first necessary to characterize the distribution of bridge vectors in different land cover types. In the current study, we hypothesized that Ae. niveus and Ae. albopictus would show significantly different distributions in different land cover types; specifically, we predicted that Ae. niveus would be most abundant in forests whereas Ae. albopictus would have a more even distribution in the landscape. Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing. Land cover type affects the abundance and distribution of the most likely bridge vectors of sylvatic DENV in Malaysia Borneo. Conversion of forests to agriculture will likely decrease the range and abundance of Ae. niveus but enhance the abundance of Ae. albopictus.
Rapid Identification of Vector-Borne Flaviviruses by Mass Spectrometry
2010-01-01
FE Mass 93 Human/1993 NR Karshi virus KV UZ-2247 Ticks/Uzbekistan/? NR Kyasanur Forest disease virus KFDV W371 Human/India/1957 AF013385 Langat LGTV...acterized samples that have been tested on other diagnostic plat- forms, the detection of viruses such as Tembusu and Langat viruses demonstrates the
Nicholson, J; Ritchie, S A; van den Hurk, A F
2014-05-01
In 2005, established populations of Aedes albopictus (Skuse) were discovered in the Torres Strait, the region that separates Papua New Guinea from northern Australia. This increased the potential for this species to be introduced to mainland Australia. Because it is an arbovirus vector elsewhere, we undertook laboratory-based infection and transmission experiments to determine the potential for Ae. albopictus from the Torres Strait to become infected with and transmit the four major Australian endemic arboviruses--Murray Valley encephalitis virus, West Nile virus Kunjin strain (WNV(KUN)), Ross River virus (RRV), and Barmah Forest virus--as well as the exotic Japanese encephalitis virus. Ae. albopictus is susceptible to infection with all viruses, with infection rates ranging between 8% for WNV(KUN) and 71% for RRV. Transmission rates of approximately 25% were observed for RRV and Barmah Forest virus, but these were < 17% for Murray Valley encephalitis virus, WNV(KUN), and Japanese encephalitis virus. Given its relative vector competence for alphaviruses, we also examined the replication kinetics and extrinsic incubation periods required for transmission of RRV and chikungunya virus. Despite lower body titers, more mosquitoes reared and maintained at 28 degrees C became infected with and transmitted the virus than those reared and maintained at 22 degrees C. The minimum time between Ae. albopictus consuming an infected bloodmeal and transmitting chikungunya virus was 2 d at 28 degrees C and 4 d at 22 degrees C, and for RRV, it was 4 d, irrespective of the temperature. Given its opportunistic feeding habits and aggressive biting behavior, the establishment of Ae. albopictus on the Australian mainland could have a considerable impact on alphavirus transmission.
Casales, Erkuden; Aranda, Alejandro; Quetglas, Jose I; Ruiz-Guillen, Marta; Rodriguez-Madoz, Juan R; Prieto, Jesus; Smerdou, Cristian
2010-05-31
Semliki Forest virus (SFV) vectors lead to high protein expression in mammalian cells, but expression is transient due to vector cytopathic effects, inhibition of host cell proteins and RNA-based expression. We have used a noncytopathic SFV mutant (ncSFV) RNA vector to generate stable cell lines expressing two human therapeutic proteins: insulin-like growth factor I (IGF-I) and cardiotrophin-1 (CT-1). Therapeutic genes were fused at the carboxy-terminal end of Puromycin N-acetyl-transferase gene by using as a linker the sequence coding for foot-and-mouth disease virus (FMDV) 2A autoprotease. These cassettes were cloned into the ncSFV vector. Recombinant ncSFV vectors allowed rapid and efficient selection of stable BHK cell lines with puromycin. These cells expressed IGF-I and CT-1 in supernatants at levels reaching 1.4 and 8.6 microg/10(6)cells/24 hours, respectively. Two cell lines generated with each vector were passaged ten times during 30 days, showing constant levels of protein expression. Recombinant proteins expressed at different passages were functional by in vitro signaling assays. Stability at RNA level was unexpectedly high, showing a very low mutation rate in the CT-1 sequence, which did not increase at high passages. CT-1 was efficiently purified from supernatants of ncSFV cell lines, obtaining a yield of approximately 2mg/L/24 hours. These results indicate that the ncSFV vector has a great potential for the production of recombinant proteins in mammalian cells. 2010 Elsevier B.V. All rights reserved.
Eastwood, Gillian; Loaiza, Jose R.; Pongsiri, Montira J.; Sanjur, Oris I.; Pecor, James E.; Auguste, Albert J.; Kramer, Laura D.
2016-01-01
Landscape changes occurring in Panama, a country whose geographic location and climate have historically supported arbovirus transmission, prompted the hypothesis that arbovirus prevalence increases with degradation of tropical forest habitats. Investigations at four variably degraded sites revealed a diverse array of potential mosquito vectors, several of which are known vectors of arbovirus pathogens. Overall, 675 pools consisting of 25,787 mosquitoes and representing 29 species from nine genera (collected at ground and canopy height across all habitats) were screened for cytopathic viruses on Vero cells. We detected four isolates of Gamboa virus (family: Bunyaviridae; genus: Orthobunyavirus) from pools of Aedeomyia squamipennis captured at canopy level in November 2012. Phylogenetic characterization of complete genome sequences shows the new isolates to be closely related to each other with strong evidence of reassortment among the M segment of Panamanian Gamboa isolates and several other viruses of this group. At the site yielding viruses, Soberanía National Park in central Panama, 18 mosquito species were identified, and the predominant taxa included A. squamipennis, Coquillettidia nigricans, and Mansonia titillans. PMID:26834200
Sundeen, Grace; Barbieri, Joseph T
2017-09-02
Botulinum neurotoxins (BoNT) cause the flaccid paralysis of botulism by inhibiting the release of acetylcholine from motor neurons. There are seven serotypes of BoNT (A-G), with limited therapies, and no FDA approved vaccine for botulism. An investigational formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was used to vaccinate people who are at high risk of contracting botulism. However, this formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was losing potency and was discontinued. This article reviews the different vaccines being developed to replace the discontinued toxoid vaccine. These vaccines include DNA-based, viral vector-based, and recombinant protein-based vaccines. DNA-based vaccines include plasmids or viral vectors containing the gene encoding one of the BoNT heavy chain receptor binding domains (HC). Viral vectors reviewed are adenovirus, influenza virus, rabies virus, Semliki Forest virus, and Venezuelan Equine Encephalitis virus. Among the potential recombinant protein vaccines reviewed are HC, light chain-heavy chain translocation domain, and chemically or genetically inactivated holotoxin.
Sundeen, Grace; Barbieri, Joseph T.
2017-01-01
Botulinum neurotoxins (BoNT) cause the flaccid paralysis of botulism by inhibiting the release of acetylcholine from motor neurons. There are seven serotypes of BoNT (A-G), with limited therapies, and no FDA approved vaccine for botulism. An investigational formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was used to vaccinate people who are at high risk of contracting botulism. However, this formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was losing potency and was discontinued. This article reviews the different vaccines being developed to replace the discontinued toxoid vaccine. These vaccines include DNA-based, viral vector-based, and recombinant protein-based vaccines. DNA-based vaccines include plasmids or viral vectors containing the gene encoding one of the BoNT heavy chain receptor binding domains (HC). Viral vectors reviewed are adenovirus, influenza virus, rabies virus, Semliki Forest virus, and Venezuelan Equine Encephalitis virus. Among the potential recombinant protein vaccines reviewed are HC, light chain-heavy chain translocation domain, and chemically or genetically inactivated holotoxin. PMID:28869493
Ghosh, Srikant; Nagar, Gaurav
2014-12-01
Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as vectors. The diseases spread by ticks are a major constraint to animal productivity while causing morbidity and mortality in both animals and humans. A number of tick species have been recognised since long as vectors of lethal pathogens, viz. Crimean-Congo haemorrhagic fever virus (CCHFV), Kyasanur forest disease virus (KFDV), Babesia spp, Theileria, Rickettsia conorii, Anaplasma marginale, etc. and the damages caused by them are well-recognised. There is a need to reassess the renewed threat posed by the tick vectors and to prioritize the tick control research programme. This review is focused on the major tick-borne human and animal diseases in India and the progress in vector control research with emphasis on acaricide resistance, tick vaccine and the development of potential phytoacaricides as an integral part of integrated tick control programme.
Identification of environmental covariates of West Nile virus vector mosquito population abundance.
Trawinski, Patricia R; Mackay, D Scott
2010-06-01
The rapid spread of West Nile virus (WNv) in North America is a major public health concern. Culex pipiens-restuans is the principle mosquito vector of WNv in the northeastern United States while Aedes vexans is an important bridge vector of the virus in this region. Vector mosquito abundance is directly dependent on physical environmental factors that provide mosquito habitats. The objective of this research is to determine landscape elements that explain the population abundance and distribution of WNv vector mosquitoes using stepwise linear regression. We developed a novel approach for examining a large set of landscape variables based on a land use and land cover classification by selecting variables in stages to minimize multicollinearity. We also investigated the distance at which landscape elements influence abundance of vector populations using buffer distances of 200, 400, and 1000 m. Results show landscape effects have a significant impact on Cx. pipiens-estuans population distribution while the effects of landscape features are less important for prediction of Ae. vexans population distributions. Cx. pipiens-restuans population abundance is positively correlated with human population density, housing unit density, and urban land use and land cover classes and negatively correlated with age of dwellings and amount of forested land.
Linard, Catherine; Lamarque, Pénélope; Heyman, Paul; Ducoffre, Geneviève; Luyasu, Victor; Tersago, Katrien; Vanwambeke, Sophie O; Lambin, Eric F
2007-05-02
Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover and land use influence disease transmission by controlling both the spatial distribution of vectors or hosts, and the probability of contact with susceptible human populations. The objective of this study was to combine environmental and socio-economic factors to explain the spatial distribution of two emerging human diseases in Belgium, Puumala virus (PUUV) and Lyme borreliosis. Municipalities were taken as units of analysis. Negative binomial regressions including a correction for spatial endogeneity show that the spatial distribution of PUUV and Lyme borreliosis infections are associated with a combination of factors linked to the vector and host populations, to human behaviours, and to landscape attributes. Both diseases are associated with the presence of forests, which are the preferred habitat for vector or host populations. The PUUV infection risk is higher in remote forest areas, where the level of urbanisation is low, and among low-income populations. The Lyme borreliosis transmission risk is higher in mixed landscapes with forests and spatially dispersed houses, mostly in wealthy peri-urban areas. The spatial dependence resulting from a combination of endogenous and exogenous processes could be accounted for in the model on PUUV but not for Lyme borreliosis. A large part of the spatial variation in disease risk can be explained by environmental and socio-economic factors. The two diseases not only are most prevalent in different regions but also affect different groups of people. Combining these two criteria may increase the efficiency of information campaigns through appropriate targeting.
Ba, Yamar; Sall, Amadou A.; Diop, Ousmane M.; Ndione, Jacques A.; Mondo, Mireille; Girault, Lang; Mathiot, Christian
2003-01-01
After 8 years of silence, dengue virus serotype 2 (DENV-2) reemerged in southeastern Senegal in 1999. Sixty-four DENV-2 strains were isolated in 1999 and 9 strains in 2000 from mosquitoes captured in the forest gallery and surrounding villages. Isolates were obtained from previously described vectors, Aedes furcifer, Ae. taylori, Ae. luteocephalus, and—for the first time in Senegal—from Ae. aegypti and Ae. vittatus. A retrospective analysis of sylvatic DENV-2 outbreaks in Senegal during the last 28 years of entomologic investigations shows that amplifications are periodic, with intervening, silent intervals of 5–8 years. No correlation was found between sylvatic DENV-2 emergence and rainfall amount. For sylvatic DENV-2 vectors, rainfall seems to particularly affect virus amplification that occurs at the end of the rainy season, from October to November. Data obtained from investigation of preimaginal (i.e., nonadult) mosquitoes suggest a secondary transmission cycle involving mosquitoes other than those identified previously as vectors. PMID:12643833
Diallo, Mawlouth; Ba, Yamar; Sall, Amadou A; Diop, Ousmane M; Ndione, Jacques A; Mondo, Mireille; Girault, Lang; Mathiot, Christian
2003-03-01
After 8 years of silence, dengue virus serotype 2 (DENV-2) reemerged in southeastern Senegal in 1999. Sixty-four DENV-2 strains were isolated in 1999 and 9 strains in 2000 from mosquitoes captured in the forest gallery and surrounding villages. Isolates were obtained from previously described vectors, Aedes furcifer, Ae. taylori, Ae. luteocephalus, and--for the first time in Senegal--from Ae. aegypti and Ae. vittatus. A retrospective analysis of sylvatic DENV-2 outbreaks in Senegal during the last 28 years of entomologic investigations shows that amplifications are periodic, with intervening, silent intervals of 5-8 years. No correlation was found between sylvatic DENV-2 emergence and rainfall amount. For sylvatic DENV-2 vectors, rainfall seems to particularly affect virus amplification that occurs at the end of the rainy season, from October to November. Data obtained from investigation of preimaginal (i.e., nonadult) mosquitoes suggest a secondary transmission cycle involving mosquitoes other than those identified previously as vectors.
Ecologic Factors Associated with West Nile Virus Transmission, Northeastern United States
Brown, Heidi E.; Childs, James E.; Diuk-Wasser, Maria A.
2008-01-01
Since 1999, West Nile virus (WNV) disease has affected the northeastern United States. To describe the spatial epidemiology and identify risk factors for disease incidence, we analyzed 8 years (1999–2006) of county-based human WNV disease surveillance data. Among the 56.6 million residents in 8 northeastern states sharing primary enzootic vectors, we found 977 cases. We controlled for population density and potential bias from surveillance and spatial proximity. Analyses demonstrated significant spatial spreading from 1999 through 2004 (p<0.01, r2 = 0.16). A significant trend was apparent among increasingly urban counties; county quartiles with the least (<38%) forest cover had 4.4-fold greater odds (95% confidence interval [CI] 1.4–13.2, p = 0.01) of having above-median disease incidence (>0.75 cases/100,000 residents) than counties with the most (>70%) forest cover. These results quantify urbanization as a risk factor for WNV disease incidence and are consistent with knowledge of vector species in this area. PMID:18826816
Preparing the United States for Zika Virus: Pre-emptive Vector Control and Personal Protection.
Diaz, James H
2016-12-01
Discovered in 1947 in a monkey in the Zika forest of Uganda, Zika virus was dismissed as a cause of a mild illness that was confined to Africa and Southeast Asia and transmitted by Aedes mosquitoes. In 2007, Zika virus appeared outside of its endemic borders in an outbreak on the South Pacific Island of Yap. In 2013, Zika virus was associated with a major neurological complication, Guillain-Barré syndrome, in a larger outbreak in the French Polynesian Islands. From the South Pacific, Zika invaded Brazil in 2015 and caused another severe neurological complication, fetal microcephaly. The mosquito-borne transmission of Zika virus can be propagated by sexual transmission and, possibly, by blood transfusions, close personal contacts, and organ transplants, like other flaviviruses. Since these combined mechanisms of infectious disease transmission could result in catastrophic incidences of severe neurological diseases in adults and children, the public should know what to expect from Zika virus, how to prevent infection, and what the most likely failures in preventive measures will be. With federal research funding stalled, a Zika vaccine is far away. The only national strategies to prepare the United States for Zika virus invasion now are effective vector control measures and personal protection from mosquito bites. In addition to a basic knowledge of Aedes mosquito vectors and their biting behaviors, an understanding of simple household vector control measures, and the selection of the best chemical and physical mosquito repellents will be required to repel the Zika threat. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities.
Mendenhall, Ian H; Manuel, Menchie; Moorthy, Mahesh; Lee, Theodore T M; Low, Dolyce H W; Missé, Dorothée; Gubler, Duane J; Ellis, Brett R; Ooi, Eng Eong; Pompon, Julien
2017-06-01
Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore's vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.
Linard, Catherine; Lamarque, Pénélope; Heyman, Paul; Ducoffre, Geneviève; Luyasu, Victor; Tersago, Katrien; Vanwambeke, Sophie O; Lambin, Eric F
2007-01-01
Background Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover and land use influence disease transmission by controlling both the spatial distribution of vectors or hosts, and the probability of contact with susceptible human populations. The objective of this study was to combine environmental and socio-economic factors to explain the spatial distribution of two emerging human diseases in Belgium, Puumala virus (PUUV) and Lyme borreliosis. Municipalities were taken as units of analysis. Results Negative binomial regressions including a correction for spatial endogeneity show that the spatial distribution of PUUV and Lyme borreliosis infections are associated with a combination of factors linked to the vector and host populations, to human behaviours, and to landscape attributes. Both diseases are associated with the presence of forests, which are the preferred habitat for vector or host populations. The PUUV infection risk is higher in remote forest areas, where the level of urbanisation is low, and among low-income populations. The Lyme borreliosis transmission risk is higher in mixed landscapes with forests and spatially dispersed houses, mostly in wealthy peri-urban areas. The spatial dependence resulting from a combination of endogenous and exogenous processes could be accounted for in the model on PUUV but not for Lyme borreliosis. Conclusion A large part of the spatial variation in disease risk can be explained by environmental and socio-economic factors. The two diseases not only are most prevalent in different regions but also affect different groups of people. Combining these two criteria may increase the efficiency of information campaigns through appropriate targeting. PMID:17474974
Rancès, Edwige; Frentiu, Francesca D.; Kusmintarsih, Endang Srimurni; Iturbe-Ormaetxe, Iñaki; Caragata, Eric P.; Woolfit, Megan; O’Neill, Scott L.
2016-01-01
Abstract The endosymbiotic bacterium Wolbachia pipientis infects many species of insects and has been transinfected into the mosquito Aedes aegypti (L.), the primary vector of dengue virus (DENV). Recently, it has been shown that Wolbachia blocks the replication and transmission of RNA viruses, such as DENV, in a number of mosquito species including Ae. aegypti and Aedes albopictus (Skuse), which is naturally infected with Wolbachia and considered a secondary vector for DENV. The mosquito species Aedes notoscriptus (Skuse) is highly prevalent in Australia, including in areas where DENV outbreaks have been recorded. The mosquito has been implicated in the transmission of Ross River and Barmah Forest viruses, but not DENV. We investigated whether Wolbachia naturally infects this mosquito species and whether it has an impact on the ability of Ae. notoscriptus to transmit DENV. We show, for the first time, that Ae. notoscriptus is naturally infected with a strain of Wolbachia that belongs to supergroup B and is localized only in the ovaries. However, Wolbachia infection in Ae. notoscriptus did not induce resistance to DENV and had no effect on overall DENV infection rate or titer. The presence of a native Wolbachia in Ae. notoscriptus cannot explain why this mosquito is an ineffective vector of DENV. PMID:26721865
Skelton, Ellie; Rancès, Edwige; Frentiu, Francesca D; Kusmintarsih, Endang Srimurni; Iturbe-Ormaetxe, Iñaki; Caragata, Eric P; Woolfit, Megan; O'Neill, Scott L
2016-03-01
The endosymbiotic bacterium Wolbachia pipientis infects many species of insects and has been transinfected into the mosquito Aedes aegypti (L.), the primary vector of dengue virus (DENV). Recently, it has been shown that Wolbachia blocks the replication and transmission of RNA viruses, such as DENV, in a number of mosquito species including Ae. aegypti and Aedes albopictus (Skuse), which is naturally infected with Wolbachia and considered a secondary vector for DENV. The mosquito species Aedes notoscriptus (Skuse) is highly prevalent in Australia, including in areas where DENV outbreaks have been recorded. The mosquito has been implicated in the transmission of Ross River and Barmah Forest viruses, but not DENV. We investigated whether Wolbachia naturally infects this mosquito species and whether it has an impact on the ability of Ae. notoscriptus to transmit DENV. We show, for the first time, that Ae. notoscriptus is naturally infected with a strain of Wolbachia that belongs to supergroup B and is localized only in the ovaries. However, Wolbachia infection in Ae. notoscriptus did not induce resistance to DENV and had no effect on overall DENV infection rate or titer. The presence of a native Wolbachia in Ae. notoscriptus cannot explain why this mosquito is an ineffective vector of DENV.
Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities
Manuel, Menchie; Low, Dolyce H. W.; Missé, Dorothée; Gubler, Duane J.; Ellis, Brett R.; Ooi, Eng Eong; Pompon, Julien
2017-01-01
Background Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. Methods We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. Results We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Conclusions Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore’s vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management. PMID:28650959
Viral Determinants and Vector Competence of Zika Virus Transmission.
Tham, Hong-Wai; Balasubramaniam, Vinod; Ooi, Man K; Chew, Miaw-Fang
2018-01-01
Zika virus (ZIKV) has emerged as a new global health threat. Since its first discovery in Zika forest in Uganda, this virus has been isolated from several mosquito species, including Aedes aegypti and Aedes albopictus . The geographical distribution of these mosquito species across tropical and subtropical regions has led to several outbreaks, including the recent pandemic in Brazil, followed by the Pacific islands and other areas of North and South America. This has gained attention of the scientific community to elucidate the epidemiology and transmission of ZIKV. Despite its strong attention on clinical aspects for healthcare professionals, the relationships between ZIKV and its principal vectors, A. aegypti and A. albopictus , have not gained substantial interest in the scientific research community. As such, this review aims to summarize the current knowledge on ZIKV tropism and some important mechanisms which may be employed by the virus for effective strategies on viral survival in mosquitoes. In addition, this review identifies the areas of research that should be placed attention to, for which to be exploited for novel mosquito control strategies.
Viral Determinants and Vector Competence of Zika Virus Transmission
Tham, Hong-Wai; Balasubramaniam, Vinod; Ooi, Man K.; Chew, Miaw-Fang
2018-01-01
Zika virus (ZIKV) has emerged as a new global health threat. Since its first discovery in Zika forest in Uganda, this virus has been isolated from several mosquito species, including Aedes aegypti and Aedes albopictus. The geographical distribution of these mosquito species across tropical and subtropical regions has led to several outbreaks, including the recent pandemic in Brazil, followed by the Pacific islands and other areas of North and South America. This has gained attention of the scientific community to elucidate the epidemiology and transmission of ZIKV. Despite its strong attention on clinical aspects for healthcare professionals, the relationships between ZIKV and its principal vectors, A. aegypti and A. albopictus, have not gained substantial interest in the scientific research community. As such, this review aims to summarize the current knowledge on ZIKV tropism and some important mechanisms which may be employed by the virus for effective strategies on viral survival in mosquitoes. In addition, this review identifies the areas of research that should be placed attention to, for which to be exploited for novel mosquito control strategies. PMID:29875751
Powassan and Silverwater Viruses: Ecology of Two Ontario Arboviruses
McLean, Donald M.; Larke, R. P. Bryce
1963-01-01
Powassan virus was isolated from a pool of Ixodes marxi ticks collected during late August 1962, from a red squirrel, Tamiasciurus hudsonicus, and from blood obtained from a red squirrel during early October 1962 near Powassan, Ontario, where a child contracted fatal encephalitis due to this virus in September 1958. The frequent detection of Powassan virus neutralizing antibody in sera of squirrels captured during autumn, but rarely at other seasons, and the frequent I. marxi infestation of squirrels, some of which contain antibody, but the lack of occurrence of I. marxi on other forest rodents, suggest that I. marxi ticks are vectors and squirrels are reservoirs of Powassan virus infection. Isolation of Silverwater virus from Haemaphysalis leporis-palustris ticks which infested a snowshoe hare Lepus americanus near Powassan demonstrates the presence of this agent in the Powassan area also. PMID:13932161
Powassan and Silverwater viruses: ecology of two Ontario arboviruses.
MCLEAN, D M; LARKE, R P
1963-01-26
Powassan virus was isolated from a pool of Ixodes marxi ticks collected during late August 1962, from a red squirrel, Tamiasciurus hudsonicus, and from blood obtained from a red squirrel during early October 1962 near Powassan, Ontario, where a child contracted fatal encephalitis due to this virus in September 1958. The frequent detection of Powassan virus neutralizing antibody in sera of squirrels captured during autumn, but rarely at other seasons, and the frequent I. marxi infestation of squirrels, some of which contain antibody, but the lack of occurrence of I. marxi on other forest rodents, suggest that I. marxi ticks are vectors and squirrels are reservoirs of Powassan virus infection. Isolation of Silverwater virus from Haemaphysalis leporis-palustris ticks which infested a snowshoe hare Lepus americanus near Powassan demonstrates the presence of this agent in the Powassan area also.
Barmah Forest virus serology; implications for diagnosis and public health action.
Cashman, Patrick; Hueston, Linda; Durrheim, David; Massey, Peter; Doggett, Stephen; Russell, Richard C
2008-06-01
Barmah Forest virus (BFV) is a commonly occurring arbovirus in Australia. Notifications of Barmah Forest infections diagnosed by a single positive IgM serology test have been increasing in coastal New South Wales north of Newcastle. We report on a 6 month prospective review of all routine notifications of BFV from the Lower Mid North Coast of New South Wales. Sera from 37 consecutive cases were sent for confirmatory testing by ELISA and neutralisation assays and 32 cases were interviewed. On confirmatory testing, 7 patients' sera (19%) was found to contain no BFV antibodies and 6 (16%) had BFV IgG only. Only 4 cases had antibody levels compatible with recent infection. A clinical presentation of fever with either rash or joint pain was associated with confirmation of recent BFV infection. On the basis of these findings, caution is advised in the interpretation of a single positive IgM for Barmah Forest disease and the clinical picture is an important factor in the diagnosis. Serological notifications of BFV alone should not prompt public health action such as public warning and targeted vector control in endemic areas.
Ren, Shoufeng; Wei, Qimei; Cai, Liya; Yang, Xuejing; Xing, Cuicui; Tan, Feng; Leavenworth, Jianmei W.; Liang, Shaohui; Liu, Wenquan
2018-01-01
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP) is the major protective antigen of EBOV, and can generate virus-like particles (VLPs) by co-expression with matrix protein (VP40). In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV) replicon vector DREP to express EBOV GP and matrix viral protein (VP40). EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40). Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention. PMID:29375526
ZIKA VIRUS INFECTION; VERTICAL TRANSMISSION AND FOETAL CONGENITAL ANOMALIES.
Abbasi, Aziz-un-Nisa
2016-01-01
Zika virus (ZIKV) is an arbovirus belonging to flaviviridae family that includes Dengue, West Nile, and Yellow Fever among others. Zika virus was first discovered in 1947 in Zika forest of Uganda. It is a vector borne disease, which has been sporadically reported mostly from Africa, Pacific islands and Southeast Asia since its discovery. ZIKV infection presents as a mild illness with symptoms lasting for several days to a week after the bite of an infected mosquito. Majority of the patients have low grade fever, rash, headaches, joints pain, myalgia, and flu like symptoms. Pregnant women are more vulnerable to ZIKV infection and serious congenital anomalies can occur in foetus through trans-placental transmission. The gestation at which infection is acquired is important. Zika virus infection acquired in early pregnancy poses greater risk. There is no evidence so far about transmission through breast milk. Foetal microcephaly, Gillian Barre syndrome and other neurological and autoimmune syndromes have been reported in areas where Zika outbreaks have occurred. As infection is usually very mild no specific treatment is required. Pregnant women may be advised to take rest, get plenty of fluids. For fever and pain they can take antipyretics like paracetamol. So far no specific drugs or vaccines are available against Zika Virus Infection so prevention is the mainstay against this diseases. As ZIKV infection is a vector borne disease, prevention can be a multi-pronged strategy. These entail vector control interventions, personal protection, environmental sanitation and health education among others.
Rodríguez, L L; Fitch, W M; Nichol, S T
1996-11-12
Vesicular stomatitis New Jersey virus (VSV-NJ) is a rhabdovirus that causes economically important disease in cattle and other domestic animals in endemic areas from southeastern United States to northern South America. Its negatively stranded RNA genome is capable of undergoing rapid evolution, which allows phylogenetic analysis and molecular epidemiology studies to be performed. Previous epidemiological studies in Costa Rica showed the existence of at least two distinct ecological zones of high VSV-NJ activity, one located in the highlands (premontane tropical moist forest) and the other in the lowlands (tropical dry forest). We wanted to test the hypothesis that the viruses circulating in these ecological zones were genetically distinct. For this purpose, we sequenced the hypervariable region of the phosphoprotein gene for 50 VSV-NJ isolates from these areas. Phylogenetic analysis showed that viruses from each ecological zone had distinct genotypes. These genotypes were maintained in each area for periods of up to 8 years. This evolutionary pattern of VSV-NJ suggests an adaptation to ecological factors that could exert selective pressure on the virus. As previous data indicated an absence of virus adaptation to factors related to the bovine host (including immunological pressure), it appears that VSV genetic divergence represents positive selection to adapt to specific vectors and/or reservoirs at each ecological zone.
Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.
2016-01-01
In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303
Alencar, Jeronimo; de Mello, Cecilia Ferreira; Gil-Santana, Hélcio R; Guimarães, Anthony Érico; de Almeida, Sergio Antonio Silva; Gleiser, Raquel M
2016-06-01
This study aimed to assess the vertical patterns of oviposition and temporal changes in the distribution of mosquito species in an area of the Atlantic Forest in Rio de Janeiro State, Brazil, and in particular, the behavior and oviposition of potential yellow fever virus vectors. Mosquito samples were collected from the Ecological Reserve Guapiaçu (REGUA, Brazil), which includes a somewhat disturbed forest, with a large diversity of plants and animals. In all, 5,458 specimens (ten species from seven genera) were collected. Haemagogus leucocelaenus was the most frequently captured species, representing 73% of the specimens collected. Species richness and diversity were the highest in the samples collected from the ground-level ovitraps and decreased with height. Species composition also differed significantly among heights. The largest species differences were detected between ovitraps set at the ground level and those set at 7 m and 9 m; Hg. leucocelaenus, Limatus durhamii, and Limatus paraensis contributed most to these differences. Sampling month and climatic variables had significant effects on species richness and diversity. Species diversity and richness decreased with height, suggesting that the conditions for mosquito breeding are more favorable closer to the ground. Species composition also showed vertical differences. © 2016 The Society for Vector Ecology.
Enders, Laramy; Hefley, Trevor; Girvin, John; Whitworth, Robert; Smith, Charles
2018-05-11
Several aphid species transmit barley yellow dwarf, a globally destructive disease caused by viruses that infect cereal grain crops. Data from >400 samples collected across Kansas wheat fields in 2014 and 2015 were used to develop spatio-temporal models predicting the extent to which landcover, temperature and precipitation affect spring aphid vector abundance and presence of individuals carrying Barley yellow dwarf virus (BYDV). The distribution of Rhopalosiphum padi abundance was not correlated with climate or landcover, but Sitobion avenae abundance was positively correlated to fall temperature and negatively correlated to spring temperature and precipitation. The abundance of Schizaphis graminum was negatively correlated with fall precipitation and winter temperature. The incidence of viruliferous (+BYDV) R. padi was positively correlated with fall precipitation but negatively correlated with winter precipitation. In contrast, the probability of +BYDV S. avenae was unaffected by precipitation but was positively correlated with average fall temperatures and distance to nearest forest or shrubland. R. padi and S. avenae were more prevalent at Eastern sample sites where ground cover is more grassland than cropland, suggesting that grassland may provide over-summering sites for vectors and pose a risk as potential BYDV reservoirs. Nevertheless, land cover patterns were not strongly associated with differences in abundance or probability that viruliferous aphids were present.
Exploiting mosquito sugar feeding to detect mosquito-borne pathogens
Hall-Mendelin, Sonja; Ritchie, Scott A.; Johansen, Cheryl A.; Zborowski, Paul; Cortis, Giles; Dandridge, Scott; Hall, Roy A.; van den Hurk, Andrew F.
2010-01-01
Arthropod-borne viruses (arboviruses) represent a global public health problem, with dengue viruses causing millions of infections annually, while emerging arboviruses, such as West Nile, Japanese encephalitis, and chikungunya viruses have dramatically expanded their geographical ranges. Surveillance of arboviruses provides vital data regarding their prevalence and distribution that may be utilized for biosecurity measures and the implementation of disease control strategies. However, current surveillance methods that involve detection of virus in mosquito populations or sero-conversion in vertebrate hosts are laborious, expensive, and logistically problematic. We report a unique arbovirus surveillance system to detect arboviruses that exploits the process whereby mosquitoes expectorate virus in their saliva during sugar feeding. In this system, infected mosquitoes captured by CO2-baited updraft box traps are allowed to feed on honey-soaked nucleic acid preservation cards within the trap. The cards are then analyzed for expectorated virus using real-time reverse transcription-PCR. In field trials, this system detected the presence of Ross River and Barmah Forest viruses in multiple traps deployed at two locations in Australia. Viral RNA was preserved for at least seven days on the cards, allowing for long-term placement of traps and continuous collection of data documenting virus presence in mosquito populations. Furthermore no mosquito handling or processing was required and cards were conveniently shipped to the laboratory overnight. The simplicity and efficacy of this approach has the potential to transform current approaches to vector-borne disease surveillance by streamlining the monitoring of pathogens in vector populations. PMID:20534559
Using remote sensing and machine learning for the spatial modelling of a bluetongue virus vector
NASA Astrophysics Data System (ADS)
Van doninck, J.; Peters, J.; De Baets, B.; Ducheyne, E.; Verhoest, N. E. C.
2012-04-01
Bluetongue is a viral vector-borne disease transmitted between hosts, mostly cattle and small ruminants, by some species of Culicoides midges. Within the Mediterranean basin, C. imicola is the main vector of the bluetongue virus. The spatial distribution of this species is limited by a number of environmental factors, including temperature, soil properties and land cover. The identification of zones at risk of bluetongue outbreaks thus requires detailed information on these environmental factors, as well as appropriate epidemiological modelling techniques. We here give an overview of the environmental factors assumed to be constraining the spatial distribution of C. imicola, as identified in different studies. Subsequently, remote sensing products that can be used as proxies for these environmental constraints are presented. Remote sensing data are then used together with species occurrence data from the Spanish Bluetongue National Surveillance Programme to calibrate a supervised learning model, based on Random Forests, to model the probability of occurrence of the C. imicola midge. The model will then be applied for a pixel-based prediction over the Iberian peninsula using remote sensing products for habitat characterization.
Kaur, Navneet; Hasegawa, Daniel K; Ling, Kai-Shu; Wintermantel, William M
2016-10-01
The relationships between plant viruses and their vectors have evolved over the millennia, and yet, studies on viruses began <150 years ago and investigations into the virus and vector interactions even more recently. The advent of next generation sequencing, including rapid genome and transcriptome analysis, methods for evaluation of small RNAs, and the related disciplines of proteomics and metabolomics offer a significant shift in the ability to elucidate molecular mechanisms involved in virus infection and transmission by insect vectors. Genomic technologies offer an unprecedented opportunity to examine the response of insect vectors to the presence of ingested viruses through gene expression changes and altered biochemical pathways. This review focuses on the interactions between viruses and their whitefly or thrips vectors and on potential applications of genomics-driven control of the insect vectors. Recent studies have evaluated gene expression in vectors during feeding on plants infected with begomoviruses, criniviruses, and tospoviruses, which exhibit very different types of virus-vector interactions. These studies demonstrate the advantages of genomics and the potential complementary studies that rapidly advance our understanding of the biology of virus transmission by insect vectors and offer additional opportunities to design novel genetic strategies to manage insect vectors and the viruses they transmit.
Blagrove, Marcus S C; Caminade, Cyril; Waldmann, Elisabeth; Sutton, Elizabeth R; Wardeh, Maya; Baylis, Matthew
2017-06-01
Mosquito-borne viruses have been estimated to cause over 100 million cases of human disease annually. Many methodologies have been developed to help identify areas most at risk from transmission of these viruses. However, generally, these methodologies focus predominantly on the effects of climate on either the vectors or the pathogens they spread, and do not consider the dynamic interaction between the optimal conditions for both vector and virus. Here, we use a new approach that considers the complex interplay between the optimal temperature for virus transmission, and the optimal climate for the mosquito vectors. Using published geolocated data we identified temperature and rainfall ranges in which a number of mosquito vectors have been observed to co-occur with West Nile virus, dengue virus or chikungunya virus. We then investigated whether the optimal climate for co-occurrence of vector and virus varies between "warmer" and "cooler" adapted vectors for the same virus. We found that different mosquito vectors co-occur with the same virus at different temperatures, despite significant overlap in vector temperature ranges. Specifically, we found that co-occurrence correlates with the optimal climatic conditions for the respective vector; cooler-adapted mosquitoes tend to co-occur with the same virus in cooler conditions than their warmer-adapted counterparts. We conclude that mosquitoes appear to be most able to transmit virus in the mosquitoes' optimal climate range, and hypothesise that this may be due to proportionally over-extended vector longevity, and other increased fitness attributes, within this optimal range. These results suggest that the threat posed by vector-competent mosquito species indigenous to temperate regions may have been underestimated, whilst the threat arising from invasive tropical vectors moving to cooler temperate regions may be overestimated.
Mosquito vectors of West Nile virus during an epizootic outbreak in Puerto Rico.
Barrera, R; MacKay, A; Amador, M; Vasquez, J; Smith, J; Díaz, A; Acevedo, V; Cabán, B; Hunsperger, E A; Muñoz-Jordán, J L
2010-11-01
The purpose of this investigation was to identify the mosquito (Diptera: Culicidae) vectors of West Nile virus (WNV; family Flaviviridae, genus Flavivirus) during an epizootic WNV outbreak in eastern Puerto Rico in 2007. In June 2006, 12 sentinel chicken pens with five chickens per pen were deployed in six types of habitats: herbaceous wetlands, mangrove forests, deciduous forests, evergreen forests, rural areas, and urban areas. Once WNV seroconversion in chickens was detected in June 2007, we began trapping mosquitoes using Centers for Disease Control and Prevention (CDC) miniature (light/CO2-baited) traps, CMT-20 collapsible mosquito (CO2- and ISCA SkinLure-baited) traps, and CDC gravid (hay infusion-baited) traps. We placed the CDC miniature traps both 2-4 m and >30 m from the chicken pens, the collapsible traps 2-4 m from the pens, and the gravid traps in backyards of houses with sentinel chicken pens and in a wetland adjacent to an urban area. We found numerous blood-engorged mosquitoes in the traps nearest to the sentinel chickens and reasoned that any such mosquitoes with a disseminated WNV infection likely served as vectors for the transmission of WNV to the sentinels. We used reverse transcriptase-polymerase chain reaction and isolation (C636) on pools of heads, thoraxes/ abdomens, and legs of collected blood-engorged mosquitoes to determine whether the mosquitoes carried WNV. We detected WNV-disseminated infections in and obtained WNV isolates from Culex nigripalpus Theo (minimum infection rate [MIR] 1.1-9.7/1,000), Culex bahamensis Dyar and Knab (MIR 1.8-6.0/1,000), and Aedes taeniorhynchus (Wied.) (MIR 0.34-0.36/1,000). WNV was also identified in and isolated from the pool of thoraxes and abdomens of Culex quinquefasciatus Say (4.17/1,000) and identified in one pool of thoraxes and abdomens of Culex habilitator Dyar and Knab (13.39/1,000). Accumulated evidence since 2002 suggests that WNV has not become endemic in Puerto Rico.
Environmental conditions and Puumala virus transmission in Belgium
Linard, Catherine; Tersago, Katrien; Leirs, Herwig; Lambin, Eric F
2007-01-01
Background Non-vector-borne zoonoses such as Puumala hantavirus (PUUV) can be transmitted directly, by physical contact between infected and susceptible hosts, or indirectly, with the environment as an intermediate. The objective of this study is to better understand the causal link between environmental features and PUUV prevalence in bank vole population in Belgium, and hence with transmission risk to humans. Our hypothesis was that environmental conditions controlling the direct and indirect transmission paths differ, such that the risk of transmission to humans is not only determined by host abundance. We explored the relationship between, on one hand, environmental variables and, on the other hand, host abundance, PUUV prevalence in the host, and human cases of nephropathia epidemica (NE). Statistical analyses were carried out on 17 field sites situated in Belgian broadleaf forests. Results Linear regressions showed that landscape attributes, particularly landscape configuration, influence the abundance of hosts in broadleaf forests. Based on logistic regressions, we show that PUUV prevalence among bank voles is more linked to variables favouring the survival of the virus in the environment, and thus the indirect transmission: low winter temperatures are strongly linked to prevalence among bank voles, and high soil moisture is linked to the number of NE cases among humans. The transmission risk to humans therefore depends on the efficiency of the indirect transmission path. Human risk behaviours, such as the propensity for people to go in forest areas that best support the virus, also influence the number of human cases. Conclusion The transmission risk to humans of non-vector-borne zoonoses such as PUUV depends on a combination of various environmental factors. To understand the complex causal pathways between the environment and disease risk, one should distinguish between environmental factors related to the abundance of hosts such as land-surface attributes, landscape configuration, and climate – i.e., host ecology, – and environmental factors related to PUUV prevalence, mainly winter temperatures and soil moisture – i.e., virus ecology. Beyond a threshold abundance of hosts, environmental factors favouring the indirect transmission path (soil and climate) can better predict the number of NE cases among humans than factors influencing the abundance of hosts. PMID:18078526
Viral Vectors for Use in the Development of Biodefense Vaccines
2005-06-17
vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine vectors has enabled researchers to develop effective means for countering the...biowarfare. The use of viruses, for example adenovirus, vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine -vectors has enabled researchers to... vaccines . . . . . . . . . . . . . . . . . . . 1298 2.1.3. Vaccinia virus-vectored Venezuelan equine encephalitis vaccines
Pelecanos, Anita M; Ryan, Peter A; Gatton, Michelle L
2011-04-01
The two most reported mosquito-borne diseases in Queensland, a northern state of Australia, are Ross River virus (RRV) disease and Barmah Forest virus (BFV) disease. Both diseases are endemic in Queensland and have similar clinical symptoms and comparable transmission cycles involving a complex inter-relationship between human hosts, various mosquito vectors, and a range of nonhuman vertebrate hosts, including marsupial mammals that are unique to the Australasian region. Although these viruses are thought to share similar vectors and vertebrate hosts, RRV is four times more prevalent than BFV in Queensland. We performed a retrospective analysis of BFV and RRV human disease notification data collected from 1995 to 2007 in Queensland to ascertain whether there were differences in the incidence patterns of RRV and BFV disease. In particular, we compared the temporal incidence and spatial distribution of both diseases and considered the relationship between their disease dynamics. We also investigated whether a peak in BFV incidence during spring was indicative of the following RRV and BFV transmission season incidence levels. Although there were large differences in the notification rates of the two diseases, they had similar annual temporal patterns, but there were regional variations between the length and magnitude of the transmission seasons. During periods of increased disease activity, however, there was no association between the dynamics of the two diseases. The results from this study suggest that while RRV and BFV share similar mosquito vectors, there are significant differences in the ecology of these viruses that result in different epidemic patterns of disease incidence. Further investigation is required into the ecology of each virus to determine which factors are important in promoting RRV and BFV disease outbreaks.
Investigations into yellow fever virus and other arboviruses in the northern regions of Kenya.
Henderson, B E; Metselaar, D; Kirya, G B; Timms, G L
1970-01-01
Previous studies having shown an appreciable level of yellow fever immunity to exist in northern Kenya, further epidemiological and serological surveys were carried out there in 1968 in an attempt to define more clearly the distribution of yellow fever and to locate possible vector and reservoir hosts of the disease; these surveys also provided information on a number of other arboviruses.Altogether 436 sera from 5 areas in northern Kenya were screened by haemagglutination-inhibition tests with 8 antigens, and 107 of these sera by neutralization tests for Group-B arboviruses. Small numbers of yellow-fever-immune adults were found in Ileret, Garissa, Loglogo and Mikona. At Marsabit high proportions of immune adults and children were found among the Burgi tribe. As the Burgi are permanent agricultural workers on Marsabit Mountain, an entomological investigation was made, over 15 000 mosquitos being collected. From these, 13 strains of Pongola virus, 1 strain of Semliki Forest virus and an unidentified virus were isolated, but no yellow fever strains. Aedes africanus and Aedes simpsoni were not found at Marsabit; small numbers of Aedes aegypti were collected biting man. The vector potential of other mosquitos collected (particularly Mansonia africana, which is present throughout the year) is discussed.
Kading, Rebekah C; Borland, Erin M; Cranfield, Mike; Powers, Ann M
2013-07-01
Vector-borne and zoonotic pathogens have comprised a significant proportion of the emerging infectious diseases in humans in recent decades. The role of many wildlife species as reservoirs for arthropod-borne viral pathogens is poorly understood. We investigated the exposure history of various African wildlife species from the Congo basin to mosquito-borne flaviviruses and alphaviruses by testing archived serum samples. Sera from 24 African forest buffalo (Syncerus caffer nanus), 34 African elephants (Loxodonta africana), 40 duikers (Cephalophus and Philantomba spp.), 25 mandrills (Mandrillus sphinx), 32 mountain gorillas (Gorilla beringei beringei), five Grauer's gorillas (Gorilla beringei graueri), two L'Hoest's monkeys (Cercopithecus lhoesti), two golden monkeys (Cercopithecus kandti), and three chimpanzees (Pan troglodytes) sampled between 1991 and 2009 were tested for antibodies against chikungunya virus (CHIKV), o'nyong-nyong virus (ONNV), West Nile virus (WNV), dengue 2 virus (DENV-2), and yellow fever virus (YFV) by plaque reduction neutralization test. Specific neutralizing antibodies against ONNV were found in African forest buffalo in the Democratic Republic of the Congo (DRC) and Gabon, duikers in the DRC, and mandrills in Gabon, providing novel evidence of enzootic circulation of ONNV in these countries. African forest buffalo in the DRC and Gabon also demonstrated evidence of exposure to CHIKV, WNV, and DENV-2, while mandrills in Gabon were antibody positive for CHIKV, DENV-2, WNV, and YFV. All of the elephants tested had a strong neutralizing antibody response to WNV. We also document results from a survey of gorillas for arboviruses, of which 4/32 (13%) had antibody to an alphavirus or flavivirus. Overall, our results demonstrate a high prevalence of neutralizing antibodies against multiple arboviruses in wildlife in equatorial Africa.
Malaria vector populations across ecological zones in Guinea Conakry and Mali, West Africa.
Coulibaly, Boubacar; Kone, Raymond; Barry, Mamadou S; Emerson, Becky; Coulibaly, Mamadou B; Niare, Oumou; Beavogui, Abdoul H; Traore, Sekou F; Vernick, Kenneth D; Riehle, Michelle M
2016-04-08
Malaria remains a pervasive public health problem in sub-Saharan West Africa. Here mosquito vector populations were explored across four sites in Mali and the Republic of Guinea (Guinea Conakry). The study samples the major ecological zones of malaria-endemic regions in West Africa within a relatively small distance. Mosquito vectors were sampled from larval pools, adult indoor resting sites, and indoor and outdoor human-host seeking adults. Mosquitoes were collected at sites spanning 350 km that represented arid savannah, humid savannah, semi-forest and deep forest ecological zones, in areas where little was previously known about malaria vector populations. 1425 mosquito samples were analysed by molecular assays to determine species, genetic attributes, blood meal sources and Plasmodium infection status. Anopheles gambiae and Anopheles coluzzii were the major anophelines represented in all collections across the ecological zones, with A. coluzzii predominant in the arid savannah and A. gambiae in the more humid sites. The use of multiple collection methodologies across the sampling sites allows assessment of potential collection bias of the different methods. The L1014F kdr insecticide resistance mutation (kdr-w) is found at high frequency across all study sites. This mutation appears to have swept almost to fixation, from low frequencies 6 years earlier, despite the absence of widespread insecticide use for vector control. Rates of human feeding are very high across ecological zones, with only small fractions of animal derived blood meals in the arid and humid savannah. About 30 % of freshly blood-fed mosquitoes were positive for Plasmodium falciparum presence, while the rate of mosquitoes with established infections was an order of magnitude lower. The study represents detailed vector characterization from an understudied area in West Africa with endemic malaria transmission. The deep forest study site includes the epicenter of the 2014 Ebola virus epidemic. With new malaria control interventions planned in Guinea, these data provide a baseline measure and an opportunity to assess the outcome of future interventions.
Virus-Vectored Influenza Virus Vaccines
Tripp, Ralph A.; Tompkins, S. Mark
2014-01-01
Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278
The Convergence of a Virus, Mosquitoes, and Human Travel in Globalizing the Zika Epidemic.
Imperato, Pascal James
2016-06-01
The Zika virus was first identified in 1947 in the Zika Forest of Uganda. It was discovered in a rhesus monkey that had been placed in a cage on a sentinel platform in the forest by the Virus Research Institute. When this writer visited the institute and the Zika Forest in 1961, work was underway to identify mosquito species at various levels of the tree canopy. This was done through the placement of traps at various levels of a 120-foot-high steel tower which this writer climbed. At that time, researchers isolated 12 strains of Zika virus from traps on the tower. Over the next six decades, the virus spread slowly to other parts of Africa, and eventually appeared in Southeast Asia, transmitted by Aedes aegypti and other Aedes mosquito species. By 1981, only 14 cases of illness had been reported as due to the Zika virus. Since most infections with this virus are either mild or asymptomatic, its true geographic spread was not fully appreciated. The current globalization of the Zika epidemic began on the Pacific island of Yap in the Federated States of Polynesia in 2007. This was the first known presence of the Zika virus outside of Africa and Southeast Asia. It was estimated that 73 % of the island's population had been infected. In 2013, the virus spread to French Polynesia where an estimated 28,000 cases occurred in a population of 270,000. During that year and afterwards, microcephaly and other congenital abnormalities were observed in the infants of women who were pregnant when they contracted the virus. It is currently not known if cases of microcephaly have resulted from infection of pregnant women or from infection plus some other co-factor. The epidemic rapidly spread to the Cook Islands and Easter Island. In 2015, Zika virus infection was diagnosed in Brazil where it was associated with microcephaly in the infants of some women who were pregnant when they contracted the disease. Cases of the Guillain-Barré syndrome were also found to be associated with Zika virus infection. How the disease entered Brazil is a matter of conjecture. However, the strain responsible for the epidemic in Brazil and elsewhere in South and Central America is phylogenetically identical to that which caused the epidemic in French Polynesia. The wide distribution of Aedes aegypti, a principal vector of the virus, and other Aedes species has greatly facilitated the spread of the disease. Aedes aegypti is an invasive species of mosquito in the Western Hemisphere that has adapted well to densely-populated urban environments. In addition, male-to-female human sexual transmission has increasingly been demonstrated in the US and elsewhere. In February 2016, the World Health Organization (WHO) declared the current Zika outbreak a Public Health Emergency of international concern. On the recommendation of its Emergency Committee on Zika Virus and Observed Increase in Neurological Disorders and Neonatal Malformations, WHO issued a group of recommendations to contain the epidemic. The globalization of the Zika virus was made possible by the widespread presence in various parts of the world of Aedes vectors and increased human travel that facilitated geographic spread. This globalization of Zika follows upon that of West Nile, Ebola, Dengue, and Chikungunya. Its ultimate spread is difficult to predict, but will hopefully be restricted through vigorous preventive measures.
A Mosquito Survey of the Twin-Island Caribbean Nation of Saint Kitts and Nevis, 2010.
Mohammed, Hamish; Evanson, Jessica; Revan, Floyd; Lee, Elise; Krecek, Rosina C; Smith, Joshua
2015-12-01
Adult mosquito surveys of Saint Kitts and Nevis (SKN) were performed in the dry season (March 16-23, 2010) in Saint Kitts, and the rainy season (October 18-25, 2010) in SKN. Biogents (BG) Sentinel Traps were set with CO₂and BG Lure in urban, rural, mangrove, and dry forest habitats. Mosquitoes were identified to species, and reverse transcription-polymerase chain reaction was performed on potential vector species for dengue virus (DENV), chikungunya virus (CHIKV), and West Nile virus (WNV). The most abundant species during both seasons in St. Kitts were Culex quinquefasciatus, Aedes taeniorhynchus, and Aedes aegypti. There were 3 new records for Saint Kitts: Aedes tortilis, Anopheles albimanus, and Culex nigripalpus. Traps were also set in Nevis. No mosquito pool tested positive for DENV, CHIKV, or WNV.
Barley stripe mosaic virus (BSMV) as a virus-induced gene silencing vector in maize seedlings
USDA-ARS?s Scientific Manuscript database
Barley stripe mosaic virus (BSMV; genus Hordeivirus family Virgaviridae) was the first reported and still widely used virus-induced gene silencing (VIGS) vector for monocotyledons. The utility of the virus as VIGS vector has been demonstrated in monocotyledonous hosts including wheat and barley. Des...
Vector-virus interactions and transmission dynamics of West Nile virus.
Ciota, Alexander T; Kramer, Laura D
2013-12-09
West Nile virus (WNV; Flavivirus; Flaviviridae) is the cause of the most widespread arthropod-borne viral disease in the world and the largest outbreak of neuroinvasive disease ever observed. Mosquito-borne outbreaks are influenced by intrinsic (e.g., vector and viral genetics, vector and host competence, vector life-history traits) and extrinsic (e.g., temperature, rainfall, human land use) factors that affect virus activity and mosquito biology in complex ways. The concept of vectorial capacity integrates these factors to address interactions of the virus with the arthropod host, leading to a clearer understanding of their complex interrelationships, how they affect transmission of vector-borne disease, and how they impact human health. Vertebrate factors including host competence, population dynamics, and immune status also affect transmission dynamics. The complexity of these interactions are further exacerbated by the fact that not only can divergent hosts differentially alter the virus, but the virus also can affect both vertebrate and invertebrate hosts in ways that significantly alter patterns of virus transmission. This chapter concentrates on selected components of the virus-vector-vertebrate interrelationship, focusing specifically on how interactions between vector, virus, and environment shape the patterns and intensity of WNV transmission.
Vector-Virus Interactions and Transmission Dynamics of West Nile Virus
Ciota, Alexander T.; Kramer, Laura D.
2013-01-01
West Nile virus (WNV; Flavivirus; Flaviviridae) is the cause of the most widespread arthropod-borne viral disease in the world and the largest outbreak of neuroinvasive disease ever observed. Mosquito-borne outbreaks are influenced by intrinsic (e.g., vector and viral genetics, vector and host competence, vector life-history traits) and extrinsic (e.g., temperature, rainfall, human land use) factors that affect virus activity and mosquito biology in complex ways. The concept of vectorial capacity integrates these factors to address interactions of the virus with the arthropod host, leading to a clearer understanding of their complex interrelationships, how they affect transmission of vector-borne disease, and how they impact human health. Vertebrate factors including host competence, population dynamics, and immune status also affect transmission dynamics. The complexity of these interactions are further exacerbated by the fact that not only can divergent hosts differentially alter the virus, but the virus also can affect both vertebrate and invertebrate hosts in ways that significantly alter patterns of virus transmission. This chapter concentrates on selected components of the virus-vector-vertebrate interrelationship, focusing specifically on how interactions between vector, virus, and environment shape the patterns and intensity of WNV transmission. PMID:24351794
Knope, Katrina E; Muller, Mike; Kurucz, Nina; Doggett, Stephen L; Feldman, Rebecca; Johansen, Cheryl A; Hobby, Michaela; Bennett, Sonya; Lynch, Stacey; Sly, Angus; Currie, Bart J
2016-09-30
This report describes the epidemiology of mosquito-borne diseases of public health importance in Australia during the 2013-14 season (1 July 2013 to 30 June 2014) and includes data from human notifications, sentinel chicken, vector and virus surveillance programs. The National Notifiable Diseases Surveillance System received notifications for 8,898 cases of disease transmitted by mosquitoes during the 2013-14 season. The Australasian alphaviruses Barmah Forest virus and Ross River virus accounted for 6,372 (72%) total notifications. However, over-diagnosis and possible false positive diagnostic test results for these 2 infections mean that the true burden of infection is likely overestimated, and as a consequence, the case definitions have been amended. There were 94 notifications of imported chikungunya virus infection and 13 cases of imported Zika virus infection. There were 212 notifications of dengue virus infection acquired in Australia and 1,795 cases acquired overseas, with an additional 14 cases for which the place of acquisition was unknown. Imported cases of dengue were most frequently acquired in Indonesia (51%). No cases of locally-acquired malaria were notified during the 2013-14 season, though there were 373 notifications of overseas-acquired malaria. In 2013-14, arbovirus and mosquito surveillance programs were conducted in most jurisdictions. Surveillance for exotic mosquitoes at international ports of entry continues to be a vital part of preventing the spread of vectors of mosquito-borne diseases such as dengue to new areas of Australia, with 13 detections of exotic mosquitoes at the ports of entry in 2013-14.
Bish, Lawrence T.; Sleeper, Meg M.; Brainard, Benjamin; Cole, Stephen; Russell, Nicholas; Withnall, Elanor; Arndt, Jason; Reynolds, Caryn; Davison, Ellen; Sanmiguel, Julio; Wu, Di; Gao, Guangping; Wilson, James M.; Sweeney, H. Lee
2011-01-01
Achieving efficient cardiac gene transfer in a large animal model has proven to be technically challenging. Prior strategies have employed cardio-pulmonary bypass or dual catheterization with the aid of vasodilators to deliver vectors, such as adenovirus, adeno-associated virus or plasmid DNA. While single stranded adeno-associated virus vectors have shown the greatest promise, they suffer from delayed expression, which might be circumvented by using self-complementary vectors. We sought to optimize cardiac gene transfer using a percutaneous transendocardial injection catheter to deliver adeno-associated virus vectors to the canine myocardium. Four vectors were evaluated—single stranded adeno-associated virus 9, self-complementary adeno-associated virus 9, self-complementary adeno-associated virus 8, self-complementary adeno-associated virus 6—so that comparison could be made between single stranded and self complementary vectors as well as among serotypes 9, 8, and 6. We demonstrate that self-complementary adeno-associated virus is superior to single stranded adeno-associated virus and that adeno-associated virus 6 is superior to other serotypes evaluated. Biodistribution studies revealed that vector genome copies were 15 to 4000 times more abundant in the heart than in any other organ for self-complementary adeno-associated virus 6. Percutaneous transendocardial injection of self-complementary adeno-associated virus 6 is a safe, effective method for achieving efficient cardiac gene transfer. PMID:18813281
Water deficit enhances the transmission of plant viruses by insect vectors
Yvon, Michel; Vile, Denis; Dader, Beatriz; Fereres, Alberto
2017-01-01
Drought is a major threat to crop production worldwide and is accentuated by global warming. Plant responses to this abiotic stress involve physiological changes overlapping, at least partially, the defense pathways elicited both by viruses and their herbivore vectors. Recently, a number of theoretical and empirical studies anticipated the influence of climate changes on vector-borne viruses of plants and animals, mainly addressing the effects on the virus itself or on the vector population dynamics, and inferring possible consequences on virus transmission. Here, we directly assess the effect of a severe water deficit on the efficiency of aphid-transmission of the Cauliflower mosaic virus (CaMV) or the Turnip mosaic virus (TuMV). For both viruses, our results demonstrate that the rate of vector-transmission is significantly increased from water-deprived source plants: CaMV transmission reproducibly increased by 34% and that of TuMV by 100%. In both cases, the enhanced transmission rate could not be explained by a higher virus accumulation, suggesting a more complex drought-induced process that remains to be elucidated. The evidence that infected plants subjected to drought are much better virus sources for insect vectors may have extensive consequences for viral epidemiology, and should be investigated in a wide range of plant-virus-vector systems. PMID:28467423
Water deficit enhances the transmission of plant viruses by insect vectors.
van Munster, Manuella; Yvon, Michel; Vile, Denis; Dader, Beatriz; Fereres, Alberto; Blanc, Stéphane
2017-01-01
Drought is a major threat to crop production worldwide and is accentuated by global warming. Plant responses to this abiotic stress involve physiological changes overlapping, at least partially, the defense pathways elicited both by viruses and their herbivore vectors. Recently, a number of theoretical and empirical studies anticipated the influence of climate changes on vector-borne viruses of plants and animals, mainly addressing the effects on the virus itself or on the vector population dynamics, and inferring possible consequences on virus transmission. Here, we directly assess the effect of a severe water deficit on the efficiency of aphid-transmission of the Cauliflower mosaic virus (CaMV) or the Turnip mosaic virus (TuMV). For both viruses, our results demonstrate that the rate of vector-transmission is significantly increased from water-deprived source plants: CaMV transmission reproducibly increased by 34% and that of TuMV by 100%. In both cases, the enhanced transmission rate could not be explained by a higher virus accumulation, suggesting a more complex drought-induced process that remains to be elucidated. The evidence that infected plants subjected to drought are much better virus sources for insect vectors may have extensive consequences for viral epidemiology, and should be investigated in a wide range of plant-virus-vector systems.
Viral vector-based influenza vaccines
de Vries, Rory D.; Rimmelzwaan, Guus F.
2016-01-01
ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345
Viral vector-based influenza vaccines.
de Vries, Rory D; Rimmelzwaan, Guus F
2016-11-01
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.
Hanley, Kathryn A.; Monath, Thomas P.; Weaver, Scott C.; Rossi, Shannan L.; Richman, Rebecca L.; Vasilakis, Nikos
2013-01-01
Two different species of flaviviruses, dengue virus (DENV) and yellow fever virus (YFV), that originated in sylvatic cycles maintained in non-human primates and forest-dwelling mosquitoes have emerged repeatedly into sustained human-to-human transmission by Aedes aegypti mosquitoes. Sylvatic cycles of both viruses remain active, and where the two viruses overlap in West Africa they utilize similar suites of monkeys and Aedes mosquitoes. These extensive similarities render the differences in the biogeography and epidemiology of the two viruses all the more striking. First, the sylvatic cycle of YFV originated in Africa and was introduced into the New World, probably as a result of the slave trade, but is absent in Asia; in contrast, sylvatic DENV likely originated in Asia and has spread to Africa but not to the New World. Second, while sylvatic YFV can emerge into extensive urban outbreaks in humans, these invariably die out, whereas four different types of DENV have established human transmission cycles that are ecologically and evolutionarily distinct from their sylvatic ancestors. Finally, transmission of YFV among humans has been documented only in Africa and the Americas, whereas DENV is transmitted among humans across most of the range of competent Aedes vectors, which in the last decade has included every continent save Antarctica. This review summarizes current understanding of sylvatic transmission cycles of YFV and DENV, considers possible explanations for their disjunct distributions, and speculates on the potential consequences of future establishment of a sylvatic cycle of DENV in the Americas. PMID:23523817
Hanley, Kathryn A; Monath, Thomas P; Weaver, Scott C; Rossi, Shannan L; Richman, Rebecca L; Vasilakis, Nikos
2013-10-01
Two different species of flaviviruses, dengue virus (DENV) and yellow fever virus (YFV), that originated in sylvatic cycles maintained in non-human primates and forest-dwelling mosquitoes have emerged repeatedly into sustained human-to-human transmission by Aedes aegypti mosquitoes. Sylvatic cycles of both viruses remain active, and where the two viruses overlap in West Africa they utilize similar suites of monkeys and Aedes mosquitoes. These extensive similarities render the differences in the biogeography and epidemiology of the two viruses all the more striking. First, the sylvatic cycle of YFV originated in Africa and was introduced into the New World, probably as a result of the slave trade, but is absent in Asia; in contrast, sylvatic DENV likely originated in Asia and has spread to Africa but not to the New World. Second, while sylvatic YFV can emerge into extensive urban outbreaks in humans, these invariably die out, whereas four different types of DENV have established human transmission cycles that are ecologically and evolutionarily distinct from their sylvatic ancestors. Finally, transmission of YFV among humans has been documented only in Africa and the Americas, whereas DENV is transmitted among humans across most of the range of competent Aedes vectors, which in the last decade has included every continent save Antarctica. This review summarizes current understanding of sylvatic transmission cycles of YFV and DENV, considers possible explanations for their disjunct distributions, and speculates on the potential consequences of future establishment of a sylvatic cycle of DENV in the Americas. Copyright © 2013 Elsevier B.V. All rights reserved.
Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions.
Dietzgen, Ralf G; Mann, Krin S; Johnson, Karyn N
2016-11-09
Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.
Lockaby, Graeme; Noori, Navideh; Morse, Wayde; Zipperer, Wayne; Kalin, Latif; Governo, Robin; Sawant, Rajesh; Ricker, Matthew
2016-12-01
The integrated effects of the many risk factors associated with West Nile virus (WNV) incidence are complex and not well understood. We studied an array of risk factors in and around Atlanta, GA, that have been shown to be linked with WNV in other locations. This array was comprehensive and included climate and meteorological metrics, vegetation characteristics, land use / land cover analyses, and socioeconomic factors. Data on mosquito abundance and WNV mosquito infection rates were obtained for 58 sites and covered 2009-2011, a period following the combined storm water - sewer overflow remediation in that city. Risk factors were compared to mosquito abundance and the WNV vector index (VI) using regression analyses individually and in combination. Lagged climate variables, including soil moisture and temperature, were significantly correlated (positively) with vector index as were forest patch size and percent pine composition of patches (both negatively). Socioeconomic factors that were most highly correlated (positively) with the VI included the proportion of low income households and homes built before 1960 and housing density. The model selected through stepwise regression that related risk factors to the VI included (in the order of decreasing influence) proportion of houses built before 1960, percent of pine in patches, and proportion of low income households. © 2016 The Society for Vector Ecology.
Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y.; Samal, Siba K.
2015-01-01
Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirs-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. PMID:26099695
2017-01-01
ABSTRACT Strong viral enhancers in gammaretrovirus vectors have caused cellular proto-oncogene activation and leukemia, necessitating the use of cellular promoters in “enhancerless” self-inactivating integrating vectors. However, cellular promoters result in relatively low transgene expression, often leading to inadequate disease phenotype correction. Vectors derived from foamy virus, a nonpathogenic retrovirus, show higher preference for nongenic integrations than gammaretroviruses/lentiviruses and preferential integration near transcriptional start sites, like gammaretroviruses. We found that strong viral enhancers/promoters placed in foamy viral vectors caused extremely low immortalization of primary mouse hematopoietic stem/progenitor cells compared to analogous gammaretrovirus/lentivirus vectors carrying the same enhancers/promoters, an effect not explained solely by foamy virus' modest insertional site preference for nongenic regions compared to gammaretrovirus/lentivirus vectors. Using CRISPR/Cas9-mediated targeted insertion of analogous proviral sequences into the LMO2 gene and then measuring LMO2 expression, we demonstrate a sequence-specific effect of foamy virus, independent of insertional bias, contributing to reduced genotoxicity. We show that this effect is mediated by a 36-bp insulator located in the foamy virus long terminal repeat (LTR) that has high-affinity binding to the CCCTC-binding factor. Using our LMO2 activation assay, LMO2 expression was significantly increased when this insulator was removed from foamy virus and significantly reduced when the insulator was inserted into the lentiviral LTR. Our results elucidate a mechanism underlying the low genotoxicity of foamy virus, identify a novel insulator, and support the use of foamy virus as a vector for gene therapy, especially when strong enhancers/promoters are required. IMPORTANCE Understanding the genotoxic potential of viral vectors is important in designing safe and efficacious vectors for gene therapy. Self-inactivating vectors devoid of viral long-terminal-repeat enhancers have proven safe; however, transgene expression from cellular promoters is often insufficient for full phenotypic correction. Foamy virus is an attractive vector for gene therapy. We found foamy virus vectors to be remarkably less genotoxic, well below what was expected from their integration site preferences. We demonstrate that the foamy virus long terminal repeats contain an insulator element that binds CCCTC-binding factor and reduces its insertional genotoxicity. Our study elucidates a mechanism behind the low genotoxic potential of foamy virus, identifies a unique insulator, and supports the use of foamy virus as a vector for gene therapy. PMID:29046446
Is there a role for symbiotic bacteria in plant virus transmission?
USDA-ARS?s Scientific Manuscript database
During the process of circulative plant virus transmission by insect vectors, viruses interact with different insect vector tissues prior to transmission to a new host plant. An area of intense debate in the field is whether bacterial symbionts of insect vectors are involved in the virus transmissi...
Levine, Rebecca S; Mead, Daniel G; Hamer, Gabriel L; Brosi, Berry J; Hedeen, David L; Hedeen, Meghan W; McMillan, Joseph R; Bisanzio, Donal; Kitron, Uriel D
2016-11-02
In the eastern United States, human cases of West Nile virus (WNV) result from spillover from urban epizootic transmission between passerine birds and Culex mosquitoes. In Atlanta, GA, substantial WNV presence in hosts and vectors has not resulted in the human disease burden observed in cities with similar infection pressure. Our study goal was to investigate extrinsic ecological conditions that potentially contribute to these reduced transmission rates. We conducted WNV surveillance among hosts and vectors in urban Atlanta and recorded an overall avian seroprevalence of nearly 30%, which was significantly higher among northern cardinals, blue jays, and members of the mimid family, and notably low among American robins. Examination of temporal Culex feeding patterns showed a marked feeding shift from American robins in the early season to northern cardinals in the late season. We therefore rule out American robins as superspreaders in the Atlanta area and suggest instead that northern cardinals and mimids act as WNV "supersuppressor" species, which slow WNV transmission by drawing many infectious bites during the critical virus amplification period, yet failing to amplify transmission due to low host competencies. Of particular interest, urban forest patches provide spillover protection by increasing the WNV amplification fraction on supersuppressor species. © The American Society of Tropical Medicine and Hygiene.
He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian
2014-05-01
Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.
The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors
NASA Astrophysics Data System (ADS)
Roizman, Bernard
1996-10-01
Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.
van den Pol, Anthony N; Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K; Davis, John N
2017-03-15
Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain. IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah, chikungunya, and influenza viruses and nonstructural genes from Semliki Forest virus. Two of the four, VSVΔG-CHIKV and VLV, show substantially attenuated neurotropism and were safe in the healthy adult mouse brain. VSVΔG-H5N1 was safe in the adult brain but lethal in the younger brain. VSVΔG Nipah F+G was even more neurotropic than wild-type VSV, evoking a rapid lethal response in the adult brain. These results suggest that while chimeric VSVs show promise, each must be tested with both intranasal and intracranial administration to ensure the absence of lethal neurotropism. Copyright © 2017 American Society for Microbiology.
Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K.; Davis, John N.
2017-01-01
ABSTRACT Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain. IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah, chikungunya, and influenza viruses and nonstructural genes from Semliki Forest virus. Two of the four, VSVΔG-CHIKV and VLV, show substantially attenuated neurotropism and were safe in the healthy adult mouse brain. VSVΔG-H5N1 was safe in the adult brain but lethal in the younger brain. VSVΔG Nipah F+G was even more neurotropic than wild-type VSV, evoking a rapid lethal response in the adult brain. These results suggest that while chimeric VSVs show promise, each must be tested with both intranasal and intracranial administration to ensure the absence of lethal neurotropism. PMID:28077641
Powassan virus: persistence of virus activity during 1966.
McLean, D M; Cobb, C; Gooderham, S E; Smart, C A; Wilson, A G; Wilson, W E
1967-03-18
Powassan virus isolations were achieved from three of 60 pools of Ixodes cookei ticks removed from 286 groundhogs (Marmota monax) which were collected some 200 miles north of Toronto between May 5 and September 5, 1966. Virus yields per pool of one to 11 ticks ranged from 10(2.5) to 10(6.0) TCD(50) for primary swine kidney tissue cultures, and positive pools were collected on June 24, July 15 and August 10. Powassan neutralizing antibodies were detected by mouse inoculation tests in 143 of 362 animals including 127 of 286 groundhogs, 14 of 45 red squirrels (Tamiasciurus hudsonicus) and two of 31 other forest mammals. The monthly prevalence of antibody in the current season's groundhogs increased from 0 to 25% with the progression of summer, but in older animals the incidence remained between 38 and 62% throughout the season. These results substantiate earlier findings which pointed towards the maintenance of Powassan virus in nature by a cycle involving groundhogs and squirrels as reservoirs, with ticks as vectors, from which human infections occurred tangentially.
Powassan Virus: Persistence of Virus Activity During 1966
McLean, Donald M.; Cobb, Cathron; Gooderham, Susan E.; Smart, Carol A.; Wilson, A. G.; Wilson, W. E.
1967-01-01
Powassan virus isolations were achieved from three of 60 pools of Ixodes cookei ticks removed from 286 groundhogs (Marmota monax) which were collected some 200 miles north of Toronto between May 5 and September 5, 1966. Virus yields per pool of one to 11 ticks ranged from 102.5 to 106.0 TCD50 for primary swine kidney tissue cultures, and positive pools were collected on June 24, July 15 and August 10. Powassan neutralizing antibodies were detected by mouse inoculation tests in 143 of 362 animals including 127 of 286 groundhogs, 14 of 45 red squirrels (Tamiasciurus hudsonicus) and two of 31 other forest mammals. The monthly prevalence of antibody in the current season's groundhogs increased from 0 to 25% with the progression of summer, but in older animals the incidence remained between 38 and 62% throughout the season. These results substantiate earlier findings which pointed towards the maintenance of Powassan virus in nature by a cycle involving groundhogs and squirrels as reservoirs, with ticks as vectors, from which human infections occurred tangentially. PMID:6019677
Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions
Dietzgen, Ralf G.; Mann, Krin S.; Johnson, Karyn N.
2016-01-01
Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus–insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors. PMID:27834855
2018-01-01
Virus-induced gene silencing (VIGS) is used extensively for gene function studies in plants. VIGS is inexpensive and rapid compared with silencing conducted through stable transformation, but many virus-silencing vectors, especially in grasses, induce only transient silencing phenotypes. A major reason for transient phenotypes is the instability of the foreign gene fragment (insert) in the vector during VIGS. Here, we report the development of a Brome mosaic virus (BMV)-based vector that better maintains inserts through modification of the original BMV vector RNA sequence. Modification of the BMV RNA3 sequence yielded a vector, BMVCP5, that better maintained phytoene desaturase and heat shock protein70-1 (HSP70-1) inserts in Nicotiana benthamiana and maize (Zea mays). Longer maintenance of inserts was correlated with greater target gene silencing and more extensive visible silencing phenotypes displaying greater tissue penetration and involving more leaves. The modified vector accumulated similarly to the original vector in N. benthamiana after agroinfiltration, thus maintaining a high titer of virus in this intermediate host used to produce virus inoculum for grass hosts. For HSP70, silencing one family member led to a large increase in the expression of another family member, an increase likely related to the target gene knockdown and not a general effect of virus infection. The cause of the increased insert stability in the modified vector is discussed in relationship to its recombination and accumulation potential. The modified vector will improve functional genomic studies in grasses, and the conceptual methods used to improve the vector may be applied to other VIGS vectors. PMID:29127260
Flies, Emily J; Toi, Cheryl; Weinstein, Philip; Doggett, Stephen L; Williams, Craig R
2015-07-01
Spatially and temporally accurate information about infectious mosquito distribution allows for pre-emptive public health interventions that can reduce the burden of mosquito-borne infections on human populations. However, the labile nature of arboviruses, the low prevalence of infection in mosquitoes, the expensive labor costs for mosquito identification and sorting, and the specialized equipment required for arbovirus testing can obstruct arbovirus surveillance efforts. The recently developed techniques of testing mosquito expectorate using honey-baited nucleic acid preservation cards or sugar bait stations allows a sensitive method of testing for infectious, rather than infected, mosquito vectors. Here we report the results from the first large-scale incorporation of honey-baited cards into an existing mosquito surveillance program. During 4 months of the peak virus season (January-April, 2014) for a total of 577 trap nights, we set CO2-baited encephalitis vector survey (EVS) light traps at 88 locations in South Australia. The collection container for the EVS trap was modified to allow for the placement of a honey-baited nucleic acid preservation card (FTA™ card) inside. After collection, mosquitoes were maintained in a humid environment and allowed access to the cards for 1 week. Cards were then analyzed for common endemic Australian arboviruses using a nested RT-PCR. Eighteen virus detections, including 11 Ross River virus, four Barmah Forest virus, and three Stratford virus (not previously reported from South Australia) were obtained. Our findings suggest that adding FTA cards to an existing mosquito surveillance program is a rapid and efficient way of detecting infectious mosquitoes with high spatial resolution.
The Role of Innate Immunity in Conditioning Mosquito Susceptibility to West Nile Virus
Prasad, Abhishek N.; Brackney, Doug. E.; Ebel, Gregory D.
2013-01-01
Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors. PMID:24351797
Chen, Yong; Chen, Qian; Li, Manman; Mao, Qianzhuo; Chen, Hongyan; Wu, Wei; Jia, Dongsheng; Wei, Taiyun
2017-11-01
Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.
Mao, Qianzhuo; Chen, Hongyan; Wu, Wei
2017-01-01
Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors. PMID:29125860
Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y; Samal, Siba K
2015-10-01
Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. Copyright © 2015 Elsevier Inc. All rights reserved.
Lu, Guanghua; Zhang, Tong; He, Yuange; Zhou, Guohui
2016-12-07
Viruses may induce changes in plant hosts and vectors to enhance their transmission. The white-backed planthopper (WBPH) and brown planthopper (BPH) are vectors of Southern rice black-streaked dwarf virus (SRBSDV) and Rice ragged stunt virus (RRSV), respectively, which cause serious rice diseases. We herein describe the effects of SRBSDV and RRSV infections on host-selection behaviour of vector and non-vector planthoppers at different disease stages. The Y-tube olfactometer choice and free-choice tests indicated that SRBSDV and RRSV infections altered the attractiveness of rice plants to vector and non-vector planthoppers. The attractiveness was mainly mediated by rice volatiles, and varied with disease progression. The attractiveness of the SRBSDV- or RRSV-infected rice plants to the virus-free WBPHs or BPHs initially decreased, then increased, and finally decreased again. For the viruliferous WBPHs and BPHs, SRBSDV or RRSV infection increased the attractiveness of plants more for the non-vector than for the vector planthoppers. Furthermore, we observed that the attractiveness of infected plants to planthoppers was positively correlated with the virus titres. The titre effects were greater for virus-free than for viruliferous planthoppers. Down-regulated defence genes OsAOS1, OsICS, and OsACS2 and up-regulated volatile-biosynthesis genes OsLIS, OsCAS, and OsHPL3 expression in infected plants may influence their attractiveness.
Weather, host and vector — their interplay in the spread of insect-borne animal virus diseases
Sellers, R. F.
1980-01-01
The spread of insect-borne animal virus diseases is influenced by a number of factors. Hosts migrate, move or are conveyed over long distances: vectors are carried on the wind for varying distances in search of hosts and breeding sites; weather and climate affect hosts and vectors through temperature, moisture and wind. As parasites of host and vector, viruses are carried by animals, birds and insects, and their spread can be correlated with the migration of hosts and the carriage of vectors on winds associated with the movements of the Intertropical Convergence Zone (ITCZ) and warm winds to the north and south of the limits of the ITCZ. The virus is often transmitted from a local cycle to a migratory cycle and back again. Examples of insect-borne virus diseases and their spread are analysed. Japanese, Murray Valley, Western equine, Eastern equine and St Louis encephalitis represent viruses transmitted by mosquito—bird or pig cycles. The areas experiencing infection with these viruses can be divided into a number of zones: A, B, C, D, E and F. In zone A there is a continuous cycle of virus in host and vector throughout the year; in zone B, there is an upsurge in the cycle during the wet season, but the cycle continues during the dry season; there is movement of infected vectors between and within zones A and B on the ITCZ and the virus is introduced to zone C by infected vectors on warm winds; persistence may occur in zone C if conditions are right. In zone D, virus is introduced each year by infected vectors on warm winds and the arrival of the virus coincides with the presence of susceptible nestling birds and susceptible piglets. The disappearance of virus occurs at the time when migrating mosquitoes and birds are returning to warmer climates. The virus is introduced to zone E only on occasions every 5-10 years when conditions are suitable. Infected hosts introduced to zone F do not lead to circulation of virus, since the climate is unsuitable for vectors. Zones A, B and C correspond to endemic and zones D and E to epidemic conditions. Similar zones can be recognized for African horse sickness, bluetongue, Ibaraki disease and bovine ephemeral fever — examples of diseases transmitted in a midge-mammal cycle. In zones A and B viruses are transported by infected midges carried on the wind in association with the movement of ITCZ and undergo cycles in young animals. In these zones and in zone C there is a continual movement of midges on the warm wind between one area and another, colonizing new sites or reinforcing populations of midges already present. Virus is introduced at times into fringe areas (zones D and E) and, as there is little resistance in the host, gives rise to clinical signs of disease. In some areas there is persistence during adverse conditions; in others, the virus is carried back to the endemic zones by infected midges or vectors. Examples of viruses maintained in a mosquito/biting fly—mammal cycle are Venezuelan equine encephalitis and vesicular stomatitis. These viruses enter a migratory cycle from a local cycle and the vectors in the migratory cycle are carried over long distances on the wind. Further examples of virus spread by movement of vectors include West Nile, Rift Valley fever, yellow fever, epizootic haemorrhagic disease of deer and Akabane viruses. In devising means of control it is essential to decide the relationship of host, vector and virus and the nature of the zone in which the area to be controlled lies. Because of the continual risk of reintroduction of infected vectors, it is preferable to protect the host by dipping, spraying or by vaccination rather than attempting to eliminate the local population of insects. PMID:6131919
Major emerging vector-borne zoonotic diseases of public health importance in Canada
Kulkarni, Manisha A; Berrang-Ford, Lea; Buck, Peter A; Drebot, Michael A; Lindsay, L Robbin; Ogden, Nicholas H
2015-01-01
In Canada, the emergence of vector-borne diseases may occur via international movement and subsequent establishment of vectors and pathogens, or via northward spread from endemic areas in the USA. Re-emergence of endemic vector-borne diseases may occur due to climate-driven changes to their geographic range and ecology. Lyme disease, West Nile virus (WNV), and other vector-borne diseases were identified as priority emerging non-enteric zoonoses in Canada in a prioritization exercise conducted by public health stakeholders in 2013. We review and present the state of knowledge on the public health importance of these high priority emerging vector-borne diseases in Canada. Lyme disease is emerging in Canada due to range expansion of the tick vector, which also signals concern for the emergence of human granulocytic anaplasmosis, babesiosis, and Powassan virus. WNV has been established in Canada since 2001, with epidemics of varying intensity in following years linked to climatic drivers. Eastern equine encephalitis virus, Jamestown Canyon virus, snowshoe hare virus, and Cache Valley virus are other mosquito-borne viruses endemic to Canada with the potential for human health impact. Increased surveillance for emerging pathogens and vectors and coordinated efforts among sectors and jurisdictions will aid in early detection and timely public health response. PMID:26954882
Major emerging vector-borne zoonotic diseases of public health importance in Canada.
Kulkarni, Manisha A; Berrang-Ford, Lea; Buck, Peter A; Drebot, Michael A; Lindsay, L Robbin; Ogden, Nicholas H
2015-06-10
In Canada, the emergence of vector-borne diseases may occur via international movement and subsequent establishment of vectors and pathogens, or via northward spread from endemic areas in the USA. Re-emergence of endemic vector-borne diseases may occur due to climate-driven changes to their geographic range and ecology. Lyme disease, West Nile virus (WNV), and other vector-borne diseases were identified as priority emerging non-enteric zoonoses in Canada in a prioritization exercise conducted by public health stakeholders in 2013. We review and present the state of knowledge on the public health importance of these high priority emerging vector-borne diseases in Canada. Lyme disease is emerging in Canada due to range expansion of the tick vector, which also signals concern for the emergence of human granulocytic anaplasmosis, babesiosis, and Powassan virus. WNV has been established in Canada since 2001, with epidemics of varying intensity in following years linked to climatic drivers. Eastern equine encephalitis virus, Jamestown Canyon virus, snowshoe hare virus, and Cache Valley virus are other mosquito-borne viruses endemic to Canada with the potential for human health impact. Increased surveillance for emerging pathogens and vectors and coordinated efforts among sectors and jurisdictions will aid in early detection and timely public health response.
An Improved Brome mosaic virus Silencing Vector: Greater Insert Stability and More Extensive VIGS.
Ding, Xin Shun; Mannas, Stephen W; Bishop, Bethany A; Rao, Xiaolan; Lecoultre, Mitchell; Kwon, Soonil; Nelson, Richard S
2018-01-01
Virus-induced gene silencing (VIGS) is used extensively for gene function studies in plants. VIGS is inexpensive and rapid compared with silencing conducted through stable transformation, but many virus-silencing vectors, especially in grasses, induce only transient silencing phenotypes. A major reason for transient phenotypes is the instability of the foreign gene fragment (insert) in the vector during VIGS. Here, we report the development of a Brome mosaic virus (BMV)-based vector that better maintains inserts through modification of the original BMV vector RNA sequence. Modification of the BMV RNA3 sequence yielded a vector, BMVCP5, that better maintained phytoene desaturase and heat shock protein70-1 ( HSP70-1 ) inserts in Nicotiana benthamiana and maize ( Zea mays ). Longer maintenance of inserts was correlated with greater target gene silencing and more extensive visible silencing phenotypes displaying greater tissue penetration and involving more leaves. The modified vector accumulated similarly to the original vector in N. benthamiana after agroinfiltration, thus maintaining a high titer of virus in this intermediate host used to produce virus inoculum for grass hosts. For HSP70 , silencing one family member led to a large increase in the expression of another family member, an increase likely related to the target gene knockdown and not a general effect of virus infection. The cause of the increased insert stability in the modified vector is discussed in relationship to its recombination and accumulation potential. The modified vector will improve functional genomic studies in grasses, and the conceptual methods used to improve the vector may be applied to other VIGS vectors. © 2018 American Society of Plant Biologists. All Rights Reserved.
The Role of Bacterial Chaperones in the Circulative Transmission of Plant Viruses by Insect Vectors
Kliot, Adi; Ghanim, Murad
2013-01-01
Persistent circulative transmission of plant viruses involves complex interactions between the transmitted virus and its insect vector. Several studies have shown that insect vector proteins are involved in the passage and the transmission of the virus. Interestingly, proteins expressed by bacterial endosymbionts that reside in the insect vector, were also shown to influence the transmission of these viruses. Thus far, the transmission of two plant viruses that belong to different virus genera was shown to be facilitated by a bacterial chaperone protein called GroEL. This protein was shown to be implicated in the transmission of Potato leafroll virus (PLRV) by the green peach aphid Myzus persicae, and the transmission of Tomato yellow leaf curl virus (TYLCV) by the sweetpotato whitefly Bemisia tabaci. These tri-trophic levels of interactions and their possible evolutionary implications are reviewed. PMID:23783810
Meseda, Clement A; Atukorale, Vajini; Soto, Jackeline; Eichelberger, Maryna C; Gao, Jin; Wang, Wei; Weiss, Carol D; Weir, Jerry P
2018-03-29
Influenza subtypes such as H7 have pandemic potential since they are able to infect humans with severe consequences, as evidenced by the ongoing H7N9 infections in China that began in 2013. The diversity of H7 viruses calls for a broadly cross-protective vaccine for protection. We describe the construction of recombinant modified vaccinia virus Ankara (MVA) vectors expressing the hemagglutinin (HA) or neuraminidase (NA) from three H7 viruses representing both Eurasian and North American H7 lineages - A/mallard/Netherlands/12/2000 (H7N3), A/Canada/rv444/2004 (H7N3), and A/Shanghai/02/2013 (H7N9). These vectors were evaluated for immunogenicity and protective efficacy against H7N3 virus in a murine model of intranasal challenge. High levels of H7-, N3-, and N9-specific antibodies, including neutralizing antibodies, were induced by the MVA-HA and MVA-NA vectors. Mice vaccinated with MVA vectors expressing any of the H7 antigens were protected, suggesting cross-protection among H7 viruses. In addition, MVA vectors expressing N3 but not N9 elicited protection against H7N3 virus challenge. Similar outcomes were obtained when immune sera from MVA vector-immunized mice were passively transferred to naïve mice prior to challenge with the H7N3 virus. The results support the further development of an MVA vector platform as a candidate vaccine for influenza strains with pandemic potential.
Virus diseases of peppers (Capsicum spp.) and their control.
Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A
2014-01-01
The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the plants are young and most susceptible to infection, (3) appropriate natural products and biocontrol agents to induce resistance in the plants, affect the behavior of the vector insects, or augment the local populations of parasites or predators of the virus vectors, and (4) polygenic resistances against viruses and vector insects with pyramided single-gene virus resistances to improve resistance durability.
Robert, V; Lhuillier, M; Meunier, D; Sarthou, J L; Monteny, N; Digoutte, J P; Cornet, M; Germain, M; Cordellier, R
1993-01-01
An arbovirus surveillance was carried out in Burkina Faso from 1983 to 1986. It was based on crepuscular catches of mosquitoes on human bait in some wooded areas and in one town. The total collection was 228 catches with an average of 8 men per catch. The total number of mosquitoes caught was 44,956 among which 32,010 potential vector of yellow fever; all these mosquitoes were analysed for arbovirology. In the south-western part of the country (region of Bobo-Dioulasso), surveillance was conducted each year from August to November, whilst the circulation of Aedes-borne arboviruses is well known to be favoured. In 1983, 1984 and 1986, seven strains of yellow fever virus were isolated in circumstances remarkably similar. They came from selvatic areas and never from the town. They concerned only Aedes (Stegomyia) luteocephalus which is the very predominant potential vector of yellow fever in the region. They were obtained in low figure, between 1 and 4 per year. They occurred from 27th of October to 21th of November. These observations confirm that the southern portion of the Sudan savanna zone of West Africa is the setting of a customary circulation of yellow fever virus and therefore belongs to the endemic emergence zone. In 1986, two strains of dengue 2 virus were isolated. One concerned Ae. luteocephalus from the selvatic area, the other Ae. (St.) aegypti from the heart of town. These data suggest two distinct cycles for dengue 2 virus, one urban and one selvatic, which could coexist simultaneously in the same region. In the south-eastern part of the country (region of Fada-N'Gourma) a yellow fever epidemic occurred between September and December 1983; its study has enable to precise their entomological aspects. The entomological inoculation rate of yellow fever virus has been evaluated to 22 infected bites per man during the month of october, for a man living close to forest gallery. 25 strains of yellow fever virus strains was isolated from Ae. (Diceromyia) furcifer which is the potential vector the most abundant in this region: the main role of this species in an epidemic was confirmed. An investigation in September 1984 had not permitted isolation of the virus therefore it is suspected that the large epizootic circulation of virus in 1983 has not been renewed the year after. In total 59 viral strains belonging to 10 different viruses were isolated from 9 species of mosquitoes.(ABSTRACT TRUNCATED AT 400 WORDS)
Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.
Wei, Y; Wang, S; Wang, X
2014-01-01
Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.
Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.
Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L
2015-01-01
Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.
Data-driven identification of potential Zika virus vectors
Evans, Michelle V; Dallas, Tad A; Han, Barbara A; Murdock, Courtney C; Drake, John M
2017-01-01
Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. DOI: http://dx.doi.org/10.7554/eLife.22053.001 PMID:28244371
Ross River virus and Barmah Forest virus infection. Commonly asked questions.
Hills, S
1996-12-01
Ross River virus infection and Barmah Forest virus infection are two commonly reported arboviral diseases in Australia. Ross River virus has long been recognised as a cause of epidemic polyarthritis and polyarticular disease. Clinical disease as a result of Barmah Forest virus infection has only been identified since 1988 and Australia is the only country in which this virus has been detected. Severe and prolonged symptoms can occur as a result of infection with either virus and may result in significant distress to the patient. This article reviews some of the issues that patients raise in relation to both Ross River virus and Barmah Forest virus disease including the source of infection, the duration of symptoms and measures to prevent infection.
Predicting the host of influenza viruses based on the word vector.
Xu, Beibei; Tan, Zhiying; Li, Kenli; Jiang, Taijiao; Peng, Yousong
2017-01-01
Newly emerging influenza viruses continue to threaten public health. A rapid determination of the host range of newly discovered influenza viruses would assist in early assessment of their risk. Here, we attempted to predict the host of influenza viruses using the Support Vector Machine (SVM) classifier based on the word vector, a new representation and feature extraction method for biological sequences. The results show that the length of the word within the word vector, the sequence type (DNA or protein) and the species from which the sequences were derived for generating the word vector all influence the performance of models in predicting the host of influenza viruses. In nearly all cases, the models built on the surface proteins hemagglutinin (HA) and neuraminidase (NA) (or their genes) produced better results than internal influenza proteins (or their genes). The best performance was achieved when the model was built on the HA gene based on word vectors (words of three-letters long) generated from DNA sequences of the influenza virus. This results in accuracies of 99.7% for avian, 96.9% for human and 90.6% for swine influenza viruses. Compared to the method of sequence homology best-hit searches using the Basic Local Alignment Search Tool (BLAST), the word vector-based models still need further improvements in predicting the host of influenza A viruses.
Culicoides-virus interactions: infection barriers and possible factors underlying vector competence
USDA-ARS?s Scientific Manuscript database
In the United States, Culicoides midges vector arboviruses of economic importance such as Bluetongue Virus and Epizootic Hemorrhagic Disease Virus. A limited number of studies have demonstrated the complexities of midge-virus interactions, including dynamic changes in virus titer and prevalence over...
Arboviruses pathogenic for domestic and wild animals.
Hubálek, Zdenek; Rudolf, Ivo; Nowotny, Norbert
2014-01-01
The objective of this chapter is to provide an updated and concise systematic review on taxonomy, history, arthropod vectors, vertebrate hosts, animal disease, and geographic distribution of all arboviruses known to date to cause disease in homeotherm (endotherm) vertebrates, except those affecting exclusively man. Fifty arboviruses pathogenic for animals have been documented worldwide, belonging to seven families: Togaviridae (mosquito-borne Eastern, Western, and Venezuelan equine encephalilitis viruses; Sindbis, Middelburg, Getah, and Semliki Forest viruses), Flaviviridae (mosquito-borne yellow fever, Japanese encephalitis, Murray Valley encephalitis, West Nile, Usutu, Israel turkey meningoencephalitis, Tembusu and Wesselsbron viruses; tick-borne encephalitis, louping ill, Omsk hemorrhagic fever, Kyasanur Forest disease, and Tyuleniy viruses), Bunyaviridae (tick-borne Nairobi sheep disease, Soldado, and Bhanja viruses; mosquito-borne Rift Valley fever, La Crosse, Snowshoe hare, and Cache Valley viruses; biting midges-borne Main Drain, Akabane, Aino, Shuni, and Schmallenberg viruses), Reoviridae (biting midges-borne African horse sickness, Kasba, bluetongue, epizootic hemorrhagic disease of deer, Ibaraki, equine encephalosis, Peruvian horse sickness, and Yunnan viruses), Rhabdoviridae (sandfly/mosquito-borne bovine ephemeral fever, vesicular stomatitis-Indiana, vesicular stomatitis-New Jersey, vesicular stomatitis-Alagoas, and Coccal viruses), Orthomyxoviridae (tick-borne Thogoto virus), and Asfarviridae (tick-borne African swine fever virus). They are transmitted to animals by five groups of hematophagous arthropods of the subphyllum Chelicerata (order Acarina, families Ixodidae and Argasidae-ticks) or members of the class Insecta: mosquitoes (family Culicidae); biting midges (family Ceratopogonidae); sandflies (subfamily Phlebotominae); and cimicid bugs (family Cimicidae). Arboviral diseases in endotherm animals may therefore be classified as: tick-borne (louping ill and tick-borne encephalitis, Omsk hemorrhagic fever, Kyasanur Forest disease, Tyuleniy fever, Nairobi sheep disease, Soldado fever, Bhanja fever, Thogoto fever, African swine fever), mosquito-borne (Eastern, Western, and Venezuelan equine encephalomyelitides, Highlands J disease, Getah disease, Semliki Forest disease, yellow fever, Japanese encephalitis, Murray Valley encephalitis, West Nile encephalitis, Usutu disease, Israel turkey meningoencephalitis, Tembusu disease/duck egg-drop syndrome, Wesselsbron disease, La Crosse encephalitis, Snowshoe hare encephalitis, Cache Valley disease, Main Drain disease, Rift Valley fever, Peruvian horse sickness, Yunnan disease), sandfly-borne (vesicular stomatitis-Indiana, New Jersey, and Alagoas, Cocal disease), midge-borne (Akabane disease, Aino disease, Schmallenberg disease, Shuni disease, African horse sickness, Kasba disease, bluetongue, epizootic hemorrhagic disease of deer, Ibaraki disease, equine encephalosis, bovine ephemeral fever, Kotonkan disease), and cimicid-borne (Buggy Creek disease). Animals infected with these arboviruses regularly develop a febrile disease accompanied by various nonspecific symptoms; however, additional severe syndromes may occur: neurological diseases (meningitis, encephalitis, encephalomyelitis); hemorrhagic symptoms; abortions and congenital disorders; or vesicular stomatitis. Certain arboviral diseases cause significant economic losses in domestic animals-for example, Eastern, Western and Venezuelan equine encephalitides, West Nile encephalitis, Nairobi sheep disease, Rift Valley fever, Akabane fever, Schmallenberg disease (emerged recently in Europe), African horse sickness, bluetongue, vesicular stomatitis, and African swine fever; all of these (except for Akabane and Schmallenberg diseases) are notifiable to the World Organisation for Animal Health (OIE, 2012). © 2014 Elsevier Inc. All rights reserved.
Development of replication-competent viral vectors for HIV vaccine delivery
Parks, Christopher L.; Picker, Louis J.; King, C. Richter
2014-01-01
Purpose of review Briefly describe some of the replication-competent (RC) vectors being investigated for development of candidate HIV vaccines focusing primarily on technologies that have advanced to testing in macaques or have entered clinical trials. Recent findings RC viral vectors have advanced to the stage were decisions can be made regarding future development of HIV vaccines. The viruses being used as RC vector platforms vary considerably, and their unique attributes make it possible to test multiple vaccine design concepts and also mimic various aspects of an HIV infection. RC viral vectors encoding SIV or HIV proteins can be used to safely immunize macaques, and in some cases, there is evidence of significant vaccine efficacy in challenge protection studies. Several live HIV vaccine vectors are in clinical trials to evaluate immunogenicity, safety, the effect of mucosal delivery, and potential effects of pre-existing immunity. Summary A variety of DNA and RNA viruses are being used to develop RC viral vectors for HIV vaccine delivery. Multiple viral vector platforms have proven to be safe and immunogenic with evidence of efficacy in macaques. Some of the more advanced HIV vaccine prototypes based on vesicular stomatitis virus, vaccinia virus, measles virus, and Sendai virus are in clinical trials. PMID:23925000
Aedes hensilli as a Potential Vector of Chikungunya and Zika Viruses
Ledermann, Jeremy P.; Guillaumot, Laurent; Yug, Lawrence; Saweyog, Steven C.; Tided, Mary; Machieng, Paul; Pretrick, Moses; Marfel, Maria; Griggs, Anne; Bel, Martin; Duffy, Mark R.; Hancock, W. Thane; Ho-Chen, Tai; Powers, Ann M.
2014-01-01
An epidemic of Zika virus (ZIKV) illness that occurred in July 2007 on Yap Island in the Federated States of Micronesia prompted entomological studies to identify both the primary vector(s) involved in transmission and the ecological parameters contributing to the outbreak. Larval and pupal surveys were performed to identify the major containers serving as oviposition habitat for the likely vector(s). Adult mosquitoes were also collected by backpack aspiration, light trap, and gravid traps at select sites around the capital city. The predominant species found on the island was Aedes (Stegomyia) hensilli. No virus isolates were obtained from the adult field material collected, nor did any of the immature mosquitoes that were allowed to emerge to adulthood contain viable virus or nucleic acid. Therefore, laboratory studies of the probable vector, Ae. hensilli, were undertaken to determine the likelihood of this species serving as a vector for Zika virus and other arboviruses. Infection rates of up to 86%, 62%, and 20% and dissemination rates of 23%, 80%, and 17% for Zika, chikungunya, and dengue-2 viruses respectively, were found supporting the possibility that this species served as a vector during the Zika outbreak and that it could play a role in transmitting other medically important arboviruses. PMID:25299181
Tropical arthritogenic alphaviruses.
Mejía, Carla-Ruth; López-Vélez, Rogelio
Tropical alphaviruses have special tropism for bone and joint tissue. Patients can develop chronic rheumatic disorders similar to rheumatoid arthritis and ankylosing spondylitis. The prototype is Chikungunya virus, although other lesser known viruses in our environment such as Sindbis, Ross River, Mayaro, O'nyong nyong and Barmah Forest viruses have the potential to be sped through vectors and cause chronic rheumatic disease. International population movements have increased the numbers of patients diagnosed with these tropical viruses in areas in which they are not endemic. Since they can leave persistent symptoms and affect the quality of life of the patients, it is important that we be aware of them. Changes in ecosystems have favored the expansion of competent mosquitoes, making fears of local transmission in southern Europe a reality. The objective of this review is to provide a clinical approach to the different arthritogenic tropical alphaviruses, especially those in which chronic rheumatic disease is more frequent. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, S.T.; Stoker, A.W.; Bissell, M.J.
1991-12-01
Retroviruses are valuable tools in studies of embryonic development, both as gene expression vectors and as cell lineage markers. In this study early chicken blastoderm cells are shown to be permissive for infection by Rous sarcoma virus and derivative replication-defective by Rous sarcoma virus and derivative replication-defective vectors, and, in contrast to previously published data, these cells will readily express viral genes. In cultured blastoderm cells, Rous sarcoma virus stably integrates and is transcribed efficiently, producing infectious virus particles. Using replication-defective vectors encoding the bacterial lacZ gene, the authors further show that blastoderms can be infected in culture and inmore » ovo. In ovo, lacZ expression is seen within 24 hours of virus inoculation, and by 96 hours stably expressing clones of cells are observed in diverse tissues throughout the embryo, including epidermis, somites, and heart, as well as in extraembryonic membranes. Given the rapid onset of vector expression and the broad range of permissive cell types, it should be feasible to use Rous sarcoma virus-derived retroviruses as early lineage markers and expression vectors beginning at the blastoderm stage of avian embryogenesis.« less
Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun; Chen, Xiao-Guang
2017-07-01
In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies.
Liu, Zhuanzhuan; Zhou, Tengfei; Lai, Zetian; Zhang, Zhenhong; Jia, Zhirong; Zhou, Guofa; Williams, Tricia; Xu, Jiabao; Gu, Jinbao; Zhou, Xiaohong; Lin, Lifeng; Yan, Guiyun
2017-01-01
In China, the prevention and control of Zika virus disease has been a public health threat since the first imported case was reported in February 2016. To determine the vector competence of potential vector mosquito species, we experimentally infected Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes and determined infection rates, dissemination rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosquitoes, some susceptibility of Ae. albopictus mosquitoes, but no transmission ability for Cx. quinquefasciatus mosquitoes. Considering that, in China, Ae. albopictus mosquitoes are widely distributed but Ae. aegypti mosquito distribution is limited, Ae. albopictus mosquitoes are a potential primary vector for Zika virus and should be targeted in vector control strategies. PMID:28430562
Limited Spillover to Humans from West Nile Virus Viremic Birds in Atlanta, Georgia
Mead, Daniel G.; Kitron, Uriel D.
2013-01-01
Abstract West Nile Virus (WNV) is a mosquito-borne pathogen that impacts the health of its passerine bird hosts as well as incidentally infected humans in the United States. Intensive enzootic activity among the hosts and vectors does not always lead to human outbreaks, as is the situation throughout much of the southeastern United States. In Georgia, substantial yearly evidence of WNV in the mosquito vectors and avian hosts since 2001 has only led to 324 human cases. Although virus has been consistently isolated from mosquitoes trapped in Atlanta, GA, little is known about viral activity among the passerine hosts. A possible reason for the suppression of WNV spillover to humans is that viremic birds are absent from high human-use areas of the city. To test this hypothesis, multiseason, multihabitat, longitudinal WNV surveillance for active WNV viremia was conducted within the avian host community of urban Atlanta by collection of blood samples from wild passerine birds in five urban microhabitats. WNV was isolated from the serum of six blood samples collected from 630 (0.95%) wild passerine birds in Atlanta during 2010–2012, a proportion similar to that found in the Chicago, IL, area in 2005, when over 200 human cases were reported. Most of the viremic birds were Northern Cardinals, suggesting they may be of particular importance to the WNV transmission cycle in Georgia. Results indicated active WNV transmission in all microhabitats of urban Atlanta, except in the old-growth forest patches. The number of viremic birds was highest in Zoo Atlanta, where 3.5% of samples were viremic. Although not significant, these observations may suggest a possible transmission reduction effect of urban old-growth forests and a potential role in WNV amplification for Zoo Atlanta. Overall, spillover to humans remains a rare occurrence in urban Atlanta settings despite active WNV transmission in the avian population. PMID:24107200
Michaels, Sarah R.; Riegel, Claudia; Pereira, Roberto M.; Zipperer, Wayne; Lockaby, B. Graeme; Koehler, Philip G.
2017-01-01
The consistent sporadic transmission of West Nile Virus (WNV) in the city of New Orleans justifies the need for distribution risk maps highlighting human risk of mosquito bites. We modeled the influence of biophysical and socioeconomic metrics on the spatio-temporal distributions of presence/vector-host contact (VHC) ratios of WNV vector, Culex quinquefasciatus, within their flight range. Biophysical and socioeconomic data were extracted within 5-km buffer radii around sampling localities of gravid female Culex quinquefasciatus. The spatio-temporal correlations between VHC data and 33 variables, including climate, land use-land cover (LULC), socioeconomic, and land surface terrain were analyzed using stepwise linear regression models (RM). Using MaxEnt, we developed a distribution model using the correlated predicting variables. Only 12 factors showed significant correlations with spatial distribution of VHC ratios (R2 = 81.62, p < 0.01). Non-forested wetland (NFWL), tree density (TD) and residential-urban (RU) settings demonstrated the strongest relationship. The VHC ratios showed monthly environmental resilience in terms of number and type of influential factors. The highest prediction power of RU and other urban and built up land (OUBL), was demonstrated during May–August. This association was positively correlated with the onset of the mosquito WNV infection rate during June. These findings were confirmed by the Jackknife analysis in MaxEnt and independently collected field validation points. The spatial and temporal correlations of VHC ratios and their response to the predicting variables are discussed. PMID:28786934
Sallam, Mohamed F; Michaels, Sarah R; Riegel, Claudia; Pereira, Roberto M; Zipperer, Wayne; Lockaby, B Graeme; Koehler, Philip G
2017-08-08
The consistent sporadic transmission of West Nile Virus (WNV) in the city of New Orleans justifies the need for distribution risk maps highlighting human risk of mosquito bites. We modeled the influence of biophysical and socioeconomic metrics on the spatio-temporal distributions of presence/vector-host contact (VHC) ratios of WNV vector, Culex quinquefasciatus , within their flight range . Biophysical and socioeconomic data were extracted within 5-km buffer radii around sampling localities of gravid female Culex quinquefasciatus . The spatio-temporal correlations between VHC data and 33 variables, including climate, land use-land cover (LULC), socioeconomic, and land surface terrain were analyzed using stepwise linear regression models (RM). Using MaxEnt, we developed a distribution model using the correlated predicting variables. Only 12 factors showed significant correlations with spatial distribution of VHC ratios ( R ² = 81.62, p < 0.01). Non-forested wetland (NFWL), tree density (TD) and residential-urban (RU) settings demonstrated the strongest relationship. The VHC ratios showed monthly environmental resilience in terms of number and type of influential factors. The highest prediction power of RU and other urban and built up land (OUBL), was demonstrated during May-August. This association was positively correlated with the onset of the mosquito WNV infection rate during June. These findings were confirmed by the Jackknife analysis in MaxEnt and independently collected field validation points. The spatial and temporal correlations of VHC ratios and their response to the predicting variables are discussed.
USDA-ARS?s Scientific Manuscript database
The ability to decipher DNA sequences provides new insights into the study of plant viruses and their interactions with host plants, including the intricate interactions that allow a virus to be transmitted by an insect vector. Next generation sequencing (NGS) provides a wealth of genetic informati...
Persistent, circulative transmission of begomoviruses by whitefly vectors.
Rosen, Ran; Kanakala, Surapathrudu; Kliot, Adi; Cathrin Pakkianathan, Britto; Farich, Basheer Abu; Santana-Magal, Nadine; Elimelech, Meytar; Kontsedalov, Svetlana; Lebedev, Galina; Cilia, Michelle; Ghanim, Murad
2015-12-01
Begomoviruses comprise an emerging and economically important group of plant viruses exclusively transmitted by the sweetpotato whitefly Bemisia tabaci in many regions of the world. The past twenty years have witnessed significant progress in studying the molecular interactions between members of this virus group and B. tabaci. Mechanisms and proteins encoded by the insect vector and its bacterial symbionts, which have been shown to be important for virus transmission, have been identified and thoroughly studied. Despite the economic importance of this group of viruses and their impact on the global agriculture, progress in investigating the virus-vector interactions is moving slowly when compared with similar virus-vector systems in plants and animals. Major advances in this field and future perspectives will be discussed in this review. Copyright © 2015 Elsevier B.V. All rights reserved.
A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.
Mei, Yu; Zhang, Chunquan; Kernodle, Bliss M; Hill, John H; Whitham, Steven A
2016-06-01
Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.
A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize1[OPEN
Mei, Yu; Kernodle, Bliss M.; Hill, John H.
2016-01-01
Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311
He, Wen-Bo; Li, Jie; Liu, Shu-Sheng
2015-01-08
Plant viruses interact with their insect vectors directly and indirectly via host plants, and this tripartite interaction may produce fitness benefits to both the vectors and the viruses. Our previous studies show that the Middle East-Asia Minor 1 (MEAM1) species of the whitefly Bemisia tabaci complex improved its performance on tobacco plants infected by the Tomato yellow leaf curl China virus (TYLCCNV), which it transmits, although virus infection of the whitefly per se reduced its performance. Here, we use electrical penetration graph recording to investigate the direct and indirect effects of TYLCCNV on the feeding behaviour of MEAM1. When feeding on either cotton, a non-host of TYLCCNV, or uninfected tobacco, a host of TYLCCNV, virus-infection of the whiteflies impeded their feeding. Interestingly, when viruliferous whiteflies fed on virus-infected tobacco, their feeding activities were no longer negatively affected; instead, the virus promoted whitefly behaviour related to rapid and effective sap ingestion. Our findings show differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus, and help to unravel the behavioural mechanisms underlying a mutualistic relationship between an insect vector and a plant virus that also has features reminiscent of an insect pathogen.
Neurotropism and behavioral changes associated with Zika infection in the vector Aedes aegypti.
Gaburro, Julie; Bhatti, Asim; Harper, Jenni; Jeanne, Isabelle; Dearnley, Megan; Green, Diane; Nahavandi, Saeid; Paradkar, Prasad N; Duchemin, Jean-Bernard
2018-04-25
Understanding Zika virus infection dynamics is essential, as its recent emergence revealed possible devastating neuropathologies in humans, thus causing a major threat to public health worldwide. Recent research allowed breakthrough in our understanding of the virus and host pathogenesis; however, little is known on its impact on its main vector, Aedes aegypti. Here we show how Zika virus targets Aedes aegypti's neurons and induces changes in its behavior. Results are compared to dengue virus, another flavivirus, which triggers a different pattern of behavioral changes. We used microelectrode array technology to record electrical spiking activity of mosquito primary neurons post infections and discovered that only Zika virus causes an increase in spiking activity of the neuronal network. Confocal microscopy also revealed an increase in synapse connections for Zika virus-infected neuronal networks. Interestingly, the results also showed that mosquito responds to infection by overexpressing glutamate regulatory genes while maintaining virus levels. This neuro-excitation, possibly via glutamate, could contribute to the observed behavioral changes in Zika virus-infected Aedes aegypti females. This study reveals the importance of virus-vector interaction in arbovirus neurotropism, in humans and vector. However, it appears that the consequences differ in the two hosts, with neuropathology in human host, while behavioral changes in the mosquito vector that may be advantageous to the virus.
He, Wen-Bo; Li, Jie; Liu, Shu-Sheng
2015-01-01
Plant viruses interact with their insect vectors directly and indirectly via host plants, and this tripartite interaction may produce fitness benefits to both the vectors and the viruses. Our previous studies show that the Middle East-Asia Minor 1 (MEAM1) species of the whitefly Bemisia tabaci complex improved its performance on tobacco plants infected by the Tomato yellow leaf curl China virus (TYLCCNV), which it transmits, although virus infection of the whitefly per se reduced its performance. Here, we use electrical penetration graph recording to investigate the direct and indirect effects of TYLCCNV on the feeding behaviour of MEAM1. When feeding on either cotton, a non-host of TYLCCNV, or uninfected tobacco, a host of TYLCCNV, virus-infection of the whiteflies impeded their feeding. Interestingly, when viruliferous whiteflies fed on virus-infected tobacco, their feeding activities were no longer negatively affected; instead, the virus promoted whitefly behaviour related to rapid and effective sap ingestion. Our findings show differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus, and help to unravel the behavioural mechanisms underlying a mutualistic relationship between an insect vector and a plant virus that also has features reminiscent of an insect pathogen. PMID:25567524
Guito, Jonathan C; Albariño, César G; Chakrabarti, Ayan K; Towner, Jonathan S
2017-01-15
Filoviruses are highly lethal in humans and nonhuman primates, likely due to potent antagonism of host interferon (IFN) responses early in infection. Filoviral protein VP35 is implicated as the major IFN induction antagonist, while Ebola virus (EBOV) VP24 or Marburg virus (MARV) VP40 are known to block downstream IFN signaling. Despite progress elucidating EBOV and MARV antagonist function, those for most other filoviruses, including Reston (RESTV), Sudan (SUDV), Taï Forest (TAFV), Bundibugyo (BDBV) and Ravn (RAVV) viruses, remain largely neglected. Thus, using standardized vectors and reporter assays, we characterized activities by each IFN antagonist from all known ebolavirus and marburgvirus species side-by-side. We uncover noncanonical suppression of IFN induction by ebolavirus VP24, differing potencies by MARV and RAVV proteins, and intriguingly, weaker antagonism by VP24 of RESTV. These underlying molecular explanations for differential virulence in humans could guide future investigations of more-neglected filoviruses as well as treatment and vaccine studies. Published by Elsevier Inc.
Takayama, Eiji; Ono, Takeshi; Carnero, Elena; Umemoto, Saori; Yamaguchi, Yoko; Kanayama, Atsuhiro; Oguma, Takemi; Takashima, Yasuhiro; Tadakuma, Takushi; García-Sastre, Adolfo; Miyahira, Yasushi
2010-11-01
We studied some aspects of the quantitative and qualitative features of heterologous recombinant (re) virus-vector-induced, antigen-specific CD8(+) T cells against Trypanosoma cruzi. We used three different, highly attenuated re-viruses, i.e., influenza virus, adenovirus and vaccinia virus, which all expressed a single, T. cruzi antigen-derived CD8(+) T-cell epitope. The use of two out of three vectors or the triple virus-vector vaccination regimen not only confirmed that the re-vaccinia virus, which was placed last in order for sequential immunisation, was an effective booster for the CD8(+) T-cell immunity in terms of the number of antigen-specific CD8(+) T cells, but also demonstrated that (i) the majority of cells exhibit the effector memory (T(EM)) phenotype, (ii) robustly secrete IFN-γ, (iii) express higher intensity of the CD122 molecule and (iv) present protective activity against T. cruzi infection. In contrast, placing the re-influenza virus last in sequential immunisation had a detrimental effect on the quantitative and qualitative features of CD8(+) T cells. The triple virus-vector vaccination was more effective at inducing a stronger CD8(+) T-cell immunity than using two re-viruses. The different quantitative and qualitative features of CD8(+) T cells induced by different immunisation regimens support the notion that the refinement of the best choice of multiple virus-vector combinations is indispensable for the induction of a maximum number of CD8(+) T cells of high quality. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.
Herpes simplex virus type 1-derived recombinant and amplicon vectors.
Fraefel, Cornel; Marconi, Peggy; Epstein, Alberto L
2011-01-01
Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy.
New developments in flavivirus vaccines with special attention to yellow fever.
Pugachev, Konstantin V; Guirakhoo, Farshad; Monath, Thomas P
2005-10-01
Here we review recent epidemiological trends in flavivirus diseases, findings related to existing vaccines, and new directions in flavivirus vaccine research. We emphasize the need for stepped-up efforts to stop further spread and intensification of these infections worldwide. Although the incidence and geographic distribution of flavivirus diseases have increased in recent years, human vaccines are available only for yellow fever, Japanese encephalitis, tick-borne encephalitis and Kyasanur forest disease. Factors contributing to resurgence include insufficient supplies of available vaccines, incomplete vaccination coverage and relaxation in vector control. Research has been underway for 60 years to develop effective vaccines against dengue, and recent progress is encouraging. The development of vaccines against West Nile, virus recently introduced to North America, has been initiated. In addition, there is considerable interest in improving existing vaccines with respect to increasing safety (e.g. eliminating the newly recognized syndrome of yellow fever vaccine-associated viscerotropic adverse disease), and to reducing the cost and number of doses required for effective immunization. Traditional approaches to flavivirus vaccines are still employed, while recent advancements in biotechnology produced new approaches to vaccine design, such as recombinant live virus, subunit and DNA vaccines. Live chimeric vaccines against dengue, Japanese encephalitis and West Nile based on yellow fever 17D virus (ChimeriVax) are in phase I/II trials, with encouraging results. Other chimeric dengue, tick-borne encephalitis and West Nile virus candidates were developed based on attenuated dengue backbones. To further reduce the impact of flavivirus diseases, vaccination policies and vector control programs in affected countries require revision.
Use of insecticide-treated house screens to reduce infestations of dengue virus vectors, Mexico.
Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J; Kroeger, Axel; Arredondo-Jimenez, Juan I
2015-02-01
Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control.
Homologous and heterologous protection of nonhuman primates by Ebola and Sudan virus-like particles.
Warfield, Kelly L; Dye, John M; Wells, Jay B; Unfer, Robert C; Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Swenson, Dana L; Bavari, Sina; Aman, M Javad
2015-01-01
Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs) have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV) and Marburg virus (MARV) following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV) following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system) and then demonstrate protection against Sudan virus (SUDV) and Taï Forest virus (TAFV). Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components.
Homologous and Heterologous Protection of Nonhuman Primates by Ebola and Sudan Virus-Like Particles
Warfield, Kelly L.; Dye, John M.; Wells, Jay B.; Unfer, Robert C.; Holtsberg, Frederick W.; Shulenin, Sergey; Vu, Hong; Swenson, Dana L.; Bavari, Sina; Aman, M. Javad
2015-01-01
Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs) have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV) and Marburg virus (MARV) following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV) following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system) and then demonstrate protection against Sudan virus (SUDV) and Taï Forest virus (TAFV). Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components. PMID:25793502
Zika Virus in the Americas: A Review for Clinicians.
Sampathkumar, Priya; Sanchez, Joyce L
2016-04-01
Zika virus has recently emerged as a new public health threat. An arthropod-borne virus named after the Zika forest in Uganda, it was first discovered in 1947. The virus caused only sporadic cases of Zika infection in Africa and Southeast Asia until 2007, when the first large outbreak occurred in the Yap State in the Federated States of Micronesia. Another outbreak in French Polynesia in 2013 was notable for being associated temporally with an increase in cases of Guillain-Barré syndrome. In 2015, the virus was first reported in Brazil and since then has spread explosively through several additional countries in South and Central America and the Caribbean. Simultaneously, several of these countries have seen a dramatic increase in the incidence of infants born with microcephaly. The rapid spread of Zika virus through the Americas, together with the association of infection with microcephaly and Guillain-Barré syndrome, has resulted in the World Health Organization declaring a public health emergency. Zika virus has the potential to spread to new areas where the Aedes mosquito vector is present and therefore presents a risk to the United States. This concise review describes the clinical features of Zika virus infection and provides advice for clinicians on counseling travelers and others about the disease. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B
2014-10-01
Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options.
Development of apple latent spherical virus-based vaccines against three tospoviruses.
Taki, Ayano; Yamagishi, Noriko; Yoshikawa, Nobuyuki
2013-09-01
Apple latent spherical virus (ALSV) is characterized by its relatively broad host range, latency in most host plants, and ability to induce gene silencing in host plants. Herein, we focus on the above characteristic of ALSV and describe our development of ALSV vector vaccines against three tospoviruses, namely, Impatiens necrotic spot virus (INSV), Iris yellow spot virus (IYSV), and Tomato spotted wilt virus (TSWV). DNA fragments of 201 nt of three tospovirus S-RNAs (silencing suppressor (NSS) and nucleocapsid protein (N) coding regions for each tospovirus) were inserted into an ALSV-RNA2 vector to obtain six types of ALSV vector vaccines. Nicotiana benthamiana plants at the five-leaf stage were inoculated with each ALSV vector vaccine and challenged with the corresponding tospovirus species. Tospovirus-induced symptoms and tospovirus replication after challenge were significantly suppressed in plants preinoculated with all ALSV vector vaccines having the N region fragment, indicating that strong resistance was acquired after infection with ALSV vector vaccines. On the other hand, cross protection was not significant in plants preinoculated with ALSV vectors having the NSs region fragment. Similarly, inoculation with an ALSV-RNA1 vector having the N region fragment in the 3'-noncoding region, but not the NSs region fragment, induced cross protection, indicating that cross protection is via RNA silencing, not via the function of the protein derived from the N region fragment. Our approach, wherein ALSV vectors and selected target inserts are used, enables rapid establishment of ALSV vector vaccines against many pathogenic RNA viruses with known sequences. Copyright © 2013 Elsevier B.V. All rights reserved.
Kim, Shin-Hee; Samal, Siba K
2017-07-24
Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Progress and prospects: foamy virus vectors enter a new age.
Erlwein, O; McClure, M O
2010-12-01
Foamy viruses, distantly related to the major subfamily of Retroviruses, Orthoretroviruses that include oncoviruses (for example, murine leukemia virus (MLV)) and lentiviruses (human immunodeficiency virus (HIV)), are endemic in mammalian species, but not in human populations. Humans infected by accidental or occupational exposure remain well. The virus is not transmitted to others, nor is it associated with any disease. These features added to its broad host range, efficient transduction of progenitor cells and an integration profile less likely to induce insertional mutagenesis, make these viruses attractive as vectors. Long-term reversal of disease phenotype in dogs with the genetic defect, leukocyte adhesion deficiency, by foamy virus vector therapy strengthens the case for their clinical exploitation.
[Sendai virus vector: vector development and its application to health care and biotechnology].
Iida, Akihiro
2007-06-01
Sendai virus (SeV) is an enveloped virus with a nonsegmented negative-strand RNA genome and a member of the paramyxovirus family. We have developed SeV vector which has shown a high efficiently of gene transfer and expression of foreign genes to a wide range of dividing and non-dividing mammalian cells and tissues. One of the characteristics of the vector is that the genome is located exclusively in the cytoplasm of infected cells and does not go through a DNA phase; thus there is no concern about unwanted integration of foreign sequences into chromosomal DNA. Therefore, this new class of "cytoplasmic RNA vector", an RNA vector with cytoplasmic expression, is expected to be a safer and more efficient viral vector than existing vectors for application to human therapy in various fields including gene therapy and vaccination. In this review, I describe development of Sendai virus vector, its application in the field of biotechnology and clinical application aiming to treat for a large number of diseases including cancer, cardiovascular disease, infectious diseases and neurologic disorders.
USDA-ARS?s Scientific Manuscript database
A series of Wheat streak mosaic virus (WSMV)-based expression vectors were developed by engineering cycle 3 GFP (GFP) cistron between P1 and HC-Pro cistrons with several catalytic/cleavage peptides at the C-terminus of GFP. WSMV-GFP vectors with the Foot-and-mouth disease virus 1D/2A or 2A catalytic...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, A.I.; Keyomarsi, K.; Bryan, J.
1990-11-01
The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli {beta}-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; tsmore » mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses {beta}-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system.« less
Zika Virus: An Emergent Neuropathological Agent
White, Martyn K.; Wollebo, Hassen S.; Beckham, J. David; Tyler, Kenneth L.; Khalili, Kamel
2016-01-01
The emergence of Zika virus in the Americas has followed a pattern that is familiar from earlier epidemics of other viruses, where a new disease is introduced into a human population and then spreads rapidly with important public health consequences. In the case of Zika virus, an accumulating body of recent evidence implicates the virus in the etiology of serious pathologies of the human nervous system, that is, the occurrence of microcephaly in neonates and Guillain–Barré syndrome in adults. Zika virus is an arbovirus (arthropod-borne virus) and a member of the family Flaviviridae, genus Flavivirus. Zika virions are enveloped and icosahedral, and contain a nonsegmented, single-stranded, positive-sense RNA genome, which encodes 3 structural and 7 nonstructural proteins that are expressed as a single polyprotein that undergoes cleavage. Zika genomic RNA replicates in the cytoplasm of infected host cells. Zika virus was first detected in 1947 in the blood of a febrile monkey in Uganda’s Zika Forest and in crushed suspensions of the Aedes mosquito, which is one of the vectors for Zika virus. The virus remained obscure, with a few human cases confined to Africa and Asia. There are two lineages of the Zika virus, African and Asian, with the Asian strain causing outbreaks in Micronesia in 2007 and French Polynesia in 2013–2014. From here, the virus spread to Brazil with the first report of autochthonous Zika transmission in the Americas in March 2015. The rapid advance of the virus in the Americas and its likely association with microcephaly and Guillain–Barré syndrome make Zika an urgent public health concern. PMID:27464346
Ellis, Brett Richard; Wesson, Dawn M; Sang, Rosemary C
2007-01-01
Yellow fever virus (YFV) remains a significant public health threat in sub-Saharan Africa in which 90% of the estimated 200,000 cases occur annually. In East Africa, human cases of YFV are characterized by unpredictable focal periodicity, lengthy inter-epidemic periods, and a precarious potential for large epidemics. YFV had remained undetected in this region for nearly 40 years until emerging in Kenya in 1992-93 and more recently in Sudan during 2003 and 2005. From an ecological perspective the emergence and epidemiological outcomes associated with YFV, and related vector-borne diseases, are critically dependent upon the underlying vector ecology at a local scale. The study here was aimed at defining the dynamics of important vector interactions at two important sites in Kenya with previous YFV or related arbovirus activity. The temporal abundance, spatial distribution, and human host seeking behavior of diurnal man-landing mosquito species along sylvan interfaces were investigated. A number of YFV vectors were identified including their abundances for the duration of the main rainy season. Spatially, results indicated that the greatest human-mosquito interactions occurred within the forest and decreased across more domesticated biotopes. A discussion of significant differences, ecological associations, and epidemiological implications is included.
Jeong, Ji Yeon; Yoo, Seung Jin; Koh, Young-Sang; Lee, Seogjae; Heo, Sang Taek; Seong, Seung-Yong; Lee, Keun Hwa
2013-01-01
Background Climate change affects the survival and transmission of arthropod vectors as well as the development rates of vector-borne pathogens. Increased international travel is also an important factor in the spread of vector-borne diseases (VBDs) such as dengue, West Nile, yellow fever, chikungunya, and malaria. Dengue is the most important vector-borne viral disease. An estimated 2.5 billion people are at risk of infection in the world and there are approximately 50 million dengue infections and an estimated 500,000 individuals are hospitalized with dengue haemorrhagic fever annually. The Asian tiger mosquito (Aedes albopictus) is one of the vectors of dengue virus, and populations already exist on Jeju Island, South Korea. Currently, colder winter temperatures kill off Asian tiger mosquito populations and there is no evidence of the mosquitos being vectors for the dengue virus in this location. However, dengue virus-bearing mosquito vectors can inflow to Jeju Island from endemic area such as Vietnam by increased international travel, and this mosquito vector's survival during colder winter months will likely occur due to the effects of climate change. Methods and Results In this section, we show the geographical distribution of medically important mosquito vectors such as Ae. albopictus, a vector of both dengue and chikungunya viruses; Culex pipiens, a vector of West Nile virus; and Anopheles sinensis, a vector of Plasmodium vivax, within Jeju Island, South Korea. We found a significant association between the mean temperature, amount of precipitation, and density of mosquitoes. The phylogenetic analyses show that an Ae. albopictus, collected in southern area of Jeju Island, was identical to specimens found in Ho Chi Minh, Vietnam, and not Nagasaki, Japan. Conclusion Our results suggest that mosquito vectors or virus-bearing vectors can transmit from epidemic regions of Southeast Asia to Jeju Island and can survive during colder winter months. Therefore, Jeju Island is no longer safe from vector borne diseases (VBDs) due to the effects of globalization and climate change, and we should immediately monitor regional climate change to identify newly emerging VBDs. PMID:23894312
Lee, Su Hyun; Nam, Kwang Woo; Jeong, Ji Yeon; Yoo, Seung Jin; Koh, Young-Sang; Lee, Seogjae; Heo, Sang Taek; Seong, Seung-Yong; Lee, Keun Hwa
2013-01-01
Climate change affects the survival and transmission of arthropod vectors as well as the development rates of vector-borne pathogens. Increased international travel is also an important factor in the spread of vector-borne diseases (VBDs) such as dengue, West Nile, yellow fever, chikungunya, and malaria. Dengue is the most important vector-borne viral disease. An estimated 2.5 billion people are at risk of infection in the world and there are approximately 50 million dengue infections and an estimated 500,000 individuals are hospitalized with dengue haemorrhagic fever annually. The Asian tiger mosquito (Aedes albopictus) is one of the vectors of dengue virus, and populations already exist on Jeju Island, South Korea. Currently, colder winter temperatures kill off Asian tiger mosquito populations and there is no evidence of the mosquitos being vectors for the dengue virus in this location. However, dengue virus-bearing mosquito vectors can inflow to Jeju Island from endemic area such as Vietnam by increased international travel, and this mosquito vector's survival during colder winter months will likely occur due to the effects of climate change. In this section, we show the geographical distribution of medically important mosquito vectors such as Ae. albopictus, a vector of both dengue and chikungunya viruses; Culex pipiens, a vector of West Nile virus; and Anopheles sinensis, a vector of Plasmodium vivax, within Jeju Island, South Korea. We found a significant association between the mean temperature, amount of precipitation, and density of mosquitoes. The phylogenetic analyses show that an Ae. albopictus, collected in southern area of Jeju Island, was identical to specimens found in Ho Chi Minh, Vietnam, and not Nagasaki, Japan. Our results suggest that mosquito vectors or virus-bearing vectors can transmit from epidemic regions of Southeast Asia to Jeju Island and can survive during colder winter months. Therefore, Jeju Island is no longer safe from vector borne diseases (VBDs) due to the effects of globalization and climate change, and we should immediately monitor regional climate change to identify newly emerging VBDs.
Differential life history trait associations of aphids with nonpersistent viruses in cucurbits
USDA-ARS?s Scientific Manuscript database
The diversity of vectors and fleeting nature of virus acquisition and transmission render nonpersistent crop viruses a challenge to manage. We assessed the importance of noncolonizing versus colonizing vectors with a two-year survey of aphids and nonpersistent viruses on commercial pumpkin farms. We...
The Adenovirus Genome Contributes to the Structural Stability of the Virion
Saha, Bratati; Wong, Carmen M.; Parks, Robin J.
2014-01-01
Adenovirus (Ad) vectors are currently the most commonly used platform for therapeutic gene delivery in human gene therapy clinical trials. Although these vectors are effective, many researchers seek to further improve the safety and efficacy of Ad-based vectors through detailed characterization of basic Ad biology relevant to its function as a vector system. Most Ad vectors are deleted of key, or all, viral protein coding sequences, which functions to not only prevent virus replication but also increase the cloning capacity of the vector for foreign DNA. However, radical modifications to the genome size significantly decreases virion stability, suggesting that the virus genome plays a role in maintaining the physical stability of the Ad virion. Indeed, a similar relationship between genome size and virion stability has been noted for many viruses. This review discusses the impact of the genome size on Ad virion stability and emphasizes the need to consider this aspect of virus biology in Ad-based vector design. PMID:25254384
Ban, Hiroshi; Nishishita, Naoki; Fusaki, Noemi; Tabata, Toshiaki; Saeki, Koichi; Shikamura, Masayuki; Takada, Nozomi; Inoue, Makoto; Hasegawa, Mamoru; Kawamata, Shin; Nishikawa, Shin-Ichi
2011-01-01
After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34+ cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future. PMID:21821793
Richards, Stephanie L; Lord, Cynthia C; Pesko, Kendra N; Tabachnick, Walter J
2010-07-01
Interactions between environmental and biological factors affect the vector competence of Culex pipiens quinquefasciatus for West Nile virus. Three age cohorts from two Cx. p. quinquefasciatus colonies were fed blood containing a low- or high-virus dose, and each group was held at two different extrinsic incubation temperatures (EIT) for 13 days. The colonies differed in the way that they responded to the effects of the environment on vector competence. The effects of mosquito age on aspects of vector competence were dependent on the EIT and dose, and they changed depending on the colony. Complex interactions must be considered in laboratory studies of vector competence, because the extent of the genetic and environmental variation controlling vector competence in nature is largely unknown. Differences in the environmental (EIT and dose) and biological (mosquito age and colony) effects from previous studies of Cx. p. quinquefasciatus vector competence for St. Louis encephalitis virus are discussed.
Thomas Nicholls
2009-01-01
This is a summary of the 25-year history of studies of mammal and bird vectors of lodgepole pine dwarf mistletoe (Arceuthobium americanum), ethephon control of dwarf mistletoe, and the ecology of the most important dwarf mistletoe vector, the gray jay (Persisoreus canadensis), on the USDA Forest Service, Fraser Experimental Forest...
Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I.; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B
2014-01-01
Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options. PMID:24925206
[Development of viral vectors and the application for viral entry mechanisms].
Tani, Hideki
2011-06-01
Virus is identified as one of the obligate intracellular parasites, which only amplify in cells of specific living things. Viral vectors, which are developed by utilizing these properties, are available in the various fields such as basic research of medical biology or application of gene therapy. Our research group has studied development of viral vectors using properties of baculovirus or vesicular stomatitis virus (VSV). Due to the development of new baculoviral vectors for mammalian cells, it is possible to be more efficient transduction of foreign gene in mammalian cells and animals. Furthermore, pseudotype or recombinant VSV possessing the envelope proteins of hepatitis C virus, Japanese encephalitis virus or baculovirus were constructed, and characteristics of the envelope proteins or entry mechanisms of these viruses were analyzed.
Helper-Free Foamy Virus Vectors
TROBRIDGE, GRANT D.; RUSSELL, DAVID W.
2010-01-01
Retroviral vectors based on human foamy virus (HFV) have been developed and show promise as gene therapy vehicles. Here we describe a method for the production of HFV vector stocks free of detectable helper virus. The helper and vector plasmid constructs used both lack the HFV bel genes, so recombination between these constructs cannot create a wild-type virus. A fusion promoter that combines portions of the cytomegalovirus (CMV) immediate-early and HFV long terminal repeat (LTR) promoters was used to drive expression of both the helper and vector constructs. The CMV–LTR fusion promoter allows for HFV vector production in the absence of the Bel-1 trans-activator protein, which would otherwise be necessary for efficient transcription from the HFV LTR. Vector stocks containing either neomycin phosphotransferase or alkaline phosphatase reporter genes were produced by transient transfection at titers greater than 105 transducing units/ml. G418-resistant BHK-21 cells obtained by transduction with neo vectors contained randomly integrated HFV vector proviruses without detectable deletions or rearrangements. The vector stocks generated were free of replication-competent retrovirus (RCR), as determined by assays for LTR trans-activation and a marker rescue assay developed here for the detection of Bel-independent RCR. OVERVIEW SUMMARY Vectors based on human foamy virus have been developed but low titers and the presence of replication-competent retrovirus (RCR) in vector stocks have prevented their use in preclinical animal experiments. We have developed a transient transfection method that can be used to produce replication-incompetent HFV vector stocks at titers greater than 105/ml, and that does not produce contaminating RCR. The use of CMV-HFV LTR fusion promoters in the helper and vector constructs has circumvented the requirement for the HFV Bel-1 trans-activator protein. Consequently, the potential for generating wild-type HFV by recombination between helper and vector constructs during vector production has been eliminated. Here we describe HFV vector production using this Bel-independent system. PMID:9853518
USDA-ARS?s Scientific Manuscript database
Maize fine streak virus (MFSV) is an emerging virus of maize that is transmitted by an insect vector, the leafhopper called Graminella nigrifrons. Virus transmission by the leafhopper requires that the virus enter into and multiply in insect cells, tissues and organs before being transmitted to a ne...
Hunting in the Rainforest and Mayaro Virus Infection: An emerging Alphavirus in Ecuador.
Izurieta, Ricardo O; Macaluso, Maurizio; Watts, Douglas M; Tesh, Robert B; Guerra, Bolivar; Cruz, Ligia M; Galwankar, Sagar; Vermund, Sten H
2011-10-01
The objectives of this report were to document the potential presence of Mayaro virus infection in Ecuador and to examine potential risk factors for Mayaro virus infection among the personnel of a military garrison in the Amazonian rainforest. The study population consisted of the personnel of a garrison located in the Ecuadorian Amazonian rainforest. The cross-sectional study employed interviews and seroepidemiological methods. Humoral immune response to Mayaro virus infection was assessed by evaluating IgM- and IgG-specific antibodies using ELISA. Of 338 subjects studied, 174 were from the Coastal zone of Ecuador, 73 from Andean zone, and 91 were native to the Amazonian rainforest. Seroprevalence of Mayaro virus infection was more than 20 times higher among Amazonian natives (46%) than among subjects born in other areas (2%). Age and hunting in the rainforest were significant predictors of Mayaro virus infection overall and among Amazonian natives. The results provide the first demonstration of the potential presence of Mayaro virus infection in Ecuador and a systematic evaluation of risk factors for the transmission of this alphavirus. The large difference in prevalence rates between Amazonian natives and other groups and between older and younger natives suggest that Mayaro virus is endemic and enzootic in the rainforest, with sporadic outbreaks that determine differences in risk between birth cohorts of natives. Deep forest hunting may selectively expose native men, descendants of the Shuar and Huaronai ethnic groups, to the arthropod vectors of Mayaro virus in areas close to primate reservoirs.
Alencar, Jeronimo; Morone, Fernanda; De Mello, Cecília Ferreira; Dégallier, Nicolas; Lucio, Paulo Sérgio; de Serra-Freire, Nicolau Maués; Guimarães, Anthony Erico
2013-07-01
In this study, the oviposition behavior of mosquito species exhibiting acrodendrophilic habits was investigated. The study was conducted near the Simplicio Hydroelectic Reservoir (SHR) located on the border of the states of Minas Gerais and Rio de Janeiro, Brazil. Samples were collected using oviposition traps installed in forest vegetation cover between 1.70 and 4.30 m above ground level during the months of April, June, August, October, and December of 2011. Haemagogus janthinomys (Dyar), Haemagogus leucocelaenus (Dyar and Shannon), Aedes albopictus (Skuse), and Aedes terrens (Walker) specimens were present among the collected samples, the first two of which being proven vectors of sylvatic yellow fever (SYF) in Brazil and the latter is a vector of dengue in mainland Asia. As the data set was zero-inflated, a specific Poisson-based model was used for the statistical analysis. When all four species were considered in the model, only heights used for egg laying and months of sampling were explaining the distribution. However, grouping the species under the genera Haemagogus Williston and Aedes Meigen showed a significant preference for higher traps of the former. Considering the local working population of SHR is very large, fluctuating, and potentially exposed to SYF, and that this virus occurs in almost all Brazilian states, monitoring of Culicidae in Brazil is essential for assessing the risk of transmission of this arbovirus.
Kenney, Joan L; Anishchenko, Michael; Hermance, Meghan; Romo, Hannah; Chen, Ching-I; Thangamani, Saravanan; Brault, Aaron C
2018-05-21
The Flavivirus genus comprises a diverse group of viruses that utilize a wide range of vertebrate hosts and arthropod vectors. The genus includes viruses that are transmitted solely by mosquitoes or vertebrate hosts as well as viruses that alternate transmission between mosquitoes or ticks and vertebrates. Nevertheless, the viral genetic determinants that dictate these unique flaviviral host and vector specificities have been poorly characterized. In this report, a cDNA clone of a flavivirus that is transmitted between ticks and vertebrates (Powassan lineage II, deer tick virus [DTV]) was generated and chimeric viruses between the mosquito/vertebrate flavivirus, West Nile virus (WNV), were constructed. These chimeric viruses expressed the prM and E genes of either WNV or DTV in the heterologous nonstructural (NS) backbone. Recombinant chimeric viruses rescued from cDNAs were characterized for their capacity to grow in vertebrate and arthropod (mosquito and tick) cells as well as for in vivo vector competence in mosquitoes and ticks. Results demonstrated that the NS elements were insufficient to impart the complete mosquito or tick growth phenotypes of parental viruses; however, these NS genetic elements did contribute to a 100- and 100,000-fold increase in viral growth in vitro in tick and mosquito cells, respectively. Mosquito competence was observed only with parental WNV, while infection and transmission potential by ticks were observed with both DTV and WNV-prME/DTV chimeric viruses. These data indicate that NS genetic elements play a significant, but not exclusive, role for vector usage of mosquito- and tick-borne flaviviruses.
A stable RNA virus-based vector for citrus trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe
Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter.more » These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees.« less
Adeno-associated virus vectors can be efficiently produced without helper virus.
Matsushita, T; Elliger, S; Elliger, C; Podsakoff, G; Villarreal, L; Kurtzman, G J; Iwaki, Y; Colosi, P
1998-07-01
The purpose of this work was to develop an efficient method for the production of adeno-associated virus (AAV) vectors in the absence of helper virus. The adenovirus regions that mediate AAV vector replication were identified and assembled into a helper plasmid. These included the VA, E2A and E4 regions. When this helper plasmid was cotransfected into 293 cells, along with plasmids encoding the AAV vector, and rep and cap genes, AAV vector was produced as efficiently as when using adenovirus infection as a source of help. CMV-driven constructs expressing the E4orf6 and the 72-M(r), E2A proteins were able to functionally replace the E4 and E2A regions, respectively. Therefore the minimum set of genes required to produce AAV helper activity equivalent to that provided by adenovirus infection consists of, or is a subset of, the following genes: the E4orf6 gene, the 72-M(r), E2A protein gene, the VA RNA genes and the E1 region. AAV vector preparations made with adenovirus and by the helper virus-free method were essentially indistinguishable with respect to particle density, particle to infectivity ratio, capsimer ratio and efficiency of muscle transduction in vivo. Only AAV vector preparations made by the helper virus-free method were not reactive with anti-adenovirus sera.
Shrestha, Anita; Champagne, Donald E; Culbreath, Albert K; Rotenberg, Dorith; Whitfield, Anna E; Srinivasan, Rajagopalbabu
2017-08-01
Persistent propagative viruses maintain intricate interactions with their arthropod vectors. In this study, we investigated the transcriptome-level responses associated with a persistent propagative phytovirus infection in various life stages of its vector using an Illumina HiSeq sequencing platform. The pathosystem components included a Tospovirus, Tomato spotted wilt virus (TSWV), its insect vector, Frankliniella fusca (Hinds), and a plant host, Arachis hypogaea (L.). We assembled (de novo) reads from three developmental stage groups of virus-exposed and non-virus-exposed F. fusca into one transcriptome consisting of 72 366 contigs and identified 1161 differentially expressed (DE) contigs. The number of DE contigs was greatest in adults (female) (562) when compared with larvae (first and second instars) (395) and pupae (pre- and pupae) (204). Upregulated contigs in virus-exposed thrips had blastx annotations associated with intracellular transport and virus replication. Upregulated contigs were also assigned blastx annotations associated with immune responses, including apoptosis and phagocytosis. In virus-exposed larvae, Blast2GO analysis identified functional groups, such as multicellular development with downregulated contigs, while reproduction, embryo development and growth were identified with upregulated contigs in virus-exposed adults. This study provides insights into differences in transcriptome-level responses modulated by TSWV in various life stages of an important vector, F. fusca.
Kim, Shin-Hee; Paldurai, Anandan; Xiao, Sa; Collins, Peter L.; Samal, Siba K.
2016-01-01
Naturally-occurring attenuated strains of Newcastle disease virus (NDV) are being developed as vaccine vectors for use in poultry and humans. However, some NDV strains, such as Beaudette C (BC), may retain too much virulence in poultry for safe use, and more highly attenuated strains may be suboptimally immunogenic. We therefore modified the BC strain by changing the multibasic cleavage site sequence of the F protein to the dibasic sequence of avirulent strain LaSota. Additionally, the BC, F, and HN proteins were modified in several ways to enhance virus replication. These modified BC-derived vectors and the LaSota strain were engineered to express the hemagglutin (HA) protein of H5N1 highly pathogenic influenza virus (HPAIV). In general, the modified BC-based vectors expressing HA replicated better than LaSota/HA, and expressed higher levels of HA protein. Pathogenicity tests indicated that all the modified viruses were highly attenuated in chickens. Based on in vitro characterization, two of the modified BC vectors were chosen for evaluation in chickens as vaccine vectors against H5N1 HPAIV A/Vietnam/1203/04. Immunization of chickens with rNDV vector vaccines followed by challenge with HPAIV demonstrated high levels of protection against clinical disease and mortality. However, only those chickens immunized with modified BC/HA in which residues 271–330 from the F protein had been replaced with the corresponding sequence from the NDV AKO strain conferred complete protection against challenge virus shedding. Our findings suggest that this modified rNDV can be used safely as a vaccine vector with enhanced replication, expression, and protective efficacy in avian species, and potentially in humans. PMID:24968158
Gale, P; Brouwer, A; Ramnial, V; Kelly, L; Kosmider, R; Fooks, A R; Snary, E L
2010-02-01
Expert opinion was elicited to undertake a qualitative risk assessment to estimate the current and future risks to the European Union (EU) from five vector-borne viruses listed by the World Organization for Animal Health. It was predicted that climate change will increase the risk of incursions of African horse sickness virus (AHSV), Crimean-Congo haemorrhagic fever virus (CCHFV) and Rift Valley fever virus (RVFV) into the EU from other parts of the world, with African swine fever virus (ASFV) and West Nile virus (WNV) being less affected. Currently the predicted risks of incursion were lowest for RVFV and highest for ASFV. Risks of incursion were considered for six routes of entry (namely vectors, livestock, meat products, wildlife, pets and people). Climate change was predicted to increase the risk of incursion from entry of vectors for all five viruses to some degree, the strongest effects being predicted for AHSV, CCHFV and WNV. This work will facilitate identification of appropriate risk management options in relation to adaptations to climate change.
A virus responds instantly to the presence of the vector on the host and forms transmission morphs
Martinière, Alexandre; Bak, Aurélie; Macia, Jean-Luc; Lautredou, Nicole; Gargani, Daniel; Doumayrou, Juliette; Garzo, Elisa; Moreno, Aranzazu; Fereres, Alberto; Blanc, Stéphane; Drucker, Martin
2013-01-01
Many plant and animal viruses are spread by insect vectors. Cauliflower mosaic virus (CaMV) is aphid-transmitted, with the virus being taken up from specialized transmission bodies (TB) formed within infected plant cells. However, the precise events during TB-mediated virus acquisition by aphids are unknown. Here, we show that TBs react instantly to the presence of the vector by ultra-rapid and reversible redistribution of their key components onto microtubules throughout the cell. Enhancing or inhibiting this TB reaction pharmacologically or by using a mutant virus enhanced or inhibited transmission, respectively, confirming its requirement for efficient virus-acquisition. Our results suggest that CaMV can perceive aphid vectors, either directly or indirectly by sharing the host perception. This novel concept in virology, where viruses respond directly or via the host to the outside world, opens new research horizons, that is, investigating the impact of ‘perceptive behaviors’ on other steps of the infection cycle. DOI: http://dx.doi.org/10.7554/eLife.00183.001 PMID:23358702
Virus Database and Online Inquiry System Based on Natural Vectors.
Dong, Rui; Zheng, Hui; Tian, Kun; Yau, Shek-Chung; Mao, Weiguang; Yu, Wenping; Yin, Changchuan; Yu, Chenglong; He, Rong Lucy; Yang, Jie; Yau, Stephen St
2017-01-01
We construct a virus database called VirusDB (http://yaulab.math.tsinghua.edu.cn/VirusDB/) and an online inquiry system to serve people who are interested in viral classification and prediction. The database stores all viral genomes, their corresponding natural vectors, and the classification information of the single/multiple-segmented viral reference sequences downloaded from National Center for Biotechnology Information. The online inquiry system serves the purpose of computing natural vectors and their distances based on submitted genomes, providing an online interface for accessing and using the database for viral classification and prediction, and back-end processes for automatic and manual updating of database content to synchronize with GenBank. Submitted genomes data in FASTA format will be carried out and the prediction results with 5 closest neighbors and their classifications will be returned by email. Considering the one-to-one correspondence between sequence and natural vector, time efficiency, and high accuracy, natural vector is a significant advance compared with alignment methods, which makes VirusDB a useful database in further research.
Brault, Véronique; Périgon, Sophie; Reinbold, Catherine; Erdinger, Monique; Scheidecker, Danièle; Herrbach, Etienne; Richards, Ken; Ziegler-Graff, Véronique
2005-01-01
Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in plant protoplasts and in whole plants. The hybrid readthrough protein of chimeric viruses was incorporated into virions. Aphid transmission experiments using infected plants or purified virions revealed that vector specificity is driven by the nature of the RTD. BWYV and CABYV have specific intestinal sites in the vectors for endocytosis: the midgut for BWYV and both midgut and hindgut for CABYV. Localization of hybrid virions in aphids by transmission electron microscopy revealed that gut tropism is also determined by the viral origin of the RTD. PMID:16014930
High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical Americas
Failloux, Anna-Bella
2017-01-01
Background Chikungunya virus (CHIKV) has dispersed in the Americas since 2013, and its range of distribution has overlapped large forested areas. Herein, we assess vector competence of two sylvatic Neotropical mosquito species, Haemagogus leucocelaenus and Aedes terrens, to evaluate the risk of CHIKV to initiate a sylvatic cycle in the continent. Methodology/Principal findings Haemagogus leucocelaenus and Ae. terrens from the state of Rio de Janeiro, Brazil were orally challenged with the two CHIKV lineages circulating in the Americas. Fully engorged females were kept in incubators at 28±1°C and 70±10% humidity and examined at 3 and 7 days after virus exposure. Body (thorax plus abdomen), head and saliva samples were analyzed for respectively determining infection, dissemination and transmission. Both Hg. leucocelaenus and Ae. terrens exhibited high infection and dissemination rates with both CHIKV isolates at 7 dpi, demonstrating that they are susceptible to CHIKV, regardless of the lineage. Remarkably, Hg. leucocelaenus expectorated infectious viral particles as rapidly as 3 days after the infectious blood meal, displaying higher values of transmission rate and efficiency than Ae. terrens. Nevertheless, both species were competent to experimentally transmit both CHIKV genotypes, exhibiting vector competence similar to several American Aedes aegypti. Conclusions/Significance These results point out the high risk for CHIKV to establish a sylvatic transmission cycle in the Americas, which could be a serious health issue as CHIKV would become another zoonotic infection difficult to control in the continent. PMID:28662031
Potential of a Northern Population of Aedes vexans (Diptera: Culicidae) to Transmit Zika Virus.
O'Donnell, Kyle L; Bixby, Mckenzie A; Morin, Kelsey J; Bradley, David S; Vaughan, Jefferson A
2017-09-01
Zika virus is an emerging arbovirus of humans in the western hemisphere. With its potential spread into new geographical areas, it is important to define the vector competence of native mosquito species. We tested the vector competency of Aedes vexans (Meigen) from the Lake Agassiz Plain of northwestern Minnesota and northeastern North Dakota. Aedes aegypti (L.) was used as a positive control for comparison. Mosquitoes were fed blood containing Zika virus and 2 wk later were tested for viral infection and dissemination. Aedes vexans (n = 60) were susceptible to midgut infection (28% infection rate) but displayed a fairly restrictive midgut escape barrier (3% dissemination rate). Cofed Ae. aegypti (n = 22) displayed significantly higher rates of midgut infection (61%) and dissemination (22%). To test virus transmission, mosquitoes were inoculated with virus and 16-17 d later, tested for their ability to transmit virus into fluid-filled capillary tubes. Unexpectedly, the transmission rate was significantly higher for Ae. vexans (34%, n = 47) than for Ae. aegypti (5%, n = 22). The overall transmission potential for Ae. vexans to transmit Zika virus was 1%. Because of its wide geographic distribution, often extreme abundance, and aggressive human biting activity, Ae. vexans could serve as a potential vector for Zika virus in northern latitudes where the conventional vectors, Ae. aegypti and Ae. albopictus Skuse, cannot survive. However, Zika virus is a primate virus and humans are the only amplifying host species in northern latitudes. To serve as a vector of Zika virus, Ae. vexans must feed repeatedly on humans. Defining the propensity of Ae. vexans to feed repeatedly on humans will be key to understanding its role as a potential vector of Zika virus. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection.
Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A; Widen, Steven G; Wood, Thomas G; Asgari, Sassan; Hughes, Grant L
2017-01-01
Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti , which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection.
Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection
Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A.; Widen, Steven G.; Wood, Thomas G.
2017-01-01
ABSTRACT Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti, which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including dengue virus, which is transmitted by the same mosquito vector. The outcomes provide a global picture of changes in the mosquito vector in response to Zika virus infection. PMID:29202041
The Zika outbreak of the 21st century.
Chang, Christopher; Ortiz, Kristina; Ansari, Aftab; Gershwin, M Eric
2016-04-01
The Zika virus outbreak has captivated the attention of the global audience and information has spread rapidly and wildly through the internet and other media channels. This virus was first identified in 1947, when it was isolated from a sentinel rhesus monkey placed by British scientists working at the Yellow Fever Research Laboratory located in the Zika forest area of Uganda, hence its name, and is transmitted primarily by the mosquito vector, Aedes aegypti. The fact that the rhesus macaque is an Asian species being placed in an African forest brings to mind the possibility of rapid adaptation of the virus from an African to Asian species, an issue that has not been considered. Whether such adaptation has played any role in acquiring pathogenicity due to cross species transmission remains to be identified. The first human infection was described in Nigeria in 1954, with only scattered reports of about a dozen human infections identified over a 50-year period. It was not until 2007 that Zika virus raised its ugly head with infections noted in three-quarters of the population on the tiny island of Yap located between the Philippines and Papua New Guinea in the western Pacific Ocean, followed by a major outbreak in French Polynesia in 2013. The virus remained confined to a narrow equatorial band in Africa and Asia until 2014 when it began to spread eastward, first toward Oceania and then to South America. Since then, millions of infected individuals have been identified in Brazil, Colombia, Venezuela, including 25 additional countries in the Americas. While the symptoms associated with Zika virus infection are generally mild, consisting of fever, maculopapular rash, arthralgia and conjunctivitis, there have been reports of more severe reactions that are associated with neurological complications. In pregnant women, fetal neurological complications include brain damage and microcephaly, while in adults there have been several cases of virus-associated Guillain-Barre syndrome. The virus was until recently believed to only be transmitted via mosquitoes. But when the Zika virus was isolated from the semen specimens from a patient in Texas, this provided the basis for the recent report of possible sexual transmission of the Zika virus. Due to the neurological complications, various vectors for infection as well as the rapid spread throughout the globe, it has prompted the World Health Organization to issue a global health emergency. Various governmental organizations have recommended that pregnant women do not travel to countries where the virus is epidemic, and within the countries affected by the virus, recommendations were provided for women of childbearing age to delay pregnancy. The overall public health impact of these above findings highlights the need for a rapid but specific diagnostic test for blood banks worldwide to identify those infected and for the counseling of women who are pregnant or contemplating pregnancy. As of this date, there are neither commercially licensed diagnostic tests nor a vaccine. Because cross-reactivity of the Zika virus with dengue and Chikungunya virus is common, it may pose difficulty in being able to quickly develop such tests and vaccines. So far the most effective public health measures include controlling the mosquito populations via insecticides and preventing humans from direct exposure to mosquitoes. Copyright © 2016 Elsevier Ltd. All rights reserved.
The evolution of plant virus transmission pathways.
Hamelin, Frédéric M; Allen, Linda J S; Prendeville, Holly R; Hajimorad, M Reza; Jeger, Michael J
2016-05-07
The evolution of plant virus transmission pathways is studied through transmission via seed, pollen, or a vector. We address the questions: under what circumstances does vector transmission make pollen transmission redundant? Can evolution lead to the coexistence of multiple virus transmission pathways? We restrict the analysis to an annual plant population in which reproduction through seed is obligatory. A semi-discrete model with pollen, seed, and vector transmission is formulated to investigate these questions. We assume vector and pollen transmission rates are frequency-dependent and density-dependent, respectively. An ecological stability analysis is performed for the semi-discrete model and used to inform an evolutionary study of trade-offs between pollen and seed versus vector transmission. Evolutionary dynamics critically depend on the shape of the trade-off functions. Assuming a trade-off between pollen and vector transmission, evolution either leads to an evolutionarily stable mix of pollen and vector transmission (concave trade-off) or there is evolutionary bi-stability (convex trade-off); the presence of pollen transmission may prevent evolution of vector transmission. Considering a trade-off between seed and vector transmission, evolutionary branching and the subsequent coexistence of pollen-borne and vector-borne strains is possible. This study contributes to the theory behind the diversity of plant-virus transmission patterns observed in nature. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mackenzie, J S; Williams, D T
2009-08-01
The genus Flaviviridae comprises about 70 members, of which about 30 are found in southern, south-eastern and eastern Asia and Australasia. These include major pathogens such as Japanese encephalitis (JE), West Nile (WN), Murray Valley encephalitis (MVE), tick-borne encephalitis, Kyasanur Forest disease virus, and the dengue viruses. Other members are known to be associated with mild febrile disease in humans, or with no known disease. In addition, novel flaviviruses continue to be discovered, as demonstrated recently by New Mapoon virus in Australia, Sitiawan virus in Malaysia, and ThCAr virus in Thailand. About 19 of these viruses are mosquito-borne, six are tick-borne, and four have no known vector and represent isolates from rodents or bats. Evidence from phylogenetic studies suggest that JE, MVE and Alfuy viruses probably emerged in the Malaya-Indonesian region from an African progenitor virus, possibly a virus related to Usutu virus. WN virus, however, is believed to have emerged in Africa, and then dispersed through avian migration. Evidence suggests that there are at least seven genetic lineages of WN virus, of which lineage 1b spread to Australasia as Kunjin virus, lineages 1a and 5 spread to India, and lineage 6 spread to Malaysia. Indeed, flaviviruses have a propensity to spread and emerge in new geographic areas, and they represent a potential source for new disease emergence. Many of the factors associated with disease emergence are present in the region, such as changes in land use and deforestation, increasing population movement, urbanization, and increasing trade. Furthermore, because of their ecology and dependence on climate, there is a strong likelihood that global warming may significantly increase the potential for disease emergence and/or spread.
Mayaro Virus Infection in Amazonia: A Multimodel Inference Approach to Risk Factor Assessment
de Paula, Vanessa S.; Figueiredo, Luiz T. M.; Braga, Wornei S. M.; Luz, Sérgio L. B.
2012-01-01
Background Arboviral diseases are major global public health threats. Yet, our understanding of infection risk factors is, with a few exceptions, considerably limited. A crucial shortcoming is the widespread use of analytical methods generally not suited for observational data – particularly null hypothesis-testing (NHT) and step-wise regression (SWR). Using Mayaro virus (MAYV) as a case study, here we compare information theory-based multimodel inference (MMI) with conventional analyses for arboviral infection risk factor assessment. Methodology/Principal Findings A cross-sectional survey of anti-MAYV antibodies revealed 44% prevalence (n = 270 subjects) in a central Amazon rural settlement. NHT suggested that residents of village-like household clusters and those using closed toilet/latrines were at higher risk, while living in non-village-like areas, using bednets, and owning fowl, pigs or dogs were protective. The “minimum adequate” SWR model retained only residence area and bednet use. Using MMI, we identified relevant covariates, quantified their relative importance, and estimated effect-sizes (β±SE) on which to base inference. Residence area (β Village = 2.93±0.41; β Upland = −0.56±0.33, β Riverbanks = −2.37±0.55) and bednet use (β = −0.95±0.28) were the most important factors, followed by crop-plot ownership (β = 0.39±0.22) and regular use of a closed toilet/latrine (β = 0.19±0.13); domestic animals had insignificant protective effects and were relatively unimportant. The SWR model ranked fifth among the 128 models in the final MMI set. Conclusions/Significance Our analyses illustrate how MMI can enhance inference on infection risk factors when compared with NHT or SWR. MMI indicates that forest crop-plot workers are likely exposed to typical MAYV cycles maintained by diurnal, forest dwelling vectors; however, MAYV might also be circulating in nocturnal, domestic-peridomestic cycles in village-like areas. This suggests either a vector shift (synanthropic mosquitoes vectoring MAYV) or a habitat/habits shift (classical MAYV vectors adapting to densely populated landscapes and nocturnal biting); any such ecological/adaptive novelty could increase the likelihood of MAYV emergence in Amazonia. PMID:23071852
Varroa destructor, a potential vector of Israeli Acute Paralysis Virus in honey bees, Apis mellifera
USDA-ARS?s Scientific Manuscript database
Although the role of the parasitic mite, Varroa destructor, as a vector in transmission of viruses between honey bees is well established, no study has shown that it can similarly transmit Israeli Acute Paralysis Virus (IAPV), a virus that was found to be associated with Colony Collapse Disorder (CC...
Rhee, Sun-Ju; Jang, Yoon Jeong; Lee, Gung Pyo
2016-06-01
Heterologous gene expression using plant virus vectors enables research on host-virus interactions and the production of useful proteins, but the host range of plant viruses limits the practical applications of such vectors. Here, we aimed to develop a viral vector based on cucumber fruit mottle mosaic virus (CFMMV), a member of the genus Tobamovirus, whose members infect cucurbits. The subgenomic promoter (SGP) in the coat protein (CP) gene, which was used to drive heterologous expression, was mapped by analyzing deletion mutants from a CaMV 35S promoter-driven infectious CFMMV clone. The region from nucleotides (nt) -55 to +160 relative to the start codon of the open reading frame (ORF) of CP was found to be a fully active promoter, and the region from nt -55 to +100 was identified as the active core promoter. Based on these SGPs, we constructed a cloning site in the CFMMV vector and successfully expressed enhanced green fluorescent protein (EGFP) in Nicotiana benthamiana and watermelon (Citrullus lanatus). Co-inoculation with the P19 suppressor increased EGFP expression and viral replication by blocking degradation of the viral genome. Our CFMMV vector will be useful as an expression vector in cucurbits.
Newer insecticides for plant virus disease management
USDA-ARS?s Scientific Manuscript database
Effective management of insect and mite vectors of plant pathogens is of crucial importance to minimizing vector-borne diseases in crops. Insecticides play an important role in managing vector populations by reducing the number of individuals that can acquire and transmit a virus, thereby potentiall...
Higashi, Clesson H V; Bressan, Alberto
2013-07-01
To maximize fitness, plant pathogenic viruses may manipulate their arthropod vectors through direct and indirect (via the host plant) interactions. For many virus-vector-plant associations, insect feeding does not always lead to virus acquisition. In fact, many plant viruses, especially those that propagate into their vectors, are acquired at low rates. Although the majority of insects colonizing an infected plant escape from viral infection, they are still exposed to the indirect effects (i.e. the effect of plant metabolism modification following virus infection). Little information has been reported on the effects of plant viruses on insects that become infected versus those that do not (here referred to as "exposed"). The effect that the Maize mosaic virus (MMV) (Rhabdoviridae) exerts on the fitness and wing dimorphism of the planthopper vector, Peregrinus maidis (Hemiptera, Delphacidae), that developed on leaves from either young or old corn plants was examined. MMV exerted non-consistent to minimal direct effects on developmental time, longevity, nymphal mortality and fecundity. In addition, some small yet significant fitness costs were encountered by exposed planthoppers to escape MMV infection. Furthermore, a significantly higher proportion of macropters over brachypters were produced on MMV-infected old leaves compared with healthy leaves of a similar age. We conclude that the virus influences the dispersal of the vector, promoting a larger production of macropters at the costs of brachypters at a late stage of the plant infection. Because MMV infection in planthoppers did not segregate by wing morphotype, our results indicate that the dispersal of both infected and exposed planthoppers was a likely consequence of the indirect effects of MMV.
Kurucz, Nina; Markey, Peter; Draper, Anthony; Melville, Lorna; Weir, Richard; Davis, Steven; Warchot, Allan; Boyd, Rowena; Stokeld, Danielle
2016-02-01
Between October 2012 and October 2013, unprecedented high numbers of Barmah Forest virus (BFV) disease cases were reported in the Northern Territory (NT). An investigation was launched by the NT Department of Health in cooperation with the Department of Primary Industry and Fisheries and the Department of Land Resource Management to investigate possible causes for this phenomenon. The investigation included virus isolations from mosquitoes collected in Darwin urban areas, BFV antibody testing in peri-urban small mammals and a human BFV disease case series investigation of recent cases. No BFV was isolated from the 4641 mosquitoes tested, none of the mammals tested positive for BFV antibodies, and the high BFV disease case numbers did not correlate with the relatively low mosquito vector numbers trapped in 2012-2013. It was estimated that up to 89% of the 79 human cases investigated did not have an acute arboviral illness and therefore had tested falsely positive. An Alere PanBio BFV immunoglobulin M enzyme-linked immunosorbent assay test kit is generally used to test for BFV, with the BFV disease case definition based on immunoglobulin M positives only. Other jurisdictions in Australia also reported high numbers of BFV disease cases, with the majority of the cases suspected to be false positives. Therefore, current testing methods need to be revised to reflect the true numbers of BFV disease cases occurring in Australia and to provide correct diagnoses for patients.
Circulative Nonpropagative Aphid Transmission of Nanoviruses: an Oversimplified View
Sicard, Anne; Zeddam, Jean-Louis; Yvon, Michel; Michalakis, Yannis; Gutiérrez, Serafin
2015-01-01
ABSTRACT Plant virus species of the family Nanoviridae have segmented genomes with the highest known number of segments encapsidated individually. They thus likely represent the most extreme case of the so-called multipartite, or multicomponent, viruses. All species of the family are believed to be transmitted in a circulative nonpropagative manner by aphid vectors, meaning that the virus simply crosses cellular barriers within the aphid body, from the gut to the salivary glands, without replicating or even expressing any of its genes. However, this assumption is largely based on analogy with the transmission of other plant viruses, such as geminiviruses or luteoviruses, and the details of the molecular and cellular interactions between aphids and nanoviruses are poorly investigated. When comparing the relative frequencies of the eight genome segments in populations of the species Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus) within host plants and within aphid vectors fed on these plants, we unexpectedly found evidence of reproducible changes in the frequencies of some specific segments. We further show that these changes occur within the gut during early stages of the virus cycle in the aphid and not later, when the virus is translocated into the salivary glands. This peculiar observation, which was similarly confirmed in three aphid vector species, Acyrthosiphon pisum, Aphis craccivora, and Myzus persicae, calls for revisiting of the mechanisms of nanovirus transmission. It reveals an unexpected intimate interaction that may not fit the canonical circulative nonpropagative transmission. IMPORTANCE A specific mode of interaction between viruses and arthropod vectors has been extensively described in plant viruses in the three families Luteoviridae, Geminiviridae, and Nanoviridae, but never in arboviruses of animals. This so-called circulative nonpropagative transmission contrasts with the classical biological transmission of animal arboviruses in that the corresponding viruses are thought to cross the vector cellular barriers, from the gut lumen to the hemolymph and to the salivary glands, without expressing any of their genes and without replicating. By monitoring the genetic composition of viral populations during the life cycle of Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus), we demonstrate reproducible genetic changes during the transit of the virus within the body of the aphid vector. These changes do not fit the view that viruses simply traverse the bodies of their arthropod vectors and suggest more intimate interactions, calling into question the current understanding of circulative nonpropagative transmission. PMID:26178991
Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions
2012-10-26
viruses and vectors isolated over different geographic regions promote understanding of virus-vector co-evolution and the impact on dengue virus...AFRIMS Virology field site in KPP to be a participant in a regional phase 3 dengue vaccine efficacy trial. The trial is scheduled to begin in 2Q...important human pathogen producing severe illness known as dengue hemorrhagic fever (DHF). Dengue is considered an emerged global public health
2007-01-19
fever in Nonhuman Primate Models" Date d?JO )oi Date )&*7 Date Dissertation and Abstract Approved: Robert Friedm ,M.D. Department of Pathology Committee...thesis manuscript entitled: "Evaluation of the Protective Efficacy of Recombinant Vesicular Stomatitis Virus Vectors Against Marburg Hemorrhagic fever ...stomatitis virus vectors against Marburg hemorrhagic fever in nonhuman primate models By Kathleen Daddario-DiCaprio Dissertation
Chen, Yuting; Cassone, Bryan J; Bai, Xiaodong; Redinbaugh, Margaret G; Michel, Andrew P
2012-01-01
Leafhoppers (HEmiptera: Cicadellidae) are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons) has been identified as the only known vector for the Maize fine streak virus (MFSV), an emerging plant pathogen in the Rhabdoviridae. Within G. nigrifrons populations, individuals can be experimentally separated into three classes based on their capacity for viral transmission: transmitters, acquirers and non-acquirers. Understanding the molecular interactions between vector and virus can reveal important insights in virus immune defense and vector transmission. RNA sequencing (RNA-Seq) was performed to characterize the transcriptome of G. nigrifrons. A total of 38,240 ESTs of a minimum 100 bp were generated from two separate cDNA libraries consisting of virus transmitters and acquirers. More than 60% of known D. melanogaster, A. gambiae, T. castaneum immune response genes mapped to our G. nigrifrons EST database. Real time quantitative PCR (RT-qPCR) showed significant down-regulation of three genes for peptidoglycan recognition proteins (PGRP - SB1, SD, and LC) in G. nigrifrons transmitters versus control leafhoppers. Our study is the first to characterize the transcriptome of a leafhopper vector species. Significant sequence similarity in immune defense genes existed between G. nigrifrons and other well characterized insects. The down-regulation of PGRPs in MFSV transmitters suggested a possible role in rhabdovirus transmission. The results provide a framework for future studies aimed at elucidating the molecular mechanisms of plant virus vector competence.
Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence.
Ciota, Alexander T; Bialosuknia, Sean M; Zink, Steven D; Brecher, Matthew; Ehrbar, Dylan J; Morrissette, Madeline N; Kramer, Laura D
2017-07-01
In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1-7.5 log 10 PFU/mL; minimum infective dose was 4.2 log 10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas.
Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence
Bialosuknia, Sean M.; Zink, Steven D.; Brecher, Matthew; Ehrbar, Dylan J.; Morrissette, Madeline N.; Kramer, Laura D.
2017-01-01
In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1–7.5 log10 PFU/mL; minimum infective dose was 4.2 log10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas. PMID:28430564
Applications and challenges of multivalent recombinant vaccines
Naim, Hussein Y.
2013-01-01
The exceptional discoveries of antigen/gene delivery systems have allowed the development of novel prophylactic and therapeutic vaccine candidates. The vaccine candidates employ various antigen-delivery systems, particularly recombinant viral vectors. Recombinant viral vectors are experimental vaccines similar to DNA vaccines, but they use attenuated viruses or bacterium as a carrier “vector” to introduce microbial DNA to cells of the body. They closely mimic a natural infection and therefore can efficiently stimulate the immune system. Although such recombinant vectors may face extensive preclinical testing and will possibly have to meet stringent regulatory requirements, some of these vectors (e.g. measles virus vectors) may benefit from the profound industrial and clinical experience of the parent vaccine. Most notably, novel vaccines based on live attenuated viruses combine the induction of broad, strong and persistent immune responses with acceptable safety profiles. We assess certain technologies in light of their use against human immunodeficiency virus (HIV). PMID:23249651
Virus infection of a weed increases vector attraction to and vector fitness on the weed.
Chen, Gong; Pan, Huipeng; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Fang, Yong; Shi, Xiaobin; Zhang, Youjun
2013-01-01
Weeds are important in the ecology of field crops, and when crops are harvested, weeds often become the main hosts for plant viruses and their insect vectors. Few studies, however, have examined the relationships between plant viruses, vectors, and weeds. Here, we investigated how infection of the weed Datura stramonium L. by tomato yellow leaf curl virus (TYLCV) affects the host preference and performance of the TYLCV vector, Bemisia tabaci (Gennadius) Q. The results of a choice experiment indicated that B. tabaci Q preferentially settled and oviposited on TYLCV-infected plants rather than on healthy plants. In addition, B. tabaci Q performed better on TYLCV-infected plants than on healthy plants. These results demonstrate that TYLCV is indirectly mutualistic to B. tabaci Q. The mutually beneficial interaction between TYLCV and B. tabaci Q may help explain the concurrent outbreaks of TYLCV and B. tabaci Q in China.
Reverse Genetics for Newcastle Disease Virus as a Vaccine Vector.
Kim, Shin-Hee; Samal, Siba K
2018-02-22
Newcastle disease virus (NDV) is an economically important pathogen in the poultry industry worldwide. Recovery of infectious NDV from cDNA using reverse genetics has made it possible to manipulate the genome of NDV. This has greatly contributed to our understanding of the molecular biology and pathogenesis of NDV. Furthermore, NDV has modular genome and accommodates insertion of a foreign gene as a transcriptional unit, thus enabling NDV as a vaccine vector against diseases of humans and animals. Avirulent NDV strains (e.g., LaSota and B1) have been commonly used as vaccine vectors. In this protocol, we have described reverse genetics of NDV to be used as a vaccine vector by exemplifying the recovery of NDV vectored avian influenza virus vaccine. Specifically, cloning and recovery of NDV expressing the hemagglutinin protein of highly pathogenic influenza virus were explained. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
Lecoq, Hervé; Katis, Nikolaos
2014-01-01
More than 70 well-characterized virus species transmitted by a diversity of vectors may infect cucurbit crops worldwide. Twenty of those cause severe epidemics in major production areas, occasionally leading to complete crop failures. Cucurbit viruses' control is based on three major axes: (i) planting healthy seeds or seedlings in a clean environment, (ii) interfering with vectors activity, and (iii) using resistant cultivars. Seed disinfection and seed or seedling quality controls guarantee growers on the sanitary status of their planting material. Removal of virus or vector sources in the crop environment can significantly delay the onset of viral epidemics. Insecticide or oil application may reduce virus spread in some situations. Diverse cultural practices interfere with or prevent vector reaching the crop. Resistance can be obtained by grafting for soil-borne viruses, by cross-protection, or generally by conventional breeding or genetic engineering. The diversity of the actions that may be taken to limit virus spread in cucurbit crops and their limits will be discussed. The ultimate goal is to provide farmers with technical packages that combine these methods within an integrated disease management program and are adapted to different countries and cropping systems.
Kittel, Christian; Wressnigg, Nina; Shurygina, Anna Polina; Wolschek, Markus; Stukova, Marina; Romanovskaya-Romanko, Ekatherina; Romanova, Julia; Kiselev, Oleg; Muster, Thomas; Egorov, Andrej
2015-10-01
The existence of multiple antigenically distinct types and subtypes of influenza viruses allows the construction of a multivalent vector system for the mucosal delivery of foreign sequences. Influenza A viruses have been exploited successfully for the expression of extraneous antigens as well as immunostimulatory molecules. In this study, we describe the development of an influenza B virus vector whose functional part of the interferon antagonist NS1 was replaced by human interleukin 2 (IL2) as a genetic adjuvant. We demonstrate that IL2 expressed by this viral vector displays immune adjuvant activity in immunized mice. Animals vaccinated with the IL2 viral vector showed an increased hemagglutination inhibition antibody response and higher protective efficacy after challenge with a wild-type influenza B virus when compared to mice vaccinated with a control virus. Our results demonstrate that it is feasible to construct influenza B vaccine strains expressing immune-potentiating foreign sequences from the NS genomic segment. Based on these data, it is now hypothetically possible to create a trivalent (or quadrivalent) live attenuated influenza vaccine in which each component expresses a selected genetic adjuvant with tailored expression levels.
Meliani, Amine; Leborgne, Christian; Triffault, Sabrina; Jeanson-Leh, Laurence; Veron, Philippe
2015-01-01
Abstract Adeno-associated virus (AAV) vectors are a platform of choice for in vivo gene transfer applications. However, neutralizing antibodies (NAb) to AAV can be found in humans and some animal species as a result of exposure to the wild-type virus, and high-titer NAb develop following AAV vector administration. In some conditions, anti-AAV NAb can block transduction with AAV vectors even when present at low titers, thus requiring prescreening before vector administration. Here we describe an improved in vitro, cell-based assay for the determination of NAb titer in serum or plasma samples. The assay is easy to setup and sensitive and, depending on the purpose, can be validated to support clinical development of gene therapy products based on AAV vectors. PMID:25819687
Stratton, Margaret D.; Ehrlich, Hanna Y.; Mor, Siobhan M.; Naumova, Elena N.
2017-01-01
Ross River virus (RRV), Barmah Forest virus (BFV), and dengue are three common mosquito-borne diseases in Australia that display notable seasonal patterns. Although all three diseases have been modeled on localized scales, no previous study has used harmonic models to compare seasonality of mosquito-borne diseases on a continent-wide scale. We fit Poisson harmonic regression models to surveillance data on RRV, BFV, and dengue (from 1993, 1995 and 1991, respectively, through 2015) incorporating seasonal, trend, and climate (temperature and rainfall) parameters. The models captured an average of 50–65% variability of the data. Disease incidence for all three diseases generally peaked in January or February, but peak timing was most variable for dengue. The most significant predictor parameters were trend and inter-annual periodicity for BFV, intra-annual periodicity for RRV, and trend for dengue. We found that a Temperature Suitability Index (TSI), designed to reclassify climate data relative to optimal conditions for vector establishment, could be applied to this context. Finally, we extrapolated our models to estimate the impact of a false-positive BFV epidemic in 2013. Creating these models and comparing variations in periodicities may provide insight into historical outbreaks as well as future patterns of mosquito-borne diseases. PMID:28071683
Stratton, Margaret D; Ehrlich, Hanna Y; Mor, Siobhan M; Naumova, Elena N
2017-01-10
Ross River virus (RRV), Barmah Forest virus (BFV), and dengue are three common mosquito-borne diseases in Australia that display notable seasonal patterns. Although all three diseases have been modeled on localized scales, no previous study has used harmonic models to compare seasonality of mosquito-borne diseases on a continent-wide scale. We fit Poisson harmonic regression models to surveillance data on RRV, BFV, and dengue (from 1993, 1995 and 1991, respectively, through 2015) incorporating seasonal, trend, and climate (temperature and rainfall) parameters. The models captured an average of 50-65% variability of the data. Disease incidence for all three diseases generally peaked in January or February, but peak timing was most variable for dengue. The most significant predictor parameters were trend and inter-annual periodicity for BFV, intra-annual periodicity for RRV, and trend for dengue. We found that a Temperature Suitability Index (TSI), designed to reclassify climate data relative to optimal conditions for vector establishment, could be applied to this context. Finally, we extrapolated our models to estimate the impact of a false-positive BFV epidemic in 2013. Creating these models and comparing variations in periodicities may provide insight into historical outbreaks as well as future patterns of mosquito-borne diseases.
NASA Astrophysics Data System (ADS)
Stratton, Margaret D.; Ehrlich, Hanna Y.; Mor, Siobhan M.; Naumova, Elena N.
2017-01-01
Ross River virus (RRV), Barmah Forest virus (BFV), and dengue are three common mosquito-borne diseases in Australia that display notable seasonal patterns. Although all three diseases have been modeled on localized scales, no previous study has used harmonic models to compare seasonality of mosquito-borne diseases on a continent-wide scale. We fit Poisson harmonic regression models to surveillance data on RRV, BFV, and dengue (from 1993, 1995 and 1991, respectively, through 2015) incorporating seasonal, trend, and climate (temperature and rainfall) parameters. The models captured an average of 50-65% variability of the data. Disease incidence for all three diseases generally peaked in January or February, but peak timing was most variable for dengue. The most significant predictor parameters were trend and inter-annual periodicity for BFV, intra-annual periodicity for RRV, and trend for dengue. We found that a Temperature Suitability Index (TSI), designed to reclassify climate data relative to optimal conditions for vector establishment, could be applied to this context. Finally, we extrapolated our models to estimate the impact of a false-positive BFV epidemic in 2013. Creating these models and comparing variations in periodicities may provide insight into historical outbreaks as well as future patterns of mosquito-borne diseases.
Wyatt, Linda S; Xiao, Wei; Americo, Jeffrey L; Earl, Patricia L; Moss, Bernard
2017-06-06
Viruses are used as expression vectors for protein synthesis, immunology research, vaccines, and therapeutics. Advantages of poxvirus vectors include the accommodation of large amounts of heterologous DNA, the presence of a cytoplasmic site of transcription, and high expression levels. On the other hand, competition of approximately 200 viral genes with the target gene for expression and immune recognition may be disadvantageous. We describe a vaccinia virus (VACV) vector that uses an early promoter to express the bacteriophage T7 RNA polymerase; has the A23R intermediate transcription factor gene deleted, thereby restricting virus replication to complementing cells; and has a heterologous gene regulated by a T7 promoter. In noncomplementing cells, viral early gene expression and DNA replication occurred normally but synthesis of intermediate and late proteins was prevented. Nevertheless, the progeny viral DNA provided templates for abundant expression of heterologous genes regulated by a T7 promoter. Selective expression of the Escherichia coli lac repressor gene from an intermediate promoter reduced transcription of the heterologous gene specifically in complementing cells, where large amounts might adversely impact VACV replication. Expression of heterologous proteins mediated by the A23R deletion vector equaled that of a replicating VACV, was higher than that of a nonreplicating modified vaccinia virus Ankara (MVA) vector used for candidate vaccines in vitro and in vivo , and was similarly immunogenic in mice. Unlike the MVA vector, the A23R deletion vector still expresses numerous early genes that can restrict immunogenicity as demonstrated here by the failure of the prototype vector to induce interferon alpha. By deleting immunomodulatory genes, we anticipate further improvements in the system. IMPORTANCE Vaccines provide an efficient and effective way of preventing infectious diseases. Nevertheless, new and better vaccines are needed. Vaccinia virus, which was used successfully as a live vaccine to eradicate smallpox, has been further attenuated and adapted as a recombinant vector for immunization against other pathogens. However, since the initial description of this vector system, only incremental improvements largely related to safety have been implemented. Here we described novel modifications of the platform that increased expression of the heterologous target gene and decreased expression of endogenous vaccinia virus genes while providing safety by preventing replication of the candidate vaccine except in complementing cells used for vector propagation. Copyright © 2017 Wyatt et al.
Billeter, M A; Naim, H Y; Udem, S A
2009-01-01
An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.
Bunyavirus-Vector Interactions
Horne, Kate McElroy; Vanlandingham, Dana L.
2014-01-01
The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family. PMID:25402172
Barker, Christopher M; Brewster, Carlyle C; Paulson, Sally L
2003-12-01
The number of cases of encephalitis caused by La Crosse virus recently has increased in southwestern Virginia counties. This article presents results of a study conducted from May to September 2000 in Wise County, VA, that examined the area-wide oviposition activity and habitat preferences of Ochlerotatus triseriatus and Aedes albopictus, potential vectors of La Crosse virus in the region. Data from 490 ovitrap collections made throughout the county showed that mean oviposition activity throughout the study was higher for Oc. triseriatus (20.4 eggs/trap-day) than for Ae. albopictus (3.7 eggs/trap-day). The 2 species also had distinct habitat preferences for oviposition, with Oc. triseriatus favoring forested habitats and Ae. albopictus favoring urban/residential habitats. A landcover map of 6 habitat types derived from Landsat satellite imagery of the county showed that 63% of the county was forested and 18% was urban/residential. A Bayesian decision-rule model that incorporated the ovitrap data and landcover map was moderately successful at predicting the occurrence of high oviposition activity and abundance of the 2 species. The predictions reflected seasonal and spatial fluctuations in oviposition activity, with accuracies between 55 and 79% for Oc. triseriatus and 70 and 94% for Ae. albopictus. Kappa (K), a measure of the predictive power of the model, varied from poor (K < 0.4) to good (0.4 < K < 0.75) for both species, and was highest during periods when actual egg abundance was high. This suggests that the predictions were most accurate during periods when the risk for La Crosse virus transmission is greatest. Limitations and suggestions for improving the model are discussed.
Newer insecticides for plant virus disease management.
Castle, Steven; Palumbo, John; Prabhaker, Nilima
2009-05-01
Effective management of insect and mite vectors of plant pathogens is of crucial importance to minimize vector-borne diseases in crops. Pesticides play an important role in managing vector populations by reducing the number of individuals that can acquire and transmit a virus, thereby potentially lowering disease incidence. Certain insecticides exhibit properties other than lethal toxicity that affect feeding behaviours or otherwise interfere with virus transmission. To evaluate the potential of various treatments against the Bemisia tabaci-transmitted Cucurbit yellow stunting disorder virus (CYSDV), insecticide field trials were conducted in Yuma, AZ, USA, during spring and autumn growing seasons. Differences in vector-intensity each season led to mixed results, but at least five insecticide treatments showed promise in limiting virus spread during spring 2008. Increasing concern among growers in this region regarding recent epidemics of CYSDV is leading to more intensive use of insecticides that threatens to erupt into unmanageable resistance. Sustainability of insecticides is an important goal of pest management and more specifically resistance management, especially for some of the most notorious vector species such as B. tabaci and Myzus persiscae that are likely to develop resistance.
Risk of exposure to potential vector mosquitoes for rural workers in Northern Lao PDR
Thammavong, Phoutmany; Lindsay, Steve W.; Brey, Paul T.
2017-01-01
Background One major consequence of economic development in South-East Asia has been a rapid expansion of rubber plantations, in which outbreaks of dengue and malaria have occurred. Here we explored the difference in risk of exposure to potential dengue, Japanese encephalitis (JE), and malaria vectors between rubber workers and those engaged in traditional forest activities in northern Laos PDR. Methodology/Principal findings Adult mosquitoes were collected for nine months in secondary forests, mature and immature rubber plantations, and villages. Human behavior data were collected using rapid participatory rural appraisals and surveys. Exposure risk was assessed by combining vector and human behavior and calculating the basic reproduction number (R0) in different typologies. Compared to those that stayed in the village, the risk of dengue vector exposure was higher for those that visited the secondary forests during the day (odds ratio (OR) 36.0), for those living and working in rubber plantations (OR 16.2) and for those that tapped rubber (OR 3.2). Exposure to JE vectors was also higher in the forest (OR 1.4) and, similar when working (OR 1.0) and living in the plantations (OR 0.8). Exposure to malaria vectors was greater in the forest (OR 1.3), similar when working in the plantations (OR 0.9) and lower when living in the plantations (OR 0.6). R0 for dengue was >2.8 for all habitats surveyed, except villages where R0≤0.06. The main malaria vector in all habitats was Anopheles maculatus s.l. in the rainy season and An. minimus s.l. in the dry season. Conclusions/Significance The highest risk of exposure to vector mosquitoes occurred when people visit natural forests. However, since rubber workers spend long periods in the rubber plantations, their risk of exposure is increased greatly compared to those who temporarily enter natural forests or remain in the village. This study highlights the necessity of broadening mosquito control to include rubber plantations. PMID:28742854
Croyle, Maria A.; Chirmule, Narendra; Zhang, Yi; Wilson, James M.
2001-01-01
Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy. PMID:11312351
USDA-ARS?s Scientific Manuscript database
Background: Culicoides sonorensis (Diptera: Ceratopogonidae) is a vector of epizootic hemorrhagic disease virus (EHDV) serotypes 1 and 2 in North America, where these viruses are well-known pathogens of white-tailed deer (WTD) and other wild ruminants. Although historically rare, reports of clinica...
Contributions of hydrology to Vesicular Stomatitis Virus emergence in the Western United States
USDA-ARS?s Scientific Manuscript database
Relationships between environmental variables associated with the spread of vector-borne pathogens, such as RNA viruses transmitted to humans and animals, remain poorly understood. Vesicular stomatitis (VS) is caused by a vector-borne, zoonotic RNA virus (VSV), and is the most common vesicular dise...
Emerging Tick-Borne Viruses in the Twenty-First Century
Mansfield, Karen L.; Jizhou, Lv; Phipps, L. Paul; Johnson, Nicholas
2017-01-01
Ticks, as a group, are second only to mosquitoes as vectors of pathogens to humans and are the primary vector for pathogens of livestock, companion animals, and wildlife. The role of ticks in the transmission of viruses has been known for over 100 years and yet new pathogenic viruses are still being detected and known viruses are continually spreading to new geographic locations. Partly as a result of their novelty, tick-virus interactions are at an early stage in understanding. For some viruses, even the principal tick-vector is not known. It is likely that tick-borne viruses will continue to emerge and challenge public and veterinary health long into the twenty-first century. However, studies focusing on tick saliva, a critical component of tick feeding, virus transmission, and a target for control of ticks and tick-borne diseases, point toward solutions to emerging viruses. The aim of this review is to describe some currently emerging tick-borne diseases, their causative viruses, and to discuss research on virus-tick interactions. Through focus on this area, future protein targets for intervention and vaccine development may be identified. PMID:28744449
Biosafety considerations for attenuated measles virus vectors used in virotherapy and vaccination.
Baldo, Aline; Galanis, Evanthia; Tangy, Frédéric; Herman, Philippe
2016-05-03
Attenuated measles virus (MV) is one of the most effective and safe vaccines available, making it attractive candidate vector to prevent infectious diseases. Attenuated MV have acquired the ability to use the complement regulator CD46 as a major receptor to mediate virus entry and intercellular fusion. Therefore, attenuated MV strains preferentially infect and destroy a wide variety of cancer cells making them also attractive oncolytic vectors. The use of recombinant MV vector has to comply with various regulatory requirements, particularly relating to the assessment of potential risks for human health and the environment. The present article highlights the main characteristics of MV and recombinant MV vectors used for vaccination and virotherapy and discusses these features from a biosafety point of view.
Ponnazhagan, Selvarangan; Weigel, Kirsten A.; Raikwar, Sudhanshu P.; Mukherjee, Pinku; Yoder, Mervin C.; Srivastava, Arun
1998-01-01
A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562–566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111–1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited and acquired human diseases affecting cells of erythroid lineage. PMID:9573295
Matassov, Demetrius; Marzi, Andrea; Latham, Terri; Xu, Rong; Ota-Setlik, Ayuko; Feldmann, Friederike; Geisbert, Joan B.; Mire, Chad E.; Hamm, Stefan; Nowak, Becky; Egan, Michael A.; Geisbert, Thomas W.; Eldridge, John H.; Feldmann, Heinz; Clarke, David K.
2015-01-01
Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7–9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines. PMID:26109675
Hunting in the Rainforest and Mayaro Virus Infection: An emerging Alphavirus in Ecuador
Izurieta, Ricardo O; Macaluso, Maurizio; Watts, Douglas M; Tesh, Robert B; Guerra, Bolivar; Cruz, Ligia M; Galwankar, Sagar; Vermund, Sten H
2011-01-01
Objectives: The objectives of this report were to document the potential presence of Mayaro virus infection in Ecuador and to examine potential risk factors for Mayaro virus infection among the personnel of a military garrison in the Amazonian rainforest. Materials and Methods: The study population consisted of the personnel of a garrison located in the Ecuadorian Amazonian rainforest. The cross-sectional study employed interviews and seroepidemiological methods. Humoral immune response to Mayaro virus infection was assessed by evaluating IgM- and IgG-specific antibodies using ELISA. Results: Of 338 subjects studied, 174 were from the Coastal zone of Ecuador, 73 from Andean zone, and 91 were native to the Amazonian rainforest. Seroprevalence of Mayaro virus infection was more than 20 times higher among Amazonian natives (46%) than among subjects born in other areas (2%). Conclusions: Age and hunting in the rainforest were significant predictors of Mayaro virus infection overall and among Amazonian natives. The results provide the first demonstration of the potential presence of Mayaro virus infection in Ecuador and a systematic evaluation of risk factors for the transmission of this alphavirus. The large difference in prevalence rates between Amazonian natives and other groups and between older and younger natives suggest that Mayaro virus is endemic and enzootic in the rainforest, with sporadic outbreaks that determine differences in risk between birth cohorts of natives. Deep forest hunting may selectively expose native men, descendants of the Shuar and Huaronai ethnic groups, to the arthropod vectors of Mayaro virus in areas close to primate reservoirs. PMID:22223990
Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus
Lounibos, Leon Philip; Kramer, Laura D.
2016-01-01
In this review, we highlight biological characteristics of Aedes aegypti and Aedes albopictus, 2 invasive mosquito species and primary vectors of chikungunya virus (CHIKV), that set the tone of these species' invasiveness, vector competence, and vectorial capacity (VC). The invasiveness of both species, as well as their public health threats as vectors, is enhanced by preference for human blood. Vector competence, characterized by the efficiency of an ingested arbovirus to replicate and become infectious in the mosquito, depends largely on vector and virus genetics, and most A. aegypti and A. albopictus populations thus far tested confer vector competence for CHIKV. VC, an entomological analog of the pathogen's basic reproductive rate (R0), is epidemiologically more important than vector competence but less frequently measured, owing to challenges in obtaining valid estimates of parameters such as vector survivorship and host feeding rates. Understanding the complexities of these factors will be pivotal in curbing CHIKV transmission. PMID:27920173
Chen, Yuting; Cassone, Bryan J.; Bai, Xiaodong; Redinbaugh, Margaret G.; Michel, Andrew P.
2012-01-01
Background Leafhoppers (Hemiptera: Cicadellidae) are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons) has been identified as the only known vector for the Maize fine streak virus (MFSV), an emerging plant pathogen in the Rhabdoviridae. Within G. nigrifrons populations, individuals can be experimentally separated into three classes based on their capacity for viral transmission: transmitters, acquirers and non-acquirers. Understanding the molecular interactions between vector and virus can reveal important insights in virus immune defense and vector transmission. Results RNA sequencing (RNA-Seq) was performed to characterize the transcriptome of G. nigrifrons. A total of 38,240 ESTs of a minimum 100 bp were generated from two separate cDNA libraries consisting of virus transmitters and acquirers. More than 60% of known D. melanogaster, A. gambiae, T. castaneum immune response genes mapped to our G. nigrifrons EST database. Real time quantitative PCR (RT-qPCR) showed significant down-regulation of three genes for peptidoglycan recognition proteins (PGRP – SB1, SD, and LC) in G. nigrifrons transmitters versus control leafhoppers. Conclusions Our study is the first to characterize the transcriptome of a leafhopper vector species. Significant sequence similarity in immune defense genes existed between G. nigrifrons and other well characterized insects. The down-regulation of PGRPs in MFSV transmitters suggested a possible role in rhabdovirus transmission. The results provide a framework for future studies aimed at elucidating the molecular mechanisms of plant virus vector competence. PMID:22808205
Ma, Benjiang; Hang, Changshou; Zhao, Yun; Wang, Shiwen; Xie, Yanxiang
2002-09-01
To construct a novel baculovirus vector which is capable of promoting the high-yield expression of foreign gene in mammalian cells and to express by this vector the nucleoprotein (NP) gene of Crimean-Congo hemorrhagic fever virus (CCHFV) Chinese isolate (Xinjiang hemorrhagic fever virus, XHFV) BA88166 in insect and Vero cells. Human cytomegalovirus (CMV) immediate early (IE) promoter was ligated to the baculovirus vector pFastBac1 downstream of the polyhedrin promoter to give rise to the novel vector pCB1. XHFV NP gene was cloned to this vector and was well expressed in COS-7 cells and Vero cells by means of recombinant plasmid transfection and baculovirus infection. The XHFV NP gene in vector pCB1 could be well expressed in mammalian cells. Vero cells infected with recombinant baculovirus harboring NP gene could be employed as antigens to detect XHF serum specimens whose results were in good correlation with those of ELISA and in parallel with clinical diagnoses. This novel baculovirus vector is able to express the foreign gene efficiently in both insect and mammalian cells, which provides not only the convenient diagnostic antigens but also the potential for developing recombinant virus vaccines and gene therapies.
Zika Virus Vector Competency of Mosquitoes, Gulf Coast, United States.
Hart, Charles E; Roundy, Christopher M; Azar, Sasha R; Huang, Jing H; Yun, Ruimei; Reynolds, Erin; Leal, Grace; Nava, Martin R; Vela, Jeremy; Stark, Pamela M; Debboun, Mustapha; Rossi, Shannan; Vasilakis, Nikos; Thangamani, Saravanan; Weaver, Scott C
2017-03-01
Zika virus has recently spread throughout the Americas. Although Aedes aegypti mosquitoes are considered the primary vector, Culex quinquefasciatus and mosquitoes of other species may also be vectors. We tested Cx. quinquefasciatus and Ae. taeniorhynchus mosquitoes from the US Gulf Coast; both were refractory to infection and incapable of transmission.
USDA-ARS?s Scientific Manuscript database
Background: Leafhoppers (Hemiptera:Cicadellidae) are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons) has been identified as the only known vector for the Maize fine streak virus (MFSV), an emerging plant pathogen in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Amitinder; Sanford, Hannah B.; Garry, Deirdre
2007-01-20
The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNAmore » in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value < 0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value < 0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS.« less
Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael
2016-01-01
Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector's life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis' life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector-based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector.
Hislop, James N.; Islam, Tarin A.; Eleftheriadou, Ioanna; Carpentier, David C. J.; Trabalza, Antonio; Parkinson, Michael; Schiavo, Giampietro; Mazarakis, Nicholas D.
2014-01-01
Rabies pseudotyped lentiviral vectors have great potential in gene therapy, not least because of their ability to transduce neurons following their distal axonal application. However, very little is known about the molecular processes that underlie their retrograde transport and cell transduction. Using multiple labeling techniques and confocal microscopy, we demonstrated that pseudotyping with rabies virus envelope glycoprotein (RV-G) enabled the axonal retrograde transport of two distinct subtypes of lentiviral vector in motor neuron cultures. Analysis of this process revealed that these vectors trafficked through Rab5-positive endosomes and accumulated within a non-acidic Rab7 compartment. RV-G pseudotyped vectors were co-transported with both the tetanus neurotoxin-binding fragment and the membrane proteins thought to mediate rabies virus endocytosis (neural cell adhesion molecule, nicotinic acetylcholine receptor, and p75 neurotrophin receptor), thus demonstrating that pseudotyping with RV-G targets lentiviral vectors for transport along the same pathway exploited by several toxins and viruses. Using motor neurons cultured in compartmentalized chambers, we demonstrated that axonal retrograde transport of these vectors was rapid and efficient; however, it was not able to transduce the targeted neurons efficiently, suggesting that impairment in processes occurring after arrival of the viral vector in the soma is responsible for the low transduction efficiency seen in vivo, which suggests a novel area for improvement of gene therapy vectors. PMID:24753246
Maling, T; Diggle, A J; Thackray, D J; Siddique, K H M; Jones, R A C
2008-12-01
A hybrid mechanistic/statistical model was developed to predict vector activity and epidemics of vector-borne viruses spreading from external virus sources to an adjacent crop. The pathosystem tested was Bean yellow mosaic virus (BYMV) spreading from annually self-regenerating, legume-based pastures to adjacent crops of narrow-leafed lupin (Lupinus angustifolius) in the winter-spring growing season in a region with a Mediterranean-type environment where the virus persists over summer within dormant seed of annual clovers. The model uses a combination of daily rainfall and mean temperature during late summer and early fall to drive aphid population increase, migration of aphids from pasture to lupin crops, and the spread of BYMV. The model predicted time of arrival of aphid vectors and resulting BYMV spread successfully for seven of eight datasets from 2 years of field observations at four sites representing different rainfall and geographic zones of the southwestern Australian grainbelt. Sensitivity analysis was performed to determine the relative importance of the main parameters that describe the pathosystem. The hybrid mechanistic/statistical approach used created a flexible analytical tool for vector-mediated plant pathosystems that made useful predictions even when field data were not available for some components of the system.
Synthetic Virology: Engineering Viruses for Gene Delivery
Guenther, Caitlin M.; Kuypers, Brianna E.; Lam, Michael T.; Robinson, Tawana M.; Zhao, Julia; Suh, Junghae
2014-01-01
The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or “bionic” viruses, feature engineered components, or “parts”, that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man-made polymers or inorganic nanoparticles). Various design strategies – rational, combinatorial, and pseudo-rational – have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss-cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavours will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. PMID:25195922
Synthetic virology: engineering viruses for gene delivery.
Guenther, Caitlin M; Kuypers, Brianna E; Lam, Michael T; Robinson, Tawana M; Zhao, Julia; Suh, Junghae
2014-01-01
The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or 'bionic' viruses, feature engineered components, or 'parts', that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man-made polymers or inorganic nanoparticles). Various design strategies--rational, combinatorial, and pseudo-rational--have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss-cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine. © 2014 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Japanese encephalitis virus (JEV) is a virus of the Flavivirus genus that may result in encephalitis in human hosts. This vector-borne zoonosis occurs in Eastern and Southeastern Asia and an intentional or inadvertent introduction into the United States (US) will have major public health and economi...
Non-essential viral proteins of orbiviruses are essential for vector-borne spread by midges
USDA-ARS?s Scientific Manuscript database
Members of the Reoviridae family are non-enveloped multi-layered viruses with a double stranded RNA genome consisting of 9-12 genome segments. The Orbivirus genus contains vector borne virus species with 10 genome segments such as bluetongue virus (BTV) with about 30 serotypes, and African horse sic...
Virus-Based RNA Silencing Agents and Virus-Derived Expression Vectors as Gene Therapy Vehicles.
Venkataraman, Srividhya; Ahmad, Tauqeer; AbouHaidar, Mounir G; Hefferon, Kathleen L
2017-01-01
In consideration of recent developments in understanding the genomics and proteomics of viruses, the use of viral DNA / RNA sequences as well as their gene expression schemes, have found new in-roads towards the prognosis and therapy of diseases. Correspondingly, the sphere of the patenting scenario has expanded significantly. The current review addresses patented inventions concerning the use of virus sequences as gene silencing machineries and inventions concerning the generation and application of viral sequences as expression vectors. Furthermore, this review also discusses the employment of these patents for clinical, agricultural and biotechnological applications. Considering these objectives, the Delphion Research Intellectual Property Network database was searched using keywords such as "gene silencing", "engineered viruses" and "expression vectors" and descriptions of recent patents on the said topics were discussed. Despite several recent advances in the use of viruses as disease therapy vehicles and biotechnological vectors, these developments have yet to be proven effective in practice, in clinical and field trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kim, Shin-Hee; Paldurai, Anandan; Samal, Siba K
2017-03-01
Avian influenza (AI) is an economically-important disease of poultry worldwide. The use of vaccines to control AI has increased because of frequent outbreaks of the disease in endemic countries. Newcastle disease virus (NDV) vectored vaccine has shown to be effective in protecting chickens against a highly pathogenic avian influenza virus (HPAIV) infection. However, preexisting antibodies to NDV vector might affect protective efficacy of the vaccine in the field. As an alternative strategy, we evaluated vaccine efficacy of a chimeric NDV vectored vaccine in which the ectodomains of F and HN proteins were replaced by those of avian paramyxovirus serotype-2. The chimeric NDV vector stably expressed the HA protein in vivo, did not cross-react with NDV, was attenuated to be used as a safe vaccine, and provided a partial protection of 1-day-old immunized chickens against HPAIV subtype H5N1challenge, indicating its potential use for early protection of chickens. Copyright © 2017 Elsevier Inc. All rights reserved.
Methods for Gene Transfer to the Central Nervous System
Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.
2015-01-01
Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922
2014-01-01
West Nile virus infection is a growing concern in Europe. Vector management is often the primary option to prevent and control outbreaks of the disease. Its implementation is, however, complex and needs to be supported by integrated multidisciplinary surveillance systems and to be organized within the framework of predefined response plans. The impact of the vector control measures depends on multiple factors and the identification of the best combination of vector control methods is therefore not always straightforward. Therefore, this contribution aims at critically reviewing the existing vector control methods to prevent and control outbreaks of West Nile virus infection and to present the challenges for Europe. Most West Nile virus vector control experiences have been recently developed in the US, where ecological conditions are different from the EU and vector control is organized under a different regulatory frame. The extrapolation of information produced in North America to Europe might be limited because of the seemingly different epidemiology in the European region. Therefore, there is an urgent need to analyse the European experiences of the prevention and control of outbreaks of West Nile virus infection and to perform robust cost-benefit analysis that can guide the implementation of the appropriate control measures. Furthermore, to be effective, vector control programs require a strong organisational backbone relying on a previously defined plan, skilled technicians and operators, appropriate equipment, and sufficient financial resources. A decision making guide scheme is proposed which may assist in the process of implementation of vector control measures tailored on specific areas and considering the available information and possible scenarios. PMID:25015004
Kon, Tatsuya; Yoshikawa, Nobuyuki
2014-01-01
Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109
Rosas, Cristina; Van de Walle, Gerlinde R; Metzger, Stephan M; Hoelzer, Karin; Dubovi, Edward J; Kim, Sung G; Parrish, Colin R; Osterrieder, Nikolaus
2008-05-02
In 2004, canine influenza virus (CIV) was identified as a respiratory pathogen of dogs for the first time and found to be closely related to H3N8 equine influenza virus (EIV). We generated a recombinant vectored vaccine that expresses H3 of a recent isolate of EIV using equine herpesvirus type 1 (EHV-1) as the delivery vehicle. This EHV-1 vectored vaccine exhibited robust and stable EIV H3 expression and induced a strong influenza virus-specific response in both mice and dogs upon intranasal or subcutaneous administration. Furthermore, upon challenge with the recent CIV isolate A/canine/PA/10915-07, protection of vaccinated dogs could be demonstrated by a significant reduction in clinical sings, and, more importantly, by a significant reduction in virus shedding. We concluded that the EHV-1/H3 recombinant vector can be a valuable alternative for protection of dogs against clinical disease induced by CIV and can significantly reduce virus spread.
Newcastle disease virus vectored vaccines as bivalent or antigen delivery vaccines
2017-01-01
Recent advances in reverse genetics techniques make it possible to manipulate the genome of RNA viruses such as Newcastle disease virus (NDV). Several NDV vaccine strains have been used as vaccine vectors in poultry, mammals, and humans to express antigens of different pathogens. The safety, immunogenicity, and protective efficacy of these NDV-vectored vaccines have been evaluated in pre-clinical and clinical studies. The vaccines are safe in mammals, humans, and poultry. Bivalent NDV-vectored vaccines against pathogens of economic importance to the poultry industry have been developed. These bivalent vaccines confer solid protective immunity against NDV and other foreign antigens. In most cases, NDV-vectored vaccines induce strong local and systemic immune responses against the target foreign antigen. This review summarizes the development of NDV-vectored vaccines and their potential use as a base for designing other effective vaccines for veterinary and human use. PMID:28775971
Liu, Shan-Lu; Halbert, Christine L.; Miller, A. Dusty
2004-01-01
Jaagsiekte sheep retrovirus (JSRV) infects lung epithelial cells in sheep, and oncoretroviral vectors bearing JSRV Env can mediate transduction of human cells, suggesting that such vectors might be useful for lung-directed gene therapy. Here we show that JSRV Env can also efficiently pseudotype a human immunodeficiency virus type 1-based lentiviral vector, a more suitable vector for transduction of slowly dividing lung epithelial cells. We created several chimeric Env proteins that, unlike the parental Env, do not transform rodent fibroblasts but are still capable of pseudotyping lentiviral and oncoretroviral vectors. PMID:14963173
Biosafety considerations for attenuated measles virus vectors used in virotherapy and vaccination
Baldo, Aline; Galanis, Evanthia; Tangy, Frédéric; Herman, Philippe
2016-01-01
ABSTRACT Attenuated measles virus (MV) is one of the most effective and safe vaccines available, making it attractive candidate vector to prevent infectious diseases. Attenuated MV have acquired the ability to use the complement regulator CD46 as a major receptor to mediate virus entry and intercellular fusion. Therefore, attenuated MV strains preferentially infect and destroy a wide variety of cancer cells making them also attractive oncolytic vectors. The use of recombinant MV vector has to comply with various regulatory requirements, particularly relating to the assessment of potential risks for human health and the environment. The present article highlights the main characteristics of MV and recombinant MV vectors used for vaccination and virotherapy and discusses these features from a biosafety point of view. PMID:26631840
Effect of climate change on vector-borne disease risk in the UK.
Medlock, Jolyon M; Leach, Steve A
2015-06-01
During the early part of the 21st century, an unprecedented change in the status of vector-borne disease in Europe has occurred. Invasive mosquitoes have become widely established across Europe, with subsequent transmission and outbreaks of dengue and chikungunya virus. Malaria has re-emerged in Greece, and West Nile virus has emerged throughout parts of eastern Europe. Tick-borne diseases, such as Lyme disease, continue to increase, or, in the case of tick-borne encephalitis and Crimean-Congo haemorrhagic fever viruses, have changed their geographical distribution. From a veterinary perspective, the emergence of Bluetongue and Schmallenberg viruses show that northern Europe is equally susceptible to transmission of vector-borne disease. These changes are in part due to increased globalisation, with intercontinental air travel and global shipping transport creating new opportunities for invasive vectors and pathogens. However, changes in vector distributions are being driven by climatic changes and changes in land use, infrastructure, and the environment. In this Review, we summarise the risks posed by vector-borne diseases in the present and the future from a UK perspective, and assess the likely effects of climate change and, where appropriate, climate-change adaptation strategies on vector-borne disease risk in the UK. Lessons from the outbreaks of West Nile virus in North America and chikungunya in the Caribbean emphasise the need to assess future vector-borne disease risks and prepare contingencies for future outbreaks. Ensuring that adaptation strategies for climate change do not inadvertently exacerbate risks should be a primary focus for decision makers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jeffrey T. Walton
2008-01-01
Three machine learning subpixel estimation methods (Cubist, Random Forests, and support vector regression) were applied to estimate urban cover. Urban forest canopy cover and impervious surface cover were estimated from Landsat-7 ETM+ imagery using a higher resolution cover map resampled to 30 m as training and reference data. Three different band combinations (...
Witting, S R; Vallanda, P; Gamble, A L
2013-10-01
Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, third generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared with vesicular stomatitis virus pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in third generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells.
Valderrama, Anayansi; Díaz, Yamilka; López-Vergès, Sandra
2017-10-28
Some of the major arboviruses with public health importance, such as dengue, yellow fever, Zika and West Nile virus are mosquito-borne or mosquito-transmitted Flavivirus. Their principal vectors are from the family Culicidae, Aedes aegypti and Aedes albopictus being responsible of the urban cycles of dengue, Zika and yellow fever virus. These vectors are highly competent for transmission of many arboviruses. The genetic variability of the vectors, the environment and the viral diversity modulate the vector competence, in this context, it is important to determine which vector species is responsible of an outbreak in areas where many vectors coexist. As some vectors can transmit several flaviviruses and some flaviviruses can be transmitted by different species of vectors, through this review we expose importance of yellow fever, dengue and Zika virus in the world and the Americas, as well as the updated knowledge about these flaviviruses in their interaction with their mosquito vectors, guiding us on what is probably the beginning of a new stage in which the simultaneity of outbreaks will occur more frequently. Copyright © 2017 Elsevier Inc. All rights reserved.
Arazi, T; Slutsky, S G; Shiboleth, Y M; Wang, Y; Rubinstein, M; Barak, S; Yang, J; Gal-On, A
2001-04-27
Plant virus vectors provide an attractive biotechnological tool for the transient expression of foreign genes in whole plants. As yet there has been no use of recombinant viruses for the improvement of commercial crops. This is mainly because the viruses used to create vectors usually cause significant yield loss and can be transmitted in the field. A novel attenuated zucchini yellow mosaic potyvirus (AG) was used for the development of an environmentally safe non-pathogenic virus vector. The suitability of AG as an expression vector in plants was tested by analysis of two infectious viral constructs, each containing a distinct gene insertion site. Introduction of a foreign viral coat protein gene into AG genome between the P1 and HC-Pro genes, resulted in no expression in planta. In contrast, the same gene was stably expressed when inserted between NIb and CP genes, suggesting that this site is more suitable for a gene vector. Virus-mediated expression of reporter genes was observed in squash and cucumber leaves, stems, roots and edible fruit. Furthermore, AG stably expressed human interferon-alpha 2, an important human anti-viral drug, without affecting plant development and yield. Interferon biological activity was measured in cucumber and squash fruit. Together, these data corroborate a biotechnological utility of AG as a non-pathogenic vector for the expression of a foreign gene, as a benefit trait, in cucurbits and their edible fruit.
Cui, Hongguang; Wang, Aiming
2017-03-01
RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Utilization of a tobacco rattle virus vector to clone an Nicotiana benthamiana cDNA library for VIGS
USDA-ARS?s Scientific Manuscript database
Virus-induced gene silencing (VIGS) is an efficient and rapid method to identify plant gene functions. One of the most widely used VIGS vectors is Tobacco rattle virus (TRV) which has been used successfully for RNA interference (RNAi) in N. benthamiana and tomato. We previously modified a TRV VIGS v...
USDA-ARS?s Scientific Manuscript database
Japanese encephalitis (JE) is a vector-borne disease caused by the Japanese encephalitis virus (JEV) that affects humans in Eastern and Southeastern Asia. Although it could be prevented by a vaccine, JE has no treatment and the inadvertent introduction of the virus into JEV-free countries, such as t...
Survey of Navy Funded Marine Mammal Research and Studies FY 00-01
2001-05-10
protein of canine distemper virus as a reporter system in order to evaluate 103 the humoral response to DNA-mediated vaccination in cetaceans. If...PCR/ RT PCR, DNA cloning and sequencing, etc. Efforts are ongoing to design and clone a vector encoding Canine Distemper Virus, a virus closely...alternative plasmid as our reporter gene delivery vector. This alternate plasmid will encode for Canine Distemper virus genes, closely related to
Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus.
Lounibos, Leon Philip; Kramer, Laura D
2016-12-15
In this review, we highlight biological characteristics of Aedes aegypti and Aedes albopictus, 2 invasive mosquito species and primary vectors of chikungunya virus (CHIKV), that set the tone of these species' invasiveness, vector competence, and vectorial capacity (VC). The invasiveness of both species, as well as their public health threats as vectors, is enhanced by preference for human blood. Vector competence, characterized by the efficiency of an ingested arbovirus to replicate and become infectious in the mosquito, depends largely on vector and virus genetics, and most A. aegypti and A. albopictus populations thus far tested confer vector competence for CHIKV. VC, an entomological analog of the pathogen's basic reproductive rate (R 0 ), is epidemiologically more important than vector competence but less frequently measured, owing to challenges in obtaining valid estimates of parameters such as vector survivorship and host feeding rates. Understanding the complexities of these factors will be pivotal in curbing CHIKV transmission. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.
Podsakoff, G; Wong, K K; Chatterjee, S
1994-01-01
Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthesis inhibitors fluorodeoxyuridine and aphidicolin or by contact inhibition induced by confluence and serum starvation. Cells in logarithmic growth or DNA synthesis arrest were transduced with vCWR:beta gal, an AAV-based vector encoding beta-galactosidase under Rous sarcoma virus long terminal repeat promoter control. Under each condition tested, vCWR:beta Gal expression in nondividing cells was at least equivalent to that in actively proliferating cells, suggesting that mechanisms for virus attachment, nuclear transport, virion uncoating, and perhaps some limited second-strand synthesis of AAV vectors were present in nondividing cells. Southern hybridization analysis of vector sequences from cells transduced while in DNA synthetic arrest and expanded after release of the block confirmed ultimate integration of the vector genome into cellular chromosomal DNA. These findings may provide the basis for the use of AAV-based vectors for gene transfer into quiescent cell populations such as totipotent hematopoietic stem cells. Images PMID:8057446
Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.
Podsakoff, G; Wong, K K; Chatterjee, S
1994-09-01
Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthesis inhibitors fluorodeoxyuridine and aphidicolin or by contact inhibition induced by confluence and serum starvation. Cells in logarithmic growth or DNA synthesis arrest were transduced with vCWR:beta gal, an AAV-based vector encoding beta-galactosidase under Rous sarcoma virus long terminal repeat promoter control. Under each condition tested, vCWR:beta Gal expression in nondividing cells was at least equivalent to that in actively proliferating cells, suggesting that mechanisms for virus attachment, nuclear transport, virion uncoating, and perhaps some limited second-strand synthesis of AAV vectors were present in nondividing cells. Southern hybridization analysis of vector sequences from cells transduced while in DNA synthetic arrest and expanded after release of the block confirmed ultimate integration of the vector genome into cellular chromosomal DNA. These findings may provide the basis for the use of AAV-based vectors for gene transfer into quiescent cell populations such as totipotent hematopoietic stem cells.
Geminivirus vectors for high-level expression of foreign proteins in plant cells.
Mor, Tsafrir S; Moon, Yong-Sun; Palmer, Kenneth E; Mason, Hugh S
2003-02-20
Bean yellow dwarf virus (BeYDV) is a monopartite geminivirus that can infect dicotyledonous plants. We have developed a high-level expression system that utilizes elements of the replication machinery of this single-stranded DNA virus. The replication initiator protein (Rep) mediates release and replication of a replicon from a DNA construct ("LSL vector") that contains an expression cassette for a gene of interest flanked by cis-acting elements of the virus. We used tobacco NT1 cells and biolistic delivery of plasmid DNA for evaluation of replication and expression of reporter genes contained within an LSL vector. By codelivery of a GUS reporter-LSL vector and a Rep-supplying vector, we obtained up to 40-fold increase in expression levels compared to delivery of the reporter-LSL vectors alone. High-copy replication of the LSL vector was correlated with enhanced expression of GUS. Rep expression using a whole BeYDV clone, a cauliflower mosaic virus 35S promoter driving either genomic rep or an intron-deleted rep gene, or 35S-rep contained in the LSL vector all achieved efficient replication and enhancement of GUS expression. We anticipate that this system can be adapted for use in transgenic plants or plant cell cultures with appropriately regulated expression of Rep, with the potential to greatly increase yield of recombinant proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 430-437, 2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bricault, Christine A.; Perry, Keith L., E-mail: KLP3@cornell.edu
2013-06-05
In the atomic model of Cucumber mosaic virus (CMV), six amino acid residues form stabilizing salt bridges between subunits of the asymmetric unit at the quasi-threefold axis of symmetry. To evaluate the effects of these positions on virion stability and aphid vector transmissibility, six charged amino acid residues were individually mutated to alanine. All of the six engineered viruses were viable and exhibited near wild type levels of virion stability in the presence of urea. Aphid vector transmissibility was nearly or completely eliminated in the case of four of the mutants; two mutants demonstrated intermediate aphid transmissibility. For the majoritymore » of the engineered mutants, second-site mutations were observed following aphid transmission and/or mechanical passaging, and one restored transmission rates to that of the wild type. CMV capsids tolerate disruption of acid–base pairing interactions at the quasi-threefold axis of symmetry, but these interactions are essential for maintaining aphid vector transmissibility. - Highlights: ► Amino acids between structural subunits of Cucumber mosaic virus affect vector transmission. ► Mutant structural stability was retained, while aphid vector transmissibility was disrupted. ► Spontaneous, second-site mutations restored aphid vector transmissibility.« less
Hislop, James N; Islam, Tarin A; Eleftheriadou, Ioanna; Carpentier, David C J; Trabalza, Antonio; Parkinson, Michael; Schiavo, Giampietro; Mazarakis, Nicholas D
2014-06-06
Rabies pseudotyped lentiviral vectors have great potential in gene therapy, not least because of their ability to transduce neurons following their distal axonal application. However, very little is known about the molecular processes that underlie their retrograde transport and cell transduction. Using multiple labeling techniques and confocal microscopy, we demonstrated that pseudotyping with rabies virus envelope glycoprotein (RV-G) enabled the axonal retrograde transport of two distinct subtypes of lentiviral vector in motor neuron cultures. Analysis of this process revealed that these vectors trafficked through Rab5-positive endosomes and accumulated within a non-acidic Rab7 compartment. RV-G pseudotyped vectors were co-transported with both the tetanus neurotoxin-binding fragment and the membrane proteins thought to mediate rabies virus endocytosis (neural cell adhesion molecule, nicotinic acetylcholine receptor, and p75 neurotrophin receptor), thus demonstrating that pseudotyping with RV-G targets lentiviral vectors for transport along the same pathway exploited by several toxins and viruses. Using motor neurons cultured in compartmentalized chambers, we demonstrated that axonal retrograde transport of these vectors was rapid and efficient; however, it was not able to transduce the targeted neurons efficiently, suggesting that impairment in processes occurring after arrival of the viral vector in the soma is responsible for the low transduction efficiency seen in vivo, which suggests a novel area for improvement of gene therapy vectors. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
In planta expression of HIV-1 p24 protein using an RNA plant virus-based expression vector.
Zhang, G; Leung, C; Murdin, L; Rovinski, B; White, K A
2000-02-01
Plant viruses show significant potential as expression vectors for the production of foreign proteins (e.g., antigens) in plants. The HIV-1 p24 nucleocapsid protein is an important early marker of HIV infection and has been used as an antigen in the development of HIV vaccines. Toward developing a plant-based expression system for the production of p24, we have investigated the use of a (positive)-strand RNA plant virus, tomato bushy stunt virus (TBSV), as an expression vector. The HIV p24 open reading frame (ORF) was introduced into a cloned cDNA copy of the TBSV genome as an in-frame fusion with a 5'-terminal portion of the TBSV coat protein ORF. In vitro-generated RNA transcripts corresponding to the engineered virus vector were infectious when inoculated into plant protoplasts; Northern and Western blot analyses verified the accumulation of a predicted p24-encoding viral subgenomic mRNA and the production of p24 fusion product. Whole-plant infections with the viral vector led to the accumulation of p24 fusion protein in inoculated leaves, which cross-reacted with p24-specific antibodies, thus confirming the maintenance of key antigenic determinants. This study is the first to demonstrate that TBSV can be engineered to express a complete foreign protein of clinical importance. Strategies for optimizing protein yield from this viral vector are discussed.
Recombinant poxviruses as mucosal vaccine vectors.
Gherardi, M Magdalena; Esteban, Mariano
2005-11-01
The majority of infections initiate their departure from a mucosal surface, such as Human immunodeficiency virus (HIV), a sexually transmitted virus. Therefore, the induction of mucosal immunity is a high priority in the development of vaccines against mucosal pathogens. The selection of an appropriate antigen delivery system is necessary to induce an efficient mucosal immune response. Poxvirus vectors have been the most intensively studied live recombinant vector, and numerous studies have demonstrated their ability to induce mucosal immune responses against foreign expressed antigens. Previous studies have demonstrated that recombinants based on the attenuated modified vaccinia virus Ankara (MVA) vector were effective in inducing protective responses against different respiratory viruses, such as influenza and respiratory syncytial virus, following immunization via mucosal routes. Recent studies performed in the murine and macaque models have shown that recombinant MVA (rMVA) does not only stimulate HIV-specific immunity in the genital and rectal tracts following mucosal delivery, but can also control simian/human immunodeficiency viraemia and disease progression. In addition, a prime-boost vaccination approach against tuberculosis emphasized the importance of the intranasal rMVA antigen delivery to induce protective immunity against Mycobacterium tuberculosis. The aim of this review is to summarize the studies employing recombinant poxviruses, specifically rMVA as a mucosal delivery vector. The results demonstrate that rMVAs can activate specific immune responses at mucosal surfaces, and encourage further studies to characterize and improve the MVA mucosal immunogenicity of poxvirus vectors.
Sotomayor-Bonilla, Jesús; Abella-Medrano, Carlos Antonio; Chaves, Andrea; Álvarez-Mendizábal, Paulina; Rico-Chávez, Óscar; Ibáñez-Bernal, Sergio; Rostal, Melinda K; Ojeda-Flores, Rafael; Barbachano-Guerrero, Arturo; Gutiérrez-Espeleta, Gustavo; Aguirre, A Alonso; Daszak, Peter; Suzán, Gerardo
2017-07-01
Arboviruses are important zoonotic agents with complex transmission cycles and are not well understood because they may involve many vectors and hosts. We studied sympatric wild mammals and hematophagous mosquitoes having the potential to act as hosts and vectors in two areas of southern Mexico. Mosquitoes, bats, and rodents were captured in Calakmul (Campeche) and Montes Azules (Chiapas), between November 2010 and August 2011. Spleen samples from 146 bats and 14 rodents were tested for molecular evidence of Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV), and West Nile virus (WNV) using PCR protocols. Bat ( Artibeus lituratus , Carollia sowelli , Glossophaga soricina , and Sturnira parvidens) and rodent ( Sigmodon hispidus and Oryzomys alfaroi ) species were positive for VEEV. No individuals were positive for WNV, EEEV, or WEEV. A total of 1,298 mosquitoes were collected at the same sites, and five of the mosquito species collected were known VEEV vectors (Aedes fulvus, Mansonia indubitans, Psorophora ferox, Psorophora cilipes, and Psorophora confinnis). This survey simultaneously presents the first molecular evidence, to our knowledge, of VEEV in bats and rodents from southern Mexico and the identification of potential sympatric vectors. Studies investigating sympatric nonhuman hosts, vectors, and arboviruses must be expanded to determine arboviral dynamics in complex systems in which outbreaks of emerging and reemerging zoonoses are continuously occurring.
Harahap-Carrillo, Indira S.; Ceballos-Olvera, Ivonne; Reyes-del Valle, Jorge
2015-01-01
Vaccines against dengue virus (DV) are commercially nonexistent. A subunit vaccination strategy may be of value, especially if a safe viral vector acts as biologically active adjuvant. In this paper, we focus on an immunoglobulin-like, independently folded domain III (DIII) from DV 2 envelope protein (E), which contains epitopes that elicits highly specific neutralizing antibodies. We modified the hepatitis B small surface antigen (HBsAg, S) in order to display DV 2 DIII on a virus-like particle (VLP), thus generating the hybrid antigen DIII-S. Two varieties of measles virus (MV) vectors were developed to express DIII-S. The first expresses the hybrid antigen from an additional transcription unit (ATU) and the second additionally expresses HBsAg from a separate ATU. We found that this second MV vectoring the hybrid VLPs displaying DIII-S on an unmodified HBsAg scaffold were immunogenic in MV-susceptible mice (HuCD46Ge-IFNarko), eliciting robust neutralizing responses (averages) against MV (1:1280 NT90), hepatitis B virus (787 mIU/mL), and DV2 (1:160 NT50) in all of the tested animals. Conversely, the MV vector expressing only DIII-S induced immunity against MV alone. In summary, DV2 neutralizing responses can be generated by displaying E DIII on a scaffold of HBsAg-based VLPs, vectored by MV. PMID:26350592
Isolation of Kyasanur Forest Disease Virus from Febrile Patient, Yunnan, China
Wang, Jinglin; Zhang, Hailin; Fu, Shihong; Wang, Huanyu; Ni, Daxin; Nasci, Roger; Tang, Qing
2009-01-01
We recently determined that Nanjianyin virus, isolated from serum of a patient in Yunnan Province, China, in 1989, is a type of Kyasanur Forest disease virus. Results of a 1987–1990 seroepidemiologic investigation in Yunnan Province had shown that residents of the Hengduan Mountain region had been infected with Nanjianyin virus. PMID:19193286
Zika virus infection-the next wave after dengue?
Wong, Samson Sai-Yin; Poon, Rosana Wing-Shan; Wong, Sally Cheuk-Ying
2016-04-01
Zika virus was initially discovered in east Africa about 70 years ago and remained a neglected arboviral disease in Africa and Southeast Asia. The virus first came into the limelight in 2007 when it caused an outbreak in Micronesia. In the ensuing decade, it spread widely in other Pacific islands, after which its incursion into Brazil in 2015 led to a widespread epidemic in Latin America. In most infected patients the disease is relatively benign. Serious complications include Guillain-Barré syndrome and congenital infection which may lead to microcephaly and maculopathy. Aedes mosquitoes are the main vectors, in particular, Ae. aegypti. Ae. albopictus is another potential vector. Since the competent mosquito vectors are highly prevalent in most tropical and subtropical countries, introduction of the virus to these areas could readily result in endemic transmission of the disease. The priorities of control include reinforcing education of travellers to and residents of endemic areas, preventing further local transmission by vectors, and an integrated vector management programme. The container habitats of Ae. aegypti and Ae. albopictus means engagement of the community and citizens is of utmost importance to the success of vector control. Copyright © 2016. Published by Elsevier B.V.
Method: low-cost delivery of the cotton leaf crumple virus-induced gene silencing system
2012-01-01
Background We previously developed a virus-induced gene silencing (VIGS) vector for cotton from the bipartite geminivirusCotton leaf crumple virus (CLCrV). The original CLCrV VIGS vector was designed for biolistic delivery by a gene gun. This prerequisite limited the use of the system to labs with access to biolistic equipment. Here we describe the adaptation of this system for delivery by Agrobacterium (Agrobacterium tumefaciens). We also describe the construction of two low-cost particle inflow guns. Results The biolistic CLCrV vector was transferred into two Agrobacterium binary plasmids. Agroinoculation of the binary plasmids into cotton resulted in silencing and GFP expression comparable to the biolistic vector. Two homemade low-cost gene guns were used to successfully inoculate cotton (G. hirsutum) and N. benthamiana with either the CLCrV VIGS vector or the Tomato golden mosaic virus (TGMV) VIGS vector respectively. Conclusions These innovations extend the versatility of CLCrV-based VIGS for analyzing gene function in cotton. The two low-cost gene guns make VIGS experiments affordable for both research and teaching labs by providing a working alternative to expensive commercial gene guns. PMID:22853641
Grubaugh, Nathan D.; McMenamy, Scott S.; Turell, Michael J.; Lee, John S.
2013-01-01
Background Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae), Alphavirus (Togaviridae), Orthobunyavirus (Bunyaviridae), and Phlebovirus (Bunyaviridae). Methodology/Principal Findings The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. Conclusions/Significance We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish public health priorities, detect disease outbreaks, and evaluate control programs. PMID:23967358
Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian; Wei, Taiyun
2016-01-15
Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an incompetent vector, the small brown planthopper (SBPH). Here, we show that silencing of the core component Dicer-2 of the small interfering RNA (siRNA) pathway increases viral titers in the midgut epithelium past the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) for viral dissemination into the midgut muscles and then into the salivary glands, allowing the SBPH to become a competent vector of SRBSDV. This result is the first evidence that the siRNA antiviral pathway has a direct role in the control of viral dissemination from the midgut epithelium and that it affects the competence of the virus's vector. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian
2015-01-01
ABSTRACT Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 109 copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. IMPORTANCE Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an incompetent vector, the small brown planthopper (SBPH). Here, we show that silencing of the core component Dicer-2 of the small interfering RNA (siRNA) pathway increases viral titers in the midgut epithelium past the threshold (1.99 × 109 copies of the SRBSDV P10 gene/μg of midgut RNA) for viral dissemination into the midgut muscles and then into the salivary glands, allowing the SBPH to become a competent vector of SRBSDV. This result is the first evidence that the siRNA antiviral pathway has a direct role in the control of viral dissemination from the midgut epithelium and that it affects the competence of the virus's vector. PMID:26537672
Inferences from the Chronology of Dengue and Zika Outbreaks in Human Populations
NASA Astrophysics Data System (ADS)
McDonald, C.; Usmani, M.; Colwell, R. R.; Jutla, A.
2017-12-01
Dengue and Zika virus are becoming global health threats. With a recent resurgence of Zika virus in the Americas, there is a renewed interest to understand the physical pathways on interactions of vectors with human population. However, the challenge is in the availability of the vectors and viruses in regions that have suffered from outbreaks of these infections. Aedes spp. mosquitoes are the primary vectors of both Zika and Dengue viruses. The critical question is how one species of mosquito is able to transmit two different infections. Therefore, there is a need to understand the coherence and co-emergence behavior of Dengue and Zika infections. Our dominant hypothesis is that Dengue precedes Zika viruses. Here, we will show a global chronological trend of Dengue and Zika virus, or how an outbreak of dengue may lead to an outbreak of Zika virus, as regions with Zika virus outbreaks had demonstrated peak dengue incidences in prior months. We will also present global trends on key climatological and weather processes as a function of the emergence of these two viruses. We anticipate that this information can be used concurrently with geographical and meteorological information to more accurately predict the spread of Zika virus.
Vorou, Rengina
2016-07-01
The widespread epidemic of Zika virus infection in South and Central America and the Caribbean in 2015, along with the increased incidence of microcephaly in fetuses born to mothers infected with Zika virus and the potential for worldwide spread, indicate the need to review the current literature regarding vectors, reservoirs, and amplification hosts. The virus has been isolated in Africa in mosquitoes of the genera Aedes, Anopheles, and Mansonia, and in Southeast Asia and the Pacific area in mosquitoes of the genus Aedes. Aedes albopictus has invaded several countries in Central Africa and all Mediterranean countries, and continues to spread throughout Central and Northern Europe. The wide distribution of the virus in animal hosts and vectors favors the emergence of recombinants. The virus has been isolated in monkeys, and antibodies have been detected in domestic sheep, goats, horses, cows, ducks, rodents, bats, orangutans, and carabaos. It is a public health imperative to define the domestic and wild animal reservoirs, amplification hosts, and vector capacity of the genera Aedes, Anopheles, and Mansonia. These variables will define the geographic distribution of Zika virus along with the indicated timing and scale of the environmental public health interventions worldwide. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes.
Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong
2016-06-20
The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus NS1s in the blood of infected interferon-α and γ receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments.
Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes
Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong
2016-01-01
Summary The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus (JEV) NS1s in the blood of infected interferon alpha and gamma receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments. PMID:27562253
Climate change impacts on West Nile virus transmission in a global context
Paz, Shlomit
2015-01-01
West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change. PMID:25688020
Beier, Kevin T.; Mundell, Nathan A.; Pan, Y. Albert; Cepko, Constance L.
2016-01-01
Viruses have been used as transsynaptic tracers, allowing one to map the inputs and outputs of neuronal populations, due to their ability to replicate in neurons and transmit in vivo only across synaptically connected cells. To date, their use has been largely restricted to mammals. In order to explore the use of such viruses in an expanded host range, we tested the transsynaptic tracing ability of recombinant vesicular stomatitis virus (rVSV) vectors in a variety of organisms. Successful infection and gene expression were achieved in a wide range of organisms, including vertebrate and invertebrate model organisms. Moreover, rVSV enabled transsynaptic tracing of neural circuitry in predictable directions dictated by the viral envelope glycoprotein (G), derived from either VSV or rabies virus (RABV). Anterograde and retrograde labeling, from initial infection and/or viral replication and transmission, was observed in Old and New World monkeys, seahorses, jellyfish, zebrafish, chickens, and mice. These vectors are widely applicable for gene delivery, afferent tract tracing, and/or directional connectivity mapping. Here, we detail the use of these vectors and provide protocols for propagating virus, changing the surface glycoprotein, and infecting multiple organisms using several injection strategies. PMID:26729030
Beier, Kevin T; Mundell, Nathan A; Pan, Y Albert; Cepko, Constance L
2016-01-04
Viruses have been used as transsynaptic tracers, allowing one to map the inputs and outputs of neuronal populations, due to their ability to replicate in neurons and transmit in vivo only across synaptically connected cells. To date, their use has been largely restricted to mammals. In order to explore the use of such viruses in an expanded host range, we tested the transsynaptic tracing ability of recombinant vesicular stomatitis virus (rVSV) vectors in a variety of organisms. Successful infection and gene expression were achieved in a wide range of organisms, including vertebrate and invertebrate model organisms. Moreover, rVSV enabled transsynaptic tracing of neural circuitry in predictable directions dictated by the viral envelope glycoprotein (G), derived from either VSV or rabies virus (RABV). Anterograde and retrograde labeling, from initial infection and/or viral replication and transmission, was observed in Old and New World monkeys, seahorses, jellyfish, zebrafish, chickens, and mice. These vectors are widely applicable for gene delivery, afferent tract tracing, and/or directional connectivity mapping. Here, we detail the use of these vectors and provide protocols for propagating virus, changing the surface glycoprotein, and infecting multiple organisms using several injection strategies. Copyright © 2016 John Wiley & Sons, Inc.
Belova, Oxana A; Litov, Alexander G; Kholodilov, Ivan S; Kozlovskaya, Liubov I; Bell-Sakyi, Lesley; Romanova, Lidiya Iu; Karganova, Galina G
2017-10-01
Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a vector-borne zoonotic neuroinfection. For successful circulation in natural foci the virus has to survive in the vector for a long period of time. Information about the effect of long-term infection of ticks on properties of the viral population is of great importance. In recent years, changes in the eco-epidemiology of TBEV due to changes in distribution of ixodid ticks have been observed. These changes in TBEV-endemic areas could result in a shift of the main tick vector species, which in turn may lead to changes in properties of the virus. In the present study we evaluated the selective pressure on the TBEV population during persistent infection of various species of ticks and tick cell lines. TBEV effectively replicated and formed persistent infection in ticks and tick cell lines of the vector species (Ixodes spp.), potential vectors (Dermacentor spp.) and non-vector ticks (Hyalomma spp.). During TBEV persistence in Ixodes and Dermacentor ticks, properties of the viral population remained virtually unchanged. In contrast, persistent TBEV infection of tick cell lines from both vector and non-vector ticks favoured selection of viral variants with low neuroinvasiveness for laboratory mice and substitutions in the E protein that increased local positive charge of the virion. Thus, selective pressure on viral population may differ in ticks and tick cell lines during persistent infection. Nevertheless, virus variants with properties of the original strain adapted to mouse CNS were not eliminated from the viral population during long-term persistence of TBEV in ticks and tick cell lines. Copyright © 2017 Elsevier GmbH. All rights reserved.
Martin, Kathleen M; Barandoc-Alviar, Karen; Schneweis, Derek J; Stewart, Catherine L; Rotenberg, Dorith; Whitfield, Anna E
2017-09-01
Maize mosaic virus (MMV) is a plant-pathogenic rhabdovirus that is transmitted by the corn planthopper, Peregrinus maidis, in a propagative manner. P. maidis supports long-term MMV infections with no negative effects on insect performance. To elucidate whole-body transcriptome responses to virus infection, RNA-Seq was used to examine differential gene expression of virus-infected adult insects, and libraries were prepared from replicated groups of virus-exposed insects and non-exposed insects. From the 68,003 de novo-assembled transcripts, 144 were differentially-expressed (DE) during viral infection with comparable numbers up- and down-regulated. DE transcripts with similarity to genes associated with transposable elements (i.e., RNA-directed DNA polymerases) were enriched and may represent a mechanisim for modulating virus infection. Comparison of the P. maidis DE transcripts to published propagative virus-responsive transcript databases for two other hopper vectors revealed that 16% of the DE transcripts were shared across the three systems and may represent conserved responses to propagative viruses. Copyright © 2017 Elsevier Inc. All rights reserved.
Phylogeny of the Genus Flavivirus
Kuno, Goro; Chang, Gwong-Jen J.; Tsuchiya, K. Richard; Karabatsos, Nick; Cropp, C. Bruce
1998-01-01
We undertook a comprehensive phylogenetic study to establish the genetic relationship among the viruses of the genus Flavivirus and to compare the classification based on molecular phylogeny with the existing serologic method. By using a combination of quantitative definitions (bootstrap support level and the pairwise nucleotide sequence identity), the viruses could be classified into clusters, clades, and species. Our phylogenetic study revealed for the first time that from the putative ancestor two branches, non-vector and vector-borne virus clusters, evolved and from the latter cluster emerged tick-borne and mosquito-borne virus clusters. Provided that the theory of arthropod association being an acquired trait was correct, pairwise nucleotide sequence identity among these three clusters provided supporting data for a possibility that the non-vector cluster evolved first, followed by the separation of tick-borne and mosquito-borne virus clusters in that order. Clades established in our study correlated significantly with existing antigenic complexes. We also resolved many of the past taxonomic problems by establishing phylogenetic relationships of the antigenically unclassified viruses with the well-established viruses and by identifying synonymous viruses. PMID:9420202
Phylogeny of the genus Flavivirus.
Kuno, G; Chang, G J; Tsuchiya, K R; Karabatsos, N; Cropp, C B
1998-01-01
We undertook a comprehensive phylogenetic study to establish the genetic relationship among the viruses of the genus Flavivirus and to compare the classification based on molecular phylogeny with the existing serologic method. By using a combination of quantitative definitions (bootstrap support level and the pairwise nucleotide sequence identity), the viruses could be classified into clusters, clades, and species. Our phylogenetic study revealed for the first time that from the putative ancestor two branches, non-vector and vector-borne virus clusters, evolved and from the latter cluster emerged tick-borne and mosquito-borne virus clusters. Provided that the theory of arthropod association being an acquired trait was correct, pairwise nucleotide sequence identity among these three clusters provided supporting data for a possibility that the non-vector cluster evolved first, followed by the separation of tick-borne and mosquito-borne virus clusters in that order. Clades established in our study correlated significantly with existing antigenic complexes. We also resolved many of the past taxonomic problems by establishing phylogenetic relationships of the antigenically unclassified viruses with the well-established viruses and by identifying synonymous viruses.
NASA Astrophysics Data System (ADS)
Andriani, Tri; Irawan, Mohammad Isa
2017-08-01
Ebola Virus Disease (EVD) is a disease caused by a virus of the genus Ebolavirus (EBOV), family Filoviridae. Ebola virus is classifed into five types, namely Zaire ebolavirus (ZEBOV), Sudan ebolavirus (SEBOV), Bundibugyo ebolavirus (BEBOV), Tai Forest ebolavirus also known as Cote d'Ivoire ebolavirus (CIEBOV), and Reston ebolavirus (REBOV). Identification of kinship types of Ebola virus can be performed using phylogenetic trees. In this study, the phylogenetic tree constructed by UPGMA method in which there are Multiple Alignment using Progressive Method. The results concluded that the phylogenetic tree formation kinship ebola virus types that kind of Tai Forest ebolavirus close to Bundibugyo ebolavirus but the layout state ebola epidemic spread far apart. The genetic distance for this type of Bundibugyo ebolavirus with Tai Forest ebolavirus is 0.3725. Type Tai Forest ebolavirus similar to Bundibugyo ebolavirus not inuenced by the proximity of the area ebola epidemic spread.
Lim, Seungmo; Nam, Moon; Kim, Kil Hyun; Lee, Su-Heon; Moon, Jung-Kyung; Lim, Hyoun-Sub; Choung, Myoung-Gun; Kim, Sang-Mok; Moon, Jae Sun
2016-02-01
A new vector using Soybean yellow common mosaic virus (SYCMV) was constructed for gene function study or heterologous protein expression in soybeans. The in vitro transcript with a 5' cap analog m7GpppG from an SYCMV full-length infectious vector driven by a T7 promoter infected soybeans (pSYCMVT7-full). The symptoms observed in the soybeans infected with either the sap from SYCMV-infected leaves or pSYCMVT7-full were indistinguishable, suggesting that the vector exhibits equivalent biological activity as the virus itself. To utilize the vector further, a DNA-based vector driven by the Cauliflower mosaic virus (CaMV) 35S promoter was constructed. The complete sequence of the SYCMV genome was inserted into a binary vector flanked by a CaMV 35S promoter at the 5' terminus of the SYCMV genome and a cis-cleaving ribozyme sequence followed by a nopaline synthase terminator at the 3' terminus of the SYCMV genome (pSYCMV-full). The SYCMV-derived vector was tested for use as a virus-induced gene silencing (VIGS) vector for the functional analysis of soybean genes. VIGS constructs containing either a fragment of the Phytoene desaturase (PDS) gene (pSYCMV-PDS1) or a fragment of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RbcS) gene (pSYCMV-RbcS2) were constructed. Plants infiltrated with each vector using the Agrobacterium-mediated inoculation method exhibited distinct symptoms, such as photo-bleaching in plants infiltrated with pSYCMV-PDS1 and yellow or pale green coloring in plants infiltrated with pSYCMV-RbcS2. In addition, down-regulation of the transcripts of the two target genes was confirmed via northern blot analysis. Particle bombardment and direct plasmid DNA rubbing were also confirmed as alternative inoculation methods. To determine if the SYCMV vector can be used for the expression of heterologous proteins in soybean plants, the vector encoding amino acids 135-160 of VP1 of Foot-and-mouth disease virus (FMDV) serotype O1 Campos (O1C) was constructed (pSYCMV-FMDV). Plants infiltrated with pSYCMV-FMDV were only detected via western blotting using the O1C antibody. Based on these results, we propose that the SYCMV-derived vector can be used for gene function study or expression of useful heterologous proteins in soybeans. Copyright © 2015 Elsevier B.V. All rights reserved.
An overview of mosquitoes and emerging arboviral infections in the Zagreb area, Croatia.
Klobucar, Ana; Benic, Nikola; Krajcar, Darko; Kosanovic-Licina, Mirjana Lana; Tesic, Vanja; Merdic, Enrih; Vrucina, Ivana; Savic, Vladimir; Barbic, Ljubo; Stevanovic, Vladimir; Pem-Novosel, Iva; Vilibic-Cavlek, Tatjana
2016-12-30
Mosquito control in the Zagreb area has been conducted for many years, whereas the fauna has only been investigated in the last 20 years. So far 30 mosquito species have been detected in the city area. Culex pipiens form molestus is the dominant mosquito species in indoor breeding sites. In forested areas and areas exposed to flooding, the active period is early spring and the dominant species are Ochlerotatus sticticus, Ochlerotatus cantans, Ochlerotatus geniculatus and Aedes vexans. The eudominant mosquito species found in the artificial breeding sites are Culex pipiens and the Asian tiger mosquito, Aedes albopictus. Invasive Ae. albopictus, present in the Zagreb area since 2004, has expanded to a larger area of the city during the last three years. The recent emergence of the human West Nile virus and Usutu virus neuroinvasive disease in Zagreb and its surroundings highlighted the role of mosquitoes as vectors of emerging arboviruses. The paper focuses on mosquito species and arboviral infections detected in humans and animals in the Zagreb area, Croatia.
9 CFR 121.3 - VS select agents and toxins.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND...-mouth disease virus; Goat pox virus; Japanese encephalitis virus; Lumpy skin disease virus; Malignant...
9 CFR 121.3 - VS select agents and toxins.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND...-mouth disease virus; Goat pox virus; Japanese encephalitis virus; Lumpy skin disease virus; Malignant...
2010-01-01
Background In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. Methods Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. Results The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors. Conclusion The vector behaviour and spatio-temporal patterns of malaria transmission in Southeast Asia impose new challenges when changing objectives from control to elimination of malaria and make it necessary to focus not only on the known main vector species. Moreover, effective tools to prevent malaria transmission in the early evening and in the early morning, when the treated bed net cannot be used, need to be developed. PMID:21182774
Van Bortel, Wim; Trung, Ho Dinh; Hoi, Le Xuan; Van Ham, Nguyen; Van Chut, Nguyen; Luu, Nguyen Dinh; Roelants, Patricia; Denis, Leen; Speybroeck, Niko; D'Alessandro, Umberto; Coosemans, Marc
2010-12-23
In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors. The vector behaviour and spatio-temporal patterns of malaria transmission in Southeast Asia impose new challenges when changing objectives from control to elimination of malaria and make it necessary to focus not only on the known main vector species. Moreover, effective tools to prevent malaria transmission in the early evening and in the early morning, when the treated bed net cannot be used, need to be developed.
Lim, Hyoun-Sub; Vaira, Anna Maria; Domier, Leslie L; Lee, Sung Chul; Kim, Hong Gi; Hammond, John
2010-06-20
We have developed plant virus-based vectors for virus-induced gene silencing (VIGS) and protein expression, based on Alternanthera mosaic virus (AltMV), for infection of a wide range of host plants including Nicotiana benthamiana and Arabidopsis thaliana by either mechanical inoculation of in vitro transcripts or via agroinfiltration. In vivo transcripts produced by co-agroinfiltration of bacteriophage T7 RNA polymerase resulted in T7-driven AltMV infection from a binary vector in the absence of the Cauliflower mosaic virus 35S promoter. An artificial bipartite viral vector delivery system was created by separating the AltMV RNA-dependent RNA polymerase and Triple Gene Block (TGB)123-Coat protein (CP) coding regions into two constructs each bearing the AltMV 5' and 3' non-coding regions, which recombined in planta to generate a full-length AltMV genome. Substitution of TGB1 L(88)P, and equivalent changes in other potexvirus TGB1 proteins, affected RNA silencing suppression efficacy and suitability of the vectors from protein expression to VIGS. Published by Elsevier Inc.
Psi- vectors: murine leukemia virus-based self-inactivating and self-activating retroviral vectors.
Delviks, K A; Hu, W S; Pathak, V K
1997-01-01
We have developed murine leukemia virus (MLV)-based self-inactivating and self-activating vectors to show that the previously demonstrated high-frequency direct repeat deletions are not unique to spleen necrosis virus (SNV) or the neomycin drug resistance gene. Retroviral vectors pKD-HTTK and pKD-HTpTK containing direct repeats composed of segments of the herpes simplex virus type 1 thymidine kinase (HTK) gene were constructed; in pKD-HTpTK, the direct repeat flanked the MLV packaging signal. The generation of hypoxanthine-aminopterin-thymidine-resistant colonies after one cycle of retroviral replication demonstrated functional reconstitution of the HTK gene. Quantitative Southern analysis indicated that direct repeat deletions occurred in 57 and 91% of the KD-HTTK and KD-HTpTK proviruses, respectively. These results demonstrate that (i) deletion of direct repeats occurs at similar high frequencies in SNV and MLV vectors, (ii) MLV psi can be efficiently deleted by using direct repeats, (iii) suicide genes can be functionally reconstituted during reverse transcription, and (iv) the psi region may be a hot spot for reverse transcriptase template switching events. PMID:9223521
Thomas H. Nicholls
2014-01-01
This is a summary of a 5-year short-term study that evolved into 28 years of long-term research on the US Department of Agriculture, Forest Service's Fraser Experimental Forest in Colorado. The study was begun in 1982 by Forest Service Research Scientists Thomas H. Nicholls and Frank G. Hawksworth to determine the importance of mammal and bird vectors in the long-...
Le Boeuf, Fabrice; Lemay, Chantal; De Silva, Naomi; Diallo, Jean-Simon; Cox, Julie; Becker, Michelle; Choi, Youngmin; Ananth, Abhirami; Sellers, Clara; Breton, Sophie; Roy, Dominic; Falls, Theresa; Brun, Jan; Hemminki, Akseli; Hinkkanen, Ari; Bell, John C.
2013-01-01
Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference. PMID:23221568
9 CFR 121.3 - VS select agents and toxins.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND... fever virus; *Foot-and-mouth disease virus; Goat pox virus; Lumpy skin disease virus; Mycoplasma...
9 CFR 121.3 - VS select agents and toxins.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND... fever virus; *Foot-and-mouth disease virus; Goat pox virus; Lumpy skin disease virus; Mycoplasma...
Viral Vectors for Gene Delivery to the Central Nervous System
Lentz, Thomas B.; Gray, Steven J.; Samulski, R. Jude
2011-01-01
The potential benefits of gene therapy for neurological diseases such as Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), Epilepsy, and Alzheimer’s are enormous. Even a delay in the onset of severe symptoms would be invaluable to patients suffering from these and other diseases. Significant effort has been placed in developing vectors capable of delivering therapeutic genes to the CNS in order to treat neurological disorders. At the forefront of potential vectors, viral systems have evolved to efficiently deliver their genetic material to a cell. The biology of different viruses offers unique solutions to the challenges of gene therapy, such as cell targeting, transgene expression and vector production. It is important to consider the natural biology of a vector when deciding whether it will be the most effective for a specific therapeutic function. In this review, we outline desired features of the ideal vector for gene delivery to the CNS and discuss how well available viral vectors compare to this model. Adeno-associated virus, retrovirus, adenovirus and herpesvirus vectors are covered. Focus is placed on features of the natural biology that have made these viruses effective tools for gene delivery with emphasis on their application in the CNS. Our goal is to provide insight into features of the optimal vector and which viral vectors can provide these features. PMID:22001604
Barandoc-Alviar, Karen; Ramirez, Girly M.; Rotenberg, Dorith; Whitfield, Anna E.
2016-01-01
The corn planthopper, Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae), transmits Maize mosaic rhabdovirus (MMV), an important pathogen of maize and sorghum, in a persistent propagative manner. To better understand the vectorial capacity of P. maidis, we determined the efficiency of MMV acquisition by nymphal and adult stages, and characterized MMV titer through development. Acquisition efficiency, i.e., proportion of insects that acquired the virus, was determined by reverse transcriptase polymerase chain reaction (RT-PCR) and virus titer of individual insects was estimated by quantitative RT-PCR. Acquisition efficiency of MMV differed significantly between nymphs and adults. MMV titer increased significantly over time and throughout insect development from nymphal to adult stage, indication of virus replication in the vector during development. There was a positive association between the vector developmental stage and virus titer. Also, the average titer in male insects was threefold higher than female titers, and this difference persisted up to 30 d post adult eclosion. Overall, our findings indicate that nymphs are more efficient than adults at acquiring MMV and virus accumulated in the vector over the course of nymphal development. Furthermore, sustained infection over the lifespan of P. maidis indicates a potentially high capacity of this vector to transmit MMV. PMID:28076276
Zhang, Xinsheng; Wallace, Olivia; Wright, Kevin J; Backer, Martin; Coleman, John W; Koehnke, Rebecca; Frenk, Esther; Domi, Arban; Chiuchiolo, Maria J; DeStefano, Joanne; Narpala, Sandeep; Powell, Rebecca; Morrow, Gavin; Boggiano, Cesar; Zamb, Timothy J; Richter King, C; Parks, Christopher L
2013-11-01
We are investigating canine distemper virus (CDV) as a vaccine vector for the delivery of HIV envelope (Env) that closely resembles the native trimeric spike. We selected CDV because it will promote vaccine delivery to lymphoid tissues, and because human exposure is infrequent, reducing potential effects of pre-existing immunity. Using SIV Env as a model, we tested a number of vector and gene insert designs. Vectors containing a gene inserted between the CDV H and L genes, which encoded Env lacking most of its cytoplasmic tail, propagated efficiently in Vero cells, expressed the immunogen on the cell surface, and incorporated the SIV glycoprotein into progeny virus particles. When ferrets were vaccinated intranasally, there were no signs of distress, vector replication was observed in the gut-associated lymphoid tissues, and the animals produced anti-SIV Env antibodies. These data show that live CDV-SIV Env vectors can safely induce anti-Env immune responses following intranasal vaccination. © 2013 Elsevier Inc. All rights reserved.
Virus-Derived Gene Expression and RNA Interference Vector for Grapevine
Kurth, Elizabeth G.; Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Kasschau, Kristin D.; Miller, Marilyn; Carrington, James C.
2012-01-01
The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests. PMID:22438553
Tsunekuni, Ryota; Hikono, Hirokazu; Saito, Takehiko
2014-08-15
Newcastle disease virus (NDV), also known as avian paramyxovirus (APMV) serotype 1, is used as a vaccine vector to express the hemagglutinin protein of avian influenza (AI) virus. However, use of live NDV recombinant vaccines expressing AI virus hemagglutinin is not desirable in emergency vaccination programs to control severe AI outbreaks in chickens, because commercial chickens often possess pre-existing NDV immunity induced by routine vaccination. Therefore, a novel vaccine vector is required for emergency vaccination of chickens to control AI during outbreaks. We investigated whether candidate APMV strains could be used as vaccine vectors that could evade the pre-existing immunity acquired by chickens through NDV vaccination and that would replicate in the mucosal tissues where AI virus primarily replicates. To this end, we examined strains of APMV serotypes 2 to 10 for their immunogenicity and replication in chickens with pre-existing immunity to NDV. APMV serotypes 2, 6, and 10 were the least cross-reactive to antibodies to NDV in hemagglutination inhibition and/or virus neutralization tests. Virus replication in mucosal tissues, as well as antibody response after oculonasal inoculation, was observed when 7-week-old chickens were challenged with APMV of serotype 2, 6, or 10. The APMV also replicated in mucosal tissues and induced antibody responses in chickens that had been vaccinated twice with NDV before challenge. These results warrant further study to develop vaccine vectors based on APMV serotype 2, 6, or 10 for emergency vaccination of chickens against AI. Copyright © 2014 Elsevier B.V. All rights reserved.
Sun, Shi-Qi; Liu, Xiang-Tao; Guo, Hui-Chen; Yin, Shuang-Hui; Shang, You-Jun; Feng, Xia; Liu, Zai-Xin; Xie, Qing-Ge
2007-03-01
A suicidal DNA vaccine based on a Semliki Forest virus (SFV) replicon was evaluated for the development of a vaccine against swine vesicular disease virus (SVDV). The 1BCD gene of SVDV was cloned and inserted into pSCA1, an SFV DNA-based replicon vector. The resultant plasmid, pSCA/1BCD, was transfected into BHK-21 cells and the antigenicity of the expressed protein was confirmed using an indirect immunofluorescence assay. Immunogenicity was studied in guinea pigs and swine. Animals were injected intramuscularly three times with pSCA/1BCD at regular intervals. Anti-SVDV antibodies were detected by ELISA, the lymphocyte proliferation response was tested by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide method and neutralizing antibodies were measured by microneutralization tests. The data showed that SVDV-specific antibodies, neutralizing antibodies and lymphocyte proliferation were induced in both guinea pigs and swine. Furthermore, after three successive vaccinations with pSCA/1BCD, half of the pigs were protected against challenge with SVDV. These results should encourage further work towards the development of a DNA vaccine against SVDV.
Kliot, Adi; Cilia, Michelle; Czosnek, Henryk
2014-01-01
ABSTRACT Numerous animal and plant viruses are transmitted by arthropod vectors in a persistent, circulative manner. Tomato yellow leaf curl virus (TYLCV) is transmitted by the sweet potato whitefly Bemisia tabaci. We report here that infection with Rickettsia spp., a facultative endosymbiont of whiteflies, altered TYLCV-B. tabaci interactions. A B. tabaci strain infected with Rickettsia acquired more TYLCV from infected plants, retained the virus longer, and exhibited nearly double the transmission efficiency compared to an uninfected B. tabaci strain with the same genetic background. Temporal and spatial antagonistic relationships were discovered between Rickettsia and TYLCV within the whitefly. In different time course experiments, the levels of virus and Rickettsia within the insect were inversely correlated. Fluorescence in situ hybridization analysis of Rickettsia-infected midguts provided evidence for niche exclusion between Rickettsia and TYLCV. In particular, high levels of the bacterium in the midgut resulted in higher virus concentrations in the filter chamber, a favored site for virus translocation along the transmission pathway, whereas low levels of Rickettsia in the midgut resulted in an even distribution of the virus. Taken together, these results indicate that Rickettsia, by infecting the midgut, increases TYLCV transmission efficacy, adding further insights into the complex association between persistent plant viruses, their insect vectors, and microorganism tenants that reside within these insects. IMPORTANCE Interest in bacterial endosymbionts in arthropods and many aspects of their host biology in agricultural and human health systems has been increasing. A recent and relevant studied example is the influence of Wolbachia on dengue virus transmission by mosquitoes. In parallel with our recently studied whitefly-Rickettsia-TYLCV system, other studies have shown that dengue virus levels in the mosquito vector are inversely correlated with bacterial load. Our work here presents evidence of unifying principles between vectors of plant and animal viruses in a role for endosymbionts in manipulating vector biology and pathogen transmission. Our results demonstrate the influence of an interesting and prominent bacterial endosymbiont in Bemisia tabaci in TYLCV transmission, a worldwide disease infecting tomatoes. Besides its agricultural importance, this system provides interesting insights into Bemisia interaction with these newly discovered endosymbionts. PMID:24600010
Fereres, Alberto; Peñaflor, Maria Fernanda G. V.; Favaro, Carla F.; Azevedo, Kamila E. X.; Landi, Carolina H.; Maluta, Nathalie K. P.; Bento, José Mauricio S.; Lopes, Joao R.S.
2016-01-01
Virus infection frequently modifies plant phenotypes, leading to changes in behaviour and performance of their insect vectors in a way that transmission is enhanced, although this may not always be the case. Here, we investigated Bemisia tabaci response to tomato plants infected by Tomato chlorosis virus (ToCV), a non-circulative-transmitted crinivirus, and Tomato severe rugose virus (ToSRV), a circulative-transmitted begomovirus. Moreover, we examined the role of visual and olfactory cues in host plant selection by both viruliferous and non-viruliferous B. tabaci. Visual cues alone were assessed as targets for whitefly landing by placing leaves underneath a Plexiglas plate. A dual-choice arena was used to assess whitefly response to virus-infected and mock-inoculated tomato leaves under light and dark conditions. Thereafter, we tested the whitefly response to volatiles using an active air-flow Y-tube olfactometer, and chemically characterized the blends using gas chromatography coupled to mass spectrometry. Visual stimuli tests showed that whiteflies, irrespective of their infectious status, always preferred to land on virus-infected rather than on mock-inoculated leaves. Furthermore, whiteflies had no preference for either virus-infected or mock-inoculated leaves under dark conditions, but preferred virus-infected leaves in the presence of light. ToSRV-infection promoted a sharp decline in the concentration of some tomato volatiles, while an increase in the emission of some terpenes after ToCV infection was found. ToSRV-viruliferous whiteflies preferred volatiles emitted from mock-inoculated plants, a conducive behaviour to enhance virus spread, while volatiles from ToCV-infected plants were avoided by non-viruliferous whiteflies, a behaviour that is likely detrimental to the secondary spread of the virus. In conclusion, the circulative persistent begomovirus, ToSRV, seems to have evolved together with its vector B. tabaci to optimise its own spread. However, this type of virus-induced manipulation of vector behaviour was not observed for the semi persistent crinivirus, ToCV, which is not specifically transmitted by B. tabaci and has a much less intimate virus-vector relationship. PMID:27529271
Fereres, Alberto; Peñaflor, Maria Fernanda G V; Favaro, Carla F; Azevedo, Kamila E X; Landi, Carolina H; Maluta, Nathalie K P; Bento, José Mauricio S; Lopes, Joao R S
2016-08-11
Virus infection frequently modifies plant phenotypes, leading to changes in behaviour and performance of their insect vectors in a way that transmission is enhanced, although this may not always be the case. Here, we investigated Bemisia tabaci response to tomato plants infected by Tomato chlorosis virus (ToCV), a non-circulative-transmitted crinivirus, and Tomato severe rugose virus (ToSRV), a circulative-transmitted begomovirus. Moreover, we examined the role of visual and olfactory cues in host plant selection by both viruliferous and non-viruliferous B. tabaci. Visual cues alone were assessed as targets for whitefly landing by placing leaves underneath a Plexiglas plate. A dual-choice arena was used to assess whitefly response to virus-infected and mock-inoculated tomato leaves under light and dark conditions. Thereafter, we tested the whitefly response to volatiles using an active air-flow Y-tube olfactometer, and chemically characterized the blends using gas chromatography coupled to mass spectrometry. Visual stimuli tests showed that whiteflies, irrespective of their infectious status, always preferred to land on virus-infected rather than on mock-inoculated leaves. Furthermore, whiteflies had no preference for either virus-infected or mock-inoculated leaves under dark conditions, but preferred virus-infected leaves in the presence of light. ToSRV-infection promoted a sharp decline in the concentration of some tomato volatiles, while an increase in the emission of some terpenes after ToCV infection was found. ToSRV-viruliferous whiteflies preferred volatiles emitted from mock-inoculated plants, a conducive behaviour to enhance virus spread, while volatiles from ToCV-infected plants were avoided by non-viruliferous whiteflies, a behaviour that is likely detrimental to the secondary spread of the virus. In conclusion, the circulative persistent begomovirus, ToSRV, seems to have evolved together with its vector B. tabaci to optimise its own spread. However, this type of virus-induced manipulation of vector behaviour was not observed for the semi persistent crinivirus, ToCV, which is not specifically transmitted by B. tabaci and has a much less intimate virus-vector relationship.
Antibody-mediated targeting of replication-competent retroviral vectors.
Tai, Chien-Kuo; Logg, Christopher R; Park, Jinha M; Anderson, W French; Press, Michael F; Kasahara, Noriyuki
2003-05-20
Replication-competent murine leukemia virus (MLV) vectors can be engineered to achieve high efficiency gene transfer to solid tumors in vivo and tumor-restricted replication, however their safety can be further enhanced by redirecting tropism of the virus envelope. We have therefore tested the targeting capability and replicative stability of ecotropic and amphotropic replication-competent retrovirus (RCR) vectors containing two tandem repeats from the immunoglobulin G-binding domain of Staphylococcal protein A inserted into the proline-rich "hinge" region of the envelope, which enables modular use of antibodies of various specificities for vector targeting. The modified envelopes were efficiently expressed and incorporated into virions, were capable of capturing monoclonal anti-HER2 antibodies, and mediated efficient binding of the virus-antibody complex to HER2-positive target cells. While infectivity was markedly reduced by pseudotyping with targeted envelopes alone, coexpression of wild-type envelope rescued efficient cellular entry. Both ecotropic and amphotropic RCR vector/anti-HER2 antibody complexes achieved significant enhancement of transduction on murine target cells overexpressing HER2, which could be competed by preincubation with excess free antibodies. Interestingly, HER2-expressing human breast cancer cells did not show enhancement of transduction despite efficient antibody-mediated cell surface binding, suggesting that target cell-specific parameters markedly affect the efficiency of post-binding entry processes. Serial replication of targeted vectors resulted in selection of Z domain deletion variants, but reduction of the overall size of the vector genome enhanced its stability. Application of antibody-mediated targeting to the initial localization of replication-competent virus vectors to tumor sites will thus require optimized target selection and vector design.
Lapointe, Dennis A; Hofmeister, Erik K; Atkinson, Carter T; Porter, Robert E; Dusek, Robert J
2009-04-01
Introduced mosquito-borne avian disease is a major limiting factor in the recovery and restoration of native Hawaiian forest birds. Annual epizootics of avian pox (Avipoxvirus) and avian malaria (Plasmodium relictum) likely led to the extinction of some species and continue to impact populations of susceptible Hawaiian honeycreepers (Drepanidinae). The introduction of a novel pathogen, such as West Nile virus (WNV), could result in further population declines and extinctions. During September and October 2004, we infected Hawai'i' Amakihi (Hemignathus virens) with a North American isolate of WNV by needle inoculation and mosquito bite to observe susceptibility, mortality, and illness in this endemic passerine, and to determine the vector competence of the co-occurring, introduced mosquito Culex quinquefasciatus. All experimentally infected Hawai'i ;Amakihi became viremic, with a mean titer >10(5) plaque-forming units (PFU)/ml, and they experienced clinical signs ranging from anorexia and lethargy to ataxia. The fatality rate among needle-inoculated Hawai'i' Amakihi (n=16) was 31.3%, but mortality in free-ranging birds is likely to increase due to predation, starvation, thermal stress, and concomitant infections of avian malaria and pox. Surviving Hawai'i' Amakihi seem to clear WNV from the peripheral blood by 7-10 days postinfection (DPI), and neutralizing antibodies were detected from 9 to 46 DPI. In transmission trials, Hawaiian Cx. quinquefasciatus proved to be a competent vector and Hawai'i Amakihi an adequate amplification host of WNV, suggesting that epizootic WNV could readily become an additional limiting factor of some native Hawaiian bird populations.
Lapointe, Dennis; Hofmeister, Erik K.; Atkinson, C.T.; Porter, R.E.; Dusek, Robert J.
2009-01-01
Introduced mosquito-borne avian disease is a major limiting factor in the recovery and restoration of native Hawaiian forest birds. Annual epizootics of avian pox (Avipoxvirus) and avian malaria (Plasmodium relictum) likely led to the extinction of some species and continue to impact populations of susceptible Hawaiian honeycreepers (Drepanidinae). The introduction of a novel pathogen, such as West Nile virus (WNV), could result in further population declines and extinctions. During September and October 2004, we infected Hawai'i' Amakihi (Hemignathus virens) with a North American isolate of WNV by needle inoculation and mosquito bite to observe susceptibility, mortality, and illness in this endemic passerine, and to determine the vector competence of the co-occurring, introduced mosquito Culex quinquefasciatus. All experimentally infected Hawai'i ;Amakihi became viremic, with a mean titer >10(5) plaque-forming units (PFU)/ml, and they experienced clinical signs ranging from anorexia and lethargy to ataxia. The fatality rate among needle-inoculated Hawai'i' Amakihi (n=16) was 31.3%, but mortality in free-ranging birds is likely to increase due to predation, starvation, thermal stress, and concomitant infections of avian malaria and pox. Surviving Hawai'i' Amakihi seem to clear WNV from the peripheral blood by 7-10 days postinfection (DPI), and neutralizing antibodies were detected from 9 to 46 DPI. In transmission trials, Hawaiian Cx. quinquefasciatus proved to be a competent vector and Hawai'i Amakihi an adequate amplification host of WNV, suggesting that epizootic WNV could readily become an additional limiting factor of some native Hawaiian bird populations.
Vector independent transmission of the vector-borne bluetongue virus.
van der Sluijs, Mirjam Tineke Willemijn; de Smit, Abraham J; Moormann, Rob J M
2016-01-01
Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from dam to fetus, or horizontal via direct contract. For several BTV-serotypes, vertical (transplacental) transmission has been described, resulting in severe congenital malformations. Transplacental transmission had been mainly associated with live vaccine strains. Yet, the European BTV-8 strain demonstrated a high incidence of transplacental transmission in natural circumstances. The relevance of transplacental transmission for the epizootiology is considered limited, especially in enzootic areas. However, transplacental transmission can have a substantial economic impact due to the loss of progeny. Inactivated vaccines have demonstrated to prevent transplacental transmission. Vector-free horizontal transmission has also been demonstrated. Since direct horizontal transmission requires close contact of animals, it is considered only relevant for within-farm spreading of BTV. The genetic determinants which enable vector-free transmission are present in virus strains circulating in the field. More research into the genetic changes which enable vector-free transmission is essential to better evaluate the risks associated with outbreaks of new BTV serotypes and to design more appropriate control measures.
Yang, Xiaolong; Thannhauser, T. W.; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E.; Gray, Stewart M.
2008-01-01
Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F2 progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F2 genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission. PMID:17959668
Yang, Xiaolong; Thannhauser, T W; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E; Gray, Stewart M
2008-01-01
Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.
Dhimal, Meghnath; Gautam, Ishan; Joshi, Hari Datt; O’Hara, Robert B.; Ahrens, Bodo; Kuch, Ulrich
2015-01-01
Background The presence of the recently introduced primary dengue virus vector mosquito Aedes aegypti in Nepal, in association with the likely indigenous secondary vector Aedes albopictus, raises public health concerns. Chikungunya fever cases have also been reported in Nepal, and the virus causing this disease is also transmitted by these mosquito species. Here we report the results of a study on the risk factors for the presence of chikungunya and dengue virus vectors, their elevational ceiling of distribution, and climatic determinants of their abundance in central Nepal. Methodology/Principal Findings We collected immature stages of mosquitoes during six monthly cross-sectional surveys covering six administrative districts along an altitudinal transect in central Nepal that extended from Birgunj (80 m above sea level [asl]) to Dhunche (highest altitude sampled: 2,100 m asl). The dengue vectors Ae. aegypti and Ae. albopictus were commonly found up to 1,350 m asl in Kathmandu valley and were present but rarely found from 1,750 to 2,100 m asl in Dhunche. The lymphatic filariasis vector Culex quinquefasciatus was commonly found throughout the study transect. Physiographic region, month of collection, collection station and container type were significant predictors of the occurrence and co-occurrence of Ae. aegypti and Ae. albopictus. The climatic variables rainfall, temperature, and relative humidity were significant predictors of chikungunya and dengue virus vectors abundance. Conclusions/Significance We conclude that chikungunya and dengue virus vectors have already established their populations up to the High Mountain region of Nepal and that this may be attributed to the environmental and climate change that has been observed over the decades in Nepal. The rapid expansion of the distribution of these important disease vectors in the High Mountain region, previously considered to be non-endemic for dengue and chikungunya fever, calls for urgent actions to protect the health of local people and tourists travelling in the central Himalayas. PMID:25774518
Transduction of rat pancreatic islets with pseudotyped adeno-associated virus vectors
Craig, Anthony T; Gavrilova, Oksana; Dwyer, Nancy K; Jou, William; Pack, Stephanie; Liu, Eric; Pechhold, Klaus; Schmidt, Michael; McAlister, Victor J; Chiorini, John A; Blanchette-Mackie, E Joan; Harlan, David M; Owens, Roland A
2009-01-01
Background Pancreatic islet transplantation is a promising treatment for type I diabetes mellitus, but current immunosuppressive strategies do not consistently provide long-term survival of transplanted islets. We are therefore investigating the use of adeno-associated viruses (AAVs) as gene therapy vectors to transduce rat islets with immunosuppressive genes prior to transplantation into diabetic mice. Results We compared the transduction efficiency of AAV2 vectors with an AAV2 capsid (AAV2/2) to AAV2 vectors pseudotyped with AAV5 (AAV2/5), AAV8 (AAV2/8) or bovine adeno-associated virus (BAAV) capsids, or an AAV2 capsid with an insertion of the low density lipoprotein receptor ligand from apolipoprotein E (AAV2apoE), on cultured islets, in the presence of helper adenovirus infection to speed expression of a GFP transgene. Confocal microscopy and flow cytometry were used. The AAV2/5 vector was superior to AAV2/2 and AAV2/8 in rat islets. Flow cytometry indicated AAV2/5-mediated gene expression in approximately 9% of rat islet cells and almost 12% of insulin-positive cells. The AAV2/8 vector had a higher dependence on the helper virus multiplicity of infection than the AAV 2/5 vector. In addition, the BAAV and AAV2apoE vectors were superior to AAV2/2 for transducing rat islets. Rat islets (300 per mouse) transduced with an AAV2/5 vector harboring the immunosuppressive transgene, tgfβ1, retain the ability to correct hyperglycemia when transplanted into immune-deficient diabetic mice. Conclusion AAV2/5 vectors may therefore be useful for pre-treating donor islets prior to transplantation. PMID:19450275
Russell, Richard C; Currie, Bart J; Lindsay, Michael D; Mackenzie, John S; Ritchie, Scott A; Whelan, Peter I
2009-03-02
Dengue transmission in Australia is currently restricted to Queensland, where the vector mosquito Aedes aegypti is established. Locally acquired infections have been reported only from urban areas in the north-east of the state, where the vector is most abundant. Considerable attention has been drawn to the potential impact of climate change on dengue distribution within Australia, with projections for substantial rises in incidence and distribution associated with increasing temperatures. However, historical data show that much of Australia has previously sustained both the vector mosquito and dengue viruses. Although current vector distribution is restricted to Queensland, the area inhabited by A. aegypti is larger than the disease-transmission areas, and is not restricted by temperature (or vector-control programs); thus, it is unlikely that rising temperatures alone will bring increased vector or virus distribution. Factors likely to be important to dengue and vector distribution in the future include increased dengue activity in Asian and Pacific nations that would raise rates of virus importation by travellers, importation of vectors via international ports to regions without A. aegypti, higher rates of domestic collection and storage of water that would provide habitat in urban areas, and growing human populations in northern Australia. Past and recent successful control initiatives in Australia lend support to the idea that well resourced and functioning surveillance programs, and effective public health intervention capabilities, are essential to counter threats from dengue and other mosquito-borne diseases. Models projecting future activity of dengue (or other vector-borne disease) with climate change should carefully consider the local historical and contemporary data on the ecology and distribution of the vector and local virus transmission.
ATLANTIC BATS: a data set of bat communities from the Atlantic Forests of South America.
Muylaert, Renata D L; Stevens, Richard D; Esbérard, Carlos E L; Mello, Marco A R; Garbino, Guilherme S T; Varzinczak, Luiz H; Faria, Deborah; Weber, Marcelo D M; Kerches Rogeri, Patricia; Regolin, André L; Oliveira, Hernani F M D; Costa, Luciana D M; Barros, Marília A S; Sabino-Santos, Gilberto; Crepaldi de Morais, Mara Ariane; Kavagutti, Vinicius S; Passos, Fernando C; Marjakangas, Emma-Liina; Maia, Felipe G M; Ribeiro, Milton C; Galetti, Mauro
2017-12-01
Bats are the second most diverse mammal order and they provide vital ecosystem functions (e.g., pollination, seed dispersal, and nutrient flux in caves) and services (e.g., crop pest suppression). Bats are also important vectors of infectious diseases, harboring more than 100 different virus types. In the present study, we compiled information on bat communities from the Atlantic Forests of South America, a species-rich biome that is highly threatened by habitat loss and fragmentation. The ATLANTIC BATS data set comprises 135 quantitative studies carried out in 205 sites, which cover most vegetation types of the tropical and subtropical Atlantic Forest: dense ombrophilous forest, mixed ombrophilous forest, semideciduous forest, deciduous forest, savanna, steppe, and open ombrophilous forest. The data set includes information on more than 90,000 captures of 98 bat species of eight families. Species richness averaged 12.1 per site, with a median value of 10 species (ranging from 1 to 53 species). Six species occurred in more than 50% of the communities: Artibeus lituratus, Carollia perspicillata, Sturnira lilium, Artibeus fimbriatus, Glossophaga soricina, and Platyrrhinus lineatus. The number of captures divided by sampling effort, a proxy for abundance, varied from 0.000001 to 0.77 individuals·h -1 ·m -2 (0.04 ± 0.007 individuals·h -1 ·m -2 ). Our data set reveals a hyper-dominance of eight species that together that comprise 80% of all captures: Platyrrhinus lineatus (2.3%), Molossus molossus (2.8%), Artibeus obscurus (3.4%), Artibeus planirostris (5.2%), Artibeus fimbriatus (7%), Sturnira lilium (14.5%), Carollia perspicillata (15.6%), and Artibeus lituratus (29.2%). © 2017 by the Ecological Society of America.
Richards, Stephanie L.; Lord, Cynthia C.; Pesko, Kendra; Tabachnick, Walter J.
2009-01-01
Complex interactions between environmental and biological factors influence the susceptibility of Culex pipiens quinquefasciatus to St. Louis encephalitis virus and could affect the epidemiology of virus transmission. Similar interactions could have epidemiologic implications for other vector-virus systems. We conducted an experiment to examine four such factors in combination: mosquito age, extrinsic incubation temperature (EIT), virus dose, and colony. The proportion of mosquitoes with body infections or disseminated infections varied between colonies, and was dependant on age, EIT, and dose. We also show that the probability of a body or leg infection interacted in complex ways between colonies, ages, EITs, and doses. The complex interactive effects of environmental and biological factors must be taken into account for studies of vector competence and epidemiology, especially when laboratory studies are used to generalize to natural transmission dynamics where the extent of variation is largely unknown. PMID:19635881
Richards, Stephanie L; Lord, Cynthia C; Pesko, Kendra; Tabachnick, Walter J
2009-08-01
Complex interactions between environmental and biological factors influence the susceptibility of Culex pipiens quinquefasciatus to St. Louis encephalitis virus and could affect the epidemiology of virus transmission. Similar interactions could have epidemiologic implications for other vector-virus systems. We conducted an experiment to examine four such factors in combination: mosquito age, extrinsic incubation temperature (EIT), virus dose, and colony. The proportion of mosquitoes with body infections or disseminated infections varied between colonies, and was dependant on age, EIT, and dose. We also show that the probability of a body or leg infection interacted in complex ways between colonies, ages, EITs, and doses. The complex interactive effects of environmental and biological factors must be taken into account for studies of vector competence and epidemiology, especially when laboratory studies are used to generalize to natural transmission dynamics where the extent of variation is largely unknown.
Culicoides variipennis and bluetongue-virus epidemiology in the United States.
Tabachnick, W J
1996-01-01
The bluetongue viruses are transmitted to ruminants in North America by Culicoides variipennis. US annual losses of approximately $125 million are due to restrictions on the movement of livestock and germplasm to bluetongue-free countries. Bluetongue is the most economically important arthropod-borne animal disease in the United States. Bluetongue is absent in the northeastern United States because of the inefficient vector ability there of C. variipennis for bluetongue. The vector of bluetongue virus elsewhere in the United States is C. variipennis sonorensis. The three C. variipennis subspecies differ in vector competence for bluetongue virus in the laboratory. Understanding C. variipennis genetic variation controlling bluetongue transmission will help identify geographic regions at risk for bluetongue and provide opportunities to prevent virus transmission. Information on C. variipennis and bluetongue epidemiology will improve trade and provide information to protect US livestock from domestic and foreign arthropod-borne pathogens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meador, Lydia R.
Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viralmore » vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.« less
Modelling virus- and host-limitation in vectored plant disease epidemics.
Jeger, M J; van den Bosch, F; Madden, L V
2011-08-01
Models of plant virus epidemics have received less attention than those caused by fungal pathogens. Intuitively, the fact that virus diseases are systemic means that the individual diseased plant can be considered as the population unit which simplifies modelling. However, the fact that a vector is required in the vast majority of cases for virus transmission, means that explicit consideration must be taken of the vector, or, the involvement of the vector in the transmission process must be considered implicitly. In the latter case it is also important that within-plant processes, such as virus multiplication and systemic movement, are taken into account. In this paper we propose an approach based on the linking of transmission at the population level with virus multiplication within plants. The resulting models are parameter-sparse and hence simplistic. However, the range of model outcomes is representative of field observations relating to the apparent limitation of epidemic development in populations of healthy susceptible plants. We propose that epidemic development can be constrained by virus limitation in the early stages of an epidemic when the availability of healthy susceptible hosts is not limiting. There is an inverse relationship between levels of transmission in the population and the mean virus titre/infected plant. In the case of competition between viruses, both virus and host limitation are likely to be important in determining whether one virus can displace another or whether both viruses can co-exist in a plant population. Lotka-Volterra type equations are derived to describe density-dependent competition between two viruses multiplying within plants, embedded within a population level epidemiological model. Explicit expressions determining displacement or co-existence of the viruses are obtained. Unlike the classical Lotka-Volterra competition equations, the co-existence requirement for the competition coefficients to be both less than 1 can be relaxed. Copyright © 2011 Elsevier B.V. All rights reserved.
García, Maricarmen
2017-07-01
Infectious laryngotracheitis (ILT) is an economically important respiratory disease of poultry that affects the industry worldwide. Vaccination is the principal tool in the control of the disease. Two types of vaccines, live attenuated and recombinant viral vector, are commercially available. The first generation of GaHV-1 vaccines available since the early 1960's are live viruses, attenuated by continuous passages in cell culture or embryos. These vaccines significantly reduce mortalities and, in particular, the chicken embryo origin (CEO) vaccines have shown to limit outbreaks of the disease. However, the CEO vaccines can regain virulence and become the source of outbreaks. Recombinant viral vector vaccines, the second generation of GaHV-1 vaccines, were first introduced in the early 2000's. These are Fowl Pox virus (FPV) and Herpes virus of turkeys (HVT) vectors expressing one or multiple GaHV-1 immunogenic proteins. Recombinant viral vector vaccines are considered a much safer alternative because they do not regain virulence. In the face of challenge, they improve bird performance and ameliorate clinical signs of the disease but fail to reduce shedding of the challenge virus increasing the likelihood of outbreaks. At the moment, several new strategies are being evaluated to improve both live attenuated and viral vector vaccines. Potential new live vaccines attenuated by deletion of genes associated with virulence or by selection of CEO viral subpopulations that do not exhibit increased virulence upon passages in birds are being evaluated. Also new vector alternatives to express GaHV-1 glycoproteins in Newcastle diseases virus (NDV) or in modified very virulent (vv) serotype I Marek's disease virus (MDV) were developed and evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.
Covert Infection of Insects by Baculoviruses.
Williams, Trevor; Virto, Cristina; Murillo, Rosa; Caballero, Primitivo
2017-01-01
Baculoviruses ( Baculoviridae ) are occluded DNA viruses that are lethal pathogens of the larval stages of some lepidopterans, mosquitoes, and sawflies (phytophagous Hymenoptera). These viruses have been developed as biological insecticides for control of insect pests and as expression vectors in biotechnological applications. Natural and laboratory populations frequently harbor covert infections by baculoviruses, often at a prevalence exceeding 50%. Covert infection can comprise either non-productive latency or sublethal infection involving low level production of virus progeny. Latency in cell culture systems involves the expression of a small subset of viral genes. In contrast, covert infection in lepidopterans is associated with differential infection of cell types, modulation of virus gene expression and avoidance of immune system clearance. The molecular basis for covert infection may reside in the regulation of host-virus interactions through the action of microRNAs (miRNA). Initial findings suggest that insect nudiviruses and vertebrate herpesviruses may provide useful analogous models for exploring the mechanisms of covert infection by baculoviruses. These pathogens adopt mixed-mode transmission strategies that depend on the relative fitness gains that accrue through vertical and horizontal transmission. This facilitates virus persistence when opportunities for horizontal transmission are limited and ensures virus dispersal in migratory host species. However, when host survival is threatened by environmental or physiological stressors, latent or persistent infections can be activated to produce lethal disease, followed by horizontal transmission. Covert infection has also been implicated in population level effects on host-pathogen dynamics due to the reduced reproductive capacity of infected females. We conclude that covert infections provide many opportunities to examine the complexity of insect-virus pathosystems at the organismal level and to explore the evolutionary and ecological relationships of these pathogens with major crop and forest pests.
Covert Infection of Insects by Baculoviruses
Williams, Trevor; Virto, Cristina; Murillo, Rosa; Caballero, Primitivo
2017-01-01
Baculoviruses (Baculoviridae) are occluded DNA viruses that are lethal pathogens of the larval stages of some lepidopterans, mosquitoes, and sawflies (phytophagous Hymenoptera). These viruses have been developed as biological insecticides for control of insect pests and as expression vectors in biotechnological applications. Natural and laboratory populations frequently harbor covert infections by baculoviruses, often at a prevalence exceeding 50%. Covert infection can comprise either non-productive latency or sublethal infection involving low level production of virus progeny. Latency in cell culture systems involves the expression of a small subset of viral genes. In contrast, covert infection in lepidopterans is associated with differential infection of cell types, modulation of virus gene expression and avoidance of immune system clearance. The molecular basis for covert infection may reside in the regulation of host–virus interactions through the action of microRNAs (miRNA). Initial findings suggest that insect nudiviruses and vertebrate herpesviruses may provide useful analogous models for exploring the mechanisms of covert infection by baculoviruses. These pathogens adopt mixed-mode transmission strategies that depend on the relative fitness gains that accrue through vertical and horizontal transmission. This facilitates virus persistence when opportunities for horizontal transmission are limited and ensures virus dispersal in migratory host species. However, when host survival is threatened by environmental or physiological stressors, latent or persistent infections can be activated to produce lethal disease, followed by horizontal transmission. Covert infection has also been implicated in population level effects on host–pathogen dynamics due to the reduced reproductive capacity of infected females. We conclude that covert infections provide many opportunities to examine the complexity of insect–virus pathosystems at the organismal level and to explore the evolutionary and ecological relationships of these pathogens with major crop and forest pests. PMID:28769903
A universal expression/silencing vector in plants.
Peretz, Yuval; Mozes-Koch, Rita; Akad, Fuad; Tanne, Edna; Czosnek, Henryk; Sela, Ilan
2007-12-01
A universal vector (IL-60 and auxiliary constructs), expressing or silencing genes in every plant tested to date, is described. Plants that have been successfully manipulated by the IL-60 system include hard-to-manipulate species such as wheat (Triticum duram), pepper (Capsicum annuum), grapevine (Vitis vinifera), citrus, and olive (Olea europaea). Expression or silencing develops within a few days in tomato (Solanum lycopersicum), wheat, and most herbaceous plants and in up to 3 weeks in woody trees. Expression, as tested in tomato, is durable and persists throughout the life span of the plant. The vector is, in fact, a disarmed form of Tomato yellow leaf curl virus, which is applied as a double-stranded DNA and replicates as such. However, the disarmed virus does not support rolling-circle replication, and therefore viral progeny single-stranded DNA is not produced. IL-60 does not integrate into the plant's genome, and the construct, including the expressed gene, is not heritable. IL-60 is not transmitted by the Tomato yellow leaf curl virus's natural insect vector. In addition, artificial satellites were constructed that require a helper virus for replication, movement, and expression. With IL-60 as the disarmed helper "virus," transactivation occurs, resulting in an inducible expressing/silencing system. The system's potential is demonstrated by IL-60-derived suppression of a viral-silencing suppressor of Grapevine virus A, resulting in Grapevine virus A-resistant/tolerant plants.
Turell, M J; Dohm, D J; Fernandez, R; Calampa, C; O'Guinn, M L
2006-03-01
We evaluated mosquitoes collected in the Amazon Basin, near Iquitos, Peru, for their susceptibility to a subtype IIIC strain of the Venezuelan equine encephalomyelitis complex. This virus had been previously isolated from a pool of mixed Culex vomerifer and Cx. gnomatos captured near Iquitos, Peru, in 1997. After feeding on hamsters with viremias of about 10(8) plaque-forming units of virus per ml, Cx. gnomatos was the most efficient vector. Other species, such as Ochlerotatus fulvus and Psorophora cingulata, although highly susceptible to infection, were not efficient laboratory vectors of this virus due to a significant salivary gland barrier. The Cx. (Culex) species, consisting mostly of Cx. (Cux.) coronator, were nearly refractory to subtype IIIC virus and exhibited both midgut infection as well as salivary gland barriers. Additional studies on biting behavior, mosquito population densities, and vertebrate reservoir hosts of subtype IIIC virus are needed to determine the role that these species play in the maintenance and spread of this virus in the Amazon Basin region.
Temmam, Sarah; Monteil-Bouchard, Sonia; Robert, Catherine; Baudoin, Jean-Pierre; Sambou, Masse; Aubadie-Ladrix, Maxence; Labas, Noémie; Raoult, Didier; Mediannikov, Oleg; Desnues, Christelle
2016-01-01
More than two thirds of emerging viruses are of zoonotic origin, and among them RNA viruses represent the majority. Ceratopogonidae (genus Culicoides) are well-known vectors of several viruses responsible for epizooties (bluetongue, epizootic haemorrhagic disease, etc.). They are also vectors of the only known virus infecting humans: the Oropouche virus. Female midges usually feed on a variety of hosts, leading to possible transmission of emerging viruses from animals to humans. In this context, we report here the analysis of RNA viral communities of Senegalese biting midges using next-generation sequencing techniques as a preliminary step toward the identification of potential viral biohazards. Sequencing of the RNA virome of three pools of Culicoides revealed the presence of a significant diversity of viruses infecting plants, insects and mammals. Several novel viruses were detected, including a novel Thogotovirus species, related but genetically distant from previously described tick-borne thogotoviruses. Novel rhabdoviruses were also detected, possibly constituting a novel Rhabdoviridae genus, and putatively restricted to insects. Sequences related to the major viruses transmitted by Culicoides, i.e., African horse sickness, bluetongue and epizootic haemorrhagic disease viruses were also detected. This study highlights the interest in monitoring the emergence and circulation of zoonoses and epizooties using their arthropod vectors. PMID:26978389
Temmam, Sarah; Monteil-Bouchard, Sonia; Robert, Catherine; Baudoin, Jean-Pierre; Sambou, Masse; Aubadie-Ladrix, Maxence; Labas, Noémie; Raoult, Didier; Mediannikov, Oleg; Desnues, Christelle
2016-03-11
More than two thirds of emerging viruses are of zoonotic origin, and among them RNA viruses represent the majority. Ceratopogonidae (genus Culicoides) are well-known vectors of several viruses responsible for epizooties (bluetongue, epizootic haemorrhagic disease, etc.). They are also vectors of the only known virus infecting humans: the Oropouche virus. Female midges usually feed on a variety of hosts, leading to possible transmission of emerging viruses from animals to humans. In this context, we report here the analysis of RNA viral communities of Senegalese biting midges using next-generation sequencing techniques as a preliminary step toward the identification of potential viral biohazards. Sequencing of the RNA virome of three pools of Culicoides revealed the presence of a significant diversity of viruses infecting plants, insects and mammals. Several novel viruses were detected, including a novel Thogotovirus species, related but genetically distant from previously described tick-borne thogotoviruses. Novel rhabdoviruses were also detected, possibly constituting a novel Rhabdoviridae genus, and putatively restricted to insects. Sequences related to the major viruses transmitted by Culicoides, i.e., African horse sickness, bluetongue and epizootic haemorrhagic disease viruses were also detected. This study highlights the interest in monitoring the emergence and circulation of zoonoses and epizooties using their arthropod vectors.
Whitt, Michael A; Geisbert, Thomas W; Mire, Chad E
2016-01-01
There are many avenues for making an effective vaccine against viruses. Depending on the virus these can include one of the following: inactivation of whole virions; attenuation of viruses; recombinant viral proteins; non-replication-competent virus particles; or surrogate virus vector systems such as vesicular stomatitis virus (VSV). VSV is a prototypic enveloped animal virus that has been used for over four decades to study virus replication, entry, and assembly due to its ability to replicate to high titers in a wide variety of mammalian and insect cells. The use of reverse genetics to recover infectious and single-cycle replicating VSV from plasmid DNA transfected in cell culture began a revolution in the study of recombinant VSV (rVSV). This platform can be manipulated to study the viral genetic sequences and proteins important in the virus life cycle. Additionally, foreign genes can be inserted between naturally occurring or generated start/stop signals and polyadenylation sites within the VSV genome. VSV has a tolerance for foreign gene expression which has led to numerous rVSVs reported in the literature. Of particular interest are the very effective single-dose rVSV vaccine vectors against high-containment viruses such as filoviruses, henipaviruses, and arenaviruses. Herein we describe the methods for selecting foreign antigenic genes, selecting the location within the VSV genome for insertion, generation of rVSV using reverse genetics, and proper vaccine study designs.
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines
Kim, Shin-Hee; Samal, Siba K.
2016-01-01
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens. PMID:27384578
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines.
Kim, Shin-Hee; Samal, Siba K
2016-07-04
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.
GIS based Cadastral level Forest Information System using World View-II data in Bir Hisar (Haryana)
NASA Astrophysics Data System (ADS)
Mothi Kumar, K. E.; Singh, S.; Attri, P.; Kumar, R.; Kumar, A.; Sarika; Hooda, R. S.; Sapra, R. K.; Garg, V.; Kumar, V.; Nivedita
2014-11-01
Identification and demarcation of Forest lands on the ground remains a major challenge in Forest administration and management. Cadastral forest mapping deals with forestlands boundary delineation and their associated characterization (forest/non forest). The present study is an application of high resolution World View-II data for digitization of Protected Forest boundary at cadastral level with integration of Records of Right (ROR) data. Cadastral vector data was generated by digitization of spatial data using scanned mussavies in ArcGIS environment. Ortho-images were created from World View-II digital stereo data with Universal Transverse Mercator coordinate system with WGS 84 datum. Cadastral vector data of Bir Hisar (Hisar district, Haryana) and adjacent villages was spatially adjusted over ortho-image using ArcGIS software. Edge matching of village boundaries was done with respect to khasra boundaries of individual village. The notified forest grids were identified on ortho-image and grid vector data was extracted from georeferenced cadastral data. Cadastral forest boundary vectors were digitized from ortho-images. Accuracy of cadastral data was checked by comparison of randomly selected geo-coordinates points, tie lines and boundary measurements of randomly selected parcels generated from image data set with that of actual field measurements. Area comparison was done between cadastral map area, the image map area and RoR area. The area covered under Protected Forest was compared with ROR data and within an accuracy of less than 1 % from ROR area was accepted. The methodology presented in this paper is useful to update the cadastral forest maps. The produced GIS databases and large-scale Forest Maps may serve as a data foundation towards a land register of forests. The study introduces the use of very high resolution satellite data to develop a method for cadastral surveying through on - screen digitization in a less time as compared to the old fashioned cadastral parcel boundaries surveying method.
Volz, A; Sutter, G
2017-01-01
Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology. © 2017 Elsevier Inc. All rights reserved.
Lee, Wing-Sham; Rudd, Jason J; Kanyuka, Kostya
2015-06-01
Virus-induced gene silencing (VIGS) has emerged as a powerful reverse genetic technology in plants supplementary to stable transgenic RNAi and, in certain species, as a viable alternative approach for gene functional analysis. The RNA virus Barley stripe mosaic virus (BSMV) was developed as a VIGS vector in the early 2000s and since then it has been used to study the function of wheat genes. Several variants of BSMV vectors are available, with some requiring in vitro transcription of infectious viral RNA, while others rely on in planta production of viral RNA from DNA-based vectors delivered to plant cells either by particle bombardment or Agrobacterium tumefaciens. We adapted the latest generation of binary BSMV VIGS vectors for the identification and study of wheat genes of interest involved in interactions with Zymoseptoria tritici and here present detailed and the most up-to-date protocols. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Rosas, Cristina; Van de Walle, Gerlinde R.; Metzger, Stephan M.; Hoelzer, Karin; Dubovi, Edward J.; Kim, Sung G.; Parrish, Colin R.; Osterrieder, Nikolaus
2008-01-01
In 2004, canine influenza virus (CIV) was identified as a respiratory pathogen of dogs for the first time and is closely related to H3N8 equine influenza virus (EIV). We generated a recombinant vectored vaccine that expresses H3 of a recent isolate of EIV using equine herpesvirus type 1 (EHV-1) as the delivery vehicle. This EHV-1 vectored vaccine exhibited robust and stable EIV H3 expression and induced a strong influenza virus-specific response in both mice and dogs upon intranasal or subcutaneous administration. Furthermore, upon challenge with the recent CIV isolate A/canine/PA/10915-07, protection of vaccinated dogs could be demonstrated by a significant reduction in clinical sings, and, more importantly, by a significant reduction in virus shedding. We concluded that the EHV-1/H3 recombinant vector can be a valuable alternative for protection of dogs against clinical disease induced by CIV and can significantly reduce spread. PMID:18407383
Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A.D.; Bender, M.A.; Harris, E.A.S.
1988-11-01
Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitatesmore » an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.« less
Munir, Shirin; Amaro-Carambot, Emerito; Surman, Sonja; Mackow, Natalie; Yang, Lijuan; Buchholz, Ursula J.; Collins, Peter L.; Schaap-Nutt, Anne
2014-01-01
ABSTRACT A recombinant chimeric bovine/human parainfluenza type 3 virus (rB/HPIV3) vector expressing the respiratory syncytial virus (RSV) fusion F glycoprotein previously exhibited disappointing levels of RSV F immunogenicity and genetic stability in children (D. Bernstein et al., Pediatr. Infect. Dis. J. 31:109–114, 2012; C.-F. Yang et al., Vaccine 31:2822–2827, 2013). To investigate parameters that might affect vaccine performance and stability, we constructed and characterized rB/HPIV3 viruses expressing RSV F from the first (pre-N), second (N-P), third (P-M), and sixth (HN-L) genome positions. There was a 30- to 69-fold gradient in RSV F expression from the first to the sixth position. The inserts moderately attenuated vector replication in vitro and in the upper and lower respiratory tracts of hamsters: this was not influenced by the level of RSV F expression and syncytium formation. Surprisingly, inserts in the second, third, and sixth positions conferred increased temperature sensitivity: this was greatest for the third position and was the most attenuating in vivo. Each rB/HPIV3 vector induced a high titer of neutralizing antibodies in hamsters against RSV and HPIV3. Protection against RSV challenge was greater for position 2 than for position 6. Evaluation of insert stability suggested that RSV F is under selective pressure to be silenced during vector replication in vivo, but this was not exacerbated by a high level of RSV F expression and generally involved a small percentage of recovered vector. Vector passaged in vitro accumulated mutations in the HN open reading frame, causing a dramatic increase in plaque size that may have implications for vaccine production and immunogenicity. IMPORTANCE The research findings presented here will be instrumental for improving the design of a bivalent pediatric vaccine for respiratory syncytial virus and parainfluenza virus type 3, two major causes of severe respiratory tract infection in infants and young children. Moreover, this knowledge has general application to the development and clinical evaluation of other mononegavirus vectors and vaccines. PMID:24478424
Geographic range of vector-borne infections and their vectors: the role of African wildlife.
van Vuuren, M; Penzhorn, B L
2015-04-01
The role of African wildlife in the occurrence of vector-borne infections in domestic animals has gained renewed interest as emerging and re-emerging infections occur worldwide at an increasing rate. In Africa, biodiversity conservation and the expansion of livestock production have increased the risk of transmitting vector-borne infections between wildlife and livestock. The indigenous African pathogens with transboundary potential, such as Rift Valley fever virus, African horse sickness virus, bluetongue virus, lumpy skin disease virus, African swine fever virus, and blood-borne parasites have received the most attention. There is no evidence for persistent vector-borne viral infections in African wildlife. For some viral infections, wildlife may act as a reservoir through the inter-epidemic circulation of viruses with mild or subclinical manifestations. Wildlife may also act as introductory or transporting hosts when moved to new regions, e.g. for lumpy skin disease virus, Rift Valley fever virus and West Nile virus. Wildlife may also act as amplifying hosts when exposed to viruses in the early part of the warm season when vectors are active, with spillover to domestic animals later in the season, e.g. with bluetongue and African horse sickness. Some tick species found on domestic animals are more abundant on wildlife hosts; some depend on wildlife hosts to complete their life cycle. Since the endemic stability of a disease depends on a sufficiently large tick population to ensure that domestic animals become infected at an early age, the presence of wildlife hosts that augment tick numbers may be beneficial. Many wild ungulate species are reservoirs of Anaplasma spp., while the role of wildlife in the epidemiology of heartwater (Ehrlichia ruminantium infection) has not been elucidated. Wild ungulates are not usually reservoirs of piroplasms that affect livestock; however, there are two exceptions: zebra, which are reservoirs of Babesia caballi and Theileria equi, and buffalo, which are reservoirs of Theileria parva. The latter causes Corridor disease when transmitted from buffaloto cattle, butthis appearsto be a self-limiting condition, at least in southern Africa. Wild animals are important reservoirs of tsetse-transmitted Trypanosoma spp. infection. The distribution and abundance of some tsetse species, e.g. Glossina morsitans and G. pallidipes, are closely related to the occurrence of their preferred wildlife hosts.
Mwando, Nelson L; Tamiru, Amanuel; Nyasani, Johnson O; Obonyo, Meshack A O; Caulfield, John C; Bruce, Toby J A; Subramanian, Sevgan
2018-06-02
Maize lethal necrosis is one of the most devastating diseases of maize causing yield losses reaching up to 90% in sub-Saharan Africa. The disease is caused by a combination of maize chlorotic mottle virus (MCMV) and any one of cereal viruses in the Potyviridae group such as sugarcane mosaic virus. MCMV has been reported to be transmitted mainly by maize thrips (Frankliniella williamsi) and onion thrips (Thrips tabaci). To better understand the role of thrips vectors in the epidemiology of the disease, we investigated behavioral responses of F. williamsi and T. tabaci, to volatiles collected from maize seedlings infected with MCMV in a four-arm olfactometer bioassay. Volatile profiles from MCMV-infected and healthy maize plants were compared by gas chromatography (GC) and GC coupled mass spectrometry analyses. In the bioassays, both sexes of F. williamsi and male T. tabaci were significantly attracted to volatiles from maize plants infected with MCMV compared to healthy plants and solvent controls. Moreover, volatile analysis revealed strong induction of (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in MCMV-infected maize seedlings. Our findings demonstrate MCMV induces changes in volatile profiles of host plants to elicit attraction of thrips vectors. The increased vector contact rates with MCMV-infected host plants could enhance virus transmission if thrips feed on the infected plants and acquire the pathogen prior to dispersal. Uncovering the mechanisms mediating interactions between vectors, host plants and pathogens provides useful insights for understanding the vector ecology and disease epidemiology, which in turn may contribute in designing integrated vector management strategies.
Ge, Jinying; Wang, Xijun; Tao, Lihong; Wen, Zhiyuan; Feng, Na; Yang, Songtao; Xia, Xianzhu; Yang, Chinglai; Chen, Hualan; Bu, Zhigao
2011-08-01
Effective, safe, and affordable rabies vaccines are still being sought. Newcastle disease virus (NDV), an avian paramyxovirus, has shown promise as a vaccine vector for mammals. Here, we generated a recombinant avirulent NDV La Sota strain expressing the rabies virus glycoprotein (RVG) and evaluated its potential to serve as a vaccine against rabies. The recombinant virus, rL-RVG, retained its high-growth property in chicken eggs, with titers of up to 10⁹·⁸ 50% egg infective doses (EID₅₀)/ml of allantoic fluid. RVG expression enabled rL-RVG to spread from cell to cell in a rabies virus-like manner, and RVG was incorporated on the surface of the rL-RVG viral particle. RVG incorporation did not alter the trypsin-dependent infectivity of the NDV vector in mammalian cells. rL-RVG and La Sota NDV showed similar levels of sensitivity to a neutralization antibody against NDV and similar levels of resistance to a neutralization antibody against rabies virus. Animal studies demonstrated that rL-RVG is safe in several species, including cats and dogs, when administered as multiple high doses of recombinant vaccine. Intramuscular vaccination with rL-RVG induced a substantial rabies virus neutralization antibody response and provided complete protection from challenge with circulating rabies virus strains. Most importantly, rL-RVG induced strong and long-lasting protective neutralization antibody responses to rabies virus in dogs and cats. A low vaccine dose of 10⁸·³ EID₅₀ completely protected dogs from challenge with a circulating strain of rabies virus for more than a year. This is the first study to demonstrate that immunization with an NDV-vectored vaccine can induce long-lasting, systemic protective immunity against rabies.
Maharaj, Payal D.; Anishchenko, Michael; Langevin, Stanley A.; Fang, Ying; Reisen, William K.
2012-01-01
Despite utilizing the same avian hosts and mosquito vectors, St Louis encephalitis virus (SLEV) and West Nile virus (WNV) display dissimilar vector-infectivity and vertebrate-pathogenic phenotypes. SLEV exhibits a low oral infection threshold for Culex mosquito vectors and is avirulent in avian hosts, producing low-magnitude viraemias. In contrast, WNV is less orally infective to mosquitoes and elicits high-magnitude viraemias in a wide range of avian species. In order to identify the genetic determinants of these different phenotypes and to assess the utility of mosquito and vertebrate cell lines for recapitulating in vivo differences observed between these viruses, reciprocal WNV and SLEV pre-membrane and envelope protein (prME) chimeric viruses were generated and growth of these mutant viruses was characterized in mammalian (Vero), avian (duck) and mosquito [Aedes (C6/36) and Culex (CT)] cells. In both vertebrate lines, WNV grew to 100-fold higher titres than SLEV, and growth and cytopathogenicity phenotypes, determined by chimeric phenotypes, were modulated by genetic elements outside the prME gene region. Both chimeras exhibited distinctive growth patterns from those of SLEV in C6/36 cells, indicating the role of both structural and non-structural gene regions for growth in this cell line. In contrast, growth of chimeric viruses was indistinguishable from that of virus containing homologous prME genes in CT cells, indicating that structural genetic elements could specifically dictate growth differences of these viruses in relevant vectors. These data provide genetic insight into divergent enzootic maintenance strategies that could also be useful for the assessment of emergence mechanisms of closely related flaviviruses. PMID:21940408
Wheeler, Sarah S.; Ball, Cameron S.; Langevin, Stanley A.; Fang, Ying; Coffey, Lark L.; Meagher, Robert J.
2016-01-01
Collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized public health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the nonstructural protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance. PMID:26807734
Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector.
Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen
2016-11-18
Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus , Luteoviridae ) and Pea enation mosaic virus 2 (PEMV2, Umbravirus , Tombusviridae ) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum , and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum . Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.
Sprygin, A V; Fiodorova, O A; Babin, Yu Yu; Elatkin, N P; Mathieu, B; England, M E; Kononov, A V
2014-12-01
Culicoides biting midges play an important role in the epidemiology of many vector-borne infections, including bluetongue virus, an internationally important virus of ruminants. The territory of the Russian Federation includes regions with diverse climatic conditions and a wide range of habitats suitable for Culicoides. This review summarizes available data on Culicoides studied in the Russian Federation covering geographically different regions, as well as findings from adjacent countries. Previous literature on species composition, ranges of dominant species, breeding sites, and host preferences is reviewed and suggestions made for future studies to elucidate vector-virus relationships. © 2014 The Society for Vector Ecology.
Manoharan, Vinoth K; Khattar, Sunil K; LaBranche, Celia C; Montefiori, David C; Samal, Siba K
2018-06-12
SIV infection in macaques is a relevant animal model for HIV pathogenesis and vaccine study in humans. To design a safe and effective vaccine against HIV, we evaluated the suitability of naturally-occurring avirulent Newcastle disease virus (NDV) strains and several modified versions of NDV as vectors for the expression and immunogenicity of SIV envelope protein gp160. All the NDV vectors expressed gp160 protein in infected cells. The gp160 expressed by these vectors formed oligomers and was incorporated into the NDV envelope. All the NDV vectors expressing gp160 were attenuated in chickens. Intranasal immunization of guinea pigs with modified NDV vectors such as rNDV-APMV-2CS/gp160 and rNDV-APMV-8CS/gp160 (NDV strain LaSota containing the cleavage site sequences of F protein of avian paramyxovirus (APMV) serotype 2 and 8, respectively), and rNDV-BC-F-HN/gp160 (NDV strain BC containing LaSota F cleavage site and LaSota F and HN genes) elicited improved SIV-specific humoral and mucosal immune responses compared to other NDV vectors. These modified vectors were also efficient in inducing neutralizing antibody responses to tier 1 A SIVmac251.6 and tier 1B SIVmac251/M766 strains. This study suggests that our novel modified NDV vectors are safe and immunogenic and can be used as vaccine vector to control HIV.
Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes.
Salazar, Ma Isabel; Richardson, Jason H; Sánchez-Vargas, Irma; Olson, Ken E; Beaty, Barry J
2007-01-30
To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection.
The Zika Virus Epidemic in Brazil: From Discovery to Future Implications
Barcellos, Christovam; Brasil, Patrícia; Cruz, Oswaldo G.; Honório, Nildimar Alves; Kuper, Hannah; Carvalho, Marilia Sá
2018-01-01
The first confirmed case of Zika virus infection in the Americas was reported in Northeast Brazil in May 2015, although phylogenetic studies indicate virus introduction as early as 2013. Zika rapidly spread across Brazil and to more than 50 other countries and territories on the American continent. The Aedes aegypti mosquito is thought to be the principal vector responsible for the widespread transmission of the virus. However, sexual transmission has also been reported. The explosively emerging epidemic has had diverse impacts on population health, coinciding with cases of Guillain–Barré Syndrome and an unexpected epidemic of newborns with microcephaly and other neurological impairments. This led to Brazil declaring a national public health emergency in November 2015, followed by a similar decision by the World Health Organization three months later. While dengue virus serotypes took several decades to spread across Brazil, the Zika virus epidemic diffused within months, extending beyond the area of permanent dengue transmission, which is bound by a climatic barrier in the south and low population density areas in the north. This rapid spread was probably due to a combination of factors, including a massive susceptible population, climatic conditions conducive for the mosquito vector, alternative non-vector transmission, and a highly mobile population. The epidemic has since subsided, but many unanswered questions remain. In this article, we provide an overview of the discovery of Zika virus in Brazil, including its emergence and spread, epidemiological surveillance, vector and non-vector transmission routes, clinical complications, and socio-economic impacts. We discuss gaps in the knowledge and the challenges ahead to anticipate, prevent, and control emerging and re-emerging epidemics of arboviruses in Brazil and worldwide. PMID:29315224
The Zika Virus Epidemic in Brazil: From Discovery to Future Implications.
Lowe, Rachel; Barcellos, Christovam; Brasil, Patrícia; Cruz, Oswaldo G; Honório, Nildimar Alves; Kuper, Hannah; Carvalho, Marilia Sá
2018-01-09
The first confirmed case of Zika virus infection in the Americas was reported in Northeast Brazil in May 2015, although phylogenetic studies indicate virus introduction as early as 2013. Zika rapidly spread across Brazil and to more than 50 other countries and territories on the American continent. The Aedes aegypti mosquito is thought to be the principal vector responsible for the widespread transmission of the virus. However, sexual transmission has also been reported. The explosively emerging epidemic has had diverse impacts on population health, coinciding with cases of Guillain-Barré Syndrome and an unexpected epidemic of newborns with microcephaly and other neurological impairments. This led to Brazil declaring a national public health emergency in November 2015, followed by a similar decision by the World Health Organization three months later. While dengue virus serotypes took several decades to spread across Brazil, the Zika virus epidemic diffused within months, extending beyond the area of permanent dengue transmission, which is bound by a climatic barrier in the south and low population density areas in the north. This rapid spread was probably due to a combination of factors, including a massive susceptible population, climatic conditions conducive for the mosquito vector, alternative non-vector transmission, and a highly mobile population. The epidemic has since subsided, but many unanswered questions remain. In this article, we provide an overview of the discovery of Zika virus in Brazil, including its emergence and spread, epidemiological surveillance, vector and non-vector transmission routes, clinical complications, and socio-economic impacts. We discuss gaps in the knowledge and the challenges ahead to anticipate, prevent, and control emerging and re-emerging epidemics of arboviruses in Brazil and worldwide.
Witting, Scott R.; Vallanda, Priya; Gamble, Aisha L.
2013-01-01
Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, 3rd generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared to VSV pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in 3rd generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells. PMID:23698741
Dynamics of West Nile virus evolution in mosquito vectors.
Grubaugh, Nathan D; Ebel, Gregory D
2016-12-01
West Nile virus remains the most common cause of arboviral encephalitis in North America. Since it was introduced, it has undergone adaptive genetic change as it spread throughout the continent. The WNV transmission cycle is relatively tractable in the laboratory. Thus the virus serves as a convenient model system for studying the population biology of mosquito-borne flaviviruses as they undergo transmission to and from mosquitoes and vertebrates. This review summarizes the current knowledge regarding the population dynamics of this virus within mosquito vectors. Copyright © 2016 Elsevier B.V. All rights reserved.
Vector and Serologic Survey for Crimean-Congo Hemorrhagic Fever Virus in Poland.
Bażanów, Barbara A; Pacoń, Jarosław; Gadzała, Łukasz; Frącka, Agnieszka; Welz, Mirosław; Paweska, Janusz
2017-07-01
In contrast to animals, Crimean-Congo hemorrhagic fever (CCHF) causes a severe disease in humans with a high mortality rate. The etiological agent, CCHF virus (CCHFV), can be transmitted by argasid and ixodid ticks, but arachnids of the genus Hyalomma, followed by Rhipicephalus and Dermacentor serve as the major vectors of this virus. The goal of the study was to assess the epidemiological situation of CCHFV infection in cattle in south-east Poland, and survey for potential tick vector species. A total of 592 bovine blood samples from animals located in the southernmost region in Poland were tested by IgG sandwich enzyme-linked immunosorbent assay. Ticks (n = 993) from south-east Poland were collected from dogs, cats, cattle, and horses and tested by RT-PCR. All 592 serum samples were negative for IgG antibodies to CCHFV. Of the ticks collected, 125 were Dermacentor reticulatus and 868 represented Ixodes ricinus, both species are regarded as potential vectors of CCHFV. All tick samples were negative for the presence of CCHFV. Considering the zoonotic nature, public health importance, and the virus increasing spread, it was prudent to assess the seroprevalence of CCHFV in the south-east area of Poland, bordering with CCHFV endemic areas. It seems unlikely that CCHFV infection will suddenly spread in Poland, but considering the multiple possibilities of the virus introduction, serosurveys and vector biosurveillance should be conducted at regular intervals.
Barandoc-Alviar, Karen; Ramirez, Girly M; Rotenberg, Dorith; Whitfield, Anna E
2016-01-01
The corn planthopper, Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae), transmits Maize mosaic rhabdovirus (MMV), an important pathogen of maize and sorghum, in a persistent propagative manner. To better understand the vectorial capacity of P. maidis, we determined the efficiency of MMV acquisition by nymphal and adult stages, and characterized MMV titer through development. Acquisition efficiency, i.e., proportion of insects that acquired the virus, was determined by reverse transcriptase polymerase chain reaction (RT-PCR) and virus titer of individual insects was estimated by quantitative RT-PCR. Acquisition efficiency of MMV differed significantly between nymphs and adults. MMV titer increased significantly over time and throughout insect development from nymphal to adult stage, indication of virus replication in the vector during development. There was a positive association between the vector developmental stage and virus titer. Also, the average titer in male insects was threefold higher than female titers, and this difference persisted up to 30 d post adult eclosion. Overall, our findings indicate that nymphs are more efficient than adults at acquiring MMV and virus accumulated in the vector over the course of nymphal development. Furthermore, sustained infection over the lifespan of P. maidis indicates a potentially high capacity of this vector to transmit MMV. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.
Sumner, Tom; Orton, Richard J; Green, Darren M; Kao, Rowland R; Gubbins, Simon
2017-04-01
The role of host movement in the spread of vector-borne diseases of livestock has been little studied. Here we develop a mathematical framework that allows us to disentangle and quantify the roles of vector dispersal and livestock movement in transmission between farms. We apply this framework to outbreaks of bluetongue virus (BTV) and Schmallenberg virus (SBV) in Great Britain, both of which are spread by Culicoides biting midges and have recently emerged in northern Europe. For BTV we estimate parameters by fitting the model to outbreak data using approximate Bayesian computation, while for SBV we use previously derived estimates. We find that around 90% of transmission of BTV between farms is a result of vector dispersal, while for SBV this proportion is 98%. This difference is a consequence of higher vector competence and shorter duration of viraemia for SBV compared with BTV. For both viruses we estimate that the mean number of secondary infections per infected farm is greater than one for vector dispersal, but below one for livestock movements. Although livestock movements account for a small proportion of transmission and cannot sustain an outbreak on their own, they play an important role in establishing new foci of infection. However, the impact of restricting livestock movements on the spread of both viruses depends critically on assumptions made about the distances over which vector dispersal occurs. If vector dispersal occurs primarily at a local scale (99% of transmission occurs <25 km), movement restrictions are predicted to be effective at reducing spread, but if dispersal occurs frequently over longer distances (99% of transmission occurs <50 km) they are not.
Sumner, Tom; Orton, Richard J.; Green, Darren M.; Kao, Rowland R.
2017-01-01
The role of host movement in the spread of vector-borne diseases of livestock has been little studied. Here we develop a mathematical framework that allows us to disentangle and quantify the roles of vector dispersal and livestock movement in transmission between farms. We apply this framework to outbreaks of bluetongue virus (BTV) and Schmallenberg virus (SBV) in Great Britain, both of which are spread by Culicoides biting midges and have recently emerged in northern Europe. For BTV we estimate parameters by fitting the model to outbreak data using approximate Bayesian computation, while for SBV we use previously derived estimates. We find that around 90% of transmission of BTV between farms is a result of vector dispersal, while for SBV this proportion is 98%. This difference is a consequence of higher vector competence and shorter duration of viraemia for SBV compared with BTV. For both viruses we estimate that the mean number of secondary infections per infected farm is greater than one for vector dispersal, but below one for livestock movements. Although livestock movements account for a small proportion of transmission and cannot sustain an outbreak on their own, they play an important role in establishing new foci of infection. However, the impact of restricting livestock movements on the spread of both viruses depends critically on assumptions made about the distances over which vector dispersal occurs. If vector dispersal occurs primarily at a local scale (99% of transmission occurs <25 km), movement restrictions are predicted to be effective at reducing spread, but if dispersal occurs frequently over longer distances (99% of transmission occurs <50 km) they are not. PMID:28369082
Nakouné, Emmanuel; Kamgang, Basile; Berthet, Nicolas; Manirakiza, Alexandre; Kazanji, Mirdad
2016-10-01
Rift Valley fever virus (RVFV) causes a viral zoonosis, with discontinuous epizootics and sporadic epidemics, essentially in East Africa. Infection with this virus causes severe illness and abortion in sheep, goats, and cattle as well as other domestic animals. Humans can also be exposed through close contact with infectious tissues or by bites from infected mosquitoes, primarily of the Aedes and Culex genuses. Although the cycle of RVFV infection in savannah regions is well documented, its distribution in forest areas in central Africa has been poorly investigated. To evaluate current circulation of RVFV among livestock and humans living in the Central African Republic (CAR), blood samples were collected from sheep, cattle, and goats and from people at risk, such as stock breeders and workers in slaughterhouses and livestock markets. The samples were tested for anti-RVFV immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies. We also sequenced the complete genomes of two local strains, one isolated in 1969 from mosquitoes and one isolated in 1985 from humans living in forested areas. The 1271 animals sampled comprised 727 cattle, 325 sheep, and 219 goats at three sites. The overall seroprevalence of anti-RVFV IgM antibodies was 1.9% and that of IgG antibodies was 8.6%. IgM antibodies were found only during the rainy season, but the frequency of IgG antibodies did not differ significantly by season. No evidence of recent RVFV infection was found in 335 people considered at risk; however, 16.7% had evidence of past infection. Comparison of the nucleotide sequences of the strains isolated in the CAR with those isolated in other African countries showed that they belonged to the East/Central African cluster. This study confirms current circulation of RVFV in CAR. Further studies are needed to determine the potential vectors involved and the virus reservoirs.
Atkinson, C.T.; Lease, J.K.; Dusek, Robert J.; Samuel, M.D.
2005-01-01
Introduced avian pox virus and malaria have had devastating impacts on native Hawaiian forest birds, yet little has been published about their prevalence and distribution in forest bird communities outside of windward Hawaii Island. We surveyed native and non-native forest birds for these two diseases at three different elevations on leeward Mauna Loa Volcano at the Kona Forest Unit of Hakalau Forest National Wildlife Refuge. Prevalence of malaria by both serology and microscopy varied by elevation and ranged from 28% at 710 m to 13% at 1830 m. Prevalence of pox-like lesions also varied by altitude, ranging in native species from 10% at 710 m to 2% at 1830 m. Native species at all elevations had the highest prevalence of malarial antibody and pox-like lesions. By contrast, pox-like lesions were not detected in individuals of four non-native species and only 5% of Japanese White-eye (Zosterops japonicus) was positive for malaria. A significantly high proportion of birds with pox-like lesions also had serological evidence of concurrent, chronic malarial infections, suggesting an interaction between these diseases, dual transmission of both diseases by the primary mosquito vector (Culex quinquefasciatus) or complete recovery of some pox-infected birds without loss of toes. Results from this study document high prevalence of malaria and pox at this refuge. Development of effective disease control strategies will be important for restoration of remnant populations of the endangered 'Akiapola'au (Hemignathus munroi), Hawaii Creeper (Oreomystis mana), and Hawaii 'Akepa (Loxops coccineus coccineus) that still occur on the refuge.
Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S.; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T
2015-01-01
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called “chimeric virus vaccines”). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were replaced by the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of information. The Brighton Collaboration V3SWG template may also be useful as a guide to the evaluation of other recombinant viral vector vaccines. PMID:25446819
Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T
2015-01-01
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of information. The Brighton Collaboration V3SWG template may also be useful as a guide to the evaluation of other recombinant viral vector vaccines. Copyright © 2014. Published by Elsevier Ltd.
Virus infection mediates the effects of elevated CO2 on plants and vectors.
Trębicki, Piotr; Vandegeer, Rebecca K; Bosque-Pérez, Nilsa A; Powell, Kevin S; Dader, Beatriz; Freeman, Angela J; Yen, Alan L; Fitzgerald, Glenn J; Luck, Jo E
2016-03-04
Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.
Virus infection mediates the effects of elevated CO2 on plants and vectors
Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.
2016-01-01
Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production. PMID:26941044
Virus infection mediates the effects of elevated CO2 on plants and vectors
NASA Astrophysics Data System (ADS)
Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.
2016-03-01
Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.
Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus.
Di Luca, Marco; Severini, Francesco; Toma, Luciano; Boccolini, Daniela; Romi, Roberto; Remoli, Maria Elena; Sabbatucci, Michela; Rizzo, Caterina; Venturi, Giulietta; Rezza, Giovanni; Fortuna, Claudia
2016-05-05
We report a study on vector competence of an Italian population of Aedes albopictus for Zika virus (ZIKV). Ae. albopictus was susceptible to ZIKV infection (infection rate: 10%), and the virus could disseminate and was secreted in the mosquito's saliva (dissemination rate: 29%; transmission rate: 29%) after an extrinsic incubation period of 11 days. The observed vector competence was lower than that of an Ae. aegypti colony tested in parallel.
2015-05-18
THOMAS AND OTHERS ENHANCED SURVEILLANCE FOR DENGUE Improving Dengue Virus Capture Rates in Humans and Vectors in Kamphaeng Phet Province...of Medical Sciences, Bangkok, Thailand. Abstract. Dengue is of public health importance in tropical and sub-tropical regions. Dengue virus (DENV...with confirmed dengue (initiates) and associated cluster individuals (associates) with entomologic sampling. A total of 438 associates were enrolled
Lesch, H P; Laitinen, A; Peixoto, C; Vicente, T; Makkonen, K-E; Laitinen, L; Pikkarainen, J T; Samaranayake, H; Alves, P M; Carrondo, M J T; Ylä-Herttuala, S; Airenne, K J
2011-06-01
Lentivirus can be engineered to be a highly potent vector for gene therapy applications. However, generation of clinical grade vectors in enough quantities for therapeutic use is still troublesome and limits the preclinical and clinical experiments. As a first step to solve this unmet need we recently introduced a baculovirus-based production system for lentiviral vector (LV) production using adherent cells. Herein, we have adapted and optimized the production of these vectors to a suspension cell culture system using recombinant baculoviruses delivering all elements required for a safe latest generation LV preparation. High-titer LV stocks were achieved in 293T cells grown in suspension. Produced viruses were accurately characterized and the functionality was also tested in vivo. Produced viruses were compared with viruses produced by calcium phosphate transfection method in adherent cells and polyethylenimine transfection method in suspension cells. Furthermore, a scalable and cost-effective capture purification step was developed based on a diethylaminoethyl monolithic column capable of removing most of the baculoviruses from the LV pool with 65% recovery.
Biology and distribution of Lutzomyia apache as it relates to VSV
USDA-ARS?s Scientific Manuscript database
Phlebotomine sand flies are vectors of bacteria, parasites, and viruses. Lutzomyia apache was incriminated as a vector of vesicular stomatitis viruses(VSV)due to overlapping ranges of the sand fly and outbreaks of VSV. I report on newly discovered populations of L. apache in Wyoming from Albany and ...
Elucidating the Potential of Plant Rhabdoviruses as Vector Expressions Systems
USDA-ARS?s Scientific Manuscript database
Maize fine streak virus (MFSV) is a member of the genus Nucleorhabdovirus that is transmitted by the leafhopper Graminella nigrifons. The virus replicates in both its maize host and its insect vector. To determine whether Drosophila S2 cells support the production of full-length MFSV proteins, we ...
USDA-ARS?s Scientific Manuscript database
Potato virus Y (PVY) strains are transmitted by different aphid species in a non-persistent, non-circulative manner. Green peach aphid (GPA, Myzus persicae Sulzer; Aphididae, Macrosiphini) is the most efficient vector in laboratory studies, but potato aphid (PA, Macrosiphum euphorbiae Thomas; Aphidi...
Reduction in fecundity and shifts in cellular processes by a native virus on an invasive insect
USDA-ARS?s Scientific Manuscript database
Pathogens and their vectors have co-evolutionary histories that are intricately intertwined with their ecologies, environments and genetic interactions. The majority of non-persistently transmitted plant viruses are transmitted by aphid species. One important aphid vector in soybean-growing regions ...
Huang, Zhong; Phoolcharoen, Waranyoo; Lai, Huafang; Piensook, Khanrat; Cardineau, Guy; Zeitlin, Larry; Whaley, Kevin J.; Arntzen, Charles J.
2010-01-01
Plant viral vectors have great potential in rapid production of important pharmaceutical proteins. However, high-yield production of heterooligomeric proteins that require the expression and assembly of two or more protein subunits often suffers problems due to the “competing” nature of viral vectors derived from the same virus. Previously we reported that a bean yellow dwarf virus (BeYDV)-derived, three-component DNA replicon system allows rapid production of single recombinant proteins in plants (Huang et al. 2009). In this article, we report further development of this expression system for its application in high-yield production of oligomeric protein complexes including monoclonal antibodies (mAbs) in plants. We showed that the BeYDV replicon system permits simultaneous efficient replication of two DNA replicons and thus, high-level accumulation of two recombinant proteins in the same plant cell. We also demonstrated that a single vector that contains multiple replicon cassettes was as efficient as the three-component system in driving the expression of two distinct proteins. Using either the non-competing, three-vector system or the multi-replicon single vector, we produced both the heavy and light chain subunits of a protective IgG mAb 6D8 against Ebola virus GP1 (Wilson et al. 2000) at 0.5 mg of mAb per gram leaf fresh weight within 4 days post infiltration of Nicotiana benthamiana leaves. We further demonstrated that full-size tetrameric IgG complex containing two heavy and two light chains was efficiently assembled and readily purified, and retained its functionality in specific binding to inactivated Ebola virus. Thus, our single-vector replicon system provides high-yield production capacity for heterooligomeric proteins, yet eliminates the difficult task of identifying non-competing virus and the need for co-infection of multiple expression modules. The multi-replicon vector represents a significant advance in transient expression technology for antibody production in plants. PMID:20047189
Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine Responses.
Crosby, Catherine M; Matchett, William E; Anguiano-Zarate, Stephanie S; Parks, Christopher A; Weaver, Eric A; Pease, Larry R; Webby, Richard J; Barry, Michael A
2017-01-15
Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed "single-cycle" adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as "needle-free" mucosal vaccines. Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold promise to be more potent vectors and vaccines than current RD-Ad vectors. Copyright © 2017 Crosby et al.
Hsieh, Chung-Ho; Lu, Ruey-Hwa; Lee, Nai-Hsin; Chiu, Wen-Ta; Hsu, Min-Huei; Li, Yu-Chuan Jack
2011-01-01
Diagnosing acute appendicitis clinically is still difficult. We developed random forests, support vector machines, and artificial neural network models to diagnose acute appendicitis. Between January 2006 and December 2008, patients who had a consultation session with surgeons for suspected acute appendicitis were enrolled. Seventy-five percent of the data set was used to construct models including random forest, support vector machines, artificial neural networks, and logistic regression. Twenty-five percent of the data set was withheld to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate performance, which was compared with that of the Alvarado score. Data from a total of 180 patients were collected, 135 used for training and 45 for testing. The mean age of patients was 39.4 years (range, 16-85). Final diagnosis revealed 115 patients with and 65 without appendicitis. The AUC of random forest, support vector machines, artificial neural networks, logistic regression, and Alvarado was 0.98, 0.96, 0.91, 0.87, and 0.77, respectively. The sensitivity, specificity, positive, and negative predictive values of random forest were 94%, 100%, 100%, and 87%, respectively. Random forest performed better than artificial neural networks, logistic regression, and Alvarado. We demonstrated that random forest can predict acute appendicitis with good accuracy and, deployed appropriately, can be an effective tool in clinical decision making. Copyright © 2011 Mosby, Inc. All rights reserved.
Gene therapy for inherited muscle diseases: where genetics meets rehabilitation medicine.
Braun, Robynne; Wang, Zejing; Mack, David L; Childers, Martin K
2014-11-01
The development of clinical vectors to correct genetic mutations that cause inherited myopathies and related disorders of skeletal muscle is advancing at an impressive rate. Adeno-associated virus vectors are attractive for clinical use because (1) adeno-associated viruses do not cause human disease and (2) these vectors are able to persist for years. New vectors are now becoming available as gene therapy delivery tools, and recent preclinical experiments have demonstrated the feasibility, safety, and efficacy of gene therapy with adeno-associated virus for long-term correction of muscle pathology and weakness in myotubularin-deficient canine and murine disease models. In this review, recent advances in the application of gene therapies to treat inherited muscle disorders are presented, including Duchenne muscular dystrophy and x-linked myotubular myopathy. Potential areas for therapeutic synergies between rehabilitation medicine and genetics are also discussed.
Li, Fang; Ryu, Byoung Y.; Krueger, Robin L.; Heldt, Scott A.
2012-01-01
Here we report a novel viral glycoprotein created by replacing a natural receptor-binding sequence of the ecotropic Moloney murine leukemia virus envelope glycoprotein with the peptide ligand somatostatin. This new chimeric glycoprotein, which has been named the Sst receptor binding site (Sst-RBS), gives targeted transduction based on three criteria: (i) a gain of the use of a new entry receptor not used by any known virus; (ii) targeted entry at levels comparable to gene delivery by wild-type ecotropic Moloney murine leukemia virus and vesicular stomatitis virus (VSV) G glycoproteins; and (iii) a loss of the use of the natural ecotropic virus receptor. Retroviral vectors coated with Sst-RBS gained the ability to bind and transduce human 293 cells expressing somatostatin receptors. Their infection was specific to target somatostatin receptors, since a synthetic somatostatin peptide inhibited infection in a dose-dependent manner and the ability to transduce mouse cells bearing the natural ecotropic receptor was effectively lost. Importantly, vectors coated with the Sst-RBS glycoprotein gave targeted entry of up to 1 × 106 transducing U/ml, a level comparable to that seen with infection of vectors coated with the parental wild-type ecotropic Moloney murine leukemia virus glycoprotein through the ecotropic receptor and approaching that of infection of VSV G-coated vectors through the VSV receptor. To our knowledge, this is the first example of a glycoprotein that gives targeted entry of retroviral vectors at levels comparable to the natural capacity of viral envelope glycoproteins. PMID:22013043
Kagale, Sateesh; Uzuhashi, Shihomi; Wigness, Merek; Bender, Tricia; Yang, Wen; Borhan, M. Hossein; Rozwadowski, Kevin
2012-01-01
Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts. PMID:23166857
Oncolytic Herpes Simplex Virus Vectors Fully Retargeted to Tumor- Associated Antigens.
Uchida, Hiroaki; Hamada, Hirofumi; Nakano, Kenji; Kwon, Heechung; Tahara, Hideaki; Cohen, Justus B; Glorioso, Joseph C
2018-01-01
Oncolytic virotherapy is a novel therapeutic modality for malignant diseases that exploits selective viral replication in cancer cells. Herpes simplex virus (HSV) is a promising agent for oncolytic virotherapy due to its broad cell tropism and the identification of mutations that favor its replication in tumor over normal cells. However, these attenuating mutations also tend to limit the potency of current oncolytic HSV vectors that have entered clinical studies. As an alternative, vector retargeting to novel entry receptors has the potential to achieve tumor specificity at the stage of virus entry, eliminating the need for replication-attenuating mutations. Here, we summarize the molecular mechanism of HSV entry and recent advances in the development of fully retargeted HSV vectors for oncolytic virotherapy. Retargeted HSV vectors offer an attractive platform for the creation of a new generation of oncolytic HSV with improved efficacy and specificity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Vectors of Crimean Congo Hemorrhagic Fever Virus in Iran
Telmadarraiy, Zakkyeh; Chinikar, Sadegh; Vatandoost, Hassan; Faghihi, Faezeh; Hosseini-Chegeni, Asadollah
2015-01-01
Background: Ticks are important vectors and reservoirs of Crimean Congo Hemorrhagic Fever (CCHF) virus. Human beings may be infected whenever the normal life cycle of the infected ticks on non-human vertebrate hosts is interrupted by the undesirable presence of humans in the cycle. A total of 26 species of Argasid and Ixodid ticks have been recorded in Iran; including nine Hyalomma, two Rhipicephalus, two Dermacentor, five Haemaphysalis, two Boophilus, one Ixodes and two Argas as well as three Ornithodoros species as blood sucking ectoparasites of livestock and poultries. The present paper reviews tick vectors of CCHF virus in Iran, focusing on the role of ticks in different provinces of Iran using reverse transcription polymerase chain reaction (RT-PCR) assay. Methods: During ten years study, 1054 tick specimens; including two species of Argasidae and 17 species of Ixodidae were examined for their infection to CCHF virus genome. The output of all studies as well as related publications were discussed in the current paper. Results: The results show that Rhipicephalus sanguineus, Hyalomma marginatum, H. anatolicum, H. asiaticum and H. dromedarii were known as the most frequent species which were positive for CCHF virus. Conclusion: The status of ticks which were positive for CCHF virus revealed that unlike the most common idea that Hyalomma species are the most important vectors of CCHF virus, other ticks including Rhipicephalus, Haemaphysalis and Dermacentor can be reservoir of this virus; thus, considering geographical distribution, type of host and environmental conditions, different tick control measurements should be carried out in areas with high incidence of CCHF disease. PMID:26623426
Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.
Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing
2015-02-01
DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. Copyright © 2015 Elsevier B.V. All rights reserved.
Lutwama, J J; Kayondo, J; Savage, H M; Burkot, T R; Miller, B R
1999-07-01
Entomologic studies were conducted between January 27 and February 2, 1997, in Bbaale village in southcentral Uganda during an o'nyong-nyong (ONN) virus epidemic, which began in mid 1996 and continued into 1997. The objectives were to confirm the role of anophelines in ONN virus transmission and to examine other mosquito species as epidemic vectors of ONN virus. Of 10,050 mosquitoes collected using light traps and pyrethrum knockdown sprays, Anopheles (Cellia) funestus Giles was presumed to be the principal vector because it was the most abundant mosquito species from which a strain of ONN virus was isolated. This virus was isolated for the first time from a culicine species, Mansonia (Mansonioides) uniformis Theobald. Bwamba virus and Nyando virus were also isolated from An. funestus.
Ding, Xin Shun; Schneider, William L; Chaluvadi, Srinivasa Rao; Mian, M A Rouf; Nelson, Richard S
2006-11-01
Virus-induced gene silencing (VIGS) is used to analyze gene function in dicotyledonous plants but less so in monocotyledonous plants (particularly rice and corn), partially due to the limited number of virus expression vectors available. Here, we report the cloning and modification for VIGS of a virus from Festuca arundinacea Schreb. (tall fescue) that caused systemic mosaic symptoms on barley, rice, and a specific cultivar of maize (Va35) under greenhouse conditions. Through sequencing, the virus was determined to be a strain of Brome mosaic virus (BMV). The virus was named F-BMV (F for Festuca), and genetic determinants that controlled the systemic infection of rice were mapped to RNAs 1 and 2 of the tripartite genome. cDNA from RNA 3 of the Russian strain of BMV (R-BMV) was modified to accept inserts from foreign genes. Coinoculation of RNAs 1 and 2 from F-BMV and RNA 3 from R-BMV expressing a portion of a plant gene to leaves of barley, rice, and maize plants resulted in visual silencing-like phenotypes. The visual phenotypes were correlated with decreased target host transcript levels in the corresponding leaves. The VIGS visual phenotype varied from maintained during silencing of actin 1 transcript expression to transient with incomplete penetration through affected tissue during silencing of phytoene desaturase expression. F-BMV RNA 3 was modified to allow greater accumulation of virus while minimizing virus pathogenicity. The modified vector C-BMV(A/G) (C for chimeric) was shown to be useful for VIGS. These BMV vectors will be useful for analysis of gene function in rice and maize for which no VIGS system is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Robert J.; Ball, Cameron Scott; Langevin, Stanley A.
In this study, collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized publicmore » health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the nonstructural protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance.« less
Bertin, S; Cavalieri, V; Gribaudo, I; Sacco, D; Marzachì, C; Bosco, D
2016-08-01
Mealybugs (Hemiptera: Pseudococcidae) represent a serious threat for viticulture as vectors of phloem-restricted viruses associated with the grapevine rugose wood and leafroll diseases. Heliococcus bohemicus (Šulc) is known to be involved in the spread of these two viral diseases, being a vector of the Grapevine virus A (GVA) and the Grapevine leafroll-associated virus 1 and 3 (GLRaV-1 and GLRaV-3). This study investigated the acquisition and transmission efficiency of H. bohemicus fed on mixed-infected plants. Nymphs were field-collected onto GVA, GLRaV-1, and GLRaV-3 multiple-infected grapevines in two vineyards in North-Western Italy, and were used in transmission experiments under controlled conditions. Even if most of the collected nymphs were positive to at least one virus, transmission occurred only to a low number of test grapevines. The transmission frequency of GLRaV-3 was the highest, whereas GVA was transmitted to few test plants. The transmission of multiple viruses occurred at low rates, and nymphs that acquired all the three viruses then failed to transmit them together. Statistical analyses showed that the three viruses were independently acquired and transmitted by H. bohemicus and neither synergistic nor antagonistic interactions occurred among them. GVA and GLRaVs transmission efficiencies by H. bohemicus were lower than those reported for other mealybug vectors. This finding is consistent with the slow spread of leafroll and rugose wood diseases observed in Northern Italy, where H. bohemicus is the predominant vector species. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hodara, Vida L.; Velasquillo, M. Cristina; Parodi, Laura M.; Giavedoni, Luis D.
2005-01-01
Human immunodeficiency virus infection is characterized by dysregulation of antigen-presenting cell function and defects in cell-mediated immunity. Recent evidence suggests that impaired ability of CD4+ T cells to upregulate the costimulatory molecule CD154 is at the core of this dysregulation. To test the hypothesis that increased expression of CD154 on infected CD4+ T cells could modulate immune function, we constructed a replication-competent simian immunodeficiency virus (SIV) vector that expressed CD154. We found that this recombinant vector directed the expression of CD154 on the surface of infected CD4+ T cells and that expression of CD154 resulted in activation of B cells present in the same cultures. Experimental infection of rhesus macaques resulted in very low viral loads for the CD154-expressing virus and the control virus, indicating that expression of CD154 did not result in increased viral replication. Analyses of the anti-SIV immune responses and the phenotype of lymphocytes in blood and lymphoid tissues showed changes that occurred during the acute phase of infection only in animals infected with the CD154-expressing SIV, but that became indistinguishable from those seen in animals infected with the control virus at later time points. We conclude that the level of expression of CD154 in itself is not responsible for affecting the immune response to an attenuated virus. Considering that the CD154-expressing SIV vector and the virus control did not carry an active nef gene, our results suggest that, in CD4+ T cells infected with wild-type virus, Nef is the viral factor that interferes with the immune mechanisms that regulate expression of CD154. PMID:15795254
Richards, Stephanie L; Anderson, Sheri L; Lord, Cynthia C; Tabachnick, Walter J
2012-11-01
Culex nigripalpus Theobald is a primary vector of St. Louis encephalitis virus in the southeastern United States. Cx. nigripalpus females were fed blood containing a low (4.0 +/- 0.01 log10 plaque-forming unit equivalents (PFUeq) /ml) or high (4.7 +/- 0.1 log10 PFUeq/ml) St. Louis encephalitis virus dose and maintained at extrinsic incubation temperatures (EIT) of 25 or 28 degrees C for 12 d. Vector competence was measured via quantitative real-time reverse transcriptase polymerase chain reaction to estimate PFUeq using rates of infection, dissemination, and transmission. There were no differences in infection rates between the two EITs at either dose. The low dose had higher infection rates at both EITs. Dissemination rates were significantly higher at 28 degrees C compared with 25 degrees C at both doses. Virus transmission was observed (<7%) only at 28 degrees C for both doses. The virus titer in body tissues was greater at 28 degrees C compared with 25 degrees C at both doses. The difference between the EITs was greater at the low dose, resulting in a higher titer for the low dose than the high dose at 28 degrees C. Virus titers in leg tissues were greater in mosquitoes fed the high versus low dose, but were not influenced by EIT. Further investigations using a variety of environmental and biological factors would be useful in exploring the complexity of vector competence.
RICHARDS, STEPHANIE L.; ANDERSON, SHERI L.; LORD, CYNTHIA C.; TABACHNICK, WALTER J.
2013-01-01
Culex nigripalpus Theobald is a primary vector of St. Louis encephalitis virus in the southeastern United States. Cx. nigripalpus females were fed blood containing a low (4.0 ± 0.01 log10 plaque-forming unit equivalents (PFUeq)/ml) or high (4.7 ± 0.1 log10 PFUeq/ml) St. Louis encephalitis virus dose and maintained at extrinsic incubation temperatures (EIT) of 25 or 28°C for 12 d. Vector competence was measured via quantitative real-time reverse transcriptase polymerase chain reaction to estimate PFUeq using rates of infection, dissemination, and transmission. There were no differences in infection rates between the two EITs at either dose. The low dose had higher infection rates at both EITs. Dissemination rates were significantly higher at 28°C compared with 25°C at both doses. Virus transmission was observed (<7%) only at 28°C for both doses. The virus titer in body tissues was greater at 28°C compared with 25°C at both doses. The difference between the EITs was greater at the low dose, resulting in a higher titer for the low dose than the high dose at 28°C. Virus titers in leg tissues were greater in mosquitoes fed the high versus low dose, but were not influenced by EIT. Further investigations using a variety of environmental and biological factors would be useful in exploring the complexity of vector competence. PMID:23270182
Hamelin, Frédéric M; Hilker, Frank M; Sun, T Anthony; Jeger, Michael J; Hajimorad, M Reza; Allen, Linda J S; Prendeville, Holly R
2017-09-15
Virus-plant interactions range from parasitism to mutualism. Viruses have been shown to increase fecundity of infected plants in comparison with uninfected plants under certain environmental conditions. Increased fecundity of infected plants may benefit both the plant and the virus as seed transmission is one of the main virus transmission pathways, in addition to vector transmission. Trade-offs between vertical (seed) and horizontal (vector) transmission pathways may involve virulence, defined here as decreased fecundity in infected plants. To better understand plant-virus symbiosis evolution, we explore the ecological and evolutionary interplay of virus transmission modes when infection can lead to an increase in plant fecundity. We consider two possible trade-offs: vertical seed transmission vs infected plant fecundity, and horizontal vector transmission vs infected plant fecundity (virulence). Through mathematical models and numerical simulations, we show (1) that a trade-off between virulence and vertical transmission can lead to virus extinction during the course of evolution, (2) that evolutionary branching can occur with subsequent coexistence of mutualistic and parasitic virus strains, and (3) that mutualism can out-compete parasitism in the long-run. In passing, we show that ecological bi-stability is possible in a very simple discrete-time epidemic model. Possible extensions of this study include the evolution of conditional (environment-dependent) mutualism in plant viruses. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Danfeng; Li, Pei; Han, Yongqiang; Lei, Wenbin; Hou, Maolin
2016-02-01
Southern rice black-streaked dwarf virus (SRBSDV) is a novel virus transmitted by white-backed planthopper Sogatella furcifera (Hováth) (Hemiptera: Delphacidae). Due to low virus transmission efficiency by the planthopper, researchers are frequently confronted with shortage of viruliferous vectors or infected rice plants, especially in winter and the following spring. To find new ways to maintain virus-infected materials, viral rice plants were stored at -80°C for 45 or 140 d and evaluated as virus sources in virus transmission by the vector. SRBSDV virions were not degraded during storage at -80°C as indicated by reverse transcription-polymerase chain reaction and reverse transcription real-time PCR detection. The planthopper nymphs fed on the infected thawed plants for 48 h survived at about 40% and showed positive detection of SRBSDV, but they lost the virus after feeding for another 20 d (the circulative transmission period) on noninfected plants. Transmission electron microscope images indicated broken capsid of virions in infected thawed leaves in contrast to integrity capsid of virions in infected fresh leaves. These results show that low temperature storage of SRBSDV-infected rice plants cannot sustain virus transmission by white-backed planthopper. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Carmo-Sousa, Michele; Moreno, Aranzazu; Garzo, Elisa; Fereres, Alberto
2014-06-24
Plant viruses are known to modify the behaviour of their insect vectors, both directly and indirectly, generally adapting to each type of virus-vector relationship in a way that enhances transmission efficiency. Here, we report results of three different studies showing how a virus transmitted in a non-persistent (NP) manner (Cucumber mosaic virus; CMV, Cucumovirus) can induce changes in its host plant, cucumber (Cucumis sativus cv. Marumba) that modifies the behaviour of its aphid vector (Aphis gossypii Glover; Hemiptera: Aphididae) in a way that enhances virus transmission and spread non-viruliferous aphids changed their alighting, settling and probing behaviour activities over time when exposed to CMV-infected and mock-inoculated cucumber plants. Aphids exhibited no preference to migrate from CMV-infected to mock-inoculated plants at short time intervals (1, 10 and 30 min after release), but showed a clear shift in preference to migrate from CMV-infected to mock-inoculated plants 60 min after release. Our free-choice preference assays showed that A. gossypii alates preferred CMV-infected over mock-inoculated plants at an early stage (30 min), but this behaviour was reverted at a later stage and aphids preferred to settle and reproduce on mock-inoculated plants. The electrical penetration graph (EPG) technique revealed a sharp change in aphid probing behaviour over time when exposed to CMV-infected plants. At the beginning (first 15 min) aphid vectors dramatically increased the number of short superficial probes and intracellular punctures when exposed to CMV-infected plants. At a later stage (second hour of recording) aphids diminished their feeding on CMV-infected plants as indicated by much less time spent in phloem salivation and ingestion (E1 and E2). This particular probing behaviour including an early increase in the number of short superficial probes and intracellular punctures followed by a phloem feeding deterrence is known to enhance the transmission efficiency of viruses transmitted in a NP manner. We conclude that CMV induces specific changes in a plant host that modify the alighting, settling and probing behaviour of its main vector A. gossypii, leading to optimum transmission and spread of the virus. Our findings should be considered when modelling the spread of viruses transmitted in a NP manner. Copyright © 2013 Elsevier B.V. All rights reserved.
Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions
Kobayashi, Kenta; Inoue, Ken-ichi; Tanabe, Soshi; Kato, Shigeki; Takada, Masahiko; Kobayashi, Kazuto
2017-01-01
Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1) with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G) and vesicular stomatitis virus glycoprotein (VSV-G) enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E), which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease. PMID:28824385
Production of SV40-derived vectors.
Strayer, David S; Mitchell, Christine; Maier, Dawn A; Nichols, Carmen N
2010-06-01
Recombinant simian virus 40 (rSV40)-derived vectors are particularly useful for gene delivery to bone marrow progenitor cells and their differentiated derivatives, certain types of epithelial cells (e.g., hepatocytes), and central nervous system neurons and microglia. They integrate rapidly into cellular DNA to provide long-term gene expression in vitro and in vivo in both resting and dividing cells. Here we describe a protocol for production and purification of these vectors. These procedures require only packaging cells (e.g., COS-7) and circular vector genome DNA. Amplification involves repeated infection of packaging cells with vector produced by transfection. Cotransfection is not required in any step. Viruses are purified by centrifugation using discontinuous sucrose or cesium chloride (CsCl) gradients and resulting vectors are replication-incompetent and contain no detectable wild-type SV40 revertants. These approaches are simple, give reproducible results, and may be used to generate vectors that are deleted only for large T antigen (Tag), or for all SV40-coding sequences capable of carrying up to 5 kb of foreign DNA. These vectors are best applied to long-term expression of proteins normally encoded by mammalian cells or by viruses that infect mammalian cells, or of untranslated RNAs (e.g., RNA interference). The preparative approaches described facilitate application of these vectors and allow almost any laboratory to exploit their strengths for diverse gene delivery applications.
Samuel, Glady Hazitha; Wiley, Michael R; Badawi, Atif; Adelman, Zach N; Myles, Kevin M
2016-11-29
Mosquito-borne flaviviruses, including yellow fever virus (YFV), Zika virus (ZIKV), and West Nile virus (WNV), profoundly affect human health. The successful transmission of these viruses to a human host depends on the pathogen's ability to overcome a potentially sterilizing immune response in the vector mosquito. Similar to other invertebrate animals and plants, the mosquito's RNA silencing pathway comprises its primary antiviral defense. Although a diverse range of plant and insect viruses has been found to encode suppressors of RNA silencing, the mechanisms by which flaviviruses antagonize antiviral small RNA pathways in disease vectors are unknown. Here we describe a viral suppressor of RNA silencing (VSR) encoded by the prototype flavivirus, YFV. We show that the YFV capsid (YFC) protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. This VSR activity appears to be broadly conserved in the C proteins of other medically important flaviviruses, including that of ZIKV. These results suggest that a molecular "arms race" between vector and pathogen underlies the continued existence of flaviviruses in nature.
Satellite based hydroclimatic understanding of evolution of Dengue and Zika virus
NASA Astrophysics Data System (ADS)
Khan, R.; Jutla, A.; Colwell, R. R.
2017-12-01
Vector-borne diseases are prevalent in tropical and subtropical regions especially in Africa, South America, and Asia. Vector eradication is perhaps not possible since pathogens adapt to local environment. In absence of appropriate vaccinations for Dengue and Zika virus, burden of these two infections continue to increase in several geographical locations. Aedes spp. is one of the major vectors for Dengue and Zika viruses. Etiologies on Dengue and Zika viruses are evolving, however the key question remains as to how one species of mosquito can transmit two different infections? We argue that a set of conducive environmental condition, modulated by regional climatic and weather processes, may lead to abundance of a specific virus. Using satellite based rainfall (TRMM/GPM), land surface temperature (MODIS) and dew point temperature (AIRS/MERRA), we have identified appropriate thresholds that can provide estimate on risk of abundance of Dengue or Zika viruses at least few weeks in advance. We will discuss a framework coupling satellite derived hydroclimatic and societal processes to predict environmental niches of favorability of conditions of Dengue or Zika risk in human population on a global scale.
Bag, Sudeep; Rondon, Silvia I; Druffel, Keri L; Riley, David G; Pappu, Hanu R
2014-02-01
Thrips-transmitted Iris yellow spot virus (IYSV) is an important economic constraint to the production of bulb and seed onion crops in the United States and many other parts of the world. Because the virus is exclusively spread by thrips, the ability to rapidly detect the virus in thrips vectors would facilitate studies on the role of thrips in virus epidemiology, and thus formulation of better vector management strategies. Using a polyclonal antiserum produced against the recombinant, Escherichia coli-expressed nonstructural protein coded by the small (S) RNA of IYSV, an enzyme linked immunosorbent assay was developed for detecting IYSV in individual as well as groups of adult thrips. The approach enabled estimating the proportion of potential thrips transmitters in a large number of field-collected thrips collected from field-grown onion plants. Availability of a practical and inexpensive test to identify viruliferous thrips would be useful in epidemiological studies to better understand the role of thrips vectors in outbreaks of this economically important virus of onion.
Xia, Yiqiu; Tang, Yi; Yu, Xu; Wan, Yuan; Chen, Yizhu; Lu, Huaguang; Zheng, Si-Yang
2016-01-01
Viral diseases are perpetual threats to human and animal health. Detection and characterization of viral pathogens require accurate, sensitive and rapid diagnostic assays. For field and clinical samples, the sample preparation procedures limit the ultimate performance and utility of the overall virus diagnostic protocols. Here, we presented the development of a microfluidic device embedded with porous silicon nanowire (pSiNW) forest for label-free size-based point-of-care virus capture in a continuous curved flow design. The pSiNW forests with specific inter-wire spacing were synthesized in situ on both bottom and sidewalls of the microchannels in a batch process. With the enhancement effect of Dean flow, we demonstrated ~50% H5N2 avian influenza viruses were physically trapped without device clogging. A unique feature of the device is that captured viruses can be released by inducing self-degradation of the pSiNWs in physiological aqueous environment. About 60% of captured viruses can be released within 24 hours for virus culture, subsequent molecular diagnosis and other virus characterization and analyses. This device performs viable, unbiased and label-free virus isolation and release. It has great potentials for virus discovery, virus isolation and culture, functional studies of virus pathogenicity, transmission, drug screening, and vaccine development. PMID:27918640
Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector
Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C.; Miller, W. Allen
2016-01-01
Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae) and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits. PMID:27869713
Large-Scale Removal of Invasive Honeysuckle Decreases Mosquito and Avian Host Abundance.
Gardner, Allison M; Muturi, Ephantus J; Overmier, Leah D; Allan, Brian F
2017-12-01
Invasive species rank second only to habitat destruction as a threat to native biodiversity. One consequence of biological invasions is altered risk of exposure to infectious diseases in human and animal populations. The distribution and prevalence of mosquito-borne diseases depend on the complex interactions between the vector, the pathogen, and the human or wildlife reservoir host. These interactions are highly susceptible to disturbance by invasive species, including terrestrial plants. We conducted a 2-year field experiment using a Before-After/Control-Impact design to examine how removal of invasive Amur honeysuckle (Lonicera maackii) in a forest fragment embedded within a residential neighborhood affects the abundance of mosquitoes, including two of the most important vectors of West Nile virus, Culex pipiens and Cx. restuans. We also assessed any potential changes in avian communities and local microclimate associated with Amur honeysuckle removal. We found that (1) removal of Amur honeysuckle reduces the abundance of both vector and non-vector mosquito species that commonly feed on human hosts, (2) the abundance and composition of avian hosts is altered by honeysuckle removal, and (3) areas invaded with honeysuckle support local microclimates that are favorable to mosquito survival. Collectively, our investigations demonstrate the role of a highly invasive understory shrub in determining the abundance and distribution of mosquitoes and suggest potential mechanisms underlying this pattern. Our results also give rise to additional questions regarding the general impact of invasive plants on vector-borne diseases and the spatial scale at which removal of invasive plants may be utilized to effect disease control.
Entomological profile of yellow fever epidemics in the Central African Republic, 2006-2010.
Ngoagouni, Carine; Kamgang, Basile; Manirakiza, Alexandre; Nangouma, Auguste; Paupy, Christophe; Nakoune, Emmanuel; Kazanji, Mirdad
2012-08-16
The causative agent of yellow fever is an arbovirus of the Flaviviridae family transmitted by infected Aedes mosquitoes, particularly in Africa. In the Central African Republic since 2006, cases have been notified in the provinces of Ombella-Mpoko, Ouham-Pende, Basse-Kotto, Haute-Kotto and in Bangui the capital. As the presence of a vector of yellow fever virus (YFV) represents a risk for spread of the disease, we undertook entomological investigations at these sites to identify potential vectors of YFV and their abundance. Between 2006 and 2010, 5066 mosquitoes belonging to six genera and 43 species were identified. The 20 species of the Aedes genus identified included Ae. aegypti, the main vector of YFV in urban settings, and species found in tropical forests, such as Ae. africanus, Ae. simpsoni, Ae. luteocephalus, Ae. vittatus and Ae. opok. These species were not distributed uniformly in the various sites studied. Thus, the predominant Aedes species was Ae. aegypti in Bangui (90.7 %) and Basse-Kotto (42.2 %), Ae. africanus in Ombella-Mpoko (67.4 %) and Haute-Kotto (77.8 %) and Ae. vittatus in Ouham-Pende (62.2 %). Ae. albopictus was also found in Bangui. The distribution of these dominant species differed significantly according to study site (P < 0.0001). None of the pooled homogenates of Aedes mosquitoes analysed by polymerase chain reaction contained the YFV genome. The results indicate a wide diversity of vector species for YFV in the Central African Republic. The establishment of surveillance and vector control programs should take into account the ecological specificity of each species.
PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes
2016-01-01
Vector mosquitoes are responsible for transmission of the majority of arthropod-borne (arbo-) viruses. Virus replication in these vectors needs to be sufficiently high to permit efficient virus transfer to vertebrate hosts. The mosquito immune response therefore is a key determinant for arbovirus transmission. Mosquito antiviral immunity is primarily mediated by the small interfering RNA pathway. Besides this well-established antiviral machinery, the PIWI-interacting RNA (piRNA) pathway processes viral RNA into piRNAs. In recent years, significant progress has been made in characterizing the biogenesis and function of these viral piRNAs. In this review, we discuss these developments, identify knowledge gaps, and suggest directions for future research. PMID:28033427
Evaluation of Animal and Plant Pathogens as Terrorism and Warfare Agents, Vectors and Pests
2001-09-01
fever virus Bluetongue virus African horse sickness virus Nipah swine encephalitis virus Lumpy skin disease virus Camel pox virus Bacteria Bacillus...anthracis Bulkholderia (Pseudomonas) mallei Brucella spp. Mycoplasmas Contagious bovine (pleuropneum.) (M. mycoides var. mycoides type SC) (CBPP...virus Newcastle disease virus Rinderpest virus Pest des petits ruminants virus Bluetongue virus Teschen disease virus (Porcine enterovirus type 1) Rift
Eliasson, Dubravka Grdic; Helgeby, Anja; Schön, Karin; Nygren, Caroline; El-Bakkouri, Karim; Fiers, Walter; Saelens, Xavier; Lövgren, Karin Bengtsson; Nyström, Ida; Lycke, Nils Y
2011-05-23
Here we demonstrate that by using non-toxic fractions of saponin combined with CTA1-DD we can achieve a safe and above all highly efficacious mucosal adjuvant vector. We optimized the construction, tested the requirements for function and evaluated proof-of-concept in an influenza A virus challenge model. We demonstrated that the CTA1-3M2e-DD/ISCOMS vector provided 100% protection against mortality and greatly reduced morbidity in the mouse model. The immunogenicity of the vector was superior to other vaccine formulations using the ISCOM or CTA1-DD adjuvants alone. The versatility of the vector was best exemplified by the many options to insert, incorporate or admix vaccine antigens with the vector. Furthermore, the CTA1-3M2e-DD/ISCOMS could be kept 1 year at 4°C or as a freeze-dried powder without affecting immunogenicity or adjuvanticity of the vector. Strong serum IgG and mucosal IgA responses were elicited and CD4 T cell responses were greatly enhanced after intranasal administration of the combined vector. Together these findings hold promise for the combined vector as a mucosal vaccine against influenza virus infections including pandemic influenza. The CTA1-DD/ISCOMS technology represents a breakthrough in mucosal vaccine vector design which successfully combines immunomodulation and targeting in a safe and stable particulate formation. Copyright © 2011 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We examined the chemical composition of garlic and asafoetida essential oils and their individual and combined toxicity against larvae of two West Nile virus vectors, Culex pipiens pipiens and Cx. restuans. The effect of the two essential oils on egg hatch was also examined. Ten and twelve compounds...
USDA-ARS?s Scientific Manuscript database
The Asian tiger mosquito, Aedes albopictus, ranks among the most important vectors of dengue fever, Zika virus, and chikungunya virus. With no specific medications or vaccines available, vector control is the only way to combat these diseases. Autodissemination of the insect growth regulator pyripro...
Fowl adenovirus serotype 9 vectored vaccine for protection of avian influenza virus
USDA-ARS?s Scientific Manuscript database
A fowl adenovirus serotype 9, a non-pathogenic large double stranded DNA virus, was developed as a viral vector to express influenza genes as a potential vaccine. Two separate constructs were developed that expressed either the hemagglutinin gene of A/Chicken/Jalisco/2012 (H7) or A/ Chicken/Iowa/20...
Avipoxviruses: infection biology and their use as vaccine vectors.
Weli, Simon C; Tryland, Morten
2011-02-03
Avipoxviruses (APVs) belong to the Chordopoxvirinae subfamily of the Poxviridae family. APVs are distributed worldwide and cause disease in domestic, pet and wild birds of many species. APVs are transmitted by aerosols and biting insects, particularly mosquitoes and arthropods and are usually named after the bird species from which they were originally isolated. The virus species Fowlpox virus (FWPV) causes disease in poultry and associated mortality is usually low, but in flocks under stress (other diseases, high production) mortality can reach up to 50%. APVs are also major players in viral vaccine vector development for diseases in human and veterinary medicine. Abortive infection in mammalian cells (no production of progeny viruses) and their ability to accommodate multiple gene inserts are some of the characteristics that make APVs promising vaccine vectors. Although abortive infection in mammalian cells conceivably represents a major vaccine bio-safety advantage, molecular mechanisms restricting APVs to certain hosts are not yet fully understood. This review summarizes the current knowledge relating to APVs, including classification, morphogenesis, host-virus interactions, diagnostics and disease, and also highlights the use of APVs as recombinant vaccine vectors.
Immunogenicity of ORFV-based vectors expressing the rabies virus glycoprotein in livestock species.
Martins, Mathias; Joshi, Lok R; Rodrigues, Fernando S; Anziliero, Deniz; Frandoloso, Rafael; Kutish, Gerald F; Rock, Daniel L; Weiblen, Rudi; Flores, Eduardo F; Diel, Diego G
2017-11-01
The parapoxvirus Orf virus (ORFV) encodes several immunomodulatory proteins (IMPs) that modulate host-innate and pro-inflammatory responses and has been proposed as a vaccine delivery vector for use in animal species. Here we describe the construction and characterization of two recombinant ORFV vectors expressing the rabies virus (RABV) glycoprotein (G). The RABV-G gene was inserted in the ORFV024 or ORFV121 gene loci, which encode for IMPs that are unique to parapoxviruses and inhibit activation of the NF-κB signaling pathway. The immunogenicity of the resultant recombinant viruses (ORFV ∆024 RABV-G or ORFV ∆121 RABV-G, respectively) was evaluated in pigs and cattle. Immunization of the target species with ORFV ∆024 RABV-G and ORFV ∆121 RABV-G elicited robust neutralizing antibody responses against RABV. Notably, neutralizing antibody titers induced in ORFV ∆121 RABV-G-immunized pigs and cattle were significantly higher than those detected in ORFV ∆024 RABV-G-immunized animals, indicating a higher immunogenicity of ORFV Δ121 -based vectors in these animal species. Copyright © 2017 Elsevier Inc. All rights reserved.
Chikungunya Virus Vaccines: Viral Vector-Based Approaches.
Ramsauer, Katrin; Tangy, Frédéric
2016-12-15
In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Globalization, land use and the invasion of West Nile virus
Kilpatrick, A. Marm
2012-01-01
Many invasive species that have been spread through the globalization of trade and travel are infectious pathogens. A paradigmatic case is the introduction of West Nile virus (WNV) into North America in 1999. A decade of research on the ecology and evolution of WNV includes three findings that provide insight into the outcome of future viral introductions. First, WNV transmission in North America is highest in urbanized and agricultural habitats, in part because the hosts and vectors of WNV are abundant in human-modified areas. Second, after its introduction, the virus quickly adapted to infect local mosquito vectors more efficiently than the originally introduced strain. Third, highly focused feeding patterns of the mosquito vectors of WNV result in unexpected host species being important for transmission. These findings provide a framework for predicting and preventing the emergence of foreign vector-borne pathogens. PMID:22021850
2012-01-01
Background Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions and is now extending its range to temperate regions. The spread of the dengue viruses mainly depends on vector population (Aedes aegypti and Aedes albopictus), which is influenced by changing climatic conditions and various land-use/land-cover types. Spatial display of the relationship between dengue vector density and land-cover types is required to describe a near-future viral outbreak scenario. This study is aimed at exploring how land-cover types are linked to the behavior of dengue-transmitting mosquitoes. Methods Surveys were conducted in 92 villages of Phitsanulok Province Thailand. The sampling was conducted on three separate occasions in the months of March, May and July. Dengue indices, i.e. container index (C.I.), house index (H.I.) and Breteau index (B.I.) were used to map habitats conducible to dengue vector growth. Spatial epidemiological analysis using Bivariate Pearson’s correlation was conducted to evaluate the level of interdependence between larval density and land-use types. Factor analysis using principal component analysis (PCA) with varimax rotation was performed to ascertain the variance among land-use types. Furthermore, spatial ring method was used as to visualize spatially referenced, multivariate and temporal data in single information graphic. Results Results of dengue indices showed that the settlements around gasoline stations/workshops, in the vicinity of marsh/swamp and rice paddy appeared to be favorable habitat for dengue vector propagation at highly significant and positive correlation (p = 0.001) in the month of May. Settlements around the institutional areas were highly significant and positively correlated (p = 0.01) with H.I. in the month of March. Moreover, dengue indices in the month of March showed a significant and positive correlation (p <= 0.05) with deciduous forest. The H.I. of people living around horticulture land were significantly and positively correlated (p = 0.05) during the month of May, and perennial vegetation showed a highly significant and positive correlation (p = 0.001) in the month of March with C.I. and significant and positive correlation (p <= 0.05) with B.I., respectively. Conclusions The study concluded that gasoline stations/workshops, rice paddy, marsh/swamp and deciduous forests played highly significant role in dengue vector growth. Thus, the spatio-temporal relationships of dengue vector larval density and land-use types may help to predict favorable dengue habitat, and thereby enables public healthcare managers to take precautionary measures to prevent impending dengue outbreak. PMID:23043443
Sarfraz, Muhammad Shahzad; Tripathi, Nitin K; Tipdecho, Taravudh; Thongbu, Thawisak; Kerdthong, Pornsuk; Souris, Marc
2012-10-09
Dengue, a mosquito-borne febrile viral disease, is found in tropical and sub-tropical regions and is now extending its range to temperate regions. The spread of the dengue viruses mainly depends on vector population (Aedes aegypti and Aedes albopictus), which is influenced by changing climatic conditions and various land-use/land-cover types. Spatial display of the relationship between dengue vector density and land-cover types is required to describe a near-future viral outbreak scenario. This study is aimed at exploring how land-cover types are linked to the behavior of dengue-transmitting mosquitoes. Surveys were conducted in 92 villages of Phitsanulok Province Thailand. The sampling was conducted on three separate occasions in the months of March, May and July. Dengue indices, i.e. container index (C.I.), house index (H.I.) and Breteau index (B.I.) were used to map habitats conducible to dengue vector growth. Spatial epidemiological analysis using Bivariate Pearson's correlation was conducted to evaluate the level of interdependence between larval density and land-use types. Factor analysis using principal component analysis (PCA) with varimax rotation was performed to ascertain the variance among land-use types. Furthermore, spatial ring method was used as to visualize spatially referenced, multivariate and temporal data in single information graphic. Results of dengue indices showed that the settlements around gasoline stations/workshops, in the vicinity of marsh/swamp and rice paddy appeared to be favorable habitat for dengue vector propagation at highly significant and positive correlation (p = 0.001) in the month of May. Settlements around the institutional areas were highly significant and positively correlated (p = 0.01) with H.I. in the month of March. Moreover, dengue indices in the month of March showed a significant and positive correlation (p <= 0.05) with deciduous forest. The H.I. of people living around horticulture land were significantly and positively correlated (p = 0.05) during the month of May, and perennial vegetation showed a highly significant and positive correlation (p = 0.001) in the month of March with C.I. and significant and positive correlation (p <= 0.05) with B.I., respectively. The study concluded that gasoline stations/workshops, rice paddy, marsh/swamp and deciduous forests played highly significant role in dengue vector growth. Thus, the spatio-temporal relationships of dengue vector larval density and land-use types may help to predict favorable dengue habitat, and thereby enables public healthcare managers to take precautionary measures to prevent impending dengue outbreak.
Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles.
Schweneker, Marc; Laimbacher, Andrea S; Zimmer, Gert; Wagner, Susanne; Schraner, Elisabeth M; Wolferstätter, Michael; Klingenberg, Marieken; Dirmeier, Ulrike; Steigerwald, Robin; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen
2017-06-01
There are currently no approved therapeutics or vaccines to treat or protect against the severe hemorrhagic fever and death caused by Ebola virus (EBOV). Ebola virus-like particles (EBOV VLPs) consisting of the matrix protein VP40, the glycoprotein (GP), and the nucleoprotein (NP) are highly immunogenic and protective in nonhuman primates against Ebola virus disease (EVD). We have constructed a modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) recombinant coexpressing VP40 and GP of EBOV Mayinga and the NP of Taï Forest virus (TAFV) (MVA-BN-EBOV-VLP) to launch noninfectious EBOV VLPs as a second vaccine modality in the MVA-BN-EBOV-VLP-vaccinated organism. Human cells infected with either MVA-BN-EBOV-VLP or MVA-BN-EBOV-GP showed comparable GP expression levels and transport of complex N-glycosylated GP to the cell surface. Human cells infected with MVA-BN-EBOV-VLP produced large amounts of EBOV VLPs that were decorated with GP spikes but excluded the poxviral membrane protein B5, thus resembling authentic EBOV particles. The heterologous TAFV NP enhanced EBOV VP40-driven VLP formation with efficiency similar to that of the homologous EBOV NP in a transient-expression assay, and both NPs were incorporated into EBOV VLPs. EBOV GP-specific CD8 T cell responses were comparable between MVA-BN-EBOV-VLP- and MVA-BN-EBOV-GP-immunized mice. The levels of EBOV GP-specific neutralizing and binding antibodies, as well as GP-specific IgG1/IgG2a ratios induced by the two constructs, in mice were also similar, raising the question whether the quality rather than the quantity of the GP-specific antibody response might be altered by an EBOV VLP-generating MVA recombinant. IMPORTANCE The recent outbreak of Ebola virus (EBOV), claiming more than 11,000 lives, has underscored the need to advance the development of safe and effective filovirus vaccines. Virus-like particles (VLPs), as well as recombinant viral vectors, have proved to be promising vaccine candidates. Modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) is a safe and immunogenic vaccine vector with a large capacity to accommodate multiple foreign genes. In this study, we combined the advantages of VLPs and the MVA platform by generating a recombinant MVA-BN-EBOV-VLP that would produce noninfectious EBOV VLPs in the vaccinated individual. Our results show that human cells infected with MVA-BN-EBOV-VLP indeed formed and released EBOV VLPs, thus producing a highly authentic immunogen. MVA-BN-EBOV-VLP efficiently induced EBOV-specific humoral and cellular immune responses in vaccinated mice. These results are the basis for future advancements, e.g., by including antigens from various filoviral species to develop multivalent VLP-producing MVA-based filovirus vaccines. Copyright © 2017 American Society for Microbiology.
Descriptive Statistics of the Genome: Phylogenetic Classification of Viruses.
Hernandez, Troy; Yang, Jie
2016-10-01
The typical process for classifying and submitting a newly sequenced virus to the NCBI database involves two steps. First, a BLAST search is performed to determine likely family candidates. That is followed by checking the candidate families with the pairwise sequence alignment tool for similar species. The submitter's judgment is then used to determine the most likely species classification. The aim of this article is to show that this process can be automated into a fast, accurate, one-step process using the proposed alignment-free method and properly implemented machine learning techniques. We present a new family of alignment-free vectorizations of the genome, the generalized vector, that maintains the speed of existing alignment-free methods while outperforming all available methods. This new alignment-free vectorization uses the frequency of genomic words (k-mers), as is done in the composition vector, and incorporates descriptive statistics of those k-mers' positional information, as inspired by the natural vector. We analyze five different characterizations of genome similarity using k-nearest neighbor classification and evaluate these on two collections of viruses totaling over 10,000 viruses. We show that our proposed method performs better than, or as well as, other methods at every level of the phylogenetic hierarchy. The data and R code is available upon request.
Gil, Jose Fernando; Adams, Ian; Boonham, Neil; Nielsen, Steen Lykke; Nicolaisen, Mogens
2016-06-01
Potato is the fourth most important crop worldwide that is used as a staple food, after rice, wheat and maize. The crop can be affected by a large number of pathogens, including fungi, oomycetes, bacteria and viruses. Diseases caused by viruses are among the most important factors contributing to reduced quality and yield of the crop. Potato mop-top virus (genus Pomovirus) induces necrotic flecks in the tuber flesh and skin of potato in temperate countries. Spongospora subterranea is the vector of PMTV. Both the virus and its vector cause disease in potato. In Colombia, PMTV has been detected throughout the country together with a novel pomo-like virus in the centre (Cundinamarca and Boyacá) and south west (Nariño) of the country. We studied the molecular and biological characteristics of this novel virus. Its genome resembles those of members of the genus Pomovirus, and it is closely related to PMTV. It induces mild systemic symptoms in Nicotiana benthamiana (mosaic, branch curling), but no symptoms in N. tabacum, N. debneyi and Chenopodium amaranticolor. The proposed name for the virus is "Colombian potato soil-borne virus" (CPSbV). Additionally, another pomo-like virus was identified in Nariño. This virus induces severe systemic stem declining and mild mosaic in N. benthamiana. The tentative name "soil-borne virus 2" (SbV2) is proposed for this virus. No vectors have been identified for these viruses despite several attempts. This work focused on the characterisation of CPSbV. The risk posed by these viruses if they are introduced into new territories is discussed.
Immunohistochemical Insights in Vector-Borne Disease Research
USDA-ARS?s Scientific Manuscript database
Culicoides sonorensis biting midges transmit several emerging and re-emerging arboviruses of domestic and wild ruminants, including bluetongue virus, epizootic hemorrhagic disease virus (EHDV), and vesicular stomatitis virus (VSV). We have utilized immunohistochemistry (IHC) to examine virus-vecto...
Illnesses on the Rise From Mosquito, Tick, and Flea Bites
... gets sick has a vector-borne disease, like dengue, Zika, Lyme, or plague. Between 2004 and 2016, ... Mosquito-borne diseases California serogroup viruses Chikungunya virus Dengue viruses Eastern equine encephalitis virus Malaria plasmodium St. ...
Ruder, Mark G; Howerth, Elizabeth W; Stallknecht, David E; Allison, Andrew B; Carter, Deborah L; Drolet, Barbara S; Klement, Eyal; Mead, Daniel G
2012-10-17
Culicoides sonorensis (Diptera: Ceratopogonidae) is a vector of epizootic hemorrhagic disease virus (EHDV) serotypes 1 and 2 in North America, where these viruses are well-known pathogens of white-tailed deer (WTD) and other wild ruminants. Although historically rare, reports of clinical EHDV infection in cattle have increased in some parts of the world over the past decade. In 2006, an EHDV-7 epizootic in cattle resulted in economic loss for the Israeli dairy industry. White-tailed deer are susceptible to EHDV-7 infection and disease; however, this serotype is exotic to the US and the susceptibility of C. sonorensis to this cattle-virulent EHDV is not known. The objective of the study was to determine if C. sonorensis is susceptible to EHDV-7 infection and is a competent vector. To evaluate the susceptibility of C. sonorensis, midges were fed on EHDV-7 infected WTD, held at 22 ± 1°C, and processed individually for virus isolation and titration on 4-16 days post feeding (dpf). Midges with a virus titer of ≥ 10(2.7) median tissue culture infective doses (TCID(50))/midge were considered potentially competent. To determine if infected C. sonorensis were capable of transmitting EHDV-7 to a host, a susceptible WTD was then fed on by a group of 14-16 dpf midges. From 4-16 dpf, 45% (156/350) of midges that fed on WTD with high titer viremia (>10(7) TCID(50)/ml) were virus isolation-positive, and starting from 10-16 dpf, 32% (35/109) of these virus isolation-positive midges were potentially competent (≥ 10(2.7) TCID(50)/midge). Midges that fed on infected deer transmitted the virus to a susceptible WTD at 14-16 dpf. The WTD developed viremia and severe clinical disease. This study demonstrates that C. sonorensis is susceptible to EHDV-7 infection and can transmit the virus to susceptible WTD, thus, C. sonorensis should be considered a potential vector of EHDV-7. Together with previous work, this study demonstrates that North America has a susceptible ruminant and vector host for this exotic, cattle-virulent strain of EHDV-7.
Ghanim, Murad; Brumin, Marina; Popovski, Smadar
2009-08-01
A simple, rapid, inexpensive method for the localization of virus transcripts in plant and insect vector tissues is reported here. The method based on fluorescent in situ hybridization using short DNA oligonucleotides complementary to an RNA segment representing a virus transcript in the infected plant or insect vector. The DNA probe harbors a fluorescent molecule at its 5' or 3' ends. The protocol: simple fixation, hybridization, minimal washing and confocal microscopy, provides a highly specific signal. The reliability of the protocol was tested by localizing two phloem-limited plant virus transcripts in infected plants and insect tissues: Tomato yellow leaf curl virus (TYLCV) (Begomovirus: Geminiviridae), exclusively transmitted by the whitefly Bemisia tabaci (Gennadius) in a circulative non-propagative manner, and Potato leafroll virus (Polerovirus: Luteoviridae), similarly transmitted by the aphid Myzus persicae (Sulzer). Transcripts for both viruses were localized specifically to the phloem sieve elements of infected plants, while negative controls showed no signal. TYLCV transcripts were also localized to the digestive tract of B. tabaci, confirming TYLCV route of transmission. Compared to previous methods for localizing virus transcripts in plant and insect tissues that include complex steps for in-vitro probe preparation or antibody raising, tissue fixation, block preparation, sectioning and hybridization, the method described below provides very reliable, convincing, background-free results with much less time, effort and cost.
Nikolay, Birgit
2015-10-01
Due to the increasing global spread of arboviruses, the geographic extent of virus co-circulation is expanding. This complicates the diagnosis of febrile conditions and can have direct effects on the epidemiology. As previously demonstrated, subsequent infections by two closely related viruses, such as those belonging to the Japanese encephalitis virus (JEV) serocomplex, can lead to partial or complete cross-immunity, altering the risk of infections or the outcome of disease. Two flaviviruses that may interact at population level are West Nile virus (WNV) and Usutu virus (USUV). These pathogens have antigenic cross-reactivity and affect human and animal populations throughout Europe. This systematic review investigates the overlap of WNV and USUV transmission cycles, not only geographically but also in terms of host and vector ranges. Co-circulation of WNV and USUV was reported in 10 countries and the viruses were found to infect 34 common bird species belonging to 11 orders. Moreover, four mosquito species are potential vectors for both viruses. Taken together, these data suggest that WNV and USUV transmission overlaps substantially in Europe and highlight the importance of further studies investigating the interactions between the two viruses within host and vector populations. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Silva, José V J; Lopes, Thaísa R R; Oliveira-Filho, Edmilson F de; Oliveira, Renato A S; Durães-Carvalho, Ricardo; Gil, Laura H V G
2018-06-01
Emerging and re-emerging viral infections transmitted by insect vectors (arthopode-borne viruses, arbovirus) are a serious threat to global public health. Among them, yellow fever (YFV), dengue (DENV), chikungunya (CHIKV) and Zika (ZIKV) viruses are particularly important in tropical and subtropical regions. Although vector control is one of the most used prophylactic measures against arboviruses, it often faces obstacles, such as vector diversity, uncontrolled urbanization and increasing resistance to insecticides. In this context, vaccines may be the best control strategy for arboviral diseases. Here, we provide a general overview about licensed vaccines and the most advanced vaccine candidates against YFV, DENV, CHIKV and ZIKV. In particular, we highlight vaccine difficulties, the current status of the most advanced strategies and discuss how the molecular characteristics of each virus can influence the choice of the different vaccine formulations. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Jichun; Ge, Aimin; Xu, Mengwei; Wang, Zhisheng; Qiao, Yongfeng; Gu, Yiqi; Liu, Chang; Liu, Yamei; Hou, Jibo
2015-08-13
Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates. To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEV(C-KCE)). Then, we generated a DEV-vectored HA(H5) vaccine (DEV-H5(UL55)) based on the bacterial artificial chromosome (BAC) by inserting a synthesized HA(H5) expression cassette with a pMCMV IE promoter and a consensus HA sequence into the noncoding area between UL55 and LORF11. The immunogenicity and protective efficacy of the resulting recombinant vaccine against DEV and AIV H5N1 were evaluated in both ducks and chickens. The successful construction of DEV BAC and DEV-H5(UL55) was verified by restriction fragment length polymorphism analysis. Recovered virus from the BAC or mutants showed similar growth kinetics to their parental viruses. The robust expression of HA in chicken embryo fibroblasts infected with the DEV-vectored vaccine was confirmed by indirect immunofluorescence and western blotting analyses. A single dose of 10(6) TCID50 DEV-vectored vaccine provided 100 % protection against duck viral enteritis in ducks, and the hemagglutination inhibition (HI) antibody titer of AIV H5N1 with a peak of 8.2 log2 was detected in 3-week-old layer chickens. In contrast, only very weak HI titers were observed in ducks immunized with 10(7) TCID50 DEV-vectored vaccine. A mortality rate of 60 % (6/10) was observed in 1-week-old specific pathogen free chickens inoculated with 10(6) TCID50 DEV-vectored vaccine. We demonstrate the following in this study. (i) The constructed BAC is a whole genome clone of DEV(C-KCE). (ii) The insertion of an HA expression cassette sequence into the noncoding area between UL55 and LORF11 of DEV(C-KCE) affects neither the growth kinetics of the virus nor its protection against DEV. (iii) DEV-H5(UL55) can generate a strong humoral immune response in 3-week-old chickens, despite the virulence of this virus observed in 1-week-old chickens. (iv) DEV-H5(UL55) induces a weak HI titer in ducks. An increase in the HI titers induced by DEV-vectored HA(H5) will be required prior to its wide application.
Moore, Amy T.; O'Brien, Valerie A.
2012-01-01
Abstract Invasive species can disrupt natural disease dynamics by altering pathogen transmission among native hosts and vectors. The relatively recent occupancy of cliff swallow (Petrochelidon pyrrhonota) nesting colonies in western Nebraska by introduced European house sparrows (Passer domesticus) has led to yearly increases in the prevalence of an endemic arbovirus, Buggy Creek virus (BCRV), in its native swallow bug (Oeciacus vicarius) vector at sites containing both the invasive sparrow host and the native swallow host. At sites without the invasive host, no long-term changes in prevalence have occurred. The percentage of BCRV isolates exhibiting cytopathicity in Vero-cell culture assays increased significantly with year at sites with sparrows but not at swallow-only sites, suggesting that the virus is becoming more virulent to vertebrates in the presence of the invasive host. Increased BCRV prevalence in bug vectors at mixed-species colonies may reflect high virus replication rates in house sparrow hosts, resulting in frequent virus transmission between sparrows and swallow bugs. This case represents a rare empirical example of a pathogen effectively switching to an invasive host, documented in the early phases of the host's arrival in a specialized ecosystem and illustrating how an invasive species can promote long-term changes in host–parasite transmission dynamics. PMID:21923265
NASA Astrophysics Data System (ADS)
Su, Hua; Lu, Ronghua; Chang, Judy C.; Kan, Yuet Wai
1997-12-01
About 70% of hepatocellular carcinomas are known to express α -fetoprotein, which is normally expressed in fetal but not in adult livers. To induce herpes simplex virus-thymidine kinase expression in these cancer cells, we constructed an adeno-associated viral vector containing the HSV-TK gene under the control of the α -fetoprotein enhancer and albumin promoter. We previously demonstrated in vitro that although this vector can transduce a variety of human cells, only transduced AFP and albumin-expressing hepatocellular carcinoma cell lines were sensitive to killing by ganciclovir (GCV). In the present study, we explored the effect of this vector on hepatocellular carcinoma cells in vivo. Subcutaneous tumors generated in nude mice by implanting hepatocellular carcinoma cells previously transduced with this vector shrank dramatically after treatment with GCV. Bystander effect was also observed on the tumors generated by mixing transduced and untransduced cells. To test whether the tumor cells can be transduced by the virus in vivo, we injected the recombinant adeno-associated virus into tumors generated by untransduced hepatocarcinoma cell line. Tumor growth were retarded after treatment with GCV. These experiments demonstrate the feasibility of in vivo transduction of tumor cell with rAAV.
Ma, Wenqin; Li, Baozheng; Ling, Chen; Jayandharan, Giridhara R.; Byrne, Barry J.
2011-01-01
Abstract We have recently shown that co-administration of conventional single-stranded adeno-associated virus 2 (ssAAV2) vectors with self-complementary (sc) AAV2-protein phosphatase 5 (PP5) vectors leads to a significant increase in the transduction efficiency of ssAAV2 vectors in human cells in vitro as well as in murine hepatocytes in vivo. In the present study, this strategy has been further optimized by generating a mixed population of ssAAV2-EGFP and scAAV2-PP5 vectors at a 10:1 ratio to achieve enhanced green fluorescent protein (EGFP) transgene expression at approximately 5- to 10-fold higher efficiency, both in vitro and in vivo. This simple coproduction method should be adaptable to any ssAAV serotype vector containing transgene cassettes that are too large to be encapsidated in scAAV vectors. PMID:21219084
Nakounné, E; Selekon, B; Morvan, J
2000-01-01
An investigation was conducted between 1994 and 1997 in forested areas of the Central African Republic (CAR) to determine the seroprevalence of IgG antibodies against several haemorrhagic fever viruses present in the region. Sera were obtained from 1762 individuals in two groups (Pygmy and Bantu locuted populations) living in 4 forested areas in the south of the country. Sera were tested for IgG antibodies against Ebola, Marburg, Rift Valley fever (RVF), Yellow fever (YF) and Hantaviruses by enzyme immunoassay (EIA), and against Lassa virus by immunofluorescent assay. The prevalence of IgG antibodies was 5.9% for Ebola, 2% for Marburg, 6.9% pour RVF, 6.5% for YF, 2% for Hantaan. No antibodies were detected against Lassa, Seoul, Puumala and Thottapalayam viruses. No IgM antibodies were detected against RVF and YF viruses. The distribution of antibodies appears to be related to tropical rain forest areas. This study indicates that several haemorrhagic fever viruses are endemic in forested areas of the CAR and could emerge due to environmental modification.
Display of HIV-1 Envelope Protein on Lambda Phage Scaffold as a Vaccine Platform.
Mattiacio, Jonelle L; Brewer, Matt; Dewhurst, Stephen
2017-01-01
The generation of a strong antibody response to target antigens is a major goal for vaccine development. Here we describe the display of the human immunodeficiency virus (HIV) envelope spike protein (Env) on a virus-like scaffold provided by the lambda phage capsid. Phage vectors, in general, have advantages over mammalian virus vectors due to their genetic tractability, inexpensive production, suitability for scale-up, as well as their physical stability, making them an attractive vaccine platform.
Meseck, M.; Derecho, I.; Lopez, P.; Knoblauch, C.; McMahon, R.; Anderson, J.; Dunphy, N.; Quezada, V.; Khan, R.; Huang, P.; Dang, W.; Luo, M.; Hsu, D.; Woo, S.L.C.; Couture, L.
2011-01-01
Abstract Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 109 plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 1010 PFU/ml (total yield, 1 × 1013 PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC. PMID:21083425
Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L
2011-04-01
Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.
Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes.
Vloet, Rianka P M; Vogels, Chantal B F; Koenraadt, Constantianus J M; Pijlman, Gorben P; Eiden, Martin; Gonzales, Jose L; van Keulen, Lucien J M; Wichgers Schreur, Paul J; Kortekaas, Jeroen
2017-12-01
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus of the genus Phlebovirus that is highly pathogenic to ruminants and humans. The disease is currently confined to Africa and the Arabian Peninsula, but globalization and climate change may facilitate introductions of the virus into currently unaffected areas via infected animals or mosquitoes. The consequences of such an introduction will depend on environmental factors, the availability of susceptible ruminants and the capacity of local mosquitoes to transmit the virus. We have previously demonstrated that lambs native to the Netherlands are highly susceptible to RVFV and we here report the vector competence of Culex (Cx.) pipiens, the most abundant and widespread mosquito species in the country. Vector competence was first determined after artificial blood feeding of laboratory-reared mosquitoes using the attenuated Clone 13 strain. Subsequently, experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs were performed. Finally, the transmission of RVFV from viremic lambs to mosquitoes was studied. Artificial feeding experiments using Clone 13 demonstrated that indigenous, laboratory-reared Cx. pipiens mosquitoes are susceptible to RVFV and that the virus can be transmitted via their saliva. Experiments with wild-type RVFV and mosquitoes hatched from field-collected eggs confirmed the vector competence of Cx. pipiens mosquitoes from the Netherlands. To subsequently investigate transmission of the virus under more natural conditions, mosquitoes were allowed to feed on RVFV-infected lambs during the viremic period. We found that RVFV is efficiently transmitted from lambs to mosquitoes, although transmission was restricted to peak viremia. Interestingly, in the mosquito-exposed skin samples, replication of RVFV was detected in previously unrecognized target cells. We here report the vector competence of Cx. pipiens mosquitoes from the Netherlands for RVFV. Both laboratory-reared mosquitoes and well as those hatched from field-collected eggs were found to be competent vectors. Moreover, RVFV was transmitted efficiently from indigenous lambs to mosquitoes, although the duration of host infectivity was found to be shorter than previously assumed. Interestingly, analysis of mosquito-exposed skin samples revealed previously unidentified target cells of the virus. Our findings underscore the value of including natural target species in vector competence experiments.
Managing thrips and tospoviruses in tomato
USDA-ARS?s Scientific Manuscript database
Tomato spotted wilt virus and more recently emerged Tomato chlorotic spot virus and Groundnut ringspot virus are all transmitted by thrips, making managment complex. All three viruses and the thrips vector are major pests of tomato in Florida. Current management tools for these viruses and the th...
Dual Insect specific virus infection limits Arbovirus replication in Aedes mosquito cells.
Schultz, Michaela J; Frydman, Horacio M; Connor, John H
2018-05-01
Aedes mosquitoes are vectors for many pathogenic viruses. Cell culture systems facilitate the investigation of virus growth in the mosquito vector. We found Zika virus (ZIKV) growth to be consistent in A. albopictus cells but hypervariable in A. aegypti cell lines. As a potential explanation of this variability, we tested the hypothesis that our cells harbored opportunistic viruses. We screened Aedes cell lines for the presence of insect specific viruses (ISVs), Cell-fusing agent virus (CFAV) and Phasi charoen-like virus (PCLV). PCLV was present in the ZIKV-growth-variable A. aegypti cell lines but absent in A. albopictus lines, suggesting that these ISVs may interfere with ZIKV growth. In support of this hypothesis, PCLV infection of CFAV-positive A. albopictus cells inhibited the growth of ZIKV, dengue virus and La Crosse virus. These data suggest ISV infection of cell lines can impact arbovirus growth leading to significant changes in cell permissivity to arbovirus infection. Copyright © 2018 Elsevier Inc. All rights reserved.
Severson, David W.; Behura, Susanta K.
2016-01-01
Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The “vectorial capacity” of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as “vector competence”. Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions. PMID:27809220
Kim, Hyunwoo; Cha, Go-Woon; Jeong, Young Eui; Lee, Wook-Gyo; Chang, Kyu Sik; Roh, Jong Yul; Yang, Sung Chan; Park, Mi Yeoun; Park, Chan; Shin, E-Hyun
2015-01-01
Japanese encephalitis virus (JEV) causes significant viral encephalitis and is distributed throughout the Asian countries. The virus is known to be transmitted by Culex tritaeniorhynchus, which mainly breeds in rice paddies in Korea. In this study, we investigated the presence of other mosquito species that can transmit JEV as a second or regional vector. We selected five cities where patients have experienced JE in the last 5 years as mosquito-collecting locations and subdivided them into four collection sites according to the mosquito habitats (cowshed, downtown area, forest, and swamp). Mosquitoes were caught using the BG-Sentinel trap, CDC black-light trap, Fay-Prince trap, and Gravid trap. A total of 993 pools from 22,774 mosquitoes were prepared according to their species, collection date, and site. We performed a SYBR Green 1-based real-time RT-PCR assay to detect JEV from the mosquito pools. A total of six JEV-positive pools were detected from Culex orientalis and Culex pipiens caught in the Gangwon-do and Gyeonngi-do provinces. All the detected JEVs were revealed as genotype V by phylogenetic analysis of the envelope gene. Our findings confirm that a new genotype of JEV was introduced in Korea and suggest that two mosquito species may play a role in JEV transmission.
Emergence of zoonotic arboviruses by animal trade and migration
2010-01-01
Arboviruses are transmitted in nature exclusively or to a major extend by arthropods. They belong to the most important viruses invading new areas in the world and their occurrence is strongly influenced by climatic changes due to the life cycle of the transmitting vectors. Several arboviruses have emerged in new regions of the world during the last years, like West Nile virus (WNV) in the Americas, Usutu virus (USUV) in Central Europe, or Rift Valley fever virus (RVFV) in the Arabian Peninsula. In most instances the ways of introduction of arboviruses into new regions are not known. Infections acquired during stays in the tropics and subtropics are diagnosed with increasing frequency in travellers returning from tropical countries, but interestingly no attention is paid on accompanying pet animals or the hematophagous ectoparasites that may still be attached to them. Here we outline the known ecology of the mosquito-borne equine encephalitis viruses (WEEV, EEEV, and VEEV), WNV, USUV, RVFV, and Japanese Encephalitis virus, as well as Tick-Borne Encephalitis virus and its North American counterpart Powassan virus, and will discuss the most likely mode that these viruses could expand their respective geographical range. All these viruses have a different epidemiology as different vector species, reservoir hosts and virus types have adapted to promiscuous and robust or rather very fine-balanced transmission cycles. Consequently, these viruses will behave differently with regard to the requirements needed to establish new endemic foci outside their original geographical ranges. Hence, emphasis is given on animal trade and suitable ecologic conditions, including competent vectors and vertebrate hosts. PMID:20377873
Genetic modification of human trabecular meshwork with lentiviral vectors.
Loewen, N; Fautsch, M P; Peretz, M; Bahler, C K; Cameron, J D; Johnson, D H; Poeschla, E M
2001-11-20
Glaucoma, a group of optic neuropathies, is the leading cause of irreversible blindness. Neuronal apoptosis in glaucoma is primarily associated with high intraocular pressure caused by chronically impaired outflow of aqueous humor through the trabecular meshwork, a reticulum of mitotically inactive endothelial-like cells located in the angle of the anterior chamber. Anatomic, genetic, and expression profiling data suggest the possibility of using gene transfer to treat glaucomatous intraocular pressure dysregulation, but this approach will require stable genetic modification of the differentiated aqueous outflow tract. We injected transducing unit-normalized preparations of either of two lentiviral vectors or an oncoretroviral vector as a single bolus into the aqueous circulation of cultured human donor eyes, under perfusion conditions that mimicked natural anterior chamber flow and maintained viability ex vivo. Reporter gene expression was assessed in trabecular meshwork from 3 to 16 days after infusion of 1.0 x 10(8) transducing units of each vector. The oncoretroviral vector failed to transduce the trabecular meshwork. In contrast, feline immunodeficiency virus and human immunodeficiency virus vectors produced efficient, localized transduction of the trabecular meshwork in situ. The results demonstrate that lentiviral vectors permit efficient genetic modification of the human trabecular meshwork when delivered via the afferent aqueous circulation, a clinically accessible route. In addition, controlled comparisons in this study establish that feline and human immunodeficiency virus vectors are equivalently efficacious in delivering genes to this terminally differentiated human tissue.
Crowder, David W; Dykstra, Elizabeth A; Brauner, Jo Marie; Duffy, Anne; Reed, Caitlin; Martin, Emily; Peterson, Wade; Carrière, Yves; Dutilleul, Pierre; Owen, Jeb P
2013-01-01
Arthropod-borne viruses (arboviruses) threaten the health of humans, livestock, and wildlife. West Nile virus (WNV), the world's most widespread arbovirus, invaded the United States in 1999 and rapidly spread across the county. Although the ecology of vectors and hosts are key determinants of WNV prevalence across landscapes, the factors shaping local vector and host populations remain unclear. Here, we used spatially-explicit models to evaluate how three land-use types (orchards, vegetable/forage crops, natural) and two climatic variables (temperature, precipitation) influence the prevalence of WNV infections and vector/host distributions at landscape and local spatial scales. Across landscapes, we show that orchard habitats were associated with greater prevalence of WNV infections in reservoirs (birds) and incidental hosts (horses), while increased precipitation was associated with fewer infections. At local scales, orchard habitats increased the prevalence of WNV infections in vectors (mosquitoes) and the abundance of mosquitoes and two key reservoir species, the American robin and the house sparrow. Thus, orchard habitats benefitted WNV vectors and reservoir hosts locally, creating focal points for the transmission of WNV at landscape scales in the presence of suitable climatic conditions.
Meagher, Robert J.; Ball, Cameron Scott; Langevin, Stanley A.; ...
2016-01-25
In this study, collection of mosquitoes and testing for vector-borne viruses is a key surveillance activity that directly influences the vector control efforts of public health agencies, including determining when and where to apply insecticides. Vector control districts in California routinely monitor for three human pathogenic viruses including West Nile virus (WNV), Western equine encephalitis virus (WEEV), and St. Louis encephalitis virus (SLEV). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers highly sensitive and specific detection of these three viruses in a single multiplex reaction, but this technique requires costly, specialized equipment that is generally only available in centralized publicmore » health laboratories. We report the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect WNV, WEEV, and SLEV RNA extracted from pooled mosquito samples collected in California, including novel primer sets for specific detection of WEEV and SLEV, targeting the nonstructural protein 4 (nsP4) gene of WEEV and the 3’ untranslated region (3’-UTR) of SLEV. Our WEEV and SLEV RT-LAMP primers allowed detection of <0.1 PFU/reaction of their respective targets in <30 minutes, and exhibited high specificity without cross reactivity when tested against a panel of alphaviruses and flaviviruses. Furthermore, the SLEV primers do not cross-react with WNV, despite both viruses being closely related members of the Japanese encephalitis virus complex. The SLEV and WEEV primers can also be combined in a single RT-LAMP reaction, with discrimination between amplicons by melt curve analysis. Although RT-qPCR is approximately one order of magnitude more sensitive than RT-LAMP for all three targets, the RT-LAMP technique is less instrumentally intensive than RT-qPCR and provides a more cost-effective method of vector-borne virus surveillance.« less
Vector development and vitellogenin determine the transovarial transmission of begomoviruses.
Wei, Jing; He, Ya-Zhou; Guo, Qi; Guo, Tao; Liu, Yin-Quan; Zhou, Xue-Ping; Liu, Shu-Sheng; Wang, Xiao-Wei
2017-06-27
The majority of plant viruses are transmitted by insect vectors between hosts, and transovarial transmission of viruses from vector parents to offspring has great significance to their epidemiology. Begomoviruses are transmitted by the whitefly Bemisia tabaci in a circulative manner and are maintained through a plant-insect-plant cycle. Other routes of begomovirus transmission are not clearly known. Here, we report that transovarial transmission from female whiteflies to offspring often happens for one begomovirus, Tomato yellow leaf curl virus (TYLCV), and may have contributed significantly to its global spread. We found that TYLCV entry of the reproductive organ of its vector mainly depended on the developmental stage of the whitefly ovary, and the transovarial transmission of TYLCV to offspring increased with whitefly adult age. The specific interaction between virus coat protein (CP) and whitefly vitellogenin (Vg) was vital for virus entry into whitefly ovary. When knocking down the expression of Vg, the entry of TYLCV into ovary was inhibited and the transovarial transmission efficiency decreased. In contrast, another begomovirus, Papaya leaf curl China virus (PaLCuCNV), CP did not interact with whitefly Vg, and PaLCuCNV could not be transovarially transmitted by whiteflies. We further showed that TYLCV could be maintained for at least two generations in the absence of virus-infected plants, and the adult progenies were able to infect healthy plants in both the laboratory and field. This study reports the transovarial transmission mechanism of begomoviruses, and it may help to explain the evolution and global spread of some begomoviruses.
Gene transfer to brain using herpes simplex virus vectors.
Glorioso, J C; Goins, W F; Meaney, C A; Fink, D J; DeLuca, N A
1994-01-01
Herpes simplex virus type 1 represents an ideal candidate for development as a vehicle for gene transfer to postmitotic neurons of the central nervous system. The natural biology of this virus makes it well suited for this purpose as it is capable of infecting a variety of neuronal cell types in the brain where the viral genome can persist indefinitely in a latent state. In latency, the viral lytic genes are transcriptionally silent and a unique set of latency-associated transcripts are expressed. Two impediments to using herpes simplex virus vectors must be overcome: (1) A noncytotoxic mutant virus backbone must be engineered, and (2) a suitable promoter-regulator that stably expresses foreign genes from the vector genome during latency must be constructed. Deletion of specific immediate early genes from the vector can render the virus nontoxic to neurons in culture and in vivo following stereotactic inoculation into specific regions of the brain. Because these viruses cannot replicate, they enter latency on infection of central nervous system neurons. A number of viral and cellular promoters have been tested for their ability to express genes during latency. Strong viral promoters and neurospecific promoters display transient activity. Although the promoter regions for the latency-associated transcripts are highly active in the peripheral nervous system, they show low-level but persistent activity in the brain. Experiments are in progress to exploit RNA polymerase III gene promoters or novel recombinant promoters capable of auto-inducing their own expression in order to increase gene expression during latency in brain neurons.
NASA Technical Reports Server (NTRS)
Morin, Cory; Quattrochi, Dale A.
2015-01-01
Incidence of dengue fever, caused by a mosquito transmitted virus, have increased in the Americas during recent decades. In the US, local transmission has been reported in southern Texas and Florida. However, despite its close proximity to dengue endemic areas in Mexico and the presence of a primary mosquito vector, there are no reports of local transmission in Arizona. Many studies have demonstrated that weather influences dengue virus transmission by regulating vector development rates, vector habitat availability, and the duration of the virus extrinsic incubation period (EIP). The EIP, the period between mosquito infection and the ability for it to retransmit the virus, is especially important given its high sensitivity to temperature and the short lifespan of mosquitoes. Other studies, however, have suggested that human related factors such as socioeconomic status and herd immunity may explain much of the disparity in dengue incidence in the US-Mexico border region. Using a meteorologically driven model of vector population dynamics and virus transmission we compare simulations of dengue fever cases in southern Arizona and northern Mexico. A Monte Carlo approach is employed to select parameter values by evaluating simulations in Hermosillo Mexico with reported dengue fever case data. Simulations that replicate the case data best are retained and rerun using remotely sensed climate data from other Arizona and Mexico locations to determine the relative influence of weather on virus transmission. Although human and environmental factors undoubtedly influence dengue transmission in the US-Mexico border regions, weather is a major facilitator of the transmission process.
Tian, Debin; Sooryanarain, Harini; Matzinger, Shannon R; Gauger, Phil C; Karuppannan, Anbu K; Elankumaran, Subbiah; Opriessnig, Tanja; Meng, Xiang-Jin
2017-12-01
Porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2) and swine influenza virus (SIV) are three of the most economically important swine pathogens, causing immense economic losses to the global swine industry. Monovalent commercial vaccines against each of the three viruses are routinely used in pig farms worldwide. A trivalent vaccine against all three pathogens would greatly simplify the vaccination programme and reduce the financial burden to the swine industry. In this study, by using an attenuated strain of PRRSV (strain DS722) as a live virus vector, we generated a multi-component vaccine virus, DS722-SIV-PCV2, which expresses the protective antigens from SIV and PCV2. The DS722-SIV-PCV2 trivalent vaccine virus replicates well, and expresses PCV2 capsid and SIV HA proteins in vitro. A subsequent vaccination and challenge study in 48 pigs revealed that the DS722-SIV-PCV2-vaccinated pigs had significantly reduced lung lesions and viral RNA loads when challenged with PRRSV. Upon challenge with PCV2, the vaccinated pigs had partially reduced lymphoid lesions and viral DNA loads, and when challenged with SIV the vaccinated pigs had significantly reduced acute respiratory sign scores. The results from this study demonstrate the potential of DS722-SIV-PCV2 as a candidate trivalent vaccine, and also shed light on exploring PRRSV as a potential live virus vaccine vector.
USDA-ARS?s Scientific Manuscript database
The thermostable Newcastle disease virus (NDV) vaccines have been used widely to control Newcastle disease (ND) for village flocks, due to their independence of cold chains for delivery and storage. To explore the potential use of the thermostable NDV as a vaccine vector, an infectious clone of the...
USDA-ARS?s Scientific Manuscript database
Newcastle disease virus (NDV) has been developed as a vector for vaccine and gene therapy purposes. However, the optimal insertion site for foreign gene expression remained to be determined. In the present study, we inserted the green fluorescence protein (GFP) gene into five different intergenic ...
West Nile Virus Fitness Costs in Different Mosquito Species.
Coffey, Lark L; Reisen, William K
2016-06-01
West Nile virus (WNV) remains an important public health problem causing annual epidemics in the United States. Grubaugh et al. observed that WNV genetic divergence is dependent on the vector mosquito species. This suggests that specific WNV vector-bird species pairings may generate novel genotypes that could promote outbreaks. Copyright © 2016 Elsevier Ltd. All rights reserved.
An annotated list of the cicadellidae and fulgoridae of elm
Lester P. Gibson
1973-01-01
This annotated list includes 87 cicadellid and 13 fulgorid entries that were found on and probably feed on elm to some extent. Thirteen of the cicadellid species listed are known vectors of virus or mycoplasmalike diseases of plants. Also, the following 18 cicadellid genera contain known vectors of virus or mycoplasmalike diseases of plants: Aceratagallia...
USDA-ARS?s Scientific Manuscript database
The current outbreak of Zika virus in the Americas has highlighted the need for improved methods of control. This concern is exacerbated if we consider that all three major arboviruses (Zika, dengue, and chikungunya virus) are transmitted efficiently by two wide spread mosquito vectors: Aedes aegypt...
USDA-ARS?s Scientific Manuscript database
Utilizing the Pahenu2 mouse model for phenylketonuria (PKU), we developed an improved expression vector containing the Woodchuck Hepatitis Virus post-transcriptional regulatory element inserted into a rAAV-mPAH construct (rAAV-mPAH-WPRE) for treatment of PKU. Following portal vein delivery of these ...
USDA-ARS?s Scientific Manuscript database
Genetically modified T36 Citrus tristeza virus (T36-mCTV) is showing promise in Florida to mitigate huanglongbing (HLB) by expressing antimicrobial peptides and RNAi against the presumed pathogen, “Candidatus Liberibacter asiaticus” (CLas), and its vector, the Asian citrus psyllid (ACP). To this end...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira
2012-01-06
Highlights: Black-Right-Pointing-Pointer Adeno-associated virus (AAV) is capable of targeted integration in human cells. Black-Right-Pointing-Pointer Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. Black-Right-Pointing-Pointer A targeted integration system of IDRV DNA using the AAV integration mechanism. Black-Right-Pointing-Pointer Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors,more » therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.« less
Replication-Competent Controlled Herpes Simplex Virus
Bloom, David C.; Feller, Joyce; McAnany, Peterjon; Vilaboa, Nuria
2015-01-01
ABSTRACT We present the development and characterization of a replication-competent controlled herpes simplex virus 1 (HSV-1). Replication-essential ICP4 and ICP8 genes of HSV-1 wild-type strain 17syn+ were brought under the control of a dually responsive gene switch. The gene switch comprises (i) a transactivator that is activated by a narrow class of antiprogestins, including mifepristone and ulipristal, and whose expression is mediated by a promoter cassette that comprises an HSP70B promoter and a transactivator-responsive promoter and (ii) transactivator-responsive promoters that drive the ICP4 and ICP8 genes. Single-step growth experiments in different cell lines demonstrated that replication of the recombinant virus, HSV-GS3, is strictly dependent on an activating treatment consisting of administration of a supraphysiological heat dose in the presence of an antiprogestin. The replication-competent controlled virus replicates with an efficiency approaching that of the wild-type virus from which it was derived. Essentially no replication occurs in the absence of activating treatment or if HSV-GS3-infected cells are exposed only to heat or antiprogestin. These findings were corroborated by measurements of amounts of viral DNA and transcripts of the regulated ICP4 gene and the glycoprotein C (gC) late gene, which was not regulated. Similar findings were made in experiments with a mouse footpad infection model. IMPORTANCE The alphaherpesviruses have long been considered vectors for recombinant vaccines and oncolytic therapies. The traditional approach uses vector backbones containing attenuating mutations that restrict replication to ensure safety. The shortcoming of this approach is that the attenuating mutations tend to limit both the immune presentation and oncolytic properties of these vectors. HSV-GS3 represents a novel type of vector that, when activated, replicates with the efficiency of a nonattenuated virus and whose safety is derived from deliberate, stringent regulation of multiple replication-essential genes. By directing activating heat to the region of virus administration, replication is strictly confined to infected cells within this region. The requirement for antiprogestin provides an additional level of safety, ensuring that virus replication cannot be triggered inadvertently. Replication-competent controlled vectors such as HSV-GS3 may have the potential to be superior to conventional attenuated HSV vaccine and oncolytic vectors without sacrificing safety. PMID:26269179
Xia, Yiqiu; Tang, Yi; Yu, Xu; Wan, Yuan; Chen, Yizhu; Lu, Huaguang; Zheng, Si-Yang
2017-02-01
Viral diseases are perpetual threats to human and animal health. Detection and characterization of viral pathogens require accurate, sensitive, and rapid diagnostic assays. For field and clinical samples, the sample preparation procedures limit the ultimate performance and utility of the overall virus diagnostic protocols. This study presents the development of a microfluidic device embedded with porous silicon nanowire (pSiNW) forest for label-free size-based point-of-care virus capture in a continuous curved flow design. The pSiNW forests with specific interwire spacing are synthesized in situ on both bottom and sidewalls of the microchannels in a batch process. With the enhancement effect of Dean flow, this study demonstrates that about 50% H5N2 avian influenza viruses are physically trapped without device clogging. A unique feature of the device is that captured viruses can be released by inducing self-degradation of the pSiNWs in physiological aqueous environment. About 60% of captured viruses can be released within 24 h for virus culture, subsequent molecular diagnosis, and other virus characterization and analyses. This device performs viable, unbiased, and label-free virus isolation and release. It has great potentials for virus discovery, virus isolation and culture, functional studies of virus pathogenicity, transmission, drug screening, and vaccine development. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes
Salazar, Ma Isabel; Richardson, Jason H; Sánchez-Vargas, Irma; Olson, Ken E; Beaty, Barry J
2007-01-01
Background To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. Results After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Conclusion Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection. PMID:17263893
Vaxvec: The first web-based recombinant vaccine vector database and its data analysis
Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun
2015-01-01
A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370
Iatrou, K; Meidinger, R G
1990-01-01
A pair of silkmoth chorion chromosomal genes, HcA.12-HcB.12, was inserted into a baculovirus transfer vector, pBmp2, derived from the nuclear polyhedrosis virus of Bombyx mori. This vector, which permits the insertion of foreign genetic material in the vicinity of a mutationally inactivated polyhedrin gene, was used to acquire the corresponding recombinant virus. Injection of mutant silkmoth pupae that lack all Hc chorion genes with the recombinant virus resulted in the infection of all internal organs including follicular tissue. Analysis of RNA from infected tissues has demonstrated that the two chorion genes present in the viral genome are correctly transcribed under the control of their own promoter in follicular cells, the tissue in which chorion genes are normally expressed. The chorion primary transcripts are also correctly processed in the infected follicular cells and yield mature mRNAs indistinguishable from authentic chorion mRNAs present in wild-type follicles. These results demonstrate that recombinant nuclear polyhedrosis viruses can be used as transducing vectors for introducing genetic material of host origin into the cells of the organism and that the transduced genes are transiently expressed in a tissue-specific manner under the control of their resident regulatory sequences. Thus we show the in vivo expression of cloned genes under cellular promoter control in an insect other than Drosophila melanogaster. The approach should be applicable to all insect systems that are subject to nuclear polyhedrosis virus infection. Images PMID:2187186
Sena-Esteves, Miguel; Saeki, Yoshinaga; Camp, Sara M.; Chiocca, E. Antonio; Breakefield, Xandra O.
1999-01-01
We report here on the development and characterization of a novel herpes simplex virus type 1 (HSV-1) amplicon-based vector system which takes advantage of the host range and retention properties of HSV–Epstein-Barr virus (EBV) hybrid amplicons to efficiently convert cells to retrovirus vector producer cells after single-step transduction. The retrovirus genes gag-pol and env (GPE) and retroviral vector sequences were modified to minimize sequence overlap and cloned into an HSV-EBV hybrid amplicon. Retrovirus expression cassettes were used to generate the HSV-EBV-retrovirus hybrid vectors, HERE and HERA, which code for the ecotropic and the amphotropic envelopes, respectively. Retrovirus vector sequences encoding lacZ were cloned downstream from the GPE expression unit. Transfection of 293T/17 cells with amplicon plasmids yielded retrovirus titers between 106 and 107 transducing units/ml, while infection of the same cells with amplicon vectors generated maximum titers 1 order of magnitude lower. Retrovirus titers were dependent on the extent of transduction by amplicon vectors for the same cell line, but different cell lines displayed varying capacities to produce retrovirus vectors even at the same transduction efficiencies. Infection of human and dog primary gliomas with this system resulted in the production of retrovirus vectors for more than 1 week and the long-term retention and increase in transgene activity over time in these cell populations. Although the efficiency of this system still has to be determined in vivo, many applications are foreseeable for this approach to gene delivery. PMID:10559361
Suwanmanee, San; Luplertlop, Natthanej
2017-02-01
The currently spreading arbovirus epidemic is having a severe impact on human health worldwide. The two most common flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), are transmitted through the same viral vector, Aedes spp. mosquitoes. Since the discovery of DENV in 1943, this virus has been reported to cause around 390 million human infections per year, approximately 500,000 of which require hospitalization and over 20,000 of which are lethal. The present DENV epidemic is primarily concentrated in Southeast Asia. ZIKV, which was discovered in 1952, is another important arthropod-borne flavivirus. The neurotropic role of ZIKV has been reported in infected newborns with microcephaly and in adults with Guillain-Barre syndrome. Despite DENV and ZIKV sharing the same viral vector, their complex pathogenic natures are poorly understood, and the infections they cause do not have specific treatments or effective vaccines. Therefore, this review will describe what is currently known about the clinical characteristics, pathogenesis mechanisms, and transmission of these two viruses. Better understanding of the interrelationships between DENV and ZIKV will provide a useful perspective for developing an effective strategy for controlling both viruses in the future.
Bonaldo, Myrna C; Martins, Mauricio A; Rudersdorf, Richard; Mudd, Philip A; Sacha, Jonah B; Piaskowski, Shari M; Costa Neves, Patrícia C; Veloso de Santana, Marlon G; Vojnov, Lara; Capuano, Saverio; Rakasz, Eva G; Wilson, Nancy A; Fulkerson, John; Sadoff, Jerald C; Watkins, David I; Galler, Ricardo
2010-04-01
Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.
Knope, Katrina E; Kurucz, Nina; Doggett, Stephen L; Muller, Mike; Johansen, Cheryl A; Feldman, Rebecca; Hobby, Michaela; Bennett, Sonya; Sly, Angus; Lynch, Stacey; Currie, Bart J; Nicholson, Jay
2016-03-31
This report describes the epidemiology of mosquito-borne diseases of public health importance in Australia during the 2012-13 season (1 July 2012 to 30 June 2013) and includes data from human notifications, sentinel chicken, vector and virus surveillance programs. The National Notifiable Diseases Surveillance System received notifications for 9,726 cases of disease transmitted by mosquitoes during the 2012-13 season. The Australasian alphaviruses Barmah Forest virus and Ross River virus accounted for 7,776 (80%) of total notifications. However, over-diagnosis and possible false positive diagnostic test results for these 2 infections mean that the true burden of infection is likely overestimated, and as a consequence, the case definitions were revised, effective from 1 January 2016. There were 96 notifications of imported chikungunya virus infection. There were 212 notifications of dengue virus infection acquired in Australia and 1,202 cases acquired overseas, with an additional 16 cases for which the place of acquisition was unknown. Imported cases of dengue were most frequently acquired in Indonesia. No locally-acquired malaria was notified during the 2012-13 season, though there were 415 notifications of overseas-acquired malaria. There were no cases of Murray Valley encephalitis virus infection in 2012-13. In 2012-13, arbovirus and mosquito surveillance programs were conducted in most jurisdictions with a risk of vectorborne disease transmission. Surveillance for exotic mosquitoes at the border continues to be a vital part of preventing the spread of mosquito-borne diseases such as dengue to new areas of Australia, and in 2012-13, there were 7 detections of exotic mosquitoes at the border.
S2 expressed from recombinant virus confers broad protection against infectious bronchitis virus
USDA-ARS?s Scientific Manuscript database
We previously demonstrated that overexposing the IBV (infectious bronchitis virus) S2 to the chicken immune system by means of a vectored vaccine, followed by boost with whole virus, protects chickens against IBV showing dissimilar S1. We developed recombinant Newcastle disease virus (NDV) LaSota (...
Soil-borne wheat mosaic virus infectious clone and manipulation for gene-carrying capacity
USDA-ARS?s Scientific Manuscript database
Soilborne wheat mosaic virus (SBWMV) is a bipartite single stranded positive sense RNA virus with rigid-rod shaped virions. Taxonomically the virus is in the family Viragviridae, as are commonly used gene silencing or expression viral vectors, Tobacco rattle virus (TRV) and Barley stripe mosaic viru...
Epidemiology and Association of Four Insect-Vectored Viruses in Florida Watermelon
USDA-ARS?s Scientific Manuscript database
Whitefly-transmitted Squash vein yellowing virus (SqVYV), Cucurbit leaf crumple virus (CuLCrV), Cucurbit yellow stunting disorder virus (CYSDV) and aphid-transmitted Papaya ringspot virus type W (PRSV-W) have had serious impact on watermelon production in southwest and west-central Florida in the pa...
Pratt, William D; Wang, Danher; Nichols, Donald K; Luo, Min; Woraratanadharm, Jan; Dye, John M; Holman, David H; Dong, John Y
2010-04-01
Ebola viruses are highly pathogenic viruses that cause outbreaks of hemorrhagic fever in humans and other primates. To meet the need for a vaccine against the several types of Ebola viruses that cause human diseases, we developed a multivalent vaccine candidate (EBO7) that expresses the glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus-based vector (CAdVax). We evaluated our vaccine in nonhuman primates against the parenteral and aerosol routes of lethal challenge. EBO7 vaccine provided protection against both Ebola viruses by either route of infection. Significantly, protection against SEBOV given as an aerosol challenge, which has not previously been shown, could be achieved with a boosting vaccination. These results demonstrate the feasibility of creating a robust, multivalent Ebola virus vaccine that would be effective in the event of a natural virus outbreak or biological threat.
Applying an efficient K-nearest neighbor search to forest attribute imputation
Andrew O. Finley; Ronald E. McRoberts; Alan R. Ek
2006-01-01
This paper explores the utility of an efficient nearest neighbor (NN) search algorithm for applications in multi-source kNN forest attribute imputation. The search algorithm reduces the number of distance calculations between a given target vector and each reference vector, thereby, decreasing the time needed to discover the NN subset. Results of five trials show gains...
Turell, M J; Jones, J W; Sardelis, M R; Dohm, D J; Coleman, R E; Watts, D M; Fernandez, R; Calampa, C; Klein, T A
2000-11-01
Mosquitoes collected in the Amazon Basin, near Iquitos, Peru, were evaluated for their susceptibility to epizootic (IAB and IC) and enzootic (ID and IE) strains of Venezuelan equine encephalomyelitis (VEE) virus. After feeding on hamsters with a viremia of approximately 10(8) plaque-forming units of virus per milliliter, Culex (Melanoconion) gnomatus Sallum, Huchings, & Ferreira, Culex (Melanoconion) vomerifer Komp, and Aedes fulvus (Wiedemann) were highly susceptible to infection with all four subtypes of VEE virus (infection rates > or = 87%). Likewise, Psorophora albigenu (Peryassu) and a combination of Mansonia indubitans Dyar & Shannon and Mansonia titillans (Walker) were moderately susceptible to all four strains of VEE virus (infection rates > or = 50%). Although Psorophora cingulata (Fabricius) and Coquillettidia venezuelensis (Theobald) were susceptible to infection with each of the VEE strains, these two species were not efficient transmitters of any of the VEE strains, even after intrathoracic inoculation, indicating the presence of a salivary gland barrier in these species. In contrast to the other species tested, both Culex (Melanoconion) pedroi Sirivanakarn & Belkin and Culex (Culex) coronator Dyar & Knab were nearly refractory to each of the strains of VEE virus tested. Although many of the mosquito species found in this region were competent laboratory vectors of VEE virus, additional studies on biting behavior, mosquito population densities, and vertebrate reservoir hosts of VEE virus are needed to incriminate the principal vector species.
Genome-Wide RNAi Screen Identifies Broadly-Acting Host Factors That Inhibit Arbovirus Infection
Yasunaga, Ari; Hanna, Sheri L.; Li, Jianqing; Cho, Hyelim; Rose, Patrick P.; Spiridigliozzi, Anna; Gold, Beth; Diamond, Michael S.; Cherry, Sara
2014-01-01
Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi) pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV), a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts. PMID:24550726
Workenhe, Samuel T; Simmons, Graydon; Pol, Jonathan G; Lichty, Brian D; Halford, William P; Mossman, Karen L
2014-01-01
Within the oncolytic virus field, the extent of virus replication that is essential for immune stimulation to control tumor growth remains unresolved. Using infected cell protein 0 (ICP0)-defective oncolytic Herpes simplex virus type 1 (HSV-1) and HSV-2 viruses (dICP0 and dNLS) that show differences in their in vitro replication and cytotoxicity, we investigated the inherent features of oncolytic HSV viruses that are required for potent antitumor activity. In vitro, the HSV-2 vectors showed rapid cytotoxicity despite lower viral burst sizes compared to HSV-1 vectors. In vivo, although both of the dICP0 vectors initially replicated to a similar level, HSV-1 dICP0 was rapidly cleared from the tumors. In spite of this rapid clearance, HSV-1 dICP0 treatment conferred significant survival benefit. HSV-1 dICP0-treated tumors showed significantly higher levels of danger-associated molecular patterns that correlated with higher numbers of antigen-presenting cells within the tumor and increased antigen-specific CD8+ T-cell levels in the peripheral blood. This study suggests that, at least in the context of oncolytic HSV, the initial stages of immunogenic virus replication leading to activation of antitumor immunity are more important than persistence of a replicating virus within the tumor. This knowledge provides important insight for the design of therapeutically successful oncolytic viruses.
Future Scenarios for Plant Virus Pathogens as Climate Change Progresses.
Jones, R A C
2016-01-01
Knowledge of how climate change is likely to influence future virus disease epidemics in cultivated plants and natural vegetation is of great importance to both global food security and natural ecosystems. However, obtaining such knowledge is hampered by the complex effects of climate alterations on the behavior of diverse types of vectors and the ease by which previously unknown viruses can emerge. A review written in 2011 provided a comprehensive analysis of available data on the effects of climate change on virus disease epidemics worldwide. This review summarizes its findings and those of two earlier climate change reviews and focuses on describing research published on the subject since 2011. It describes the likely effects of the full range of direct and indirect climate change parameters on hosts, viruses and vectors, virus control prospects, and the many information gaps and deficiencies. Recently, there has been encouraging progress in understanding the likely effects of some climate change parameters, especially over the effects of elevated CO2, temperature, and rainfall-related parameters, upon a small number of important plant viruses and several key insect vectors, especially aphids. However, much more research needs to be done to prepare for an era of (i) increasingly severe virus epidemics and (ii) increasing difficulties in controlling them, so as to mitigate their detrimental effects on future global food security and plant biodiversity. © 2016 Elsevier Inc. All rights reserved.
Tian, Ji; Pei, Haixia; Zhang, Shuai; Chen, Jiwei; Chen, Wen; Yang, Ruoyun; Meng, Yonglu; You, Jie; Gao, Junping; Ma, Nan
2014-01-01
Virus-induced gene silencing (VIGS) is a useful tool for functional characterization of genes in plants. Unfortunately, the efficiency of infection by Tobacco rattle virus (TRV) is relatively low for some non-Solanaceae plants, which are economically important, such as rose (Rosa sp.). Here, to generate an easy traceable TRV vector, a green fluorescent protein (GFP) gene was tagged to the 3' terminus of the coat protein gene in the original TRV2 vector, and the silencing efficiency of the modified TRV-GFP vector was tested in several plants, including Nicotiana benthamiana, Arabidopsis thaliana, rose, strawberry (Fragaria ananassa), and chrysanthemum (Dendranthema grandiflorum). The results showed that the efficiency of infection by TRV-GFP was equal to that of the original TRV vector in each tested plant. Spread of the modified TRV virus was easy to monitor by using fluorescent microscopy and a hand-held UV lamp. When TRV-GFP was used to silence the endogenous phytoene desaturase (PDS) gene in rose cuttings and seedlings, the typical photobleached phenotype was observed in 75-80% plants which were identified as GFP positive by UV lamp. In addition, the abundance of GFP protein, which represented the concentration of TRV virus, was proved to correlate negatively with the level of the PDS gene, suggesting that GFP could be used as an indicator of the degree of silencing of a target gene. Taken together, this work provides a visualizable and efficient tool to predict positive gene silencing plants, which is valuable for research into gene function in plants, especially for non-Solanaceae plants.
Tian, Ji; Pei, Haixia; Ma, Nan
2014-01-01
Virus-induced gene silencing (VIGS) is a useful tool for functional characterization of genes in plants. Unfortunately, the efficiency of infection by Tobacco rattle virus (TRV) is relatively low for some non-Solanaceae plants, which are economically important, such as rose (Rosa sp.). Here, to generate an easy traceable TRV vector, a green fluorescent protein (GFP) gene was tagged to the 3’ terminus of the coat protein gene in the original TRV2 vector, and the silencing efficiency of the modified TRV–GFP vector was tested in several plants, including Nicotiana benthamiana, Arabidopsis thaliana, rose, strawberry (Fragaria ananassa), and chrysanthemum (Dendranthema grandiflorum). The results showed that the efficiency of infection by TRV–GFP was equal to that of the original TRV vector in each tested plant. Spread of the modified TRV virus was easy to monitor by using fluorescent microscopy and a hand-held UV lamp. When TRV–GFP was used to silence the endogenous phytoene desaturase (PDS) gene in rose cuttings and seedlings, the typical photobleached phenotype was observed in 75–80% plants which were identified as GFP positive by UV lamp. In addition, the abundance of GFP protein, which represented the concentration of TRV virus, was proved to correlate negatively with the level of the PDS gene, suggesting that GFP could be used as an indicator of the degree of silencing of a target gene. Taken together, this work provides a visualizable and efficient tool to predict positive gene silencing plants, which is valuable for research into gene function in plants, especially for non-Solanaceae plants. PMID:24218330
Engineering adeno-associated viruses for clinical gene therapy.
Kotterman, Melissa A; Schaffer, David V
2014-07-01
Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.
Engineering adeno-associated viruses for clinical gene therapy
Kotterman, Melissa A.; Schaffer, David V.
2015-01-01
Clinical gene therapy has been increasingly successful, due both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among the latter, delivery vectors based on adeno-associated virus (AAV) have emerged as safe and effective – in one recent case leading to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers. PMID:24840552
Schneweis, Derek J; Whitfield, Anna E; Rotenberg, Dorith
2017-01-01
Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a circulative-propagative manner. Little is known about thrips vector response to TSWV during the infection process from larval acquisition to adult inoculation of plants. Whole-body transcriptome response to virus infection was determined for first-instar larval, pre-pupal and adult thrips using RNA-Seq. TSWV responsive genes were identified using preliminary sequence of a draft genome of F. occidentalis as a reference and three developmental-stage transcriptomes were assembled. Processes and functions associated with host defense, insect cuticle structure and development, metabolism and transport were perturbed by TSWV infection as inferred by ontologies of responsive genes. The repertoire of genes responsive to TSWV varied between developmental stages, possibly reflecting the link between thrips development and the virus dissemination route in the vector. This study provides the foundation for exploration of tissue-specific expression in response to TSWV and functional analysis of thrips gene function. Copyright © 2016 Elsevier Inc. All rights reserved.
Host-seeking strategies of mosquito disease vectors.
Day, Jonathan F
2005-12-01
Disease transmission by arthropods normally requires at least 2 host contacts. During the first, a pathogen (nematode, protozoan, or virus) is acquired along with the blood from an infected vertebrate host. The pathogen penetrates the vector's midgut and infects a variety of tissues, where replication may occur during an extrinsic incubation period lasting 3-30, days depending on vector and parasite physiology and ambient temperature. Following salivary-gland infection, the pathogen is usually transmitted to additional susceptible vertebrate hosts during future probing or blood feeding. The host-seeking strategies used by arthropod vectors can, in part, affect the efficiency of disease transmission. Vector abundance, seasonal distribution, habitat and host preference, and susceptibility to infection are all important components of disease-transmission cycles. Examples of 3 mosquito vectors of human disease are presented here to highlight the diversity of host seeking and to show how specific behaviors may influence disease-transmission cycles. In the African tropics, Anopheles gambiae s.s. is an efficient vector of human malaria due to its remarkably focused preference for human blood. Aedes aegypti is the main vector of dengue viruses in the New and Old World tropics and subtropics. This mosquito has evolved a domestic lifestyle and shares human habitations throughout much of its range. It prospers in settings where humans are its main source of blood. In south Florida, Culex nigripalpus is the major vector of St. Louis encephalitis (SLE) and West Nile (WN) viruses. This mosquito is opportunistic and blood feeds on virtually any available vertebrate host. It serves as an arboviral vector, in part, due to its ability to produce large populations in a short period of time. These 3 host-seeking and blood-feeding strategies make the specialist, as well as the opportunist, equally dangerous disease vectors.
Zheng, Wenwen; Huang, Wan; Liu, Shue; Levitt, Roy C; Candiotti, Keith A; Lubarsky, David A; Hao, Shuanglin
2014-09-01
Human immunodeficiency virus (HIV)-associated sensory neuropathy is a common neurological complication of HIV infection affecting up to 30% of HIV-positive individuals. However, the exact neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments for HIV-related neuropathic pain (NP). In this study, we tested the hypothesis that inhibition of proinflammatory factors with overexpression of interleukin (IL)-10 reduces HIV-related NP in a rat model. NP was induced by the application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve. The hindpaws of rats were inoculated with nonreplicating herpes simplex virus (HSV) vectors expressing anti-inflammatory cytokine IL-10 or control vector. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The mechanical threshold response was assessed over time using the area under curves. The expression of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-α, stromal cell-derived factor-1α, and C-X-C chemokine receptor type 4 in both the lumbar spinal cord and the L4/5 dorsal root ganglia (DRG), was examined at 14 and 28 days after vector inoculation using Western blots. We found that in the gp120-induced NP model, IL-10 overexpression mediated by the HSV vector resulted in a significant elevation of the mechanical threshold that was apparent on day 3 after vector inoculation compared with the control vector (P < 0.001). The antiallodynic effect of the single HSV vector inoculation expressing IL-10 lasted >28 days. The area under curve in the HSV vector expressing IL-10 was increased compared with that in the control vector (P < 0.0001). HSV vectors expressing IL-10 reversed the upregulation of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-α, stromal cell-derived factor-1α, and C-X-C chemokine receptor type 4 expression at 14 and/or 28 days in the DRG and/or the spinal dorsal horn. Our studies demonstrate that blocking the signaling of these proinflammatory molecules in the DRG and/or the spinal cord using the HSV vector expressing IL-10 is able to reduce HIV-related NP. These results provide new insights on the potential mechanisms of HIV-associated NP and a proof of concept for treating painful HIV sensory neuropathy with this type of gene therapy.
Abdoli, Shahriyar; Roohvand, Farzin; Teimoori-Toolabi, Ladan; Shokrgozar, Mohammad Ali; Bahrololoumi, Mina; Azadmanesh, Kayhan
2017-07-01
Oncolytic herpes simplex virus (oHSV)-based vectors lacking γ34.5 gene, are considered as ideal templates to construct efficient vectors for (targeted) cancer gene therapy. Herein, we reported the construction of three single/dually-flourescence labeled and γ34.5-deleted, recombinant HSV-1 vectors for rapid generation and easy selection/isolation of different HSV-Based vectors. Generation of recombinant viruses was performed with conventional homologous recombination methods using green fluorescent protein (GFP) and BleCherry harboring shuttle vectors. Viruses were isolated by direct fluorescence observation and standard plaque purifying methods and confirmed by PCR and sequencing and flow cytometry. XTT and plaque assay titration were performed on Vero, U87MG, and T98 GBM cell lines. We generated three recombinant viruses, HSV-GFP, HSV-GR (Green-Red), and HSV-Red. The HSV-GFP showed two log higher titer (1010 PFU) than wild type (108 PFU). In contrast, HSV-GR and HSV-Red showed one log lower titer (107 PFU) than parental HSV. Cytotoxicity analysis showed that HSV-GR and HSV-Red can lyse target tumor cells at multiplicity of infection of 10 and 1 (P<0.001). Moreover, HSV-GFP showed higher infection potency (98%) in comparison with HSV-GR (82%). Our oHSVs provide a simple and an efficient platform for construction and rapid isolation of 2nd and 3rd generation oHSVs by replacing the inserted dyes with transgenes and also for rapid identification via fluorescence activated cell sorting. These vectors can also be used for tracing the efficacy of therapeutic agents on target cells, imaging of neural or tumoral cells in vitro/in vivo and as oncolytic agents in cancer therapy.
Crawford, Jacob E; Alves, Joel M; Palmer, William J; Day, Jonathan P; Sylla, Massamba; Ramasamy, Ranjan; Surendran, Sinnathamby N; Black, William C; Pain, Arnab; Jiggins, Francis M
2017-02-28
The mosquito Aedes aegypti is the main vector of dengue, Zika, chikungunya and yellow fever viruses. This major disease vector is thought to have arisen when the African subspecies Ae. aegypti formosus evolved from being zoophilic and living in forest habitats into a form that specialises on humans and resides near human population centres. The resulting domestic subspecies, Ae. aegypti aegypti, is found throughout the tropics and largely blood-feeds on humans. To understand this transition, we have sequenced the exomes of mosquitoes collected from five populations from around the world. We found that Ae. aegypti specimens from an urban population in Senegal in West Africa were more closely related to populations in Mexico and Sri Lanka than they were to a nearby forest population. We estimate that the populations in Senegal and Mexico split just a few hundred years ago, and we found no evidence of Ae. aegypti aegypti mosquitoes migrating back to Africa from elsewhere in the tropics. The out-of-Africa migration was accompanied by a dramatic reduction in effective population size, resulting in a loss of genetic diversity and rare genetic variants. We conclude that a domestic population of Ae. aegypti in Senegal and domestic populations on other continents are more closely related to each other than to other African populations. This suggests that an ancestral population of Ae. aegypti evolved to become a human specialist in Africa, giving rise to the subspecies Ae. aegypti aegypti. The descendants of this population are still found in West Africa today, and the rest of the world was colonised when mosquitoes from this population migrated out of Africa. This is the first report of an African population of Ae. aegypti aegypti mosquitoes that is closely related to Asian and American populations. As the two subspecies differ in their ability to vector disease, their existence side by side in West Africa may have important implications for disease transmission.
USDA-ARS?s Scientific Manuscript database
Newcastle disease virus (NDV), avian paramyxovirus type 1, has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU), which potentially a...
USDA-ARS?s Scientific Manuscript database
The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularl...
A simplified approach to construct infectious cDNA clones of a tobamovirus in a binary vector.
Junqueira, Bruna Rayane Teodoro; Nicolini, Cícero; Lucinda, Natalia; Orílio, Anelise Franco; Nagata, Tatsuya
2014-03-01
Infectious cDNA clones of RNA viruses are important tools to study molecular processes such as replication and host-virus interactions. However, the cloning steps necessary for construction of cDNAs of viral RNA genomes in binary vectors are generally laborious. In this study, a simplified method of producing an agro-infectious Pepper mild mottle virus (PMMoV) clone is described in detail. Initially, the complete genome of PMMoV was amplified by a single-step RT-PCR, cloned, and subcloned into a small plasmid vector under the T7 RNA polymerase promoter to confirm the infectivity of the cDNA clone through transcript inoculation. The complete genome was then transferred to a binary vector using a single-step, overlap-extension PCR. The selected clones were agro-infiltrated to Nicotiana benthamiana plants and showed to be infectious, causing typical PMMoV symptoms. No differences in host responses were observed when the wild-type PMMoV isolate, the T7 RNA polymerase-derived transcripts and the agroinfiltration-derived viruses were inoculated to N. benthamiana, Capsicum chinense PI 159236 and Capsicum annuum plants. Copyright © 2013 Elsevier B.V. All rights reserved.
Turner, Kevin W.; Hunter, Fiona F.
2018-01-01
The purpose of this study was to establish geospatial and seasonal distributions of West Nile virus vectors in southern Ontario, Canada using historical surveillance data from 2002 to 2014. We set out to produce mosquito abundance prediction surfaces for each of Ontario’s thirteen West Nile virus vectors. We also set out to determine whether elevation and proximity to conservation areas and provincial parks, wetlands, and population centres could be used to improve our model. Our results indicated that the data sets for Anopheles quadrimaculatus, Anopheles punctipennis, Anopheles walkeri, Culex salinarius, Culex tarsalis, Ochlerotatus stimulans, and Ochlerotatus triseriatus were not suitable for geospatial modelling because they are randomly distributed throughout Ontario. Spatial prediction surfaces were created for Aedes japonicus and proximity to wetlands, Aedes vexans and proximity to population centres, Culex pipiens/restuans and proximity to population centres, Ochlerotatus canadensis and elevation, and Ochlerotatus trivittatus and proximity to population centres using kriging. Seasonal distributions are presented for all thirteen species. We have identified both when and where vector species are most abundant in southern Ontario. These data have the potential to contribute to a more efficient and focused larvicide program and West Nile virus awareness campaigns. PMID:29597256
Sequence and immunogenicity of a clinically approved novel measles virus vaccine vector
Zuniga, Amando; Liniger, Mathias; Morin, Teldja Neige Azzouz; Marty, René R.; Wiegand, Marian; Ilter, Orhan; Weibel, Sara; Billeter, Martin A.; Knuchel, Marlyse C.; Naim, Hussein Y.
2013-01-01
The measles virus vaccine (MVbv) is a clinically certified and well-tolerated vaccine strain that has been given both parenterally and mucosally. It has been extensively used in children and has proven to be safe and effective in eliciting protective immunity. This specific strain was therefore chosen to generate a measles viral vector. The genome of the commercial MVbv vaccine strain was isolated, sequenced and a plasmid, p(+)MVb, enabling transcription of the viral antigenome and rescue of MVb, was constructed. Phylogenic and phenotypic analysis revealed that MVbv and the rescued MVb constitute another evolutionary branch within the hitherto classified measles vaccines. Plasmid p(+)MVb was modified by insertion of artificial MV-type transcription units (ATUs) for the generation of recombinant viruses (rMVb) expressing additional proteins. Replication characteristics and immunogenicity of rMVb vectors were similar to the parental MVbv and to other vaccine strains. The expression of the additional proteins was stable over 10 serial virus transfers, which corresponds to an amplification greater than 1020. The excellent safety record and its efficient application as aerosol may add to the usefulness of the derived vectors. PMID:23324616
Rizzo, Caterina; Napoli, Christian; Venturi, Giulietta; Pupella, Simonetta; Lombardini, Letizia; Calistri, Paolo; Monaco, Federica; Cagarelli, Roberto; Angelini, Paola; Bellini, Romeo; Tamba, Marco; Piatti, Alessandra; Russo, Francesca; Palù, Giorgio; Chiari, Mario; Lavazza, Antonio; Bella, Antonino
2016-09-15
In Italy a national Plan for the surveillance of imported and autochthonous human vector-borne diseases (chikungunya, dengue, Zika virus disease and West Nile virus (WNV) disease) that integrates human and veterinary (animals and vectors) surveillance, is issued and revised annually according with the observed epidemiological changes. Here we describe results of the WNV integrated veterinary and human surveillance systems in Italy from 2008 to 2015. A real time data exchange protocol is in place between the surveillance systems to rapidly identify occurrence of human and animal cases and to define and update the map of affected areas i.e. provinces during the vector activity period from June to October. WNV continues to cause severe illnesses in Italy during every transmission season, albeit cases are sporadic and the epidemiology varies by virus lineage and geographic area. The integration of surveillance activities and a multidisciplinary approach made it possible and have been fundamental in supporting implementation of and/or strengthening preventive measures aimed at reducing the risk of transmission of WNV trough blood, tissues and organ donation and to implementing further measures for vector control. This article is copyright of The Authors, 2016.
Shi, Junming; Hu, Zhihong; Deng, Fei; Shen, Shu
2018-02-01
Ticks are important vectors for the transmission of pathogens including viruses. The viruses carried by ticks also known as tick-borne viruses (TBVs), contain a large group of viruses with diverse genetic properties and are concluded in two orders, nine families, and at least 12 genera. Some members of the TBVs are notorious agents causing severe diseases with high mortality rates in humans and livestock, while some others may pose risks to public health that are still unclear to us. Herein, we review the current knowledge of TBVs with emphases on the history of virus isolation and identification, tick vectors, and potential pathogenicity to humans and animals, including assigned species as well as the recently discovered and unassigned species. All these will promote our understanding of the diversity of TBVs, and will facilitate the further investigation of TBVs in association with both ticks and vertebrate hosts.
Ahmed, J; Bouloy, M; Ergonul, O; Fooks, Ar; Paweska, J; Chevalier, V; Drosten, C; Moormann, R; Tordo, N; Vatansever, Z; Calistri, P; Estrada-Pena, A; Mirazimi, A; Unger, H; Yin, H; Seitzer, U
2009-03-26
Arboviruses are arthropod-borne viruses, which include West Nile fever virus (WNFV), a mosquito-borne virus, Rift Valley fever virus (RVFV), a mosquito-borne virus, and Crimean-Congo haemorrhagic fever virus (CCHFV), a tick-borne virus. These arthropod-borne viruses can cause disease in different domestic and wild animals and in humans, posing a threat to public health because of their epidemic and zoonotic potential. In recent decades, the geographical distribution of these diseases has expanded. Outbreaks of WNF have already occurred in Europe, especially in the Mediterranean basin. Moreover, CCHF is endemic in many European countries and serious outbreaks have occurred, particularly in the Balkans, Turkey and Southern Federal Districts of Russia. In 2000, RVF was reported for the first time outside the African continent, with cases being confirmed in Saudi Arabia and Yemen. This spread was probably caused by ruminant trade and highlights that there is a threat of expansion of the virus into other parts of Asia and Europe. In the light of global warming and globalisation of trade and travel, public interest in emerging zoonotic diseases has increased. This is especially evident regarding the geographical spread of vector-borne diseases. A multi-disciplinary approach is now imperative, and groups need to collaborate in an integrated manner that includes vector control, vaccination programmes, improved therapy strategies, diagnostic tools and surveillance, public awareness, capacity building and improvement of infrastructure in endemic regions.
Discovery of Novel Viruses in Mosquitoes from the Zambezi Valley of Mozambique
Hayer, Juliette; Abilio, Ana Paula; Mulandane, Fernando Chanisso; Verner-Carlsson, Jenny; Falk, Kerstin I.; Fafetine, Jose M.; Berg, Mikael; Blomström, Anne-Lie
2016-01-01
Mosquitoes carry a wide variety of viruses that can cause vector-borne infectious diseases and affect both human and veterinary public health. Although Mozambique can be considered a hot spot for emerging infectious diseases due to factors such as a rich vector population and a close vector/human/wildlife interface, the viral flora in mosquitoes have not previously been investigated. In this study, viral metagenomics was employed to analyze the viral communities in Culex and Mansonia mosquitoes in the Zambezia province of Mozambique. Among the 1.7 and 2.6 million sequences produced from the Culex and Mansonia samples, respectively, 3269 and 983 reads were classified as viral sequences. Viruses belonging to the Flaviviridae, Rhabdoviridae and Iflaviridae families were detected, and different unclassified single- and double-stranded RNA viruses were also identified. A near complete genome of a flavivirus, tentatively named Cuacua virus, was obtained from the Mansonia mosquitoes. Phylogenetic analysis of this flavivirus, using the NS5 amino acid sequence, showed that it grouped with ‘insect-specific’ viruses and was most closely related to Nakiwogo virus previously identified in Uganda. Both mosquito genera had viral sequences related to Rhabdoviruses, and these were most closely related to Culex tritaeniorhynchus rhabdovirus (CTRV). The results from this study suggest that several viruses specific for insects belonging to, for example, the Flaviviridae and Rhabdoviridae families, as well as a number of unclassified RNA viruses, are present in mosquitoes in Mozambique. PMID:27682810
Aedes-Borne Virus-Mosquito Interactions: Mass Spectrometry Strategies and Findings.
Pando-Robles, Victoria; Batista, Cesar V
2017-06-01
Aedes-borne viruses are responsible for high-impact neglected tropical diseases and unpredictable outbreaks such as the ongoing Zika epidemics. Aedes mosquitoes spread different arboviruses such as Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus, among others, and are responsible for the continuous emergence and reemergence of these pathogens. These viruses have complex transmission cycles that include two hosts, namely the Aedes mosquito as a vector and susceptible vertebrate hosts. Human infection with arboviruses causes diseases that range from subclinical or mild to febrile diseases, encephalitis, and hemorrhagic fever. Infected mosquitoes do not show detectable signs of disease, even though the virus maintains a lifelong persistent infection. The infection of the Aedes mosquito by viruses involves a molecular crosstalk between cell and viral proteins. An understanding of how mosquito vectors and viruses interact is of fundamental interest, and it also offers novel perspectives for disease control. In recent years, mass spectrometry (MS)-based strategies in combination with bioinformatics have been successfully applied to identify and quantify global changes in cellular proteins, lipids, peptides, and metabolites in response to viral infection. Although the information about proteomics in the Aedes mosquito is limited, the information that has been reported can set up the basis for future studies. This review reflects how MS-based approaches have extended our understanding of Aedes mosquito biology and the development of DENV and CHIKV infection in the vector. Finally, this review discusses future challenges in the field.
Wanaratana, S; Amonsin, A; Chaisingh, A; Panyim, S; Sasipreeyajan, J; Pakpinyo, S
2013-06-01
In this study, laboratory-reared houseflies were experimentally exposed to the high pathogenicity avian influenza virus (HPAI) subtype H5N1 virus to evaluate the houseflies as vectors in HPAI-H5N1 virus transmission in chickens. One hundred and fifty houseflies (Musca domestica L.) were equally allocated into three groups. Groups 2 and 3 were exposed to the HPAI-H5N1 virus by allowing the flies to consume food containing the virus for 15 min, while the flies in group 1 were allowed to consume H5N1-free food and would serve as a negative control group. Group 2 flies were euthanatized immediately after H5N1 exposure, while group 3 were held at room temperature for 24 hr and euthanatized. The houseflies in the transmission of the HPAI-H5N1 virus were examined by challenging three groups of housefly homogenates into layer chickens via the oral drop. Morbidity and mortality were observed for 14 days, and virus shedding monitored via oropharyngeal swabs (OS) and cloacal swabs (CS), which were collected daily and determined by real-time reverse transcription-PCR and virus titration. Experimental challenge showed that all the chickens of groups 2 and 3 died within 7 days of inoculation. The OS had higher concentrations of virus than CS. Moreover, the chickens of group 2 had higher concentrations of virus shedding than the chickens of group 3. Immunohistochemistry detected the nucleoprotein of the type A influenza virus in all tissue samples collected, including the trachea, duodenum, pancreas, and brain. In summary, this study demonstrates that houseflies could serve as vectors in HPAI-H5N1 virus transmission in chickens under experimental conditions.
Differential Life History Trait Associations of Aphids with Nonpersistent Viruses in Cucurbits.
Angelella, G M; Egel, D S; Holland, J D; Nemacheck, J A; Williams, C E; Kaplan, I
2015-06-01
The diversity of vectors and fleeting nature of virus acquisition and transmission renders nonpersistent viruses a challenge to manage. We assessed the importance of noncolonizing versus colonizing vectors with a 2-yr survey of aphids and nonpersistent viruses on commercial pumpkin farms. We quantified aphid alightment using pan traps, while testing leaf samples with multiplex RT-PCR targeting cucumber mosaic virus (CMV), zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and papaya ringspot virus (PRSV). Overall, we identified 53 aphid species (3,899 individuals), from which the melon aphid, Aphis gossypii Glover, a pumpkin-colonizing species, predominated (76 and 37% of samples in 2010 and 2011, respectively). CMV and ZYMV were not detected, but WMV and PRSV were prevalent, both regionally (WMV: 28/29 fields, PRSV: 21/29 fields) and within fields (infection rates = 69 and 55% for WMV in 2010 and 2011; 28 and 25% for PRSV in 2010 and 2011). However, early-season samples showed extremely low infection levels, suggesting cucurbit viruses are not seed-transmitted and implicating aphid activity as a causal factor driving virus spread. Interestingly, neither noncolonizer and colonizer alightment nor total aphid alightment were good predictors of virus presence, but community analyses revealed species-specific relationships. For example, cowpea aphid (Aphis craccivora Koch) and spotted alfalfa aphid (Therioaphis trifolii Monell f. maculata) were associated with PRSV infection, whereas the oleander aphid (Aphis nerii Bover de Fonscolombe) was associated with WMV spread within fields. These outcomes highlight the need for tailored management plans targeting key vectors of nonpersistent viruses in agricultural systems. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Viral Determinants of Integration Site Preferences of Simian Immunodeficiency Virus-Based Vectors
Monse, Hella; Laufs, Stephanie; Kuate, Seraphin; Zeller, W. Jens; Fruehauf, Stefan; Überla, Klaus
2006-01-01
Preferential integration into transcriptionally active regions of genomes has been observed for retroviral vectors based on gamma-retroviruses and lentiviruses. However, differences in the integration site preferences were detected, which might be explained by differences in viral components of the preintegration complexes. Viral determinants of integration site preferences have not been defined. Therefore, integration sites of simian immunodeficiency virus (SIV)-based vectors produced in the absence of accessory genes or lacking promoter and enhancer elements were compared. Similar integration patterns for the different SIV vectors indicate that vif, vpr, vpx, nef, env, and promoter or enhancer elements are not required for preferential integration of SIV into transcriptionally active regions of genomes. PMID:16873270
Liang, Min; Yan, Ming; Lu, Yunfeng
2013-01-01
Abstract The ability to introduce transgenes with precise specificity to the desired target cells or tissues is key to a more facile application of genetic therapy. Here, we describe a novel method using nanotechnology to generate lentiviral vectors with altered recognition of host cell receptor specificity. Briefly, the infectivity of the vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped lentiviral vectors was shielded by a thin polymer shell synthesized in situ onto the viral envelope, and new binding ability was conferred to the shielded virus by introducing acrylamide-tailored cyclic arginine-glycine-aspartic acid (cRGD) peptide to the polymer shell. We termed the resulting virus “targeting nanovirus.” The targeting nanovirus had similar titer with VSV-G pseudotypes and specifically transduced Hela cells with high transduction efficiency. In addition, the encapsulation of the VSV-G pseudotyped lentivirus by the polymer shell did not change the pathway that VSV-G pseudotypes enter and fuse with cells, as well as later events such as reverse transcription and gene expression. Furthermore, the targeting nanovirus possessed enhanced stability in the presence of human serum, indicating protection of the virus by the polymer shell from human serum complement inactivation. This novel use of nanotechnology demonstrates proof of concept for an approach that could be more generally applied for redirecting viral vectors for laboratory and clinical purposes. PMID:23327104
CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.
Okoli, Arinze; Okeke, Malachy I; Tryland, Morten; Moens, Ugo
2018-01-22
The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them.
Rhabdoviruses as vaccine platforms for infectious disease and cancer.
Zemp, Franz; Rajwani, Jahanara; Mahoney, Douglas J
2018-05-21
The family Rhabdoviridae (RV) comprises a large, genetically diverse collection of single-stranded, negative sense RNA viruses from the order Mononegavirales. Several RV members are being developed as live-attenuated vaccine vectors for the prevention or treatment of infectious disease and cancer. These include the prototype recombinant Vesicular Stomatitis Virus (rVSV) and the more recently developed recombinant Maraba Virus, both species within the genus Vesiculoviridae. A relatively strong safety profile in humans, robust immunogenicity and genetic malleability are key features that make the RV family attractive vaccine platforms. Currently, the rVSV vector is in preclinical development for vaccination against numerous high-priority infectious diseases, with clinical evaluation underway for HIV/AIDS and Ebola virus disease. Indeed, the success of the rVSV-ZEBOV vaccine during the 2014-15 Ebola virus outbreak in West Africa highlights the therapeutic potential of rVSV as a vaccine vector for acute, life-threatening viral illnesses. The rVSV and rMaraba platforms are also being tested as 'oncolytic' cancer vaccines in a series of phase 1-2 clinical trials, after being proven effective at eliciting immune-mediated tumour regression in preclinical mouse models. In this review, we discuss the biological and genetic features that make RVs attractive vaccine platforms and the development and ongoing testing of rVSV and rMaraba strains as vaccine vectors for infectious disease and cancer.
Bukreyev, Alexander A; Dinapoli, Joshua M; Yang, Lijuan; Murphy, Brian R; Collins, Peter L
2010-04-10
We previously used human parainfluenza virus type 3 (HPIV3) as a vector to express the Ebola virus (EBOV) GP glycoprotein. The resulting HPIV3/EboGP vaccine was immunogenic and protective against EBOV challenge in a non-human primate model. However, it remained unclear whether the vaccine would be effective in adults due to preexisting immunity to HPIV3. Here, the immunogenicity of HPIV3/EboGP was compared in HPIV3-naive and HPIV3-immune Rhesus monkeys. After a single dose of HPIV3/EboGP, the titers of EBOV-specific serum ELISA or neutralization antibodies were substantially less in HPIV3-immune animals compared to HPIV3-naive animals. However, after two doses, which were previously determined to be required for complete protection against EBOV challenge, the antibody titers were indistinguishable between the two groups. The vaccine virus appeared to replicate, at a reduced level, in the respiratory tract despite the preexisting immunity. This may reflect the known ability of HPIV3 to re-infect and may also reflect the presence of EBOV GP in the vector virion, which confers resistance to neutralization in vitro by HPIV3-specific antibodies. These data suggest that HPIV3/EboGP will be immunogenic in adults as well as children. Published by Elsevier Inc.
2017-08-01
An outbreak of Zika virus infection was detected in Singapore in August, 2016. We report the first comprehensive analysis of a national response to an outbreak of Zika virus infection in Asia. In the first phase of the outbreak, patients with suspected Zika virus infection were isolated in two national referral hospitals until their serum tested negative for the virus. Enhanced vector control and community engagement measures were deployed in disease clusters, including stepped-up mosquito larvicide and adulticide use, community participation in source reduction (destruction of mosquito breeding sites), and work with the local media to promote awareness of the outbreak. Clinical and epidemiological data were collected from patients with confirmed Zika virus infection during the first phase. In the second phase, admission into hospitals for isolation was stopped but vector control efforts continued. Mosquitoes were captured from areas with Zika disease clusters to assess which species were present, their breeding numbers, and to test for Zika virus. Mosquito virus strains were compared with human strains through phylogenetic analysis after full genome sequencing. Reproductive numbers and inferred dates of strain diversification were estimated through Bayesian analyses. From Aug 27 to Nov 30, 2016, 455 cases of Zika virus infection were confirmed in Singapore. Of 163 patients with confirmed Zika virus infection who presented to national referral hospitals during the first phase of the outbreak, Zika virus was detected in the blood samples of 97 (60%) patients and the urine samples of 157 (96%) patients. There were 15 disease clusters, 12 of which had high Aedes aegypti breeding percentages. Captured mosquitoes were pooled into 517 pools for Zika virus screening; nine abdomen pools (2%) were positive for Zika virus, of which seven head and thorax pools were Zika-virus positive. In the phylogenetic analysis, all mosquito sequences clustered within the outbreak lineage. The lineage showed little diversity and was distinct from other Asian lineages. The estimated most recent common ancestor of the outbreak lineage was from May, 2016. With the deployment of vector control and community engagement measures, the estimated reproductive number fell from 3·62 (95% CI 3·48-3·77) for July 31 to Sept 1, 2016, to 1·22 (95% CI 1·19-1·24) 4 weeks later (Sept 1 to Nov 24, 2016). The outbreak shows the ease with which Zika virus can be introduced and spread despite good baseline vector control. Disease surveillance, enhanced vector control, and community awareness and engagement helped to quickly curb further spread of the virus. These intensive measures might be useful for other countries facing the same threat. National Medical Research Council Singapore, Centre for Infectious Disease Epidemiology and Research, and A*STAR Biomedical Research Council. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hastie, Eric; Samulski, R Jude
2015-05-01
Fifty years after the discovery of adeno-associated virus (AAV) and more than 30 years after the first gene transfer experiment was conducted, dozens of gene therapy clinical trials are in progress, one vector is approved for use in Europe, and breakthroughs in virus modification and disease modeling are paving the way for a revolution in the treatment of rare diseases, cancer, as well as HIV. This review will provide a historical perspective on the progression of AAV for gene therapy from discovery to the clinic, focusing on contributions from the Samulski lab regarding basic science and cloning of AAV, optimized large-scale production of vectors, preclinical large animal studies and safety data, vector modifications for improved efficacy, and successful clinical applications.
Ebola virus vaccine: benefit and risks of adenovirus-based vectors.
Mennechet, Franck J D; Tran, Thi Thu Phuong; Eichholz, Karsten; van de Perre, Philippe; Kremer, Eric J
2015-01-01
In 2014, an outbreak of Ebola virus spread rapidly in West Africa. The epidemic killed more than 10,000 people and resulted in transmissions outside the endemic countries. WHO hopes for effective vaccines by the end of 2015. Numerous vaccine candidates have been proposed, and several are currently being evaluated in humans. Among the vaccine candidates are vectors derived from adenovirus (Ad). Despite previous encouraging preclinical and Phase I/II trials, Ad vectors used in three Phase II trials targeting HIV were prematurely interrupted because of the lack of demonstrated efficacy. The vaccine was not only ineffective but also led to a higher rate of HIV acquisition. In this context, the authors discuss the potential benefits, risks and impact of using Ad-derived vaccines to control Ebola virus disease.
Tchouassi, David P.; Bastos, Armanda D. S.; Sole, Catherine L.; Diallo, Mawlouth; Lutomiah, Joel; Mutisya, James; Mulwa, Francis; Borgemeister, Christian; Sang, Rosemary; Torto, Baldwyn
2014-01-01
Rift Valley fever (RVF) outbreaks in Kenya have increased in frequency and range to include northeastern Kenya where viruses are increasingly being isolated from known (Aedes mcintoshi) and newly-associated (Ae. ochraceus) vectors. The factors contributing to these changing outbreak patterns are unclear and the population genetic structure of key vectors and/or specific virus-vector associations, in particular, are under-studied. By conducting mitochondrial and nuclear DNA analyses on >220 Kenyan specimens of Ae. mcintoshi and Ae. ochraceus, we uncovered high levels of vector complexity which may partly explain the disease outbreak pattern. Results indicate that Ae. mcintoshi consists of a species complex with one of the member species being unique to the newly-established RVF outbreak-prone northeastern region of Kenya, whereas Ae. ochraceus is a homogeneous population that appears to be undergoing expansion. Characterization of specimens from a RVF-prone site in Senegal, where Ae. ochraceus is a primary vector, revealed direct genetic links between the two Ae. ochraceus populations from both countries. Our data strongly suggest that unlike Ae. mcintoshi, Ae. ochraceus appears to be a relatively recent, single 'introduction' into Kenya. These results, together with increasing isolations from this vector, indicate that Ae. ochraceus will likely be of greater epidemiological importance in future RVF outbreaks in Kenya. Furthermore, the overall vector complexity calls into question the feasibility of mosquito population control approaches reliant on genetic modification. PMID:25474018
Denby, Laura; Work, Lorraine M; Seggern, Dan J Von; Wu, Eugene; McVey, John H; Nicklin, Stuart A; Baker, Andrew H
2007-09-01
The potential efficacy of gene delivery is dictated by the infectivity profile of existing vectors, which is often restrictive. In order to target cells and organs for which no efficient vector is currently available, a promising approach would be to engineer vectors with novel transduction profiles. Applications that involve injecting adenovirus (Ad) vectors into the bloodstream require that native tropism for the liver be removed, and that targeting moieties be engineered into the capsid. We previously reported that pseudotyping the Ad serotype 5 fiber for that of Ad19p results in reduced hepatic transduction. In this study we show that this may be caused, at least in part, by a reduction in the capacity of the Ad19p-based virus to bind blood coagulation factors. It is therefore a potential candidate for vector retargeting, focusing on the kidney as a therapeutic target. We used in vivo phage display in rats, and identified peptides HTTHREP and HITSLLS that homed to the kidneys following intravenous injection. We engineered the HI loop of Ad19p to accommodate peptide insertions and clones. Intravenous delivery of each peptide-modified virus resulted in selective renal targeting, with HTTHREP and HITSLLS-targeted viruses selectively transducing tubular epithelium and glomeruli, respectively. Our study has important implications for the use of genetic engineering of Ad fibers to produce targeted gene delivery vectors.
A New Genetic Vaccine Platform Based on an Adeno-Associated Virus Isolated from a Rhesus Macaque ▿
Lin, Jianping; Calcedo, Roberto; Vandenberghe, Luk H.; Bell, Peter; Somanathan, Suryanarayan; Wilson, James M.
2009-01-01
We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8+ T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8+ T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses. PMID:19812149
Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts.
Ammar, El-Desouky; Tsai, Chi-Wei; Whitfield, Anna E; Redinbaugh, Margaret G; Hogenhout, Saskia A
2009-01-01
The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are at least 90 plant-infecting rhabdoviruses, several of which are economically important pathogens of various crops. All definitive plant-infecting and many vertebrate-infecting rhabdoviruses are persistently transmitted by insect vectors, and a few putative plant rhabdoviruses are transmitted by mites. Plant rhabdoviruses replicate in their plant and arthropod hosts, and transmission by vectors is highly specific, with each virus species transmitted by one or a few related insect species, mainly aphids, leafhoppers, or planthoppers. Here, we provide an overview of plant rhabdovirus interactions with their insect hosts and of how these interactions compare with those of vertebrate-infecting viruses and with the Sigma rhabdovirus that infects Drosophila flies. We focus on cellular and molecular aspects of vector/host specificity, transmission barriers, and virus receptors in the vectors. In addition, we briefly discuss recent advances in understanding rhabdovirus-plant interactions.
Generation and Production of Modified Vaccinia Virus Ankara (MVA) as a Vaccine Vector.
Pavot, Vincent; Sebastian, Sarah; Turner, Alison V; Matthews, Jake; Gilbert, Sarah C
2017-01-01
The smallpox vaccine based on the vaccinia virus was successfully used to eradicate smallpox, but although very effective, it was a very reactogenic vaccine and responsible for the deaths of one to two people per million vaccinated. Modified Vaccinia virus Ankara (MVA) is an attenuated derivative, also used in the smallpox eradication campaign and now being developed as a recombinant viral vector to produce vaccines against infectious diseases and cancer. MVA can encode one or more foreign antigens and thus can function as a multivalent vaccine. The vector can be used at biosafety level 1, has intrinsic adjuvant properties, and induces humoral and cellular immune responses. Many clinical trials of these new vaccines have been conducted, and the safety of MVA is now well documented. Immunogenicity is influenced by the dose and vaccination regimen, and information on the efficacy of MVA-vectored vaccines is now beginning to accumulate. In this chapter, we provide protocols for generation, isolation, amplification, and purification of recombinant MVA for preclinical and clinical evaluation.
USDA-ARS?s Scientific Manuscript database
Tomato ringspot disease, caused by Tomato ringspot virus (TmRSV), is associated with the presence of dagger nematodes, the major vectors of Tomato ringspot virus (TmRSV). This virus is endemic and widely distributed in North America, as well as many parts of the world. Infected plants develop yello...
Wang, Jinglin; Zhang, Hailin; Sun, Xiaohong; Fu, Shihong; Wang, Huanqin; Feng, Yun; Wang, Huanyu; Tang, Qing; Liang, Guo-Dong
2011-05-01
Economic development and increased tourism in the southern region of Yunnan Province in China, adjacent to several countries in Southeast Asia, has increased the likelihood of import and export of vectors and vector-borne diseases. We report the results of surveillance of mosquitoes and mosquito-borne arboviruses along the border of China-Myanmar-Laos in 2005 and 2006, and information associating several arboviruses with infections and possibly disease in local human populations. Seventeen mosquito species representing four genera were obtained, and 14 strains of mosquito-borne viruses representing six viruses in five genera were isolated from Culex tritaeniorhynchus. In addition, IgM against Japanese encephalitis virus, Sindbis virus, Yunnan orbivirus and novel Banna virus was detected in acute-phase serum samples obtained from hospitalized patients with fever and encephalitis near the areas where the viruses were isolated. This investigation suggests that Japanese encephalitis virus, Sindbis virus, and lesser-known arboviruses circulate and may be infecting humans in the China-Myanmar-Laos border region.
9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...
9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...
9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...
9 CFR 113.202 - Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Type 2 Vaccine, Killed Virus. 113.202 Section 113.202 Animals and Animal Products ANIMAL AND PLANT...; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.202 Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus. Canine Hepatitis and Canine Adenovirus Type 2 Vaccine, Killed Virus...
Using rabies virus vaccine strain SRV9 as viral vector to express exogenous gene.
Wang, Hualei; Jin, Hongli; Feng, Na; Zheng, Xuexing; Li, Ling; Qi, Yinglin; Liang, Meng; Zhao, Yongkun; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Jin, Ningyi; Yang, Songtao; Xia, Xianzhu
2015-04-01
Rabies virus (RABV) can cause a fatal neurological disease in human and animals, and vaccines were generally applied for the immunoprophylaxis of rabies. Here, a recombinant viral vector carrying the exogenous gene expression component between phosphoprotein (P) and matrix protein (M) genes of RABV was constructed based on the vaccine strain SRV9 used in China. To develop a reverse genetic system, the full-length cDNA plasmids of SRV9 were constructed using the eukaryotic expression vector pCI or pcDNA3.1(+). However, recovery efficiency based on the pcDNA3.1 vector was significantly higher than that of the pCI vector. The exogenous gene expression component PE-PS-BsiWI-PmeI or PS-BsiWI-PmeI-PE was introduced in different locations between the P and M genes of SRV9. When the enhanced green fluorescent protein (eGFP) was used as a reporter gene, both locations could rescue recombinant RABV (rRABV) expressing eGFP with high efficiency. Characterization of rRABV expressing eGFP in vitro revealed that its growth was similar to that of the parental virus. Animal experiments showed that rRABV expressing eGFP could replicate and express eGFP in the brains of suckling mice. Furthermore, rRABV of SRV9 was nonpathogenic for 3-week-old mice and could be cleared from the central nervous system at 5 days post-inoculation. Our results showed that the recombinant SRV9 virus could be used as a useful viral vector for exogenous gene expression.
Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.
Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun
2015-11-27
A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Toward Gene Therapy for Cystic Fibrosis Using a Lentivirus Pseudotyped With Sendai Virus Envelopes
Mitomo, Katsuyuki; Griesenbach, Uta; Inoue, Makoto; Somerton, Lucinda; Meng, Cuixiang; Akiba, Eiji; Tabata, Toshiaki; Ueda, Yasuji; Frankel, Gad M; Farley, Raymond; Singh, Charanjit; Chan, Mario; Munkonge, Felix; Brum, Andrea; Xenariou, Stefania; Escudero-Garcia, Sara; Hasegawa, Mamoru; Alton, Eric WFW
2010-01-01
Gene therapy for cystic fibrosis (CF) is making encouraging progress into clinical trials. However, further improvements in transduction efficiency are desired. To develop a novel gene transfer vector that is improved and truly effective for CF gene therapy, a simian immunodeficiency virus (SIV) was pseudotyped with envelope proteins from Sendai virus (SeV), which is known to efficiently transduce unconditioned airway epithelial cells from the apical side. This novel vector was evaluated in mice in vivo and in vitro directed toward CF gene therapy. Here, we show that (i) we can produce relevant titers of an SIV vector pseudotyped with SeV envelope proteins for in vivo use, (ii) this vector can transduce the respiratory epithelium of the murine nose in vivo at levels that may be relevant for clinical benefit in CF, (iii) this can be achieved in a single formulation, and without the need for preconditioning, (iv) expression can last for 15 months, (v) readministration is feasible, (vi) the vector can transduce human air–liquid interface (ALI) cultures, and (vii) functional CF transmembrane conductance regulator (CFTR) chloride channels can be generated in vitro. Our data suggest that this lentiviral vector may provide a step change in airway transduction efficiency relevant to a clinical programme of gene therapy for CF. PMID:20332767
György, Bence; Fitzpatrick, Zachary; Crommentuijn, Matheus HW; Mu, Dakai; Maguire, Casey A.
2014-01-01
Recently adeno-associated virus (AAV) became the first clinically approved gene therapy product in the western world. To develop AAV for future clinical application in a widespread patient base, particularly in therapies which require intravenous (i.v.) administration of vector, the virus must be able to evade pre-existing antibodies to the wild type virus. Here we demonstrate that in mice, AAV vectors associated with extracellular vesicles (EVs) can evade human anti-AAV neutralizing antibodies. We observed different antibody evasion and gene transfer abilities with populations of EVs isolated by different centrifugal forces. EV-associated AAV vector (ev-AAV) was up to 136-fold more resistant over a range of neutralizing antibody concentrations relative to standard AAV vector in vitro. Importantly in mice, at a concentration of passively transferred human antibodies which decreased i.v. administered standard AAV transduction of brain by 80%, transduction of ev-AAV transduction was not reduced and was 4,000-fold higher. Finally, we show that expressing a brain targeting peptide on the EV surface allowed significant enhancement of transduction compared to untargeted ev-AAV. Using ev-AAV represents an effective, clinically relevant approach to evade human neutralizing anti-AAV antibodies after systemic administration of vector. PMID:24917028
Pentatomoids as vectors of plant pathogens
USDA-ARS?s Scientific Manuscript database
Vector-borne pathogens can be categorized functionally according to the degree of symbiosis that they acquire with their respective vectors. Three modes of transmission have been broadly described: non-persistent, semi-persistent, and persistent. Originally compiled specifically for viruses transm...
Zika virus replication in the mosquito Culex quinquefasciatus in Brazil.
Guedes, Duschinka Rd; Paiva, Marcelo Hs; Donato, Mariana Ma; Barbosa, Priscilla P; Krokovsky, Larissa; Rocha, Sura W Dos S; Saraiva, Karina LA; Crespo, Mônica M; Rezende, Tatiana Mt; Wallau, Gabriel L; Barbosa, Rosângela Mr; Oliveira, Cláudia Mf; Melo-Santos, Maria Av; Pena, Lindomar; Cordeiro, Marli T; Franca, Rafael F de O; Oliveira, André Ls de; Peixoto, Christina A; Leal, Walter S; Ayres, Constância Fj
2017-08-09
Zika virus (ZIKV) is a flavivirus that has recently been associated with an increased incidence of neonatal microcephaly and other neurological disorders. The virus is primarily transmitted by mosquito bite, although other routes of infection have been implicated in some cases. The Aedes aegypti mosquito is considered to be the main vector to humans worldwide; however, there is evidence that other mosquito species, including Culex quinquefasciatus, transmit the virus. To test the potential of Cx. quinquefasciatus to transmit ZIKV, we experimentally compared the vector competence of laboratory-reared Ae. aegypti and Cx. quinquefasciatus. Interestingly, we were able to detect the presence of ZIKV in the midgut, salivary glands and saliva of artificially fed Cx. quinquefasciatus. In addition, we collected ZIKV-infected Cx. quinquefasciatus from urban areas with high microcephaly incidence in Recife, Brazil. Corroborating our experimental data from artificially fed mosquitoes, ZIKV was isolated from field-caught Cx. quinquefasciatus, and its genome was partially sequenced. Collectively, these findings indicate that there may be a wider range of ZIKV vectors than anticipated.
Zika virus replication in the mosquito Culex quinquefasciatus in Brazil
Guedes, Duschinka RD; Paiva, Marcelo HS; Donato, Mariana MA; Barbosa, Priscilla P; Krokovsky, Larissa; Rocha, Sura W dos S; Saraiva, Karina LA; Crespo, Mônica M; Rezende, Tatiana MT; Wallau, Gabriel L; Barbosa, Rosângela MR; Oliveira, Cláudia MF; Melo-Santos, Maria AV; Pena, Lindomar; Cordeiro, Marli T; Franca, Rafael F de O; Oliveira, André LS de; Peixoto, Christina A; Leal, Walter S; Ayres, Constância FJ
2017-01-01
Zika virus (ZIKV) is a flavivirus that has recently been associated with an increased incidence of neonatal microcephaly and other neurological disorders. The virus is primarily transmitted by mosquito bite, although other routes of infection have been implicated in some cases. The Aedes aegypti mosquito is considered to be the main vector to humans worldwide; however, there is evidence that other mosquito species, including Culex quinquefasciatus, transmit the virus. To test the potential of Cx. quinquefasciatus to transmit ZIKV, we experimentally compared the vector competence of laboratory-reared Ae. aegypti and Cx. quinquefasciatus. Interestingly, we were able to detect the presence of ZIKV in the midgut, salivary glands and saliva of artificially fed Cx. quinquefasciatus. In addition, we collected ZIKV-infected Cx. quinquefasciatus from urban areas with high microcephaly incidence in Recife, Brazil. Corroborating our experimental data from artificially fed mosquitoes, ZIKV was isolated from field-caught Cx. quinquefasciatus, and its genome was partially sequenced. Collectively, these findings indicate that there may be a wider range of ZIKV vectors than anticipated. PMID:28790458
Use of a current varicella vaccine as a live polyvalent vaccine vector.
Murakami, Kouki; Mori, Yasuko
2016-01-04
Varicella-zoster virus (VZV) is the causative agent of varicella and zoster. The varicella vaccine was developed to control VZV infection in children. The currently available Oka vaccine strain is the only live varicella vaccine approved by the World Health Organization. We previously cloned the complete genome of the Oka vaccine strain into a bacterial artificial chromosome vector and then successfully reconstituted the virus. We then used this system to generate a recombinant Oka vaccine virus expressing mumps virus gene(s). The new recombinant vaccine may be an effective polyvalent live vaccine that provides protection against both varicella and mumps viruses. In this review, we discussed about possibility of polyvalent live vaccine(s) using varicella vaccine based on our recent studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Distribution of Arbor Virus in the Americas,
NORTH AMERICA, LATIN AMERICA, ARBOVIRUSES, DISEASE VECTORS, CULICIDAE, MEXICO, DISTRIBUTION, SERODIAGNOSIS, ANTIGENS, ANTIBODIES, VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS, EPIDEMIOLOGY, DISEASES, PUBLIC HEALTH .
Hajitou, Amin
2010-01-01
Gene therapy and molecular-genetic imaging have faced a major problem: the lack of an efficient systemic gene delivery vector. Unquestionably, eukaryotic viruses have been the vectors of choice for gene delivery to mammalian cells; however, they have had limited success in systemic gene therapy. This is mainly due to undesired uptake by the liver and reticuloendothelial system, broad tropism for mammalian cells causing toxicity, and their immunogenicity. On the other hand, prokaryotic viruses such as bacteriophage (phage) have no tropism for mammalian cells, but can be engineered to deliver genes to these cells. However, phage-based vectors have inherently been considered poor vectors for mammalian cells. We have reported a new generation of vascular-targeted systemic hybrid prokaryotic-eukaryotic vectors as chimeras between an adeno-associated virus (AAV) and targeted bacteriophage (termed AAV/phage; AAVP). In this hybrid vector, the targeted bacteriophage serves as a shuttle to deliver the AAV transgene cassette inserted in an intergenomic region of the phage DNA genome. As a proof of concept, we assessed the in vivo efficacy of vector in animal models of cancer by displaying on the phage capsid the cyclic Arg-Gly-Asp (RGD-4C) ligand that binds to alphav integrin receptors specifically expressed on the angiogenic blood vessels of tumors. The ligand-directed vector was able to specifically deliver imaging and therapeutic transgenes to tumors in mice, rats, and dogs while sparing the normal organs. This chapter reviews some gene transfer strategies and the potential of the vascular-targeted AAVP vector for enhancing the effectiveness of existing systemic gene delivery and genetic-imaging technologies. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Zeier, Zane; Aguilar, J Santiago; Lopez, Cecilia M; Devi-Rao, G B; Watson, Zachary L; Baker, Henry V; Wagner, Edward K; Bloom, David C
2010-01-01
Herpes simplex virus type 1 (HSV-1)–based vectors readily transduce neurons and have a large payload capacity, making them particularly amenable to gene therapy applications within the central nervous system (CNS). Because aspects of the host responses to HSV-1 vectors in the CNS are largely unknown, we compared the host response of a nonreplicating HSV-1 vector to that of a replication-competent HSV-1 virus using microarray analysis. In parallel, HSV-1 gene expression was tracked using HSV-specific oligonucleotide-based arrays in order to correlate viral gene expression with observed changes in host response. Microarray analysis was performed following stereotactic injection into the right hippocampal formation of mice with either a replication-competent HSV-1 or a nonreplicating recombinant of HSV-1, lacking the ICP4 gene (ICP4−). Genes that demonstrated a significant change (P < .001) in expression in response to the replicating HSV-1 outnumbered those that changed in response to mock or nonreplicating vector by approximately 3-fold. Pathway analysis revealed that both the replicating and nonreplicating vectors induced robust antigen presentation but only mild interferon, chemokine, and cytokine signaling responses. The ICP4− vector was restricted in several of the Toll-like receptor-signaling pathways, indicating reduced stimulation of the innate immune response. These array analyses suggest that although the nonreplicating vector induces detectable activation of immune response pathways, the number and magnitude of the induced response is dramatically restricted compared to the replicating vector, and with the exception of antigen presentation, host gene expression induced by the non-replicating vector largely resembles mock infection. PMID:20095947
USDA-ARS?s Scientific Manuscript database
Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that causes severe morbidity and economic losses to the livestock industry in many countries. The oral and respiratory mucosae are the main ports of entry of FMDV, so the stimulation of local immunity in these tissues may help preve...
USDA-ARS?s Scientific Manuscript database
Objectives: Newcastle disease virus (NDV), a member of the Paramxoviridae family, has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU...
Systematics of Aedes Mosquito Project
1991-03-27
African species of stegmyia have been implicated as natural hosts, vectors, and/or reservoirs of 8 viruses , 6 of which cause human illness (Chikingunya...dengue 1 and 2, Duige, Rift Valley Fever, yellow fever and Zika ). Chikungunya, dengue and yellow fever are the most important arboviruses associated...accurately identify specimens of vector species for mosquito survey, virus -isolation studies and epidemiological studies. 3 This paper is part of a revision
Lei, Wenbin; Liu, Danfeng; Li, Pei; Hou, Maolin
2014-10-01
Performance of insect vectors can be influenced by the viruses they transmit, either directly by infection of the vectors or indirectly via infection of the host plants. Southern rice black-streaked dwarf virus (SRBSDV) is a propagative virus transmitted by the white-backed planthopper, Sogatella furcifera (Hovath). To elucidate the influence of SRBSDV on the performance of white-backed planthopper, life parameters of viruliferous and nonviruliferous white-backed planthopper fed rice seedlings infected or noninfected with SRBSDV were measured using a factorial design. Regardless of the infection status of the rice plant host, viruliferous white-backed planthopper nymphs took longer to develop from nymph to adult than did nonviruliferous nymphs. Viruliferous white-backed planthopper females deposited fewer eggs than nonviruliferous females and both viruliferous and nonviruliferous white-backed planthopper females laid fewer eggs on infected than on noninfected plants. Longevity of white-backed planthopper females was also affected by the infection status of the rice plant and white-backed planthopper. Nonviruliferous white-backed planthopper females that fed on infected rice plants lived longer than the other three treatment groups. These results indicate that the performance of white-backed planthopper is affected by SRBSDV either directly (by infection of white-backed planthopper) or indirectly (by infection of rice plant). The extended development of viruliferous nymphs and the prolonged life span of nonviruliferous adults on infected plants may increase their likelihood of transmitting virus, which would increase virus spread. © 2014 Entomological Society of America.
Wang, Dai; Phan, Shannon; DiStefano, Daniel J; Citron, Michael P; Callahan, Cheryl L; Indrawati, Lani; Dubey, Sheri A; Heidecker, Gwendolyn J; Govindarajan, Dhanasekaran; Liang, Xiaoping; He, Biao; Espeseth, Amy S
2017-06-01
Human respiratory syncytial virus (RSV) is a common cause of severe respiratory disease among infants, immunocompromised individuals, and the elderly. No licensed vaccine is currently available. In this study, we evaluated two parainfluenza virus 5 (PIV5)-vectored vaccines expressing RSV F (PIV5/F) or G (PIV5/G) protein in the cotton rat and African green monkey models for their replication, immunogenicity, and efficacy of protection against RSV challenge. Following a single intranasal inoculation, both animal species shed the vaccine viruses for a limited time but without noticeable clinical symptoms. In cotton rats, the vaccines elicited RSV F- or G-specific serum antibodies and conferred complete lung protection against RSV challenge at doses as low as 10 3 PFU. Neither vaccine produced the enhanced lung pathology observed in animals immunized with formalin-inactivated RSV. In African green monkeys, vaccine-induced serum and mucosal antibody responses were readily detected, as well. PIV5/F provided nearly complete protection against RSV infection in the upper and lower respiratory tract at a dose of 10 6 PFU of vaccine. At the same dose levels, PIV5/G was less efficacious. Both PIV5/F and PIV5/G were also able to boost neutralization titers in RSV-preexposed African green monkeys. Overall, our data indicated that PIV5/F is a promising RSV vaccine candidate. IMPORTANCE A safe and efficacious respiratory syncytial virus (RSV) vaccine remains elusive. We tested the recombinant parainfluenza virus 5 (PIV5) vectors expressing RSV glycoproteins for their immunogenicity and protective efficacy in cotton rats and African green monkeys, which are among the best available animal models to study RSV infection. In both species, a single dose of intranasal immunization with PIV5-vectored vaccines was able to produce systemic and local immunity and to protect animals from RSV challenge. The vaccines could also boost RSV neutralization antibody titers in African green monkeys that had been infected previously. Our data suggest that PIV5-vectored vaccines could potentially protect both the pediatric and elderly populations and support continued development of the vector platform. Copyright © 2017 American Society for Microbiology.
Pacui virus, phlebotomine flies, and small mammals in Brazil: an epidemiological study.
Aitken, T H; Woodall, J P; De Andrade, A H; Bensabath, G; Shope, R E
1975-03-01
Pacui virus, originally obtained from forest rodents, was isolated 100 times from 61,437 specimens (658 pools) of the phlebotomine fly Lutzomyia flaviscutellata, collected from rodent-baited traps in the forests of Belem, Para, Brazil in the period October 1968 through September 1970. Isolations were made from engorged and unengorged females and from males (3 strains), and occurred in all 24 months. Pacui virus also was isolated from the blood of two wild rodents (Oryzomys), but not from 424 L. infraspinosa, 12,000 mosquitoes, or sentinel mice. Pacui virus neutralizing antibodies were detected in serum of six bait animals after exposure to biting flies in the forest, in 30% of wild rodents surveyed (including two from Amapa Territory), and in 10% of marsupials, but were absent in human survey sera and in bats. Low-passage Pacui virus produced viremia in and was lethal to infant mice by the subcutaneous route. L. flaviscutellata was most abundant in the dry season, in which period Pacui virus isolations increased. This fly is strongly attracted to rodents close to the ground. L. flaviscutellata also yielded single strains of Guama, Icoaraci, and BeAr 177325 viruses.
Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon
2013-01-01
Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an important first step for understanding the dynamics of mosquito vector distributions under changing environmental features across landscapes of Thailand.
Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon
2013-01-01
Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an important first step for understanding the dynamics of mosquito vector distributions under changing environmental features across landscapes of Thailand. PMID:24205420
Viruses vector control proposal: genus Aedes emphasis.
Reis, Nelson Nogueira; Silva, Alcino Lázaro da; Reis, Elma Pereira Guedes; Silva, Flávia Chaves E; Reis, Igor Guedes Nogueira
The dengue fever is a major public health problem in the world. In Brazil, in 2015, there were 1,534,932 cases, being 20,320 cases of severe form, and 811 deaths related to this disease. The distribution of Aedes aegypti, the vector, is extensive. Recently, Zika and Chikungunya viruses had arisen, sharing the same vector as dengue and became a huge public health issue. Without specific treatment, it is urgently required as an effective vector control. This article is focused on reviewing vector control strategies, their effectiveness, viability and economical impact. Among all, the Sterile Insect Technique is highlighted as the best option to be adopted in Brazil, once it is largely effectively used in the USA and Mexico for plagues related to agribusiness. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
The evolution of heart gene delivery vectors.
Wasala, Nalinda B; Shin, Jin-Hong; Duan, Dongsheng
2011-10-01
Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. Copyright © 2011 John Wiley & Sons, Ltd.
The evolution of heart gene delivery vectors
Wasala, Nalinda B.; Shin, Jin-Hong; Duan, Dongsheng
2012-01-01
Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. PMID:21837689
Di Mario, Giuseppina; Sciaraffia, Ester; Facchini, Marzia; Gubinelli, Francesco; Soprana, Elisa; Panigada, Maddalena; Bernasconi, Valentina; Garulli, Bruno; Siccardi, Antonio; Donatelli, Isabella; Castrucci, Maria R
2017-03-01
The emergence of novel strains of influenza A viruses with hemagglutinins (HAs) that are antigenically distinct from those circulating in humans, and thus have pandemic potential, pose concerns and call for the development of more broadly protective influenza vaccines. In the present study, modified vaccinia virus Ankara (MVA) encoding internal influenza antigens were evaluated for their immunogenicity and ability to protect HLA-A2.1 transgenic (AAD) mice from infection with influenza viruses. MVAs expressing NP (MVA-NP), M1 (MVA-M1) or polymerase PB1 (MVA-PB1) of A/California/4/09 (CA/09) virus were generated and used to immunize AAD mice. Antibodies and CD8+T cell responses were assessed by ELISA and ELISPOT, respectively, and challenge experiments were performed by infecting vaccinated mice with CA/09 virus. CD8+T cells specific to immunodominant and subdominant epitopes on the internal influenza proteins were elicited by MVA-based vectors in AAD mice, whereas influenza-specific antibodies were detected only in MVA-NP-immunized mice. Both M1- and NP-based MVA vaccines, regardless of whether they were applied individually or in combination, conferred protection against lethal influenza virus challenge. Our data further emphasize the promising potential of MVA vector expressing internal antigens toward the development of a universal influenza vaccine.
Pan, Zihao; Liu, Jin; Ma, Jiale; Jin, Qiuli; Yao, Huochun; Osterrieder, Nikolaus
2017-10-01
Canine distemper virus (CDV), is a pantropic agent of morbillivirus that causes fetal disease in dogs. Base on a broad host rang of CDV, the continued vaccines inoculation is unavoidable to pose gene recombination risk in vaccine virus and wild virus. The current study presents the construction of novel vectors, using equine herpesvirus type 1 (EHV-1) expressing the canine distemper virus (CDV). The recent field strain hemagglutinin protein and nucleoprotein were used for the construction of the viral vector vaccines. Based on the Bacterial artificial chromosome (BAC) genomes of EHV-1 RacH strain, the recombinant EHV-1 vaccine virus encoding CDV hemagglutinin protein (EHV-H) or CDV nucleoprotein (EHV-N) was constructed separately. The constructed BACs were rescued after 72 h post infection, and the expression of H or N in the recombinant viruses was confirmed by western-blotting. Furthermore, high levels of neutralizing antibodies were induced persistently following vaccination in the groups EHV-H&EHV-N and EHV-H, but the EHV-N group. The groups of vaccinated EHV-H and EHV-H&EHV-N pups were monitored for clinical signs, whereas the vaccinated EHV-N group developed moderate symptoms. The present study demonstrated that EHV-1 based recombinant virus carrying CDV H could be a promising vaccine candidate against canine distemper. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Liu, R.; Bennett, S. N.; Thongsripong, P.; Chandler, J. S.
2013-12-01
Mosquitoes have long been vectors for disease, and humans, birds, and other vertebrates have served their role as hosts in the transmission cycle of arthropod-borne viruses. In California, there are several mosquito species that act as vectors, transmitting such disease agents as Western equine and St. Louis encephalitis viruses, filarial nematodes, Plasmodium (which causes malaria), and West Nile virus (WNV). Last year (2012-2013), California had over 450 reported cases of West Nile Virus in humans (http://westnile.ca.gov/). To begin to understand mosquitoes and their role in the bay area as vectors of diseases, including West Nile Virus, we trapped mosquitoes from various sites and examined their microbiomes, including bacteria, fungi, viruses, and eukaryotes. Study sites were in Marin, San Mateo, and San Francisco counties, in areas that represented, respectively, rural, suburban, and urban habitats. The mosquitoes were identified through morphological characteristics, and verified molecularly by sequencing of the cytochrome oxidase I (COI) gene extracted from a leg. Most mosquitoes were collected from San Mateo and Mill Valley and were identified as Culiseta incidens. Data from traditional culture-based and next-generation 454 sequencing methods applied to mosquito whole bodies, representing their microbiomes, will be discussed, to determine how mosquito and microbial diversity varies across sites sampled in the San Francisco Bay area.
Lebl, Karin; Zittra, Carina; Silbermayr, Katja; Obwaller, Adelheid; Berer, Dominik; Brugger, Katharina; Walter, Melanie; Pinior, Beate; Fuehrer, Hans-Peter; Rubel, Franz
2015-02-01
Mosquitoes (Diptera: Culicidae) are important vectors for a wide range of pathogenic organisms. As large parts of the human population in developed countries live in cities, the occurrence of vector-borne diseases in urban areas is of particular interest for epidemiologists and public health authorities. In this study, we investigated the mosquito occurrence in the city of Vienna, Austria, in order to estimate the risk of transmission of mosquito-borne diseases. Mosquitoes were captured using different sampling techniques at 17 sites in the city of Vienna. Species belonging to the Culex pipiens complex (78.8 %) were most abundant, followed by Coquillettidia richiardii (10.2 %), Anopheles plumbeus (5.4 %), Aedes vexans (3.8 %), and Ochlerotatus sticticus (0.7 %). Individuals of the Cx. pipiens complex were found at 80.2 % of the trap sites, while 58.8 % of the trap sites were positive for Cq. richiardii and Ae. vexans. Oc. sticticus was captured at 35.3 % of the sites, and An. plumbeus only at 23.5 % of the trap sites. Cx. pipiens complex is known to be a potent vector and pathogens like West Nile virus (WNV), Usutu virus (USUV), Tahyna virus (TAHV), Sindbis virus (SINV), Plasmodium sp., and Dirofilaria repens can be transmitted by this species. Cq. richiardii is a known vector species for Batai virus (BATV), SINV, TAHV, and WNV, while Ae. vexans can transmit TAHV, USUV, WNV, and Dirofilaria repens. An. plumbeus and Oc. sticticus seem to play only a minor role in the transmission of vector-borne diseases in Vienna. WNV, which is already wide-spread in Europe, is likely to be the highest threat in Vienna as it can be transmitted by several of the most common species, has already been shown to pose a higher risk in cities, and has the possibility to cause severe illness.
Patramool, Sirilaksana; Bernard, Eric; Hamel, Rodolphe; Natthanej, Luplertlop; Chazal, Nathalie; Surasombatpattana, Pornapat; Ekchariyawat, Peeraya; Daoust, Simon; Thongrungkiat, Supatra; Thomas, Frédéric; Briant, Laurence; Missé, Dorothée
2013-10-01
Mosquitoes-borne viruses are a major threat for human populations. Among them, chikungunya virus (CHIKV) and dengue virus (DENV) cause thousands of cases worldwide. The recent propagation of mosquito vectors competent to transmit these viruses to temperate areas increases their potential impact on susceptible human populations. The development of sensitive methods allowing the detection and isolation of infectious viruses is of crucial interest for determination of virus contamination in humans and in competent mosquito vectors. However, simple and rapid method allowing the capture of infectious CHIKV and DENV from samples with low viral titers useful for further genetic and functional characterization of circulating strains is lacking. The present study reports a fast and sensitive isolation technique based on viral particles adsorption on magnetic beads coated with anionic polymer, poly(methyl vinyl ether-maleic anhydrate) and suitable for isolation of infectious CHIKV and DENV from the four serotypes. Starting from quite reduced biological material, this method was accurate to combine with conventional detection techniques, including qRT-PCR and immunoblotting and allowed isolation of infectious particles without resorting to a step of cultivation. The use of polymer-coated magnetic beads is therefore of high interest for rapid detection and isolation of CHIKV and DENV from samples with reduced viral loads and represents an accurate approach for the surveillance of mosquito vector in area at risk for arbovirus outbreaks. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Emerging and re-emerging viruses of the honey bee (Apis mellifera L.)
Genersch, Elke; Aubert, Michel
2010-01-01
Until the late 1980s, specific viral infections of the honey bee were generally considered harmless in all countries. Then, with the worldwide introduction of the ectoparasite mite Varroa destructor, beekeepers encountered increasing difficulties in maintaining their colonies. Epidemiological surveys and laboratory experiments have demonstrated that the newly acquired virulence of several viruses belonging to the family Dicistroviridae (acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus) in Europe and the USA had been observed in relation with V. destructor acting as a disseminator of these viruses between and within bee colonies and as an activator of virus multiplication in the infected individuals: bee larvae and adults. Equal emphasis is given to deformed wing virus (DWV) belonging to the Iflaviridae. Overt outbreaks of DWV infections have been shown to be linked to the ability of V. destructor to act not only as a mechanical vector of DWV but also as a biological vector. Its replication in mites prior to its vectoring into pupae seemed to be necessary and sufficient for the induction of a overt infection in pupae developing in non-viable bees with deformed wings. DWV in V. destructor infested colonies is now considered as one of the key players of the final collapse. Various approaches for combating bee viral diseases are described: they include selection of tolerant bees, RNA interference and prevention of new pathogen introduction. None of these approaches are expected to lead to enhanced bee-health in the short term. PMID:20423694
López-Lastra, Marcelo; Ulrici, Sandrine; Gabus, Caroline; Darlix, Jean-Luc
1999-01-01
Mouse virus-like 30S RNAs (VL30m) constitute a family of retrotransposons, present at 100 to 200 copies, dispersed in the mouse genome. They display little sequence homology to Moloney murine leukemia virus (MoMLV), do not encode virus-like proteins, and have not been implicated in retroviral carcinogenesis. However, VL30 RNAs are efficiently packaged into MLV particles that are propagated in cell culture. In this study, we addressed whether the 5′ region of VL30m could replace the 5′ leader of MoMLV functionally in a recombinant vector construct. Our data confirm that the putative packaging sequence of VL30 is located within the 5′ region (nucleotides 362 to 1149 with respect to the cap structure) and that it can replace the packaging sequence of MoMLV. We also show that VL30m contains an internal ribosome entry segment (IRES) in the 5′ region, as do MoMLV, Friend murine leukemia virus, Harvey murine sarcoma virus, and avian reticuloendotheliosis virus type A. Our data show that both the packaging and IRES functions of the 5′ region of VL30m RNA can be efficiently used to develop retrotransposon-based vectors. PMID:10482590
López-Lastra, M; Ulrici, S; Gabus, C; Darlix, J L
1999-10-01
Mouse virus-like 30S RNAs (VL30m) constitute a family of retrotransposons, present at 100 to 200 copies, dispersed in the mouse genome. They display little sequence homology to Moloney murine leukemia virus (MoMLV), do not encode virus-like proteins, and have not been implicated in retroviral carcinogenesis. However, VL30 RNAs are efficiently packaged into MLV particles that are propagated in cell culture. In this study, we addressed whether the 5' region of VL30m could replace the 5' leader of MoMLV functionally in a recombinant vector construct. Our data confirm that the putative packaging sequence of VL30 is located within the 5' region (nucleotides 362 to 1149 with respect to the cap structure) and that it can replace the packaging sequence of MoMLV. We also show that VL30m contains an internal ribosome entry segment (IRES) in the 5' region, as do MoMLV, Friend murine leukemia virus, Harvey murine sarcoma virus, and avian reticuloendotheliosis virus type A. Our data show that both the packaging and IRES functions of the 5' region of VL30m RNA can be efficiently used to develop retrotransposon-based vectors.
[Important vector-borne infectious diseases among humans in Germany. Epidemiological aspects].
Frank, C; Faber, M; Hellenbrand, W; Wilking, H; Stark, K
2014-05-01
Vector-borne infections pathogenic to humans play an important role in Germany. The relevant zoonotic pathogens are either endemic throughout Germany (e.g. Borrelia burgdorferi sensu latu) or only in specific regions, e.g. tick-borne encephalitis (TBE) virus and hantavirus. They cause a substantial burden of disease. Prevention and control largely rely on public advice and the application of personal protective measures (e.g. TBE virus vaccination and protection against vectors). High quality surveillance and targeted epidemiological studies are fundamental for the evaluation of temporal and spatial risks of infection and the effectiveness of preventive measures. Aside from endemic pathogens, vector-borne infections acquired abroad, mostly transmitted by mosquitoes, have to be systematically and intensively monitored as well, to assess the risk of infection for German residents traveling abroad and to adequately evaluate the risk of autochthonous transmission. Related issues, such as invasive species of mosquitoes in Germany and climate change, have to be taken into consideration. Such pathogens include West Nile, dengue and chikungunya viruses, as well as malaria parasites (Plasmodium species). The article presents an overview of the epidemiological situation of selected relevant vector-borne infections in Germany.
Shuai, Lei; Wang, Xijun; Wen, Zhiyuan; Ge, Jinying; Wang, Jinliang; Zhao, Dandan; Bu, Zhigao
2017-10-01
Ebola viruses (EBOVs) are zoonotic pathogens that cause EBOV disease (EVD) with high case fatality in humans. Currently, EVD vaccines are still under development in several countries. Here, we generated two recombinant rabies viruses (RABVs), rERAG 333E /ZGP and rERAG 333E /SGP, expressing the Zaire EBOV glycoprotein (ZGP) or Sudan EBOV glycoprotein (SGP) gene based on a modified ERA vaccine strain (rERAG 333E ) vector platform. The recombinant RABVs retained growth properties similar to those of the vector virus in BSR cell culture and efficiently expressed ZGP or SGP. After intracerebral (i.c.) inoculation with rERAG 333E /ZGP or rERAG 333E /SGP, all adult mice showed no signs of disease or weight loss and suckling mice maintained similar survivorship curve as those mice inoculated with control vector rERAG 333E , demonstrating that ZGP or SGP expression did not increase the virulence of the vector. Mouse immunization studies showed that vaccination with rERAG 333E /ZGP and rERAG 333E /SGP induced Zaire or Sudan EBOV neutralizing antibody (VNA) responses and IgG, IgG2a responses to ZGP or SGP, suggesting their potential as oral or inactivated bivalent vaccines against rabies and EVD. Most importantly, all dogs immunized orally with rERAG 333E /ZGP developed long-lasting ZEBOV and RABV VNA responses with or without previous rabies vaccine immunization history. Live rERAG 333E with EBOV GP thus appear to have the potential to be oral vaccines for free-roaming animals in endemic areas of EVD and rabies, and may serve as inactivated vaccines for use in humans. Copyright © 2017. Published by Elsevier B.V.
Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification
Garg, Himanshu; Joshi, Anjali
2016-01-01
Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy. PMID:26800572