Constance I. Millar
1996-01-01
To assess the various ways organizations and people come together to manage Sierran ecosystems, SNEP conducted four case studies to examine the efficacy of different institutional arrangements:The Mammoth-June case study examines how a single national forest is attempting to implement the new Forest Service policy for ecosystem analysis...
Alison C. Dibble; Catherine A. Rees
2005-01-01
In forest experiments the problem of inadequate controls often arises. True controls might not be required in case studies, comparisons along an environmental gradient, or comparisons of multiple treated and untreated areas. In a recent characterization of fuels in invaded and uninvaded forest conditions for four forest types at 12 locations in Maine, Maryland,...
Timothy Callahan; Devendra Amatya; Peter Stone
2017-01-01
Forests are receiving more attention for the ecosystem goods and services they provide and the potential change agents that may affect forest health and productivity. Highlighting case examples from coastal forests in South Carolina, USA, we describe groundwater processes with respect to stressors and potential responses of a wetland-rich forested landscape,...
NASA Astrophysics Data System (ADS)
Hirata, R.; Ito, A.; Saigusa, N.
2013-12-01
Carbon balance in a forest ecosystem can be quite variable if the forest ecosystem structure and function change abruptly as a result of disturbance and subsequent recovery processes. A map of forest age is useful for upscaling carbon balance from the site level to a regional scale because it provides information about when disturbance occurred and how it spread over a wide area. In this study, we used maps of forest age to help evaluate spatial and temporal variations in the carbon balance of forest ecosystems with a process-based ecosystem model. Forests less than 60 years old account for more than 70% of Japanese forests because forest stands have been quickly replaced after disturbance caused by thinning, harvesting, plantations, fires, typhoons, and insect damage. However, few studies have attempted to quantify how much disturbance affects the spatial and temporal variations of carbon balance. In this study, we focused on how disturbance and subsequent re-growth affected the spatial and temporal variations of the carbon balance of forests. We adapted the Vegetation Integrative SImulator for Trace Gases (VISIT) model in order to simulate carbon balance on Hokkaido, which is the northernmost island of Japan. The model was validated with tower flux data obtained from forests with ages between 0 and 43 years. Simulations of the carbon balance were conducted for the period 1948-2010 after a 1000-year spin-up at a spatial resolution of 1 km × 1 km. We investigated two case studies of simulated carbon balance: one that took into account the spatial distribution of forest ages derived from forest inventory data, and another that ignored the impact of disturbance (i.e., no disturbance and a homogeneous distribution of ages). We first focused on the difference from 2000-2010 in the spatial distribution of net ecosystem production (NEP) between the disturbance and non-disturbance cases. In the non-disturbance case, the temporal and spatial changes in NEP were gradual and ranged from 0 to 1 t C ha-1 y-1, depending on meteorological conditions such as temperature or solar radiation. In the disturbance case, however, large NEP changes ranging from 3 to 5 t C ha-1 y-1 were distributed in patches like hotspots, because the forests in those spots ranged in age from 20 to 100 years and were younger than the forests in the non-disturbance case. In the 1970s, wood harvesting and tree planting were conducted intensively on Hokkaido. In the disturbance case during this period, there were many hotspots where NEP was negative. We next focused on the difference between the disturbance and non-disturbance cases of temporal variations of spatially averaged NEP on Hokkaido. Until 1970, the difference between the two cases of average NEP was less than 0.01 t C ha-1 y-1. After 1970, the difference became large and reached about 0.5 t C ha-1 y-1, the implication being that the regional NEP in the disturbance case increased to as much as 2-5 times the regional NEP of the non-disturbance case. Our results show the importance of considering forest age when simulating the carbon balance of forests. Carbon balance maps that take forest age into account are useful for carbon management and prediction of ecosystem feedbacks on climate change.
NASA Astrophysics Data System (ADS)
Lu, Jiaying; Schuett, Michael A.
2012-02-01
The purpose of this study was to gain a better understanding of voluntary associations involved in forest management. The specific areas examined in this study include organizational attributes, membership profile, attitudes toward forest-management priorities, and concerns about forest-management issues. To achieve this purpose, data were collected using a case study approach with mixed-methods (document reviews, personal interviews, and a Web survey) at a national forest in Texas, USA. Overall, the voluntary associations in this study can be described as place-based, small to moderate in scale, activity-oriented, and active groups that are adaptive to sociopolitical and environmental changes. General group members placed high importance on aesthetic, ecological, and recreation management of the national forest. In addition, this study showed five key forest management issues: (1) limited recreation access; (2) financial challenges for forest management; (3) conflict among recreation user groups; (4) inadequate communication by the United States Forest Service to the general public, and (5) sustainability of the forest. Theoretical and managerial implications of the results are discussed.
Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA
Dan Loeffler; Nathaniel Anderson
2014-01-01
Cofiring forest biomass residues with coal to generate electricity is often cited for its potential to offset fossil fuels and reduce greenhouse gas emissions, but the extent to which cofiring achieves these objectives is highly dependent on case specific variables. This paper uses facility and forest specific data to examine emissions from cofiring forest biomass with...
NASA Technical Reports Server (NTRS)
Al-Hamdan, Mohammad Z.; Cruise, James F.; Rickman, Douglas L.; Quattrochi, Dale A.
2007-01-01
The characterization of forested areas is frequently required in resource management practice. Passive remotely sensed data, which are much more accessible and cost effective than are active data, have rarely, if ever, been used to characterize forest structure directly, but rather they usually focus on the estimation of indirect measurement of biomass or canopy coverage. In this study, some spatial analysis techniques are presented that might be employed with Landsat TM data to analyze forest structure characteristics. A case study is presented wherein fractal dimensions, along with a simple spatial autocorrelation technique (Moran s I), were related to stand density parameters of the Oakmulgee National Forest located in the southeastern United States (Alabama). The results of the case study presented herein have shown that as the percentage of smaller diameter trees becomes greater, and particularly if it exceeds 50%, then the canopy image obtained from Landsat TM data becomes sufficiently homogeneous so that the spatial indices reach their lower limits and thus are no longer determinative. It also appears, at least for the Oakmulgee forest, that the relationships between the spatial indices and forest class percentages within the boundaries can reasonably be considered linear. The linear relationship is much more pronounced in the sawtimber and saplings cases than in samples dominated by medium sized trees (poletimber). In addition, it also appears that, at least for the Oakmulgee forest, the relationships between the spatial indices and forest species groups (Hardwood and Softwood) percentages can reasonably be considered linear. The linear relationship is more pronounced in the forest species groups cases than in the forest classes cases. These results appear to indicate that both fractal dimensions and spatial autocorrelation indices hold promise as means of estimating forest stand characteristics from remotely sensed images. However, additional work is needed to confirm that the boundaries identified for Oakmulgee forest and the linear nature of the relationship between image complexity indices and forest characteristics are generally evident in other forests. In addition, the effects of other parameters such ,as topographic relief and image distortion due to sun angle and cloud cover, for example, need to be examined.
Whose urban forest? The political ecology of foraging urban nontimber forest products
Patrick T. Hurley; Marla R. Emery; Rebecca McLain; Melissa Poe; Brian Grabbatin; Cari L. Goetcheus
2015-01-01
Drawing on case studies of foraging in Philadelphia, Pennsylvania and Mt. Pleasant, South Carolina, we point to foraging landscapes and practices within diverse urban forest spaces. We examine these spaces in relation to U.S. conservation and development processes and the effects of management and governance on species valued by foragers. These case studies reveal the...
Detection Monitoring of Crown Condition in South Carolina: A Case Study
William A. Bechtold; John W. Coulston
2005-01-01
This article presents a case study of how indicators of forest health can be adjusted for natural factors, standardized to a common basis, and subjected to spatial analysis for the purpose of detecting potential problems related to forest health. Two of five Forest Inventory and Analysis inventory panels in South Carolina and surrounding States were completed in 2000...
The effect of blurred plot coordinates on interpolating forest biomass: a case study
J. W. Coulston
2004-01-01
Interpolated surfaces of forest attributes are important analytical tools and have been used in risk assessments, forest inventories, and forest health assessments. The USDA Forest Service Forest Inventory and Analysis program (FIA) annually collects information on forest attributes in a consistent fashion nation-wide. Users of these data typically perform...
Forest restoration at Redwood National Park: a case study of an emerging program
Jason R. Teraoka
2012-01-01
For more than 30 years, Redwood National Park has been working to establish a Forest Restoration Program to rehabilitate its impaired, second-growth forests. This case study outlines the Parkâs history of using silviculture as a restoration tool, which began in 1978 after the Park's expansion. The most recent effort was the 1,700 acre South Fork of Lost Man Creek...
Daolan Zheng; Linda S. Heath; Mark J. Ducey; Brad Quayle
2013-01-01
The relative contributions of double counting of carbon emissions between forest-to-nonforest cover change (FNCC) and forest wildfires are an unknown in estimating net forest carbon exchanges at large scales. This study employed land-cover change maps and forest fire data in the four representative states (Arkansas, California, Minnesota, and Washington) of the US for...
NASA Astrophysics Data System (ADS)
Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc
2017-03-01
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc
2017-01-01
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959
Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João Hn; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc
2017-03-16
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
Christopher W. Woodall; Grant M. Domke
2012-01-01
Forest ecosystems have the ability to reduce the effects of climate change through the sequestration of carbon (C) (Pan et al. 2011) as well as contribute to net emissions through disturbance events such as wildfires and widespread tree mortality (Kurz et al. 2008). A conceptual framework for assessing climate-change risks to forest ecosystem C stocks facilitates...
NASA Technical Reports Server (NTRS)
Mcmanus, M. L.
1979-01-01
Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.
Simulating ungulate herbivory across forest landscapes: A browsing extension for LANDIS-II
DeJager, Nathan R.; Drohan, Patrick J.; Miranda, Brian M.; Sturtevant, Brian R.; Stout, Susan L.; Royo, Alejandro; Gustafson, Eric J.; Romanski, Mark C.
2017-01-01
Browsing ungulates alter forest productivity and vegetation succession through selective foraging on species that often dominate early succession. However, the long-term and large-scale effects of browsing on forest succession are not possible to project without the use of simulation models. To explore the effects of ungulates on succession in a spatially explicit manner, we developed a Browse Extension that simulates the effects of browsing ungulates on the growth and survival of plant species cohorts within the LANDIS-II spatially dynamic forest landscape simulation model framework. We demonstrate the capabilities of the new extension and explore the spatial effects of ungulates on forest composition and dynamics using two case studies. The first case study examined the long-term effects of persistently high white-tailed deer browsing rates in the northern hardwood forests of the Allegheny National Forest, USA. In the second case study, we incorporated a dynamic ungulate population model to simulate interactions between the moose population and boreal forest landscape of Isle Royale National Park, USA. In both model applications, browsing reduced total aboveground live biomass and caused shifts in forest composition. Simulations that included effects of browsing resulted in successional patterns that were more similar to those observed in the study regions compared to simulations that did not incorporate browsing effects. Further, model estimates of moose population density and available forage biomass were similar to previously published field estimates at Isle Royale and in other moose-boreal forest systems. Our simulations suggest that neglecting effects of browsing when modeling forest succession in ecosystems known to be influenced by ungulates may result in flawed predictions of aboveground biomass and tree species composition.
Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?
Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan
2015-01-01
Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation value of native forest conservation. Our analyses provide evidence for decision-making about the circumstances under which forest management provides mitigation benefits.
Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?
Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan
2015-01-01
Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC’s Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation value of native forest conservation. Our analyses provide evidence for decision-making about the circumstances under which forest management provides mitigation benefits. PMID:26436916
Shoana Humphries; Thomas P. Holmes; Karen Kainer; Carlos Gabriel Goncalves Koury; Edson Cruz; Rosana de Miranda Rocha
2012-01-01
Community-based forest management is an integral component of sustainable forest management and conservation in the Brazilian Amazon, where it has been heavily subsidized for the last ten years. Yet knowledge of the financial viability and impact of community-based forest enterprises (CFEs) is lacking. This study evaluates the profitability of three CFEs in the...
Brian J. Williams; Bo Song; Chou Chiao-Ying; Thomas M. Williams; John Hom
2010-01-01
Three-dimensional (3D) visualization is a useful tool that depicts virtual forest landscapes on computer. Previous studies in visualization have required high end computer hardware and specialized technical skills. A virtual forest landscape can be used to show different effects of disturbances and management scenarios on a computer, which allows observation of forest...
Forest health monitoring indicators and their interpretability: a Lithuanian case study
Romualdas Kuknys; Algirdas Augustaitis
1998-01-01
Growth and productivity of forests are important indicators for understanding the general condition and health of forests. It is very important that indicators detected during monitoring procedures afford an opportunity for direct or indirect evaluation of forest productivity and its natural and anthropogenic changes. Analysis of the U.S. Forest Health Monitoring (FHM...
Jagannadha Matta; Janaki Alavalapati; John Kerr; Evan Mercer
2005-01-01
Indiaâs Joint Forest Management (JFM) policy, in which government forest agencies and local communities jointly manage forests, has been touted as a successful strategy in helping both forests and people. Its efficacy in the field, however, is uneven. Although government forest departments are charged with implementing JFM, very little is known about their perspectives...
Chen, Guangsheng; Tian, Hanqin; Huang, Chengquan; ...
2013-07-01
Forest ecosystems in the southern United States are dramatically altered by three major disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest management in this region. In this study, we introduced a process-based ecosystem model for simulating forest disturbance impacts on ecosystem carbon, nitrogen, and water cycles. Based on forest mortality data classified from Landsat TM/ETM + images, this model was then applied to estimate changes in carbon storage using Mississippi and Alabama as a case study. Mean annual forest mortality rate formore » these states was 2.37%. Due to frequent disturbance, over 50% of the forest land in the study region was less than 30 years old. Forest disturbance events caused a large carbon source (138.92 Tg C, 6.04 Tg C yr -1; 1 Tg = 10 12 g) for both states during 1984–2007, accounting for 2.89% (4.81% if disregard carbon storage changes in wood products) of the total forest carbon storage in this region. Large decreases and slow recovery of forest biomass were the main causes for carbon release. Forest disturbance could result in a carbon sink in few areas if wood product carbon was considered as a local carbon pool, indicating the importance of accounting for wood product carbon when assessing forest disturbance effects. The legacy effects of forest disturbance on ecosystem carbon storage could last over 50 years. Lastly, this study implies that understanding forest disturbance impacts on carbon dynamics is of critical importance for assessing regional carbon budgets.« less
Chen, Juan; Innes, John L
2013-11-15
This study examines issues existing in the southern collective forests in China, particularly prior to the implementation of new forest tenure reforms, such as continued illegal logging and timber theft, inadequate availability of finance and inconsistent forest-related policies. Such problems are believed to be hindering the adoption of sustainable forest management (SFM) and forest certification by forest farmers in China. Two strategies were introduced by the Chinese government with the purpose of addressing these issues, namely forest tenure reforms and their associated supporting mechanism, forestry property markets. Through two case studies in southern China, we investigated the effectiveness of the two strategies as well as their implications for the adoption of SFM and forest certification. The two cases were Yong'an in Fujian province and Tonggu in Jiangxi province. Personal interviews with open-ended questions were conducted with small-scale forest farmers who had already benefited from the two strategies as well as market officers working for the two selected forestry property markets. The study identified eight issues constraining the potential adoption of SFM and certification in China, including limited finance, poorly developed infrastructure and transport systems, insecure forest tenures, inconsistent forest policies, low levels of awareness, illegal forest management practices, lack of local cooperative organizations, and inadequate knowledge and technical transfer. We found that the new forest tenure reforms and forestry property markets had generally fulfilled their original objectives and had the capacity to assist in addressing many of the issues facing forests prior to the reforms. Copyright © 2013 Elsevier Ltd. All rights reserved.
T.W. Coleman; Alton Martin; J.R. Meeker
2010-01-01
We assessed plant composition and forest succession following tree mortality from infestation of southern pine beetle (Dendroctonus frontalis), associated suppression, and wildfire in two forest types, pine (Pinus spp.) with mixed hardwood and longleaf pine (P. palustris). In this case study, vegetation was...
ERIC Educational Resources Information Center
Marin, Ananda; Bang, Megan
2018-01-01
This case study focuses on a Native American family's experience on a walk in an urban forest preserve. Drawing on interaction analysis traditions, we analyze video data and transcript data to characterize how learning unfolds in place, in this case an urban forest. We build on this analysis, as well as the work of Indigenous scholars, to…
Is there a substitution of Pinaceae by Fagaceae in temperate forests at the global scale?
NASA Astrophysics Data System (ADS)
Alfaro Reyna, Teresa; Retana, Javier; Martínez-Vilalta, Jordi
2018-07-01
Reports on forest decline, changes in species composition and the distribution of forests in response to changes in climate and land use are increasing worldwide. Temperate forests are largely dominated by two tree families: Pinaceae and Fagaceae. These two families have distinct functional properties and different responses to environmental factors. Several local and regional assessments, particularly in Europe, have found that species of Fagaceae are invading areas previously dominated by Pinaceae. The main aim of this synthesis study is to analyze the relative dynamics of Pinaceae and Fagaceae species in temperate forests around the world, with the following specific objectives: (1) establish if there is a consistent directional substitution of Pinaceae by Fagaceae worldwide; and (2) determine whether these directional changes are associated with specific climatic conditions or certain geographic regions, reflecting differences in historical forest management and land use. A bibliographic review was performed and 51 papers were found that met the search criteria, including a total of 121 case studies in which the relative dynamics of Pinaceae and Fagaceae were evaluated. Our results show that the relative abundance of Fagaceae increased in 71% of cases (P → F dynamics), whereas Pinaceae relative abundance increased in 17% of cases (F → P) and 12% of cases did not show clear changes. Increases of Fagaceae relative to Pinaceae were less clear in areas where vegetation dynamics were driven by natural disturbances. Our results indicate a widespread increase in dominance of Fagaceae species at the expense of Pinaceae across northern temperate forests, with the exception of Eastern North America. The potential implications for ecosystem function and forest resilience under ongoing climate change are large and clearly deserve further study.
Skip J. Van Bloem; Ariel E. Lugo; Peter G. Murphy
2006-01-01
Tropical dry forests in the Caribbean have an uniquely short, shrubby structure with a high proportion of multiple-stemmed trees compared to dry forests elsewhere in the Neotropics. Previous studies have shown that this structure can arise without the loss of main stems from cutting, grazing, or other human intervention. The Caribbean has a high frequency of hurricanes...
Stanley T. Asah; Dale J. Blahna; Clare M. Ryan
2012-01-01
The ecosystem services (ES) approach entails integrating people into public forest management and managing to meet their needs and wants. Managers must find ways to understand what these needs are and how they are met. In this study, we used small group discussions, in a case study of the Deschutes National Forest, to involve community members and forest staff in...
Parcelization and land use: A case study in the New York City Watershed
Jennifer A. Caron; Rene H. Germain; Nathaniel M. Anderson
2012-01-01
Over 75% of the New York City Watershed is forested, and the majority of the land is owned by family forest owners. Ownership fragmentation and development may impact both the working forested landscape and water quality. We surveyed the owners of intact and subdivided family forest parcels across various parcel sizes to gauge their awareness of forest management...
Long, Hexing; Liu, Jinlong; Tu, Chengyue; Fu, Yimin
2018-07-01
Forest landscape restoration is emerging as an effective approach to restore degraded forests for the provision of ecosystem services and to minimize trade-offs between conservation and rural livelihoods. Policy and institutional innovations in China illustrate the governance transformation of forest landscape restoration from state-controlled to polycentric governance. Based on a case study of the Ecological Forest Purchase Program in Yong'an municipality, China's Fujian Province, this paper explores how such forest governance transformation has evolved and how it has shaped the outcomes of forest landscape restoration in terms of multi-dimensionality and actor configurations. Our analysis indicates that accommodating the participation of multiple actors and market-based instruments facilitate a smoother transition from state-centered to polycentric governance in forest landscape restoration. Governance transitions for forest landscape restoration must overcome a number of challenges including ensurance of a formal participation forum, fair participation, and a sustainable legislative and financial system to enhance long-term effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, R.; Gibson, D.
This paper draws heavily on the results of case studies in Bolivia, Costa Rica, and Ecuador to explain how sectoral policies have tilted land use decisions against forestry and in favor of agriculture, and to present estimates of the economic development effects of those decisions. The paper summarizes information on forests and forest industries of the three countries, and it describes the framework within which policies are designed. It presents the effects of sectoral policies on land use and forest management, and then quantifies and discusses economic costs of relevant sectoral policies. Conclusions and recommendations for policy reform are offered.
Carbon and biodiversity loss due to forest degradation – a Cambodian case study
Nophea Sasaki; Kimsun Chheng; Nobuya Mizoue
2013-01-01
Tropical forests are diverse in terms of stand and age structures, commercial and biodiversity values of individually trees, and dependency of local communities. Monitoring forest degradation in the tropics remains a challenge despite increasing global interests in reducing carbon emissions from deforestation and forest degradation and safeguarding...
Eileen H. Helmer; Thomas S. Ruzycki; Jay Benner; Shannon M. Voggesser; Barbara P. Scobie; Courtenay Park; David W. Fanning; Seepersad Ramnarine
2012-01-01
Tropical forest managers need detailed maps of forest types for REDD+, but spectral similarity among forest types; cloud and scan-line gaps; and scarce vegetation ground plots make producing such maps with satellite imagery difficult. How can managers map tropical forest tree communities with satellite imagery given these challenges? Here we describe a case study of...
Andrzej Bobiec
2000-01-01
Variability of external and internal factors entails specific spatial patterns and functional dynamics of communities. The study of the oak-lime-hornbeam (Quercus robur-Tilia cordata-Carpimus) forest in the Bialowieza Primeval Forest supports the concept of silvatic unit, determining the minimal structural area. To find out if the dynamics of a stand...
Disentangling forest change from forest inventory change: A case study from the US Interior West
Sara A. Goeking
2015-01-01
Long-term trends in forest attributes are typically assessed using strategic inventories such as the US Department of Agriculture (USDA) Forest Serviceâs Forest Inventory and Analysis (FIA) program. The implicit assumption of any trend analysis is that data are comparable over time. The 1998 Farm Bill tasked FIA with implementing nationally consistent protocols,...
Richard W. Guldin; Niels Elers Koch; John A. Parrotta; Christian Gamborg; Bo J. Thorsen
2004-01-01
Making forest policies that help bridge from the current situation to a sustainable future requires sound scientific information. Too often, scientific information is available, yet policy makers do not use it. At a workshop in Denmark, attendees reviewed case studies where forest science influenced forest policies and identified six major reasons for success. Three...
Required sample size for monitoring stand dynamics in strict forest reserves: a case study
Diego Van Den Meersschaut; Bart De Cuyper; Kris Vandekerkhove; Noel Lust
2000-01-01
Stand dynamics in European strict forest reserves are commonly monitored using inventory densities of 5 to 15 percent of the total surface. The assumption that these densities guarantee a representative image of certain parameters is critically analyzed in a case study for the parameters basal area and stem number. The required sample sizes for different accuracy and...
Tropical forests and fragmentation: A case of South Garo Hills, Meghalaya, North East India
Ashish Kumar; Bruce Marcot; Rohitkumar Patel
2017-01-01
This study presents an ecological assessment of tropical forests at stand and landscape levels to provide knowledge, tools and, indicators to evaluate specific diversity patterns and related ecological processes happening in these tropical forest conditions; and for monitoring landscape changes for managing forest and wildlife resources of Jhum (shifting cultivation)...
Reference conditions for old-growth pine forests in the Upper West Gulf Coastal Plain
Don C. Bragg
2002-01-01
Ecosystem restoration has become an important component of forest management. especially on public lands. However, determination of manageable reference conditions has lagged behind the interest. This paper presents a case study from pine-dominated forests in the Upper West Gulf Coastal Plain (UWGCP), with special emphasis on southern Arkansas. Decades of forest...
USDA-ARS?s Scientific Manuscript database
Forest ecosystems in the southern United States are dramatically altered by three major 26 disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest m...
Juan A. Torres; Grizelle Gonzalez
2005-01-01
We studied the decomposition of Cyrilla racemiflora logs over a 13-yr period in tropical dry and wet forests in Puerto Rico. The mean mass loss, ratio of soft to hard wood, nutrient concentrations, and the diversity of wood-inhabiting organisms were greater in logs decomposing in the dry forest than in the wet forest. Termites were also more abundant in the logs...
Sara A. Goeking; Paul L. Patterson
2013-01-01
The USDA Forest Serviceâs Forest Inventory and Analysis (FIA) Program applies specific sampling and analysis procedures to estimate a variety of forest attributes. FIAâs Interior West region uses post-stratification, where strata consist of forest/nonforest polygons based on MODIS imagery, and assumes that nonresponse plots are distributed at random across each stratum...
Yanjun Su; Qinghua Guo; Brandon M. Collins; Danny L. Fry; Tianyu Hu; Maggi Kelly
2016-01-01
Treatments to reduce forest fuels are often performed in forests to enhance forest health, regulate stand density, and reduce the risk of wildfires. Although commonly employed, there are concerns that these forest fuel treatments (FTs) may have negative impacts on certain wildlife species. Often FTs are planned across large landscapes, but the actual treatment extents...
NASA Astrophysics Data System (ADS)
Tan, C.; Fang, W.
2018-04-01
Forest disturbance induced by tropical cyclone often has significant and profound effects on the structure and function of forest ecosystem. Detection and analysis of post-disaster forest disturbance based on remote sensing technology has been widely applied. At present, it is necessary to conduct further quantitative analysis of the magnitude of forest disturbance with the intensity of typhoon. In this study, taking the case of super typhoon Rammasun (201409), we analysed the sensitivity of four common used remote sensing indices and explored the relationship between remote sensing index and corresponding wind speeds based on pre-and post- Landsat-8 OLI (Operational Land Imager) images and a parameterized wind field model. The results proved that NBR is the most sensitive index for the detection of forest disturbance induced by Typhoon Rammasun and the variation of NBR has a significant linear dependence relation with the simulated 3-second gust wind speed.
The use of forests for the purpose of tourism: the case of Belek Tourism Center in Turkey.
Kuvan, Yalçin
2005-05-01
The main aim of this article is to examine and review the usage of forests for the purpose of tourism in Turkey with the case study of Antalya-Belek. The use and conversion of forest lands is central to tourism development. Land use change is responsible for the majority of the negative environmental impacts of tourism on natural resources. Worldwide, forests and coastal zones are converted for the construction of tourist facilities. The rapid emergence of mass tourism development in Turkey, encouraged without considering protection and sustainable use of natural and cultural resources, has resulted in serious problems in forest areas. This paper is particularly concerned with land use change in forests (or deforestation) created by the allocation of forest lands to build tourist facilities. In Belek, a tourism center located in Antalya province's coastal areas and the fastest growing destination of the country, all tourist facilities have been established in forest lands under the status of conservation forest. Today, the Belek Conservation Forest is under severe pressure from tourism.
Spatial distribution of ozone over Indonesia (Study case: Forest fire event 2015)
NASA Astrophysics Data System (ADS)
Muslimah, Sri; Buce Saleh, Muhamad; Hidayat, Rahmat
2018-05-01
Tropospheric ozone is known as surface ozone and caused several health impact. The objective of this study was to analysis spatial distribution of tropospheric ozone over Indonesia case study forest fire event in 2015. Monthly observation measured by Ozone Monitoring Instrument (OMI) have been analysed from January – December 2015 to study spatial distribution of tropospheric ozone related to forest fire event 2015. The study discovered high level of tropospheric column ozone (TCO) from October to November 2015. The result shows increasing average of TCO from September to October almost 6 DU. Meanwhile, monthly number of hotspot is higher in September 2015 with total number 257 hotspot which is acquired by Moderate Resolution Imaging Spectrometer (MODIS) Terra version 6.1 with confidence level same or more than 90%. The hotspot distribution compared with spatial TCO distribution and shows interesting time lag with respect to hotspot distribution, one month. Further study for daily comparison of TCO and forest fire event needed. This result suggested that the tropospheric ozone over the Indonesian region increases in 2015 were remarkable and corresponded to forest fire event.
Andrew T. Hudak; Penelope Morgan; Mike Bobbitt; Leigh Lentile
2007-01-01
In this chapter, we present a case study intended to help crystallize for many readers, through use of an illustrative example, some of the important concepts developed in the preceding chapters. From an understanding of forest successional and disturbance processes, both natural and anthropogenic (Linke et al., Chapter 1, this volume), research questions were...
Andrew T. Hudak; Ian Rickert; Penelope Morgan; Eva Strand; Sarah A. Lewis; Peter R. Robichaud; Chad Hoffman; Zachary A. Holden
2011-01-01
This report provides managers with the current state of knowledge regarding the effectiveness of fuel treatments for mitigating severe wildfire effects. A literature review examines the effectiveness of fuel treatments that had been previously applied and were subsequently burned through by wildfire in forests and rangelands. A case study focuses on WUI fuel treatments...
Jingxin Wang; Chris LeDoux; Michael Vanderberg; Li Yaoxiang
2006-01-01
A preliminary study that quantified the impacts of soil compaction on residual tree growth associated with ground-based skidding traffic intensity and turn payload size was investigated in the central Appalachian hardwood forest. The field study was carried out on a 20-acre tract of the West Virginia University Research Forest. Skid trails were laid out in 170' -...
Pedologic and geomorphic impacts of a tornado blowdown event in a mixed pine-hardwood forest
Jonathan D. Phillips; Daniel A. Marion; Alice V. Turkington
2008-01-01
Biomechanical effects of trees on soils and surface processes may be extensive in forest environments. Two blowdown sites caused by a November 2005 tornado in the Ouachita National Forest, Arkansas allowed a case study examination of bioturbation associated with a specific forest blowdown event, as well as detailed examination of relationships between tree root systems...
USDA Forest Service farm woodlands case study - 50 year results from West Virgina
David W. McGill; Thomas M. Schuler
2003-01-01
Recognizing that fire, grazing, and poor cutting practices had compromised much productivity in farm woodlots in the early 1900s, USDA Forest Service personnel established a demonstration on the Fernow Experimental Forest (FEF) to show the feasibility of two harvesting systems that could be used to maintain or enhance stand productivity and provide private forest land...
Projection matrices as a forest management tool: an invasive tree case study
Ian J. Renne; Benjamin F. Tracy; Timothy P. Spira
2003-01-01
Life history parameters of many forest-dwelling species are affected by native and non-native pests. In turn, these pests alter forest processes and cost the United States billions of dollars annually. Population projection matrices can aid ecologists and managers in evaluating the impact of pests on forest species as well as devising effective strategies for pest...
John W. Coulston; Gregory A. Reams; Ronald E. McRoberts; William D. Smith
2006-01-01
U.S. Department of Agriculture Forest Service Forest Inventory and Analysis plot information is used in many capacities including timber inventories, forest health assessments, and environmental risk analyses. With few exceptions, actual plot locations cannot be revealed to the general public. The public does, however, have access to perturbed plot coordinates. The...
Jonathan A. Cale; Jennifer G. Klutsch; Nadir Erbilgin; Jose F. Negron; John D. Castello
2016-01-01
Heavy disturbance-induced mortality can negatively impact forest biota, functions, and services by drastically altering the forest structures that create stable environmental conditions. Disturbance impacts on forest structure can be assessed using structural sustainability - the degree of balance between living and dead portions of a tree populationâs size-...
A comparison of stand structure and composition following selective-harvest at Byrne-Milliron Forest
Amy K. Petersen; Will Russell
2017-01-01
The effects of selective-harvest on forest composition and structure in the southern range of the coast redwood (Sequoia sempervirens (D. Don) Endl.) forest have not been well documented. This case study focused on the Byrne-Milliron Forest in Santa Cruz County, California where selective-harvest is currently the primary method of timber extraction...
Identification of Priority Forests in the Upper Mississippi River System: A Summary
Jason Rohweder; Theresa Heyer; Samuel Osinde; Darrell Zastrow; Steve Westin; Al Todd
2007-01-01
The goal of the Upper Mississippi Forest Partnership is to improve water quality and migratory bird habitat by restoring and enhancing forests in the six-state watershed. This document summarizes the results of a GIS analysis that identified forests where allocation of resources would make the most difference. Also included in this document are case studies that...
USDA Forest Service farm woodlands case study - 50 year results from West Virginia
David W. McGill; Thomas M. Schuler
2003-01-01
Recognizing that fire, grazing, and poor cutting practices had compromised much productivity in farm woodlots in the early 1900s, USDA Forest Service personnel established a demonstration on the Fernow Experimental Forest (FEF) to show the feasibility of two harvesting systems that could be used to maintain or enhance stand productivity and provide private forest land...
Jianwei Zhang; Martin W. Ritchie
2008-01-01
The ecological research project of interior ponderosa pine forests at the Blacks Mountain Experimental Forest in northeastern California was initiated by an interdisciplinary team of scientists in the early 1990s. The objectives of this study were to determine the effect of stand structure, and prescribed fire on vegetation growth, resilience, and sustainability of...
NASA Astrophysics Data System (ADS)
Sullivan, B. W.; Nasto, M.; Alvarez-Clare, S.; Cole, R. J.; Reed, S.; Chazdon, R.; Davidson, E. A.; Cleveland, C. C.
2015-12-01
Extensive deforestation of tropical rainforest often leads to agricultural abandonment and secondary forest regeneration. The land area of secondary rainforest is soon likely to exceed that of primary forest, highlighting the importance of secondary tropical rainforest in the global carbon (C) cycle. Secondary forests often grow rapidly, but the role soil nutrients play in regulating secondary forest productivity remains unsettled. Consistent with biogeochemical theory, a landmark study from a set of sites in the Amazon Basin showed that secondary forests had low nitrogen (N) availability and relatively higher phosphorus (P) availability immediately after abandonment, but that as succession proceeded, N availability "recuperated" and there was relatively less P available. To address whether such changes in N and P availability during secondary forest growth are common, we reviewed 38 studies in lowland tropical rainforest that reported changes in 23 different metrics of N and P cycling during secondary succession. We calculated slopes (rates of change) during secondary succession for each metric in each study, and analyzed patterns in these rates of change. Significant trends during secondary succession were more evident in soils than in plants, but in most cases, the variability among studies was surprisingly low. Both soil N and P availability increased through succession, at least in surface soil. Such consistent changes imply substantial biogeochemical resilience of tropical forest soils in spite of differing land use histories and species compositions among studies. In most cases, slopes were similar whether primary forest was included in, or excluded from, our analysis, suggesting that secondary succession eventually leads to similar biogeochemical conditions as those found in primary forest. Our results suggesting consistent changes in N and P availability during succession provide a biogeochemical rationale for the conservation and restoration value of tropical secondary forests, and may be of utility to coupled C-nutrient models projecting primary productivity in a dynamic tropical biome.
Hayman Fire case study: Summary [RMRS-GTR-114
Russell T. Graham
2003-01-01
Historically, wildfires burned Western forests creating and maintaining a variety of forest compositions and structures (Agee 1993). Prior to European settlement lightning along with Native Americans ignited fires routinely across many forested landscapes. After Euro-American settlement, fires continued to be quite common with fires ignited by settlers, railroads, and...
Perspectives of Spatial Scale in a Wildland Forest Epidemic
W.W. Dillon; S.E. Haas; D.M. Rizzo; R.K. Meentemeyer
2014-01-01
The challenge of observing interactions between plant pathogens, their hosts, and environmental heterogeneity across multiple spatial scales commonly limits our ability to understand and manage wildland forest epidemics. Using the forest pathogen Phytophthora ramorum as a case study, we established 20 multiscale field sites to analyze how host-...
Dennis M. May
1988-01-01
This report presents the procedures by which the Southern Forest Inventory and Analysis unit estimates forest growth from permanent horizontal point samples. Inventory data from the 1977-87 survey of Mississippi's north unit were used to demonstrate how trees on the horizontal point samples are classified into one of eight components of growth and, in turn, how...
N.E. Grulke; R.A. Minnich; T. Paine; P. Riggan
2010-01-01
Many factors increase susceptibility of forests to wildfire. Among them are increases in human population, changes in land use, fire suppression, and frequent droughts. These factors have been exacerbating forest susceptibility to wildfires over the last century in southern California. Here we report on the significant role that air pollution has on increasing forest...
Modeling trade-offs between fire threat reduction and late-seral forest structure.
David E. Calkin; Susan Stevens Hummel; James K. Agee
2005-01-01
Evaluating the effects of managing for one forest resource in terms of associated impacts on other resources is not easy. Yet methods to identify potential trade-offs among forest resources are necessary to inform people about the implications of management options on public land. This paper uses a case study from a forest reserve in the northwestern United States to...
Luke L. Powell; Gustavo Zurita; Jared D. Wolfe; Erik I. Johnson; Philip C Stouffer
2015-01-01
Primary tropical rain forests are being rapidly perforated with new edges via roads, logging, and pastures, and vast areas of secondary forest accumulate following abandonment of agricultural lands. To determine how insectivorous Amazonian understory birds respond to edges between primary rain forest and three age classes of secondary forest, we radio-tracked two...
James Chamberlain; Matt Winn; A.L. Hammett
2009-01-01
Many products are harvested from forests that are not timber-based but are based on plant materials. These non-timber forest products (NTFPs) have not been fully incorporated into economic development programs, yet they provide significant monetary benefits for rural entrepreneurs. Interest in NTFPs as alternative forest enterprises and sources of additional income has...
ERIC Educational Resources Information Center
Salata, Tina L.; Ostergren, David M.
2010-01-01
The Junior Forester Academy (JFA) is a summer forestry camp that provides environmental education (EE) in the context of an outdoor education program. The JFA was established in 2004 and is located at Northern Arizona University's Centennial Forest site. The JFA's goal is to increase a campers' understanding of forest ecology and forestry skills…
Stephen R. Shifley; Frank R. Thompson; William D. Dijak; Zhaofei F. Fan
2008-01-01
Forest landscape disturbance and succession models have become practical tools for large-scale, long-term analyses of the cumulative effects of forest management on real landscapes. They can provide essential information in a spatial context to address management and policy issues related to forest planning, wildlife habitat quality, timber harvesting, fire effects,...
A. L. (Tom) Hammett; Jim Chamberlain; Matt Winn
2009-01-01
Many who grow or collect non-timber forest products (NTFPs) have been under-served in traditional forestry educational programs. It has often been difficult to determine the needs of this disparate group of stakeholders as collectors and growers are widely dispersed across the landscape, and not recognized as important stakeholders in formal cost forest...
NASA Technical Reports Server (NTRS)
Freeman, Anthony; Way, Jo Bea; Dubois, Pascale; Leberl, Franz
1993-01-01
We seek to combine high-resolution remotely sensed data with models and ground truth measurements, in the context of a Geographical Information System (GIS), integrated with specialized image processing software. We will use this integrated system to analyze the data from two Case Studies, one at a boreal forest site, the other a tropical forest site. We will assess the information content of the different components of the data, determine the optimum data combinations to study biogeophysical changes in the forest, assess the best way to visualize the results, and validate the models for the forest response to different radar wavelengths/polarizations. During the 1990's, unprecedented amounts of high-resolution images from space of the Earth's surface will become available to the applications scientist from the LANDSAT/TM series, European and Japanese ERS-1 satellites, RADARSAT and SIR-C missions. When the Earth Observation Systems (EOS) program is operational, the amount of data available for a particular site can only increase. The interdisciplinary scientist, seeking to use data from various sensors to study his site of interest, may be faced with massive difficulties in manipulating such large data sets, assessing their information content, determining the optimum combinations of data to study a particular parameter, visualizing his results and validating his model of the surface. The techniques to deal with these problems are also needed to support the analysis of data from NASA's current program of Multi-sensor Airborne Campaigns, which will also generate large volumes of data. In the Case Studies outlined in this proposal, we will have somewhat unique data sets. For the Bonanza Creek Experimental Forest (Case 1) calibrated DC-8 SAR (Synthetic Aperture Radar) data and extensive ground truth measurement are already at our disposal. The data set shows documented evidence to temporal change. The Belize Forest Experiment (Case 2) will produce calibrated DC-8 SAR and AVIRIS data, together with extensive measurements on the tropical rain forest itself. The extreme range of these sites, one an Arctic forest, the other a tropical rain forest, has been deliberately chosen to find common problems which can lead to generalized observations and unique problems with data which raise issues for the EOS System.
NASA Technical Reports Server (NTRS)
Freeman, Anthony; Way, Jo Bea; Dubois, Pascale; Leberl, Franz
1992-01-01
We seek to combine high-resolution remotely sensed data with models and ground truth measurements, in the context of a Geographical Information System, integrated with specialized image processing software. We will use this integrated system to analyze the data from two Case Studies, one at a bore Al forest site, the other a tropical forest site. We will assess the information content of the different components of the data, determine the optimum data combinations to study biogeophysical changes in the forest, assess the best way to visualize the results, and validate the models for the forest response to different radar wavelengths/polarizations. During the 1990's, unprecedented amounts of high-resolution images from space of the Earth's surface will become available to the applications scientist from the LANDSAT/TM series, European and Japanese ERS-1 satellites, RADARSAT and SIR-C missions. When the Earth Observation Systems (EOS) program is operational, the amount of data available for a particular site can only increase. The interdisciplinary scientist, seeking to use data from various sensors to study his site of interest, may be faced with massive difficulties in manipulating such large data sets, assessing their information content, determining the optimum combinations of data to study a particular parameter, visualizing his results and validating his model of the surface. The techniques to deal with these problems are also needed to support the analysis of data from NASA's current program of Multi-sensor Airborne Campaigns, which will also generate large volumes of data. In the Case Studies outlined in this proposal, we will have somewhat unique data sets. For the Bonanza Creek Experimental Forest (Case I) calibrated DC-8 SAR data and extensive ground truth measurement are already at our disposal. The data set shows documented evidence to temporal change. The Belize Forest Experiment (Case II) will produce calibrated DC-8 SAR and AVIRIS data, together with extensive measurements on the tropical rain forest itself. The extreme range of these sites, one an Arctic forest, the other a tropical rain forest, has been deliberately chosen to find common problems which can lead to generalized observations and unique problems with data which raise issues for the EOS System.
George T. Cvetkovich; Patricia L. Winter
2008-01-01
This report presents results from a study of San Bernardino National Forest community residentsâ experiences with and perceptions of fire, fire management, and the Forest Service. Using self-administered surveys and focus group discussions, we found that participants had personal experiences with fire, were concerned about fire, and felt knowledgeable about effective...
Welfare implications of tropical forest conservation: the case of Ruteng Park
David Butry; Subhrendu Pattanayak
2000-01-01
In 1993, the Indonesian government established the Ruteng Nature Recreation Park in western Flores. Subsequently, the government banned all timber extraction in and around the park's sub-tropical forest to promote biodiversity and watershed protection. This study quantitatively examines the role that tropical forest conservation has on the development of the local...
Rebecca J. McLain; Lisa Tobe; Susan Charnley; Ellen M. Donoghue; Cassandra. Moseley
2006-01-01
This case study examines the socioeconomic changes that took place between 1990 and 2000 in and around lands managed by the Bureau of Land Management (BLM) Coos Bay District in southwestern Oregon for purposes of assessing the effects of the Northwest Forest Plan (the Plan) on rural economies and communities in the Coos Bay region. The case study included an analysis...
Jessica M. Western; Antony S. Cheng; Nathaniel M. Anderson; Pamela Motley
2017-01-01
Collaborative efforts have expanded in recent years to reduce fuel loads and restore the resilience of forest landscapes to future fires. The social acceptability of harvesting and using forest biomass associated with these programs are a hot topic, with questions about the extent to which collaboration can generate unified acceptance. We present results from a Q-...
Susan Charnley; Candace Dillingham; Claudia Stuart; Cassandra Moseley; Ellen. Donoghue
2008-01-01
This report examines socioeconomic changes that took place between 1990 and 2003 on and around lands managed by the Klamath National Forest in California to assess the effects of the Northwest Forest Plan (the Plan) on rural economies and communities there. Three case communities were studied: Scott Valley, Butte Valley, and Mid-Klamath. The report characterizes the...
Implementation of the Montreal Process: An Oregon Case Study
J. E. Brown
2006-01-01
The state of Oregon has about 28 million acres of forestland. The west side of the state is dominated by Douglas-fir forests, and most of the east side forests are occupied by Ponderosa pines or mixed conifers. The Oregon Board of Forestry is charged with making policy for Oregonâs forests. It has relied on quantitative assessments of forest conditions for many years,...
KaDonna Randolph
2017-01-01
The USDA Forest Service Forest Inventory and Analysis (FIA) program makes and keeps current an inventory of all forest land in the United States. To comply with privacy laws while at the same time offering its data to the public, FIA makes approximate plot locations available through a process known as perturbing ("fuzzing") and swapping. The free spatial...
An energy balance model for forest canopies: a case study
S. M. Goltz; James A. Smith
1996-01-01
The use of thermal scanning devices to map underlying terrain surface temperatures has been recognized as a potential tool for estimating evapotranspiration and latent heat flux densities in forest canopies.
NASA Astrophysics Data System (ADS)
Steelman, Toddi A.; Dumond, Melissa Elefante
2009-03-01
In the United States, the common interest often is conceived as a by-product of the pluralist, interest-group-driven democratic process. Special interests dominate in many political arenas. Consequently, we have lost the language, vocabulary, and ability to talk about the common interest. The way to reverse this trend is to develop and practice with new tools that allow us to articulate what we mean by the common interest in specific contexts. In this article, we leveraged the literature on procedural, substantive, and pragmatic decision making to illustrate how they work together to demonstrate whether and how the common interest was served in three case studies of Healthy Forests Restoration Act implementation on the Apache-Sitgreaves National Forest in Arizona. In two of the cases we found that the common interest was mostly served, while in the third case it was not. Our results raise questions about the ability of procedural criteria or substantive criteria alone to determine effectiveness in decision making. When evaluated together they provide a more complete understanding of how the common interest is or is not served.
Participatory forest management in Ethiopia: learning from pilot projects.
Ameha, Aklilu; Larsen, H O; Lemenih, Mulugeta
2014-04-01
Different arrangements of decentralized forest management have been promoted as alternatives to centralized and top down approaches to halt tropical deforestation and forest degradation. Ethiopia is one of the countries piloting one of these approaches. To inform future programs and projects it is essential to learn from existing pilots and experiences. This paper analyses five of the pilot participatory forest management (PFM) programs undertaken in Ethiopia. The study is based on the Forest User Group (FUG) members' analyses of the programs using selected outcome variables: forest income, change in forest conditions, forest ownership feelings and effectiveness of FUGs as forest managing institutions. These variables were assessed at three points in time-before the introduction of PFM, during the project implementation and after the projects ended. Data were collected using group discussions, key informant interviews and transect walks through the PFM forests. The results show that in all of the five cases the state of the forest is perceived to have improved with the introduction of PFM, and in four of the cases the improvement was maintained after projects ended. Regulated access to the forests following introduction of PFM was not perceived to have affected forest income negatively. There are, however, serious concerns about the institutional effectiveness of the FUGs after projects ended, and this may affect the success of the PFM approach in the longer term.
Louise Loudermilk; Alison Stanton; Robert M. Scheller; Thomas E. Dilts; Peter J. Weisberg; Carl Skinner; Jian Yang
2014-01-01
Fuel-reduction treatments are used extensively to reduce wildfire risk and restore forest diversity and function. In the near future, increasing regulation of carbon (C) emissions may force forest managers to balance the use of fuel treatments for reducing wildfire risk against an alternative goal of C sequestration. The objective of this study was to evaluate how long...
Ge Sun; Catalina Segura
2013-01-01
The aim of the special issue âInteractions of Forests, Climate, Water Resources, and Humans in a Changing Environmentâ is to present case studies on the influences of natural and human disturbances on forest water resources under a changing climate. Studies in this collection of six papers cover a wide range of geographic regions from Australia to Nigeria with spatial...
Translating National Level Forest Service Goals to Local Level Land Management: Carbon Sequestration
NASA Astrophysics Data System (ADS)
McNulty, S.; Treasure, E.
2017-12-01
The USDA Forest Service has many national level policies related to multiple use management. However, translating national policy to stand level forest management can be difficult. As an example of how a national policy can be put into action, we examined three case studies in which a desired future condition is evaluated at the national, region and local scale. We chose to use carbon sequestration as the desired future condition because climate change has become a major area of concern during the last decade. Several studies have determined that the 193 million acres of US national forest land currently sequester 11% to 15% of the total carbon emitted as a nation. This paper provides a framework by which national scale strategies for maintaining or enhancing forest carbon sequestration is translated through regional considerations and local constraints in adaptive management practices. Although this framework used the carbon sequestration as a case study, this framework could be used with other national level priorities such as the National Environmental Protection Act (NEPA) or the Endangered Species Act (ESA).
Drivers of forest cover dynamics in smallholder farming systems: the case of northwestern Vietnam.
Jadin, Isaline; Vanacker, Veerle; Hoang, Huong Thi Thu
2013-04-01
The national-scale forest recovery of Vietnam started in the early 1990s and is associated with a shift from net deforestation to net reforestation. Large disparities in forest cover dynamics are, however, observed at the local scale. This study aims to unravel the mechanisms driving forest cover change for a mountainous region located in northwest Vietnam. Statistical analyses were used to explore the association between forest cover change and household characteristics. In Sa Pa district, deforestation rates are decreasing, but forest degradation continues at similar rates. Deforestation is not necessarily associated with impoverished ethnic communities or high levels of subsistence farming, and the largest forest cover dynamics are found in villages with the best socio-economic conditions. Our empirical study does not provide strong evidence of a dominant role of agriculture in forest cover dynamics. It shows that empirical studies on local-scale forest dynamics remain important to unravel the complexity of human-environment interactions.
William M. Kay; Ellen M. Donoghue; Susan Charnley; Cassandra. Moseley
2007-01-01
This report examines socioeconomic changes that took place between 1990 and 2003 on and around lands managed by the Mount Hood National Forest in Oregon to assess the effects of the Northwest Forest Plan (the Plan) on rural economies and communities there. Three case communities were studied: the Greater Estacada Area, the Upper Hood River Valley, and the Villages of...
MaryBeth Keifer; Nathan L. Stephenson; Jeff Manley
2000-01-01
Changes in forest structure were monitored in areas treated with prescribed fire in Sequoia and Kings Canyon National Parks. Five years after the initial prescribed fires, tree density was reduced by 61% in the giant sequoia-mixed conifer forest, with the greatest reduction in the smaller trees. This post-burn forest structure falls within the range that may have been...
Spatial and seasonal variability of forested headwater stream temperatures in western Oregon, USA
J. A. Leach; D. H. Olson; P. D. Anderson; B. N. I. Eskelson
2017-01-01
Thermal regimes of forested headwater streams control the growth and distribution of various aquatic organisms. In a western Oregon, USA, case study we examined: (1) forested headwater stream temperature variability in space and time; (2) relationships between stream temperature patterns and weather, above-stream canopy cover, and geomorphic attributes; and (3) the...
Fuels for schools: case study in Darby, Montana
Richard Bergman; Timothy M. Maker
2007-01-01
To reduce the risk of catastrophic fires, the USDA Forest Service and its partners are developing practical, economic uses for forest thinnings from National Forests and state and private lands in western states. Because mechanical thinning is costly, developing markets for removed wood as fuel for community energy applications is one way to support the economics of...
Working woods: A case study of sustainable forest management on Vermont family forests
Neal F. Maker; Rene H. Germain; Nathaniel M. Anderson
2014-01-01
Families own 35% of US forestland and 67% of Vermont forestland. Sustainable management of their woodlots could provide social and economic benefits for generations. We examined sustainable forest management across four counties in Vermont by evaluating the use of silvicultural practices and best management practices on 59 recently harvested, family-owned properties...
Institutional innovations in the forest industry in Russia: a case study of Irkutsk province
Dennis V. Dayneko; Eric J. Gustafson
2014-01-01
Multiple global changes are impacting Russia today. Economic transformations in Russia have prompted the establishment of new business relations, which are based on innovations in the economic, institutional and ecological spheres, including within the Forest industry. This paper focuses on the Forest sector in Irkutsk province and beyond, examining the basic problems...
Non-timber forest products and livelihoods in Michigan's Upper Peninsula
Marla R. Emery
2001-01-01
Non-timber forest products (NTFPs) are increasingly looked to as potential income sources for forest communities. Yet little is known about the existing livelihood uses of NTFPs. Drawing on a case study in Michigan's Upper Peninsula, this paper describes the contemporary contributions of NTFPs to the livelihoods of people who gather them. First-hand use of...
Small-diameter timber utilization in Wisconsin: a case study of four counties
Scott A. Bowe; Matthew S. Bumgardner
2006-01-01
The state of Wisconsin has numerous forest ownership types. These include national, state, and county forests, as well as privately owned industrial and nonindustrial forests. In addition to sawlog markets, portions of the state also have substantial pulpwood markets associated with paper and panel mills. Combined, these attributes make Wisconsin a good location for...
Balance and sustainability in multi-aged stands: a northern conifer case study
Robert S. Seymour; Laura S. Kenefic
1998-01-01
Foresters in the Northeast are both blessed and cursed by the inherent complexity of the region's forests. Thousands of years may pass between natural stand-replacing disturbances, though partial disturbances, such as blowdown, defoliating insects, and various forms of partial cutting, are common (Seymour 1995). Foresters in the region typically deal with...
A case study of nitrogen saturation in western U.S. forests
Mark E. Fenn; Mark A. Poth
2001-01-01
Virtually complete nitrification of the available ammonium in soil and nitrification activity in the forest floor are important factors predisposing forests in the San Bernardino Mountains of southern California to nitrogen (N) saturation. As a result, inorganic N in the soil solution is dominated by nitrate. High nitrification rates also generate elevated nitric oxide...
Spatial complementarity of forests and farms: accounting for ecosystem services
Subhrendu K. Pattanayak; David T. Butry
2006-01-01
Our article considers the economic contributions of forest ecosystem services, using a case study from Flores, Indonesia, in which forest protection in upstream watersheds stabilize soil and hydrological flows in downstream farms. We focus on the demand for a weak complement to the ecosystem services--farm labor-- and account for spatial dependence due to economic...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Case closing. 254.16 Section 254.16 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LANDOWNERSHIP ADJUSTMENTS Land Exchanges § 254.16 Case closing. (a) Title transfers. Unless otherwise agreed, and...
Timber harvest calculations on a National Forest: A case study
NASA Astrophysics Data System (ADS)
Carey, Henry H.
1983-03-01
Harvest calculations determine sawtimber flows from public lands and are closely scruntinized by a wide spectrum of forest users. This study examines the reliability of harvest calculations on a single national forest in New Mexico Forest Service determinations of an array of variables were reviewed and evaluated. The study revealed a lack of precision in Forest Service adherence to self-imposed procedural standards governing the calculation process. Timber sales have taken place on lands where such standards prohibit harvesting and these lands have been included in annual harvest calculations. Assumptions required by a mathematical model used by the Forest Service in calculating the harvest were not followed in the subsequent implementation of the harvest level. These factors suggest that the Forest Service could have significantly over-stated annual harvest rate for the first decade. Opportunities exist to improve the calculation, and benefits realized may greatly exceed additional costs of implementation
Sustainability and the origins of wildland fire research
Diane M. Smith
2015-01-01
When looking for the origins of wildland fire research in the Forest Service, forester C. E. (Mike) Hardy makes the case for 1922, when Harry Gisborne became the agencyâs first full-time fire researcher. Leading fire historian Stephen Pyne argues that fire research originated under the leadership of Coert DuBois, who oversaw the first fire case study in 1911, the first...
Information for Forest Managers: A Case Study of Adequacy and Needs in Minnesota
Bernard J. Lewis; Edwin Kallio
1983-01-01
Public and private forest managers in Minnesota feel they need better information in such areas as supply and demand, timber growth projections, and reforestation. Needs varied by agency and level of management.
NASA Astrophysics Data System (ADS)
Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.
2010-12-01
Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of <1 °C. A 50-70% reduction in the aerodynamic resistance to sensible and latent heat exchange in the forests dominated the cooling effect. A grassland ecosystem that succeeded a stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case studies C4 grassland and shrub ecosystem surface temperatures were adjusted for differences in air temperature across sites.
NASA Astrophysics Data System (ADS)
Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.
2017-12-01
Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.
C. Dana Nelson; W.A. Powell; C.A. Maynard; K.M. Baier; A. Newhouse; S.A. Merkle; C.J. Nairn; L. Kong; J.E. Carlson; C. Addo-Quaye; M.E. Staton; F.V. Hebard; L.L. Georgi; A.G. Abbott; B.A. Olukolu; T. Zhebentyayeva
2013-01-01
The Forest Health Initiative (FHI) was developed and implemented to test the hypothesis that a coordinated effort in biotechnology research could lead to resistant trees capable of restoring a species in a relevant time frame. As a test case, the American chestnut (Castanea dentata) was chosen for study as it is an iconic forest tree species in the eastern United...
KaDonna Randolph; William Bechtold; Randall Morin; Stanley Zarnoch
2009-01-01
The Forest Inventory and Analysis (FIA) Phase 3 plot network is a crucial part of the U.S. Forest Health Monitoring program's detection monitoring system, where select indicators are monitored for signals that may indicate deteriorating forest health. When a negative signal is identified, evaluation monitoring provides a mechanism whereby a potential problem can...
Learning from the experiences of others: four forest landowner cooperatives share their stories
Pamela Jakes
2006-01-01
For a community or group investigating the appropriateness of a cooperative as a means for organizing local landowners to accomplish forest management or marketing objectives, it is useful to hear about the experiences of other communities or cooperatives. For the conference, we put together a series of video case studies, summarizing the stories of four forest...
U.S. Forest Service's Power-IT-Down Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Case study describes the U.S. Forest Service's Power-IT-Down Program, which strongly encouraged employees to shut off their computers when leaving the office. The U.S. Forest Service first piloted the program on a voluntary basis in one region then implemented it across the agency's 43,000 computers as a joint effort by the Chief Information Office and Sustainable Operations department.
Miguel, Renata Bortolasse; Peiter, Paulo Cesar; de Albuquerque, Hermano; Coura, José Rodrigues; Moza, Patrícia Ganzenmüller; Costa, Anielle de Pina; Brasil, Patricia; Suárez-Mutis, Martha Cecília
2014-01-01
The lethality of malaria in the extra-Amazonian region is more than 70 times higher than in Amazonia itself. Recently, several studies have shown that autochthonous malaria is not a rare event in the Brazilian southeastern states in the Atlantic Forest biome. Information about autochthonous malaria in the state of Rio de Janeiro (RJ) is scarce. This study aims to assess malaria cases reported to the Health Surveillance System of the State of Rio de Janeiro between 2000-2010. An average of 90 cases per year had parasitological malaria confirmation by thick smear. The number of malaria notifications due to Plasmodium falciparum increased over time. Imported cases reported during the period studied were spread among 51% of the municipalities (counties) of the state. Only 35 cases (4.3%) were autochthonous, which represents an average of 3.8 new cases per year. Eleven municipalities reported autochthonous cases; within these, six could be characterised as areas of residual or new foci of malaria from the Atlantic Forest system. The other 28 municipalities could become receptive for transmission reintroduction. Cases occurred during all periods of the year, but 62.9% of cases were in the first semester of each year. Assessing vulnerability and receptivity conditions and vector ecology is imperative to establish the real risk of malaria reintroduction in RJ. PMID:25185004
[Utilization suitability of forest resources in typical forest zone of Changbai Mountains].
Hao, Zhanqing; Yu, Deyong; Xiong, Zaiping; Ye, Ji
2004-10-01
Conservation of natural forest does not simply equal to no logging. The Northeast China Forest Region has a logging quota of mature forest as part of natural forest conservation project. How to determine the logging spots rationally and scientifically is very important. Recent scientific theories of forest resources management advocate that the utilization of forest resources should stick to the principle of sustaining use, and pay attention to the ecological function of forest resources. According to the logging standards, RS and GIS techniques can be used to detect the precise location of forest resources and obtain information of forest areas and types, and thus, provide more rational and scientific support for space choice about future utilization of forest resources. In this paper, the Lushuihe Forest Bureau was selected as a typical case in Changbai Mountains Forest Region to assess the utilization conditions of forest resources, and some advices on spatial choice for future management of forest resources in the study area were offered.
Dennis S. Ojima; Louis R. Iverson; Brent L. Sohngen
2012-01-01
Alaskan forests cover one-third of the stateâs 52 million ha of land (Parson et al. 2001), and are regionally and globally significant. Ninety percent of Alaskan forests are classified as boreal, representing 4 percent of the worldâs boreal forests, and are located throughout interior and south-central Alaska (fig. A1-1). The remaining 10 percent of Alaskan forests are...
[Valuation of forest damage cost from SO2 emission: a case study in Hunan Province].
Hao, Jiming; Li, Ji; Duan, Lei; He, Kebin; Dai, Wennan
2002-11-01
Large amount SO2 emission caused serious damage of forest ecosystem in China and calculation of the damage cost is an important issue for policy-making. However, no applicable method was developed to estimate forest damage under different SO2 emission scenarios. Basing on previous field researches on sulfur-related forest impact in China and recent critical load mapping research, this paper presented a model for forest damage calculation by developing a dose-response function that related the damage to cumulative sulfur critical loads. This model was applied to the forests in Hunan, a province in acid rain control zone in China. Results showed that in the business-as-usual case, SO2 emission in Hunan will increase by 120% from 1995 (8.82 mil. ton) to 2020 (19.56 mil. ton), but damage cost will increase by 4.3 times, reaching 6.19 billion RMB in 2020. Results also showed the measures for SO2 control were cost-effective because the marginal damage cost will be about 6000 RMB per ton SO2 in 2020 in BAU case. At current SO2 emission level, marginal benefit will be about 1500 RMB per ton. Uncertainty analysis demonstrated that this model provides reasonable damage estimates and would therefore be applicable in a broad range of policy settings.
The Caspar Creek Watersheds--a case study
R. R. Ziemer
1990-01-01
Caspar Creek experimental watersheds are located on the Jackson Demonstration State Forest. Sponsors are the Pacific Southwest Research Station (PSW), USDA Forest Service, and the California Department of Forestry and Fire Protection (CDF). Both organizations have been working cooperatively since 1962
Translating national level forest service goals to local level land management: carbon sequestration
Steven McNulty; Emrys Treasure; Lisa Jennings; David Meriwether; David Harris; Paul Arndt
2017-01-01
The USDA Forest Service has many national level policies related to multiple use management. However, translating national policy to stand level forest management can be difficult. As an example of how a national policy can be put into action, we examined three case studies in which a desired future condition is evaluated at the national, region, and local scale. We...
J. Stephen Brewer; Christine Bertz; Jeffery B. Cannon; Jason D. Chesser; Erynn E. Maynard
2012-01-01
Stand-replacing natural disturbances in mature forests are traditionally seen as events that cause forests to revert to early stages of succession and maintain species diversity. In some cases, however, such transitions could be an artifact of salvage logging and may increase biotic homogenization. We present initial (two-year) results of a study of the effects of...
Income tax considerations for forest landowners in the South: a case study on tax planning
Philip D. Bailey; Harry L. Jr. Haney; Debra S. Callihan; John L. Greene
1999-01-01
Federal and state income taxes are calculated for hypothetical owners of nonindustrial private forests (NIPF) across 14 southern states to illustrate the effects of differential state tax treatment. The income tax liability is calculated in a year in which the timber owners harvest $200,000 worth of timber. After-tax land expectation values for a forest landowner are...
Effects of forest fires and post-fire rehabilitation: a Colorado, USA case study
Lee H. MacDonald; Isaac J. Larsen
2009-01-01
Anthropogenic activities have increased the number of large, high-burn severity wildfires in the lower and mid-elevation coniferous forests in Colorado as well as much of the western US. Forests provide most of the water for cities and agriculture, and the increased runoff and erosion after wildfires is a major concern because of the potential adverse effects on...
The role of non timber forest products: a case study of gatherers in the eastern United States
Siri Doble; Marla Emery
2001-01-01
Non Timber Forest Products (NTFPs) play a key role in the lives and livelihoods of rural residents in or near forested areas. Consequently, organizations concerned with rural development have begun to look toward NTFPs as an opportunity for rural economic development. Concerned with the potential implications for the social and ecological structures that support NTFP...
Carbon stocks in urban forest remnants: Atlanta and Baltimore as case studies. Chapter 5.
Ian D. Yesilonis; Richard V. Pouyat
2012-01-01
Urban environments influence carbon (C) and nitrogen (N) cycles of forest ecosystems by altering plant biomass, litter mass and chemistry, passive and active pools of C and N, and the occurrence and activity of decomposer organisms. It is difficult to determine the net effect of C storage due to the number of environmental factors exerting stress on urban forests....
As urbanized areas continue to grow and green spaces dwindle, the importance of urban forests increases for both ecologically derived health benefits and for their potential to mitigate climate change. This study examined pre- and post- hurricane conditions of Pensacola's urban f...
A stochastic Forest Fire Model for future land cover scenarios assessment
NASA Astrophysics Data System (ADS)
Fiorucci, P.; Holmes, T.; Gaetani, F.; D'Andrea, M.
2009-04-01
Land cover change and forest fire interaction under climate and socio-economics changes, is one of the main issues of the 21th century. The capability of defining future scenarios of land cover and fire regime allow forest managers to better understand the best actions to be carried out and their long term effects. In this paper a new methodology for land cover change simulations under climate change and fire disturbance is presented and discussed. The methodology is based on the assumption that forest fires exhibits power law frequency-area distribution. The well known Forest Fire Model (FFM), which is an example of self organized criticality, is able to reproduce this behavior. Starting from this observation, a modified version of the FFM has been developed. The new model, called Modified Forest Fire Model (MFFM) introduces several new features. A stochastic model for vegetation growth and regrowth after fire occurrence has been implemented for different kind of vegetations. In addition, a stochastic fire propagation model taking into account topography and vegetation cover has been introduced. The MFFM has been developed with the purpose of estimating vegetation cover changes and fire regimes over a time windows of many years for a given spatial region. Two different case studies have been carried out. The first case study is related with Liguria (Italy), a region of 5400 km2 lying between the Cote d'Azur, France, and Tuscany, Italy, on the northwest coast of the Tyrrhenian Sea. This region is characterized by Mediterranean fire regime. The second case study has been carried out in California (Florida) on a region having similar area and characterized by similar climate conditions. In both cases the model well represents the actual fire regime in terms of power law parameters proving interesting results about future land cover scenarios under climate, land use and socio-economics change.
Fitting rainfall interception models to forest ecosystems of Mexico
NASA Astrophysics Data System (ADS)
Návar, José
2017-05-01
Models that accurately predict forest interception are essential both for water balance studies and for assessing watershed responses to changes in land use and the long-term climate variability. This paper compares the performance of four rainfall interception models-the sparse Gash (1995), Rutter et al. (1975), Liu (1997) and two new models (NvMxa and NvMxb)-using data from four spatially extensive, structurally diverse forest ecosystems in Mexico. Ninety-eight case studies measuring interception in tropical dry (25), arid/semi-arid (29), temperate (26), and tropical montane cloud forests (18) were compiled and analyzed. Coefficients derived from raw data or published statistical relationships were used as model input to evaluate multi-storm forest interception at the case study scale. On average empirical data showed that, tropical montane cloud, temperate, arid/semi-arid and tropical dry forests intercepted 14%, 18%, 22% and 26% of total precipitation, respectively. The models performed well in predicting interception, with mean deviations between measured and modeled interception as a function of total precipitation (ME) generally <5.8% and Nash-Sutcliffe efficiency E estimators >0.66. Model fitting precision was dependent on the forest ecosystem. Arid/semi-arid forests exhibited the smallest, while tropical montane cloud forest displayed the largest ME deviations. Improved agreement between measured and modeled data requires modification of in-storm evaporation rate in the Liu; the canopy storage in the sparse Gash model; and the throughfall coefficient in the Rutter and the NvMx models. This research concludes on recommending the wide application of rainfall interception models with some caution as they provide mixed results. The extensive forest interception data source, the fitting and testing of four models, the introduction of a new model, and the availability of coefficient values for all four forest ecosystems are an important source of information and a benchmark for future investigations in this area of hydrology.
NASA Astrophysics Data System (ADS)
Potužníková, K.; Sedlák, P.; Šauli, P.
2009-09-01
Airflow and turbulence within and above the forest canopy determine the forest - atmosphere exchange of atmospheric constituents and pollutants. Our investigation is related to the existence of large-scale intermittent coherent structures, which have been detected in turbulence time series measured at the Experimental Ecological Study Site Bílý Kříž (800-900 m a.s.l.) in the Czech Republic. The site is situated on a steep (13°) SSW-faced slope near the top of a mountain ridge forested by a young Norway spruce plantation. Flow directions across the ridge (along the slope) strongly prevail at the site. Results based on a recent study reveal significant differences between the cases when the site is on the upwind vs. downwind side of the ridge. Typical downwind cases are characterized by a low wind speed above the canopy and by relatively higher friction velocity than in the upwind cases. This is explained by the flow retardation by the upslope-directed hydrodynamic pressure gradient and by the large wind shear in the upper part of the wake behind the ridge top. This contribution concentrates on the vertical coherency of the turbulent flow within the forest canopy. Analysed variables include the high-frequency wind velocity components and sonic temperature measured during periods of neutral thermal stratification at two different levels. Wavelet analysis was used for detection of characteristic temporal scale of coherent structures, their persistence and effectivity parameter. Special attention is paid to the differences between the upwind and downwind cases. Acknowledgements: The study is supported by the grant IAA300420803 and IAA300420704 from Grant Agency of Academy of Sciences of the Czech Republic.
Effectiveness of management interventions on forest carbon stock in planted forests in Nepal.
Dangal, Shambhu Prasad; Das, Abhoy Kumar; Paudel, Shyam Krishna
2017-07-01
Nepal has successfully established more than 370,000 ha of plantations, mostly with Pinus patula, in the last three and a half decades. However, intensive management of these planted forests is very limited. Despite the fact that the Kyoto Convention in 1997 recognized the role of plantations for forest-carbon sequestration, there is still limited knowledge on the effects of management practices and stand density on carbon-sequestration of popular plantation species (i.e. Pinus patula) in Nepal. We carried out case studies in four community forests planted between 1976 and 1990 to assess the impacts of management on forest carbon stocks. The study found that the average carbon stock in the pine plantations was 217 Mg C ha -1 , and was lower in forests with intensively managed plantations (214.3 Mg C ha -1 ) than in traditionally managed plantations (219 Mg C ha -1 ). However, it was the reverse in case of soil carbon, which was higher (78.65 Mg C ha -1 ) in the forests with intensive management. Though stand density was positively correlated with carbon stock, the proportionate increment in carbon stock was lower with increasing stand density, as carbon stock increased by less than 25% with a doubling of stand density (300-600). The total carbon stock was higher in plantations aged between 25 and 30 years compared to those aged between 30 and 35 years. Copyright © 2017 Elsevier Ltd. All rights reserved.
N. Suzuki; D.H. Olson
2007-01-01
We review the policies and management approaches used in U.S. Pacific Northwest planted forest to address biodiversity protection. We provide a case-study watershed design from southern Oregon, integrating various stand-to-landscape biodiversity-management approaches.
Hans-Erik Andersen; Strunk Jacob; Hailemariam Temesgen; Donald Atwood; Ken Winterberger
2012-01-01
The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased capabilities in image processing, computing, and inferential techniques, have enabled the development and implementation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we (i) describe the conceptual...
John. E. Lundquist; James. P. Jr. Ward
2004-01-01
Part of the diversity of a forest is the variety of agents that can kill trees. These agents differ in the nature, magnitude, and patterns of their impacts on forest resources. Diseases, insect pests, and other small-scale disturbances are commonly assessed on the basis of their impacts on timber production. Tree mortality usually means reduced volume of living stems....
Effect of the federal estate tax on nonindustrial private forest holdings
John L. Greene; Steven H. Bullard; Tamara L. Cushing; Theodore Beauvais
2006-01-01
Data for this study were collected using a questionnaire mailed to randomly selected members of two forest owner organizations. Among the key findings is that 38% of forest estates owed federal estate tax, a rate many times higher than US estates in general. In 28% of the cases where estate tax was due, timber or land was sold because other assets were not adequate. In...
Optimal strategies for the surveillance and control of forest pathogens: A case study with oak wilt
Tetsuya Horie; Robert G. Haight; Frances R. Homans; Robert C. Venette
2013-01-01
Cost-effective strategies are needed to find and remove diseased trees in forests damaged by pathogens. We develop a model of cost-minimizing surveillance and control of forest pathogens across multiple sites where there is uncertainty about the extent of the infestation in each site and when the goal is to minimize the expected number of new infections. We allow for a...
NASA Astrophysics Data System (ADS)
Aguilar-Amuchas, N.; Henebry, G. M.; Blanchard, J.; Sutter, R.
2008-12-01
The potential use of remote sensing for the design and implementation of sustainable management, conservation, and monitoring of forest biodiversity has been well documented in the scientific literature. However, when we look into how often remote sensing is actually being used in the decision making processes affecting biodiversity conservation and sustainable management, we find that, apart from specific study cases, its use is not as widespread as we know it should. There is an enormous gap between our scientific achievements and their use in the real world towards the preservation of a rapidly vanishing biodiversity. Conservation managers understand the potential remote sensing has. However, logistical constraints and high technical skills requirements render the use of remote sensing data difficult. Sound and easy approaches need to be developed and implemented. We present two study cases that illustrate 1st. How the interaction between tropical forest managers and remote sensing specialist allowed developing a simple method for the identification of priority areas for field surveys of tropical forests management ecological sustainability indicators and, 2nd. How remote sensing is being used by The Nature Conservancy as a first level approach towards the assessment of forest conservation strategies effectiveness in for areas located in 11 states, covering different forest types and a variety of conservation objectives.
Timothy A. Martin; Philip M. Dougherty; M.A. Topa; Steve E. McKeand
2005-01-01
Both genetic and environmental influences on tree growth are expressed through physiological processes. This central, integrating role of physiology has made the field of forest ecophysiology a major area of biological research for the past several decades. Specifically, forest ecophysiology is the study of how plants interact with their abiotic and biotic environment...
Forest Schools and Environmental Attitudes: A Case Study of Children Aged 8-11 Years
ERIC Educational Resources Information Center
Turtle, Christina; Convery, Ian; Convery, Katie
2015-01-01
There is growing evidence that children in the UK are suffering from a lack of engagement with nature and the outdoor environment. This paper investigates the attitudes of children towards the natural environment and focuses on Forest School programmes as a mechanism to promote a "pro-environmental" attitude. The study identified that…
Grietens, Koen Peeters; Xuan, Xa Nguyen; Ribera, Joan; Duc, Thang Ngo; Bortel, Wim van; Ba, Nhat Truong; Van, Ky Pham; Xuan, Hung Le; D'Alessandro, Umberto; Erhart, Annette
2012-01-01
Long-lasting insecticidal hammocks (LLIHs) are being evaluated as an additional malaria prevention tool in settings where standard control strategies have a limited impact. This is the case among the Ra-glai ethnic minority communities of Ninh Thuan, one of the forested and mountainous provinces of Central Vietnam where malaria morbidity persist due to the sylvatic nature of the main malaria vector An. dirus and the dependence of the population on the forest for subsistence--as is the case for many impoverished ethnic minorities in Southeast Asia. A social science study was carried out ancillary to a community-based cluster randomized trial on the effectiveness of LLIHs to control forest malaria. The social science research strategy consisted of a mixed methods study triangulating qualitative data from focused ethnography and quantitative data collected during a malariometric cross-sectional survey on a random sample of 2,045 study participants. To meet work requirements during the labor intensive malaria transmission and rainy season, Ra-glai slash and burn farmers combine living in government supported villages along the road with a second home at their fields located in the forest. LLIH use was evaluated in both locations. During daytime, LLIH use at village level was reported by 69.3% of all respondents, and in forest fields this was 73.2%. In the evening, 54.1% used the LLIHs in the villages, while at the fields this was 20.7%. At night, LLIH use was minimal, regardless of the location (village 4.4%; forest 6.4%). Despite the free distribution of insecticide-treated nets (ITNs) and LLIHs, around half the local population remains largely unprotected when sleeping in their forest plot huts. In order to tackle forest malaria more effectively, control policies should explicitly target forest fields where ethnic minority farmers are more vulnerable to malaria.
Muela Ribera, Joan; Ngo Duc, Thang; van Bortel, Wim; Truong Ba, Nhat; Van, Ky Pham; Le Xuan, Hung; D'Alessandro, Umberto; Erhart, Annette
2012-01-01
Background Long-lasting insecticidal hammocks (LLIHs) are being evaluated as an additional malaria prevention tool in settings where standard control strategies have a limited impact. This is the case among the Ra-glai ethnic minority communities of Ninh Thuan, one of the forested and mountainous provinces of Central Vietnam where malaria morbidity persist due to the sylvatic nature of the main malaria vector An. dirus and the dependence of the population on the forest for subsistence - as is the case for many impoverished ethnic minorities in Southeast Asia. Methods A social science study was carried out ancillary to a community-based cluster randomized trial on the effectiveness of LLIHs to control forest malaria. The social science research strategy consisted of a mixed methods study triangulating qualitative data from focused ethnography and quantitative data collected during a malariometric cross-sectional survey on a random sample of 2,045 study participants. Results To meet work requirements during the labor intensive malaria transmission and rainy season, Ra-glai slash and burn farmers combine living in government supported villages along the road with a second home at their fields located in the forest. LLIH use was evaluated in both locations. During daytime, LLIH use at village level was reported by 69.3% of all respondents, and in forest fields this was 73.2%. In the evening, 54.1% used the LLIHs in the villages, while at the fields this was 20.7%. At night, LLIH use was minimal, regardless of the location (village 4.4%; forest 6.4%). Discussion Despite the free distribution of insecticide-treated nets (ITNs) and LLIHs, around half the local population remains largely unprotected when sleeping in their forest plot huts. In order to tackle forest malaria more effectively, control policies should explicitly target forest fields where ethnic minority farmers are more vulnerable to malaria. PMID:22253852
Protection against fire in the mountainous forests of Greece case study: forest complex of W. Nestos
NASA Astrophysics Data System (ADS)
Drosos, Vasileios C.; Giannoulas, Vasileios J.; Stergiadou, Anastasia; Karagiannis, Evaggelos; Doukas, Aristotelis-Kosmas G.
2014-08-01
Forest fires are an ancient phenomenon. Appear, however, with devastating frequency and intensity over the last 30 years. In our country, the climatic conditions in combination with the intense relief, favor their rapid spread. Considering the fact that environmental conditions provided for decades even worse (increased temperature, drought and vegetation), then the problem of forest fires in our country, is expected to become more intense. The work focuses on the optimization model of the opening up of the forest mountain areas taking into account the prevention and suppression of forest fires. Research area is the mountain forest complex of W. Nestos of Drama Prefecture. The percentage of forest protection area is examined under the light whether the total hose length corresponds to the actual operational capacity to reach a fire source. For this reason are decided to present a three case study concerning area of the forest being protected by fire extinguishing vehicles. The first one corresponds to a fire suppression bandwidth (buffer zone) with a capacity radius of 150m uphill and 250m downhill from the origin point where the fire extinguishing vehicle stands. The second one corresponds to a fire suppression capacity of 200m uphill and 400m downhill and the third one corresponds to a fire suppression capacity of 300m uphill and 500m downhill. The most important forest technical infrastructures to prevent fire are roads network (opening up) for fire protection and buffer zones. Patrols of small and agile 4 × 4 appropriately equipped (pipe length of 500 meters and putting pressure on uphill to 300 meters) for the first attack of the fire in the summer months coupled with early warning of fire observatories adequately cover the forest protection of W. Nestos complex. But spatial distribution needed improvements to a road density of the optimum economic Dec, both forest protection and for better management (skidding) of woody capital.
Financial Indicators of Reduced Impact Logging Performance in Brazil: Case Study Comparisons
Thomas P. Holmes; Frederick Boltz; Douglas R. Carter
2001-01-01
Indicators of financial performance are compared for three case studies in the Brazilian Amazon. Each case study presents parameters obtained from monitoring initial harvest entries into primary forests for reduced impact logging (RIL) and conventional logging (CL) operations. Differences in cost definitions and data collection protocols complicate the analysis, and...
A forester's look at the application of image manipulation techniques to multitemporal Landsat data
NASA Technical Reports Server (NTRS)
Williams, D. L.; Stauffer, M. L.; Leung, K. C.
1979-01-01
Registered, multitemporal Landsat data of a study area in central Pennsylvania were analyzed to detect and assess changes in the forest canopy resulting from insect defoliation. Images taken July 19, 1976, and June 27, 1977, were chosen specifically to represent forest canopy conditions before and after defoliation, respectively. Several image manipulation and data transformation techniques, developed primarily for estimating agricultural and rangeland standing green biomass, were applied to these data. The applicability of each technique for estimating the severity of forest canopy defoliation was then evaluated. All techniques tested had highly correlated results. In all cases, heavy defoliation was discriminated from healthy forest. Areas of moderate defoliation were confused with healthy forest on northwest (NW) aspects, but were distinct from healthy forest conditions on southeast (SE)-facing slopes.
NASA Astrophysics Data System (ADS)
Mukul, S. A.; Herbohn, J.; Firn, J.; Gregorio, N.
2017-12-01
Shifting cultivation is a widespread practice in tropical forest agriculture frontiers that policy makers often regard as the major driver of forest loss and degradation. Secondary forests regrowing after shifting cultivation are generally not viewed as suitable option for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration benefits in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co-benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.
Correcting Classifiers for Sample Selection Bias in Two-Phase Case-Control Studies
Theis, Fabian J.
2017-01-01
Epidemiological studies often utilize stratified data in which rare outcomes or exposures are artificially enriched. This design can increase precision in association tests but distorts predictions when applying classifiers on nonstratified data. Several methods correct for this so-called sample selection bias, but their performance remains unclear especially for machine learning classifiers. With an emphasis on two-phase case-control studies, we aim to assess which corrections to perform in which setting and to obtain methods suitable for machine learning techniques, especially the random forest. We propose two new resampling-based methods to resemble the original data and covariance structure: stochastic inverse-probability oversampling and parametric inverse-probability bagging. We compare all techniques for the random forest and other classifiers, both theoretically and on simulated and real data. Empirical results show that the random forest profits from only the parametric inverse-probability bagging proposed by us. For other classifiers, correction is mostly advantageous, and methods perform uniformly. We discuss consequences of inappropriate distribution assumptions and reason for different behaviors between the random forest and other classifiers. In conclusion, we provide guidance for choosing correction methods when training classifiers on biased samples. For random forests, our method outperforms state-of-the-art procedures if distribution assumptions are roughly fulfilled. We provide our implementation in the R package sambia. PMID:29312464
NASA Astrophysics Data System (ADS)
Kubota, T.; Aditian, A.
2014-12-01
Deriving the analysis of rainfall data in various mountainous locations, increase in rainfall that is deemed to be induced by the global climate change is obvious in Kyushu district, western Japan. On this point of view, its long term impact on the forest slope stability is analyzed with field investigation and numerical simulation such as finite element method (FEM). On the other hand, the influence of earthquake such as cracks on the slope due to seismic vibration was also analyzed with FEM. In this case, the slope stability analysis to obtain the factor of safety "Fs" is conducted. Here, in case of the Fs > 1.0, the slope is stable. In addition, the slope stabilizing effect of the forest mainly due to the roots strength is evaluated on some unstable slopes. Simultaneously, a holistic estimation over landslide groups is conducted by comparing "Fs" on forest slopes with non- forest slopes. Therefore, the following conclusions are obtained: 1) Comparing the Fs without increased rainfall from the previous decade and the one with actual rainfall, the former case is 1.04 ~1.06 times more stable than the latter. 2) On the other hand, the forest slopes are estimated to be up to approximately 1.5 to 2.5 times more stable than the slope without forest. Therefore, the slope stabilizing effect by the forest is much higher than the increasing rainfall influence i.e. the climate change effect. These results imply that an appropriate forest existence is important under the climate change condition to prevent forest slope degradation. 3) Comparing with the destabilization of the slope by seismic activities (vibration) due to the reduction of soil strength and "cracks = slope deformation" (8~9 % to 30% reduction in Fs even after an earthquake of 490gal), the influence of the long term rainfall increase on slopes (such as 1% decrease in Fs) is relatively small in the study area.
NASA Astrophysics Data System (ADS)
Almas, Andrew D.; Conway, Tenley M.
2017-01-01
In the past decade, municipalities across North America have increased investment in their urban forests in an effort to maintain and enhance the numerous benefits provided by them. Some municipalities have now drafted long-term urban forest management plans that emphasize the planting of native trees, to improve ecological integrity, and participation of residents, since the majority of urban trees are typically located on residential property. Yet it is unclear if residents are familiar with native trees or municipalities' urban forest management goals. Through a case study of southern Ontario municipalities, we administered a survey exploring residents' ability to correctly label common tree species as native or non-native, as well as their knowledge of urban forest management plans to test four hypotheses: 1) residents in municipalities with an urban forest management plans will be more knowledgeable about the native status of common street trees; 2) residents who have lived in the area longer will have greater knowledge; 3) knowledge level will be correlated with education level, ethnicity, and income; and 4) residents' knowledge will be related to having planted trees on their property. Our results indicate that residents are better able to identify common native trees than correctly determine which trees are non-native, although knowledge levels are generally low. Knowledge was significantly related to length of residency and tree planting experience, supporting hypotheses 2 and 4. These results highlight the importance of experience and local knowledge acquisition in relation to basic knowledge about urban trees, and also point to the failures of resident outreach within the case study municipalities.
Almas, Andrew D; Conway, Tenley M
2017-01-01
In the past decade, municipalities across North America have increased investment in their urban forests in an effort to maintain and enhance the numerous benefits provided by them. Some municipalities have now drafted long-term urban forest management plans that emphasize the planting of native trees, to improve ecological integrity, and participation of residents, since the majority of urban trees are typically located on residential property. Yet it is unclear if residents are familiar with native trees or municipalities' urban forest management goals. Through a case study of southern Ontario municipalities, we administered a survey exploring residents' ability to correctly label common tree species as native or non-native, as well as their knowledge of urban forest management plans to test four hypotheses: 1) residents in municipalities with an urban forest management plans will be more knowledgeable about the native status of common street trees; 2) residents who have lived in the area longer will have greater knowledge; 3) knowledge level will be correlated with education level, ethnicity, and income; and 4) residents' knowledge will be related to having planted trees on their property. Our results indicate that residents are better able to identify common native trees than correctly determine which trees are non-native, although knowledge levels are generally low. Knowledge was significantly related to length of residency and tree planting experience, supporting hypotheses 2 and 4. These results highlight the importance of experience and local knowledge acquisition in relation to basic knowledge about urban trees, and also point to the failures of resident outreach within the case study municipalities.
NASA Astrophysics Data System (ADS)
Yoon, S.; Won, M.; Jang, K.; Lim, J.
2016-12-01
As there has been a recent increase in the case of forest fires in North Korea descending southward through the De-Militarized Zone (DMZ), ensuring proper response to such events has been a challenge. Therefore, in order to respond and manage these forest fires appropriately, an improvement in the forest fire predictability through integration of mountain weather information observed at the most optimal site is necessary. This study is a proactive case in which a spatial analysis and an on-site assessment method were developed for selecting an optimum site for a mountain weather observation in national forest. For spatial analysis, the class 1 and 2 forest fire danger areas for the past 10 years, accessibility maximum 100m, Automatic Weather Station (AWS) redundancy within 2.5km, and mountain terrains higher than 200m were analyzed. A final overlay analysis was performed to select the candidates for the field assessment. The sites selected through spatial analysis were quantitatively evaluated based on the optimal meteorological environment, forest and hiking trail accessibility, AWS redundancy, and supply of wireless communication and solar powered electricity. The sites with total score of 70 and higher were accepted as adequate. At the final selected sites, an AMOS was established, and integration of mountain and Korea Meteorological Administration (KMA) weather data improved the forest fire predictability in South Korea by 10%. Given these study results, we expect that establishing an automatic mountain meteorology observation station at the optimal sites in inaccessible area and integrating mountain weather data will improve the predictability of forest fires.
Management and climate change in coastal Oregon forests: The Panther Creek Watershed as a case study
The highly productive forests of the Oregon Coast Range Mountains have been intensively harvested for many decades, and recent interest has emerged in the potential for removing harvest residue as a source of renewable woody biomass energy. However, the long-term consequences of ...
Innovative Staffing To Meet Technological Changes: A Case Study at Wake Forest University.
ERIC Educational Resources Information Center
Ganzert, Robin Roy; Watkins, Dawn Adele
1997-01-01
Examines the changes surrounding information technology as it relates to staffing issues at Wake Forest University (Winston-Salem, North Carolina). Highlights include: revision of organizational structure; decentralization of human resources processes; a survey of personnel attitudes; and trends for the human resources department. (AEF)
Lestari, Sri; Kotani, Koji; Kakinaka, Makoto
2015-03-01
This paper examines voluntary participation in community forest management, and characterizes how more participation may be induced. We implemented a survey of 571 respondents and conducted a case study in Central Java, Indonesia. The study's novelty lies in categorizing the degrees of participation into three levels and in identifying how socio-economic factors affect people's participation at each level. The analysis finds that voluntary participation responds to key determinants, such as education and income, in a different direction, depending on each of the three levels. However, the publicly organized programs, such as information provision of benefit sharing, are effective, irrespective of the levels of participation. Overall, the results suggest a possibility of further success and corrective measures to enhance the participation in community forest management. Copyright © 2014 Elsevier Ltd. All rights reserved.
93 Years of stand density and land-use legacy research at the Coulter Ranch Study Site
Andrew J. Sanchez Meador; Margaret M. Moore
2008-01-01
In 1913, the Fort Valley Experimental Forest initiated an unprecedented case-study experiment to determine the effects of harvesting methods on tree regeneration and growth on a ponderosa pine-Gambel oak forest at Coulter Ranch in northern Arizona. The harvesting methods examined were seed-tree, group selection, and light selection. In addition, the effects of...
Managing Appalachian hardwood stands using four management practices: 60-year results
Thomas M. Schuler; Melissa Thomas-Van Gundy; John P. Brown; Jan Wiedenbeck
2017-01-01
A long-term forest management case study on the Fernow Experimental Forest in West Virginia referred to as the Cutting Practice Level study is evaluated after 60 years. Treatments include a commercial clearcut (one time application), a 39 cm diameter-limit (applied 4 times), uneven-aged management using two variations of single-tree selection (applied 7 and 8 times,...
Mendoza, G A; Prabhu, R
2000-12-01
This paper describes an application of multiple criteria analysis (MCA) in assessing criteria and indicators adapted for a particular forest management unit. The methods include: ranking, rating, and pairwise comparisons. These methods were used in a participatory decision-making environment where a team representing various stakeholders and professionals used their expert opinions and judgements in assessing different criteria and indicators (C&I) on the one hand, and how suitable and applicable they are to a forest management unit on the other. A forest concession located in Kalimantan, Indonesia, was used as the site for the case study. Results from the study show that the multicriteria methods are effective tools that can be used as structured decision aids to evaluate, prioritize, and select sets of C&I for a particular forest management unit. Ranking and rating approaches can be used as a screening tool to develop an initial list of C&I. Pairwise comparison, on the other hand, can be used as a finer filter to further reduce the list. In addition to using these three MCA methods, the study also examines two commonly used group decision-making techniques, the Delphi method and the nominal group technique. Feedback received from the participants indicates that the methods are transparent, easy to implement, and provide a convenient environment for participatory decision-making.
Zeng, Hongcheng; Lu, Tao; Jenkins, Hillary; ...
2016-03-17
Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg·C wasmore » lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a signif icant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Hongcheng; Lu, Tao; Jenkins, Hillary
Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg·C wasmore » lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a signif icant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets.« less
SAR backscatter from coniferous forest gaps
NASA Technical Reports Server (NTRS)
Day, John L.; Davis, Frank W.
1992-01-01
A study is in progress comparing Airborne Synthetic Aperture Radar (AIRSAR) backscatter from coniferous forest plots containing gaps to backscatter from adjacent gap-free plots. Issues discussed are how do gaps in the range of 400 to 1600 sq m (approximately 4-14 pixels at intermediate incidence angles) affect forest backscatter statistics and what incidence angles, wavelengths, and polarizations are most sensitive to forest gaps. In order to visualize the slant-range imaging of forest and gaps, a simple conceptual model is used. This strictly qualitative model has led us to hypothesize that forest radar returns at short wavelengths (eg., C-band) and large incidence angles (e.g., 50 deg) should be most affected by the presence of gaps, whereas returns at long wavelengths and small angles should be least affected. Preliminary analysis of 1989 AIRSAR data from forest near Mt. Shasta supports the hypothesis. Current forest backscatter models such as MIMICS and Santa Barbara Discontinuous Canopy Backscatter Model have in several cases correctly predicted backscatter from forest stands based on inputs of measured or estimated forest parameters. These models do not, however, predict within-stand SAR scene texture, or 'intrinsic scene variability' as Ulaby et al. has referred to it. For instance, the Santa Barbara model, which may be the most spatially coupled of the existing models, is not truly spatial. Tree locations within a simulated pixel are distributed according to a Poisson process, as they are in many natural forests, but tree size is unrelated to location, which is not the case in nature. Furthermore, since pixels of a simulated stand are generated independently in the Santa Barbara model, spatial processes larger than one pixel are not modeled. Using a different approach, Oliver modeled scene texture based on an hypothetical forest geometry. His simulated scenes do not agree well with SAR data, perhaps due to the simple geometric model used. Insofar as texture is the expression of biological forest processes, such as succession and disease, and physical ones, such as fire and wind-throw, it contains useful information about the forest, and has value in image interpretation and classification. Forest gaps are undoubtedly important contributors to scene variance. By studying the localized effects of gaps on forest backscatter, guided by our qualitative model, we hope to understand more clearly the manner in which spatial heterogeneities in forests produce variations in backscatter, which collectively give rise to scene texture.
Fashing, Peter J; Nguyen, Nga; Luteshi, Patrick; Opondo, Winstone; Cash, Julie F; Cords, Marina
2012-01-01
As natural forest cover declines, planted forests have come to occupy an increasing percentage of the earth's surface, yet we know little about their suitability as alternative habitat for wildlife. Although some primate species use planted forests, few studies have compared primate populations in natural and nearby planted forests. From March 2006 to July 2010, we conducted line transect surveys and assessed group sizes and compositions in natural and nearby 60-70 year old mixed indigenous planted forest to determine the densities of diurnal primate species (Colobus guereza, Cercopithecus mitis, C. ascanius) in these two forest types at Isecheno, Kakamega Forest, Kenya. Line transect data were analyzed using the Encounter Rate, Whitesides, and Distance sampling methods, which all provided broadly consistent results. We found that all three diurnal primate species occupy both natural and planted forest at Isecheno. However, group densities of the two Cercopithecus species were 42-46% lower in planted than in natural forest. Colobus guereza achieved comparable group densities in the two forest types, although the species is found in smaller groups, and thus at lower (35%) individual density, in planted than in natural forest. Following a logging episode in the planted forest mid-way through our study, Cercopithecus ascanius group densities fell by 60% while C. mitis and Colobus guereza group densities remained stable over the next two years. Overall, our results suggest that while primate species vary in their response to habitat disturbance, planted forest has the potential to contribute to the conservation of some African monkey species. Even for the relatively flexible taxa in our study, however, 60-70 year old mixed indigenous planted forest failed to support densities comparable to those in nearby natural forest. From the perspective of Kakamega's primates, planted forests may supplement natural forest, but are not an adequate replacement for it. © 2011 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Ryan, Robert E.; McKellip, Rodney
2008-01-01
The Healthy Forest Restoration Act of 2003 mandated that a national forest threat Early Warning System (EWS) be developed. The USFS (USDA Forest Service) is currently building this EWS. NASA is helping the USFS to integrate remotely sensed data into the EWS, including MODIS data for monitoring forest disturbance at broad regional scales. This RPC experiment assesses the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) and MODIS (Moderate Resolution Imaging Spectroradiometer) data for contribution to the EWS. In doing so, the RPC project employed multitemporal simulated VIIRS and MODIS data for detecting and monitoring forest defoliation from the non-native Eurasian gypsy moth (Lymantria despar). Gypsy moth is an invasive species threatening eastern U.S. hardwood forests. It is one of eight major forest insect threats listed in the Healthy Forest Restoration Act of 2003. This RPC experiment is relevant to several nationally important mapping applications, including carbon management, ecological forecasting, coastal management, and disaster management
NASA Astrophysics Data System (ADS)
Abdullahi, Sahra; Schardt, Mathias; Pretzsch, Hans
2017-05-01
Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data.
Urban forest ecosystem services: A case study in Corvallis,Oregon
Background/Questions/Methods One EPA research focus is quantifying ecosystem services, benefits that ecosystems provide to humans, in order to promote informed natural resource management decisions and to assess the effectiveness of existing environmental policies. A case study...
Pérez-Sánchez, Julio; Senent-Aparicio, Javier; Díaz-Palmero, José María; Cabezas-Cerezo, Juan de Dios
2017-07-15
Forest fires are an important distortion in forest ecosystems, linked to their development and whose effects proceed beyond the destruction of ecosystems and material properties, especially in semiarid regions. Prevention of forest fires has to lean on indices based on available parameters that quantify fire risk ignition and spreading. The present study was conducted to compare four fire weather indices in a semiarid region of 11,314km 2 located in southern Spain, characterised as being part of the most damaged area by fire in the Iberian Peninsula. The studied period comprises 3033 wildfires in the region during 15years (2000-2014), of which 80% are >100m 2 and 14% >1000m 2 , resulting around 40km 2 of burnt area in this period. The indices selected have been Angström Index, Forest Fire Drought Index, Forest Moisture Index and Fire Weather Index. Likewise, four selection methods have been applied to compare the results of the studied indices: Mahalanobis distance, percentile method, ranked percentile method and Relative Operating Characteristic curves (ROC). Angström index gives good results in the coastal areas with higher temperatures, low rainfall and wider range of variations while Fire Weather Index has better results in inland areas with higher rainfall, dense forest mass and fewer changes in meteorological conditions throughout the year. ROC space rejects all the indices except Fire Weather Index with good performance all over the region. ROC analysis ratios can be used to assess the success (or lack thereof) of fire indices; thus, it benefits operational wildfire predictions in semiarid regions similar to that of the case study. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of land use change on soil organic carbon: a pan-tropic study
NASA Astrophysics Data System (ADS)
van Straaten, O.; Veldkamp, E.; Wolf, K.; Corre, M. D.
2012-04-01
Tropical forest deforestation is recognized as one of the major contributors to anthropogenic greenhouse gas emissions. In contrast to aboveground carbon stocks, comparatively little is known on deforestation's effect on the magnitude and the factors affecting soil organic carbon (SOC). In this regional scale study, we focused on tropical sites with deeply weathered, low-activity clays soils in three countries: Indonesia, Cameroon and Peru. Using a clustered sampling design we compared soil carbon stocks in the top 3 m of soil in undisturbed forests (the reference) with converted land uses that had been deforested. The most predominant land use trajectories relevant for each region were investigated. These included (a) conversions from forest to cash-crop plantations (rubber, oil palm, cacoa), (b) conversions from forest to cattle grazing pastures and (c) conversion from forest to shifting cultivation. Preliminary results from the Indonesian case study, found that the conversion of forests to oil palm plantation caused a loss of 20.1 ± 4.4 Mg C ha-1 within 20 years from the top 3 m of soil, while deforestation followed by the establishment of rubber plantations caused a release of 7.2 ± 4.2 Mg C ha-1 for the same time period and depth. SOC losses were most pronounced in the top 30 cm, and less so below. Additionally, regional scale constraints such as soil physical and chemical characteristics (texture, CEC, pH) and climate (precipitation, temperature) effect on SOC emissions have been identified using multivariate statistical methods. The results from the Cameroon and Peru case studies are expected imminently.
Municipal Sludge Application in Forests of Northern Michigan: a Case Study.
D.G. Brockway; P.V. Nguyen
1986-01-01
A large-scale operational demonstration and research project was cooperatively established by the US. Environmental Protection Agency, Michigan Department of Natural Resources, and Michigan State University to evaluate the practice of forest land application as an option for sludge utilization. Project objectives included completing (1) a logistic and economic...
A survey of innovative contracting for quality jobs and ecosystem management.
Cassandra Moseley
2002-01-01
This survey identifies and defines innovative contracting mechanisms developed in the Forest Service Pacific Northwest Region and northern California. A survey of nine case studies reveals that several new mechanisms have facilitated ecosystem management, quality jobs, and administrative efficiencies, but at times innovation was hampered by Forest Service institutional...
Exotic forest insects and residential property values
Thomas P. Holmes; Elizabeth A. Murphy; Kathleen P. Bell
2006-01-01
This paper presents a case study of the economic damages to homeowners in a northern New Jersey community due to an exotic forest insect-the hemlock woolly adelgid. Hedonic property value methods are used to estimate the effect of hemlock health on property values. A statistically significant relationship between hemlock health and residential property values is...
The Mammoth-June Ecosystem Management Project, Inyo National Forest
Connie Millar
1996-01-01
The Sierra Nevada Ecosystem Project (SNEP) case-study assessmentof the Mammoth-June Ecosystem Management Project(MJEMP) was undertaken to review and analyze the efficacy of alocal landscape analysis in achieving ecosystem-management objectivesin the Sierra Nevada. Of primary interest to SNEP was applicationof the new U.S. Forest Service (USFS) regional process...
Non-Timber Forest Products' Marketing in Nigeria. A Case Study of Osun State
ERIC Educational Resources Information Center
Aiyeloja, Adedapo Ayo; Ajewole, Opeyemi Isaac
2006-01-01
Research on markets and marketing of some non-timber forest products (NTFPs) was carried out in selected locations of Osun State. The NTFPs considered are chewing sticks such as "Massularia acuminata" and bush meat like "Thryonomys swinderianus", representing both the flora and fauna aspects of NTFPs, respectively. Five Local…
Effects of Nitrogen Enrichment, Wildfire, and Harvesting on Forest-Soil Carbon and Nitrogen
Jennifer L. Parker; Ivan J. Fernandez; Lindsey E. Rustad; Stephen A. Norton
2001-01-01
Northern forest soils represent large reservoirs of C and N that may be altered by ecosystem perturbations. Soils at three paired watershed in Maine were investigated as case studies of experimentally elevated N deposition, wildfire, and whole-tree harvesting. Eight years of experimental (NH4)2SO4...
ERIC Educational Resources Information Center
Gustafsson, Jan
2018-01-01
The present article examines the general debate on curriculum differentiation and individualisation. Based on a policy ethnographic case study of class 9a at Forest School, it critically analyses how curriculum differentiation and individualisation are enacted in and interfere with classroom practice. The results show how Forest School's…
Climate limits across space and time on European forest structure
NASA Astrophysics Data System (ADS)
Moreno, A. L. S.; Neumann, M.; Hasenauer, H.
2017-12-01
The impact climate has on forests has been extensively studied. However, the large scale effect climate has on forest structures, such as average diameters, heights and basal area are understudied in a spatially explicit manner. The limits, tipping points and thresholds that climate places on forest structures dictate the services a forest may provide, the vulnerability of a forest to mortality and the potential value of the timber there within. The majority of current research either investigates climate impacts on forest pools and fluxes, on a tree physiological scale or on case studies that are used to extrapolate results and potential impacts. A spatially explicit study on how climate affects forest structure over a large region would give valuable information to stakeholders who are more concerned with ecosystem services that cannot be described by pools and fluxes but require spatially explicit information - such as biodiversity, habitat suitability, and market values. In this study, we quantified the limits that climate (maximum, minimum temperature and precipitation) places on 3 forest structures, diameter at breast height, height, and basal area throughout Europe. Our results show clear climatic zones of high and low upper limits for each forest structure variable studied. We also spatially analyzed how climate restricts the potential bio-physical upper limits and creates tipping points of each forest structure variable and which climate factors are most limiting. Further, we demonstrated how the climate change has affected 8 individual forests across Europe and then the continent as a whole. We find that diameter, height and basal area are limited by climate in different ways and that areas may have high upper limits in one structure and low upper limits in another limitted by different climate variables. We also found that even though individual forests may have increased their potential upper limit forest structure values, European forests as a whole have lost, on average, 5.0%, 1.7% and 6.5% in potential mean forest diameter, height and basal area, respectively.
Brian R. Sturtevant; Brian R. Miranda; Jian Yang; Hong S. He; Eric J. Gustafson; Robert M. Scheller
2009-01-01
Public forests are surrounded by land over which agency managers have no control, and whose owners expect the public forest to be a "good neighbor." Fire risk abatement on multi-owner landscapes containing flammable but fire-dependent ecosystems epitomizes the complexities of managing public lands. We report a case study that applies a landscape disturbance...
93 years of stand density and land-use legacy research at the Coulter Ranch Study Site (P-53)
Andrew J. Sanchez Meador; Margaret M. Moore
2008-01-01
In 1913, the Fort Valley Experimental Forest initiated an unprecedented case-study experiment to determine the effects of harvesting methods on tree regeneration and growth on a ponderosa pine-Gambel oak forest at Coulter Ranch in northern Arizona. The harvesting methods examined were seed-tree, group selection, and light selection. In addition, the effects of...
Max A. Moritz; Dennis C. Odion
2006-01-01
Fire is often integral to forest ecology and can affect forest disease dynamics. Sudden oak death has spread across a large, fire-prone portion of California, killing large numbers of oaks and tanoaks and infecting most associated woody plants. Building on our earlier study of fire-disease dynamics, we examined spatial patterns of confirmed infections in relation to...
J. E. Lundquist; R. A. Sommerfeld
2002-01-01
Various disturbances such as disease and management practices cause canopy gaps that change patterns of forest stand structure. This study examined the usefulness of digital image analysis using aerial photos, Fourier Tranforms, and cluster analysis to investigate how different spatial statistics are affected by spatial scale. The specific aims were to: 1) evaluate how...
A. Dhar; C.D. Baker; H.B. Massicotte; Brian J. Palik; C.D.B. Hawkins
2016-01-01
Many studies have examined short-term changes in understory vegetation following prescribed burning. However, knowledge concerning longer term effects on both forest understory and overstory vegetation is lacking. This investigation was initiated to examine changes in understory (herbaceous and shrub) and overstory species composition almost four decades after logging...
NASA Astrophysics Data System (ADS)
Langner, Andreas; Miettinen, Jukka; Stibig, Hans-Jurgen
2016-08-01
We use a Normalized Burned Ratio (NBR) differential approach for detecting forest canopy disturbance caused by selective logging in evergreen tropical moist forests of central Cambodia. The general disturbance pattern obtained from Landsat 8 (30 m) imagery is largely compatible to Sentinel-2 (10 m), showing good conformity to high resolution RapidEye reference data. However, the 10 m spatial resolution of Sentinel-2 provides notably higher spatial detail and purer pixel values, increasing the potential for detecting fine and subtle forest canopy changes as indicators for potential forest degradation. We can expect further improvement for detecting short-lived disturbance signals in tropical forest canopies due to an increased revisit frequency (5 days) after the Sentinel-2B launch.
Parish, Esther S.; Dale, Virginia H.; Tobin, Emma; ...
2017-05-27
The data presented in this article are related to the research article entitled “How is wood-based pellet production affecting forest conditions in the southeastern United States?” (Dale et al., 2017). This article describes how United States Forest Service (USFS) Forest Inventory and Analysis (FIA) data from multiple state inventories were aggregated and used to extract ten annual timberland variables for trend analysis in two case study bioenergy fuelshed areas. This dataset is made publically available to enable critical or extended analyses of changes in forest conditions, either for the fuelshed areas supplying the ports of Savannah, Georgia and Chesapeake, Virginia,more » or for other southeastern US forested areas contributing biomass to the export wood pellet industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parish, Esther S.; Dale, Virginia H.; Tobin, Emma
The data presented in this article are related to the research article entitled “How is wood-based pellet production affecting forest conditions in the southeastern United States?” (Dale et al., 2017). This article describes how United States Forest Service (USFS) Forest Inventory and Analysis (FIA) data from multiple state inventories were aggregated and used to extract ten annual timberland variables for trend analysis in two case study bioenergy fuelshed areas. This dataset is made publically available to enable critical or extended analyses of changes in forest conditions, either for the fuelshed areas supplying the ports of Savannah, Georgia and Chesapeake, Virginia,more » or for other southeastern US forested areas contributing biomass to the export wood pellet industry.« less
NASA Astrophysics Data System (ADS)
Rist, Lucy; Shackleton, Charlie; Gadamus, Lily; Chapin, F. Stuart; Gowda, C. Made; Setty, Siddappa; Kannan, Ramesh; Shaanker, R. Uma
2016-04-01
Multiple actors are typically involved in forest management, namely communities, managers and researchers. In such cases, suboptimal management outcomes may, in addition to other factors, be symptomatic of a divergence in perspectives among these actors driven by fundamental differences in ecological knowledge. We examine the degree of congruence between the understandings of actors surrounding key issues of management concern in three case studies from tropical, subtropical and boreal forests. We identify commonly encountered points of divergence in ecological knowledge relating to key management processes and issues. We use these to formulate seven hypotheses about differences in the bodies of knowledge that frequently underlie communication and learning failures in forest management contexts where multiple actors are involved and outcomes are judged to be suboptimal. Finally, we present a set of propositions to acknowledge and narrow these differences. A more complete recognition of the full triangulation between all actors involved, and of the influence that fundamental differences in ecological knowledge can exert, may help lead to a more fruitful integration between local knowledge and practice, manager knowledge and practice, and contemporary science in forest management.
Sagonda, Ruvimbo; Kaundikiza, Munyaradzi
2016-01-01
Forest benefit analysis is vital in ensuring sustainable community-based natural resources management. Forest depletion and degradation are key issues in rural Zimbabwe and strategies to enhance sustainable forest management are continually sought. This study was carried out to assess the impact of forests on communities from Nyanga, Guruve and Zvimba districts of Zimbabwe. It is based on a Big Lottery Fund project implemented by Progressio-UK and Environment Africa. It focuses on identifying replicable community forest and land management strategies and the level of benefits accruing to the community. Analysis of change was based on the Income and Food Security and Forest benefits, which also constitutes the tools used during the research. The study confirms the high rate of deforestation and the increased realisation by communities to initiate practical measures aimed at protecting and sustaining forest and land resources from which they derive economic and social benefits. The results highlight the value of community structures (Farmer Field Schools and Environmental Action Groups) as conduits for natural resource management. The interconnectivity among forests, agricultural systems and the integral role of people are recognised as key to climate change adaptation.
Paneque-Gálvez, Jaime; Pérez-Llorente, Irene; Luz, Ana Catarina; Guèze, Maximilien; Mas, Jean-François; Macía, Manuel J; Orta-Martínez, Martí; Reyes-García, Victoria
2018-03-12
It has been suggested that traditional ecological knowledge (TEK) may play a key role in forest conservation. However, empirical studies assessing to what extent TEK is associated with forest conservation compared with other variables are rare. Furthermore, to our knowledge, the spatial overlap of TEK and forest conservation has not been evaluated at fine scales. In this paper, we address both issues through a case study with Tsimane' Amerindians in the Bolivian Amazon. We sampled 624 households across 59 villages to estimate TEK and used remote sensing data to assess forest conservation. We ran statistical and spatial analyses to evaluate whether TEK was associated and spatially overlapped with forest conservation at the village level. We find that Tsimane' TEK is significantly and positively associated with forest conservation although acculturation variables bear stronger and negative associations with forest conservation. We also find a very significant spatial overlap between levels of Tsimane' TEK and forest conservation. We discuss the potential reasons underpinning our results, which provide insights that may be useful for informing policies in the realms of development, conservation, and climate. We posit that the protection of indigenous cultural systems is vital and urgent to create more effective policies in such realms.
Coniferous canopy BRF simulation based on 3-D realistic scene.
Wang, Xin-Yun; Guo, Zhi-Feng; Qin, Wen-Han; Sun, Guo-Qing
2011-09-01
It is difficulties for the computer simulation method to study radiation regime at large-scale. Simplified coniferous model was investigated in the present study. It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerful in remote sensing of heterogeneous coniferous forests over a large-scale region. L-systems is applied to render 3-D coniferous forest scenarios, and RGM model was used to calculate BRF (bidirectional reflectance factor) in visible and near-infrared regions. Results in this study show that in most cases both agreed well. Meanwhile at a tree and forest level, the results are also good.
Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene
NASA Technical Reports Server (NTRS)
Wang, Xin-yun; Guo, Zhi-feng; Qin, Wen-han; Sun, Guo-qing
2011-01-01
It is difficulties for the computer simulation method to study radiation regime at large-scale. Simplified coniferous model was investigate d in the present study. It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerf ul in remote sensing of heterogeneous coniferous forests over a large -scale region. L-systems is applied to render 3-D coniferous forest scenarios: and RGM model was used to calculate BRF (bidirectional refle ctance factor) in visible and near-infrared regions. Results in this study show that in most cases both agreed well. Meanwhiie at a tree and forest level. the results are also good.
NASA Astrophysics Data System (ADS)
Fu, Y.; Li, R.; Huang, J.; Bergeron, Y.; Fu, Y.
2017-12-01
Emissions of aerosols and trace gases from wildfires and the direct shortwave radiative forcing were studied using multi-satellite/sensor observations from Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS), Aqua Atmospheric Infrared Sounder (AIRS), Aura Ozone Monitoring Instrument (OMI), and Aqua Cloud's and the Earth's Radiant Energy System (CERES). The selected cases occurred in Northeast of China (NEC), Siberia of Russia, California of America have dominant fuel types of cropland, mixed forest and needleleaf forest, respectively. The Fire radiative power (FRP) based emission coefficients (Ce) of aerosol, NOx (NO2+NO), formaldehyde (HCHO), and carbon monoxide (CO) showed significant differences from case to case. 1) the FRP of the cropland case in NEC is strongest, however, the Ce of aerosol is the lowest (20.51 ± 2.55 g MJ-1). The highest Ce of aerosol is 71.34 ± 13.24 g MJ-1 in the needleleaf fire case in California. 2) For NOx, the highest Ce existed in the cropland case in NEC (2.76 ± 0.25 g MJ-1), which is more than three times of those in the forest fires in Siberia and California. 3) The Ce of CO is 70.21±10.97 and 88.38±46.16 g MJ-1 in the forest fires in Western Siberia and California, which are about four times of that in cropland fire. 4) The variation of Ce of HCHO are relatively small among cases. Strong spatial correlations are found among aerosol optical depth (AOD), NOx, HCHO, and CO. The ratios of NOx to AOD, HCHO, and CO in the cropland case in NEC show much higher values than those in other cases. Although huge differences of emissions and composition ratios exist among cases, the direct shortwave (SW) radiative forcing efficiency (SWARFE) of smoke at the top of the atmosphere (TOA) are in good agreement, with the shortwave radiative forcing efficiencies values of 20.09 to 22.93 per unit AOD. Results in this study reveal noteworthy variations of the FRP-based emissions coefficient and relative chemical composition in the smoke. Nitrogen content in the fuel and/or soil, the biomes type burned, the combustion states (flaming or smoldering) and/or the weather condition might be respond for those differences among cases. This study also prove remarkable and consistent cooling effect of shortwave radiation forcing at TOA from the wildfire emissions in all selected cases.
Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk
2014-01-01
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676
Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk
2014-01-01
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.
Richness and Abundance of Ichneumonidae in a Fragmented Tropical Rain Forest.
Ruiz-Guerra, B; Hanson, P; Guevara, R; Dirzo, R
2013-10-01
Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September-October) and rainy (March-April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes.
NASA Astrophysics Data System (ADS)
Castro-Nunez, Augusto; Mertz, Ole; Sosa, Chrystian C.
2017-05-01
Of the countries considering national-level policies for incentivizing reductions in forest-based greenhouse gas emissions (REDD+), some 25 are experiencing (or are emerging from) armed-conflicts. It has been hypothesized that the outcomes of the interactions between carbon-storage and peacebuilding efforts could result in either improved or worsened forest conservation and likewise increased or decreased conflict. Hence, for this study we explore potential interactions between forest carbon-storage and peacebuilding efforts, with Colombia as a case study. Spatial associations between biomass carbon and three conflict-related variables suggest that such interactions may exist. Nonetheless, while priority areas for carbon-focused conservation are presumably those at highest risks of deforestation, our research indicates that forests with lower risk of deforestation are typically those affected by armed-conflict. Our findings moreover highlight three possible roles played by Colombian forested municipalities in armed groups’ military strategies: venues for battle, hideouts, and sources of natural resources to finance war.
Robin M. Reich; John E. Lundquist; Vanessa A. Bravo
2013-01-01
Insects are ectotherms that cannot regulate their own temperature, and thus rely on and are at the disposal of the surrounding environment. In this study, long-term climatic data are used to stratify forested regions of Alaska into climatic zones based on temperature and precipitation. Temperature and precipitation are shown to be important ecological drivers in...
Con H Schallau; Paul E. Polzin
1983-01-01
U.S. Department of Agriculture regulations permit departures from current National Forest timber harvesting policies when "implementation of base harvest schedules.., would cause a substantial adverse impact upon a community .... " This paper describes the kinds of information needed for forest managers to adequately assess the relevance of the departure...
Eamon Engber; Jason Teraoka; Phil van Mantgem
2017-01-01
Almost half of Redwood National Park is comprised of second-growth forests characterized by high stand density, deficient redwood composition, and low understory biodiversity. Typical structure of young redwood stands impedes the recovery of old-growth conditions, such as dominance of redwood (Sequoia sempervirens (D. Don) Endl.), distinct...
The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtr...
Appreciating tropical coastal wetlands from a landscape perspective
Katherine C. Ewel
2010-01-01
Freshwater forested wetlands are often found just upslope from mangrove forests in both high- and low-rainfall areas in the tropics. A case study on the island of Kosrae, Federated States of Micronesia, demonstrates how important both wetland types are to each other hydrologically and to local economies as well. Together, these wetlands form a landscape that provides...
Uwharrie national forest case study
S.G McNulty
2008-01-01
The Uwharrie National Forest (originally called the Uwharrie Reservation) was first purchased by the federal government in 1931 during the Great Depression. In 1961, President John F. Kennedy proclaimed the federal lands in Montgomery, Randolph, and Davidson Counties (Fig. A1.6). The UNF is within a two-hour drive of North Carolinaâs largest population centers,...
Seong-Hoon Cho; Michael Bowker; Roland K. Roberts; Seunggyu Kim; Taeyoung Kim; Dayton M. Lambert
2015-01-01
This research quantifies changes in consumer welfare due to changes in visitor satisfaction with the availability of information about recreational sites. The authors tested the hypothesis that an improvement in visitor satisfaction with recreation information increases the number of visits to national forests, resulting in increased consumer welfare. They...
Interdisciplinary collaboration within project-level NEPA teams in the US Forest Service
James W. Freeman; Marc J. Stern; Michael Mortimer; Dale J. Blahna; Lee K. Cerveny
2011-01-01
Interdisciplinary teamwork has become a foundation of natural resources planning and management in the US. Yet, we know little about the degree of interdisciplinary collaboration of natural resource planning teams. We conducted 10 case studies of Forest Service NEPA (National Environmental Policy Act) teams working on projects related to the 2005 Travel Management Rule...
W. Mark Ford; Alexander Silvis; Jane L. Rodrigue; Andrew B. Kniowski; Joshua B. Johnson
2016-01-01
The listing of the northern long-eared bat (Myotis septentrionalis) as federally threatened under the Endangered Species Act following severe population declines from white-nose syndrome presents considerable challenges to natural resource managers. Because the northern long-eared bat is a forest habitat generalist, development of effective...
Using photographic image analysis to assess ground cover: a case study of forest road cutbanks
Kevin C. Bold; Frederica Wood; Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover
2010-01-01
Road prisms, including cutbanks, road surfaces, and fillslopes, can be important contributors of sediment to streams in forested watersheds. Following road construction, cutbanks and fillslopes are often seeded, mulched, and sometimes fertilized to limit erosion and sedimentation. Assessing the success of vegetation establishment on cutbanks and fillslopes is a common...
Using Size-Frequency Distributions to Analyze Fire Regimes in Florida
Thomas P. Holmes; Jeffrey P. Prestemon; John M. Pye; David T. Butry; D. Evan Mercer; Karen L. Abt
2004-01-01
Wildfire regimes in natural forest ecosystems have been characterized with powerÂlaw distributions. In this paper, we evaluated whether wildfire regimes in a human-dominated landscape were also consistent with powerÂlaw distributions. Our case study focused on wildfires in Florida, a state with rapid population growth and consequent rapid alteration of forest...
Impacts of wildfire recency and frequency on an Appalachian oak forest
Melissa A. Thomas-Van Gundy; Katharina U. Wood; James S. Rentch
2015-01-01
Cabwaylingo State Forest in southern West Virginia has experienced numerous anthropogenic wildfires over the past 36 years. In this case study, we assessed the relationship between fire frequency and recency and stand composition and structure, with emphasis on oak and its competitors. Frequent and recent fire was significantly correlated with reduced red maple...
Paxton, Eben H.; Burgett, Jeff; McDonald-Fadden, Eve; Bean, Ellen; Atkinson, Carter T.; Ball, Donna; Cole, Colleen; Crampton, Lisa H.; Kraus, Jim; LaPointe, Dennis A.; Mehrhoff, Loyal; Samuel, Michael D.; Brewer, Donna; Converse, Sarah J.; Morey, Steve
2011-01-01
This report is a product of a one-week workshop on using Structured Decision Making to identify and prioritize conservation actions to address the threat of climate change on Hawaii‟s native forest bird community. Specifically, t his report addresses the issue of global warming ‟s likely role in increasing disease prevalence in upper elevation forests of Hawaii, negatively impacting native bird populations susceptible to the disease but currently disease - free because of the cooler temperatures at high elevations.
Case study for the assessment of the biogeophysical effects of a potential afforestation in Europe
2013-01-01
Background A regional-scale sensitivity study has been carried out to investigate the climatic effects of forest cover change in Europe. Applying REMO (regional climate model of the Max Planck Institute for Meteorology), the projected temperature and precipitation tendencies have been analysed for summer, based on the results of the A2 IPCC-SRES emission scenario simulation. For the end of the 21st century it has been studied, whether the assumed forest cover increase could reduce the effects of the greenhouse gas concentration change. Results Based on the simulation results, biogeophysical effects of the hypothetic potential afforestation may lead to cooler and moister conditions during summer in most parts of the temperate zone. The largest relative effects of forest cover increase can be expected in northern Germany, Poland and Ukraine, which is 15–20% of the climate change signal for temperature and more than 50% for precipitation. In northern Germany and France, potential afforestation may enhance the effects of emission change, resulting in more severe heavy precipitation events. The probability of dry days and warm temperature extremes would decrease. Conclusions Large contiguous forest blocks can have distinctive biogeophysical effect on the climate on regional and local scale. In certain regions of the temperate zone, climate change signal due to greenhouse gas emission can be reduced by afforestation due to the dominant evaporative cooling effect during summer. Results of this case study with a hypothetical land cover change can contribute to the assessment of the role of forests in adapting to climate change. Thus they can build an important basis of the future forest policy. PMID:23369380
NASA Astrophysics Data System (ADS)
Kouame, B. N. P.
2015-12-01
Côte d'Ivoire located in West Africa, registers high level of biodiversity which occurs mainly in forest land. The country has suffered severe deforestation. However, deforestation and forest degradation release Greenhouse Gases into the atmosphere which contributes to Climate Change. In order to address the deforestation, many actions are taken, one of which is the implementation of protected areas within countries. These measures put restrictions on the access of local communities to forest services. However, local communities supplement their daily livelihood from forests, especially from timber and non-timber forest products. What are the effects of forests conservation in protected areas on surrounding population? This study focuses on the Bouaflé protected forest (foret classée de Bouaflé) in the western part of Côte d'Ivoire. The forest is 20350 ha and was made a protected forest in 1974. It is one of the most deforested protected areas in the country. Firstly, we described the perception of forest benefits by the population. Secondly, we estimated the benefits of forest conservation using a contingent valuation approach, particularly the Willingness to Pay (WTP) methodology. From our sample size of 156 households, it appears that most of the individuals are aware of the importance of the forest (94 % against 6%). According to the estimate of the benefits, it results on average, people are willing to pay 1658.491F CFA (2.53 Euros). The median WTP is 1000 FCFA. This study will be helpful by adding to the scientific literature and for inducing local people implication in conservation.
NASA Astrophysics Data System (ADS)
Akay, A. E.; Gencal, B.; Taş, İ.
2017-11-01
This short paper aims to detect spatiotemporal detection of land use/land cover change within Karacabey Flooded Forest region. Change detection analysis applied to Landsat 5 TM images representing July 2000 and a Landsat 8 OLI representing June 2017. Various image processing tools were implemented using ERDAS 9.2, ArcGIS 10.4.1, and ENVI programs to conduct spatiotemporal change detection over these two images such as band selection, corrections, subset, classification, recoding, accuracy assessment, and change detection analysis. Image classification revealed that there are five significant land use/land cover types, including forest, flooded forest, swamp, water, and other lands (i.e. agriculture, sand, roads, settlement, and open areas). The results indicated that there was increase in flooded forest, water, and other lands, while the cover of forest and swamp decreased.
Kessler, Michael; Lehnert, Marcus
2009-07-01
We address the question to which degree ridge habitats in tropical montane forests contribute to overall plant diversity by analysing patterns of pteridophyte (i.e. lycophytes and ferns) assemblages on ridges and slopes in three montane forest sites near Podocarpus National Park, Ecuador. The analyses, which involved 158 pteridophyte species (110 terrestrial, 96 epiphytic, 48 both) from 28 plots of 20 m x 20 m (or an equivalent of 400 m(2)), showed that more species were typical of one of the three study sites than of one of the two habitats (ridge/slope). As found in previous studies, alpha diversity on ridges was lower than on slopes, accounted for by the absence of numerous species that are found on slopes. Pteridophyte assemblages on ridges were more similar across study sites than those on slopes. Thus, unlike the structurally comparable (i.e. stunted, open) Amazonian forests, the studied montane ridge forests harbour fairly homogenous pteridophytes assemblages with very few specialised species. Our study implies that slope forests are of higher conservation priority for pteridophytes in the study region than ridge habitats. However, comparative studies are needed because other geographical regions and other groups of organisms may not share this pattern.
Yousefpour, Rasoul; Temperli, Christian; Bugmann, Harald; Elkin, Che; Hanewinkel, Marc; Meilby, Henrik; Jacobsen, Jette Bredahl; Thorsen, Bo Jellesmark
2013-06-15
We study climate uncertainty and how managers' beliefs about climate change develop and influence their decisions. We develop an approach for updating knowledge and beliefs based on the observation of forest and climate variables and illustrate its application for the adaptive management of an even-aged Norway spruce (Picea abies L. Karst) forest in the Black Forest, Germany. We simulated forest development under a range of climate change scenarios and forest management alternatives. Our analysis used Bayesian updating and Dempster's rule of combination to simulate how observations of climate and forest variables may influence a decision maker's beliefs about climate development and thereby management decisions. While forest managers may be inclined to rely on observed forest variables to infer climate change and impacts, we found that observation of climate state, e.g. temperature or precipitation is superior for updating beliefs and supporting decision-making. However, with little conflict among information sources, the strongest evidence would be offered by a combination of at least two informative variables, e.g., temperature and precipitation. The success of adaptive forest management depends on when managers switch to forward-looking management schemes. Thus, robust climate adaptation policies may depend crucially on a better understanding of what factors influence managers' belief in climate change. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reinhard, M.; Alexakis, E.; Rebetez, M.; Schlaepfer, R.
2003-04-01
In Southern Switzerland, we have observed increasing trends in extreme drought and precipitation events, probably linked to global climatic change. These modifications are more important than changes in annual precipitation sums. On the one hand, an increase in extreme drought implies a higher risk for forest fires, impeding the fulfilment of the various forest functions, on the other hand, extreme precipitation events, developing over a short time span, could simultaneously damage the forest ecosystems or destabilise the soil of burned areas, triggering debris flows. Climatic changes might additionally lead to modifications of the current species composition in the forests. Changes are currently observed at lower elevations (laurophiliation), but are still largely unknown at higher elevations. For the time being, forest fires cannot be regarded as natural phenomena in the South of Switzerland because they are mostly anthropogenically triggered. However, the changing climatic patterns, which set new conditions for the forests, may become a new ecological regulator for the forests as well as the forest fires. The social and environmental consequences are important for these issues. The implications for forest planning and management must be further studied and taken into account. Despite uncertainty about the response of forest ecosystems to climate change, planning and management can no longer rely on decadal to century climatic patterns. The increasing importance of changing environmental conditions within the framework of prevention will have to be reconsidered.
The Impact of Charcoal Production on Forest Degradation: a Case Study in Tete, Mozambique
NASA Technical Reports Server (NTRS)
Sedano, F.; Silva. J. A.; Machoco, R.; Meque, C. H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z. A.; Baule, S. H.; Tucker, C. J.
2016-01-01
Charcoal production for urban energy consumption is a main driver of forest degradation in sub-Saharan Africa. Urban growth projections for the continent suggest that the relevance of this process will increase in the coming decades. Forest degradation associated to charcoal production is difficult to monitor and commonly overlooked and underrepresented in forest cover change and carbon emission estimates. We use a multi-temporal dataset of very high-resolution remote sensing images to map kiln locations in a representative study area of tropical woodlands in central Mozambique. The resulting maps provided a characterization of the spatial extent and temporal dynamics of charcoal production. Using an indirect approach we combine kiln maps and field information on charcoal making to describe the magnitude and intensity of forest degradation linked to charcoal production, including aboveground biomass and carbon emissions. Our findings reveal that forest degradation associated to charcoal production in the study area is largely independent from deforestation driven by agricultural expansion and that its impact on forest cover change is in the same order of magnitude as deforestation. Our work illustrates the feasibility of using estimates of urban charcoal consumption to establish a link between urban energy demands and forest degradation. This kind of approach has potential to reduce uncertainties in forest cover change and carbon emission assessments in sub-Saharan Africa.
Multiple pathways of commodity crop expansion in tropical forest landscapes
NASA Astrophysics Data System (ADS)
Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina
2014-07-01
Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement, and livelihood outcomes; (v) intensive commodity crops may fail to spare land when inducing displacement. We conclude that understanding pathways of commodity crop expansion is essential to improve land use governance.
Shifting and Expanding Forest Values: The Case of the U.S. National Forests
David N. Bengston; Zhi Xu
1996-01-01
The idea that public forest values have changed significantly in recent decades has become widespread. According to this view, forest values-conceptions of what is good or desirable about forests-have changed in two important ways. First, it is often claimed that forest values have shifted, i.e., the relative importance of different values has changed. Social...
The conservation of diversity in forest trees
F. Thomas Ledig
1988-01-01
Deforestation, pollution, and climatic change threaten forest diversity all over the world. And because forests are the habitats for diverse organisms, the threat is extended to all the flora and fauna associated with forests, not only forest trees. In a worst case scenario, if the tropical forest in Latin America was reduced to the areas now set aside in parks and...
A case study of culturally appropriate conservation education
David N. Bengston; Michele Schermann
2016-01-01
Create culturally appropriate conservation education materials for Hmong Americans, including new refugees and elders with little proficiency in English, as well as the broader, multigenerational Hmong community. This case study discusses an organizational response from the USDA Forest Service, in partnership with others, to better serve the Hmong American community....
Ribeiro, Sónia Carvalho; Lovett, Andrew
2009-07-01
The integration of socio-economic and environmental objectives is a major challenge in developing strategies for sustainable landscapes. We investigated associations between socio-economic variables, landscape metrics and measures of forest condition in the context of Portugal. The main goals of the study were to 1) investigate relationships between forest conditions and measures of socio-economic development at national and regional scales, 2) test the hypothesis that a systematic variation in forest landscape metrics occurs according to the stage of socio-economic development and, 3) assess the extent to which landscape metrics can inform strategies to enhance forest sustainability. A ranking approach and statistical techniques such as Principal Component Analysis were used to achieve these objectives. Relationships between socio-economic characteristics, landscape metrics and measures of forest condition were only significant in the regional analysis of municipalities in Northern Portugal. Landscape metrics for different tree species displayed significant variations across socio-economic groups of municipalities and these differences were consistent with changes in characteristics suggested by the forest transition model. The use of metrics also helped inform place-specific strategies to improve forest management, though it was also apparent that further work was required to better incorporate differences in forest functions into sustainability planning.
NASA Astrophysics Data System (ADS)
Chen, Bao-Ming; Li, Song; Liao, Hui-Xuan; Peng, Shao-Lin
2017-05-01
Successful invaders must overcome biotic resistance, which is defined as the reduction in invasion success caused by the resident community. Soil microbes are an important source of community resistance to plant invasions, and understanding their role in this process requires urgent investigation. Therefore, three forest communities along successional stages and four exotic invasive plant species were selected to test the role of soil microbes of three forest communities in resisting the exotic invasive plant. Our results showed that soil microbes from a monsoon evergreen broadleaf forest (MEBF) (late-successional stage) had the greatest resistance to the invasive plants. Only the invasive species Ipomoea triloba was not sensitive to the three successional forest soils. Mycorrhizal fungi in early successional forest Pinus massonina forest (PMF) or mid-successional forest pine-broadleaf mixed forest (PBMF) soil promoted the growth of Mikania micrantha and Eupatorium catarium, but mycorrhizal fungi in MEBF soil had no significant effects on their growth. Pathogens plus other non-mycorrhizal microbes in MEBF soil inhibited the growth of M. micrantha and E. catarium significantly, and only inhibited root growth of E. catarium when compared with those with mycorrhizal fungi addition. The study suggest that soil mycorrhizal fungi of early-mid-successional forests benefit invasive species M. micrantha and E. catarium, while soil pathogens of late-successional forest may play an important role in resisting M. micrantha and E. catarium. The benefit and resistance of the soil microbes are dependent on invasive species and related to forest succession. The study gives a possible clue to control invasive plants by regulating soil microbes of forest community to resist plant invasion.
A tool for assessing ecological status of forest ecosystem
NASA Astrophysics Data System (ADS)
Rahman Kassim, Abd; Afizzul Misman, Muhammad; Azahari Faidi, Mohd; Omar, Hamdan
2016-06-01
Managers and policy makers are beginning to appreciate the value of ecological monitoring of artificially regenerated forest especially in urban areas. With the advent of more advance technology in precision forestry, high resolution remotely sensed data e.g. hyperspectral and LiDAR are becoming available for rapid and precise assessment of the forest condition. An assessment of ecological status of forest ecosystem was developed and tested using FRIM campus forest stand. The forest consisted of three major blocks; the old growth artificially regenerated native species forests, naturally regenerated forest and recent planted forest for commercial timber and other forest products. Our aim is to assess the ecological status and its proximity to the mature old growth artificially regenerated stand. We used airborne LiDAR, orthophoto and thirty field sampling quadrats of 20x20m for ground verification. The parameter assessments were grouped into four broad categories: a. forest community level-composition, structures, function; landscape structures-road network and forest edges. A metric of parameters and rating criteria was introduced as indicators of the forest ecological status. We applied multi-criteria assessment to categorize the ecological status of the forest stand. The paper demonstrates the application of the assessment approach using FRIM campus forest as its first case study. Its potential application to both artificially and naturally regenerated forest in the variety of Malaysian landscape is discussed
1991-07-31
harvesting and road building in two national forests. The case study sites were the Siuslaw National Forest near Corvallis, Oregon, and the Porcupine ...million would accrue to recreational and commercial anglers from the clearcutting alternative. For the Porcupine - Hyalite Wilderness Study Area in Montana...impact environmental factors (e.g., available habitat, hunting area, or size of elk herds ), and ultimately those quality factors of the recreation
Forest Loss in Protected Areas and Intact Forest Landscapes: A Global Analysis
Heino, Matias; Kummu, Matti; Makkonen, Marika; Mulligan, Mark; Verburg, Peter H.; Jalava, Mika; Räsänen, Timo A.
2015-01-01
In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest landscapes (IFLs) have not so far been systematically assessed. Moreover, the impact of protection on preserving the IFLs is not well understood. In this study we conducted a consistent assessment of the global forest loss in PAs and IFLs over the period 2000–2012. We used recently published global remote sensing based spatial forest cover change data, being a uniform and consistent dataset over space and time, together with global datasets on PAs’ and IFLs’ locations. Our analyses revealed that on a global scale 3% of the protected forest, 2.5% of the intact forest, and 1.5% of the protected intact forest were lost during the study period. These forest loss rates are relatively high compared to global total forest loss of 5% for the same time period. The variation in forest losses and in protection effect was large among geographical regions and countries. In some regions the loss in protected forests exceeded 5% (e.g. in Australia and Oceania, and North America) and the relative forest loss was higher inside protected areas than outside those areas (e.g. in Mongolia and parts of Africa, Central Asia, and Europe). At the same time, protection was found to prevent forest loss in several countries (e.g. in South America and Southeast Asia). Globally, high area-weighted forest loss rates of protected and intact forests were associated with high gross domestic product and in the case of protected forests also with high proportions of agricultural land. Our findings reinforce the need for improved understanding of the reasons for the high forest losses in PAs and IFLs and strategies to prevent further losses. PMID:26466348
A case study of an erosion control practice: the broad-based dip
Kevin Bold; Pamela Edwards; Karl Williard
2007-01-01
In 2006, 19 gravel haul roads with broad-based dips within the Monongahela National Forest were examined to determine if those dips adhered to Forest specifications for cut depth and dip outslope. Data on the azimuth, contributing road lengths, slopes of the contributing lengths, landscape position of the dip, and soil texture of the road bed materials also were...
Causes and consequences of unequal seedling production in forest trees: a case study in red oaks
Emily V. Moran; James S. Clark
2012-01-01
Inequality in reproductive success has important implications for ecological and evolutionary dynamics, but lifetime reproductive success is challenging to measure in long-lived species such as forest trees. While seed production is often used as a proxy for overall reproductive success, high mortality of seeds and the potential for trade-offs between seed number and...
Suppression of Bark Beetles and Protection of Pines in the Urban Environment: A Case Study
Jane Leslie Hayes; James R. Meeker; John L. Foltz; Brian L. Strom
1996-01-01
Southern pine beetles (SPB), and associated bark beetles, have long been recognized as major pests of southern forests. Tactics used for controlling infestations in conventional forest settings have not proven effective at achieving area-wide control, nor are they suitable for the control of infestations in high-value stands such as homesites or wildlife habitat areas...
Hart Welsh; Garth Hodgson
2013-01-01
Woodland (Plethodontid) salamanders occur in huge numbers in healthy forests in North America where the abundances of many species vary along successional gradients. Their high numbers and trophic role as predators on shredder and decomposer arthropods influence nutrient and carbon pathways at the leaf litter/soil interface. Their extreme niche conservatism and low...
Are federal sustained yield units equitable? A case study of the Grays Harbor unit.
Con H Schallau; Wilbur R. Maki
1986-01-01
The Grays Harbor Federal Sustained Yield Unit (U.S. Department of Agriculture, Forest Service) was established in 1949 to enhance the economic stability of the forest products industry and dependent communities in Grays Harbor County, Washington. Provisions of the unit's charter require that all logs harvested from the Quinault Ranger District of the Olympic...
Robert C. Venette
2013-01-01
Climate change may alter the distribution and activity of native and alien pathogens that infect trees and, in severe cases, cause tree death. In this study, potential future changes in climate suitability are investigated for three forest pathogens that occur in western North America: the native Arceuthobium tsugense subsp tsugense...
Stemflow estimation in a redwood forest using model-based stratified random sampling
Jack Lewis
2003-01-01
Model-based stratified sampling is illustrated by a case study of stemflow volume in a redwood forest. The approach is actually a model-assisted sampling design in which auxiliary information (tree diameter) is utilized in the design of stratum boundaries to optimize the efficiency of a regression or ratio estimator. The auxiliary information is utilized in both the...
Alan Westhaver; Richard D. Revel; Brad C. Hawkes
2007-01-01
Reducing the risk of losses from wildfires that threaten homes and communities is a growing priority in Canada. To reduce risk, “FireSmart®” standards have been adopted nationwide for managing forest fuel. However, these standards largely disregard interests of wildlife and conservation of wildlife habitat – thus raising concerns...
Allie E. McCreary; Erin Seekamp; Lee. Cerveny
2012-01-01
This paper presents data from the second phase of a multiphase study being conducted to explore the structure and function of U.S. Forest Service (FS) recreation partnerships. In Phase I, institutional commitment and urban proximity emerged as key indicators of agency capacity to effectively develop and maintain recreation partnerships. In Phase II, multiple case...
R. Mendez-Treneman; S. Hummel; G. Porterie; C. D. Oliver
2001-01-01
Changing public values have led to federal land management direction like the Northwest Forest Plan with major land allocations for late successional forest habitat. Restoration silviculture is a tool for maintaining optimum habitat despite risk of catastrophic disturbance due to the combined impact of fire, insects and disease. The Gotchen Late Successional Reserve (...
Agency capacity for recreation science and management: the case of the U.S. Forest Service.
Lee K. Cerveny; Clare M. Ryan
2008-01-01
This report examines the capacity of natural resource agencies to generate scientific knowledge and information for use by resource managers in planning and decisionmaking. This exploratory study focused on recreation in the U.S. Department of Agriculture, Forest Service. A semistructured, open-ended interview guide elicited insights from 58 managers and 28 researchers...
S.J. Seybold; M. Downing
2009-01-01
Recently reported, and likely to threaten the health of standing trees in the urban and peri-urban forests of the West, are at least five new subcortical insect/pathogen complexes [Agrilus coxalis Waterhouse (Buprestidae) and four species of Scolytidae: Orthotomicus (Ips) erosus (Wollaston), Hylurgus lignipderda...
Marti Aitken; Jane L. Hayes
2006-01-01
Roads are important ecological features of forest landscapes, but their cause-and effect relationships with other ecosystem components are only recently becoming included in integrated landscape analyses. Simulation models can help us to understand how forested landscapes respond over time to disturbance and socioeconomic factors, and potentially to address the...
Jessica E. Halofsky; David L. Peterson; Kerry L. Metlen; Gwyneth M. Myer; Alaric V. Sample
2016-01-01
Climate change will likely have significant effects on forest ecosystems worldwide. In Mediterranean regions, such as that in southwestern Oregon, USA, changes will likely be driven mainly by wildfire and drought. To minimize the negative effects of climate change, resource managers require tools and information to assess climate change vulnerabilities and to develop...
Linking the conservation of culture and nature: A case study of sacred forests in Zimbabwe
Bruce A Byers; Robert N. Cunliffe; Andrew T. Hudak
2001-01-01
This paper examines the role of traditional religious beliefs and traditional leaders in conserving remnant patches of a unique type of dry forest in the Zambezi Valley of northern Zimbabwe. We examined aerial photographs spanning more than three decades, interviewed and surveyed local residents, and met with communities to learn about the environmental history of the...
Quang V. Cao; Shanna M. McCarty
2006-01-01
Diameter distributions in a forest stand have been successfully characterized by use of the Weibull function. Of special interest are cases where parameters of a Weibull distribution that models a future stand are predicted, either directly or indirectly, from current stand density and dominant height. This study evaluated four methods of predicting the Weibull...
Bjorn Okland; Robert A. Haack; Gunnar. Wilhelmsen
2012-01-01
Increasing inter-continental trade of wood chips for biofuel represents a significant risk of introducing invasive pest species that can cause biome-scale impacts on forest ecosystems. Some potentially invasive species have the capacity to cause high tree mortality on the Eurasian continent and could cause significant impacts on biodiversity and ecosystem functions....
Spatial allocation of market and nonmarket values in wildland fire management: A case study
John W. Benoit; Armando González-Cabán; Francis M. Fujioka; Shyh-Chin Chen; José J. Sanchez
2013-01-01
We developed a methodology to evaluate the efficacy of fuel treatments by estimating their costs and potential costs/losses with and without treatments in the San Jacinto Ranger District of the San Bernardino National Forest, California. This district is a typical southern California forest complex containing a large amount of high-valued real estate. We chose four...
Roger D. Ottmar; Susan J. Prichard
2012-01-01
Fuel treatment effectiveness in Southern forests has been demonstrated using fire behavior modeling and observations of reduced wildfire area and tree damage. However, assessments of treatment effectiveness may be improved with a more rigorous accounting of the fuel characteristics. We present two case studies to introduce a relatively new approach to characterizing...
Wenli Huang; Anu Swatantran; Kristofer Johnson; Laura Duncanson; Hao Tang; Jarlath O' Neil Dunne; George Hurtt; Ralph Dubayah
2015-01-01
Continental-scale aboveground biomass maps are increasingly available, but their estimates vary widely, particularly at high resolution. A comprehensive understanding of map discrepancies is required to improve their effectiveness in carbon accounting and local decision-making. To this end, we compare four continental-scale maps with a recent high-resolution lidar-...
Modeling forest ecosystem changes resulting from surface coal mining in West Virginia
John Brown; Andrew J. Lister; Mary Ann Fajvan; Bonnie Ruefenacht; Christine Mazzarella
2012-01-01
The objective of this project is to assess the effects of surface coal mining on forest ecosystem disturbance and restoration in the Coal River Subbasin in southern West Virginia. Our approach is to develop disturbance impact models for this subbasin that will serve as a case study for testing the feasibility of integrating currently available GIS data layers, remote...
Private forest landowner attitudes toward off-highway vehicle access: A Minnesota case study
Dennis R. Becker; Grant L. Wilson; Stephanie A. Snyder
2010-01-01
Off-highway vehicle (OHV) riding has increased dramatically in the past decade, creating challenges for finding suitable places to ride, particularly where access to public lands is limited. This research examines the attitudes and willingness of private forest and seasonal recreation landowners to provide OHV access. A series of focus groups was conducted to inform a...
NASA Astrophysics Data System (ADS)
Huhta, Esa; Sulkava, Pekka
2014-05-01
Nature-based tourism and recreation within and close to protected areas may have negative environmental impacts on biodiversity due to urban development, landscape fragmentation, and increased disturbance. We conducted a 3-year study of disturbances of birds induced by nature-based tourism over a recreational gradient in the Pallas-Yllästunturi National Park and its surroundings in northern Finland. Bird assemblages were studied in highly disturbed areas close to the park (a ski resort, villages, and accommodation areas) and in campfire sites, along hiking routes (recreational areas) and in a forest (control area) within the park. Compared with the forest, the disturbed urbanized areas had higher abundances of human-associated species, corvid species, cavity and building nesters, and edge species. The abundances of managed forest species were higher in campfire sites than in the forest. Hiking trails and campfire sites did not have a negative impact on open-nesting bird species. The most likely reason for this outcome is that most campfire sites were situated at forest edges; this species group prefers managed forests and forest edge as a breeding habitat. The abundances of virgin forest species did not differ among the areas studied. The results of the study suggest that the current recreation pressure has not caused substantial changes in the forest bird communities within the National Park. We suggest that the abundances of urban exploiter species could be used as indicators to monitor the level and changes of urbanization and recreational pressure at tourist destinations.
Huhta, Esa; Sulkava, Pekka
2014-05-01
Nature-based tourism and recreation within and close to protected areas may have negative environmental impacts on biodiversity due to urban development, landscape fragmentation, and increased disturbance. We conducted a 3-year study of disturbances of birds induced by nature-based tourism over a recreational gradient in the Pallas-Yllästunturi National Park and its surroundings in northern Finland. Bird assemblages were studied in highly disturbed areas close to the park (a ski resort, villages, and accommodation areas) and in campfire sites, along hiking routes (recreational areas) and in a forest (control area) within the park. Compared with the forest, the disturbed urbanized areas had higher abundances of human-associated species, corvid species, cavity and building nesters, and edge species. The abundances of managed forest species were higher in campfire sites than in the forest. Hiking trails and campfire sites did not have a negative impact on open-nesting bird species. The most likely reason for this outcome is that most campfire sites were situated at forest edges; this species group prefers managed forests and forest edge as a breeding habitat. The abundances of virgin forest species did not differ among the areas studied. The results of the study suggest that the current recreation pressure has not caused substantial changes in the forest bird communities within the National Park. We suggest that the abundances of urban exploiter species could be used as indicators to monitor the level and changes of urbanization and recreational pressure at tourist destinations.
Adapting to climate change at Olympic National Forest and Olympic National Park
Halofsky, Jessica E.; Peterson, David L.; O'Halloran, Kathy A.; Hoffman, Catherine H.
2011-01-01
Climate change presents a major challenge to natural resource managers both because of the magnitude of potential effects of climate change on ecosystem structure, processes, and function, and because of the uncertainty associated with those potential ecological effects. Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to counteract the negative effects of climate change. We began a climate change adaptation case study at Olympic National Forest (ONF) in partnership with Olympic National Park (ONP) to determine how to adapt management of federal lands on the Olympic Peninsula, Washington, to climate change. The case study began in the summer of 2008 and continued for 1½ years. The case study process involved science-based sensitivity assessments, review of management activities and constraints, and adaptation workshops in each of four focus areas (hydrology and roads, fish, vegetation, and wildlife). The process produced adaptation options for ONF and ONP, and illustrated the utility of place-based vulnerability assessment and science-management workshops in adapting to climate change. The case study process provides an example for other national forests, national parks, and natural resource agencies of how federal land management units can collaborate in the initial stages of climate change adaptation. Many of the ideas generated through this process can potentially be applied in other locations and in other agencies
Developing New Coastal Forest Restoration Products Based on Landsat, ASTER, and MODIS Data
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Graham, William; Smoot, James
2009-01-01
This paper discusses an ongoing effort to develop new geospatial information products for aiding coastal forest restoration and conservation efforts in coastal Louisiana and Mississippi. This project employs Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data in conjunction with airborne elevation data to compute coastal forest cover type maps and change detection products. Improved forest mapping products are needed to aid coastal forest restoration and management efforts of State and Federal agencies in the Northern Gulf of Mexico (NGOM) region. In particular, such products may aid coastal forest land acquisition and conservation easement procurements. This region's forests are often disturbed and subjected to multiple biotic and abiotic threats, including subsidence, salt water intrusion, hurricanes, sea-level rise, insect-induced defoliation and mortality, altered hydrology, wildfire, and conversion to non-forest land use. In some cases, such forest disturbance has led to forest loss or loss of regeneration capacity. In response, a case study was conducted to assess and demonstrate the potential of satellite remote sensing products for improving forest type maps and for assessing forest change over the last 25 years. Change detection products are needed for assessing risks for specific priority coastal forest types, such as live oak and baldcypress-dominated forest. Preliminary results indicate Landsat time series data are capable of generating the needed forest type and change detection products. Useful classifications were obtained using 2 strategies: 1) general forest classification based on use of 3 seasons of Landsat data from the same year; and 2) classification of specific forest types of concern using a single date of Landsat data in which a given targeted type is spectrally distinct compared to adjacent forested cover. When available, ASTER data was useful as a complement to Landsat data. Elevation data helped to define areas in which targeted forest types occur, such as live oak forests on natural levees. MODIS Normalized Difference Vegetation Index time series data aided visual assessments of coastal forest damage and recovery from hurricanes. Landsat change detection products enabled change to be identified at the stand level and at 10- year intervals with the earliest date preceding available change detection products from the National Oceanic and Atmospheric Administration and from the U.S. Geological Survey. Additional work is being done in collaboration with State and Federal agency partners in a follow-on NASA ROSES project to refine and validate these new, promising products. The products from the ROSES project will be available for aiding NGOM coastal forest restoration and conservation.
Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil.
Eugenio, Fernando Coelho; dos Santos, Alexandre Rosa; Fiedler, Nilton Cesar; Ribeiro, Guido Assunção; da Silva, Aderbal Gomes; dos Santos, Áureo Banhos; Paneto, Greiciane Gaburro; Schettino, Vitor Roberto
2016-05-15
A forest fire risk map is a basic element for planning and protecting forested areas. The main goal of this study was to develop a statistical model for preparing a forest fire risk map using GIS. Such model is based on assigning weights to nine variables divided into two classes: physical factors of the site (terrain slope, land-use/occupation, proximity to roads, terrain orientation, and altitude) and climatic factors (precipitation, temperature, water deficit, and evapotranspiration). In regions where the climate is different from the conditions of this study, the model will require an adjustment of the variables weights according to the local climate. The study area, Espírito Santo State, exhibited approximately 3.81% low risk, 21.18% moderate risk, 30.10% high risk, 41.50% very high risk, and 3.40% extreme risk of forest fire. The areas classified as high risk, very high and extreme, contemplated a total of 78.92% of heat spots. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, Q.; Wang, C.; Zhu, J.; Fu, H.; Wang, C.
2015-06-01
In recent years, a lot of studies have shown that polarimetric synthetic aperture radar interferometry (PolInSAR) is a powerful technique for forest height mapping and monitoring. However, few researches address the problem of terrain slope effect, which will be one of the major limitations for forest height inversion in mountain forest area. In this paper, we present a novel forest height retrieval algorithm by integration of dual-baseline PolInSAR data and external DEM data. For the first time, we successfully expand the S-RVoG (Sloped-Random Volume over Ground) model for forest parameters inversion into the case of dual-baseline PolInSAR configuration. In this case, the proposed method not only corrects terrain slope variation effect efficiently, but also involves more observations to improve the accuracy of parameters inversion. In order to demonstrate the performance of the inversion algorithm, a set of quad-pol images acquired at the P-band in interferometric repeat-pass mode by the German Aerospace Center (DLR) with the Experimental SAR (E-SAR) system, in the frame of the BioSAR2008 campaign, has been used for the retrieval of forest height over Krycklan boreal forest in northern Sweden. At the same time, a high accuracy external DEM in the experimental area has been collected for computing terrain slope information, which subsequently is used as an inputting parameter in the S-RVoG model. Finally, in-situ ground truth heights in stand-level have been collected to validate the inversion result. The preliminary results show that the proposed inversion algorithm promises to provide much more accurate estimation of forest height than traditional dualbaseline inversion algorithms.
Soils in seasonally flooded forests as methane sources: A case study of West Siberian South taiga
NASA Astrophysics Data System (ADS)
Mochenov, S. Yu; Churkina, A. I.; Sabrekov, S. F.; Glagolev, M. V.; Il’yasov, D. V.; Terentieva, I. E.; Maksyutov, S. S.
2018-03-01
In this study, we measured the methane and carbon dioxide fluxes by static chamber method from the soil of periodically flooded forests under different water table levels (WTL) in West Siberian south taiga (Tomsk oblast, Russia) in summer seasons of 2016 and 2017 years. The study shows that seasonally flooded forests may become a methane source when the WTL increases up to 15-45 cm below the surface. The fluxes of methane from soil were from -0.08±0.07 to 9.3±0.8 mg·m-2·h-1, from 0.05±0. 04 to 0.14±0.13 mg·m-2·h-1, from - 0.03±0.02 to 5.4±0.2 mg·m-2·h-1 depending on variou s WTL in different seasonally flooded forests in 2017.
NASA Astrophysics Data System (ADS)
Coudour, Bruno; Chetehouna, Khaled; Conan, Boris; Aubrun, Sandrine; Kaiss, Ahmed; Garo, Jean-Pierre
2016-09-01
Accumulation of gas inside a valley exposed to crosswind is experimented in this paper to extrapolate it to a case of a forest fire approaching a thalweg. Experimentations were done inside a wind tunnel using a 1/400 forest model configured as a valley with two different internal angles. The forest was modelled by mesh cylinders so that a parallel is possible with a real forest thanks to similitude laws. Gas emission was ensured by 400 tubes introduced inside the cylinders and supplied with ethane which acted as a tracer. The 400 tubes were divided into four independent parts of 100 tubes, inside and outside the valley, to be able to study independently the influence of the different zones of the forest model on the gas accumulation. We focused on the measurements of velocity by Laser-Doppler Velocimetry (LDV) and concentration with a Flame Ionization Detector (FID) to visualise the flow and quantify the accumulation of ethane. Analysing velocity, turbulence and concentration, a stagnation point was observed in the thalweg for the flattest valley and a recirculation zone for the deepest one where gas accumulation reached up to four times the concentration measured outside the valley due to airflow. The study of the influence of the different emission zones showed that gas accumulation mainly comes from the zones inside the valley. All these data permitted us to validate a numerical modelling which will enable us to study more cases, varying above all gas density but also choosing more valley angles and configurations. Another interest of the numerical model is the possibility of adding a thermal model.
NASA Technical Reports Server (NTRS)
Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.
1976-01-01
The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.
Mapping the distribution of tick-borne encephalitis in mainland China.
Sun, Ruo-Xi; Lai, Sheng-Jie; Yang, Yang; Li, Xin-Lou; Liu, Kun; Yao, Hong-Wu; Zhou, Hang; Li, Yu; Wang, Li-Ping; Mu, Di; Yin, Wen-Wu; Fang, Li-Qun; Yu, Hong-Jie; Cao, Wu-Chun
2017-06-01
Tick-borne encephalitis (TBE) has become an increasing public health threat in recent years, ranging from Europe, through far-eastern Russia to Japan and northern China. However, the neglect of its expansion and scarce analyses of the dynamics have made the overall disease burden and the risk distribution of the disease being unclear in mainland China. In this study, we described epidemiological characteristics of 2117 reported human TBE cases from 2006 to 2013 in mainland China. About 99% of the cases were reported in forest areas of northeastern China, and 93% of reported infections occurred during May-July. Cases were primarily male (67%), mostly in 30-59 years among all age-gender groups. Farmers (31.6%), domestic workers (20.1%) and forest workers (17.9%) accounted for the majority of the patients, and the proportions of patients from farmers and domestic workers were increasing in recent years. The epidemiological features of TBE differed slightly across the affected regions. The distribution and features of the disease in three main endemic areas of mainland China were also summarized. Using the Boosted Regression Trees (BRT) model, we found that the presence of TBE was significantly associated with a composite meteorological index, altitude, the coverage of broad-leaved forest, the coverage of mixed broadleaf-conifer forest, and the distribution of Ixodes persulcatus (I. persulcatus) ticks. The model-predicted probability of presence of human TBE cases in mainland China was mapped at the county level. The spatial distribution of human TBE in China was largely driven by the distributions of forests and I. persulcatus ticks, altitude, and climate. Enhanced surveillance and intervention for human TBE in the high-risk regions, particularly on the forest areas in north-eastern China, is necessary to prevent human infections. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
NASA Astrophysics Data System (ADS)
Crosthwaite Eyre, Charles
2010-12-01
Payments for Ecosystem Services (PES) is an exciting and expanding opportunity for sustainably managed forests. PES are derived from a range of ecosystem benefits from forests including climate change mitigation through afforestation and avoided deforestation, green power generation, wetland and watershed rehabilitation, water quality improvement, marine flood defence and the reduction in desertification and soil erosion. Forests are also the ancestral home to many vulnerable communities which need protection. Sustainable forest management plays a key role in many of these services which generates a potentially critical source of finance. However, for forests to realise revenues from these PES, they must meet demanding standards of project validation and service verification. They also need geospatial data to manage and monitor operational risk. In many cases the data is difficult to collect on the ground - in some cases impossible. This will create a new demand for data that must be impartial, timely, area wide, accurate and cost effective. This presentation will highlight the unique capacity of EO to provide these geospatial inputs required in the generation of PES from forestry and demonstrate products with practical examples.
A hierarchical approach to forest landscape pattern characterization.
Wang, Jialing; Yang, Xiaojun
2012-01-01
Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.
Roy, Anjan Kumer Dev; Alam, Khorshed; Gow, Jeff
2013-03-15
The Sundarbans Mangrove Forest (SMF) is the world's largest mangrove forest and it provides livelihoods to 3.5 million forest-dependent people in coastal Bangladesh. The first study aim was to analyse the efficacy of the state property regime in managing the forest through a close examination of the relationship between property rights and mangrove conservation practices. The second study aim was to explore forest-dependent communities' (FDCs) perceptions about their participation in management and conservation practices. The Schlager and Ostrom theoretical framework was adopted to examine the role of potential ownership variations in a common property resource regime. A survey of 412 FDC households was undertaken. Current management by the Bangladesh Forest Department (BFD) does not result in implementation of mandated mangrove conservation practices. It was found that allocation of property rights to FDCs would be expected to increase conservation practices. 92% of respondents expressed the view that the evidenced rapid degradation over the past 30 years was due primarily to corruption in the BFD. About half of FDCs (46%) surveyed are willing to participate in mangrove conservation through involvement in management as proprietors. Consistent with Schlager and Ostrom's theory, the results indicate the necessity for de facto and de jure ownership and management change from a state to common property regime to ensure FDCs' participation in conservation practices. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Impacts of Climate-Induced Drought on Biogeochemical Cycles
NASA Astrophysics Data System (ADS)
Peng, C.
2014-12-01
Terrestrial ecosystems and, in particular, forests exert strong controls on the global biogeochemical cycles and influence regional hydrology and climatology directly through water and surface energy budgets. Recent studies indicated that forest mortality caused by rising temperature and drought from around the world have unexpectedly increased in the past decade and they collectively illustrate the vulnerability of many forested ecosystems to rapid increases in tree mortality due to warmer temperatures and more severe drought. Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services (such as albedo and carbon sequestration). Quantifying potential impacts of tree mortality on ecosystem processes requires research into mortality effects on carbon, energy, and water budgets at both site and regional levels. Despite recent progress, the uncertainty around mortality responses still limits our ability to predict the likelihood and anticipate the impacts of tree die-off. Studies are needed that explore tree death physiology for a wide variety of functional types, connect patterns of mortality with climate events, and quantify the impacts on carbon, energy, and water flux. In this presentation, I will highlight recent research progress, and identify key research needs and future challenges to predict the consequence and impacts of drought-induced large-scale forest mortality on biogeochemical cycles. I will focus on three main forest ecosystems (tropic rainforest in Amazon, temperate forest in Western USA, and boreal forest in Canada) as detailed case studies.
Challenges of reforestation in a water limited world under climate change
NASA Astrophysics Data System (ADS)
Mátyás, Csaba; Sun, Ge
2014-05-01
The debate on the ecological benefits of planted forests at the sensitive lower edge of the closed forest belt (at the "xeric limits") is still unresolved. Forests sequester atmospheric carbon dioxide, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously predominantly occupied by grassland or agriculture can dramatically alter the energy and water balance at multiple scales. The forest/grassland transition zone is especially vulnerable to projected drastic temperature and precipitation shifts under future climate change and variability due to its high ecohydrological sensitivity. The study investigates some of the relevant aspects of the ecological and climatic role of plantation forests and potential impacts at the dryland edges of the temperate zone, using case studies from three countries/regions on three continents. We found that, contrary to popular expectations, the effect of forest cover on regional climate might be limited and the influence of reforestation on water resources might turn into negative. Planted forests generally reduce stream flow and lower groundwater table level because of higher water use than previous land cover types. Increased evaporation potential due to global warming and/or extreme drought events likely reduce areas that are appropriate for tree growth and forest establishment. Ecologically conscious forest policy on management, silviculture and reforestation planning requires the consideration of local hydrologic conditions, future climatic conditions, and also of non-forest alternatives of land use. Keywords: drylands, xeric limits, trailing limits, ecohydrology, climate forcing, land use change, forest policy
Higher stability in forest-atmosphere exchange observed in a structurally diverse forest.
NASA Astrophysics Data System (ADS)
Tamrakar, R.; Rayment, M.; Moyano, F.; Herbst, M.; Mund, M.; Knohl, A.
2016-12-01
We tested the hypothesis that structurally diverse forests have greater stability on exchange processes with the atmosphere compared to forests with less diverse structure. In a case study, we assessed how net ecosystem exchange (NEE) and normalized maximum assimilation (Amax) varied over time in two forests in Germany based on 11 years of continuous eddy flux measurements. The two sites differ in structure as well as in species composition: one (Hainich) is an unmanaged, uneven-aged and heterogeneous mixed beech forest (65% beech), the other (Leinefelde) is a managed, even-aged and homogeneous pure beech stand. The two selected forests are of similar mean ages (about 130 years old) and exposed to similar air temperatures and vapour pressure deficits. Even though Hainich (the unmanaged forest) received higher rainfall (720 ± 134 mm vs 599±166 mm), the soil water availability showed no significant difference between both sites. Based on detailed biomass inventory, trees in Hainich are well distributed in all diameter at breast height (dbh) classes (10 to 90cm dbh) whereas in Leinefelde (the managed forest) trees are mostly confined to dbh classes of 40 to 55 cm. Our results showed a strong difference in inter-annual variability of NEE, which was lower in the unmanaged than in the managed site (coefficient of variation (CV) of 0.13 and 0.27, respectively). The lowest NEE was observed in both sites in 2004, a mast year and a year after the strong summer drought of 2003. The variation in the inter-annual normalized maximum assimilation (Amax) was lower in Hainich (standard deviation of 2.5 compared to 3.9 µmol m-2 s-1). Also, the seasonal course of Amax differed between the two forests which could explain why the mixed forest was more affected by the late summer drought of 2003, despite showing a more conservative carbon budget than the pure stand in the long term. The interannual anomaly in Amax was correlated with fruit production, the latter being larger in Leinefelde (CV of 1.37 vs. 1.18). Our data provide evidence from a case study that exchange processes with the atmosphere are more stable in structurally diverse forests, yet a confirmation covering multiple sites is still pending.
NASA Astrophysics Data System (ADS)
Langner, Andreas; Samejima, Hiromitsu; Ong, Robert C.; Titin, Jupiri; Kitayama, Kanehiro
2012-08-01
Conservation of tropical forests is of outstanding importance for mitigation of climate change effects and preserving biodiversity. In Borneo most of the forests are classified as permanent forest estates and are selectively logged using conventional logging techniques causing high damage to the forest ecosystems. Incorporation of sustainable forest management into climate change mitigation measures such as Reducing Emissions from Deforestation and Forest Degradation (REDD+) can help to avert further forest degradation by synergizing sustainable timber production with the conservation of biodiversity. In order to evaluate the efficiency of such initiatives, monitoring methods for forest degradation and above-ground biomass in tropical forests are urgently needed. In this study we developed an index using Landsat satellite data to describe the crown cover condition of lowland mixed dipterocarp forests. We showed that this index combined with field data can be used to estimate above-ground biomass using a regression model in two permanent forest estates in Sabah, Malaysian Borneo. Tangkulap represented a conventionally logged forest estate while Deramakot has been managed in accordance with sustainable forestry principles. The results revealed that conventional logging techniques used in Tangkulap during 1991 and 2000 decreased the above-ground biomass by an annual amount of average -6.0 t C/ha (-5.2 to -7.0 t C/ha, 95% confidential interval) whereas the biomass in Deramakot increased by 6.1 t C/ha per year (5.3-7.2 t C/ha, 95% confidential interval) between 2000 and 2007 while under sustainable forest management. This indicates that sustainable forest management with reduced-impact logging helps to protect above-ground biomass. In absolute terms, a conservative amount of 10.5 t C/ha per year, as documented using the methodology developed in this study, can be attributed to the different management systems, which will be of interest when implementing REDD+ that rewards the enhancement of carbon stocks.
C.M. Hoover; K.A. Magrini; R.J. Evans
2002-01-01
This study was conducted to: (1) test the utility of a new and rapid analytical method, pyrolysis molecular beam mass spectrometry (py-MBMS), for the measurement and characterization of carbon in forest soils, and (2) examine the effects of natural disturbance on soil carbon dynamics. An additional objective was to test the ability of py-MBMS to distinguish recent from...
Jennifer L. R. Jensen; Karen S. Humes; Andrew T. Hudak; Lee A. Vierling; Eric Delmelle
2011-01-01
This study presents an alternative assessment of the MODIS LAI product for a 58,000 ha evergreen needleleaf forest located in the western Rocky Mountain range in northern Idaho by using lidar data to model (R2=0.86, RMSE=0.76) and map LAI at higher resolution across a large number of MODIS pixels in their entirety. Moderate resolution (30 m) lidar-based LAI estimates...
NASA Astrophysics Data System (ADS)
Akin, B. H.; Van Stan, J. T., II; Cote, J. F.; Jarvis, M. T.; Underwood, J.; Friesen, J.; Hildebrandt, A.; Maldonado, G.
2017-12-01
Trees' partitioning of rainfall is an important first process along the rainfall-to-runoff pathway that has economically significant influences on urban stormwater management. However, important knowledge gaps exist regarding (1) its role during extreme storms and (2) how this role changes as forest structure is altered by urbanization. Little research has been conducted on canopy rainfall partitioning during large, intense storms, likely because canopy water storage is rapidly overwhelmed (i.e., 1-3 mm) by short duration events exceeding, for example, 80 mm of rainfall. However, canopy structure controls more than just storage; it also affects the time for rain to drain to the surface (becoming throughfall) and the micrometeorological conditions that drive wet canopy evaporation. In fact, observations from an example extreme ( 100 mm with maximum 5-minute intensities exceeding 55 mm/h) storm across a urban-to-natural gradient in pine forests in southeast Georgia (USA), show that storm intensities were differentially dampened by 33% (tree row), 28% (forest fragment), and 17% (natural forests). In addition, maximum wet canopy evaporation rates were higher for the exposed tree row (0.18 mm/h) than for the partially-enclosed fragment canopy (0.14 mm/h) and the closed canopy natural forest site (0.11). This resulted in interception percentages decreasing from urban-to-natural stand structures (25% to 16%). A synoptic analysis of the extreme storm in this case study also shows that the mesoscale meteorological conditions that developed the heavy rainfall is expected to occur more often with projected climate changes.
River logjams cause frequent large-scale forest die-off events in southwestern Amazonia
NASA Astrophysics Data System (ADS)
Lombardo, Umberto
2017-07-01
This paper investigates the dynamics of logjam-induced floods and alluvial deposition in the Bolivian Amazon and the effects these have on forest disturbance and recovery cycles. It expands on previous work by Gullison et al. (1996) who reported a case of catastrophic floods triggered by logjams in the Chimane Forest in the Bolivian Amazon. No further studies have followed up on this observation and no research has been published on the effects of large wood in tropical lowland rivers. The study is based on the analysis of a time series of Landsat imagery (1984-2016) and field evidence. Results show that logjam-induced floods are a major driver of forest disturbance along the Andean piedmont in the Bolivian Amazon. New logjams form on an almost yearly basis, always further upriver, until an avulsion takes place. Logjam-induced floods are characterized here by the sudden deposition of a thick sand layer and the death of forest in a V-shaped area. The Bolivian Amazon offers a unique opportunity for further research on how large wood affects river behavior in lowland tropical settings and how large and frequent forest disturbance events resulting from river logjams affect forest biodiversity and community successions.
Schindler, Dirk; Grebhan, Karin; Albrecht, Axel; Schönborn, Jochen; Kohnle, Ulrich
2012-01-01
Data on storm damage attributed to the two high-impact winter storms 'Wiebke' (28 February 1990) and 'Lothar' (26 December 1999) were used for GIS-based estimation and mapping (in a 50 × 50 m resolution grid) of the winter storm damage probability (P(DAM)) for the forests of the German federal state of Baden-Wuerttemberg (Southwest Germany). The P(DAM)-calculation was based on weights of evidence (WofE) methodology. A combination of information on forest type, geology, soil type, soil moisture regime, and topographic exposure, as well as maximum gust wind speed field was used to compute P(DAM) across the entire study area. Given the condition that maximum gust wind speed during the two storm events exceeded 35 m s(-1), the highest P(DAM) values computed were primarily where coniferous forest grows in severely exposed areas on temporarily moist soils on bunter sandstone formations. Such areas are found mainly in the mountainous ranges of the northern Black Forest, the eastern Forest of Odes, in the Virngrund area, and in the southwestern Alpine Foothills.
Forest Ecosystem Dynamics Assessment and Predictive Modelling in Eastern Himalaya
NASA Astrophysics Data System (ADS)
Kushwaha, S. P. S.; Nandy, S.; Ahmad, M.; Agarwal, R.
2011-09-01
This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM). The exercise highlighted large-scale deforestation in the study area during 1975-1990 as well as 1990-2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975-1990 and 1990-2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97%) between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81%) during same period with further chances of depletion to 2,288.81 km2 (56.05%) by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.
Hernández, Laura; Jandl, Robert; Blujdea, Viorel N B; Lehtonen, Aleksi; Kriiska, Kaie; Alberdi, Iciar; Adermann, Veiko; Cañellas, Isabel; Marin, Gheorghe; Moreno-Fernández, Daniel; Ostonen, Ivika; Varik, Mats; Didion, Markus
2017-12-01
Accurate carbon-balance accounting in forest soils is necessary for the development of climate change policy. However, changes in soil organic carbon (SOC) occur slowly and these changes may not be captured through repeated soil inventories. Simulation models may be used as alternatives to SOC measurement. The Yasso07 model presents a suitable alternative because most of the data required for the application are readily available in countries with common forest surveys. In this study, we test the suitability of Yasso07 for simulating SOC stocks and stock changes in a variety of European forests affected by different climatic, land use and forest management conditions and we address country-specific cases with differing resources and data availability. The simulated SOC stocks differed only slightly from measured data, providing realistic, reasonable mean SOC estimations per region or forest type. The change in the soil carbon pool over time, which is the target parameter for SOC reporting, was generally found to be plausible although not in the case of Mediterranean forest soils. As expected under stable forest management conditions, both land cover and climate play major roles in determining the SOC stock in forest soils. Greater mean SOC stocks were observed in northern latitudes (or at higher altitude) than in southern latitudes (or plains) and conifer forests were found to store a notably higher amount of SOC than broadleaf forests. Furthermore, as regards change in SOC, an inter-annual sink effect was identified for most of the European forest types studied. Our findings corroborate the suitability of Yasso07 to assess the impact of forest management and land use change on the SOC balance of forests soils, as well as to accurately simulate SOC in dead organic matter (DOM) and mineral soil pools separately. The obstacles encountered when applying the Yasso07 model reflect a lack of available input data. Future research should focus on improving our knowledge of C inputs from compartments such as shrubs, herbs, coarse woody debris and fine roots. This should include turnover rates and quality of the litter in all forest compartments from a wider variety of tree species and sites. Despite the limitations identified, the SOC balance estimations provided by the Yasso07 model are sufficiently complete, accurate and transparent to make it suitable for reporting purposes such as those required under the UNFCCC (United Nations Framework Convention on Climate Change) and KP (Kyoto Protocol) for a wide range of forest conditions in Europe. Copyright © 2017 Elsevier B.V. All rights reserved.
Susan Charnley; Pamela J. Jakes; John Schelhas
2011-01-01
The American Recovery and Reinvestment Act of 2009 aimed to create jobs and jumpstart the economy while addressing the Nationâs social and environmental needs. The U.S. Department of Agriculture, Forest Service, received $1.15 billion in recovery funding to support projects in wildland fire management, capital improvement and maintenance, and biomass utilization. This...
J. X. Zhang; J. Q. Wu; K. Chang; W. J. Elliot; S. Dun
2009-01-01
The recent modification of the Water Erosion Prediction Project (WEPP) model has improved its applicability to hydrology and erosion modeling in forest watersheds. To generate reliable topographic and hydrologic inputs for the WEPP model, carefully selecting digital elevation models (DEMs) with appropriate resolution and accuracy is essential because topography is a...
Ellen Michaels Goheen
2013-01-01
In late August 2009, a 20.3 cm (8 in) diameter tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S.H. Oh) adjacent to a popular hiking trail on the Rogue River-Siskiyou National Forest was found infected with Phytophthora ramorum. The trail was immediately closed to the public. An eradication treatment...
A case study showing potential supplies of red pine sawtimber in the Lake States.
Thomas C. Marcin; Darrell M. Frogness
1975-01-01
Red pine sawtimber mills will increase significantly in the Lake States in the next 50 years as young stands established since the 1930's mature. The long-range effects of this increase for the Chippewa National Forest in northern Minnesota are analyzed using Timber RAM. Red pine sawtimber cut may increase eightfold in the next 50 years for the Forest.
Luke L. Powell; Jared D. Wolfe; Erik I. Johnson; James E. Hines; James D. Nichols; Philip C Stouffer
2015-01-01
Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate captureârecapture models with...
Consequences of data reduction in the FIA database: a case study with southern yellow pine
Anita K. Rose; James F. Rosson Jr.; Helen Beresford
2015-01-01
The Forest Inventory and Analysis Program strives to make its data publicly available in a format that is easy to use and understand most commonly accessed through online tools such as EVALIDator and Forest Inventory Data Online. This requires a certain amount of data reduction. Using a common data request concerning the resource of southern yellow pine (SYP), we...
Chris B. LeDoux; Ethel Wilkerson
2006-01-01
Forest landowners, managers, loggers, land-use planners, and other decision and policy-makers need to understand the opportunity costs and ecological benefits associated with different widths of streamside management zones (SMZs). In this paper, a simulation model was used to assess the opportunity costs of SMZ retention for four different logging systems, two mature...
New methods for estimating non-timber forest product output: an Appalachian case study
Steve Kruger; James Chamberlain
2015-01-01
Assessing the size and structure of non-timber forest product (NTFP) markets is difficult due to a lack of knowledge about NTFP supply chains. Harvesting ginseng and other wild medicinal plants has long provided a source of income and cultural identity in Appalachian communities in the eastern United States. With the exception of ginseng, the extent of the harvest of...
Caputo, Jesse; Beier, Colin D; Groffman, Peter M; Burns, Douglas A.; Beall, Frederick D; Hazlett, Paul W.; Yorks, Thad E
2016-01-01
Demand for woody biomass fuels is increasing amidst concerns about global energy security and climate change, but there may be negative implications of increased harvesting for forest ecosystem functions and their benefits to society (ecosystem services). Using new methods for assessing ecosystem services based on long-term experimental research, post-harvest changes in ten potential benefits were assessed for ten first-order northern hardwood forest watersheds at three long-term experimental research sites in northeastern North America. As expected, we observed near-term tradeoffs between biomass provision and greenhouse gas regulation, as well as tradeoffs between intensive harvest and the capacity of the forest to remediate nutrient pollution. In both cases, service provision began to recover along with the regeneration of forest vegetation; in the case of pollution remediation, the service recovered to pre-harvest levels within 10 years. By contrast to these two services, biomass harvesting had relatively nominal and transient impacts on other ecosystem services. Our results are sensitive to empirical definitions of societal demand, including methods for scaling societal demand to ecosystem units, which are often poorly resolved. Reducing uncertainty around these parameters can improve confidence in our results and increase their relevance for decision-making. Our synthesis of long-term experimental studies provides insights on the social-ecological resilience of managed forest ecosystems to multiple drivers of change.
77 FR 50675 - Virginia Resource Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... DEPARTMENT OF AGRICULTURE Forest Service Virginia Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Virginia Resource Advisory Committee will meet in... Contact. All reasonable accommodation requests are managed on a case by case basis. Resource Advisory...
Evolution of Canada’s Boreal Forest Spatial Patterns as Seen from Space
Pickell, Paul D.; Coops, Nicholas C.; Gergel, Sarah E.; Andison, David W.; Marshall, Peter L.
2016-01-01
Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies. PMID:27383055
Evolution of Canada's Boreal Forest Spatial Patterns as Seen from Space.
Pickell, Paul D; Coops, Nicholas C; Gergel, Sarah E; Andison, David W; Marshall, Peter L
2016-01-01
Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies.
NASA Technical Reports Server (NTRS)
Spruce, J.; Hargrove, W. W.; Gasser, G.; Smoot, J. C.; Kuper, P.
2009-01-01
This case study shows the promise of computing current season forest disturbance detection products at regional to CONUS scales. Use of the eMODIS expedited product enabled a NRT CONUS forest disturbance detection product, a requirement for an eventual, operational forest threat EWS. The 2009 classification product from this study can be used to quantify the areal extent of forest disturbance across CONUS, although a quantitative accuracy assessment still needs to be completed. However, the results would not include disturbances that occurred after July 27, such as the Station Fire. While not shown here, the project also produced maximum NDVI products for the June 10-July 27 period of each year of the 2000-2009 time frame. These products could be applied to compute forest change products on an annual basis. GIS could then be used to assess disturbance persistence. Such follow-on work could lead to attribution of year in which a disturbance occurred. These products (e.g., Figures 6 and 7) may also be useful for assessing forest change associated with climate change, such as carbon losses from bark beetle-induced forest mortality in the Western United States. Other MODIS phenological products are being assessed for aiding forest monitoring needs of the EWS, including cumulative NDVI products (Figure 10).
Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments
NASA Astrophysics Data System (ADS)
Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun
2017-01-01
Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio.
Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments
Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun
2017-01-01
Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13–0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio. PMID:28045111
Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments.
Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun
2017-01-03
Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO 2 (GWP bio ). In this study we calculated the GWP bio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWP bio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWP bio . Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO 2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWP bio and energy conversion efficiency. By considering the GWP bio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWP bio .
NASA Astrophysics Data System (ADS)
Melati, Dian N.; Nengah Surati Jaya, I.; Pérez-Cruzado, César; Zuhdi, Muhammad; Fehrmann, Lutz; Magdon, Paul; Kleinn, Christoph
2015-04-01
Land use/land cover (LULC) in forested tropical landscapes is very dynamically developing. In particular, the pace of forest conversion in the tropics is a global concern as it directly impacts the global carbon cycle and biodiversity conservation. Expansion of agriculture is known to be among the major drivers of forest loss especially in the tropics. This is also the case in Jambi Province, Sumatra, Indonesia where it is the mainly expansion of tree crops that triggers deforestation: oil palm and rubber trees. Another transformation system in Jambi is the one from natural forest into jungle rubber, which is an agroforestry system where a certain density of forest trees accompanies the rubber tree crop, also for production of wood and non-wood forest products. The spatial distribution and the dynamics of these transformation systems and of the remaining forests are essential information for example for further research on ecosystem services and on the drivers of land transformation. In order to study land transformation, maps from the years 1990, 2000, 2011, and 2013 were utilized, derived from visual interpretation of Landsat images. From these maps, we analyze the land use/land cover change (LULCC) in the study region. It is found that secondary dryland forest (on mineral soils) and secondary swamp forest have been transformed largely into (temporary) shrub land, plantation forests, mixed dryland agriculture, bare lands and estate crops where the latter include the oil palm and rubber plantations. In addition, we present some analyses of the spatial pattern of land transformation to better understand the process of LULC fragmentation within the studied periods. Furthermore, the driving forces are analyzed.
Laporta, Gabriel Zorello; Ramos, Daniel Garkauskas; Ribeiro, Milton Cezar; Sallum, Maria Anice Mureb
2011-08-01
Every year, autochthonous cases of Plasmodium vivax malaria occur in low-endemicity areas of Vale do Ribeira in the south-eastern part of the Atlantic Forest, state of São Paulo, where Anopheles cruzii and Anopheles bellator are considered the primary vectors. However, other species in the subgenus Nyssorhynchus of Anopheles (e.g., Anopheles marajoara) are abundant and may participate in the dynamics of malarial transmission in that region. The objectives of the present study were to assess the spatial distribution of An. cruzii, An. bellator and An. marajoara and to associate the presence of these species with malaria cases in the municipalities of the Vale do Ribeira. Potential habitat suitability modelling was applied to determine both the spatial distribution of An. cruzii, An. bellator and An. marajoara and to establish the density of each species. Poisson regression was utilized to associate malaria cases with estimated vector densities. As a result, An. cruzii was correlated with the forested slopes of the Serra do Mar, An. bellator with the coastal plain and An. marajoara with the deforested areas. Moreover, both An. marajoara and An. cruzii were positively associated with malaria cases. Considering that An. marajoara was demonstrated to be a primary vector of human Plasmodium in the rural areas of the state of Amapá, more attention should be given to the species in the deforested areas of the Atlantic Forest, where it might be a secondary vector.
Satellite derived forest phenology and its relation with nephropathia epidemica in Belgium.
Barrios, José Miguel; Verstraeten, Willem W; Maes, Piet; Clement, Jan; Aerts, Jean-Marie; Haredasht, Sara Amirpour; Wambacq, Julie; Lagrou, Katrien; Ducoffre, Geneviève; Van Ranst, Marc; Berckmans, Daniel; Coppin, Pol
2010-06-01
The connection between nephropathia epidemica (NE) and vegetation dynamics has been emphasized in recent studies. Changing climate has been suggested as a triggering factor of recently observed epidemiologic peaks in reported NE cases. We have investigated whether there is a connection between the NE occurrence pattern in Belgium and specific trends in remotely sensed phenology parameters of broad-leaved forests. The analysis of time series of the MODIS Enhanced Vegetation Index revealed that changes in forest phenology, considered in literature as an effect of climate change, may affect the mechanics of NE transmission.
Satellite Derived Forest Phenology and Its Relation with Nephropathia Epidemica in Belgium
Barrios, José Miguel; Verstraeten, Willem W.; Maes, Piet; Clement, Jan; Aerts, Jean-Marie; Haredasht, Sara Amirpour; Wambacq, Julie; Lagrou, Katrien; Ducoffre, Geneviève; Van Ranst, Marc; Berckmans, Daniel; Coppin, Pol
2010-01-01
The connection between nephropathia epidemica (NE) and vegetation dynamics has been emphasized in recent studies. Changing climate has been suggested as a triggering factor of recently observed epidemiologic peaks in reported NE cases. We have investigated whether there is a connection between the NE occurrence pattern in Belgium and specific trends in remotely sensed phenology parameters of broad-leaved forests. The analysis of time series of the MODIS Enhanced Vegetation Index revealed that changes in forest phenology, considered in literature as an effect of climate change, may affect the mechanics of NE transmission. PMID:20644685
Resilient landscapes in Mediterranean urban areas: Understanding factors influencing forest trends.
Tomao, Antonio; Quatrini, Valerio; Corona, Piermaria; Ferrara, Agostino; Lafortezza, Raffaele; Salvati, Luca
2017-07-01
Urban and peri-urban forests are recognized as basic elements for Nature-Based Solutions (NBS), as they preserve and may increase environmental quality in urbanized contexts. For this reason, the amount of forest land per inhabitant is a pivotal efficiency indicator to be considered in the sustainable governance, land management, planning and design of metropolitan areas. The present study illustrates a multivariate analysis of per-capita forest area (PFA) in mainland Attica, the urban region surrounding Athens, Greece. Attica is considered a typical case of Mediterranean urbanization where planning has not regulated urban expansion and successive waves of spontaneous growth have occurred over time. In such a context, an analysis of factors that can affect landscape changes in terms of PFA may inform effective strategies for the sustainable management of socio-ecological local systems in light of the NBS perspective. A total of 26 indicators were collected per decade at the municipal scale in the study area with the aim to identify the factors most closely associated to the amount of PFA. Indicators of urban morphology and functions have been considered together with environmental and topographical variables. In Attica, PFA showed a progressive decrease between 1960 and 2010. In particular, PFA progressively declined (1980, 1990) along fringe areas surrounding Athens and in peri-urban districts experiencing dispersed expansion of residential settlements. Distance from core cities and from the seacoast, typical urban functions (e.g., multiple use of buildings and per capita built-up area) and percentage of agricultural land-use in each municipality are the variables most associated with high PFA. In recent years, some municipalities have shown an expansion of forest cover, mainly due to land abandonment and forest recolonization. Findings from this case study have allowed us to identify priorities for NBS at metropolitan level aimed at promoting more sustainable urbanization. Distinctively, proposed NBS basically focus on (i) the effective protection of crop mosaics with relict woodlots; (ii) the improvement of functionality, quality and accessibility of new forests; and (iii) the establishment of new forests in rural municipalities. Copyright © 2017 Elsevier Inc. All rights reserved.
Distribution and dynamics of mangrove forests of South Asia.
Giri, Chandra; Long, Jordan; Abbas, Sawaid; Murali, R Mani; Qamer, Faisal M; Pengra, Bruce; Thau, David
2015-01-15
Mangrove forests in South Asia occur along the tidal sea edge of Bangladesh, India, Pakistan, and Sri Lanka. These forests provide important ecosystem goods and services to the region's dense coastal populations and support important functions of the biosphere. Mangroves are under threat from both natural and anthropogenic stressors; however the current status and dynamics of the region's mangroves are poorly understood. We mapped the current extent of mangrove forests in South Asia and identified mangrove forest cover change (gain and loss) from 2000 to 2012 using Landsat satellite data. We also conducted three case studies in Indus Delta (Pakistan), Goa (India), and Sundarbans (Bangladesh and India) to identify rates, patterns, and causes of change in greater spatial and thematic details compared to regional assessment of mangrove forests. Our findings revealed that the areal extent of mangrove forests in South Asia is approximately 1,187,476 ha representing ∼7% of the global total. Our results showed that from 2000 to 2012, 92,135 ha of mangroves were deforested and 80,461 ha were reforested with a net loss of 11,673 ha. In all three case studies, mangrove areas have remained the same or increased slightly, however, the turnover was greater than the net change. Both, natural and anthropogenic factors are responsible for the change and turnover. The major causes of forest cover change are similar throughout the region; however, specific factors may be dominant in specific areas. Major causes of deforestation in South Asia include (i) conversion to other land use (e.g. conversion to agriculture, shrimp farms, development, and human settlement), (ii) over-harvesting (e.g. grazing, browsing and lopping, and fishing), (iii) pollution, (iv) decline in freshwater availability, (v) floodings, (vi) reduction of silt deposition, (vii) coastal erosion, and (viii) disturbances from tropical cyclones and tsunamis. Our analysis in the region's diverse socio-economic and environmental conditions highlights complex patterns of mangrove distribution and change. Results from this study provide important insight to the conservation and management of the important and threatened South Asian mangrove ecosystem. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Sahrakhiz, Sarah
2017-01-01
This case study examines authentic speech acts by a German primary school teacher in the classroom context and the outdoor learning location of a forest. The study will compare the degree of linguistic immediacy or distance in these two contexts, respectively. Once a week, the class is doing "outdoor school" ["Draußenschule"]…
Mosaics of Change: Cross-Scale Forest Cover Dynamics and Drivers in Tibetan Yunnan, China
NASA Astrophysics Data System (ADS)
Van Den Hoek, Jamon
In reaction to devastating floods on the Yangtze River in the summer of 1998, the Chinese Central Government introduced a logging ban as part of the Natural Forest Protection Program (NFPP) with the goal of dramatically increasing national forest cover. Since then, over 11 billion USD has been allocated to the program, but the NFPP's success at promoting reforestation is unclear as neither the extent of forest cover change, nor the potential factors influencing the spatial variability of change have been examined. This research employs a case study in northwest Yunnan Province, southwest China, to evaluate the spatial variability of forest cover change under the NFPP and investigate drivers that have influenced recent patterns of change. I employ a mixed methods, cross-scale research framework that includes the analysis of areal trajectories and spatial variability of Landsat-5 imagery-derived forest cover change at three administrative levels before and after the NFPP's introduction; landscape ecology-based metrics to measure the shifting patterns of forest cover change at the patch level; and household interview data on village-level forest resource use patterns and processes in three neighboring villages. Prefecture- and county-level analyses suggest rather stable forest cover across the three-county study area since the introduction of the ban, though township-level measures of forest cover change show a degree of spatial variability as well as a temporal delay in policy implementation effectiveness. Village-level remote sensing analysis shows comparable amounts of forest cover change between study villages but disparate forest resource use patterns in terms of location and amount. Though all research villages continue to exploit local forests for firewood and timber relatively unfettered by policy restrictions, villagers with tourism-derived income are able to buy forest products collected in outside forests much more often; this redistributes local-scale deforestation to the benefit of local and detriment of distant forests. Tourism is often heralded as the solution to rural development challenges in China's southwest, but this research shows the unintended consequences that may result from inconsistent participation at the village-level, consequences which merely redirect, not reduce, forest use pressures, and that are contrary to the goals of state policy.
Future of forest gardens in the Uvan uplands of Sri Lanka
NASA Astrophysics Data System (ADS)
Nuberg, Ian K.; Evans, David G.; Senanayake, Ranil
1994-11-01
Forest gardens are traditional agroecosystems in the humid tropics that have evolved a forestlike structure and as such are commonly thought to be a good example of sustainable agriculture. While this may be true in the sense of soil protection and maintenance of biodiversity, they are not necessarily maintainable in the context of competing land use in the landscape. Such appears to be the case of forest gardens in the uplands of Uva Province of Sri Lanka. This paper reports an agroecological analysis of forest gardens and other forms of land use in Uva, and discusses how this understanding can be used to make use of the good properties of forest gardens. It shows that although they have very real environmental and social benefits, they are unable to satisfy the material needs of a rural population undergoing demographic and cultural changes. However, the alternative land-use systems, both private smallholder and state owned, have serious deficiencies with respect to long-term sustainability, and it is essential to develop appropriate alternatives. It should be possible to design a smallholder farming system that incorporates the high productivity of market gardens (i.e., the cultivation of seasonal crops such as vegetables) with, at least, the high stability and biophysical sustainability of the forest garden. Considerable work still needs to be done on the design of such a system as well as the agency for its development and promotion. The paper treats the forest gardens of Uva as a case study from which some general conclusions can be drawn with respect to the conscious development of forest garden systems elsewhere in the tropics.
Forest Tenure Systems and Sustainable Forest Management: The Case of Ghana
Charles E. Owubah; Dennis C. Le Master; J. Michael Bowker; John G. Lee
2001-01-01
Adoption and implementation of sustainable forestry practices are essential for sustaining forest resources, yet development of effective policies and strategies to achieve them are problematic. Part of the difficulty stems from a limited understanding of the interaction between obtrusive forest policies and indigenous tenure systems and how this affects sustainable...
Human Dimensions of Forest Disturbance by Insects: An International Synthesis
Courtney G. Flint; Bonnie McFarlene; Martin Muller
2008-01-01
Ecological disturbances of forests by insects have a complex array of associated human dimensions presenting complications for natural resource decision making and relationships between stakeholders and managers. This article discusses the human context of forest disturbances by insects by reviewing four cases of bark beetle forest disturbance from British Columbia in...
Lindsay K. Campbell; Erika S. Svendsen; Lara A. Roman
2016-01-01
Cities are increasingly engaging in sustainability efforts and investment in green infrastructure, including large-scale urban tree planting campaigns. In this context, researchers and practitioners are working jointly to develop applicable knowledge for planning and managing the urban forest. This paper presents three case studies of knowledge co-production in the...
Do little interactions get lost in dark random forests?
Wright, Marvin N; Ziegler, Andreas; König, Inke R
2016-03-31
Random forests have often been claimed to uncover interaction effects. However, if and how interaction effects can be differentiated from marginal effects remains unclear. In extensive simulation studies, we investigate whether random forest variable importance measures capture or detect gene-gene interactions. With capturing interactions, we define the ability to identify a variable that acts through an interaction with another one, while detection is the ability to identify an interaction effect as such. Of the single importance measures, the Gini importance captured interaction effects in most of the simulated scenarios, however, they were masked by marginal effects in other variables. With the permutation importance, the proportion of captured interactions was lower in all cases. Pairwise importance measures performed about equal, with a slight advantage for the joint variable importance method. However, the overall fraction of detected interactions was low. In almost all scenarios the detection fraction in a model with only marginal effects was larger than in a model with an interaction effect only. Random forests are generally capable of capturing gene-gene interactions, but current variable importance measures are unable to detect them as interactions. In most of the cases, interactions are masked by marginal effects and interactions cannot be differentiated from marginal effects. Consequently, caution is warranted when claiming that random forests uncover interactions.
Random forests as cumulative effects models: A case study of lakes and rivers in Muskoka, Canada.
Jones, F Chris; Plewes, Rachel; Murison, Lorna; MacDougall, Mark J; Sinclair, Sarah; Davies, Christie; Bailey, John L; Richardson, Murray; Gunn, John
2017-10-01
Cumulative effects assessment (CEA) - a type of environmental appraisal - lacks effective methods for modeling cumulative effects, evaluating indicators of ecosystem condition, and exploring the likely outcomes of development scenarios. Random forests are an extension of classification and regression trees, which model response variables by recursive partitioning. Random forests were used to model a series of candidate ecological indicators that described lakes and rivers from a case study watershed (The Muskoka River Watershed, Canada). Suitability of the candidate indicators for use in cumulative effects assessment and watershed monitoring was assessed according to how well they could be predicted from natural habitat features and how sensitive they were to human land-use. The best models explained 75% of the variation in a multivariate descriptor of lake benthic-macroinvertebrate community structure, and 76% of the variation in the conductivity of river water. Similar results were obtained by cross-validation. Several candidate indicators detected a simulated doubling of urban land-use in their catchments, and a few were able to detect a simulated doubling of agricultural land-use. The paper demonstrates that random forests can be used to describe the combined and singular effects of multiple stressors and natural environmental factors, and furthermore, that random forests can be used to evaluate the performance of monitoring indicators. The numerical methods presented are applicable to any ecosystem and indicator type, and therefore represent a step forward for CEA. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Managing for Climate Change Adaptation in Forests: a Case Study from the U.S. Southwest
NASA Astrophysics Data System (ADS)
Kerhoulas, L. P.; Kolb, T.; Koch, G. W.; Hurteau, M. D.
2016-12-01
Forest mortality related to climate change is an increasingly common global phenomenon. We provide a case study of the U.S. Southwest to investigate the interactions among forest restoration treatments that alter stand density, tree growth, and drought resistance in trees of different size classes. Using cores taken from five positions in large trees (coarse roots, breast height, base of live crown, mid-crown branch, and treetop) and breast height in small trees, we investigated how radial growth response to thinning and precipitation availability varied in 72 ponderosa pines Pinus ponderosa Dougl. in northern Arizona. Ten years after thinning, growth of small trees did not respond significantly to thinning whereas growth of large trees increased following moderate and heaving thinning, and this response was similar across within-tree core sample positions. The intensity of thinning treatment did not significantly affect dry-year growth in small trees. In large trees, dry-year growth after thinning was maintained at pre-thinning levels in moderate and heavy thinning treatments but decreased in the light thinning and control treatments. Our findings indicate that more aggressive thinning treatments used for forest restoration stimulate growth throughout large residual trees from coarse roots to branches and also improve drought resistance, providing a greater resilience to future climate-related stress. These responses to treatment are more pronounced in large trees than small trees. Forest thinning is therefore recommended in systems that are likely to experience increased temperature and decreased precipitation as a result of climate change.
David L. Peterson; Jeremy S. Littell
2012-01-01
Wildfire is one of the two most significant disturbance agents (the other being insects) in forest ecosystems of the Western United States, and in a warmer climate, will drive changes in forest composition, structure, and function (Dale et al. 2001, McKenzie et al. 2004). Although wildfire is highly stochastic in space and time, sufficient data exist to establish clear...
Forest nursery production in the United Kingdom: Case study Maelor Nurseries Ltd.
Jacqueline L. Fisher
2002-01-01
Forest policy in the United Kingdom does not list timber production as a main objective, despite the fact that the country is heavily reliant on imports of timber products. The level of new conifer planting has been much reduced over the last ten years; timber prices are very low due to the high rate of sterling; competition from imports is high; devolution plus the...
Wildfire effects on a ponderosa pine ecosystem: An Arizona case study
R. E. Campbell; Jr. Baker; P. F. Ffolliott; F. R. Larson; C. C. Avery
1977-01-01
A wildfire of variable severity swept through 717 acres (290 ha) of ponderosa pine forest in north-central Arizona in May 1972. Where the fire was intense it killed 90% of the small trees and 50% of the sawtimber, burned 2.6 in (6.5 cm) of forest floor to the mineral soil, and induced a water-repellent layer in the sandier soils. The reduced infiltration rates, which...
W. Keith Moser; Greg Liknes; Mark Hansen; Kevin Nimerfro
2005-01-01
The Forest Inventory and Analysis program at the North Central Research Station focuses on understanding the forested ecosystems in the North Central and Northern Great Plains States through analyzing the results of annual inventories. The program also researches techniques for data collection and analysis. The FIA process measures the above-ground vegetation and the...
Mapping Deforestation area in North Korea Using Phenology-based Multi-Index and Random Forest
NASA Astrophysics Data System (ADS)
Jin, Y.; Sung, S.; Lee, D. K.; Jeong, S.
2016-12-01
Forest ecosystem provides ecological benefits to both humans and wildlife. Growing global demand for food and fiber is accelerating the pressure on the forest ecosystem in whole world from agriculture and logging. In recently, North Korea lost almost 40 % of its forests to crop fields for food production and cut-down of forest for fuel woods between 1990 and 2015. It led to the increased damage caused by natural disasters and is known to be one of the most forest degraded areas in the world. The characteristic of forest landscape in North Korea is complex and heterogeneous, the major landscape types in the forest are hillside farm, unstocked forest, natural forest and plateau vegetation. Remote sensing can be used for the forest degradation mapping of a dynamic landscape at a broad scale of detail and spatial distribution. Confusion mostly occurred between hillside farmland and unstocked forest, but also between unstocked forest and forest. Most previous forest degradation that used focused on the classification of broad types such as deforests area and sand from the perspective of land cover classification. The objective of this study is using random forest for mapping degraded forest in North Korea by phenological based vegetation index derived from MODIS products, which has various environmental factors such as vegetation, soil and water at a regional scale for improving accuracy. The model created by random forest resulted in an overall accuracy was 91.44%. Class user's accuracy of hillside farmland and unstocked forest were 97.2% and 84%%, which indicate the degraded forest. Unstocked forest had relative low user accuracy due to misclassified hillside farmland and forest samples. Producer's accuracy of hillside farmland and unstocked forest were 85.2% and 93.3%, repectly. In this case hillside farmland had lower produce accuracy mainly due to confusion with field, unstocked forest and forest. Such a classification of degraded forest could supply essential information to decide the priority of forest management and restoration in degraded forest area.
Tampekis, Stergios; Sakellariou, Stavros; Samara, Fani; Sfougaris, Athanassios; Jaeger, Dirk; Christopoulou, Olga
2015-11-01
The sustainable management of forest resources can only be achieved through a well-organized road network designed with the optimal spatial planning and the minimum environmental impacts. This paper describes the spatial layout mapping for the optimal forest road network and the environmental impacts evaluation that are caused to the natural environment based on the multicriteria evaluation (MCE) technique at the Mediterranean island of Thassos in Greece. Data analysis and its presentation are achieved through a spatial decision support system using the MCE method with the contribution of geographic information systems (GIS). With the use of the MCE technique, we evaluated the human impact intensity to the forest ecosystem as well as the ecosystem's absorption from the impacts that are caused from the forest roads' construction. For the human impact intensity evaluation, the criteria that were used are as follows: the forest's protection percentage, the forest road density, the applied skidding means (with either the use of tractors or the cable logging systems in timber skidding), the timber skidding direction, the visitors' number and truck load, the distance between forest roads and streams, the distance between forest roads and the forest boundaries, and the probability that the forest roads are located on sights with unstable soils. In addition, for the ecosystem's absorption evaluation, we used forestry, topographical, and social criteria. The recommended MCE technique which is described in this study provides a powerful, useful, and easy-to-use implement in order to combine the sustainable utilization of natural resources and the environmental protection in Mediterranean ecosystems.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.
2014-01-01
The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.
Dong, Shirley Xiaobi; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Supardi, M N Nur; Kassim, Abd Rahman; Tan, Sylvester; Moorcroft, Paul R
2012-10-07
The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.
New State Forest Practice Laws. A review of state laws and their natural resource data requirements
NASA Technical Reports Server (NTRS)
Klein, S. B.
1980-01-01
Forest practice regulations can be established by being specified in state law or by being promulgated by some other official body delegated the authority to do so. At the state level, public regulation of private forest practices resulted in many cases, in the enactment of state forest practice laws regulating both private, and in some cases, public landowner activities. These laws aim not only to protect natural environments, but also to encourage continuous productivity of forest lands, to maintain or enhance aesthetic values, and to serve as an implementing mechanism to control water pollution. Profiles of regulations in California, Idaho, Maine, Nevada, New Hampshire, Oregon, and Washington are examined and assessed. Voluntary guidelines in use in 18 states are summarized.
Peters, C M; Balick, M J; Kahn, F; Anderson, A B
1989-12-01
Tropical forests dominated by only one or two tree species occupy tens of millions of hectares in Ammonia In many cases, the dominant species produce fruits, seeds, or oils of economic importance. Oligarchic (Gr. oligo = few, archic = dominated or ruled by) forests of six economic species, i. e., Euterpe oleracea, Grias peruviana, Jessenia bataua, Mauritia flexuosa, Myrciaria dubia, and Orbignya phalerata, were studied in Brazil and Peru Natural populations of these species contain from 100 to 3,000 conspecific adult trees/ha and produce up to 11.1 metric tons of fruit/hd/yr. These plant populations are utilized and occasionally managed, by rural inhabitants in the region. Periodic fruit harvests, if properly controlled have only a minimal impact on forest structure and function, yet can generate substantial economic returns Market-oriented extraction of the fruits produced by oligarchic forests appears to represent a promising alternative for reconciling the development and conservation of Amazonian forests.
Relating multifrequency radar backscattering to forest biomass: Modeling and AIRSAR measurement
NASA Technical Reports Server (NTRS)
Sun, Guo-Qing; Ranson, K. Jon
1992-01-01
During the last several years, significant efforts in microwave remote sensing were devoted to relating forest parameters to radar backscattering coefficients. These and other studies showed that in most cases, the longer wavelength (i.e. P band) and cross-polarization (HV) backscattering had higher sensitivity and better correlation to forest biomass. This research examines this relationship in a northern forest area through both backscatter modeling and synthetic aperture radar (SAR) data analysis. The field measurements were used to estimate stand biomass from forest weight tables. The backscatter model described by Sun et al. was modified to simulate the backscattering coefficients with respect to stand biomass. The average number of trees per square meter or radar resolution cell, and the average tree height or diameter breast height (dbh) in the forest stand are the driving parameters of the model. The rest of the soil surface, orientation, and size distributions of leaves and branches, remain unchanged in the simulations.
Chen, Jing; Li, Wei; Gao, Fang
2010-10-06
The elemental composition of rainwater, throughfall, and soil solutions of a forest ecosystem in the acid rain control region of southwest China was investigated during 2007-2008 to assess the acid buffering capacity of different forest covers. A possible seasonal distribution of wet deposition was identified. Sulfur was determined as the dominant acidification precursor in this region. The chemical composition of rainfall intercepted by the forest canopy was modified substantially; generally the ion concentrations were increased by dry deposition and foliar leaching. As an exception, the concentration of NH(4)(+) and NO(3)(-) decreased in throughfall, which was probably due to the absorption of nitrogen by the leaves. Elemental concentrations in soil solutions decreased with depth. The water conservation capacity of different forests was also evaluated. The most appropriate forest vegetation for water conservation and remediation of acid precipitation in this region was explored for the sake of ecosystem management, ecological restoration and economic development.
Effects of biotic disturbances on forest carbon cycling in the United States and Canada
Vogelmann, James E.; Allen, Craig D.; Hicke, Jeffrey A.; Desai, Ankur R.; Dietze, Michael C.; Hall, Ronald J.; ,
2012-01-01
Forest insects and pathogens are major disturbance agents that have affected millions of hectares in North America in recent decades, implying significant impacts to the carbon (C) cycle. Here, we review and synthesize published studies of the effects of biotic disturbances on forest C cycling in the United States and Canada. Primary productivity in stands was reduced, sometimes considerably, immediately following insect or pathogen attack. After repeated growth reductions caused by some insects or pathogens or a single infestation by some bark beetle species, tree mortality occurred, altering productivity and decomposition. In the years following disturbance, primary productivity in some cases increased rapidly as a result of enhanced growth by surviving vegetation, and in other cases increased slowly because of lower forest regrowth. In the decades following tree mortality, decomposition increased as a result of the large amount of dead organic matter. Net ecosystem productivity decreased immediately following attack, with some studies reporting a switch to a C source to the atmosphere, and increased afterward as the forest regrew and dead organic matter decomposed. Large variability in C cycle responses arose from several factors, including type of insect or pathogen, time since disturbance, number of trees affected, and capacity of remaining vegetation to increase growth rates following outbreak. We identified significant knowledge gaps, including limited understanding of carbon cycle impacts among different biotic disturbance types (particularly pathogens), their impacts at landscape and regional scales, and limited capacity to predict disturbance events and their consequences for carbon cycling. We conclude that biotic disturbances can have major impacts on forest C stocks and fluxes and can be large enough to affect regional C cycling. However, additional research is needed to reduce the uncertainties associated with quantifying biotic disturbance effects on the North American C budget.
Thresholds of logging intensity to maintain tropical forest biodiversity.
Burivalova, Zuzana; Sekercioğlu, Cağan Hakkı; Koh, Lian Pin
2014-08-18
Primary tropical forests are lost at an alarming rate, and much of the remaining forest is being degraded by selective logging. Yet, the impacts of logging on biodiversity remain poorly understood, in part due to the seemingly conflicting findings of case studies: about as many studies have reported increases in biodiversity after selective logging as have reported decreases. Consequently, meta-analytical studies that treat selective logging as a uniform land use tend to conclude that logging has negligible effects on biodiversity. However, selectively logged forests might not all be the same. Through a pantropical meta-analysis and using an information-theoretic approach, we compared and tested alternative hypotheses for key predictors of the richness of tropical forest fauna in logged forest. We found that the species richness of invertebrates, amphibians, and mammals decreases as logging intensity increases and that this effect varies with taxonomic group and continental location. In particular, mammals and amphibians would suffer a halving of species richness at logging intensities of 38 m(3) ha(-1) and 63 m(3) ha(-1), respectively. Birds exhibit an opposing trend as their total species richness increases with logging intensity. An analysis of forest bird species, however, suggests that this pattern is largely due to an influx of habitat generalists into heavily logged areas while forest specialist species decline. Our study provides a quantitative analysis of the nuanced responses of species along a gradient of logging intensity, which could help inform evidence-based sustainable logging practices from the perspective of biodiversity conservation. Copyright © 2014 Elsevier Ltd. All rights reserved.
A methodological framework to assess the carbon balance of tropical managed forests.
Piponiot, Camille; Cabon, Antoine; Descroix, Laurent; Dourdain, Aurélie; Mazzei, Lucas; Ouliac, Benjamin; Rutishauser, Ervan; Sist, Plinio; Hérault, Bruno
2016-12-01
Managed forests are a major component of tropical landscapes. Production forests as designated by national forest services cover up to 400 million ha, i.e. half of the forested area in the humid tropics. Forest management thus plays a major role in the global carbon budget, but with a lack of unified method to estimate carbon fluxes from tropical managed forests. In this study we propose a new time- and spatially-explicit methodology to estimate the above-ground carbon budget of selective logging at regional scale. The yearly balance of a logging unit, i.e. the elementary management unit of a forest estate, is modelled by aggregating three sub-models encompassing (i) emissions from extracted wood, (ii) emissions from logging damage and deforested areas and (iii) carbon storage from post-logging recovery. Models are parametrised and uncertainties are propagated through a MCMC algorithm. As a case study, we used 38 years of National Forest Inventories in French Guiana, northeastern Amazonia, to estimate the above-ground carbon balance (i.e. the net carbon exchange with the atmosphere) of selectively logged forests. Over this period, the net carbon balance of selective logging in the French Guianan Permanent Forest Estate is estimated to be comprised between 0.12 and 1.33 Tg C, with a median value of 0.64 Tg C. Uncertainties over the model could be diminished by improving the accuracy of both logging damage and large woody necromass decay submodels. We propose an innovating carbon accounting framework relying upon basic logging statistics. This flexible tool allows carbon budget of tropical managed forests to be estimated in a wide range of tropical regions.
NASA Astrophysics Data System (ADS)
Bohn, Friedrich J.; May, Felix; Huth, Andreas
2018-03-01
Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant below the closed canopy of even-aged, pioneer trees a climax-species-rich understorey that will build the canopy of the mature forest. This study highlights that forest structure and species composition are both relevant for understanding the temperature sensitivity of wood production.
Serdukova, Larissa; Zheng, Yayun; Duan, Jinqiao; Kurths, Jürgen
2017-08-24
For the tipping elements in the Earth's climate system, the most important issue to address is how stable is the desirable state against random perturbations. Extreme biotic and climatic events pose severe hazards to tropical rainforests. Their local effects are extremely stochastic and difficult to measure. Moreover, the direction and intensity of the response of forest trees to such perturbations are unknown, especially given the lack of efficient dynamical vegetation models to evaluate forest tree cover changes over time. In this study, we consider randomness in the mathematical modelling of forest trees by incorporating uncertainty through a stochastic differential equation. According to field-based evidence, the interactions between fires and droughts are a more direct mechanism that may describe sudden forest degradation in the south-eastern Amazon. In modeling the Amazonian vegetation system, we include symmetric α-stable Lévy perturbations. We report results of stability analysis of the metastable fertile forest state. We conclude that even a very slight threat to the forest state stability represents L´evy noise with large jumps of low intensity, that can be interpreted as a fire occurring in a non-drought year. During years of severe drought, high-intensity fires significantly accelerate the transition between a forest and savanna state.
"Forest Grove School District v. T.A.": The Supreme Court and Unilateral Private Placements
ERIC Educational Resources Information Center
Yell, Mitchell L.; Katsiyannis, Antonis; Collins, Terri S.
2010-01-01
On June 22, 2009, the U.S. Supreme Court issued its decision in the case "Forest Grove School District v. T.A." (hereafter "Forest Grove"). In "Forest Grove," the High Court answered the question of whether the parents of students with disabilities are entitled to reimbursement for the costs associated with placing…
Developing New Coastal Forest Restoration Products Based on Landsat, ASTER, and MODIS Data
2010-06-01
hydrology, wildfire, and conversion to non-forest land use. In some cases, such forest disturbance has led to forest loss or loss of regeneration capacity...classification of bald cypress and tupelo gum trees in Thematic Mapper imagery,” Photogrammetric Engineering and Remote Sensing, vol. 63, pp. 717–725, 1997. [14
Mapping deforestation and forest degradation using Landsat time series: a case of Sumatra—Indonesia
Belinda Arunarwati Margono
2013-01-01
Indonesia experiences the second highest rate of deforestation among tropical countries (FAO 2005, 2010). Consequently, timely and accurate forest data are required to combat deforestation and forest degradation in support of climate change mitigation and biodiversity conservation policy initiatives. Remote sensing is considered as a significant data source for forest...
Mihai, Bogdan; Săvulescu, Ionuț; Rujoiu-Mare, Marina; Nistor, Constantin
2017-12-01
The paper explores the dynamics of the forest cover change in the Iezer Mountains, part of Southern Carpathians, in the context of the forest ownership recovery and deforestation processes, combined with the effects of biotic and abiotic disturbances. The aim of the study is to map and evaluate the typology and the spatial extension of changes in the montane forest cover between 700 and 2462m a.s.l., sampling all the representative Carpathian ecosystems, from the European beech zone up to the spruce-fir zone and the subalpine-alpine pastures. The methodology uses a change detection analysis of satellite imagery with Landsat ETM+/OLI and Sentinel-2 MSI data. The workflow started with a complete calibration of multispectral data from 2002, before the massive forest restitution to private owners, after the Law 247/2005 empowerment, and 2015, the intensification of deforestation process. For the data classification, a Maximum Likelihood supervised classification algorithm was utilized. The forest change map was developed after combining the classifications in a unitary formula using image difference. The principal outcome of the research identifies the type of forest cover change using a quantitative formula. This information can be integrated in the future decision-making strategies for forest stand management and sustainable development. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling ozone uptake by urban and peri-urban forest: a case study in the Metropolitan City of Rome.
Fusaro, Lina; Mereu, Simone; Salvatori, Elisabetta; Agliari, Elena; Fares, Silvano; Manes, Fausto
2018-03-01
Urban and peri-urban forests are green infrastructures (GI) that play a substantial role in delivering ecosystem services such as the amelioration of air quality by the removal of air pollutants, among which is ozone (O 3 ), which is the most harmful pollutant in Mediterranean metropolitan areas. Models may provide a reliable estimate of gas exchanges between vegetation and atmosphere and are thus a powerful tool to quantify and compare O 3 removal in different contexts. The present study modeled the O 3 stomatal uptake at canopy level of an urban and a peri-urban forest in the Metropolitan City of Rome in two different years. Results show different rates of O 3 fluxes between the two forests, due to different exposure to the pollutant, management practice effects on forest structure and functionality, and environmental conditions, namely, different stressors affecting the gas exchange rates of the two GIs. The periodic components of the time series calculated by means of the spectral analysis show that seasonal variation of modeled canopy transpiration is driven by precipitation in peri-urban forests, whereas in the urban forest seasonal variations are driven by vapor pressure deficit of ambient air. Moreover, in the urban forest high water availability during summer months, owing to irrigation practice, leads to an increase in O 3 uptake, thus suggesting that irrigation may enhance air phytoremediation in urban areas.
Ramírez-Barahona, Santiago; Eguiarte, Luis E
2013-01-01
The increasing aridity during the Last Glacial Maximum (LGM) has been proposed as a major factor affecting Neotropical species. The character and intensity of this change, however, remains the subject of ongoing debate. This review proposes an approach to test contrasting paleoecological hypotheses by way of their expected demographic and genetic effects on Neotropical cloud forest species. We reviewed 48 paleoecological records encompassing the LGM in the Neotropics. The records show contrasting evidence regarding the changes in precipitation during this period. Some regions remained fairly moist and others had a significantly reduced precipitation. Many paleoecological records within the same region show apparently conflicting evidence on precipitation and forest stability. From these data, we propose and outline two demographic/genetic scenarios for cloud forests species based on opposite precipitation regimes: the dry refugia and the moist forests hypotheses. We searched for studies dealing with the population genetic structure of cloud forest and other montane taxa and compared their results with the proposed models. To date, the few available molecular studies show insufficient genetic evidence on the predominance of glacial aridity in the Neotropics. In order to disentangle the climatic history of the Neotropics, the present study calls for a general multi-disciplinary approach to conduct future phylogeographic studies. Given the contradictory paleoecological information, population genetic data on Neotropical cloud forest species should be used to explicitly test the genetic consequences of competing paleoecological models. PMID:23531632
Public understandings of nature: a case study of local knowledge about "natural" forest conditions
R. Bruce Hull; David P. Robertson; Angelina Kendra
2001-01-01
This study is intended to serve as an explicit and specific example of the social construction of nature. It is motivated by the need to develop a more sophisticated language for a critical public dialogue about society's relationship with nature. We conducted a case study of environmental discourse in one local population in hopes of better understanding how a...
Huang, Ji; Long, Chunlin
2007-06-01
Coptis teeta (Ranunculaceae), is a nontimber forest product (NTFP) that only grows in northwest Yunnan and northeast India. Its tenuous rhizome, known as "Yunnan goldthread" in the traditional Chinese medicine system, has been used as an antibacterial and as an antiinflammatory medicine for a long time. The increasing demand has resulted in commercial harvesting pressure on wild populations that were already dwindling as a result of deforestation, and wild populations are at risk of extinction. Fortunately, there exists at least 2000 hectares of a C. teeta-based agroforestry system initiated by the Lisu people in Nujiang, northwest Yunnan. This cultivation supplies us with a valuable study case for the balance between conservation and sustainable use. This case study investigated the traditional management system and history of C. teeta in Nujiang through ethnobotanical methods and field investigation. We also contrasted initial costs, economic returns, and labor demands for C. teeta cultivation with other major land uses in the region. Compared with swidden agriculture, the major land-use type in the region, C. teeta cultivation offers high economic returns and low labor and initial costs; moreover, C. teeta cultivation does not interfere with subsistence agricultural duties. This agroforestry system reflected that the cultivation of NTFPs is a conservation strategy for maintaining forest diversity, while providing a stable economic return to local forest communities, and indicates how local people manage biodiversity effectively.
Communicating the Needs of Climate Change Policy Makers to Scientists
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Escobar, Vanessa M.; Lovell, Heather
2012-01-01
This chapter will describe the challenges that earth scientists face in developing science data products relevant to decision maker and policy needs, and will describe strategies that can improve the two-way communication between the scientist and the policy maker. Climate change policy and decision making happens at a variety of scales - from local government implementing solar homes policies to international negotiations through the United Nations Framework Convention on Climate Change. Scientists can work to provide data at these different scales, but if they are not aware of the needs of decision makers or understand what challenges the policy maker is facing, they are likely to be less successful in influencing policy makers as they wished. This is because the science questions they are addressing may be compelling, but not relevant to the challenges that are at the forefront of policy concerns. In this chapter we examine case studies of science-policy partnerships, and the strategies each partnership uses to engage the scientist at a variety of scales. We examine three case studies: the global Carbon Monitoring System pilot project developed by NASA, a forest biomass mapping effort for Silvacarbon project, and a forest canopy cover project being conducted for forest management in Maryland. In each of these case studies, relationships between scientists and policy makers were critical for ensuring the focus of the science as well as the success of the decision-making.
Mapping growing stock volume and forest live biomass: a case study of the Polissya region of Ukraine
NASA Astrophysics Data System (ADS)
Bilous, Andrii; Myroniuk, Viktor; Holiaka, Dmytrii; Bilous, Svitlana; See, Linda; Schepaschenko, Dmitry
2017-10-01
Forest inventory and biomass mapping are important tasks that require inputs from multiple data sources. In this paper we implement two methods for the Ukrainian region of Polissya: random forest (RF) for tree species prediction and k-nearest neighbors (k-NN) for growing stock volume and biomass mapping. We examined the suitability of the five-band RapidEye satellite image to predict the distribution of six tree species. The accuracy of RF is quite high: ~99% for forest/non-forest mask and 89% for tree species prediction. Our results demonstrate that inclusion of elevation as a predictor variable in the RF model improved the performance of tree species classification. We evaluated different distance metrics for the k-NN method, including Euclidean or Mahalanobis distance, most similar neighbor (MSN), gradient nearest neighbor, and independent component analysis. The MSN with the four nearest neighbors (k = 4) is the most precise (according to the root-mean-square deviation) for predicting forest attributes across the study area. The k-NN method allowed us to estimate growing stock volume with an accuracy of 3 m3 ha-1 and for live biomass of about 2 t ha-1 over the study area.
Rubikowska, Barbara; Bratkowski, Jakub; Ustrnul, Zbigniew; Vanwambeke, Sophie O.
2018-01-01
During 1999–2012, 77% of the cases of tick-borne encephalitis (TBE) were recorded in two out of 16 Polish provinces. However, historical data, mostly from national serosurveys, suggest that the disease could be undetected in many areas. The aim of this study was to identify which routinely-measured meteorological, environmental, and socio-economic factors are associated to TBE human risk across Poland, with a particular focus on areas reporting few cases, but where serosurveys suggest higher incidence. We fitted a zero-inflated Poisson model using data on TBE incidence recorded in 108 NUTS-5 administrative units in high-risk areas over the period 1999–2012. Subsequently we applied the best fitting model to all Polish municipalities. Keeping the remaining variables constant, the predicted rate increased with the increase of air temperature over the previous 10–20 days, precipitation over the previous 20–30 days, in forestation, forest edge density, forest road density, and unemployment. The predicted rate decreased with increasing distance from forests. The map of predicted rates was consistent with the established risk areas. It predicted, however, high rates in provinces considered TBE-free. We recommend raising awareness among physicians working in the predicted high-risk areas and considering routine use of household animal surveys for risk mapping. PMID:29617333
Stefanoff, Pawel; Rubikowska, Barbara; Bratkowski, Jakub; Ustrnul, Zbigniew; Vanwambeke, Sophie O; Rosinska, Magdalena
2018-04-04
During 1999–2012, 77% of the cases of tick-borne encephalitis (TBE) were recorded in two out of 16 Polish provinces. However, historical data, mostly from national serosurveys, suggest that the disease could be undetected in many areas. The aim of this study was to identify which routinely-measured meteorological, environmental, and socio-economic factors are associated to TBE human risk across Poland, with a particular focus on areas reporting few cases, but where serosurveys suggest higher incidence. We fitted a zero-inflated Poisson model using data on TBE incidence recorded in 108 NUTS-5 administrative units in high-risk areas over the period 1999–2012. Subsequently we applied the best fitting model to all Polish municipalities. Keeping the remaining variables constant, the predicted rate increased with the increase of air temperature over the previous 10–20 days, precipitation over the previous 20–30 days, in forestation, forest edge density, forest road density, and unemployment. The predicted rate decreased with increasing distance from forests. The map of predicted rates was consistent with the established risk areas. It predicted, however, high rates in provinces considered TBE-free. We recommend raising awareness among physicians working in the predicted high-risk areas and considering routine use of household animal surveys for risk mapping.
Forests in a water limited world under climate change
NASA Astrophysics Data System (ADS)
Mátyás, Csaba; Sun, Ge
2014-08-01
The debate on ecological and climatic benefits of planted forests at the sensitive dry edge of the closed forest belt (i.e. at the ‘xeric limits’) is still unresolved. Forests sequester atmospheric carbon dioxide, accumulate biomass, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously dominated by grassland or cropland can dramatically alter the energy and water balances at multiple scales. The forest/grassland transition zone is especially vulnerable to projected drastic temperature and precipitation shifts and growing extremes due to its high ecohydrological sensitivity. We investigated some of the relevant aspects of the ecological and climatic role of forests and potential impacts of climate change at the dryland margins of the temperate-continental zone using case studies from China, the United States and SE Europe (Hungary). We found that, contrary to popular expectations, the effects of forest cover on regional climate might be limited and the influence of forestation on water resources might be negative. Planted forests generally reduce stream flow and lower groundwater table level because of higher water use than previous land cover types. Increased evaporation potential due to global warming and/or extreme drought events is likely to reduce areas that are appropriate for tree growth and forest establishment. Ecologically conscious forest management and forestation planning should be adjusted to the local, projected hydrologic and climatic conditions, and should also consider non-forest alternative land uses.
NASA Astrophysics Data System (ADS)
Majasalmi, Titta; Eisner, Stephanie; Astrup, Rasmus; Fridman, Jonas; Bright, Ryan M.
2018-01-01
Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface-atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MS-NFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human intervention in different land models.
Li, M.; Zhu, Z.; Vogelmann, James E.; Xu, D.; Wen, W.; Liu, A.
2011-01-01
Tropical and subtropical forests provide important ecosystem goods and services including carbon sequestration and biodiversity conservation. These forests are facing increasing socioeconomic pressures and are rapidly being degraded and fragmented. This analysis focuses on the rate of change and patterns of fragmentation in a collective forest area in Zhejiang province, China, during the time period 1988–2005. The research consisted of two parts. The first was the development of general land cover maps and the identification of land cover changes by interpreting Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) time series imagery. The second part involved the computation and analysis of forest fragmentation metrics. For this portion of the study, fragmentation statistics were analyzed, and images were developed to depict forest fragmentation patterns and trends. Results revealed that there was a net loss of 7.8% in forest coverage, dropping from 66.8% in 1988 to 59.0% in 2005, primarily caused by agricultural expansion and poor forest management practices. An acceleration of forest fragmentation was also witnessed during the time intervals, which was evidenced by a decreasing trend in interior forest (57.2% in 1988, 55.0% in 1996 and 54.8% in 2005 respectively) coupled with the scales of the selected geospatial metrics. Continued forest loss and fragmentation are closely correlated with the existing political, educational, institutional and economic processes of contemporary China. To unlock the developmental potentials of the collective forests and to effectively mitigate the rate of forest loss and fragmentation, reforms of forest tenure and ecological immigration practices are recognized as a prospective alternative. The produced fragmentation maps further illustrates the importance of assessing landscape change history, especially the spatiotemporal patterns of forest fragments, when developing landscape level plans for biodiversity conservation, land use management and ecologically sustainable forestry.
NASA Astrophysics Data System (ADS)
Sathre, R.; Gustavsson, L.; Haus, S.; Lundblad, M.; Lundström, A.; Ortiz, C.; Truong, N.; Wikberg, P. E.
2016-12-01
Forests can play several roles in climate change mitigation strategies, for example as a reservoir for storing carbon and as a source of renewable materials and energy. To better understand the linkages and possible trade-offs between different forest management strategies, we conduct an integrated analysis where both sequestration of carbon in growing forests and the effects of substituting carbon intensive products within society are considered. We estimate the climate effects of directing forest management in Sweden towards increased carbon storage in forests, with more land set-aside for protection, or towards increased forest production for the substitution of carbon-intensive materials and fossil fuels, relative to a reference case of current forest management. We develop various scenarios of forest management and biomass use to estimate the carbon balances of the forest systems, including ecological and technological components, and their impacts on the climate in terms of cumulative radiative forcing over a 100-year period. For the reference case of current forest management, increasing the harvest of forest residues is found to give increased climate benefits. A scenario with increased set-aside area and the current level of forest residue harvest begins with climate benefits compared to the reference scenario, but the benefits cannot be sustained for 100 years because the rate of carbon storage in set-aside forests diminishes over time as the forests mature, but the demand for products and fuels remains. The most climatically beneficial scenario, expressed as reduced cumulative radiative forcing, in both the short and long terms is a strategy aimed at high forest production, high residue recovery rate, and high efficiency utilization of harvested biomass. Active forest management with high harvest level and efficient forest product utilization will provide more climate benefit, compared to reducing harvest and storing more carbon in the forest. Figure. Schematic diagram of complete modelled forest system including ecological and technological components, showing major flows of carbon.
Keystone Species, Forest and Landscape: A Model to Select Protected Areas
NASA Astrophysics Data System (ADS)
Lins, Daniela Barbosa da Silva; Gardon, Fernando Ravanini; Meyer, João Frederico da Costa Azevedo; Santos, Rozely Ferreira dos
2017-06-01
The selection of forest fragments for conservation is usually based on spatial parameters as forest size and canopy integrity. This strategy assumes that chosen fragments present high conservation status, ensuring biodiversity and ecological functions. We argue that a well-preserved forest fragment that remains connected by the landscape structure, does not necessarily hold attributes that ensure the presence of keystone species. We also discuss that the presence of keystone species does not always mean that it has the best conditions for its occurrence and maintenance. We developed a model to select areas in forest landscapes to be prioritized for protection based on suitability curves that unify and compare spatial indicators of three categories: forest fragment quality, landscape quality, and environmental conditions for the occurrence of a keystone species. We use a case study to compare different suitability degrees for Euterpe edulis presence, considered an important functional element in Atlantic Forest (São Paulo, Brazil) landscapes and a forest resource for local people. The results show that the identification of medium or advanced stage fragments as singular indicator of forest quality does not guarantee the existence or maintenance of this keystone species. Even in some well-preserved forest fragments, connected to others and with palm presence, the reverse J-shaped distribution of the population size structure is not sustained and these forests continue to be threatened due to human disturbances.
NASA Astrophysics Data System (ADS)
Feng, Wanwan; Wang, Leiguang; Xie, Junfeng; Yue, Cairong; Zheng, Yalan; Yu, Longhua
2018-04-01
Forest biomass is an important indicator for the structure and function of forest ecosystems, and an accurate assessment of forest biomass is crucial for understanding ecosystem changes. Remote sensing has been widely used for inversion of biomass. However, in mature or over-mature forest areas, spectral saturation is prone to occur. Based on existing research, this paper synthesizes domestic high resolution satellites, ZY3-01 satellites, and GLAS14-level data from space-borne Lidar system, and other data set. Extracting texture and elevation features respectively, for the inversion of forest biomass. This experiment takes Shangri-La as the research area. Firstly, the biomass in the laser spot was calculated based on GLAS data and other auxiliary data, DEM, the second type inventory of forest resources data and the Shangri-La vector boundary data. Then, the regression model was established, that is, the relationship between the texture factors of ZY3-01 and biomass in the laser spot. Finally, by using this model and the forest distribution map in Shangri-La, the biomass of the whole area is obtained, which is 1.3972 × 108t.
Rethinking forest carbon assessments to account for policy institutions
NASA Astrophysics Data System (ADS)
Macintosh, Andrew; Keith, Heather; Lindenmayer, David
2015-10-01
There has been extensive debate about whether the sustainable use of forests (forest management aimed at producing a sustainable yield of timber or other products) results in superior climate outcomes to conservation (maintenance or enhancement of conservation values without commercial harvesting). Most of the relevant research has relied on consequential life-cycle assessment (LCA), with the results tending to show that sustainable use has lower net greenhouse-gas (GHG) emissions than conservation in the long term. However, the literature cautions that results are sensitive to forest- and market-related contextual factors: the carbon density of the forests, silvicultural and wood processing practices, and the extent to which wood products and forest bioenergy displace carbon-intensive alternatives. Depending on these issues, conservation can be better for the climate than sustainable use. Policy institutions are another key contextual factor but, so far, they have largely been ignored. Using a case study on the Southern Forestry Region (SFR) of New South Wales (NSW), Australia, we show how policy institutions can affect the assessed outcomes from alternative forest management strategies. Our results highlight the need for greater attention to be paid to policy institutions in forest carbon research.
Interaction of gusts with forest edges
NASA Astrophysics Data System (ADS)
Ruck, Bodo; Tischmacher, Michael
2012-05-01
Experimental investigations in an atmospheric boundary layer wind tunnel were carried out in order to study the interaction of gusts with forest edges. Summarizing the state of knowledge in the field of forest damages generated by extreme storms, there is a strong indication that in many cases, windthrow of trees starts near the forest edge from where it spreads into the stand. The high-transient interaction between gusts and (porous) forest edges produce unsteady flow phenomena not known so far. From a fluid mechanical point of view, the flow type resembles a forward-facing porous step flow, which is significantly influenced by the characteristics of the oncoming atmospheric boundary layer flow and the shape and `porous properties' of the forest edge. The paper reports systematic investigations on the interaction of artificially generated gusts and forest edge models in an atmospheric boundary layer wind tunnel. The experimental investigations were carried out with a laser-based time-resolved PIV-system and high speed photography. Different flow phenomena like gust streching, vortex formation, Kelvin-Helmholtz instabilities or wake production of turbulence could be measured or visualized contributing to the understanding of the complex flow perfomance over the forest edge.
Vergara-Asenjo, Gerardo; Alvarado, Alexis; Potvin, Catherine
2017-01-01
Land tenure and tenure security are among the most important factors determining the viability and success of Reducing Emissions from Deforestation and Forest Degradation (REDD+) initiatives. The premise of the present paper is that territorial conflicts lead to forest loss and compromise the successful implementation of REDD+. Within this context, the main objectives of this paper are to (i) document, relying on participatory methods, the extent to which land conflicts drive deforestation and (ii) reflect on the legal context of REDD+ examining if, from an Indigenous perspective, it offers tools to resolve such conflicts. We used the Upper Bayano Watershed in eastern Panama as a case study of complex land tenure dynamics, and their effects on forest conservation in the context of REDD+. Combining a range of participatory methods including participatory mapping and forest carbon stock assessment, we estimated the consequences of land invasions on forest carbon stocks. Our analysis shows that invasions of Indigenous territories amounted to 27.6% of the total deforestation for the period of 2001–2014. The situation is of paramount concern in the Embera territory of Majé where 95.4% of total deforestation was caused by colonist invaders. Using and validating the maps made freely available by the Global Forest Change initiative of the University of Maryland, we then developed a reference level for the watershed and carried out a back of the envelop estimation of likely REDD+ revenue, showing its potential to bring much needed income to Indigenous communities striving to protect their forest estate. Our analysis of current legislation in Panama highlights confusion and important legal voids and emphasizes the strong links between land tenure, carbon ownership, and territorial invasions. The options and shortcoming of implementing REDD+ in Indigenous territories is discussed in the conclusion taking our legal review into account. PMID:29261704
Vergara-Asenjo, Gerardo; Mateo-Vega, Javier; Alvarado, Alexis; Potvin, Catherine
2017-01-01
Land tenure and tenure security are among the most important factors determining the viability and success of Reducing Emissions from Deforestation and Forest Degradation (REDD+) initiatives. The premise of the present paper is that territorial conflicts lead to forest loss and compromise the successful implementation of REDD+. Within this context, the main objectives of this paper are to (i) document, relying on participatory methods, the extent to which land conflicts drive deforestation and (ii) reflect on the legal context of REDD+ examining if, from an Indigenous perspective, it offers tools to resolve such conflicts. We used the Upper Bayano Watershed in eastern Panama as a case study of complex land tenure dynamics, and their effects on forest conservation in the context of REDD+. Combining a range of participatory methods including participatory mapping and forest carbon stock assessment, we estimated the consequences of land invasions on forest carbon stocks. Our analysis shows that invasions of Indigenous territories amounted to 27.6% of the total deforestation for the period of 2001-2014. The situation is of paramount concern in the Embera territory of Majé where 95.4% of total deforestation was caused by colonist invaders. Using and validating the maps made freely available by the Global Forest Change initiative of the University of Maryland, we then developed a reference level for the watershed and carried out a back of the envelop estimation of likely REDD+ revenue, showing its potential to bring much needed income to Indigenous communities striving to protect their forest estate. Our analysis of current legislation in Panama highlights confusion and important legal voids and emphasizes the strong links between land tenure, carbon ownership, and territorial invasions. The options and shortcoming of implementing REDD+ in Indigenous territories is discussed in the conclusion taking our legal review into account.
Bohun B. Kinloch; Dulitz Jr.
1990-01-01
The behavior of white pine blister rust at Mountain Home State Demonstration Forest and surrounding areas in the southern Sierra Nevada of California indicates that the epidemic has not yet stabilized and that the most likely prognosis is a pandemic on white pines in this region within the next few decades. The impact on sugar pines, from young regeneration to old...
Monetary union and forest products trade- The case of the euro
Joseph Buongiorno
2015-01-01
The objective of this study was to determine if the establishment of a monetary union in European countries had affected the international trade of forest products between the euro-using countries. A differential gravity model of bilateral trade flows was developed and estimated with panel data for the bilateral trade between 12 euro countries from 1988 to 2013, for...
Mary Beth Adams; Pamela J. Edwards; W. Mark Ford; Joshua B. Johnson; Thomas M. Schuler; Melissa Thomas-Van Gundy; Frederica Wood
2011-01-01
Development of a natural gas well and pipeline on the Fernow Experimental Forest, WV, raised concerns about the effects on the natural and scientifi c resources of the Fernow, set aside in 1934 for long-term research. A case study approach was used to evaluate effects of the development. This report includes results of monitoring projects as well as observations...
Louis R. Iverson; Stephen N. Matthews; Anantha M. Prasad; Matthew P. Peters; Gary W. Yohe
2012-01-01
We used a risk matrix to assess risk from climate change for multiple forest species by discussing an example that depicts a range of risk for three tree species of northern Wisconsin. Risk is defined here as the product of the likelihood of an event occurring and the consequences or effects of that event. In the context of species habitats, likelihood is related to...
Effects of protection forests on rockfall risks: implementation in the Swiss risk concept
NASA Astrophysics Data System (ADS)
Trappmann, Daniel; Moos, Christine; Fehlmann, Michael; Ernst, Jacqueline; Sandri, Arthur; Dorren, Luuk; Stoffel, Markus
2016-04-01
Forests growing on slopes below active rockfall cliffs can provide effective protection for human lives and infrastructures. The risk-based approach for natural hazards in Switzerland shall take such biological measures just like existing technical protective measures into account, provided that certain criteria regarding condition, maintenance and durability are met. This contribution describes a project in which we are investigating how the effects of protection forests can be considered in rockfall risk analyses in an appropriate way. In principle, protection forests reduce rockfall risks in three different ways: (i) reduction of the event magnitude (energy) due to collisions with tree stems; (ii) reduction of frequency of occurrence of a given scenario (block volume arriving at the damage potential); (iii) reduction of spatial probability of occurrence (spread and runout) of a given scenario in case of multiple fragments during one event. The aim of this work is to develop methods for adequately implementing these three effects of rockfall protection forests in risk calculations. To achieve this, we use rockfall simulations taking collisions with trees into account and detailed field validation. On five test sites, detailed knowledge on past rockfall activity is gathered by combining investigations of impacted trees, analysis of documented historical events, and deposits in the field. Based on this empirical data on past rockfalls, a methodology is developed that allows transferring real past rockfall activity to simulation results obtained with the three-dimensional, process-based model Rockyfor3D. Different ways of quantifying the protective role of forests will be considered by comparing simulation results with and without forest cover. Combining these different research approaches, systematic considerations shall lead to the development of methods for adequate inclusion of the protective effects of forests in risk calculations. The applicability of the developed methods will be tested on the case study slopes in order to ensure practical applicability to a broad range of rockfall situations on forested slopes.
Trend analysis of vegetation in Louisiana's Atchafalaya river basin
O'Neil, Calvin P.; deSteiguer, J. Edward; North, Gary W.
1978-01-01
The purpose of the study was to determine vegetation succession trends; produce a current vegetation map of the basin; and to develop a mathematical model capable of predicting vegetation changes based on hydrologic factors. A statistical relationship of forests and hydrological variables with forest succession constraints predicted forest acreage totals for 16 forest categories within 70% or better of actual values in two-thirds of the cases. Using time-lapsed photography covering 42 years, 23 categories were described. The succession trend of vegetation since 1930, by sedimentation, had been toward mixed hardwoods, except for isolated areas. Satellite MSS Band 7 imagery was used to map the current vegetation into three main categories and for assessment of acreage. Additionally, a geological anomaly was recognized on satellite imagery indication an effect on drainage and sedimentation.
Development of spatial scaling technique of forest health sample point information
NASA Astrophysics Data System (ADS)
Lee, J.; Ryu, J.; Choi, Y. Y.; Chung, H. I.; Kim, S. H.; Jeon, S. W.
2017-12-01
Most forest health assessments are limited to monitoring sampling sites. The monitoring of forest health in Britain in Britain was carried out mainly on five species (Norway spruce, Sitka spruce, Scots pine, Oak, Beech) Database construction using Oracle database program with density The Forest Health Assessment in GreatBay in the United States was conducted to identify the characteristics of the ecosystem populations of each area based on the evaluation of forest health by tree species, diameter at breast height, water pipe and density in summer and fall of 200. In the case of Korea, in the first evaluation report on forest health vitality, 1000 sample points were placed in the forests using a systematic method of arranging forests at 4Km × 4Km at regular intervals based on an sample point, and 29 items in four categories such as tree health, vegetation, soil, and atmosphere. As mentioned above, existing researches have been done through the monitoring of the survey sample points, and it is difficult to collect information to support customized policies for the regional survey sites. In the case of special forests such as urban forests and major forests, policy and management appropriate to the forest characteristics are needed. Therefore, it is necessary to expand the survey headquarters for diagnosis and evaluation of customized forest health. For this reason, we have constructed a method of spatial scale through the spatial interpolation according to the characteristics of each index of the main sample point table of 29 index in the four points of diagnosis and evaluation report of the first forest health vitality report, PCA statistical analysis and correlative analysis are conducted to construct the indicators with significance, and then weights are selected for each index, and evaluation of forest health is conducted through statistical grading.
Tigges, Jan; Lakes, Tobia
2017-10-04
Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified, especially due to increasing climate change effects. This is important for calibrating and validating recent prognoses of urban forest carbon offset, which have so far scarcely addressed longer timeframes. Additionally, higher resolution remote sensing of urban forest carbon estimates can improve upscaling approaches, which should be extended to reach a more precise global estimate for the first time. Urban forest carbon offset can be made more relevant by making more standardized assessments available for science and professional practitioners, and the increasing availability of high resolution remote sensing data and the progress in data processing allows for precisely that.
REDD and PINC: A new policy framework to fund tropical forests as global 'eco-utilities'
NASA Astrophysics Data System (ADS)
Trivedi, M. R.; Mitchell, A. W.; Mardas, N.; Parker, C.; Watson, J. E.; Nobre, A. D.
2009-11-01
Tropical forests are 'eco-utilities' providing critical ecosystem services that underpin food, energy, water and climate security at local to global scales. Currently, these services are unrecognised and unrewarded in international policy and financial frameworks, causing forests to be worth more dead than alive. Much attention is currently focused on REDD (Reducing Emissions from Deforestation and forest Degradation) and A/R (Afforestation and Reforestation) as mitigation options. In this article we propose an additional mechanism - PINC (Proactive Investment in Natural Capital) - that recognises and rewards the value of ecosystem services provided by standing tropical forests, especially from a climate change adaptation perspective. Using Amazonian forests as a case study we show that PINC could improve the wellbeing of rural and forest-dependent populations, enabling them to cope with the impacts associated with climate change and deforestation. By investing pro-actively in areas where deforestation pressures are currently low, the long-term costs of mitigation and adaptation will be reduced. We suggest a number of ways in which funds could be raised through emerging financial mechanisms to provide positive incentives to maintain standing forests. To develop PINC, a new research and capacity-building agenda is needed that explores the interdependence between communities, the forest eco-utility and the wider economy.
Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire
NASA Astrophysics Data System (ADS)
Boer, Matthias M.; Nolan, Rachael H.; Resco De Dios, Víctor; Clarke, Hamish; Price, Owen F.; Bradstock, Ross A.
2017-12-01
Changing frequencies of extreme weather events and shifting fire seasons call for enhanced capability to forecast where and when forested landscapes switch from a nonflammable (i.e., wet fuel) state to the highly flammable (i.e., dry fuel) state required for catastrophic forest fires. Current forest fire danger indices used in Europe, North America, and Australia rate potential fire behavior by combining numerical indices of fuel moisture content, potential rate of fire spread, and fire intensity. These numerical rating systems lack the physical basis required to reliably quantify forest flammability outside the environments of their development or under novel climate conditions. Here, we argue that exceedance of critical forest flammability thresholds is a prerequisite for major forest fires and therefore early warning systems should be based on a reliable prediction of fuel moisture content plus a regionally calibrated model of how forest fire activity responds to variation in fuel moisture content. We demonstrate the potential of this approach through a case study in Portugal. We use a physically based fuel moisture model with historical weather and fire records to identify critical fuel moisture thresholds for forest fire activity and then show that the catastrophic June 2017 forest fires in central Portugal erupted shortly after fuels in the region dried out to historically unprecedented levels.
Brian D. Young; Anthony W. D' Amato; Christel C. Kern; Douglas N. Kastendick; Brian J. Palik
2017-01-01
An understanding of long-term patterns of forest structural and compositional development is critical for anticipating management outcomes and developing appropriate silvicultural strategies for restoring complex forest conditions. In most cases, this information comes from stand-level assessments; however, the impacts and outcomes of management and other disturbances...
Probabilistic risk models for multiple disturbances: an example of forest insects and wildfires
Haiganoush K. Preisler; Alan A. Ager; Jane L. Hayes
2010-01-01
Building probabilistic risk models for highly random forest disturbances like wildfire and forest insect outbreaks is a challenging. Modeling the interactions among natural disturbances is even more difficult. In the case of wildfire and forest insects, we looked at the probability of a large fire given an insect outbreak and also the incidence of insect outbreaks...
Silva, Arannadia Barbosa; Duarte, Myrian Morato; da Costa Cavalcante, Robson; de Oliveira, Stefan Vilges; Vizzoni, Vinicius Figueiredo; de Lima Duré, Ana Íris; de Melo Iani, Felipe Campos; Machado-Ferreira, Erik; Gazêta, Gilberto Salles
2017-09-01
In Brazil, Spotted Fever (SF) is caused by Rickettsia rickettsii and Rickettsia parkeri strain Atlantic Forest. In recent years, several human cases of a milder SF have been reported from the Maciço de Baturité region of Ceará State. Previous studies in this region found R. parkeri strain Atlantic Forest to be present in Rhipicephalus sanguineus sensu lato and Amblyomma ovale ticks. The present study isolated and identified the Rickettsia spp. present in this new endemic area in Brazil. In March 2015, R. sanguineus s.l. and A. ovale were collected in rural areas of the Maciço de Baturité region, and subjected to the isolation technique. A bacterium was isolated from one R. sanguineus s.l., which phylogenetic analysis clustered to the R. rickettsii group. In conclusion, R. rickettsii bacteria is circulating in the studied area and may in future have an impact on the clinical diagnoses and consequently cause changes in the profile of the disease in the region. In addition, we suggest the increase of epidemiological and environmental surveillance in the area, in order to prevent Brazilian Spotted Fever cases. Copyright © 2017. Published by Elsevier B.V.
Huxham, Mark; Emerton, Lucy; Kairo, James; Munyi, Fridah; Abdirizak, Hassan; Muriuki, Tabitha; Nunan, Fiona; Briers, Robert A
2015-07-01
Mangrove forests are under global pressure. Habitat destruction and degradation persist despite longstanding recognition of the important ecological functions of mangroves. Hence new approaches are needed to help stakeholders and policy-makers achieve sound management that is informed by the best science. Here we explore how the new policy concept of Climate Compatible Development (CCD) can be applied to achieve better outcomes. We use economic valuation approaches to combine socio-economic data, projections of forest cover based on quantitative risk mapping and storyline scenario building exercises to articulate the economic consequences of plausible alternative future scenarios for the mangrove forests of the South Kenya coast, as a case study of relevance to many other areas. Using data from 645 household surveys, 10 focus groups and 74 interviews conducted across four mangrove sites, and combining these with information on fish catches taken at three landing sites, a mangrove carbon trading project and published data allowed us to make a thorough (although still partial) economic valuation of the forests. This gave a current value of the South Coast mangroves of USD 6.5 million, or USD 1166 ha(-1), with 59% of this value on average derived from regulating services. Quantitative risk mapping, projecting recent trends over the next twenty years, suggests a 43% loss of forest cover over that time with 100% loss at the most vulnerable sites. Much of the forest lost between 1992 and 2012 has not been replaced by high value alternative land uses hence restoration of these areas is feasible and may not involve large opportunity costs. We invited thirty eight stakeholders to develop plausible storyline scenarios reflecting Business as Usual (BAU) and CCD - which emphasises sustainable forest conservation and management - in twenty years time, drawing on local and regional expert knowledge of relevant policy, social trends and cultures. Combining these scenarios with the quantitative projections and economic baseline allowed the modelling of likely value added and costs avoided under the CCD scenario. This suggests a net present value of more than US$20 million of adoption of CCD rather than BAU. This work adds to the economic evidence for mangrove conservation and helps to underline the importance of new real and emerging markets, such as for REDD + projects, in making this case for carbon-rich coastal habitats. It demonstrates a policy tool - CCD - that can be used to engage stakeholders and help to co-ordinate policy across different sectors towards mangrove conservation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tampekis, Stergios; Samara, Fani; Sakellariou, Stavros; Sfougaris, Athanassios; Christopoulou, Olga
2018-02-12
The sustainable forest management can be achieved only through environmentally sound and economically efficient and feasible forest road networks and transportation systems that can potentially improve the multi-functional use of forest resources. However, road network planning and construction suggest long-term finance that require a capital investment (cash outflow), which would be equal to the value of the total revenue flow (cash inflow) over the whole lifecycle project. This paper emphasizes in an eco-efficient and economical optimum evaluation method for the forest road networks in the mountainous forest of Metsovo, Greece. More specifically, with the use of this technique, we evaluated the forest roads' (a) total construction costs, (b) annual maintenance cost, and (c) log skidding cost. In addition, we estimated the total economic value of forest goods and services that are lost from the forest roads' construction. Finally, we assessed the optimum eco-efficient and economical forest roads densities based on linear equations that stem from the internal rate of return method (IRR) and have been presented graphically. Data analysis and its presentation are achieved with the contribution of geographic information systems (GIS). The technique which is described in this study can be for the decision makers an attractive and useful implement in order to select the most eco-friendly and economical optimum solution to plan forest road network or to evaluate the existing forest transportation systems. Hence, with the use of this method, we can combine not only the multi-objective utilization of natural resources but also the environmental protection of forest ecosystems.
Evidence of Incipient Forest Transition in Southern Mexico
Vaca, Raúl Abel; Golicher, Duncan John; Cayuela, Luis; Hewson, Jenny; Steininger, Marc
2012-01-01
Case studies of land use change have suggested that deforestation across Southern Mexico is accelerating. However, forest transition theory predicts that trajectories of change can be modified by economic factors, leading to spatial and temporal heterogeneity in rates of change that may take the form of the Environmental Kuznets Curve (EKC). This study aimed to assess the evidence regarding potential forest transition in Southern Mexico by classifying regional forest cover change using Landsat imagery from 1990 through to 2006. Patterns of forest cover change were found to be complex and non-linear. When rates of forest loss were averaged over 342 municipalities using mixed-effects modelling the results showed a significant (p<0.001) overall reduction of the mean rate of forest loss from 0.85% per year in the 1990–2000 period to 0.67% in the 2000–2006 period. The overall regional annual rate of deforestation has fallen from 0.33% to 0.28% from the 1990s to 2000s. A high proportion of the spatial variability in forest cover change cannot be explained statistically. However analysis using spline based general additive models detected underlying relationships between forest cover and income or population density of a form consistent with the EKC. The incipient forest transition has not, as yet, resulted in widespread reforestation. Forest recovery remains below 0.20% per year. Reforestation is mostly the result of passive processes associated with reductions in the intensity of land use. Deforestation continues to occur at high rates in some focal areas. A transition could be accelerated if there were a broader recognition among policy makers that the regional rate of forest loss has now begun to fall. The changing trajectory provides an opportunity to actively restore forest cover through stimulating afforestation and stimulating more sustainable land use practices. The results have clear implications for policy aimed at carbon sequestration through reducing deforestation and enhancing forest growth. PMID:22905123
Evidence of incipient forest transition in Southern Mexico.
Vaca, Raúl Abel; Golicher, Duncan John; Cayuela, Luis; Hewson, Jenny; Steininger, Marc
2012-01-01
Case studies of land use change have suggested that deforestation across Southern Mexico is accelerating. However, forest transition theory predicts that trajectories of change can be modified by economic factors, leading to spatial and temporal heterogeneity in rates of change that may take the form of the Environmental Kuznets Curve (EKC). This study aimed to assess the evidence regarding potential forest transition in Southern Mexico by classifying regional forest cover change using Landsat imagery from 1990 through to 2006. Patterns of forest cover change were found to be complex and non-linear. When rates of forest loss were averaged over 342 municipalities using mixed-effects modelling the results showed a significant (p<0.001) overall reduction of the mean rate of forest loss from 0.85% per year in the 1990-2000 period to 0.67% in the 2000-2006 period. The overall regional annual rate of deforestation has fallen from 0.33% to 0.28% from the 1990s to 2000s. A high proportion of the spatial variability in forest cover change cannot be explained statistically. However analysis using spline based general additive models detected underlying relationships between forest cover and income or population density of a form consistent with the EKC. The incipient forest transition has not, as yet, resulted in widespread reforestation. Forest recovery remains below 0.20% per year. Reforestation is mostly the result of passive processes associated with reductions in the intensity of land use. Deforestation continues to occur at high rates in some focal areas. A transition could be accelerated if there were a broader recognition among policy makers that the regional rate of forest loss has now begun to fall. The changing trajectory provides an opportunity to actively restore forest cover through stimulating afforestation and stimulating more sustainable land use practices. The results have clear implications for policy aimed at carbon sequestration through reducing deforestation and enhancing forest growth.
Markers of environmental stress in forest trees
Rakesh Minocha
1999-01-01
Gradual long-term changes in soil and environmental factors due to human activity, may affect forest trees and lead to loss of forest productivity. In most cases, the symptoms of stress appear too late for their effects to be reversed through management and/or treatment.
NASA Astrophysics Data System (ADS)
Galletti, Christopher S.
The Dhofar Cloud Forest is one of the most diverse ecosystems on the Arabian Peninsula. As part of the South Arabian Cloud Forest that extends from southern Oman to Yemen, the cloud forest is an important center of endemism and provides valuable ecosystem services to those living in the region. There have been various claims made about the health of the cloud forest and its surrounding region, the most prominent of which are: 1) variability of the Indian Summer Monsoon threatens long-term vegetation health, and 2) human encroachment is causing deforestation and land degradation. This dissertation uses three independent studies to test these claims and bring new insight about the biodiversity of the cloud forest. Evidence is presented that shows that the vegetation dynamics of the cloud forest are resilient to most of the variability in the monsoon. Much of the biodiversity in the cloud forest is dominated by a few species with high abundance and a moderate number of species at low abundance. The characteristic tree species include Anogeissus dhofarica and Commiphora spp. These species tend to dominate the forested regions of the study area. Grasslands are dominated by species associated with overgrazing (Calotropis procera and Solanum incanum). Analysis from a land cover study conducted between 1988 and 2013 shows that deforestation has occurred to approximately 8% of the study area and decreased vegetation fractions are found throughout the region. Areas around the city of Salalah, located close to the cloud forest, show widespread degradation in the 21st century based on an NDVI time series analysis. It is concluded that humans are the primary driver of environmental change. Much of this change is tied to national policies and development priorities implemented after the Dhofar War in the 1970's.
Ren, Yin; Deng, Lu-Ying; Zuo, Shu-Di; Song, Xiao-Dong; Liao, Yi-Lan; Xu, Cheng-Dong; Chen, Qi; Hua, Li-Zhong; Li, Zheng-Wei
2016-09-01
Identifying factors that influence the land surface temperature (LST) of urban forests can help improve simulations and predictions of spatial patterns of urban cool islands. This requires a quantitative analytical method that combines spatial statistical analysis with multi-source observational data. The purpose of this study was to reveal how human activities and ecological factors jointly influence LST in clustering regions (hot or cool spots) of urban forests. Using Xiamen City, China from 1996 to 2006 as a case study, we explored the interactions between human activities and ecological factors, as well as their influences on urban forest LST. Population density was selected as a proxy for human activity. We integrated multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) to develop a database on a unified urban scale. The driving mechanism of urban forest LST was revealed through a combination of multi-source spatial data and spatial statistical analysis of clustering regions. The results showed that the main factors contributing to urban forest LST were dominant tree species and elevation. The interactions between human activity and specific ecological factors linearly or nonlinearly increased LST in urban forests. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. In conclusion, quantitative studies based on spatial statistics and GeogDetector models should be conducted in urban areas to reveal interactions between human activities, ecological factors, and LST. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pasqualini, Vanina; Oberti, Pascal; Vigetta, Stéphanie; Riffard, Olivier; Panaïotis, Christophe; Cannac, Magali; Ferrat, Lila
2011-07-01
Forest management can benefit from decision support tools, including GIS-based multicriteria decision-aiding approach. In the Mediterranean region, Pinus pinaster forests play a very important role in biodiversity conservation and offer many socioeconomic benefits. However, the conservation of this species is affected by the increase in forest fires and the expansion of Matsucoccus feytaudi. This paper proposes a methodology based on commonly available data for assessing the values and risks of P. pinaster forests and to generating maps to aid in decisions pertaining to fire and phytosanitary risk management. The criteria for assessing the values (land cover type, legislative tools for biodiversity conservation, environmental tourist sites and access routes, and timber yield) and the risks (fire and phytosanitation) of P. pinaster forests were obtained directly or by considering specific indicators, and they were subsequently aggregated by means of GIS-based multicriteria analysis. This approach was tested on the island of Corsica (France), and maps to aid in decisions pertaining to fire risk and phytosanitary risk (M. feytaudi) were obtained for P. pinaster forest management. Study results are used by the technical offices of the local administration-Corsican Agricultural and Rural Development Agency (ODARC)-for planning the conservation of P. pinaster forests with regard to fire prevention and safety and phytosanitary risks. The decision maker took part in the evaluation criteria study (weight, normalization, and classification of the values). Most suitable locations are given to target the public intervention. The methodology presented in this paper could be applied to other species and in other Mediterranean regions.
NASA Astrophysics Data System (ADS)
Pasqualini, Vanina; Oberti, Pascal; Vigetta, Stéphanie; Riffard, Olivier; Panaïotis, Christophe; Cannac, Magali; Ferrat, Lila
2011-07-01
Forest management can benefit from decision support tools, including GIS-based multicriteria decision-aiding approach. In the Mediterranean region, Pinus pinaster forests play a very important role in biodiversity conservation and offer many socioeconomic benefits. However, the conservation of this species is affected by the increase in forest fires and the expansion of Matsucoccus feytaudi. This paper proposes a methodology based on commonly available data for assessing the values and risks of P. pinaster forests and to generating maps to aid in decisions pertaining to fire and phytosanitary risk management. The criteria for assessing the values (land cover type, legislative tools for biodiversity conservation, environmental tourist sites and access routes, and timber yield) and the risks (fire and phytosanitation) of P. pinaster forests were obtained directly or by considering specific indicators, and they were subsequently aggregated by means of GIS-based multicriteria analysis. This approach was tested on the island of Corsica (France), and maps to aid in decisions pertaining to fire risk and phytosanitary risk ( M. feytaudi) were obtained for P. pinaster forest management. Study results are used by the technical offices of the local administration— Corsican Agricultural and Rural Development Agency (ODARC)—for planning the conservation of P. pinaster forests with regard to fire prevention and safety and phytosanitary risks. The decision maker took part in the evaluation criteria study (weight, normalization, and classification of the values). Most suitable locations are given to target the public intervention. The methodology presented in this paper could be applied to other species and in other Mediterranean regions.
Sixty-Seven Years of Land-Use Change in Southern Costa Rica.
Zahawi, Rakan A; Duran, Guillermo; Kormann, Urs
2015-01-01
Habitat loss and fragmentation of forests are among the biggest threats to biodiversity and associated ecosystem services in tropical landscapes. We use the vicinity of the Las Cruces Biological Station in southern Costa Rica as a regional case study to document seven decades of land-use change in one of the most intensively studied sites in the Neotropics. Though the premontane wet forest was largely intact in 1947, a wave of immigration in 1952 initiated rapid changes over a short period. Overall forest cover was reduced during each time interval analyzed (1947-1960, 1960-1980, 1980-1997, 1997-2014), although the vast majority of forest loss (>90%) occurred during the first two time intervals (1947-1960, 1960-1980) with an annual deforestation rate of 2.14% and 3.86%, respectively. The rate dropped to <2% thereafter and has been offset by forest recovery in fallow areas more recently, but overall forest cover has continued to decline. Approximately 27.9% of the study area is forested currently. Concomitantly, the region shifted from a single contiguous forest to a series of progressively smaller forest fragments with each successive survey. A strong reduction in the amount of core habitat was paralleled by an increased proportion of edge habitat, due to the irregular shape of many forest fragments. Structural connectivity, however, remains high, with an expansive network of >100 km of linear strips of vegetation within a 3 km radius of the station, which may facilitate landscape-level movement for some species. Despite the extent of forest loss, a substantial number of regional landscape-level studies over the past two decades have demonstrated the persistence of many groups of organisms such as birds and mammals. Nonetheless, the continued decline in the quantity and quality of remaining habitat (~30% of remaining forest is secondary), as well as the threat of an extinction debt (or time lag in species loss), may result in the extirpation of additional species if more proactive conservation measures are not taken to reverse current trends-a pattern that reflects many other tropical regions the world over.
Sixty-Seven Years of Land-Use Change in Southern Costa Rica
Zahawi, Rakan A.; Duran, Guillermo; Kormann, Urs
2015-01-01
Habitat loss and fragmentation of forests are among the biggest threats to biodiversity and associated ecosystem services in tropical landscapes. We use the vicinity of the Las Cruces Biological Station in southern Costa Rica as a regional case study to document seven decades of land-use change in one of the most intensively studied sites in the Neotropics. Though the premontane wet forest was largely intact in 1947, a wave of immigration in 1952 initiated rapid changes over a short period. Overall forest cover was reduced during each time interval analyzed (1947–1960, 1960–1980, 1980–1997, 1997–2014), although the vast majority of forest loss (>90%) occurred during the first two time intervals (1947–1960, 1960–1980) with an annual deforestation rate of 2.14% and 3.86%, respectively. The rate dropped to <2% thereafter and has been offset by forest recovery in fallow areas more recently, but overall forest cover has continued to decline. Approximately 27.9% of the study area is forested currently. Concomitantly, the region shifted from a single contiguous forest to a series of progressively smaller forest fragments with each successive survey. A strong reduction in the amount of core habitat was paralleled by an increased proportion of edge habitat, due to the irregular shape of many forest fragments. Structural connectivity, however, remains high, with an expansive network of >100 km of linear strips of vegetation within a 3 km radius of the station, which may facilitate landscape-level movement for some species. Despite the extent of forest loss, a substantial number of regional landscape-level studies over the past two decades have demonstrated the persistence of many groups of organisms such as birds and mammals. Nonetheless, the continued decline in the quantity and quality of remaining habitat (~30% of remaining forest is secondary), as well as the threat of an extinction debt (or time lag in species loss), may result in the extirpation of additional species if more proactive conservation measures are not taken to reverse current trends–a pattern that reflects many other tropical regions the world over. PMID:26599325
Dennekamp, Martine; Straney, Lahn D; Erbas, Bircan; Abramson, Michael J; Keywood, Melita; Smith, Karen; Sim, Malcolm R; Glass, Deborah C; Del Monaco, Anthony; Haikerwal, Anjali; Tonkin, Andrew M
2015-10-01
Millions of people can potentially be exposed to smoke from forest fires, making this an important public health problem in many countries. In this study we aimed to measure the association between out-of-hospital cardiac arrest (OHCA) and forest fire smoke exposures in a large city during a severe forest fire season, and estimate the number of excess OHCAs due to the fire smoke. We investigated the association between particulate matter (PM) and other air pollutants and OHCA using a case-crossover study of adults (≥ 35 years of age) in Melbourne, Australia. Conditional logistic regression models were used to derive estimates of the percent change in the rate of OHCA associated with an interquartile range (IQR) increase in exposure. From July 2006 through June 2007, OHCA data were collected from the Victorian Ambulance Cardiac Arrest Registry. Hourly air pollution concentrations and meteorological data were obtained from a central monitoring site. There were 2,046 OHCAs with presumed cardiac etiology during our study period. Among men during the fire season, greater increases in OHCA were observed with IQR increases in the 48-hr lagged PM with diameter ≤ 2.5 μm (PM2.5) (8.05%; 95% CI: 2.30, 14.13%; IQR = 6.1 μg/m(3)) or ≤ 10 μm (PM10) (11.1%; 95% CI: 1.55, 21.48%; IQR = 13.7 μg/m(3)) and carbon monoxide (35.7%; 95% CI: 8.98, 68.92%; IQR = 0.3 ppm). There was no significant association between the rate of OHCA and air pollutants among women. One hundred seventy-four "fire-hours" (i.e., hours in which Melbourne's air quality was affected by forest fire smoke) were identified during 12 days of the 2006/2007 fire season, and 23.9 (95% CI: 3.1, 40.2) excess OHCAs were estimated to occur due to elevations in PM2.5 during these fire-hours. This study found an association between exposure to forest fire smoke and an increase in the rate of OHCA. These findings have implications for public health messages to raise community awareness and for planning of emergency services during forest fire seasons.
Cavalheri, Hamanda; Both, Camila; Martins, Marcio
2015-01-01
Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities. PMID:26061038
Cavalheri, Hamanda; Both, Camila; Martins, Marcio
2015-01-01
Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities.
Michael D. Cain; Michael G. Shelton
1996-01-01
The R. R. Reynolds Research Natural Area is a 32-ha pine-hardwood forest in southeastern Arkansas, U.S.A. that originated from diameter-limit cutting of the virgin forest before 1915. In 1935, these 32 ha were reserved from timber management. Between 1937 and 1993, eight inventories were taken of all living trees > g-cm DBH, using 2.5-cm DBH classes within three...
Frederick W. Cubbage; David N. Wear; Zohra Bennadji
2005-01-01
An economic framework is presented for analyzing forest biotechnology with a focus on the case of transgenic forest trees in the southeastern U.S., Uruguay, and South America. Prospective economic benefits of forest biotechnology could reach hundreds of millions of dollars per year, but greatly increased research expenditures will also be required to achieve this...
[Spatial pattern of sub-alpine forest restoration in west Sichuan].
Zhang, Yuandong; Liu, Shirong; Zhao, Changming
2005-09-01
West Sichuan sub-alpine is an extension of Qinghai-Tibet Plateau to southeast China, which is covered mainly with dark coniferous forest. As a result of long-term large scale over-logging, the forests have been greatly reduced and degraded. Nowadays, the forest restoration and regeneration in the region are being highlighted. Selecting Miyaluo as a case study area and employing the methods of plot investigation, ETM image interpretation, and overlaying vegetation map with digital topography, this paper analyzed the relations between the appearance and origin of four forest vegetation types, along with their topography differentiation and spatial patterns after a large scale logging and regeneration. The results showed that the appearance of forest vegetations was significantly correlated with their origin. Old coniferous forests (OC) were primitive ones, middle-aged and young coniferous forests (MYC) were from artificial regeneration, deciduous broadleaf forests (DB) were natural secondary ones, while mixed coniferous and deciduous forests (MCD) were partly from natural secondary ones and others from the conjunct action of artificial and natural regeneration. The main cut area in Miyaluo located in the sites with elevation from 2 800 to 3 600 m, where forest restoration appeared difference among different aspects. MYC was mainly distributed on sunny and half-sunny slope, DB and MCD were distributed on shady and half-shady slope, and OC were reserved on the sites with elevation more than 3 600 m. In the process of forest restoration, the four forest vegetation types were in mosaic pattern, and the landscape was seriously fragmentized.
Hines, James; Powell, Luke L.; Wolfe, Jared D.; Johnson, Erik l.; Nichols, James D.; Stouffer, Phillip C.
2015-01-01
Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with radiotelemetry data to determine the successional stage at which within-day movement probabilities of Amazonian birds in secondary forest are similar to those in primary forest. We radio-tracked three common understory insectivore species in primary and secondary forest at the Biological Dynamics of Forest Fragments project near Manaus, Brazil: two woodcreepers, Glyphorynchus spirurus (n = 19) andXiphorhynchus pardalotus (n = 18), and the terrestrial antthrush Formicarius colma(n = 19). Forest age was a strong predictor of fidelity to a given habitat. All three species showed greater fidelity to primary forest than to 8–14-year-old secondary forest, indicating the latter’s relatively poor quality. The two woodcreeper species used 12–18-year-old secondary forest in a manner comparable to continuous forest, but F. colmaavoided moving even to 27–31-year-old secondary forest—the oldest at our site. Our results suggest that managers concerned with less sensitive species can assume that forest reserves connected by 12–18-year-old secondary forest corridors are effectively connected. On the other hand, >30 years are required after land abandonment before secondary forest serves as a primary forest-like conduit for movement by F. colma; more sensitive terrestrial insectivores may take longer still.
NASA Astrophysics Data System (ADS)
Caldwell, P.; Elliott, K.; Hartsell, A.; Miniat, C.
2016-12-01
Climate change and disturbances are threatening the ability of forested watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Forested watersheds in the eastern US have undergone significant change over the 20th century due to natural and introduced disturbances and a legacy of land use. We hypothesize that changes in forest age and species composition (i.e., forest change) associated with these disturbances may have altered forest water use and thus streamflow (Q) due to inherent differences in transpiration among species and forest ages. To test this hypothesis, we quantified changes in Q from 1960 to 2012 in 202 US Geological Survey forested reference watersheds across the eastern US, and separated the effect of changes in climate from forest change using Auto-Regressive Integrated Moving Average (ARIMA) time series modeling. We linked changes in Q to forest disturbance, forest ages and species composition using the Landsat-based North American Forest Dynamics dataset and plot-level USDA Forest Service Forest Inventory and Analysis (FIA) data. We found that 172 of the 202 sites (85%) exhibited changes in Q not accounted for by climate that we attributed to forest change and/or land use change. Among these, 76 (44%) had declining Q due to forest change (mostly in the southeastern US) while 96 (56%) had increasing Q (mostly in the mid-Atlantic and northeastern US). Across the 172 sites with forest-related changes in Q, 34% had at least 10% of the watershed area disturbed at least once from 1986-2010. In a case study of three watersheds, FIA data indicated that changes in forest structure and species composition explained observed changes in Q beyond climate effects. Our results suggest that forest-related changes in Q may have significant implications for water supply in the region and may inform forest management strategies to mitigate climate change impacts on water resources.
NASA Technical Reports Server (NTRS)
Sadowski, F. E.; Sarno, J. E.
1976-01-01
First, an analysis of forest feature signatures was used to help explain the large variation in classification accuracy that can occur among individual forest features for any one case of spatial resolution and the inconsistent changes in classification accuracy that were demonstrated among features as spatial resolution was degraded. Second, the classification rejection threshold was varied in an effort to reduce the large proportion of unclassified resolution elements that previously appeared in the processing of coarse resolution data when a constant rejection threshold was used for all cases of spatial resolution. For the signature analysis, two-channel ellipse plots showing the feature signature distributions for several cases of spatial resolution indicated that the capability of signatures to correctly identify their respective features is dependent on the amount of statistical overlap among signatures. Reductions in signature variance that occur in data of degraded spatial resolution may not necessarily decrease the amount of statistical overlap among signatures having large variance and small mean separations. Features classified by such signatures may thus continue to have similar amounts of misclassified elements in coarser resolution data, and thus, not necessarily improve in classification accuracy.
Maco, Vicente; Maguiña, Ciro; Tirado, Antonio; Maco, Vicente; Vidal, José E
2004-01-01
Bartonellosis or Carrion's disease is endemic in some regions of Peru, classically found in the inter-Andean valleys located between 500 and 3200 meters above sea level. We report the case of a 43 year-old male patient, farmer, who was born in the Pichanaki district (Chanchamayo, Junin), located in the High Forest of Peru. He presented with disseminated, raised, erythematous cutaneous lesions, some of which bled. The distribution of these lesions included the nasal mucosa and penile region. Additionally subcutaneous nodules were distributed over the trunk and extremities. Hematologic exams showed a moderate anemia. Serologic studies for HIV and Treponema pallidum were negative. The histopathologic results of two biopsies were compatible with Peruvian wart. Oral treatment with ciprofloxacin (500 mg BID) was begun. Over 10 days, the patient showed clinical improvement. This is the first report of a confirmed case of bartonellosis in the eruptive phase originating from the Peruvian High Forest, showing the geographical expansion of the Carrion's disease.
Approaches to modeling landscape-scale drought-induced forest mortality
Gustafson, Eric J.; Shinneman, Douglas
2015-01-01
Drought stress is an important cause of tree mortality in forests, and drought-induced disturbance events are projected to become more common in the future due to climate change. Landscape Disturbance and Succession Models (LDSM) are becoming widely used to project climate change impacts on forests, including potential interactions with natural and anthropogenic disturbances, and to explore the efficacy of alternative management actions to mitigate negative consequences of global changes on forests and ecosystem services. Recent studies incorporating drought-mortality effects into LDSMs have projected significant potential changes in forest composition and carbon storage, largely due to differential impacts of drought on tree species and interactions with other disturbance agents. In this chapter, we review how drought affects forest ecosystems and the different ways drought effects have been modeled (both spatially and aspatially) in the past. Building on those efforts, we describe several approaches to modeling drought effects in LDSMs, discuss advantages and shortcomings of each, and include two case studies for illustration. The first approach features the use of empirically derived relationships between measures of drought and the loss of tree biomass to drought-induced mortality. The second uses deterministic rules of species mortality for given drought events to project changes in species composition and forest distribution. A third approach is more mechanistic, simulating growth reductions and death caused by water stress. Because modeling of drought effects in LDSMs is still in its infancy, and because drought is expected to play an increasingly important role in forest health, further development of modeling drought-forest dynamics is urgently needed.
A hydroeconomic modeling framework for optimal integrated management of forest and water
NASA Astrophysics Data System (ADS)
Garcia-Prats, Alberto; del Campo, Antonio D.; Pulido-Velazquez, Manuel
2016-10-01
Forests play a determinant role in the hydrologic cycle, with water being the most important ecosystem service they provide in semiarid regions. However, this contribution is usually neither quantified nor explicitly valued. The aim of this study is to develop a novel hydroeconomic modeling framework for assessing and designing the optimal integrated forest and water management for forested catchments. The optimization model explicitly integrates changes in water yield in the stands (increase in groundwater recharge) induced by forest management and the value of the additional water provided to the system. The model determines the optimal schedule of silvicultural interventions in the stands of the catchment in order to maximize the total net benefit in the system. Canopy cover and biomass evolution over time were simulated using growth and yield allometric equations specific for the species in Mediterranean conditions. Silvicultural operation costs according to stand density and canopy cover were modeled using local cost databases. Groundwater recharge was simulated using HYDRUS, calibrated and validated with data from the experimental plots. In order to illustrate the presented modeling framework, a case study was carried out in a planted pine forest (Pinus halepensis Mill.) located in south-western Valencia province (Spain). The optimized scenario increased groundwater recharge. This novel modeling framework can be used in the design of a "payment for environmental services" scheme in which water beneficiaries could contribute to fund and promote efficient forest management operations.
Aricak, Burak
2015-07-01
Forest roads are essential for transport in managed forests, yet road construction causes environmental disturbance, both in the surface area the road covers and in erosion and downslope deposition of road fill material. The factors affecting the deposition distance of eroded road fill are the slope gradient and the density of plant cover. Thus, it is important to take these factors into consideration during road planning to minimize their disturbance. The aim of this study was to use remote sensing and field surveying to predict the locations that would be affected by downslope deposition of eroding road fill and to compile the data into a geographic information system (GIS) database. The construction of 99,500 m of forest roads is proposed for the Kastamonu Regional Forest Directorate in Turkey. Using GeoEye satellite images and a digital elevation model (DEM) for the region, the location and extent of downslope deposition of road fill were determined for the roads as planned. It was found that if the proposed roads were constructed by excavators, the fill material would cover 910,621 m(2) and the affected surface area would be 1,302,740 m(2). Application of the method used here can minimize the adverse effects of forest roads.
NASA Astrophysics Data System (ADS)
Pham, Trinh Hung
Monitoring hydrological behavior of a large tropical watershed following a forest cover variation has an important role in water resource management planning as well as for forest sustainable management. Traditional methods in forest hydrology studies are Experimental watersheds, Upstream-downstream, Experimental plots, Statistical regional analysis and Watershed simulation. Those methodes have limitations for large watersheds concerning the monitoring time, the lack of input data especially about forest cover and the capacity of extrapolating results accurately in terms of large watersheds. Moreover, there is still currently a scientific debate in forest ecology on relation between water and forest. The reason of this problem comes from geographical differences in publication concerning study zones, experimental watershed size and applied methods. It gives differences in the conclusions on the influence of tropical forest cover change on the changes of outlet water and yet on the yearly runoff in terms of large watershed. In order to exceed the limitations of actual methods, to solve the difficulty of acquiring forest cover data and to have a better understanding of the relation between tropical forest cover change and hydrological behavior evolution of a large watershed, it is necessary to develop a new approach by using numeric remote sensing. We used the watershed of Dong Nai as a case study. Results show that a fusion between TM and ETM+ Landsat image series and hydro-meteorologic data allow us to observe and detect flooding trends and flooding peaks after an intensive forest cover change from 16% to 20%. Flooding frequency and flooding peaks have clearly decreased when there is an increase of the forest cover from 1983 to 1990. The influence of tropical forest cover on the hydrological behavior is varying with geographical locations of watershed. There is a significant relation between forest cover evolution and environmental facteurs as the runoff coefficient (R = 0,87) and the yearly precipitation (R = 0,93).
The soil hydrologic response to forest regrowth: a case study from southwestern Amazonia
NASA Astrophysics Data System (ADS)
Godsey, Sarah; Elsenbeer, Helmut
2002-05-01
As a large and dynamic land-use category, tropical secondary forests may affect climate, soils, and hydrology in a manner different from primary forests or agricultural areas. We investigated the saturated hydraulic conductivity Ksat of a Kandiudult under different land uses in Rondonia, Brazil. We measured Ksat at four depths (12·5, 20, 30 and 50 cm) under (a) primary forest, (b) a former banana-cacao plantation (SF1), and (c) an abandoned pasture (SF2). At 12·5 cm, all three land uses differ significantly ( = 0·1), but not at the 20 and 30 cm depths. At 50 cm, Ksat was significantly greater in the former pasture than in other land uses. Lateral subsurface flow is expected during intense rainfall (about 30 times per year) at 30 cm depth in SF1 and at 50 cm depth in the forest, whereas the relatively low permeability at shallow 12·5 cm in the SF2 may result not only in lateral subsurface flow, but also saturation overland flow. For modelling purposes, recovering systems seem to have Ksat values distinct from primary forest at shallow depths, whereas at deeper layers (>20 cm) they may be considered similar to forests.
Venter, Oscar; Koh, Lian Pin
2012-02-01
Reducing emissions from deforestation and forest degradation (REDD+) provides financial compensation to land owners who avoid converting standing forests to other land uses. In this paper, we review the main opportunities and challenges for REDD+ implementation, including expectations for REDD+ to deliver on multiple environmental and societal cobenefits. We also highlight a recent case study, the Norway-Indonesia REDD+ agreement and discuss how it might be a harbinger of outcomes in other forest-rich nations seeking REDD+ funds. Looking forward, we critically examine the fundamental assumptions of REDD+ as a solution for the atmospheric buildup of greenhouse gas emissions and tropical deforestation. We conclude that REDD+ is currently the most promising mechanism driving the conservation of tropical forests. Yet, to emerge as a true game changer, REDD+ must still demonstrate that it can access low transaction cost and high-volume carbon markets or funds, while also providing or complimenting a suite of nonmonetary incentives to encourage a developing nation's transition from forest losing to forest gaining, and align with, not undermine, a globally cohesive attempt to mitigate anthropogenic climate change. © 2012 New York Academy of Sciences.
Technology transfer for ecosystem management
Tim O' Keefe
1995-01-01
In many parts of our country today, forest health and sustainability are important management questions. Some individuals and groups have observed that during the past century the emphasis in American forest management on commodity production has, in many cases, contributed to a unhealthy forest landscape. For example, the forestland in eastern Oregon has considerably...
Ozone stress has become an increasingly significant factor in cases of forest decline reported throughout the world. Current metrics to estimate ozone exposure for forest trees are derived from atmospheric concentrations and assume that the forest is physiologically active at ...
43 CFR 2650.1 - Provisions for interim administration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... forest fire protection services from the United States at no cost. The Secretary will promulgate criteria... substantial revenues are accruing as to lands for which forest fire protection services are furnished by the... Interior, or by the Secretary of Agriculture in the case of national forest lands, as provided by section...
Brooks, R.A.; Bell, S.S.
2005-01-01
A descriptive study of the architecture of the red mangrove, Rhizophora mangle L., habitat of Tampa Bay, FL, was conducted to assess if plant architecture could be used to discriminate overwash from fringing forest type. Seven above-water (e.g., tree height, diameter at breast height, and leaf area) and 10 below-water (e.g., root density, root complexity, and maximum root order) architectural features were measured in eight mangrove stands. A multivariate technique (discriminant analysis) was used to test the ability of different models comprising above-water, below-water, or whole tree architecture to classify forest type. Root architectural features appear to be better than classical forestry measurements at discriminating between fringing and overwash forests but, regardless of the features loaded into the model, misclassification rates were high as forest type was only correctly classified in 66% of the cases. Based upon habitat architecture, the results of this study do not support a sharp distinction between overwash and fringing red mangrove forests in Tampa Bay but rather indicate that the two are architecturally undistinguishable. Therefore, within this northern portion of the geographic range of red mangroves, a more appropriate classification system based upon architecture may be one in which overwash and fringing forest types are combined into a single, "tide dominated" category. ?? 2005 Elsevier Ltd. All rights reserved.
A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.
Mascaro, Joseph; Asner, Gregory P; Knapp, David E; Kennedy-Bowdoin, Ty; Martin, Roberta E; Anderson, Christopher; Higgins, Mark; Chadwick, K Dana
2014-01-01
Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging)-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area) for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag"), which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1) when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.
NASA Astrophysics Data System (ADS)
Rice, J.; Joyce, L. A.; Armel, B.; Bevenger, G.; Zubic, R.
2011-12-01
Climate change introduces a significant challenge for land managers and decision makers managing the natural resources that provide many benefits from forests. These benefits include water for urban and agricultural uses, wildlife habitat, erosion and climate control, aquifer recharge, stream flows regulation, water temperature regulation, and cultural services such as outdoor recreation and aesthetic enjoyment. The Forest Service has responded to this challenge by developing a national strategy for responding to climate change (the National Roadmap for Responding to Climate Change, July 2010). In concert with this national strategy, the Forest Service's Westwide Climate Initiative has conducted 4 case studies on individual Forests in the western U.S to develop climate adaptation tools. Western National Forests are particularly vulnerable to climate change as they have high-mountain topography, diversity in climate and vegetation, large areas of water limited ecosystems, and increasing urbanization. Information about the vulnerability and capacity of resources to adapt to climate change and extremes is lacking. There is an urgent need to provide customized tools and synthesized local scale information about the impacts to resources from future climate change and extremes, as well as develop science based adaptation options and strategies in National Forest management and planning. The case study on the Shoshone National Forest has aligned its objectives with management needs by developing a climate extreme vulnerability tool that guides adaptation options development. The vulnerability tool determines the likely degree to which native Yellowstone cutthroat trout and water availability are susceptible to, or unable to cope with adverse effects of climate change extremes. We spatially categorize vulnerability for water and native trout resources using exposure, sensitivity, and adaptive capacity indicators that use minimum and maximum climate and GIS data. Results show that the vulnerability of water availability may increase in areas that have less storage and become more dominated by rain instead of snow. Native trout habitat was found to improve in some areas from warmer temperatures suggesting future refugia habitat may need to be a focus of conservation efforts. The climate extreme vulnerability tool provides Forest Service resource managers science based information that guides adaptation strategy development; prioritize conservation projects; guides monitoring efforts, and helps promote more resilient ecosystems undergoing the effects of climate change.
NASA Astrophysics Data System (ADS)
García, Mariano; Saatchi, Sassan; Ustin, Susan; Balzter, Heiko
2018-04-01
Spatially-explicit information on forest structure is paramount to estimating aboveground carbon stocks for designing sustainable forest management strategies and mitigating greenhouse gas emissions from deforestation and forest degradation. LiDAR measurements provide samples of forest structure that must be integrated with satellite imagery to predict and to map landscape scale variations of forest structure. Here we evaluate the capability of existing satellite synthetic aperture radar (SAR) with multispectral data to estimate forest canopy height over five study sites across two biomes in North America, namely temperate broadleaf and mixed forests and temperate coniferous forests. Pixel size affected the modelling results, with an improvement in model performance as pixel resolution coarsened from 25 m to 100 m. Likewise, the sample size was an important factor in the uncertainty of height prediction using the Support Vector Machine modelling approach. Larger sample size yielded better results but the improvement stabilised when the sample size reached approximately 10% of the study area. We also evaluated the impact of surface moisture (soil and vegetation moisture) on the modelling approach. Whereas the impact of surface moisture had a moderate effect on the proportion of the variance explained by the model (up to 14%), its impact was more evident in the bias of the models with bias reaching values up to 4 m. Averaging the incidence angle corrected radar backscatter coefficient (γ°) reduced the impact of surface moisture on the models and improved their performance at all study sites, with R2 ranging between 0.61 and 0.82, RMSE between 2.02 and 5.64 and bias between 0.02 and -0.06, respectively, at 100 m spatial resolution. An evaluation of the relative importance of the variables in the model performance showed that for the study sites located within the temperate broadleaf and mixed forests biome ALOS-PALSAR HV polarised backscatter was the most important variable, with Landsat Tasselled Cap Transformation components barely contributing to the models for two of the study sites whereas it had a significant contribution at the third one. Over the temperate conifer forests, Landsat Tasselled Cap variables contributed more than the ALOS-PALSAR HV band to predict the landscape height variability. In all cases, incorporation of multispectral data improved the retrieval of forest canopy height and reduced the estimation uncertainty for tall forests. Finally, we concluded that models trained at one study site had higher uncertainty when applied to other sites, but a model developed from multiple sites performed equally to site-specific models to predict forest canopy height. This result suggest that a biome level model developed from several study sites can be used as a reliable estimator of biome-level forest structure from existing satellite imagery.
NASA Astrophysics Data System (ADS)
García-Santos, Glenda; Madruga de Brito, Mariana; Höllermann, Britta; Taft, Linda; Almoradie, Adrian; Evers, Mariele
2018-06-01
Understanding the interactions between water resources and its social dimensions is crucial for an effective and sustainable water management. The identification of sensitive control variables and feedback loops of a specific human-hydro-scape can enhance the knowledge about the potential factors and/or agents leading to the current water resources and ecosystems situation, which in turn supports the decision-making process of desirable futures. Our study presents the utility of a system dynamics modeling approach for water management and decision-making for the case of a forest ecosystem under risk of wildfires. We use the pluralistic water research concept to explore different scenarios and simulate the emergent behaviour of water interception and net precipitation after a wildfire in a forest ecosystem. Through a case study, we illustrate the applicability of this new methodology.
Welsh, H.H.; Droege, S.
2001-01-01
Terrestrial salamanders of the family P!ethodontidae have unique attributes that make them excellent indicators of biodiversity and ecosystem integrity in forested habitats. Their longevity, small territory size, site fidelity, sensitivity to natural and anthropogenic perturbations, tendency to occur in high densities, and low sampling costs mean that counts of plethodontid salamanders provide numerous advantages over counts of other North American forest organisms for indicating environmental change. Furthermore, they are tightly linked physiologically to microclimatic and successional processes that influence the distribution and abundance of numerous other hydrophilic but difficult-to-study forest-dwelling plants and animals. Ecosystem processes such as moisture cycling, food-web dynamics, and succession, with their related structural and microclimatic variability, all affect forest biodiversity and have been shown to affect salamander populations as well. We determined the variability associated with sampling for plethodontid salamanders by estimating the coefficient of variation (CV) from available time-series data. The median coefficient of variation indicated that variation in counts of individuals among studies was much lower in plethodonticis (27%) than in lepidoptera (93%), passerine birds (57%), small mammals (69%), or other amphibians (37-46%), which means plethodontid salamanders provide an important statistical advantage over other species for monitoring long-term forest health.
A Common-Pool Resource Approach to Forest Health: The Case of the Southern Pine Beetle
John Schelhas; Joseph Molnar
2012-01-01
The southern pine beetle, Dendroctonus frontalis, is a major threat to pine forest health in the South, and is expected to play an increasingly important role in the future of the Southâs pine forests (Ward and Mistretta 2002). Once a forest stand is infected with southern pine beetle (SPB), elimination and isolation of the infested and immediately...
Alvarez, Nora L; Naughton-Treves, Lisa
2003-06-01
Amazonian deforestation rates vary regionally, and ebb and flow according to macroeconomic policy and local social factors. We used remote sensing and field interviews to investigate deforestation patterns and drivers at a Peruvian frontier during 1986-1991, when rural credit and guaranteed markets were available; and 1991-1997, when structural adjustment measures were imposed. The highest rate of clearing (1.5% gross) was observed along roads during 1986-1991. Roadside deforestation slowed in 1991-1997 (0.7% gross) and extensive regrowth yielded a net increase in forest cover (0.5%). Deforestation along rivers was relatively constant. Riverside farms today retain more land in both crops and forest than do roadside farms where pasture and successional growth predominate. Long-term residents maintain more forest on their farms than do recent colonists, but proximity to urban markets is the strongest predictor of forest cover. Future credit programs must reflect spatial patterns of development and ecological vulnerability, and support the recuperation of fallow lands and secondary forest.
Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi
2017-01-01
Fire has become a common feature in tropical drained peatlands, and it may have detrimental impacts on the overall biodiversity of the forest ecosystem. We investigated the effect of fire on termite and ant assemblages and the importance of remnant forest in restoring species diversity in fire-impacted tropical peat swamp forests. The species loss of both termites and ants was as high as 50% in some fire-impacted peats compared to remnant forests, but in most cases the species richness for termites and ants was statistically equal along the land uses surveyed. However, a pronounced difference in functional group composition of termites was detected. In particular, sites close to remnant forests contained two additional termite feeding groups so that they shared a similar composition structure with remnant forests but were significantly different from sites distant from remnant forests. In general, ants were resilient to fire, and the similarity index showed a high degree of similarity among ant communities in all land uses surveyed. The Shannon diversity index for termites and ants decreased with increasing distance from the remnant forests and level of ecological degradation. Peat vegetation variables and ecological degradation were important in shaping termite and ant communities in the tropical peatlands, but their relative importance was not significant in fire-impacted peats regardless of distance from the remnant forests. This study highlights the importance of remnant forests as a biodiversity repository and natural buffer that can enhance species diversity and recolonization of forest-adapted species.
Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi
2017-01-01
Fire has become a common feature in tropical drained peatlands, and it may have detrimental impacts on the overall biodiversity of the forest ecosystem. We investigated the effect of fire on termite and ant assemblages and the importance of remnant forest in restoring species diversity in fire-impacted tropical peat swamp forests. The species loss of both termites and ants was as high as 50% in some fire-impacted peats compared to remnant forests, but in most cases the species richness for termites and ants was statistically equal along the land uses surveyed. However, a pronounced difference in functional group composition of termites was detected. In particular, sites close to remnant forests contained two additional termite feeding groups so that they shared a similar composition structure with remnant forests but were significantly different from sites distant from remnant forests. In general, ants were resilient to fire, and the similarity index showed a high degree of similarity among ant communities in all land uses surveyed. The Shannon diversity index for termites and ants decreased with increasing distance from the remnant forests and level of ecological degradation. Peat vegetation variables and ecological degradation were important in shaping termite and ant communities in the tropical peatlands, but their relative importance was not significant in fire-impacted peats regardless of distance from the remnant forests. This study highlights the importance of remnant forests as a biodiversity repository and natural buffer that can enhance species diversity and recolonization of forest-adapted species. PMID:28334021
Ziter, Carly; Bennett, Elena M; Gonzalez, Andrew
2014-11-01
Edge effects are among the primary mechanisms by which forest fragmentation can influence the link between biodiversity and ecosystem processes, but relatively few studies have quantified these mechanisms in temperate regions. Carbon storage is an important ecosystem function altered by edge effects, with implications for climate change mitigation. Two opposing hypotheses suggest that aboveground carbon (AGC) stocks at the forest edge will (a) decrease due to increased tree mortality and compositional shifts towards smaller, lower wood density species (e.g., as seen in tropical systems) or, less often, (b) increase due to light/temperature-induced increases in diversity and productivity. We used field-based measurements, allometry, and mixed models to investigate the effects of proximity to the forest edge on AGC stocks, species richness, and community composition in 24 forest fragments in southern Quebec. We also asked whether fragment size or connectivity with surrounding forests altered these edge effects. AGC stocks remained constant across a 100 m edge-to-interior gradient in all fragment types, despite changes in tree community composition and stem density consistent with expectations of forest edge effects. We attribute this constancy primarily to compensatory effects of small trees at the forest edge; however, it is due in some cases to the retention of large trees at forest edges, likely a result of forest management. Our results suggest important differences between temperate and tropical fragments with respect to mechanisms linking biodiversity and AGC dynamics. Small temperate forest fragments may be valuable in conservation efforts based on maintaining biodiversity and multiple ecosystem services.
Remote Characterization of Biomass Measurements: Case Study of Mangrove Forests
NASA Technical Reports Server (NTRS)
Fatoyinbo, Temilola E.
2010-01-01
Accurately quantifying forest biomass is of crucial importance for climate change studies. By quantifying the amount of above and below ground biomass and consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon sequestration, emission and storage and help close the carbon budget. Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 animal species, are also an important sink of biomass. Although they only constitute about 3% of the total forested area globally, their carbon storage capacity -- in forested biomass and soil carbon -- is greater than that of tropical forests (Lucas et al, 2007). In addition, the amount of mangrove carbon -- in the form of litter and leaves exported into offshore areas is immense, resulting in over 10% of the ocean's dissolved organic carbon originating from mangroves (Dittmar et al, 2006) The measurement of forest above ground biomass is carried out on two major scales: on the plot scale, biomass can be measured using field measurements through allometric equation derivation and measurements of forest plots. On the larger scale, the field data are used to calibrate remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, biomass can be calculated using average stand biomass values and optical data, such as aerial photography or satellite images (Landsat, Modis, Ikonos, SPOT, etc.). More recent studies have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, Airsar) and/or lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate and detailed measurements of forest biomass. The implementation of a generation of new active sensors (UAVSar, DesdynI, Alos/Palsar, TerraX) has prompted the development of new tecm'liques of biomass estimation that use the combination of multiple sensors and datasets, to quantify past, current and future biomass stocks. Focusing on mangrove forest biomass estimation, this book chapter has 3 main objectives: a) To describe in detail the field methodologies used to derive accurate estimates of biomass in mangrove forests b) To explain how mangrove forest biomass can be measured using several remote sensing techniques and datasets c) To give a detailed explanation of the measurement challenges and errors that arise in each estimate of forest biomass
Sharma, Mohit; Areendran, G; Raj, Krishna; Sharma, Ankita; Joshi, P K
2016-10-01
Forests in the mountains are a treasure trove; harbour a large biodiversity; and provide fodder, firewood, timber and non-timber forest products; all of these are essential for human survival in the highest mountains on earth. The present paper attempts a spatiotemporal assessment of forest fragmentation and changes in land use land cover (LULC) pattern using multitemporal satellite data over a time span of around a decade (2000-2009), within the third highest protected area (PA) in the world. The fragmentation analysis using Landscape Fragmentation Tool (LFT) depicts a decrease in large core, edge and patches areas by 5.93, 3.64 and 0.66 %, respectively, while an increase in non-forest and perforated areas by 6.59 and 4.01 %, respectively. The land cover dynamics shows a decrease in open forest, alpine scrub, alpine meadows, snow and hill shadow areas by 2.81, 0.39, 8.18, 3.46 and 0.60 %, respectively, and there is an increase in dense forest and glacier area by 4.79 and 10.65 %, respectively. The change analysis shows a major transformation in areas from open forest to dense forest and from alpine meadows to alpine scrub. In order to quantify changes induced by forest fragmentation and to characterize composition and configuration of LULC mosaics, fragmentation indices were computed using Fragstats at class level, showing the signs of accelerated fragmentation. The outcome of the analysis revealed the effectiveness of geospatial tools coupled with landscape ecology in characterization and quantification of forest fragmentation and land cover changes. The present study provides a baseline database for sustainable conservation planning that will benefit the subsistence livelihoods in the region. Recommendations made based on the present analysis will help to recover forest and halt the pessimistic effects of fragmentation and land cover changes on biodiversity and ecosystem services in the region.
Eco-psychiatry and Environmental Conservation: Study from Sundarban Delta, India
Chowdhury, Arabinda N.; Mondal, Ranajit; Brahma, Arabinda; Biswas, Mrinal K.
2008-01-01
Aims: This study attempts to examine the extent and impact of human-animal conflicts visa-vis psychosocial stressors and mental health of affected people in two villages adjacent to Sundarban Reserve Forest (SRF) in the Gosaba Block, West Bengal, India. Methods: Door to door household survey for incidents of human-animal conflicts, Focus Group Discussions, In-depth Interviews, Case studies, Community Mental health clinics and participatory observation. Results: A total of 3084 households covering a population of 16,999 were surveyed. 32.8% people live on forest-based occupation. During the last 15 years 111 persons (male 83, female 28) became victims of animal attacks, viz, Tiger (82%), Crocodile (10.8%) and Shark (7.2%) of which 73.9% died. In 94.5% cases the conflict took place in and around the SRF during livelihood activities. Tracking of 66 widows, resulted from these conflicts, showed that majority of them (51.%) are either disabled or in a very poor health condition, 40.9% are in extreme economic stress and only 10.6% remarried. 1 widow committed suicide and 3 attempted suicide. A total of 178 persons (male 82, female 96) attended the community mental health clinics. Maximum cases were Major Depressive Disorder (14.6%), followed by Somatoform Pain Disorder (14.0%), Post Traumatic Stress Disorder-animal attack related (9.6%) and Adjustment Disorder (9%). 11.2% cases had history of deliberate self-harm attempt, of which 55% used pesticides. Conclusions: Improvement of quality of life of this deltaic population by appropriate income generation and proper bio-forest management are the key factors to save their life as well as the mangrove environment of the Sundarban region. PMID:21572831
Eco-psychiatry and Environmental Conservation: Study from Sundarban Delta, India.
Chowdhury, Arabinda N; Mondal, Ranajit; Brahma, Arabinda; Biswas, Mrinal K
2008-09-12
This study attempts to examine the extent and impact of human-animal conflicts visa-vis psychosocial stressors and mental health of affected people in two villages adjacent to Sundarban Reserve Forest (SRF) in the Gosaba Block, West Bengal, India. Door to door household survey for incidents of human-animal conflicts, Focus Group Discussions, In-depth Interviews, Case studies, Community Mental health clinics and participatory observation. A total of 3084 households covering a population of 16,999 were surveyed. 32.8% people live on forest-based occupation. During the last 15 years 111 persons (male 83, female 28) became victims of animal attacks, viz, Tiger (82%), Crocodile (10.8%) and Shark (7.2%) of which 73.9% died. In 94.5% cases the conflict took place in and around the SRF during livelihood activities. Tracking of 66 widows, resulted from these conflicts, showed that majority of them (51.%) are either disabled or in a very poor health condition, 40.9% are in extreme economic stress and only 10.6% remarried. 1 widow committed suicide and 3 attempted suicide. A total of 178 persons (male 82, female 96) attended the community mental health clinics. Maximum cases were Major Depressive Disorder (14.6%), followed by Somatoform Pain Disorder (14.0%), Post Traumatic Stress Disorder-animal attack related (9.6%) and Adjustment Disorder (9%). 11.2% cases had history of deliberate self-harm attempt, of which 55% used pesticides. Improvement of quality of life of this deltaic population by appropriate income generation and proper bio-forest management are the key factors to save their life as well as the mangrove environment of the Sundarban region.
NASA Astrophysics Data System (ADS)
van Lent, J.; Hergoualc'h, K.; Verchot, L. V.
2015-12-01
Deforestation and forest degradation in the tropics may substantially alter soil N-oxide emissions. It is particularly relevant to accurately quantify those changes to properly account for them in a REDD+ climate change mitigation scheme that provides financial incentives to reduce the emissions. With this study we provide updated land use (LU)-based emission rates (104 studies, 392 N2O and 111 NO case studies), we determine the trend and magnitude of flux changes with land-use change (LUC) using a meta-analysis approach (44 studies, 135 N2O and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission changes for the tropics. The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2 (n = 90) and 1.7 ± 0.5 (n = 36) kg N ha-1 yr-1, respectively. In agricultural soils annual N2O emissions were exponentially related to N fertilization rates and average water-filled pore space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better with the observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N2O to NO increased exponentially and significantly with increasing nitrogen availability (expressed as NO3- / [NO3-+NH4+]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe model. Nitrous and nitric oxide fluxes did not increase significantly overall as a result of LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19, respectively), however individual LUC trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland forest conversion to croplands (Hedges's d = 0.78 ± 0.24) and NO increased significantly following the conversion of low forest cover (secondary forest younger than 30 years, woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems significantly and highly raised both N2O and NO emission rates (Hedges's d of 1.03 ± 0.23 and 0.52 ± 0.09, respectively). Changes in nitrogen availability and WFPS were the main factors explaining changes in N2O emissions following LUC, therefore it is important that experimental designs monitor their spatio-temporal variation. Gaps in the literature on N oxide fluxes included geographical gaps (Africa, Oceania) and LU gaps (degraded forest, wetland (notably peat) forest, oil palm plantation and soy cultivation).
NASA Astrophysics Data System (ADS)
van Lent, J.; Hergoualc'h, K.; Verchot, L. V.
2015-08-01
Deforestation and forest degradation in the tropics may substantially alter soil N-oxide emissions. It is particularly relevant to accurately quantify those changes to properly account for them in a REDD+ climate change mitigation scheme that provides financial incentives to reduce the emissions. With this study we provide updated land use (LU)-based emission rates (103 studies, 387 N2O and 111 NO case studies), determine the trend and magnitude of flux changes with land-use change (LUC) using a meta-analysis approach (43 studies, 132 N2O and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission changes for the tropics. The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2 (n = 88) and 1.7 ± 0.5 (n = 36) kg N ha-1 yr-1, respectively. In agricultural soils annual N2O emissions were exponentially related to N fertilization rates and average water-filled pore space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better the observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N2O to NO increased exponentially and significantly with increasing nitrogen availability (expressed as NO3-/[NO3-+NH4+]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe model. Nitrous and nitric oxide fluxes did not overall increase significantly as a result of LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19, respectively), however individual LUC trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland forest conversion to croplands (Hedges's d = 0.78 ± 0.24) and NO increased significantly following the conversion of low forest cover (secondary forest younger than 30 years, woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems significantly and highly raised both N2O and NO emission rates (Hedges's d of 1.03 ± 0.23 and 0.52 ± 0.09, respectively). Changes in nitrogen availability and WFPS were the main factors explaining changes in N2O emissions following LUC, therefore it is important that experimental designs monitor their spatio-temporal variation. Gaps in the literature on N oxide fluxes included geographical gaps (Africa, Oceania) and LU gaps (degraded forest, wetland (notably peat) forest, oil palm plantation and soy cultivation).
NASA Astrophysics Data System (ADS)
Agafonova, Oxana; Avramenko, Anna; Chaudhari, Ashvinkumar; Hellsten, Antti
2016-09-01
Large Eddy Simulations (LES) are carried out using OpenFOAM to investigate the canopy created velocity inflection in the wake development of a large wind turbine array. Simulations are performed for two cases with and without forest separately. Results of the simulations are further compared to clearly show the changes in the wake and turbulence structure due to the forest. Moreover, the actual mechanical shaft power produced by a single turbine in the array is calculated for both cases. Aerodynamic efficiency and power losses due to the forest are discussed as well.
Trish Flaster
2001-01-01
Sustainability, as defined by Charles Peters (1994), means having a greater abundance of mixed ages of keystone plant species growing than being harvested within a forest. In this presentation, I hope to demonstrate, through case studies, not only how sustainability is indeed ecologically what Dr. Peters said, but also how it is enriched and further sustained by the...
Gabriel Y Galán, Jose María; Murciano, Antonio; Sirvent, Laure; Sánchez, Abel; Watkins, James E
2018-01-01
Ferns are an important component of ecosystems around the world. Studies of the impacts that global changes may have on ferns are scarce, yet emerging studies indicate that some species may be particularly sensitive to climate change. The lack of research in this subject is much more aggravated in the case of epiphytes, and especially those that live under temperate climates. A mathematical model was developed for two temperate epiphytic ferns in order to predict potential impacts on spore germination kinetics, in response to different scenarios of global change, coming from increasing temperature and forest fragmentation. Our results show that an increasing temperature will have a negative impact over the populations of these temperate epiphytic ferns. Under unfragmented forests the germination percentage was comparatively less influenced than in fragmented patches. This study highlight that, in the long term, populations of the studied epiphytic temperate ferns may decline due to climate change. Overall, epiphytic fern communities will suffer changes in diversity, richness and dominance. Our study draws attention to the role of ferns in epiphytic communities of temperate forests, emphasizing the importance of considering these plants in any conservation strategy, specifically forest conservation. From a methodological point of view, the model we propose could be easily used to dynamically monitor the status of ecosystems, allowing the quick prediction of possible future scenarios, which is a crucial issue in biodiversity conservation decision-making.
Lucas, Christine M; Sheikh, Pervaze; Gagnon, Paul R; Mcgrath, David G
2016-01-01
The contribution of working forests to tropical conservation and development depends upon the maintenance of ecological integrity under ongoing land use. Assessment of ecological integrity requires an understanding of the structure, composition, and function and major drivers that govern their variability. Working forests in tropical river floodplains provide many goods and services, yet the data on the ecological processes that sustain these services is scant. In flooded forests of riverside Amazonian communities, we established 46 0.1-ha plots varying in flood duration, use by cattle and water buffalo, and time since agricultural abandonment (30-90 yr). We monitored three aspects of ecological integrity (stand structure, species composition, and dynamics of trees and seedlings) to evaluate the impacts of different trajectories of livestock activity (alleviation, stasis, and intensification) over nine years. Negative effects of livestock intensification were solely evident in the forest understory, and plots alleviated from past heavy disturbance increased in seedling density but had higher abundance of thorny species than plots maintaining low activity. Stand structure, dynamics, and tree species composition were strongly influenced by the natural pulse of seasonal floods, such that the defining characteristics of integrity were dependent upon flood duration (3-200 d). Forests with prolonged floods ≥ 140 d had not only lower species richness but also lower rates of recruitment and species turnover relative to forests with short floods <70 d. Overall, the combined effects of livestock intensification and prolonged flooding hindered forest regeneration, but overall forest integrity was largely related to the hydrological regime and age. Given this disjunction between factors mediating canopy and understory integrity, we present a subset of metrics for regeneration and recruitment to distinguish forest condition by livestock trajectory. Although our study design includes confounded factors that preclude a definitive assessment of the major drivers of ecological change, we provide much-needed data on the regrowth of a critical but poorly studied ecosystem. In addition to its emphasis on the dynamics of tropical wetland forests undergoing anthropogenic and environmental change, our case study is an important example for how to assess of ecological integrity in working forests of tropical ecosystems.
NASA Astrophysics Data System (ADS)
Kiefer, Michael T.; Zhong, Shiyuan; Heilman, Warren E.; Charney, Joseph J.; Bian, Xindi
2018-03-01
An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is utilized in a series of idealized numerical experiments to investigate the influence of vertical canopy structure on the atmospheric response to a stationary sensible heat flux at the ground ("fire heat flux"), broadly consistent in magnitude with the sensible heat flux from a low-intensity surface fire. Five vertical canopy structures are combined with five fire heat flux magnitudes to yield a matrix of 25 simulations. Analyses of the fire-heat-flux-perturbed u component of the wind, vertical velocity, kinetic energy, and temperature show that the spatial pattern and magnitude of the perturbations are sensitive to vertical canopy structure. Both vertical velocity and kinetic energy exhibit an increasing trend with increasing fire heat flux that is stronger for cases with some amount of overstory vegetation than cases with exclusively understory vegetation. A weaker trend in cases with exclusively understory vegetation indicates a damping of the atmospheric response to the sensible heat from a surface fire when vegetation is most concentrated near the surface. More generally, the results presented in this study suggest that canopy morphology should be considered when applying the results of a fire-atmosphere interaction study conducted in one type of forest to other forests with different canopy structures.
Rapid mapping of hurricane damage to forests
Erik M. Nielsen
2009-01-01
The prospects for producing rapid, accurate delineations of the spatial extent of forest wind damage were evaluated using Hurricane Katrina as a test case. A damage map covering the full spatial extent of Katrina?s impact was produced from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery using higher resolution training data. Forest damage...
Management strategies for bark beetles in conifer forests
Christopher Fettig; Jacek Hilszczański
2015-01-01
Several species of bark beetles (Coleoptera: Curculionidae, Scolytinae) are capable of causing significant amounts of tree mortality in conifer forests throughout much of the world. In most cases, these events are part of the ecology of conifer forests and positively influence many ecological processes, but the economic and social implications can be...
Case study: Prioritization strategies for reforestation of minelands to benefit Cerulean Warblers
McDermott, Molly E.; Shumar, Matthew B.; Wood, Petra Bohall
2013-01-01
The central Appalachian landscape is being heavily altered by surface coal mining. The practice of Mountaintop Removal/Valley Fill (MTRVF) mining has transformed large areas of mature forest to non-forest and created much forest edge, affecting habitat quality for mature forest wildlife. The Appalachian Regional Reforestation Initiative is working to restore mined areas to native hardwood forest conditions, and strategies are needed to prioritize restoration efforts for wildlife. We present mineland reforestation guidelines for the imperiled Cerulean Warbler, considered a useful umbrella species, in its breeding range. In 2009, we surveyed forest predicted to have Cerulean Warblers near mined areas in the MTRVF region of West Virginia and Kentucky. We visited 36 transect routes and completed songbird surveys on 151 points along these routes. Cerulean Warblers were present at points with fewer large-scale canopy disturbances and more mature oak-hickory forest. We tested the accuracy of a predictive map for this species and demonstrated that it can be useful to guide reforestation efforts. We then developed a map of hot spot locations that can be used to determine potential habitat suitability. Restoration efforts would have greatest benefit for Cerulean Warblers and other mature forest birds if concentrated near a relative-abundance hot spot, on north- and east-facing ridgetops surrounded by mature deciduous forest, and prioritized to reduce edges and connect isolated forest patches. Our multi-scale approach for prioritizing restoration efforts using an umbrella species may be applied to restore habitat impacted by a variety of landscape disturbances.
ERIC Educational Resources Information Center
Dixon, Shauna G.; Eusebio, Eleazar C.; Turton, William J.; Wright, Peter W. D.; Hale, James B.
2011-01-01
The 2009 "Forest Grove School District v. T.A." United States Supreme Court case could have significant implications for school psychology practice. The Court ruled that the parents of a student with a disability were entitled to private school tuition reimbursement even though T.A. had not been identified with a disability or previously…
Quantifying the effect of forests on frequency and intensity of rockfalls
NASA Astrophysics Data System (ADS)
Moos, Christine; Dorren, Luuk; Stoffel, Markus
2017-02-01
Forests serve as a natural means of protection against small rockfalls. Due to their barrier effect, they reduce the intensity and the propagation probability of falling rocks and thus reduce the occurrence frequency of a rockfall event for a given element at risk. However, despite established knowledge on the protective effect of forests, they are generally neglected in quantitative rockfall risk analyses. Their inclusion in quantitative rockfall risk assessment would, however, be necessary to express their efficiency in monetary terms and to allow comparison of forests with other protective measures, such as nets and dams. The goal of this study is to quantify the effect of forests on the occurrence frequency and intensity of rockfalls. We therefore defined an onset frequency of blocks based on a power-law magnitude-frequency distribution and determined their propagation probabilities on a virtual slope based on rockfall simulations. Simulations were run for different forest and non-forest scenarios under varying forest stand and terrain conditions. We analysed rockfall frequencies and intensities at five different distances from the release area. Based on two multivariate statistical prediction models, we investigated which of the terrain and forest characteristics predominantly drive the role of forest in reducing rockfall occurrence frequency and intensity and whether they are able to predict the effect of forest on rockfall risk. The rockfall occurrence frequency below forested slopes is reduced between approximately 10 and 90 % compared to non-forested slope conditions; whereas rockfall intensity is reduced by 10 to 70 %. This reduction increases with increasing slope length and decreases with decreasing tree density, tree diameter and increasing rock volume, as well as in cases of clustered or gappy forest structures. The statistical prediction models reveal that the cumulative basal area of trees, block volume and horizontal forest structure represent key variables for the prediction of the protective effect of forests. In order to validate these results, models have to be tested on real slopes with a wide variation of terrain and forest conditions.
NASA Astrophysics Data System (ADS)
Pungkul, S.; Suraswasdi, C.; Phonekeo, V.
2014-02-01
The Great Mekong Subregion (GMS) contains one of the world's largest tropical forests and plays a vital role in sustainable development and provides a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. However, the forest in this Subregion is experiencing deforestation rates at high level due to human activities. The reduction of the forest area has negative influence to the environmental and natural resources issues, particularly, more severe disasters have occurred due to global warming and the release of the greenhouse gases. Therefore, in order to conduct forest management in the Subregion efficiently, the Forest Cover and Carbon Mapping in Greater Mekong Subregion and Malaysia project was initialized by the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation (APFNet) with the collaboration of various research institutions including Institute of Forest Resource Information Technique (IFRIT), Chinese Academy of Forestry (CAF) and the countries in Sub region and Malaysia comprises of Cambodia, the People's Republic of China (Yunnan province and Guangxi province), Lao People's Democratic Republic, Malaysia, Myanmar, Thailand, and Viet Nam. The main target of the project is to apply the intensive use of recent satellite remote sensing technology, establishing regional forest cover maps, documenting forest change processes and estimating carbon storage in the GMS and Malaysia. In this paper, the authors present the implementation of the project in Thailand and demonstrate the result of forest cover mapping in the whole country in 2005 and 2010. The result of the project will contribute towards developing efficient tools to support decision makers to clearly understand the dynamic change of the forest cover which could benefit sustainable forest resource management in Thailand and the whole Subregion.
Wheeler, David C.; Burstyn, Igor; Vermeulen, Roel; Yu, Kai; Shortreed, Susan M.; Pronk, Anjoeka; Stewart, Patricia A.; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Silverman, Debra T.; Friesen, Melissa C.
2014-01-01
Objectives Evaluating occupational exposures in population-based case-control studies often requires exposure assessors to review each study participants' reported occupational information job-by-job to derive exposure estimates. Although such assessments likely have underlying decision rules, they usually lack transparency, are time-consuming and have uncertain reliability and validity. We aimed to identify the underlying rules to enable documentation, review, and future use of these expert-based exposure decisions. Methods Classification and regression trees (CART, predictions from a single tree) and random forests (predictions from many trees) were used to identify the underlying rules from the questionnaire responses and an expert's exposure assignments for occupational diesel exhaust exposure for several metrics: binary exposure probability and ordinal exposure probability, intensity, and frequency. Data were split into training (n=10,488 jobs), testing (n=2,247), and validation (n=2,248) data sets. Results The CART and random forest models' predictions agreed with 92–94% of the expert's binary probability assignments. For ordinal probability, intensity, and frequency metrics, the two models extracted decision rules more successfully for unexposed and highly exposed jobs (86–90% and 57–85%, respectively) than for low or medium exposed jobs (7–71%). Conclusions CART and random forest models extracted decision rules and accurately predicted an expert's exposure decisions for the majority of jobs and identified questionnaire response patterns that would require further expert review if the rules were applied to other jobs in the same or different study. This approach makes the exposure assessment process in case-control studies more transparent and creates a mechanism to efficiently replicate exposure decisions in future studies. PMID:23155187
Energy from wood waste - A case study
NASA Technical Reports Server (NTRS)
Scola, R.; Daughtrey, K.
1980-01-01
A joint study has been conducted by NASA and Army installations collocated in a dense forest in southwestern Mississippi in order to determine the technical and economic feasibility of using wood waste as a renewable energy source. The study has shown that, with proper forest management, the timber on government lands could eventually support the total energy requirements of 832 billion Btu/yr. Analysis of the current conversion technologies indicates that the direct combustion spreader stoker approach is the best demonstrated technology for this specific application. The economics of the individual powerplants reveal them as attractive alternatives to fossil fueled plants. Environmental aspects are also discussed.
Towards a network of Urban Forest Eddy Covariance stations: a unique case study in Naples
NASA Astrophysics Data System (ADS)
Guidolotti, Gabriele; Pallozzi, Emanuele; Esposito, Raffaela; Mattioni, Michele; Calfapietra, Carlo
2015-04-01
Urban forests are by definition integrated in highly human-made areas, and interact with different components of our cities. Thanks to those interactions, urban forests provide to people and to the urban environment a number of ecosystem services, including the absorption of CO2 and air pollutants thus influencing the local air quality. Moreover, in urban areas a relevant role is played by the photochemical pollution which is strongly influenced by the interactions between volatile organic compounds (VOC) and nitrogen oxides (NOx). In several cities, a high percentage of VOC is of biogenic origin mainly emitted from the urban trees. Despite their importance, experimental sites monitoring fluxes of trace gases fluxes in urban forest ecosystems are still scarce. Here we show the preliminary results of an innovative experimental site located in the Royal Park of Capodimonte within the city of Naples (40°51'N-14°15'E, 130 m above sea level). The site is mainly characterised by Quercus ilex with some patches of Pinus pinea and equipped with an eddy-covariance tower measuring the exchange of CO2, H2O, N2O, CH4, O3, PM, VOCs and NOx using state-of-the art instrumentations; it is running since the end of 2014 and it is part of the large infrastructural I-AMICA project. We suggest that the experience gained with research networks such as Fluxnet and ICOS should be duplicated for urban forests. This is crucial for carbon as there is now the ambition to include urban forests in the carbon stocks accounting system. This is even more important to understand the difficult interactions between anthropogenic and biogenic sources that often have negative implications for urban air quality. Urban environment can thus become an extraordinary case study and a network of such kind of stations might represent an important strategy both from the scientific and the applicative point of view.
Adapting forest to climate change in drylands: the Portuguese case-study
NASA Astrophysics Data System (ADS)
Branquinho, Cristina; Príncipe, Adriana; Nunes, Alice; Kobel, Melanie; Soares, Cristina; Vizinho, André; Serrano, Helena Cristina; Pinho, Pedro
2017-04-01
The recent expansion of the semiarid climate to all the region of the south of Portugal and the growing impact of climate change demands local adaptation. The growth of the native forest represents a strategy at the ecosystem level to adapt to climate change since it increases resilience and increases also de delivery of ecosystem services such as the increment of organic matter in the soil, carbon and nitrogen, biodiversity, water infiltration, etc. Moreover, decreases susceptibility to desertification. For that reason, large areas have been reforested in the south of Portugal with the native species holm oak and cork oak but with a low rate of effectiveness. Our goal in this work is to show how the cost-benefit relation of the actions intended to expand the forest of the Portuguese semiarid can be lowered by taking into account the microclimatic conditions and high spatial resolution management. The potential of forest regeneration was modelled at the local and regional level in the semiarid area using information concerning the Potential Solar Radiation. This model gives us the rate of native forest regeneration after a disturbance with high spatial resolution. Based on this model the territory was classified in: i) easy regeneration areas; ii) areas with the need of assisted reforestation, using methods that increase water and soil conservation; iii) areas of difficult reforestation because of the costs. Additionally, a summary of the success of reforestations was made in the historical semiarid since the 60s based on the evaluation of a series of case studies, where we quantified the ecosystem services currently delivered by the reforested ecosystems. We will discuss and propose a strategy for forests to adapt to climate change scenario in dryland Portugal. Acknowledgement: Programa Adapt: financed by EEA Grants and Fundo Português de Carbono and by FCT-MEC project PTDC/AAG-GLO/0045/2014.
Microwave dielectric properties of boreal forest trees
NASA Technical Reports Server (NTRS)
Xu, G.; Ahern, F.; Brown, J.
1993-01-01
The knowledge of vegetation dielectric behavior is important in studying the scattering properties of the vegetation canopy and radar backscatter modelling. Until now, a limited number of studies have been published on the dielectric properties in the boreal forest context. This paper presents the results of the dielectric constant as a function of depth in the trunks of two common boreal forest species: black spruce and trembling aspen, obtained from field measurements. The microwave penetration depth for the two species is estimated at C, L, and P bands and used to derive the equivalent dielectric constant for the trunk as a whole. The backscatter modelling is carried out in the case of black spruce and the results are compared with the JPL AIRSAR data. The sensitivity of the backscatter coefficient to the dielectric constant is also examined.
NASA Astrophysics Data System (ADS)
Zagyvai-Kiss, Katalin Anita; Kalicz, Péter; Csáfordi, Péter; Kucsara, Mihály; Gribovszki, Zoltán
2013-04-01
Precipitation is trapped and temporarily stored by the surfaces of forest crown (canopy interception) and forest litter (litter interception). The stemflow and throughfall reach the litter, thus theoretically the litter moisture content depends on these parts of precipitation. Nowadays the moisture pattern of the forest floor, both spatial and temporal scale, have growing respect for the forestry. The transition to the continuous cover forestry induce much higher variability compared to the even aged, more-less homogeneous, monocultural stands. The gap cutting is one of the key methods in the Hungarian forestry. There is an active discussion among the forest professionals how to determine the optimal gap size to maintain the optimal conditions for the seedlings. Among the open questions is how to modify surrounding trees the moisture pattern of the forest floor in the gap? In the early steps of a multidisciplinary project we processed some available data, to estimate the spatial dependency between the water content of forest litter and the spatial pattern of the canopy represented by the tree trunk. The maximum water content depends on dry weight of litter, thus we also analysed that parameter. Data were measured in three different forest ecosystems: a middle age beech (Fagus sylvatica), a sessile oak (Quercus petraea) and a spruce (Picea abies) stand. The study site (Hidegvíz Valley Research Cathcment) is located in Sopron Hills at the eastern border of the Alps. Litter samples were collected under each stand (occasionally 10-10 pieces from 40?40 cm area) and locations of the samples and neighbouring trees were mapped. We determined dry weight and the water content of litter in laboratory. The relationship between water content and the distance of tree trunks in case of spruce and oak stands were not significant and in case of the beech stand was weakly significant. Climate change effects can influence significantly forest floor moisture content, therefore this factor has also taken into account. Acknowledgement: The research was financially supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and TÁMOP-4.2.2.A-11/1/KONV-2012-0013 joint EU-national research projects.
Gomes, J F P; Radovanovic, M
2008-05-01
Fires of large dimension destroy forests, harvests and housing objects. Apart from that combustion products and burned surfaces become large ecological problems. Very often fires emerge simultaneously on different locations of a region so a question could be asked if they always have been a consequence of negligence, pyromania, high temperatures or maybe there has been some other cause. This paper is an attempt of establishing the possible connection between forest fires that numerous satellites registered and activities happening on the Sun immediately before fires ignite. Fires emerged on relatively large areas from Portugal and Spain on August 2005, as well as on other regions of Europe. The cases that have been analyzed show that, in every concrete situation, an emission of strong electromagnetic and thermal corpuscular energy from highly energetic regions that were in geo-effective position had preceded the fires. Such emissions have, usually, very high energy and high speeds of particles and come from coronary holes that also have been either in the very structure or in the immediate closeness of the geo-effective position. It should also be noted that the solar wind directed towards the Earth becomes weaker with deeper penetration towards the topographic surface. However, the results presented in this paper suggest that, there is a strong causality relationship between solar activity and the ignition of these forest fires taking place in South-western Europe.
Recent advances in applying decision science to managing national forests
Marcot, Bruce G.; Thompson, Matthew P.; Runge, Michael C.; Thompson, Frank R.; McNulty, Steven; Cleaves, David; Tomosy, Monica; Fisher, Larry A.; Andrew, Bliss
2012-01-01
Management of federal public forests to meet sustainability goals and multiple use regulations is an immense challenge. To succeed, we suggest use of formal decision science procedures and tools in the context of structured decision making (SDM). SDM entails four stages: problem structuring (framing the problem and defining objectives and evaluation criteria), problem analysis (defining alternatives, evaluating likely consequences, identifying key uncertainties, and analyzing tradeoffs), decision point (identifying the preferred alternative), and implementation and monitoring the preferred alternative with adaptive management feedbacks. We list a wide array of models, techniques, and tools available for each stage, and provide three case studies of their selected use in National Forest land management and project plans. Successful use of SDM involves participation by decision-makers, analysts, scientists, and stakeholders. We suggest specific areas for training and instituting SDM to foster transparency, rigor, clarity, and inclusiveness in formal decision processes regarding management of national forests.
Prescribed fire as a means of reducing forest carbon emissions in the western United States.
Wiedinmyer, Christine; Hurteau, Matthew D
2010-03-15
Carbon sequestration by forested ecosystems offers a potential climate change mitigation benefit. However, wildfire has the potential to reverse this benefit In the western United States, climate change and land management practices have led to increases in wildfire intensity and size. One potential means of reducing carbon emissions from wildfire is the use of prescribed burning,which consumes less biomass and therefore releases less carbon to the atmosphere. This study uses a regional fire emissions model to estimate the potential reduction in fire emissions when prescribed burning is applied in dry, temperate forested systems of the western U.S. Daily carbon dioxide (CO(2)) fire emissions for 2001-2008 were calculated for the western U.S. for two cases: a default wildfire case and one in which prescribed burning was applied. Wide-scale prescribed fire application can reduce CO(2) fire emissions for the western U.S. by 18-25%1 in the western U.S., and by as much as 60% in specific forest systems. Although this work does not address important considerations such as the feasibility of implementing wide-scale prescribed fire management or the cumulative emissions from repeated prescribed burning, it does provide constraints on potential carbon emission reductions when prescribed burning is used.
Yolasığmaz, Hacı Ahmet; Keleş, Sedat
2009-01-01
In Turkey, the understanding of planning focused on timber production has given its place on Multiple Use Management (MUM). Because the whole infrastructure of forestry with inventory system leading the way depends on timber production, some cases of bottle neck are expected during the transition period. Database design, probably the most important stage during the transition to MUM, together with the digital basic maps making up the basis of this infrastructure constitute the main point of this article. Firstly, the forest management philosophy of Turkey in the past was shortly touched upon in the article. Ecosystem Based Multiple Use Forest Management (EBMUFM) approaches was briefly introduced. The second stage of the process of EBMUFM, database design was described by examining the classical planning infrastructure and the coverage to be produced and consumed were suggested in the form of lists. At the application stage, two different geographical databases were established with GIS in Balcı Planning Unit of the years 1984 and 2006. Following that the related basic maps are produced. Timely diversity of the planning unit of 20 years is put forward comparatively with regard to the stand parameters such as tree types, age class, development stage, canopy closure, mixture, volume and increment.
[Regenerative morphological traits in a woody species community in Tumbesian tropical dry forest].
Romero-Saritama, José Miguel; Pérez-Rúuz, César
2016-06-01
The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary morphological traits occur among the studied woody plants of the Tumbesian dry forest. The latter favors a plethora of behavioral mechanisms to coexist among woody species of the dry forest in response to the environmental stress that is typical of arid areas.
Trends of Forest Dynamics in Tiger Landscapes Across Asia
NASA Astrophysics Data System (ADS)
Mondal, Pinki; Nagendra, Harini
2011-10-01
Protected areas (PAs) are cornerstones of biodiversity conservation, but small parks alone cannot support wide-ranging species, such as the tiger. Hence, forest dynamics in the surrounding landscapes of PAs are also important to tiger conservation. Tiger landscapes often support considerable human population in proximity of the PA, sometimes within the core itself, and thus are subject to various land use activities (such as agricultural expansion and road development) driving habitat loss and fragmentation. We synthesize information from 27 journal articles in 24 tiger landscapes to assess forest-cover dynamics in tiger-range countries. Although 29% of the PAs considered in this study have negligible change in overall forest cover, approximately 71% are undergoing deforestation and fragmentation. Approximately 58% of the total case studies have human settlements within the core area. Most changes—including agricultural expansion, plantation, and farming (52%), fuelwood and fodder collection (43%), logging (38%), grazing (38%), and tourism and development (10%)—can be attributed to human impacts largely linked to the nature of the management regime. This study highlights the need for incorporating new perspectives, ideas, and lessons learned locally and across borders into management plans to ensure tiger conservation in landscapes dominated by human activities. Given the increasing isolation of most parks due to agricultural, infrastructural, and commercial developments at the periphery, it is imperative to conduct planning and evaluation at the landscape level, as well as incorporate multiple actors and institutions in planning, instead of focusing solely on conservation within the PAs as is currently the case in most tiger parks.
Trends of forest dynamics in tiger landscapes across Asia.
Mondal, Pinki; Nagendra, Harini
2011-10-01
Protected areas (PAs) are cornerstones of biodiversity conservation, but small parks alone cannot support wide-ranging species, such as the tiger. Hence, forest dynamics in the surrounding landscapes of PAs are also important to tiger conservation. Tiger landscapes often support considerable human population in proximity of the PA, sometimes within the core itself, and thus are subject to various land use activities (such as agricultural expansion and road development) driving habitat loss and fragmentation. We synthesize information from 27 journal articles in 24 tiger landscapes to assess forest-cover dynamics in tiger-range countries. Although 29% of the PAs considered in this study have negligible change in overall forest cover, approximately 71% are undergoing deforestation and fragmentation. Approximately 58% of the total case studies have human settlements within the core area. Most changes-including agricultural expansion, plantation, and farming (52%), fuelwood and fodder collection (43%), logging (38%), grazing (38%), and tourism and development (10%)-can be attributed to human impacts largely linked to the nature of the management regime. This study highlights the need for incorporating new perspectives, ideas, and lessons learned locally and across borders into management plans to ensure tiger conservation in landscapes dominated by human activities. Given the increasing isolation of most parks due to agricultural, infrastructural, and commercial developments at the periphery, it is imperative to conduct planning and evaluation at the landscape level, as well as incorporate multiple actors and institutions in planning, instead of focusing solely on conservation within the PAs as is currently the case in most tiger parks.
Foster, Jane R; D'Amato, Anthony W
2015-12-01
Ecotones are transition zones that form, in forests, where distinct forest types meet across a climatic gradient. In mountains, ecotones are compressed and act as potential harbingers of species shifts that accompany climate change. As the climate warms in New England, USA, high-elevation boreal forests are expected to recede upslope, with northern hardwood species moving up behind. Yet recent empirical studies present conflicting findings on this dynamic, reporting both rapid upward ecotonal shifts and concurrent increases in boreal species within the region. These discrepancies may result from the limited spatial extent of observations. We developed a method to model and map the montane forest ecotone using Landsat imagery to observe change at scales not possible for plot-based studies, covering mountain peaks over 39 000 km(2) . Our results show that ecotones shifted downward or stayed stable on most mountains between 1991 and 2010, but also shifted upward in some cases (13-15% slopes). On average, upper ecotone boundaries moved down -1.5 m yr(-1) in the Green Mountains, VT, and -1.3 m yr(-1) in the White Mountains, NH. These changes agree with remeasured forest inventory data from Hubbard Brook Experimental Forest, NH, and suggest that processes of boreal forest recovery from prior red spruce decline, or human land use and disturbance, may swamp out any signal of climate-mediated migration in this ecosystem. This approach represents a powerful framework for evaluating similar ecotonal dynamics in other mountainous regions of the globe. © 2015 John Wiley & Sons Ltd.
Collins, Ross D; de Neufville, Richard; Claro, João; Oliveira, Tiago; Pacheco, Abílio P
2013-11-30
Forest fires are a serious management challenge in many regions, complicating the appropriate allocation to suppression and prevention efforts. Using a System Dynamics (SD) model, this paper explores how interactions between physical and political systems in forest fire management impact the effectiveness of different allocations. A core issue is that apparently sound management can have unintended consequences. An instinctive management response to periods of worsening fire severity is to increase fire suppression capacity, an approach with immediate appeal as it directly treats the symptom of devastating fires and appeases the public. However, the SD analysis indicates that a policy emphasizing suppression can degrade the long-run effectiveness of forest fire management. By crowding out efforts to preventative fuel removal, it exacerbates fuel loads and leads to greater fires, which further balloon suppression budgets. The business management literature refers to this problem as the firefighting trap, wherein focus on fixing problems diverts attention from preventing them, and thus leads to inferior outcomes. The paper illustrates these phenomena through a case study of Portugal, showing that a balanced approach to suppression and prevention efforts can mitigate the self-reinforcing consequences of this trap, and better manage long-term fire damages. These insights can help policymakers and fire managers better appreciate the interconnected systems in which their authorities reside and the dynamics that may undermine seemingly rational management decisions. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, J.; Nathan, R.; Horne, A.
2017-12-01
Traditional approaches to characterize water-dependent ecosystem outcomes in response to flow have been based on time-averaged hydrological indicators, however there is increasing recognition for the need to characterize ecological processes that are highly dependent on the sequencing of flow conditions (i.e. floods and droughts). This study considers the representation of flow regimes when considering assessment of ecological outcomes, and in particular, the need to account for sequencing and variability of flow. We conducted two case studies - one in the largely unregulated Ovens River catchment and one in the highly regulated Murray River catchment (both located in south-eastern Australia) - to explore the importance of flow sequencing to the condition of a typical long-lived ecological asset in Australia, the River Red Gum forests. In the first, the Ovens River case study, the implications of representing climate change using different downscaling methods (annual scaling, monthly scaling, quantile mapping, and weather generator method) on the sequencing of flows and resulting ecological outcomes were considered. In the second, the Murray River catchment, sequencing within a historic drought period was considered by systematically making modest adjustments on an annual basis to the hydrological records. In both cases, the condition of River Red Gum forests was assessed using an ecological model that incorporates transitions between ecological conditions in response to sequences of required flow components. The results of both studies show the importance of considering how hydrological alterations are represented when assessing ecological outcomes. The Ovens case study showed that there is significant variation in the predicted ecological outcomes when different downscaling techniques are applied. Similarly, the analysis in the Murray case study showed that the drought as it historically occurred provided one of the best possible outcomes for River Red Gum forests when compared to other re-arrangements of flow within the same drought. These results have implications for the way we represent climate change impacts and drought risk assessments where ecological outcomes are a key management objective.
NASA Astrophysics Data System (ADS)
Ren, Y.
2017-12-01
Context Land surface temperatures (LSTs) spatio-temporal distribution pattern of urban forests are influenced by many ecological factors; the identification of interaction between these factors can improve simulations and predictions of spatial patterns of urban cold islands. This quantitative research requires an integrated method that combines multiple sources data with spatial statistical analysis. Objectives The purpose of this study was to clarify urban forest LST influence interaction between anthropogenic activities and multiple ecological factors using cluster analysis of hot and cold spots and Geogdetector model. We introduced the hypothesis that anthropogenic activity interacts with certain ecological factors, and their combination influences urban forests LST. We also assumed that spatio-temporal distributions of urban forest LST should be similar to those of ecological factors and can be represented quantitatively. Methods We used Jinjiang as a representative city in China as a case study. Population density was employed to represent anthropogenic activity. We built up a multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) on a unified urban scale to support urban forest LST influence interaction research. Through a combination of spatial statistical analysis results, multi-source spatial data, and Geogdetector model, the interaction mechanisms of urban forest LST were revealed. Results Although different ecological factors have different influences on forest LST, in two periods with different hot spots and cold spots, the patch area and dominant tree species were the main factors contributing to LST clustering in urban forests. The interaction between anthropogenic activity and multiple ecological factors increased LST in urban forest stands, linearly and nonlinearly. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. Conclusions In conclusion, a combination of spatial statistics and GeogDetector models should be effective for quantitatively evaluating interactive relationships among ecological factors, anthropogenic activity and LST.
Does Evapotranspiration Increase When Forests are converted to Grasslands?
NASA Astrophysics Data System (ADS)
Varcoe, Robert; Sterling, Shannon
2017-04-01
The conversion of forests to grasslands (FGC) is a widespread land cover change (LCC) and is also among the most commonly studied changes with respect to its impact on ET; such research employs a variety of experimental approaches, including, paired catchment (PC), Budyko and land surface models (LSM), and measurement methods, including the catchment water balance (CWB), eddy covariance (EC) and remote sensing (RS). Until recently, there has been consensus in the scientific literature that rates of ET decrease when a forest is converted to grassland; however, this consensus has recently come into question. Williams (2012) applied the Budyko framework to a global network of eddy covariance measurements with the results that grasslands have a 9% greater evaporative index than forests. In addition, HadGEM2, a recent Hadley Centre LSM, produced increased ET in the northern Amazon Basin after simulating global scale tropical deforestation (Brovkin et al., 2015). Here we present an analysis of available estimates of how ET rates change with FGC to increase our understanding of the forest - grassland-ET paradigm. We used two datasets to investigate the impacts land cover change on ET. I compiled a dataset of change in ET with land cover change (ΔETLCC) using published experiments that compare forest and grassland ET under conditions controlled for meteorological and landscape influences. Using the ΔETLCC dataset, we show that, in all cases, forest ET is higher than grassland under controlled conditions. Results suggest that the eddy covariance method measures smaller changes in ET when forests are converted to grasslands, though more data are needed for this result to be statistically significant. Finally, GETA2.0, a new global dataset of annual ET, projects that forest ET is greater than grassland, except at high latitudes and areas where orography influences precipitation (P). The data included in this study represent the data available on forest and grassland ET comparison and reveal an important gap in the scientific literature: the lack of data available regarding forest to grassland LCC.
Cultural landscapes of the Araucaria Forests in the northern plateau of Santa Catarina, Brazil.
Machado Mello, Anna Jacinta; Peroni, Nivaldo
2015-06-09
The Araucaria Forest is associated with the Atlantic Forest domain and is a typical ecosystem of southern Brazil. The expansion of Araucaria angustifolia had a human influence in southern Brazil, where historically hunter-gatherer communities used the pinhão, araucaria's seed, as a food source. In the north of the state of Santa Catarina, the Araucaria Forest is a mosaic composed of cultivation and pasture inserted between forest fragments, where pinhão and erva-mate are gathered; some local communities denominate these forest ecotopes as caívas. Therefore, the aim of this study is to understand how human populations transform, manage and conserve landscapes using the case study of caívas from the Araucaria Forests of southern Brazil, as well as to evaluate the local ecological knowledge and how these contribute to conservation of the Araucaria Forest. This study was conducted in the northern plateau of the state of Santa Catarina, Brazil in local five communities. To assess ethnoecological perceptions the historical use and management of caívas, semi-structured interviews, checklist interviews and guided tours were conducted with family units. In total 28 family units participated in the study that had caívas on their properties. During the course of the study two main perceptions of the ecotope caíva were found, there is no consensus to the exact definition; perception of caívas is considered a gradient. In general caívas are considered to have the presence of cattle feeding on native pasture, with denser forest area that is managed, and the presence of specific species. Eleven management practices within caívas were found, firewood collection, cattle grazing, trimming of the herbaceous layer, and erva-mate extraction were the most common. Caívas are perceived and defined through the management practices and native plant resources. All participants stated that there have been many changes to the management practices within caívas and to the caíva itself. These areas still remain today due to cultural tradition, use and management of plant resources. Through this cultural tradition of maintaining caívas the vegetation of the Araucaria Forest has been conserved associated to the use of the Araucaria Forests native plant resources.
Naumov, Vladimir; Manton, Michael; Elbakidze, Marine; Rendenieks, Zigmars; Priednieks, Janis; Uhlianets, Siarhei; Yamelynets, Taras; Zhivotov, Anton; Angelstam, Per
2018-07-15
There are currently competing demands on Europe's forests and the finite resources and services that they can offer. Forestry intensification that aims at mitigating climate change and biodiversity conservation is one example. Whether or not these two objectives compete can be evaluated by comparative studies of forest landscapes with different histories. We test the hypothesis that indicators of wood production and biodiversity conservation are inversely related in a gradient of long to short forestry intensification histories. Forest management data containing stand age, volume and tree species were used to model the opportunity for wood production and biodiversity conservation in five north European forest regions representing a gradient in landscape history from very long in the West and short in the East. Wood production indicators captured the supply of coniferous wood and total biomass, as well as current accessibility by transport infrastructure. Biodiversity conservation indicators were based on modelling habitat network functionality for focal bird species dependent on different combinations of stand age and tree species composition representing naturally dynamic forests. In each region we randomly sampled 25 individual 100-km 2 areas with contiguous forest cover. Regarding wood production, Sweden's Bergslagen region had the largest areas of coniferous wood, followed by Vitebsk in Belarus and Zemgale in Latvia. NW Russia's case study regions in Pskov and Komi had the lowest values, except for the biomass indicator. The addition of forest accessibility for transportation made the Belarusian and Swedish study region most suitable for wood and biomass production, followed by Latvia and two study regions in NW Russian. Regarding biodiversity conservation, the overall rank among regions was opposite. Mixed and deciduous habitats were functional in Russia, Belarus and Latvia. Old Scots pine and Norway spruce habitats were only functional in Komi. Thus, different regional forest histories provide different challenges in terms of satisfying both wood production and biodiversity conservation objectives in a forest management unit. These regional differences in northern Europe create opportunities for exchanging experiences among different regional contexts about how to achieve both objectives. We discuss this in the context of land-sharing versus land-sparing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kutzbach, J.-E.; Bartlein, P.J.; Foley, J.A.; Harrison, S.P.; Hosteller, S.W.; Liu, Z.; Prentice, I.C.; Webb, T.
1996-01-01
Previous climate model simulations have shown that the configuration of the Earth's orbit during the early to mid-Holocene (approximately 10-5 kyr) can account for the generally warmer-than-present conditions experienced by the high latitudes of the northern hemisphere. New simulations for 6 kyr with two atmospheric/mixed-layer ocean models (Community Climate Model, version 1, CCM1, and Global ENvironmental and Ecological Simulation of Interactive Systems, version 2, GENESIS 2) are presented here and compared with results from two previous simulations with GENESIS 1 that were obtained with and without the albedo feedback due to climate-induced poleward expansion of the boreal forest. The climate model results are summarized in the form of potential vegetation maps obtained with the global BIOME model, which facilitates visual comparisons both among models and with pollen and plant macrofossil data recording shifts of the forest-tundra boundary. A preliminary synthesis shows that the forest limit was shifted 100-200 km north in most sectors. Both CCM1 and GENESIS 2 produced a shift of this magnitude. GENESIS 1 however produced too small a shift, except when the boreal forest albedo feedback was included. The feedback in this case was estimated to have amplified forest expansion by approximately 50%. The forest limit changes also show meridional patterns (greatest expansion in central Siberia and little or none in Alaska and Labrador) which have yet to be reproduced by models. Further progress in understanding of the processes involved in the response of climate and vegetation to orbital forcing will require both the deployment of coupled atmosphere-biosphere-ocean models and the development of more comprehensive observational data sets.
Noble, Bram F
2004-03-01
Strategic environmental assessment (SEA) is gaining widespread recognition as a tool for integrating environmental considerations in policy, plan, and program development and decision-making. Notwithstanding the potential of SEA to improve higher-order decision processes, there has been very little attention given to integrating SEA with industry planning practices. As a result, the benefits of SEA have yet to be fully realized among industrial proponents. That said, SEA practice is ongoing, albeit informally and often under a different label, and is proving to be a valuable tool for industry planning and decision-making. Based on a case study of the Pasquai-Porcupine forest management plan in Saskatchewan, Canada, this paper illustrates how an integrated approach to SEA can contribute to industry environmental decision-making and can enhance the quality and deliverability of industry plans.
Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?
Pamela J. Jakes; Kristen C. Nelson; Sherry A. Enzler; Sam Burns; Antony S. Cheng; Victoria Sturtevant; Daniel R. Williams; Alexander Bujak; Rachel F. Brummel; Stephanie Grayzeck-Souter; Emily Staychock
2011-01-01
The Healthy Forests Restoration Act of 2003 (HFRA) encourages communities to develop community wildfire protection plans (CWPPs) to reduce their wildland fire risk and promote healthier forested ecosystems. Communities who have developed CWPPs have done so using many different processes, resulting in plans with varied form and content. We analysed data from 13 case-...
Constance I. Millar
1987-01-01
Tremendous species diversity, together with accelerating deforestation and land development, has been a formula for rampant extinction and community collapse in tropical forests. Conservationists have brought the crisis of tropical forests to the attention of the international community, showing that continued efforts are needed to conserve the biotic riches of these...
Cicada emergence in southwestern riparian forest: Influences of wildfire and vegetation composition
D. Max Smith; Jeffrey Kelly; Deborah M. Finch
2006-01-01
Annually emerging cicadas are a numerically and ecologically dominant species in Southwestern riparian forests. Humans have altered disturbance regimes that structure these forests such that floods are less common and wildfires occur more frequently than was historically the case. Impacts of these changes on primary consumers such as riparian cicadas are unknown....
The principles of measuring forest fire danger
H. T. Gisborne
1936-01-01
Research in fire danger measurement was commenced in 1922 at the Northern Rocky Mountain Forest and Range Experiment Station of the U. S. Forest Service, with headquarters at Missoula, Mont. Since then investigations have been made concerning ( 1) what to measure, (2) how to measure, and ( 3) field use of these measurements. In all cases the laboratory or restricted...
Harvesting minor forest products in the Pacific Northwest.
Thomas C. Adams
1960-01-01
Forests of the Pacific Northwest yield a number of secondary or so-called minor forest products. These include those smaller, side-line items of commercial value that can usually be harvested without intensive management or cultivation. They are generally only incidental to a primary use of the land for sawtimber or pulpwood production. In most cases they can be...
Jack Tribble; Thomas Minney; Catherine Johnson; Ken. Sturm
2010-01-01
Habitat-based ecosystem partnerships are necessary for implementing strategic forest restoration plans. Overwhelming environmental threats such as climate change and invasive pests and pathogens could have traumatic and devastating effects to our native forests. Additionally, past land-use history has left existing forests isolated, fragmented and in some cases...
Robert L. Ryan; Juliet Hansel
2002-01-01
This paper explores the premise that privately owned open space is vital for meeting future recreation demands in the urban Northeast. A case study in the Great Meadows of the Connecticut River in the Hartford, Connecticut metropolitan area is used to illustrate the challenges in promoting recreational access and open space preservation in a privately-owned held...
Rural Land Use Change during 1986–2002 in Lijiang, China, Based on Remote Sensing and GIS Data
Peng, Jian; Wu, Jiansheng; Yin, He; Li, Zhengguo; Chang, Qing; Mu, Tianlong
2008-01-01
As a local environmental issue with global importance, land use/land cover change (LUCC) has always been one of the key issues in geography and environmental studies with the expansion of regional case studies. While most of LUCC studies in China have focused on urban land use change, meanwhile, compared with the rapid change of urban land use in the coastal areas of eastern China, slow but distinct rural land use changes have also occurred in the mountainous areas of western China since the late 1980s. In this case through a study in Lijiang County of Yunnan Province, with the application of remote sensing data and geographic information system techniques, the process of rural land use change in mountain areas of western China was monitored through extensive statistical analysis of detailed regional data. The results showed significant increases in construction land, paddy field and dry land, and a decrease in dense forest land and waste grassland between 1986 and 2002. The conversions between dense forest land and sparse forest land, grassland, waste grassland and dry land were the primary processes of rural land use change. Sparse forest land had the highest rate of land use change, with glacier or snow-capped land the lowest; while human settlement and rural economic development were found to be the main driving forces of regional difference in the integrated land use change rate among the 24 towns of Lijiang County. Quantified through landscape metrics, spatial patterns of rural land use change were represented as an increase in landscape diversity and landscape fragmentation, and the regularization of patch shapes, suggesting the intensification of human disturbances and degradation of ecological quality in the rural landscape. PMID:27873983
NASA Astrophysics Data System (ADS)
Xu, X.; Jain, A. K.; Calvin, K. V.
2017-12-01
Due to the rapid socioeconomic development and biophysical factors, South and Southeast Asia (SSEA) has become a hotspot region of land use and land cover changes (LULCCs) in past few decades. Uncovering the drivers of LULCC is crucial for improving the understanding of LULCC processes. Due to the differences from spatiotemporal scales, methods and data sources in previous studies, the quantitative relationships between the LULCC activities and biophysical and socioeconomic drivers at the regional scale of SSEA have not been established. Here we present a comprehensive estimation of the biophysical and socioeconomic drivers of the major LULCC activities in SSEA: changes in forest and agricultural land. We used the Climate Change Initiative land cover data developed by European Space Agency to reveal the dynamics of forest and agricultural land from 1992 to 2015. Then we synthesized 200 publications about LULCC drivers at different spatial scales in SSEA to identify the major drivers of these LULCC activities. Corresponding representative variables of the major drivers were collected. The geographically weighted regression was employed to assess the spatiotemporally heterogeneous drivers of LULCC. Moreover, we validated our results with some national level case studies in SSEA. The results showed that both biophysical conditions such as terrain, soil, and climate, and socioeconomic factors such as migration, poverty, and economy played important roles in driving the changes of forest and agricultural land. The major drivers varied in different locations and periods. Our study integrated the bottom-up knowledge from local scale case studies with the top-down estimation of LULCC drivers, therefore generated more accurate and credible results. The identified biophysical and socioeconomic components could be used to improve the LULCC modelling and projection.
Rural Land Use Change during 1986-2002 in Lijiang, China, Based on Remote Sensing and GIS Data.
Peng, Jian; Wu, Jiansheng; Yin, He; Li, Zhengguo; Chang, Qing; Mu, Tianlong
2008-12-11
As a local environmental issue with global importance, land use/land cover change (LUCC) has always been one of the key issues in geography and environmental studies with the expansion of regional case studies. While most of LUCC studies in China have focused on urban land use change, meanwhile, compared with the rapid change of urban land use in the coastal areas of eastern China, slow but distinct rural land use changes have also occurred in the mountainous areas of western China since the late 1980s. In this case through a study in Lijiang County of Yunnan Province, with the application of remote sensing data and geographic information system techniques, the process of rural land use change in mountain areas of western China was monitored through extensive statistical analysis of detailed regional data. The results showed significant increases in construction land, paddy field and dry land, and a decrease in dense forest land and waste grassland between 1986 and 2002. The conversions between dense forest land and sparse forest land, grassland, waste grassland and dry land were the primary processes of rural land use change. Sparse forest land had the highest rate of land use change, with glacier or snow-capped land the lowest; while human settlement and rural economic development were found to be the main driving forces of regional difference in the integrated land use change rate among the 24 towns of Lijiang County. Quantified through landscape metrics, spatial patterns of rural land use change were represented as an increase in landscape diversity and landscape fragmentation, and the regularization of patch shapes, suggesting the intensification of human disturbances and degradation of ecological quality in the rural landscape.
Road Network State Estimation Using Random Forest Ensemble Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yi; Edara, Praveen; Chang, Yohan
Network-scale travel time prediction not only enables traffic management centers (TMC) to proactively implement traffic management strategies, but also allows travelers make informed decisions about route choices between various origins and destinations. In this paper, a random forest estimator was proposed to predict travel time in a network. The estimator was trained using two years of historical travel time data for a case study network in St. Louis, Missouri. Both temporal and spatial effects were considered in the modeling process. The random forest models predicted travel times accurately during both congested and uncongested traffic conditions. The computational times for themore » models were low, thus useful for real-time traffic management and traveler information applications.« less
Ehlkes, Lutz; Eastwood, Keith; Webb, Cameron; Durrheim, David
2012-07-01
Barmah Forest virus (BFV) is a mosquito-borne virus causing epidemic polyarthritis in Australia. This study used case follow-up of cases from the surveillance system to demonstrate that routinely collected BFV notification data were an unreliable indicator of the true location of exposure. BFV notifications from June 2001 to May 2011 were extracted from the New South Wales (NSW) Notifiable Conditions Information Management System to study case distribution. Disease cluster analysis was performed using spatial scan statistics. Exposure history data were collected from cases notified in 2010 and 2011 to accurately determine travel to high-risk areas. Cluster analysis using address data identified an area of increased BFV disease incidence in the mid-north coast of NSW contiguous with estuarine wetlands. When travel to this area was investigated, 96.7% (29/30) cases reported having visited coastal regions within four weeks of developing symptoms. Along the central NSW coastline, extensive wetlands occur in close proximity to populated areas. These wetlands provide ideal breeding habitats for a range of mosquito species implicated in the transmission of BFV. This is the first study to fully assess case exposure with findings suggesting that sporadic cases of BFV in people living further away from the coast do not reflect alternative exposure sites but are likely to result from travel to coastal regions. Spatial analysis by case address alone may lead to inaccurate understandings of the true distribution of arboviral diseases. Subsequently, this information has important implications for the collection of mosquito-borne disease surveillance information and public health response strategies.
Forest management strategies for reducing carbon emissions, the French case
NASA Astrophysics Data System (ADS)
Valade, Aude; Luyssaert, Sebastiaan; Bellassen, Valentin; Vallet, Patrick; Martin, Manuel
2015-04-01
International agreements now recognize the role of forest in the mitigation of climate change through the levers of in-situ sequestration, storage in products and energy and product substitution. These three strategies of carbon management are often antagonistic and it is still not clear which strategy would have the most significant impact on atmospheric carbon concentrations. With a focus on France, this study compares several scenarios of forest management in terms of their effect on the overall carbon budget from trees to wood-products. We elaborated four scenarios of forest management that target different wood production objectives. One scenario is 'Business as usual' and reproduces the current forest management and wood production levels. Two scenarios target an increase in bioenergy wood production, with either long-term or short-term goals. One scenario aims at increasing the production of timber for construction. For this, an empirical regression model was developed building on the rich French inventory database. The model can project the current forest resource at a time horizon of 20 years for characteristic variables diameter, standing volume, above-ground biomass, stand age. A simplified life-cycle analysis provides a full carbon budget for each scenario from forest management to wood use and allows the identification of the scenario that most reduces carbon emissions.
NASA Astrophysics Data System (ADS)
Mikheeva, Anna; Moiseev, Pavel
2017-04-01
In mountain territories climate change affects forest productivity and growth, which results in the tree line advancing and increasing of the forest density. These changes pose new challenges for forest managers whose responsibilities include forest resources inventory, monitoring and protection of ecosystems, and assessment of forest vulnerability. These activities require a range of sources of information, including exact squares of forested areas, forest densities and species abundances. Picea obovata, dominant tree species in South-Ural State Natural Reserve, Russia has regenerated, propagated and increased its relative cover during the recent 70 years. A remarkable shift of the upper limit of Picea obovata up to 60-80 m upslope was registered by repeating photography, especially on gentle slopes. The stands of Picea obovata are monitored by Reserve inspectors on the test plots to ensure that forests maintain or improve their productivity, these studies also include projective cover measurements. However, it is impossible to cover the entire territory of the Reserve by detailed field observations. Remote sensing data from Terra ASTER imagery provides valuable information for large territories (scene covers an area of 60 x 60 km) and can be used for quantitative mapping of forest and non-forest vegetation at regional scale (spatial resolution is 15-30 m for visible and infrared bands). A case study of estimating Picea obovata abundance was conducted for forest and forest-tundra sites of Zigalga Range, using 9-band ASTER multispectral imagery of 23.08.2007, field data and spectral unmixing algorithm. This type of algorithms intends to derive object and its abundance from a mixed pixel of multispectral imagery which can be further converted to object's projective cover. Atmospheric correction was applied to the imagery prior to spectral unmixing, and then pure spectra of Picea obovata were extracted from the image in 10 points and averaged. These points located in Zigalga Range and were visited in summer 2016. We used Mixture-tuned Match Filtering (MTMF) algorithm, a non-linear subpixel classification technique which allows to separate the spectral mixture containing unknown objects, and to derive only known ones. The results of spectral unmixing classification were abundance maps of Picea obovata. The values were statistically determined (there was only selected abundances with high probabilities of presence and low probabilities of absence) and then constrained to the interval [0; 1]. Verification of maps was made at the sites of Iremel Mountains on the same ASTER image, where projective cover of Picea obovata was measured in the field in 147 points. The correlation coefficient between the spectral unmixing abundances and field-measured abundances was 0.7; not a very high value is due to the low sensitivity of the algorithm to detect abundances less than 0.25. The proposed method provides a tool for defining the Picea obovata boundaries more accurately than per-pixel automatic classification and locating new spruce islands in the mixing tree line environment. The abundances can be obtained for large areas with minimum field work which makes this approach cost-effective in providing timely information to nature reserve managers for adapting forest management actions to climate change.
Dynamics of ecosystem services provided by subtropical ...
The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtropical forest and a 23-year history of growth on 3 subtropical forest plantations in Southeastern China. The ‘People's Republic of China Forestry Standard: Forest Ecosystem Service Valuation Norms’ was revised and applied to quantify the receiver values of ecosystem services, which were then compared with the emergy-based, donor values of the services. The results revealed that the efficiencies of subtropical forests and plantations in providing ecosystem services were 2 orders of magnitude higher than similar services provided by the current China economic system, and these efficiencieskept increasing over the course of succession. As a result, we conclude that afforestation is an efficient way to accelerate both the ability and efficiency of subtropical forests to provide ecosystem services. This paper is significant because it examines the dynamics of the provision of ecosystem services by forests over a succession series that spans 400 years. The paper also examines the rate of increase of services during forest restoration over a period of 23 years. The emergy used in ecosystem services provision is compared to the provision of similar services by economic means in the Chinese e
Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh, Vietnam
NASA Astrophysics Data System (ADS)
Thu, Phan Minh; Populus, Jacques
2007-01-01
Because shrimp culture in the Mekong Delta develops rapidly, it has negatively impacted the environment, socio-economics and natural resources. In particular, mangrove forests have been altered by the shrimp culture. The area of mangrove forests in the region has been reduced and this is seen especially in Tra Vinh province. The results obtained from GIS (Geography Information System) and RS (Remote Sensing) show the status of mangrove forests in Tra Vinh province in 1965, 1995 (Northeastern part of Tra Vinh Province) and 2001. In 1965, the area of mangrove forests was 21,221 ha making up 56% of total land-use, while in 2001 it was 12,797 ha making up 37% of total land-use. Also based on GIS analysis, over the 36 years (1965-2001), the total coverage of mangrove forests have decreased by 50% since 1965. However, the speed of mangrove forest destruction in the period from 1965 to 1995 was much less than that in the period from 1995 to 2001. The average annual reduction in mangrove forest coverage in the first period (1965-1995) was 0.2% whereas it was 13.1% in the later period (1995-2001). For the long time, mangrove deforestation has been caused by war, collection of firewood and clearing for agriculture, and recently, shrimp farming has significantly contributed rate of mangrove destruction.
NASA Astrophysics Data System (ADS)
Stróżecki, Marcin; Silvennoinen, Hanna; Strzeliński, Paweł; Chojnicki, Bogdan Heronim
2018-04-01
It is important to quantify carbon decomposition to assess the reforestation impact on the forest floor C stocks. Estimating the loss of C stock in a short-term perspective requires measuring changes in soil respiration. This is not trivial due to the contribution of both soil microbes and vegetation to the measured CO2 flux. However, C stable isotopes can be used to partition the respiration and potentially to assess how much of the recalcitrant C stock in the forest floor is lost. Here, we measured the soil respiration at two forest sites where different regeneration methods were applied, along with an intact forest soil for reference. In so doing, we used a closed dynamic chamber for measuring respiration and the 13C composition of the emitted CO2. The chamber measurements were then supplemented with the soil organic carbon analysis and its δ13C content. The mean δ13C-CO2 estimates for the source of the CO2 were -26.4, -27.9 and -29.5‰, for the forest, unploughed and ploughed, respectively. The 13C of the soil organic carbon did, not differ significantly between sites. The higher soil respiration rate at the forest, as compared to the unploughed site, could be attributed to the autotrophic respiration by the forest floor vegetation.
NASA Astrophysics Data System (ADS)
Novenko, E. Yu; Tsyganov, A. N.; Olchev, A. V.
2018-01-01
New multi-proxy records (pollen, testate amoebae, and charcoal) were applied to reconstruct the vegetation dynamics in the boreal forest area of the southern part of Valdai Hills (the Central Forest Biosphere Reserve) during the Holocene. The reconstructions of the mean annual temperature and precipitation, the climate moisture index (CMI), peatland surface moisture, and fire activity have shown that climate change has a significant impact on the boreal forests of European Russia. Temperature growth and decreased moistening during the warmest phases of the Holocene Thermal Maximum in 7.0-6.2 ka BP and 6.0-5.5 ka BP and in the relatively warm phase in 3.4-2.5 ka BP led to structural changes in plant communities, specifically an increase in the abundance of broadleaf tree species in forest stands and the suppression of Picea. The frequency of forest fires was higher in that period, and it resulted in the replacement of spruce forests by secondary stands with Betula and Pinus. Despite significant changes in the climatic parameters projected for the 21st century using even the optimistic RCP2.6 scenario, the time lag between climate changes and vegetation responses makes any catastrophic vegetation disturbances (due to natural reasons) in the area in the 21st century unlikely.
2017-01-01
The continued provision of water from rivers in the southwestern United States to downstream cities, natural communities and species is at risk due to higher temperatures and drought conditions in recent decades. Snowpack and snowfall levels have declined, snowmelt and peak spring flows are arriving earlier, and summer flows have declined. Concurrent to climate change and variation, a century of fire suppression has resulted in dramatic changes to forest conditions, and yet, few studies have focused on determining the degree to which changing forests have altered flows. In this study, we evaluated changes in flow, climate, and forest conditions in the Salt River in central Arizona from 1914–2012 to compare and evaluate the effects of changing forest conditions and temperatures on flows. After using linear regression models to remove the influence of precipitation and temperature, we estimated that annual flows declined by 8–29% from 1914–1963, coincident with a 2-fold increase in basal area, a 2-3-fold increase in canopy cover, and at least a 10-fold increase in forest density within ponderosa pine forests. Streamflow volumes declined by 37–56% in summer and fall months during this period. Declines in climate-adjusted flows reversed at mid-century when spring and annual flows increased by 10–31% from 1964–2012, perhaps due to more winter rainfall. Additionally, peak spring flows occurred about 12 days earlier in this period than in the previous period, coincident with winter and spring temperatures that increased by 1–2°C. While uncertainties remain, this study adds to the knowledge gained in other regions that forest change has had effects on flow that were on par with climate variability and, in the case of mid-century declines, well before the influence of anthropogenic warming. Current large-scale forest restoration projects hold some promise of recovering seasonal flows. PMID:29176868
Sen, Gokhan; Bayramoglu, Mahmut M; Toksoy, Devlet
2015-08-01
High mountain forests (HMFs) have an important significance in forest ecosystems, but the benefits from such ecosystems have been compromised in recent years. In Turkey, HMFs constitute significant portions of Turkish forests because they cover 4% of Turkey; 15% of all Turkish forest areas are HMFs. The Eastern Black Sea region has a particular importance for HMFs due to its biological diversity and the rich presence of endemic species. This study analyzes the changes in spatial and temporal patterns of forest cover in HMF from 1973 to 2008 in the town of Maçka, which is located at the center of the Eastern Black Sea region of Turkey. The spatial and temporal change patterns of land use are quantified by interpreting spatial data. Remote sensing (RS), geographical information system (GIS), and a spatial pattern analysis program for categorical maps (FRAGSTATS) have been used for data collection, analysis, and presentation. The results showed that the HMF areas had biphasic growth from 1973 to 2008. Despite a net increase of 200.6 ha in forested areas between 1984 and 2008, there was an overall decrease from 1973 to 2008. The annual percentage of forestation for the forest areas within the study period was 0.04% in Maçka. The amount of aggregated forest area fragments rose from 388 in 1973 to 711 in 2008. The increase in the HMF of Maçka can be explained to some extent by the change in the demographic structure of Maçka and its plateaus, which contributed to changes in the daily life of the population of Maçka and its villages, such as changes in annual incomes, their lifestyles, decrease in transhumance and stockbreeding, decrease in the time of dwelling on the plateaus, and changes in the traditional architectural style.
NASA Astrophysics Data System (ADS)
Grecchi, Rosana Cristina; Beuchle, René; Shimabukuro, Yosio Edemir; Aragão, Luiz E. O. C.; Arai, Egidio; Simonetti, Dario; Achard, Frédéric
2017-09-01
Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000-2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the ratio between disturbed and deforested areas. Although the majority of the areas, which have been affected by selective logging during the period 2000-2014, were not deforested by 2015, more than 70% of the deforested areas in 2015 had been at least once identified as disturbed forest during that period.
Grecchi, Rosana Cristina; Beuchle, René; Shimabukuro, Yosio Edemir; Aragão, Luiz E O C; Arai, Egidio; Simonetti, Dario; Achard, Frédéric
2017-09-01
Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000-2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the ratio between disturbed and deforested areas. Although the majority of the areas, which have been affected by selective logging during the period 2000-2014, were not deforested by 2015, more than 70% of the deforested areas in 2015 had been at least once identified as disturbed forest during that period.
NASA Astrophysics Data System (ADS)
Wei, Xiao; Dupont, Eric; Gilbert, Eric; Musson-Genon, Luc; Carissimo, Bertrand
2016-09-01
We present a detailed experimental and numerical study of the local flow field for a pollutant dispersion experimental program conducted at SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique), a complex and intensively instrumented site in a southern suburb of Paris. Global analysis of continuous measurements over 2 years highlights the impact of terrain heterogeneity on wind and turbulence. It shows that the forest to the north of the experimental field induces strong directional shear and wind deceleration below the forest canopy height. This directional shear is stronger with decreasing height and decreasing distance from the forest edge. Numerical simulations are carried out using Code_Saturne, a computational fluid dynamics code, in Reynolds-averaged Navier-Stokes mode with a standard k{-}ɛ closure and a canopy model, in neutral and stable stratifications. These simulations are shown to reproduce globally well the characteristics of the mean flow, especially the directional wind shear in northeasterly and northwesterly cases and the turbulent kinetic energy increase induced by the forest. However, they slightly underestimate wind speed and the directional shear of the flow below the forest canopy height. Sensitivity studies are performed to investigate the influence of leaf area density, inlet stability condition, and roughness length. These studies show that the typical features of the canopy flow become more pronounced as canopy density increases. Performance statistics indicate that the impact of the forest and adequate inlet profiles are the most important factors in the accurate reproduction of flow at the site, especially under stable stratification.
NASA Astrophysics Data System (ADS)
Badola, Ruchi; Barthwal, Shivani; Hussain, Syed Ainul
2012-01-01
The ecological and economic importance of mangrove ecosystems is well established and highlighted by studies establishing a correlation between the protective function of mangroves and the loss of lives and property caused by coastal hazards. Nevertheless, degradation of this ecosystem remains a matter of concern, emphasizing the fact that effective conservation of natural resources is possible only with an understanding of the attitudes and perceptions of local communities. In the present study, we examined the attitudes and perceptions of local communities towards mangrove forests through questionnaire surveys in 36 villages in the Bhitarkanika Conservation Area, India. The sample villages were selected from 336 villages using hierarchical cluster analysis. The study revealed that local communities in the area had positive attitudes towards conservation and that their demographic and socio-economic conditions influenced people's attitudes. Local communities valued those functions of mangrove forests that were directly linked to their wellbeing. Despite human-wildlife conflict, the attitudes of the local communities were not altogether negative, and they were willing to participate in mangrove restoration. People agreed to adopt alternative resources if access to forest resources were curtailed. Respondents living near the forests, who could not afford alternatives, admitted that they would resort to pilfering. Hence, increasing their livelihood options may reduce the pressure on mangrove forests. In contrast with other ecosystems, the linkages of mangrove ecosystem services with local livelihoods and security are direct and tangible. It is therefore possible to develop strong local support for sustainable management of mangrove forests in areas where a positive attitude towards mangrove conservation prevails. The current debates on Reducing Emissions from Deforestation and Forest Degradation (REDD) and payment for ecosystem services provide ample scope for development of sustainable livelihood options for local communities from the conservation of critical ecosystems such as mangroves.
NASA Astrophysics Data System (ADS)
Tarigan, Suria; Wiegand, Kerstin; Sunarti; Slamet, Bejo
2018-01-01
In many tropical regions, the rapid expansion of monoculture plantations has led to a sharp decline in forest cover, potentially degrading the ability of watersheds to regulate water flow. Therefore, regional planners need to determine the minimum proportion of forest cover that is required to support adequate ecosystem services in these watersheds. However, to date, there has been little research on this issue, particularly in tropical areas where monoculture plantations are expanding at an alarming rate. Therefore, in this study, we investigated the influence of forest cover and oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations on the partitioning of rainfall into direct runoff and subsurface flow in a humid, tropical watershed in Jambi Province, Indonesia. To do this, we simulated streamflow with a calibrated Soil and Water Assessment Tool (SWAT) model and observed several watersheds to derive the direct runoff coefficient (C) and baseflow index (BFI). The model had a strong performance, with Nash-Sutcliffe efficiency values of 0.80-0.88 (calibration) and 0.80-0.85 (validation) and percent bias values of -2.9-1.2 (calibration) and 7.0-11.9 (validation). We found that the percentage of forest cover in a watershed was significantly negatively correlated with C and significantly positively correlated with BFI, whereas the rubber and oil palm plantation cover showed the opposite pattern. Our findings also suggested that at least 30 % of the forest cover was required in the study area for sustainable ecosystem services. This study provides new adjusted crop parameter values for monoculture plantations, particularly those that control surface runoff and baseflow processes, and it also describes the quantitative association between forest cover and flow indicators in a watershed, which will help regional planners in determining the minimum proportion of forest and the maximum proportion of plantation to ensure that a watershed can provide adequate ecosystem services.
Barmah Forest virus serology; implications for diagnosis and public health action.
Cashman, Patrick; Hueston, Linda; Durrheim, David; Massey, Peter; Doggett, Stephen; Russell, Richard C
2008-06-01
Barmah Forest virus (BFV) is a commonly occurring arbovirus in Australia. Notifications of Barmah Forest infections diagnosed by a single positive IgM serology test have been increasing in coastal New South Wales north of Newcastle. We report on a 6 month prospective review of all routine notifications of BFV from the Lower Mid North Coast of New South Wales. Sera from 37 consecutive cases were sent for confirmatory testing by ELISA and neutralisation assays and 32 cases were interviewed. On confirmatory testing, 7 patients' sera (19%) was found to contain no BFV antibodies and 6 (16%) had BFV IgG only. Only 4 cases had antibody levels compatible with recent infection. A clinical presentation of fever with either rash or joint pain was associated with confirmation of recent BFV infection. On the basis of these findings, caution is advised in the interpretation of a single positive IgM for Barmah Forest disease and the clinical picture is an important factor in the diagnosis. Serological notifications of BFV alone should not prompt public health action such as public warning and targeted vector control in endemic areas.
NASA Astrophysics Data System (ADS)
Simard, M.; Denbina, M. W.
2017-12-01
Using data collected by NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Land, Vegetation, and Ice Sensor (LVIS) lidar, we have estimated forest canopy height for a number of study areas in the country of Gabon using a new machine learning data fusion approach. Using multi-baseline polarimetric synthetic aperture radar interferometry (PolInSAR) data collected by UAVSAR, forest heights can be estimated using the random volume over ground model. In the case of multi-baseline UAVSAR data consisting of many repeat passes with spatially separated flight tracks, we can estimate different forest height values for each different image pair, or baseline. In order to choose the best forest height estimate for each pixel, the baselines must be selected or ranked, taking care to avoid baselines with unsuitable spatial separation, or severe temporal decorrelation effects. The current baseline selection algorithms in the literature use basic quality metrics derived from the PolInSAR data which are not necessarily indicative of the true height accuracy in all cases. We have developed a new data fusion technique which treats PolInSAR baseline selection as a supervised classification problem, where the classifier is trained using a sparse sampling of lidar data within the PolInSAR coverage area. The classifier uses a large variety of PolInSAR-derived features as input, including radar backscatter as well as features based on the PolInSAR coherence region shape and the PolInSAR complex coherences. The resulting data fusion method produces forest height estimates which are more accurate than a purely radar-based approach, while having a larger coverage area than the input lidar training data, combining some of the strengths of each sensor. The technique demonstrates the strong potential for forest canopy height and above-ground biomass mapping using fusion of PolInSAR with data from future spaceborne lidar missions such as the upcoming Global Ecosystems Dynamics Investigation (GEDI) lidar.
Determining the Ecosystem Services Important for Urban Landscapes
Urban ecosystems present special considerations and challenges in researching and evaluating ecosystem functions and services. A case study of nitrate retention and loss in forested, urban wetlands illustrates these challenges. Water table dynamics, in situ nitrogen cy...
Malaria in tree crop plantations in south-eastern and western provinces of Thailand.
Singhasivanon, P; Thimasarn, K; Yimsamran, S; Linthicum, K; Nualchawee, K; Dawreang, D; Kongrod, S; Premmanisakul, N; Maneeboonyang, W; Salazar, N
1999-09-01
During the past three decades almost half of the existing natural tropical forests in Thailand were destroyed and replaced by cash crops, rubber, coffee, fruit orchards (durian, rambutan, mangosteen) and other commercial plantations. In order to determine the proportion of malaria cases contracted from such commercial plantations, an epidemiological study was conducted between June 1996 to May 1997 in two districts, one in Pong Nam Ron, located in a south-eastern province near the Cambodian border and another in Sai Yok, in a western province along the Myanmar border. Data were collected by passive case detection from patients attending the existing malaria clinics and active case detection by monthly malariometric survey in selected villages. All malaria cases were thoroughly investigated and classified according to exposure to different ecotypes prior to onset of malaria symptoms in the preceding two weeks. Malaria cases acquired from commercial plantations accounted for 35.2% and 11.2% in Pong Nam Ron and in Sai Yok districts respectively. In such plantations, most of the malaria cases were contracted from fruit orchards and to a lesser extent from rubber and teak plantations. From this study it is evident that commercial plantations provide a significant site of malaria transmission in addition to the forest and foothills areas in Southeast Asia where efficient vectors such as An. dirus and An. minimus are prevalent and have adapted to such changed ecosystems.
Estimation of leaf area index using WorldView-2 and Aster satellite image: a case study from Turkey.
Günlü, Alkan; Keleş, Sedat; Ercanlı, İlker; Şenyurt, Muammer
2017-10-04
The objective of this study is to estimate the leaf area index (LAI) of a forest ecosystem using two different satellite images, WorldView-2 and Aster. For this purpose, 108 sample plots were taken from pure Crimean pine forest stands of Yenice Forest Management Planning Unit in Ilgaz Forest Management Enterprise, Turkey. Each sample plot was imaged with hemispherical photographs with a fish-eye camera to determine the LAI. These photographs were analyzed with the help of Hemisfer Hemiview software program, and thus, the LAI of each sample plot was estimated. Furthermore, multiple regression analysis method was used to model the statistical relationships between the LAI values and band spectral reflection values and some vegetation indices (Vis) obtained from satellite images. The results show that the high-resolution WorldView-2 satellite image is better than the medium-resolution Aster satellite image in predicting the LAI. It was also seen that the results obtained by using the VIs are better than the bands when the LAI value is predicted with satellite images.
Adaptive Cluster Sampling for Forest Inventories
Francis A. Roesch
1993-01-01
Adaptive cluster sampling is shown to be a viable alternative for sampling forests when there are rare characteristics of the forest trees which are of interest and occur on clustered trees. The ideas of recent work in Thompson (1990) have been extended to the case in which the initial sample is selected with unequal probabilities. An example is given in which the...
Ralph J. Alig; David J. Lewis; Jennifer J. Swenson
2005-01-01
We investigated spatial configuration of economic returns, to enhance models of forest fragmentation for western Oregon and western Washington. Drawing from spatial land rent theory, economic drivers of forest fragmentation at the landscape level include land quality comprised of attributes such as soil fertility or the distance of urban plots to amenities. We included...
Mechanical mid-story reduction treatments for forest fuel management
B. Rummer; K. Outcalt; D. Brockway
2002-01-01
There are many forest stands where exclusion of fire or lack of management has led to dense understorys and fuel accumulation. Generally, the least expensive treatment is to introduce a regime of prescribed fire as a surrogate for natural forest fire processes in these stands. However, in some cases prescribed fire is not an option. For example, heavy fuel loadings may...
The national picture of nonnative plants in the United States according to FIA data
Sonja N. Oswalt; Christopher M. Oswalt
2012-01-01
Data collected by the U.S. Forest Service Forest Inventory and Analysis Program was assembled from each region of the United States. Occurrence, measured as the percentage of forested subplots within a county with observed nonnative invasive plant (NNIP) species, was calculated across the continental United States and Hawaii. Each region, and in some cases each state,...
F. Christian Zinkhan; Thomas P. Holmes; D. Evan Mercer
1997-01-01
Conjoint analysis, which enables a manager to measure the relative importance of a forest's multidimensional attributes, is critically reviewed and assessed. Special attention is given to the feasibility of using conjoint analysis for measuring the utility of market and nonmarket outputs from southern forests. Also, an application to a case of designing a nature...
Observing urban forests in Australia
E.G. McPherson
2009-01-01
From February 13 to 28, 2009 I had the good fortune of visiting Australia, and touring urban forests in Sydney, Canberra, Brisbane, and Melbourne. My visits were only a day or two in each city, so in no case did I get an in-depth view of the urban forest resource or its management. The following observations are based on rather superficial field assessments and brief...
Forest biomass supply logistics for a power plant using the discrete-event simulation approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mobini, Mahdi; Sowlati, T.; Sokhansanj, Shahabaddine
This study investigates the logistics of supplying forest biomass to a potential power plant. Due to the complexities in such a supply logistics system, a simulation model based on the framework of Integrated Biomass Supply Analysis and Logistics (IBSAL) is developed in this study to evaluate the cost of delivered forest biomass, the equilibrium moisture content, and carbon emissions from the logistics operations. The model is applied to a proposed case of 300 MW power plant in Quesnel, BC, Canada. The results show that the biomass demand of the power plant would not be met every year. The weighted averagemore » cost of delivered biomass to the gate of the power plant is about C$ 90 per dry tonne. Estimates of equilibrium moisture content of delivered biomass and CO2 emissions resulted from the processes are also provided.« less
Impacts of acidic deposition: context and case studies of forest soils in the southeastern US
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binkley, D.; Driscoll, C.T.; Allen, H.L.
1988-12-01
The authors designed their assessment to include both the basic foundation needed by non-experts and the detailed information needed by experts. Their assessment includes background information on acidic deposition (Chap. 1), an in-depth discussion of the nature of soil acidity and ecosystem H(1+) budgets (Chap. 2), and a summary of rates of deposition in the Southeastern U.S. (Chap. 3). A discussion of the nature of forest soils in the region (Chap. 4) is followed by an overview of previous assessments of soil sensitivity to acidification (Chap. 5). The potential impacts of acidic deposition on forest nutrition are described in themore » context of the degree of current nutrient limitation on forest productivity (Chap. 6). The results of simulations with the MAGIC model provided evaluations of the likely sensitivity of a variety of soils representative of forest soils in the South (Chap. 7), as well as a test of soil sensitivity criteria. The authors' synthesis and recommendations for research (Chap. 8) also serve as an executive summary.« less
Tropical countries may be willing to pay more to protect their forests
Vincent, Jeffrey R.; Carson, Richard T.; DeShazo, J. R.; Schwabe, Kurt A.; Ahmad, Ismariah; Chong, Siew Kook; Chang, Yii Tan; Potts, Matthew D.
2014-01-01
Inadequate funding from developed countries has hampered international efforts to conserve biodiversity in tropical forests. We present two complementary research approaches that reveal a significant increase in public demand for conservation within tropical developing countries as those countries reach upper-middle-income (UMI) status. We highlight UMI tropical countries because they contain nearly four-fifths of tropical primary forests, which are rich in biodiversity and stored carbon. The first approach is a set of statistical analyses of various cross-country conservation indicators, which suggests that protective government policies have lagged behind the increase in public demand in these countries. The second approach is a case study from Malaysia, which reveals in a more integrated fashion the linkages from rising household income to increased household willingness to pay for conservation, nongovernmental organization activity, and delayed government action. Our findings suggest that domestic funding in UMI tropical countries can play a larger role in (i) closing the funding gap for tropical forest conservation, and (ii) paying for supplementary conservation actions linked to international payments for reduced greenhouse gas emissions from deforestation and forest degradation in tropical countries. PMID:24982171
NASA Astrophysics Data System (ADS)
Mõttus, Matti; Takala, Tuure
2014-12-01
Fertility, or the availability of nutrients and water, controls forest productivity. It affects its carbon sequestration, and thus the forest's effect on climate, as well as its commercial value. Although the availability of nutrients cannot be measured directly using remote sensing methods, fertility alters several vegetation traits detectable from the reflectance spectra of the forest stand, including its pigment content and water stress. However, forest reflectance is also influenced by other factors, such as species composition and stand age. Here, we present a case study demonstrating how data obtained using imaging spectroscopy is correlated with site fertility. The study was carried out in Hyytiälä, Finland, in the southern boreal forest zone. We used a database of state-owned forest stands including basic forestry variables and a site fertility index. To test the suitability of imaging spectroscopy with different spatial and spectral resolutions for site fertility mapping, we performed two airborne acquisitions using different sensor configurations. First, the sensor was flown at a high altitude with high spectral resolution resulting in a pixel size in the order of a tree crown. Next, the same area was flown to provide reflectance data with sub-meter spatial resolution. However, to maintain usable signal-to-noise ratios, several spectral channels inside the sensor were combined, thus reducing spectral resolution. We correlated a number of narrowband vegetation indices (describing canopy biochemical composition, structure, and photosynthetic activity) on site fertility. Overall, site fertility had a significant influence on the vegetation indices but the strength of the correlation depended on dominant species. We found that high spatial resolution data calculated from the spectra of sunlit parts of tree crowns had the strongest correlation with site fertility.
Conservation of forest birds: evidence of a shifting baseline in community structure.
Rittenhouse, Chadwick D; Pidgeon, Anna M; Albright, Thomas P; Culbert, Patrick D; Clayton, Murray K; Flather, Curtis H; Huang, Chengquan; Masek, Jeffrey G; Stewart, Susan I; Radeloff, Volker C
2010-08-02
Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance. We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period) and modest losses in abundance (-28.7 - -10.2 individuals per route) that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States. Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., approximately 22 years). Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the United States may already fall below the habitat amount threshold where fragmentation effects become important predictors of forest bird community structure.
Motlagh, Mohadeseh Ghanbari; Kafaky, Sasan Babaie; Mataji, Asadollah; Akhavan, Reza
2018-05-21
Hyrcanian forests of North of Iran are of great importance in terms of various economic and environmental aspects. In this study, Spot-6 satellite images and regression models were applied to estimate above-ground biomass in these forests. This research was carried out in six compartments in three climatic (semi-arid to humid) types and two altitude classes. In the first step, ground sampling methods at the compartment level were used to estimate aboveground biomass (Mg/ha). Then, by reviewing the results of other studies, the most appropriate vegetation indices were selected. In this study, three indices of NDVI, RVI, and TVI were calculated. We investigated the relationship between the vegetation indices and aboveground biomass measured at sample-plot level. Based on the results, the relationship between aboveground biomass values and vegetation indices was a linear regression with the highest level of significance for NDVI in all compartments. Since at the compartment level the correlation coefficient between NDVI and aboveground biomass was the highest, NDVI was used for mapping aboveground biomass. According to the results of this study, biomass values were highly different in various climatic and altitudinal classes with the highest biomass value observed in humid climate and high-altitude class.
Modeling Verdict Outcomes Using Social Network Measures: The Watergate and Caviar Network Cases.
Masías, Víctor Hugo; Valle, Mauricio; Morselli, Carlo; Crespo, Fernando; Vargas, Augusto; Laengle, Sigifredo
2016-01-01
Modelling criminal trial verdict outcomes using social network measures is an emerging research area in quantitative criminology. Few studies have yet analyzed which of these measures are the most important for verdict modelling or which data classification techniques perform best for this application. To compare the performance of different techniques in classifying members of a criminal network, this article applies three different machine learning classifiers-Logistic Regression, Naïve Bayes and Random Forest-with a range of social network measures and the necessary databases to model the verdicts in two real-world cases: the U.S. Watergate Conspiracy of the 1970's and the now-defunct Canada-based international drug trafficking ring known as the Caviar Network. In both cases it was found that the Random Forest classifier did better than either Logistic Regression or Naïve Bayes, and its superior performance was statistically significant. This being so, Random Forest was used not only for classification but also to assess the importance of the measures. For the Watergate case, the most important one proved to be betweenness centrality while for the Caviar Network, it was the effective size of the network. These results are significant because they show that an approach combining machine learning with social network analysis not only can generate accurate classification models but also helps quantify the importance social network variables in modelling verdict outcomes. We conclude our analysis with a discussion and some suggestions for future work in verdict modelling using social network measures.
Zhang, Yuke; Liu, Hongyan
2010-07-01
The projected recession of forests in the forest-steppe ecotone under projected climate drying would restrict the carbon sink function of terrestrial ecosystems. Previous studies have shown that the forest-steppe ecotone in the southeastern Inner Mongolia Plateau originally resulted from climate drying and vegetation shifts during the mid- to late-Holocene, but the interrelated processes of changing soil carbon storage and vegetation and soil shifts remain unclear. A total of 44 forest soil profiles and 40 steppe soil profiles were excavated to determine soil carbon storage in deciduous broadleaf forests (DBF), coniferous forests (CF) and steppe (ST) in this area. Carbon density was estimated to be 106.51 t/hm(2) (DBF), 73.20 t/hm(2) (CF), and 28.14 t/hm(2) (ST) for these ecosystems. Soil organic carbon (SOC) content was negatively correlated with sand content (R = -0.879, P < 0.01, n = 42), and positively correlated with silt (R = 0.881, P < 0.01, n = 42) and clay (R = 0.858, P < 0.01, n = 42) content. Consistent trends between fractions of coarse sand and a proxy index of relative aridity in sediment sequences from two palaeo-lakes further imply that climate drying reduced SOC through coarsening of the soil texture in the forest-steppe ecotone. Changes in carbon storage caused by climate drying can be divided into two stages: (1) carbon storage of the ecosystem was reduced to 68.7%, mostly by soil coarsening when DBF were replaced by CF at approximately 5,900 (14)C years before present (BP); and (2) carbon storage was reduced to 26.4%, mostly by vegetation shifts when CF were replaced by ST at approximately 2,900 (14)C years BP.
Calfapietra, Carlo; Morani, Arianna; Sgrigna, Gregorio; Di Giovanni, Sara; Muzzini, Valerio; Pallozzi, Emanuele; Guidolotti, Gabriele; Nowak, David; Fares, Silvano
2016-01-01
A crucial issue in urban environments is the interaction between urban trees and atmospheric pollution, particularly ozone (O). Ozone represents one of the most harmful pollutants in urban and peri-urban environments, especially in warm climates. Besides the large interest in reducing anthropogenic and biogenic precursors of O emissions, there is growing scientific activity aimed at understanding O removal by vegetation, particularly trees. The intent of this paper is to provide the state of the art and suggestions to improve future studies of O fluxes and to discuss implications of O flux studies to maximize environmental services through the planning and management of urban forests. To evaluate and quantify the potential of O removal in urban and peri-urban forests, we describe experimental approaches to measure O fluxes, distinguishing laboratory experiments, field measurements, and model estimates, including recent case studies. We discuss the strengths and weaknesses of the different approaches and conclude that the combination of the three levels of investigation is essential for estimating O removal by urban trees. We also comment on the implications of these findings for planning and management of urban forests, suggesting some key issues that should be considered to maximize O removal by urban and peri-urban forests. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Large-area Mapping of Forest Cover and Biomass using ALOS PALSAR
NASA Astrophysics Data System (ADS)
Cartus, O.; Kellndorfer, J. M.; Walker, W. S.; Goetz, S. J.; Laporte, N.; Bishop, J.; Cormier, T.; Baccini, A.
2011-12-01
In the frame of a Pantropical mapping project, we aim at producing high-resolution forest cover maps from ALOS PALSAR. The ALOS data was obtained through the Americas ALOS Data Node (AADN) at ASF. For the forest cover classification, a pan-tropical network of calibrated reference data was generated from ancillary satellite data (ICESAT GLAS). These data are used to classify PALSAR swath data to be combined to continental forest probability maps. The maps are validated with withheld training data for testing, as well as through independent operator verification with very high-resolution image. In addition, we aim at developing robust algorithms for the mapping of forest biophysical parameters like stem volume or biomass using synergy of PALSAR, optical and Lidar data. Currently we are testing different approaches for the mapping of forest biophysical parameters. 1) For the showcase scenario of Mexico, where we have access to ~1400 PALSAR FBD images as well as the 30 m Landsat Vegetation Continuous Field product, VCF, we test a traditional ground-data based approach. The PALSAR HH/HV intensity data and VCF are used as predictor layers in RandomForest for predicting aboveground forest biomass. A network of 40000 in situ biomass plots is used for model development (for each PALSAR swath) as well as for validation. With this approach a first 30 m biomass map for entire Mexico was produced. An initial validation of the map resulted in an RMSE of 41 t/ha and an R2 of 0.42. Pronounced differences between different ecozones were observed. In some areas the retrieval reached an R2 of 0.6 (e.g. pine-oak forests) whereas, for instance, in dry woodlands, the retrieval accuracy was much lower (R2 of 0.1). A major limitation of the approach was also represented by the fact that for the development of models for each ALOS swath, in some cases too few sample plots were available. 2) Chile: At a forest site in Central Chile, dominated by plantations of pinus radiata, synergy of ALOS PALSAR, Landsat and small-footprint Lidar is investigated for the mapping of forest growing stock volume and canopy height. Canopy Height Models with 1 m pixel size that were generated from the first/last return Lidar data were used to produce surrogate sampling plots to upscale stand-level inventory measurements to wall-to-wall maps with the aid of multi-temporal ALOS and Landsat data. The Lidar data allowed the estimation of volume and canopy height with high accuracy: 23 % error in case of volume and 7 % error in case of height. Using the Lidar estimates as surrogate training data for the development of models relating the ALOS backscatter to volume and height we obtained retrieval errors of ~60 % in case of volume and 31 % in case of height when using only one ALOS FBD image. Significant improvements could be achieved when 1) using three ALOS images for retrieval (50 % error for volume and 26 % for height) and 2) when including also Landsat data (42 % error for volume and 20 % for height).
Egunyu, Felicitas; Reed, Maureen G; Sinclair, John A
2016-04-01
Collaborative forest governance arrangements have been viewed as promising for sustainable forestry because they allow local communities to participate directly in management and benefit from resource use or protection. Such arrangements are strengthened through social learning during management activities that can enhance capacity to solve complex problems. Despite significant research on social learning in collaborative environmental governance, it is not clear how social learning evolves over time, who influences social learning, and whether learning influences management effectiveness. This study investigates how social learning outcomes change over time, using an in-depth study of a community forest in Canada. Personal interviews, focus group meetings, and participant observation revealed that most participants started engaging in community forestry with limited knowledge and learned as they participated in management activities. However, as the community forest organization became effective at complying with forestry legislation, learning opportunities and outcomes became more restricted. Our results run contrary to the prevalent view that opportunities for and outcomes of social learning become enlarged over time. In our case, learning how to meet governmental requirements increased professionalism and reduced opportunities for involvement and learning to a smaller group. Our findings suggest the need to further test propositions about social learning and collaborative governance, particularly to determine how relationships evolve over time.
NASA Astrophysics Data System (ADS)
Egunyu, Felicitas; Reed, Maureen G.; Sinclair, John A.
2016-04-01
Collaborative forest governance arrangements have been viewed as promising for sustainable forestry because they allow local communities to participate directly in management and benefit from resource use or protection. Such arrangements are strengthened through social learning during management activities that can enhance capacity to solve complex problems. Despite significant research on social learning in collaborative environmental governance, it is not clear how social learning evolves over time, who influences social learning, and whether learning influences management effectiveness. This study investigates how social learning outcomes change over time, using an in-depth study of a community forest in Canada. Personal interviews, focus group meetings, and participant observation revealed that most participants started engaging in community forestry with limited knowledge and learned as they participated in management activities. However, as the community forest organization became effective at complying with forestry legislation, learning opportunities and outcomes became more restricted. Our results run contrary to the prevalent view that opportunities for and outcomes of social learning become enlarged over time. In our case, learning how to meet governmental requirements increased professionalism and reduced opportunities for involvement and learning to a smaller group. Our findings suggest the need to further test propositions about social learning and collaborative governance, particularly to determine how relationships evolve over time.
NASA Astrophysics Data System (ADS)
Piton, Guillaume; Tacnet, Jean Marc; Berger, Frédéric; Curt, Corinne; Curt, Thomas; Arnaud, Patrick
2017-04-01
NAIAD (NAture Insurance value: Assessment and Demonstration) is a H2020 European project gathering 23 partners interested in ecosystems services related to water. The project more specifically links nature services to the assurance world and aims to operationalise "Natural Assurance Schemes", defined as a range of schemes to internalise the value of ecosystems services, e.g., the buffering role of river systems against water risks, in insurance policies. It is based on an assessment methodology that includes the physical, socio-cultural and valuation aspects of ecosystems services in relation to water, adapted to the institutional frame to align economic incentives and financial flows. Within the NAIAD projet, IRSTEA will more specifically try to highlight the role of mountain forests in torrential flood hazards and risks. The forest eventually acts on hydrology by buffering part of the rainwater. Vegetation has also a key role in soil conservation by curtailing primary sediment production in the hillslopes. Conversely, woody debris dramatically aggravate hazards by clogging bridges and key protections structures as open check dams. Finally this dual role may change in time due to the forest vulnerability to climatic, biologic or physical changes, e.g. after a wildfire. The first project step will be an extensive literature review on all these effects. Secondly indicators describing the torrential systems will be proposed and link to variably pronounced influence of forest. In a third time, case studies will be undertaken. The dramatic flood that occur in the region of Nice in summer 2015 (20 fatalities) will probably be used as a benchmark test. Several scenarios of alternative forest and river managements under varying climate forcing will be tested later. Complete torrential risk assessment studies will be performed on several sites within this project, with and without the forest influences in order to highlight its role. Numerous check dams have been built in headwaters to facilitate reforestation in the past, their influence on the torrential flood triggering (e.g., sediment supply) and transfer (e.g., debris flow propagation) will be assessed. The effectiveness of protections structures as debris basins and woody debris traps will be studied. They are supposed to be key solutions to the drawbacks of woody debris jams resulting from forest standing in catchments, other effects on hydrology and sediment production being quite positive. The issue of uncertainty and its propagation along the whole chain of analysis will be subject to a special effort in our work. The NAIAD project just beginning in 2017, we propose to present the research steps and data treatment chains that are planned to be used along the project. More results and the case studies being under progress.
THE ROLE OF WATERSHED CLASSIFICATION IN DIAGNOSING CAUSES OF BIOLOGICAL IMPAIRMENT
We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmention with a gewographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...
Physical indicators of hydrologic permanence in forested headwater streams
Recent court cases have brought headwater streams and their hydrologic permanence into the forefront for regulatory agencies, so rapid field-based indicators of hydrologic permanence in streams are critically needed. Our study objectives were to 1) identify environmental charact...
Gurav, Yogesh K; Yadav, Pragya D; Gokhale, Mangesh D; Chiplunkar, Tushar R; Vishwanathan, Rajlakshmi; Patil, Deepak Y; Jain, Rajlaxmi; Shete, Anita M; Patil, Savita L; Sarang, G D; Sapkal, Gajanan N; Andhare, M D; Sale, Y R; Awate, Pradeep S; Mourya, Devendra T
2018-03-01
Kyasanur forest disease (KFD) outbreak was confirmed in Dodamarg Taluka, Sindhudurga district (Maharashtra) in India during the year 2016. The rise in suspected KFD cases was reported in January 2016, peaked during March, and then declined gradually from April 2016. The outbreak was thoroughly investigated considering different socio-clinical parameters. Total, 488 suspected KFD cases were investigated using KFD specific real-time RT-PCR and anti-KFDV IgM enzyme-linked immunosorbent assay (ELISA). Sero-epidemiological survey was carried out in the affected area using anti-KFDV IgG ELISA. Among suspected KFD cases, high age-specific attack rate (105.1 per 1000 persons) was observed in adults (aged 40-59 years). Out of 488 suspected KFD cases, 130 were laboratory confirmed. Of these, 54 cases were KFDV real-time RT-PCR positive, 66 cases were anti-KFDV IgM ELISA positive and 10 cases were positive by both the assays. Case fatality ratio among laboratory-confirmed KFD cases were 2.3% (3/130). Majority of laboratory-confirmed KFD cases (93.1%) had visited Western Ghats forest in Dodamarg for activities like working in cashew nut farms (79.8%), cashew nut fruit collection (76.6%), collection of firewood (68.5%) and dry leaves/grass (40.3%), etc., before the start of symptoms. Common clinical features included fever (100%), headache (93.1%), weakness (84.6%), and myalgia (83.1%). Hemorrhagic manifestations were observed in nearly one-third of the laboratory-confirmed KFD cases (28.5%). A seroprevalence of (9.7%, 72/745) was recorded in KFD-affected area and two neighboring villages (9.1%, 15/165). Serosurvey conducted in Ker village showed clinical to subclinical ratio of 6:1 in KFD-affected areas. This study confirms the outbreak of KFD Sindhudurg district with 130 cases. Detection of anti-KFDV IgG antibodies among the healthy population in KFD-affected area during the KFD outbreak suggested the past exposure of KFD infection. This outbreak investigation has helped health authorities in adopting KFD vaccination strategy for the population at risk.
NASA Astrophysics Data System (ADS)
Mura, Matteo; Bottalico, Francesca; Giannetti, Francesca; Bertani, Remo; Giannini, Raffaello; Mancini, Marco; Orlandini, Simone; Travaglini, Davide; Chirici, Gherardo
2018-04-01
The spatial prediction of growing stock volume is one of the most frequent application of remote sensing for supporting the sustainable management of forest ecosystems. For such a purpose data from active or passive sensors are used as predictor variables in combination with measures taken in the field in sampling plots. The Sentinel-2 (S2) satellites are equipped with a Multi Spectral Instrument (MSI) capable of acquiring 13 bands in the visible and infrared domains with a spatial resolution varying between 10 and 60 m. The present study aimed at evaluating the performance of the S2-MSI imagery for estimating the growing stock volume of forest ecosystems. To do so we used 240 plots measured in two study areas in Italy. The imputation was carried out with eight k-Nearest Neighbours (k-NN) methods available in the open source YaImpute R package. In order to evaluate the S2-MSI performance we repeated the experimental protocol also with two other sets of images acquired by two well-known satellites equipped with multi spectral instruments: Landsat 8 OLI and RapidEye scanner. We found that S2 worked better than Landsat in 37.5% of the cases and in 62.5% of the cases better than RapidEye. In one study area the best performance was obtained with Landsat OLI (RMSD = 6.84%) and in the other with S2 (RMSD = 22.94%), both with the k-NN system based on a distance matrix calculated with the Random Forest algorithm. The results confirmed that S2 images are suitable for predicting growing stock volume obtaining good performances (average RMSD for both the test areas of less than 19%).
NASA Astrophysics Data System (ADS)
Suliman, M. D. H.; Mahmud, M.; Reba, M. N. M.; S, L. W.
2014-02-01
Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue Department Malaysia can use the end result of this study in preparation for the land and forest fires in the future.
ERIC Educational Resources Information Center
Tanui, Julius Gordon; Chepkuto, Paul K.
2015-01-01
To ensure the existence of humankind and the sustainable utilization of the earth's resources, deliberate action needs to be channelled towards the conservation of the vital support systems of the entire Earth ecosystems. Forests in this case form quite a crucial part of this wider arrangement that if man does not deliberately conserve and…
R.V. Nagubadi; D. Zhang
2008-01-01
This paper investigates the determinants of foreign direct investment (FDI) outflows from two major forest product importing countries: the U.S. and Japan. Exchange rate, per capita income, cost of capital, and cost of labour in host countries have significant impacts on the FDI outflows from these two countries. A complementary relationship is found between forest...
F. Thomas Ledig; J. Jesús Vargas-Hernández; Kurt H. Johnsen
1998-01-01
The genetic codes of living organisms are natural resources no less than soil, air, and water. Genetic resources-from nucleotide sequences in DNA to selected genotypes, populations, and species-are the raw material in forestry: for breeders, for the forest manager who produces an economic crop, for society that reaps the environmental benefits provided by forests, and...
Forest biomass and wood waste resources
K. Skog; P. Lebow; D. Dykstra; P. Miles; B.J. Stokes; R.D. Perlack; M. Buford; J. Barbour; D. McKeever
2011-01-01
This chapter provides estimates of forest biomass and wood waste quantities, as well as roadside costs (i.e., supply curves) for each county in the contiguous United States. Roadside price is the price a buyer pays for wood chips at a roadside in the forest, at a processing mill location in the case of mill residue, or at a landfill for urban wood wastes prior to any...
Francesc Baró; Lydia Chaparro; Erik Gómez-Baggethun; Johannes Langemeyer; David J. Nowak; Jaume Terradas
2014-01-01
Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change...
Jeffrey P. Prestemon; James A. Turner; Joseph Buongiorno; Shushuai Zhu; Ruhong Li
2008-01-01
US policy and forest product industry decisionmakers need quantitative information about the magnitude of timber product market impacts from the possible introduction of an exotic and potentially dangerous defoliating forest pest. We applied the Global Forest Products Model to evaluate the effects on the United States of an invasion by the Asian gypsy (...
Ashish Kumar; Bruce G. Marcot; Rohitkumar Patel
2017-01-01
This volume presents findings on, and implications for, wildlife conservation in the tropical forests in Garo Hills of Meghalaya state in the North East India. A companion volume presented the findings on forest fragmentation due to practice of slash and burn agriculture in the region. Both of the volumes summarize work completed over more than a decade on...
Consuelo Brandeis
2015-01-01
Ownership of the U.S. southern timberland rests largely on private forest landownersâ hands. As such, their harvest and regeneration choices can significantly impact the regionâs roundwood supply. In most cases, private forest landowners do not consider timber production among the top reasons for holding their lands. However, most research indicates that favorable...
Mapping above- and below-ground carbon pools in boreal forests: The case for airborne lidar
Terje Kristensen; Erik Naesset; Mikael Ohlson; Paul V. Bolstad; Randall Kolka
2015-01-01
A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest...
A case study of carbon fluxes from land change in the southwest Brazilian Amazon
Barrett, K.; Rogan, J.; Eastman, J.R.
2009-01-01
Worldwide, land change is responsible for one-fifth of anthropogenic carbon emissions. In Brazil, three-quarters of carbon emissions originate from land change. This study represents a municipal-scale study of carbon fluxes from vegetation in Rio Branco, Brazil. Land-cover maps of pasture, forest, and secondary growth from 1993, 1996, 1999, and 2003 were produced using an unsupervised classification method (overall accuracy = 89%). Carbon fluxes from land change over the decade of imagery were estimated from transitions between land-cover categories for each time interval. This article presents new methods for estimating emissions reductions from carbon stored in the vegetation that replaces forests (e.g., pasture) and sequestration by new (>10-15 years) forests, which reduced gross emissions by 16, 15, and 22% for the period of 1993-1996, 1996-1999, and 1999-2003, respectively. The methods used in the analysis are broadly applicable and provide a comprehensive characterization of regional-scale carbon fluxes from land change.
NASA Astrophysics Data System (ADS)
Gülci, S.; Akgül, M.; Akay, A. E.; Taş, İ.
2017-11-01
This short paper aims to present pros and cons of current usage of ready-to-use drone images in the field of forestry also considering flight planning and photogrammetric processes. The capabilities of DJI Phantom 4, which is the low cost drone producing by Dji company, was evaluated through sample flights in Cinarpinar Forest Enterprise Chief in Kahramanmaras in Turkey. In addition, the photogrammetric workflow of obtained images and automated flight were presented with respect to capabilities of available software. The flight plans were created by using Pix4DCapture software with android based cell phone. The results indicated that high-resolution imagery obtained by drone can provide significant data for assessment of forest resources, forest roads, and stream channels.
NASA Astrophysics Data System (ADS)
Jiang, W.; Wang, F.; Meng, Q.; Li, Z.; Liu, B.; Zheng, X.
2018-04-01
This paper presents a new standardized data format named Fire Markup Language (FireML), extended by the Geography Markup Language (GML) of OGC, to elaborate upon the fire hazard model. The proposed FireML is able to standardize the input and output documents of a fire model for effectively communicating with different disaster management systems to ensure a good interoperability. To demonstrate the usage of FireML and testify its feasibility, an adopted forest fire spread model being compatible with FireML is described. And a 3DGIS disaster management system is developed to simulate the dynamic procedure of forest fire spread with the defined FireML documents. The proposed approach will enlighten ones who work on other disaster models' standardization work.
Landsat for practical forest type mapping - A test case
NASA Technical Reports Server (NTRS)
Bryant, E.; Dodge, A. G., Jr.; Warren, S. D.
1980-01-01
Computer classified Landsat maps are compared with a recent conventional inventory of forest lands in northern Maine. Over the 196,000 hectare area mapped, estimates of the areas of softwood, mixed wood and hardwood forest obtained by a supervised classification of the Landsat data and a standard inventory based on aerial photointerpretation, probability proportional to prediction, field sampling and a standard forest measurement program are found to agree to within 5%. The cost of the Landsat maps is estimated to be $0.065/hectare. It is concluded that satellite techniques are worth developing for forest inventories, although they are not yet refined enough to be incorporated into current practical inventories.
Bekiroğlu, Sultan; Özdemir, Mehmet; Özyürek, Ercan; Arslan, Avni
2016-10-01
Model forests are nongovernmental organizations at local, regional and international level which are mainly focused on reconciling the conflicts between the stakeholders. This is an innovative approach to organization, which has been receiving more and more attraction from increasing number of countries, which gradually increased the number of model forests for the last 25 years. If these organizations reach desired levels of structure, medium, impacts and assets their contribution in sustainable forest resources management will increase ipso facto. The very first model forest of Turkey was created in Yalova Province in 2010. Yalova Province has certain fundamental problems including but not limited to; population growth and unplanned urbanization caused by industrialization, uncontrolled increase in demand for fire wood and non-wooden products of forestry resources, questionable resource management decisions adopted in the past and low-income levels of the people especially those in the rural areas. The main objective of present case study is to analyze Yalova Model Forest (YMF) so as to determine the possible problems that may occur during implementation of sustainable management for forestry resources through a planning approach with multiple stakeholders. As a result of research, it has been revealed that YMF has certain significant structural, environmental and impact-related problems. In order to ensure continuity of YMF's contribution to sustainable forestry resources management, these problems need to be addressed promptly. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, J.; Hanan, E. J.; Kolden, C.; Abatzoglou, J. T.; Tague, C.; Liu, M.; Adam, J. C.
2017-12-01
Drought events have been increasing across the western United States in recent years. Many studies have shown that, in the context of climate change, droughts will continue to be stronger, more frequent, and prolonged in the future. However, the response of forest ecosystems to droughts, particularly multi-year droughts, is not well understood. The objectives of this study are to examine how drought events of varying characteristics (e.g. intensity, duration, frequency, etc.) have affected the functioning of forest ecosystems historically, and how changing drought characteristics (including multi-year droughts) may affect forest functioning in a future climate. We utilize the Regional Hydro-Ecological Simulation System (RHESSys) to simulate impacts of both historical droughts and scenarios of future droughts on forest ecosystems. RHESSys is a spatially-distributed and process-based model that captures the interactions between coupled biogeochemical and hydrologic cycles at catchment scales. Here our case study is the Trail Creek catchment of the Big Wood River basin in Idaho, the Northwestern USA. For historical simulations, we use the gridded meteorological data of 1979 to 2016; for future climate scenarios, we utilize downscaled data from GCMs that have been demonstrated to capture drought events in the Northwest of the USA. From these climate projections, we identify various types of drought in intensity and duration, including multi-year drought events. We evaluate the following responses of ecosystems to these events: 1) evapotranspiration and streamflow; 2) gross primary productivity; 3) the post-drought recovery of plant biomass; and 4) the forest functioning and recovery after multi-year droughts. This research is part of an integration project to examine the roles of drought, insect outbreak, and forest management activities on wildfire activity and its impacts. This project will provide improved information for forest managers and communities in the wild urban interface to adapt to climate change.
NASA Astrophysics Data System (ADS)
Pourmokhtarian, A.; Becknell, J. M.; Hall, J.; Desai, A. R.; Boring, L. R.; Duffy, P.; Staudhammer, C. L.; Starr, G.; Dietze, M.
2014-12-01
A wide array of human-induced disturbances can alter the structure and function of forests, including climate change, disturbance and management. While there have been numerous studies on climate change impacts on forests, interactions of management with changing climate and natural disturbance are poorly studied. Forecasts of the range of plausible responses of forests to climate change and management are need for informed decision making on new management approaches under changing climate, as well as adaptation strategies for coming decades. Terrestrial biosphere models (TBMs) provide an excellent opportunity to investigate and assess simultaneous responses of terrestrial ecosystems to climatic perturbations and management across multiple spatio-temporal scales, but currently do not represent a wide array of management activities known to impact carbon, water, surface energy fluxes, and biodiversity. The Ecosystem Demography model 2 (ED2) incorporates non-linear impacts of fine-scale (~10-1 km) heterogeneity in ecosystem structure both horizontally and vertically at a plant level. Therefore it is an ideal candidate to incorporate different forest management practices and test various hypotheses under changing climate and across various spatial scales. The management practices that we implemented were: clear-cut, conversion, planting, partial harvest, low intensity fire, restoration, salvage, and herbicide. The results were validated against observed data across 8 different sites in the U.S. Southeast (Duke Forest, Joseph Jones Ecological Research Center, North Carolina Loblolly Pine, and Ordway-Swisher Biological Station) and Pacific Northwest (Metolius Research Natural Area, H.J. Andrews Experimental Forest, Wind River Field Station, and Mount Rainier National Park). These sites differ in regards to climate, vegetation, soil, and historical land disturbance as well as management approaches. Results showed that different management practices could successfully and realistically be implemented in the ED2 model at a site level. Moreover, sensitivity analyses determined the most important processes at different spatial scales, and also those which could be ignored while minimizing overall error.
Mangrove forest distributions and dynamics in Madagascar (1975-2005)
Giri, C.; Muhlhausen, J.
2008-01-01
Mangrove forests of Madagascar are declining, albeit at a much slower rate than the global average. The forests are declining due to conversion to other land uses and forest degradation. However, accurate and reliable information on their present distribution and their rates, causes, and consequences of change have not been available. Earlier studies used remotely sensed data to map and, in some cases, to monitor mangrove forests at a local scale. Nonetheless, a comprehensive national assessment and synthesis was lacking. We interpreted time-series satellite data of 1975, 1990, 2000, and 2005 using a hybrid supervised and unsupervised classification approach. Landsat data were geometrically corrected to an accuracy of ?? one-half pixel, an accuracy necessary for change analysis. We used a postclassification change detection approach. Our results showed that Madagascar lost 7% of mangrove forests from 1975 to 2005, to a present extent of ???2,797 km2. Deforestation rates and causes varied both spatially and temporally. The forests increased by 5.6% (212 km2) from 1975 to 1990, decreased by 14.3% (455 km 2) from 1990 to 2000, and decreased by 2.6% (73 km2) from 2000 to 2005. Similarly, major changes occurred in Bombekota Bay, Mahajamba Bay, the coast of Ambanja, the Tsiribihina River, and Cap St Vincent. The main factors responsible for mangrove deforestation include conversion to agriculture (35%), logging (16%), conversion to aquaculture (3%), and urban development (1%). ?? 2008 by MDPI.
Strauch, Ayron M; Rurai, Masegeri T; Almedom, Astier M
2016-09-15
Social, religious and economic facets of rural livelihoods in Sub-Saharan Africa are heavily dependent on natural resources, but improper resource management, drought, and social instability frequently lead to their unsustainable exploitation. In rural Tanzania, natural resources are often governed locally by informal systems of traditional resource management (TRM), defined as cultural practices developed within the context of social and religious institutions over hundreds of years. However, following independence from colonial rule, centralized governments began to exercise jurisdictional control over natural resources. Following decades of mismanagement that resulted in lost ecosystem services, communities demanded change. To improve resource protection and participation in management among stakeholders, the Tanzanian government began to decentralize management programs in the early 2000s. We investigated these two differing management approaches (traditional and decentralized government) in Sonjo communities, to examine local perceptions of resource governance, management influences on forest use, and their consequences for forest and water resources. While 97% of households understood the regulations governing traditionally-managed forests, this was true for only 39% of households for government-managed forests, leading to differences in forest use. Traditional management practices resulted in improved forest condition and surface water quality. This research provides an essential case study demonstrating the importance of TRM in shaping decision frameworks for natural resource planning and management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Are bryophytes useful indicators of hydrologic permanence in forested headwater streams?
Court cases have recently questioned whether all headwater streams, particularly non-perennial streams, should be protected in the U.S. under the Clean Water Act. Rapid field-based indicators of hydrologic permanence are needed for jurisdictional determinations. The study objecti...
Case studies of severe pollution events due to forest fires/dust storms/industrial haze, from the integrated 2001 aerosol dataset, will be presented within the context of air quality and human health.
Biodiversity can help prevent malaria outbreaks in tropical forests.
Laporta, Gabriel Zorello; Lopez de Prado, Paulo Inácio Knegt; Kraenkel, Roberto André; Coutinho, Renato Mendes; Sallum, Maria Anice Mureb
2013-01-01
Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number ([Formula: see text]) estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals). To achieve biological conservation and to eliminate Plasmodium parasites in human populations, the World Health Organization Malaria Eradication Research Agenda should take biodiversity issues into consideration.
Kim, Oh Seok; Newell, Joshua P
2015-10-01
This paper proposes a new land-change model, the Geographic Emission Benchmark (GEB), as an approach to quantify land-cover changes associated with deforestation and forest degradation. The GEB is designed to determine 'baseline' activity data for reference levels. Unlike other models that forecast business-as-usual future deforestation, the GEB internally (1) characterizes 'forest' and 'deforestation' with minimal processing and ground-truthing and (2) identifies 'deforestation hotspots' using open-source spatial methods to estimate regional rates of deforestation. The GEB also characterizes forest degradation and identifies leakage belts. This paper compares the accuracy of GEB with GEOMOD, a popular land-change model used in the UN-REDD (Reducing Emissions from Deforestation and Forest Degradation) Program. Using a case study of the Chinese tropics for comparison, GEB's projection is more accurate than GEOMOD's, as measured by Figure of Merit. Thus, the GEB produces baseline activity data that are moderately accurate for the setting of reference levels.
Fire intensity impacts on post-fire temperate coniferous forest net primary productivity
NASA Astrophysics Data System (ADS)
Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.
2018-02-01
Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.