Design of forging process variables under uncertainties
NASA Astrophysics Data System (ADS)
Repalle, Jalaja; Grandhi, Ramana V.
2005-02-01
Forging is a complex nonlinear process that is vulnerable to various manufacturing anomalies, such as variations in billet geometry, billet/die temperatures, material properties, and workpiece and forging equipment positional errors. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion, and reduced productivity. Identifying, quantifying, and controlling the uncertainties will reduce variability risk in a manufacturing environment, which will minimize the overall production cost. In this article, various uncertainties that affect the forging process are identified, and their cumulative effect on the forging tool life is evaluated. Because the forging process simulation is time-consuming, a response surface model is used to reduce computation time by establishing a relationship between the process performance and the critical process variables. A robust design methodology is developed by incorporating reliability-based optimization techniques to obtain sound forging components. A case study of an automotive-component forging-process design is presented to demonstrate the applicability of the method.
Optimum Design of Forging Process Parameters and Preform Shape under Uncertainties
NASA Astrophysics Data System (ADS)
Repalle, Jalaja; Grandhi, Ramana V.
2004-06-01
Forging is a highly complex non-linear process that is vulnerable to various uncertainties, such as variations in billet geometry, die temperature, material properties, workpiece and forging equipment positional errors and process parameters. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion and production risk. Identifying the sources of uncertainties, quantifying and controlling them will reduce risk in the manufacturing environment, which will minimize the overall cost of production. In this paper, various uncertainties that affect forging tool life and preform design are identified, and their cumulative effect on the forging process is evaluated. Since the forging process simulation is computationally intensive, the response surface approach is used to reduce time by establishing a relationship between the system performance and the critical process design parameters. Variability in system performance due to randomness in the parameters is computed by applying Monte Carlo Simulations (MCS) on generated Response Surface Models (RSM). Finally, a Robust Methodology is developed to optimize forging process parameters and preform shape. The developed method is demonstrated by applying it to an axisymmetric H-cross section disk forging to improve the product quality and robustness.
3D Finite Element Analysis of Spider Non-isothermal Forging Process
NASA Astrophysics Data System (ADS)
Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing
2016-06-01
The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.
Design and Analysis of a Forging Die for Manufacturing of Multiple Connecting Rods
NASA Astrophysics Data System (ADS)
Megharaj, C. E.; Nagaraj, P. M.; Jeelan Pasha, K.
2016-09-01
This paper demonstrates to utilize the hammer capacity by modifying the die design such that forging hammer can manufacture more than one connecting rod in a given forging cycle time. To modify the die design study is carried out to understand the parameters that are required for forging die design. By considering these parameters, forging die is designed using design modelling tool solid edge. This new design now can produce two connecting rods in same capacity hammer. The new design is required to validate by verifying complete filing of metal in die cavities without any defects in it. To verify this, analysis tool DEFORM 3D is used in this project. Before start of validation process it is require to convert 3D generated models in to. STL file format to import the models into the analysis tool DEFORM 3D. After importing these designs they are analysed for material flow into the cavities and energy required to produce two connecting rods in new forging die design. It is found that the forging die design is proper without any defects and also energy graph shows that the forging energy required to produce two connecting rods is within the limit of that hammer capacity. Implementation of this project increases the production of connecting rods by 200% in less than previous cycle time.
The development and production of thermo-mechanically forged tool steel spur gears
NASA Technical Reports Server (NTRS)
Bamberger, E. N.
1973-01-01
A development program to establish the feasibility and applicability of high energy rate forging procedures to tool steel spur gears was performed. Included in the study were relatively standard forging procedures as well as a thermo-mechanical process termed ausforming. The subject gear configuration utilized was essentially a standard spur gear having 28 teeth, a pitch diameter of 3.5 inches and a diametral pitch of 8. Initially it had been planned to use a high contact ratio gear design, however, a comprehensive evaluation indicated that severe forging problems would be encountered as a result of the extremely small teeth required by this type of design. The forging studies were successful in achieving gear blanks having integrally formed teeth using both standard and thermo-mechanical forging procedures.
Forging of Advanced Disk Alloy LSHR
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Gayda, John; Falsey, John
2005-01-01
The powder metallurgy disk alloy LSHR was designed with a relatively low gamma precipitate solvus temperature and high refractory element content to allow versatile heat treatment processing combined with high tensile, creep and fatigue properties. Grain size can be chiefly controlled through proper selection of solution heat treatment temperatures relative to the gamma precipitate solvus temperature. However, forging process conditions can also significantly influence solution heat treatment-grain size response. Therefore, it is necessary to understand the relationships between forging process conditions and the eventual grain size of solution heat treated material. A series of forging experiments were performed with subsequent subsolvus and supersolvus heat treatments, in search of suitable forging conditions for producing uniform fine grain and coarse grain microstructures. Subsolvus, supersolvus, and combined subsolvus plus supersolvus heat treatments were then applied. Forging and subsequent heat treatment conditions were identified allowing uniform fine and coarse grain microstructures.
NASA Astrophysics Data System (ADS)
Perrier, Frédéric; Desrayaud, Christophe; Bouvier, Véronique
Aluminum casting/forging processes are used to produce parts for the automotive industry. In this study, we examined the influence of the forging step on the microstructure and the mechanical properties of an A356 aluminum alloy modified with strontium. Firstly, a design of samples which allows us to test mechanically the alloy before and after forging was created. A finite element analysis with the ABAQUS software predicts a maximum of strain in the core of the specimens. Observations with the EBSD technique confirm a more intense sub-structuration of the dendrite cells in this zone. Yield strength, ultimate tensile strength, elongation and fatigue lives were then improved for the casting/forging samples compared to the only cast specimens. The closure of the porosities and the improvement of the surface quality during the forging step enhance also the fatigue resistance of the samples.
Treweek, Shaun; Altman, Doug G; Bower, Peter; Campbell, Marion; Chalmers, Iain; Cotton, Seonaidh; Craig, Peter; Crosby, David; Davidson, Peter; Devane, Declan; Duley, Lelia; Dunn, Janet; Elbourne, Diana; Farrell, Barbara; Gamble, Carrol; Gillies, Katie; Hood, Kerry; Lang, Trudie; Littleford, Roberta; Loudon, Kirsty; McDonald, Alison; McPherson, Gladys; Nelson, Annmarie; Norrie, John; Ramsay, Craig; Sandercock, Peter; Shanahan, Daniel R; Summerskill, William; Sydes, Matt; Williamson, Paula; Clarke, Mike
2015-06-05
Randomised trials are at the heart of evidence-based healthcare, but the methods and infrastructure for conducting these sometimes complex studies are largely evidence free. Trial Forge ( www.trialforge.org ) is an initiative that aims to increase the evidence base for trial decision making and, in doing so, to improve trial efficiency.This paper summarises a one-day workshop held in Edinburgh on 10 July 2014 to discuss Trial Forge and how to advance this initiative. We first outline the problem of inefficiency in randomised trials and go on to describe Trial Forge. We present participants' views on the processes in the life of a randomised trial that should be covered by Trial Forge.General support existed at the workshop for the Trial Forge approach to increase the evidence base for making randomised trial decisions and for improving trial efficiency. Agreed upon key processes included choosing the right research question; logistical planning for delivery, training of staff, recruitment, and retention; data management and dissemination; and close down. The process of linking to existing initiatives where possible was considered crucial. Trial Forge will not be a guideline or a checklist but a 'go to' website for research on randomised trials methods, with a linked programme of applied methodology research, coupled to an effective evidence-dissemination process. Moreover, it will support an informal network of interested trialists who meet virtually (online) and occasionally in person to build capacity and knowledge in the design and conduct of efficient randomised trials.Some of the resources invested in randomised trials are wasted because of limited evidence upon which to base many aspects of design, conduct, analysis, and reporting of clinical trials. Trial Forge will help to address this lack of evidence.
Fabrication development for ODS-superalloy, air-cooled turbine blades
NASA Technical Reports Server (NTRS)
Moracz, D. J.
1984-01-01
MA-600 is a gamma prime and oxide dispersion strengthened superalloy made by mechanical alloying. At the initiation of this program, MA-6000 was available as an experimental alloy only and did not go into production until late in the program. The objective of this program was to develop a thermal-mechanical-processing approach which would yield the necessary elongated grain structure and desirable mechanical properties after conventional press forging. Forging evaluations were performed to select optimum thermal-mechanical-processing conditions. These forging evaluations indicated that MA-6000 was extremely sensitive to die chilling. In order to conventionally hot forge the alloy, an adherent cladding, either the original extrusion can or a thick plating, was required to prevent cracking of the workpiece. Die design must reflect the requirement of cladding. MA-6000 was found to be sensitive to the forging temperature. The correct temperature required to obtain the proper grain structure after recrystallization was found to be between 1010-1065 C (1850-1950 F). The deformation level did not affect subsequent crystallization; however, sharp transition areas in tooling designs should be avoided in forming a blade shape because of the potential for grain structure discontinuities. Starting material to be used for forging should be processed so that it is capable of being zone annealed to a coarse elongated grain structure as bar stock. This conclusion means that standard processed bar materials can be used.
NASA Astrophysics Data System (ADS)
Li, Fengxian; Yi, Jianhong; Eckert, Jürgen
2017-12-01
Powder forged connecting rods have the problem of non-uniform density distributions because of their complex geometric shape. The densification behaviors of powder metallurgy (PM) connecting rod preforms during hot forging processes play a significant role in optimizing the connecting rod quality. The deformation behaviors of a connecting rod preform, a Fe-3Cu-0.5C (wt pct) alloy compacted and sintered by the powder metallurgy route (PM Fe-Cu-C), were investigated using the finite element method, while damage and friction behaviors of the material were considered in the complicated forging process. The calculated results agree well with the experimental results. The relationship between the processing parameters of hot forging and the relative density of the connecting rod was revealed. The results showed that the relative density of the hot forged connecting rod at the central shank changed significantly compared with the relative density at the big end and at the small end. Moreover, the relative density of the connecting rod was sensitive to the processing parameters such as the forging velocity and the initial density of the preform. The optimum forging processing parameters were determined and presented by using an orthogonal design method. This work suggests that the processing parameters can be optimized to prepare a connecting rod with uniform density distribution and can help to better meet the requirements of the connecting rod industry.
Using of material-technological modelling for designing production of closed die forgings
NASA Astrophysics Data System (ADS)
Ibrahim, K.; Vorel, I.; Jeníček, Š.; Káňa, J.; Aišman, D.; Kotěšovec, V.
2017-02-01
Production of forgings is a complex and demanding process which consists of a number of forging operations and, in many cases, includes post-forge heat treatment. An optimized manufacturing line is a prerequisite for obtaining prime-quality products which in turn are essential to profitable operation of a forging company. Problems may, however, arise from modifications to the manufacturing route due to changing customer needs. As a result, the production may have to be suspended temporarily to enable changeover and optimization. Using material-technological modelling, the required modifications can be tested and optimized under laboratory conditions outside the plant without disrupting the production. Thanks to material-technological modelling, the process parameters can be varied rapidly in response to changes in market requirements. Outcomes of the modelling runs include optimum parameters for the forging part’s manufacturing route, values of mechanical properties, and results of microstructure analysis. This article describes the use of material-technological modelling for exploring the impact of the amount of deformation and the rate of cooling of a particular forged part from the finish-forging temperature on its microstructure and related mechanical properties.
New Trends in Forging Technologies
NASA Astrophysics Data System (ADS)
Behrens, B.-A.; Hagen, T.; Knigge, J.; Elgaly, I.; Hadifi, T.; Bouguecha, A.
2011-05-01
Limited natural resources increase the demand on highly efficient machinery and transportation means. New energy-saving mobility concepts call for design optimisation through downsizing of components and choice of corrosion resistant materials possessing high strength to density ratios. Component downsizing can be performed either by constructive structural optimisation or by substituting heavy materials with lighter high-strength ones. In this context, forging plays an important role in manufacturing load-optimised structural components. At the Institute of Metal Forming and Metal-Forming Machines (IFUM) various innovative forging technologies have been developed. With regard to structural optimisation, different strategies for localised reinforcement of components were investigated. Locally induced strain hardening by means of cold forging under a superimposed hydrostatic pressure could be realised. In addition, controlled martensitic zones could be created through forming induced phase conversion in metastable austenitic steels. Other research focused on the replacement of heavy steel parts with high-strength nonferrous alloys or hybrid material compounds. Several forging processes of magnesium, aluminium and titanium alloys for different aeronautical and automotive applications were developed. The whole process chain from material characterisation via simulation-based process design to the production of the parts has been considered. The feasibility of forging complex shaped geometries using these alloys was confirmed. In spite of the difficulties encountered due to machine noise and high temperature, acoustic emission (AE) technique has been successfully applied for online monitoring of forging defects. New AE analysis algorithm has been developed, so that different signal patterns due to various events such as product/die cracking or die wear could be detected and classified. Further, the feasibility of the mentioned forging technologies was proven by means of the finite element analysis (FEA). For example, the integrity of forging dies with respect to crack initiation due to thermo-mechanical fatigue as well as the ductile damage of forgings was investigated with the help of cumulative damage models. In this paper some of the mentioned approaches are described.
Hot working behavior of selective laser melted and laser metal deposited Inconel 718
NASA Astrophysics Data System (ADS)
Bambach, Markus; Sizova, Irina
2018-05-01
The production of Nickel-based high-temperature components is of great importance for the transport and energy sector. Forging of high-temperature alloys often requires expensive dies, multiple forming steps and leads to forged parts with tolerances that require machining to create the final shape and a large amount of scrap. Additive manufacturing offers the possibility to print the desired shapes directly as net-shape components, requiring only little additional effort in machining. Especially for high-temperature alloys carrying a large amount of energy per unit mass, additive manufacturing could be more energy-efficient than forging if the energy contained in the machining scrap exceeds the energy needed for powder production and laser processing. However, the microstructure and performance of 3d-printed parts will not reach the level of forged material unless further expensive processes such as hot-isostatic pressing are used. Using the design freedom and possibilities to locally engineer material, additive manufacturing could be combined with forging operations to novel process chains, offering the possibility to reduce the number of forging steps and to create near-net shape forgings with desired local properties. Some innovative process chains combining additive manufacturing and forging have been patented recently, but almost no scientific knowledge on the workability of 3D printed preforms exists. The present study investigates the flow stress and microstructure evolution during hot working of pre-forms produced by laser powder deposition and selective laser melting (Figure 1) and puts forward a model for the flow stress.
Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation
NASA Astrophysics Data System (ADS)
L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.
2016-03-01
Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.
NASA Astrophysics Data System (ADS)
Hu, X. F.; Wang, L. G.; Wu, H.; Liu, S. S.
2017-12-01
For the forging process of the swash plate, the author designed a kind of multi-index orthogonal experiment. Based on the Archard wear model, the influences of billet temperature, die temperature, forming speed, top die hardness and friction coefficient on forming load and die wear were numerically simulated by DEFORM software. Through the analysis of experimental results, the best forging process parameters were optimized and determined, which could effectively reduce the die wear and prolong the die service life. It is significant to increase the practical production of enterprise, especially to reduce the production cost and to promote enterprise profit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Deepak
The primary objective of the task was to characterize the materials suitable for mechanically coupled rotor, buckets and bolting operating with an inlet temperature of 760°C (1400°F). A previous study DOE-FC26-05NT42442, identified alloys such as Haynes®282®, Nimonic 105, Inconel 740, Waspaloy, Nimonic 263, and Inconel 617 as potential alloys that met the requirements for the necessary operating conditions. Of all the identified materials, Waspaloy has been widely utilized in the aviation industry in the form of disk and other smaller forgings, and sufficient material properties and vendor experience exist, for the design and manufacture of large components. The European programmore » characterizing materials for A-USC conditions are evaluating Nimonic 263 and Inconel 617 for large components. Inconel 740 has been studied extensively as a part of the boiler consortium and is code approved. Therefore, the consortium focused efforts in the development of material properties for Haynes®282® and Nimonic 105 to avoid replicative efforts and provide material choices/trade off during the detailed design of large components. Commercially available Nimonic 105 and Haynes®282® were evaluated for microstructural stability by long term thermal exposure studies. Material properties requisite for design such as tensile, creep / rupture, low cycle fatigue, high cycle fatigue, fatigue crack growth rate, hold-time fatigue, fracture toughness, and stress relaxation are documented in this report. A key requisite for the success of the program was a need demonstrate the successful scale up of the down-selected alloys, to large components. All property evaluations in the past were performed on commercially available bar/billet forms. Components in power plant equipment such as rotors and castings are several orders in magnitude larger and there is a real need to resolve the scalability issue. Nimonic 105 contains high volume fraction y’ [>50%], and hence the alloy is best suited for smaller forging and valve internals, bolts, smaller blades. Larger Nimonic 105 forgings, would precipitate y’ during the surface cooling during forging, leading to surface cracks. The associate costs in forging Nimonic 105 to larger sizes [hotter dies, press requirements], were beyond the scope of this task and not investigated further. Haynes®282® has 20 - 25% volume fraction y’ was a choice for large components, albeit untested. A larger ingot diameter is pre-requisite for a larger diameter forging and achieves the “typically” accepted working ratio of 2.5-3:1. However, Haynes®282® is manufactured via a double melt process [VIM-ESR] limited by size [<18-16” diameter], which limited the maximum size of the final forging. The report documents the development of a 24” diameter triple melt ingot, surpassing the current available technology. A second triple melt ingot was manufactured and successfully forged into a 44” diameter disk. The successful developments in triple melting process and the large diameter forging of Haynes®282® resolved the scalability issues and involved the first of its kind attempt in the world for this alloy. The complete characterization of Haynes®282® forging was performed and documented in this report. The dataset from the commercially available Haynes®282® [grain size ASTM 3-4] and the finer grain size disk forging [ASTM 8-9] offer an additional design tradeoff to balance creep and fatigue during the future design process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Michael J.
Forged stainless steels are used as the materials of construction for tritium reservoirs. During service, tritium diffuses into the reservoir walls and radioactively decays to helium-3. Tritium and decay helium cause a higher propensity for cracking which could lead to a tritium leak or delayed failure of a tritium reservoir. The factors that affect the tendency for crack formation and propagation include: Environment; steel type and microstructure; and, vessel configuration (geometry, pressure, residual stress). Fracture toughness properties are needed for evaluating the long-term effects of tritium on their structural properties. Until now, these effects have been characterized by measuring themore » effects of tritium on the tensile and fracture toughness properties of specimens fabricated from experimental forgings in the form of forward-extruded cylinders. A key result of those studies is that the long-term cracking resistance of stainless steels in tritium service depends greatly on the interaction between decay helium and the steels’ forged microstructure. New experimental research programs are underway and are designed to measure tritium and decay helium effects on the cracking properties of stainless steels using actual tritium reservoir forgings instead of the experimental forgings of past programs. The properties measured should be more representative of actual reservoir properties because the microstructure of the specimens tested will be more like that of the tritium reservoirs. The programs are designed to measure the effects of key forging variables on tritium compatibility and include three stainless steels, multiple yield strengths, and four different forging processes. The effects on fracture toughness of hydrogen and crack orientation were measured for type 316L forgings. In addition, hydrogen effects on toughness were measured for Type 304L block forgings having two different yield strengths. Finally, fracture toughness properties of type 304L stainless steel were measured for four different forging strain rates which and two forging temperatures. Tritium exposures have been and are being conducted on companion specimens for property measurements in the upcoming years.« less
NASA Astrophysics Data System (ADS)
Mataya, M. C.; Carr, M. J.; Krauss, G.
1984-02-01
The development of microstructure and strength during forging in a γ' strengthened austenitic stainless steel, JBK-75, was investigated by means of forward extrusion of cylindrical specimens. The specimens were deformed in a strain range of 0.16 to 1.0, from 800°C to 1080°C, and at approximate strain rates of 2 (press forging) and 2 × 103 s-1 (high energy rate forging), and structures examined by light and transmission microscopy. Mechanical properties were determined by tensile testing as-forged and forged and aged specimens. The alloy exhibited an extremely wide variety of structures and properties within the range of forging pzrameters studied. Deformation at the higher strain rate via high energy rate forging resulted in unrecovered substructures and high strengths at low forging temperatures, and static recrystallization and low strengths at high temperatures. In contrast, however, deformation at the lower strain rate via press forging resulted in retention of the well developed subgrain structure and associated high strength produced at high forging temperatures and strains. At lower temperatures and strains during press forging a subgrain structure formed preferentially at high angle grain boundaries, apparently by a creep-type deformation mechanism. Dynamic recrystallization was not an important restoration mechanism for any of the forging conditions. The results are interpreted on the basis of stacking fault energy and the accumulation of strain energy during hot working. The significance of observed microstructural differences for equivalent deformation conditions (iso-Z, where Z is the Zener-Holloman parameter) is discussed in relation to the utilization of Z for predicting hot work structures and strengths. Aging showed that the γ' precipitation process is not affected by substructure and that the strengthening contributions, from substructure and precipitation, were independent and additive. Applications for these findings are discussed in terms of process design criteria.
Wear Improvement of Tools in the Cold Forging Process for Long Hex Flange Nuts.
Hsia, Shao-Yi; Shih, Po-Yueh
2015-09-25
Cold forging has played a critical role in fasteners and has been widely used in automotive production, manufacturing, aviation and 3C (Computer, Communication, and Consumer electronics). Despite its extensive use in fastener forming and die design, operator experience and trial and error make it subjective and unreliable owing to the difficulty of controlling the development schedule. This study used finite element analysis to establish and simulate wear in automotive repair fastener manufacturing dies based on actual process conditions. The places on a die that wore most quickly were forecast, with the stress levels obtained being substituted into the Archard equation to calculate die wear. A 19.87% improvement in wear optimization occurred by applying the Taguchi quality method to the new design. Additionally, a comparison of actual manufacturing data to simulations revealed a nut forging size error within 2%, thereby demonstrating the accuracy of this theoretical analysis. Finally, SEM micrographs of the worn surfaces on the upper punch indicate that the primary wear mechanism on the cold forging die for long hex flange nuts was adhesive wear. The results can simplify the development schedule, reduce the number of trials and further enhance production quality and die life.
Wear Improvement of Tools in the Cold Forging Process for Long Hex Flange Nuts
Hsia, Shao-Yi; Shih, Po-Yueh
2015-01-01
Cold forging has played a critical role in fasteners and has been widely used in automotive production, manufacturing, aviation and 3C (Computer, Communication, and Consumer electronics). Despite its extensive use in fastener forming and die design, operator experience and trial and error make it subjective and unreliable owing to the difficulty of controlling the development schedule. This study used finite element analysis to establish and simulate wear in automotive repair fastener manufacturing dies based on actual process conditions. The places on a die that wore most quickly were forecast, with the stress levels obtained being substituted into the Archard equation to calculate die wear. A 19.87% improvement in wear optimization occurred by applying the Taguchi quality method to the new design. Additionally, a comparison of actual manufacturing data to simulations revealed a nut forging size error within 2%, thereby demonstrating the accuracy of this theoretical analysis. Finally, SEM micrographs of the worn surfaces on the upper punch indicate that the primary wear mechanism on the cold forging die for long hex flange nuts was adhesive wear. The results can simplify the development schedule, reduce the number of trials and further enhance production quality and die life. PMID:28793589
New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys
NASA Astrophysics Data System (ADS)
Baker, Andrew H.; Collins, Peter C.; Williams, James C.
2017-07-01
The heat-treatment designations and microstructure nomenclatures for many structural metallic alloys were established for traditional metals processing, such as casting, hot rolling or forging. These terms do not necessarily apply for additively manufactured (i.e., three-dimensionally printed or "3D printed") metallic structures. The heat-treatment terminology for titanium alloys generally implies the heat-treatment temperatures and their sequence relative to a thermomechanical processing step (e.g., forging, rolling). These designations include: β-processing, α + β-processing, β-annealing, duplex annealing and mill annealing. Owing to the absence of a thermomechanical processing step, these traditional designations can pose a problem when titanium alloys are first produced via additive manufacturing, and then heat-treated. This communication proposes new nomenclatures for heat treatments of additively manufactured titanium alloys, and uses the distinct microstructural features to provide a correlation between traditional nomenclature and the proposed nomenclature.
46 CFR 154.610 - Design temperature not colder than 0 °C (32 °F).
Code of Federal Regulations, 2010 CFR
2010-10-01
... materials must meet §§ 54.25-1 and 54.25-3 of this chapter. (b) Plates, forgings, rolled and forged bars and... batch of forgings, forged or rolled fittings, and forged or rolled bars and shapes. (f) The specified... ton batch of forgings, forged or rolled fittings and rolled or forged bars and shapes. (h) The...
High Temperature, Slow Strain Rate Forging of Advanced Disk Alloy ME3
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; OConnor, Kenneth
2001-01-01
The advanced disk alloy ME3 was designed in the HSR/EPM disk program to have extended durability at 1150 to 1250 F in large disks. This was achieved by designing a disk alloy and process producing balanced monotonic, cyclic, and time-dependent mechanical properties. combined with robust processing and manufacturing characteristics. The resulting baseline alloy, processing, and supersolvus heat treatment produces a uniform, relatively fine mean grain size of about ASTM 7, with as-large-as (ALA) grain size of about ASTM 3. There is a long term need for disks with higher rim temperature capabilities than 1250 F. This would allow higher compressor exit (T3) temperatures and allow the full utilization of advanced combustor and airfoil concepts under development. Several approaches are being studied that modify the processing and chemistry of ME3, to possibly improve high temperature properties. Promising approaches would be applied to subscale material, for screening the resulting mechanical properties at these high temperatures. n obvious path traditionally employed to improve the high temperature and time-dependent capabilities of disk alloys is to coarsen the grain size. A coarser grain size than ASTM 7 could potentially be achieved by varying the forging conditions and supersolvus heat treatment. The objective of this study was to perform forging and heat treatment experiments ("thermomechanical processing experiments") on small compression test specimens of the baseline ME3 composition, to identify a viable forging process allowing significantly coarser grain size targeted at ASTM 3-5, than that of the baseline, ASTM 7.
Co-Operative Training in the Sheffield Forging Industry
ERIC Educational Resources Information Center
Duncan, R.
2008-01-01
Purpose: The purpose of this paper is to give details of an operation carried out in Sheffield to increase the recruitment of young men into the steel forging industry. Design/methodology/approach: The Sheffield Forges Co-operative Training Scheme was designed to encourage boys to enter the forging industry and to provide them with training and…
Deformation processes in forging ceramics
NASA Technical Reports Server (NTRS)
Cannon, R. M.; Rhodes, W. H.
1972-01-01
The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging are utilized to investigate both the flow and fracture processes involved. An additional hemisphere forging was done which failed prematurely. Analysis and comparison with available fracture data for AL2O3 indicated possible causes of the failure. Examination of previous forgings indicated an increase in grain boundary cavitation with increasing strain.
NASA Astrophysics Data System (ADS)
Amiri, Amir; Nikpour, Amin; Saraeian, Payam
2018-05-01
Forging is one of the manufacturing processes of aluminium parts which has two major categories: called hot and cold forging. In the cold forging, the dimensional and geometrical accuracy of final part is high. However, fracture may occur in some aluminium alloys during the process because of less workability. Fracture in cold forging can be in the form of ductile, brittle or combination of both depending on the alloy type. There are several criteria for predicting fracture in cold forging. In this study, cold forging process of 6063 aluminium alloy for three different parts is simulated in order to predict fracture. The results of numerical simulations of Freudenthal criterion is in conformity with experimental tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kervick, R.; Blue, C. A.; Kadolkar, P. B.
Forging is a manufacturing process in which metal is pressed, pounded or squeezed under great pressure and, often, under high strain rates into high-strength parts known as forgings. The process is typically performed hot by preheating the metal to a desired temperature before it is worked. The forging process can create parts that are stronger than those manufactured by any other metal working process. Forgings are almost always used where reliability and human safety are critical. Forgings are normally component parts contained inside assembled items such airplanes, automobiles, tractors, ships, oil drilling equipment, engines missiles, and all kinds of capitalmore » equipment Forgings are stronger than castings and surpass them in predictable strength properties, producing superior strength that is assured, part to part.« less
Precision forging technology for aluminum alloy
NASA Astrophysics Data System (ADS)
Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen
2018-03-01
Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Michael J.
Forged austenitic stainless steels are used as the materials of construction for pressure vessels designed to contain tritium at high pressure. These steels are highly resistant to tritium-assisted fracture but their resistance can depend on the details of the forging microstructure. During FY16, the effects of forging strain rate and deformation temperature on the fracture toughness properties of tritium-exposed-and-aged Type 304L stainless steel were studied. Forgings were produced from a single heat of steel using four types of production forging equipment – hydraulic press, mechanical press, screw press, and high-energy-rate forging (HERF). Each machine imparted a different nominal strain ratemore » during the deformation. The objective of the study was to characterize the J-Integral fracture toughness properties as a function of the industrial strain rate and temperature. The second objective was to measure the effects of tritium and decay helium on toughness. Tritium and decay helium effects were measured by thermally precharging the as-forged specimens with tritium gas at 34.5 MPa and 350°C and aging for up to five years at -80°C to build-in decay helium prior to testing. The results of this study show that the fracture toughness properties of the as-forged steels vary with forging strain rate and forging temperature. The effect is largely due to yield strength as the higher-strength forgings had the lower toughness values. For non-charged specimens, fracture toughness properties were improved by forging at 871°C versus 816°C and Screw-Press forgings tended to have lower fracture toughness values than the other forgings. Tritium exposures reduced the fracture toughness values remarkably to fracture toughness values averaging 10-20% of as-forged values. However, forging strain rate and temperature had little or no effect on the fracture toughness after tritium precharging and aging. The result was confirmed by fractography which indicated that fracture modes in the tritium-exposed specimens were similar for all forgings. Another FY16 objective was to prepare fracture toughness specimens from Types 304L and 21-6-9 stainless steel weldments and heat-affected zones (HAZ) for tritium charging.« less
Fatigue Life Variability in Large Aluminum Forgings with Residual Stress
2011-07-01
been conducted. A detailed finite element analysis of the forge/ quench /coldwork/machine process was performed in order to predict the bulk residual...forge/ quench /coldwork/machine process was performed in order to predict the bulk residual stresses in a fictitious aluminum bulkhead. The residual...continues to develop the capability for computational simulation of the forge, quench , cold work and machining processes. In order to handle the
Numerical modeling of axi-symmetrical cold forging process by ``Pseudo Inverse Approach''
NASA Astrophysics Data System (ADS)
Halouani, A.; Li, Y. M.; Abbes, B.; Guo, Y. Q.
2011-05-01
The incremental approach is widely used for the forging process modeling, it gives good strain and stress estimation, but it is time consuming. A fast Inverse Approach (IA) has been developed for the axi-symmetric cold forging modeling [1-2]. This approach exploits maximum the knowledge of the final part's shape and the assumptions of proportional loading and simplified tool actions make the IA simulation very fast. The IA is proved very useful for the tool design and optimization because of its rapidity and good strain estimation. However, the assumptions mentioned above cannot provide good stress estimation because of neglecting the loading history. A new approach called "Pseudo Inverse Approach" (PIA) was proposed by Batoz, Guo et al.. [3] for the sheet forming modeling, which keeps the IA's advantages but gives good stress estimation by taking into consideration the loading history. Our aim is to adapt the PIA for the cold forging modeling in this paper. The main developments in PIA are resumed as follows: A few intermediate configurations are generated for the given tools' positions to consider the deformation history; the strain increment is calculated by the inverse method between the previous and actual configurations. An incremental algorithm of the plastic integration is used in PIA instead of the total constitutive law used in the IA. An example is used to show the effectiveness and limitations of the PIA for the cold forging process modeling.
A coupled thermo-mechanical pseudo inverse approach for preform design in forging
NASA Astrophysics Data System (ADS)
Thomas, Anoop Ebey; Abbes, Boussad; Li, Yu Ming; Abbes, Fazilay; Guo, Ying-Qiao; Duval, Jean-Louis
2017-10-01
Hot forging is a process used to form difficult to form materials as well as to achieve complex geometries. This is possible due to the reduction of yield stress at high temperatures and a subsequent increase in formability. Numerical methods have been used to predict the material yield and the stress/strain states of the final product. Pseudo Inverse Approach (PIA) developed in the context of cold forming provides a quick estimate of the stress and strain fields in the final product for a given initial shape. In this paper, PIA is extended to include the thermal effects on the forging process. A Johnson-Cook thermo-viscoplastic material law is considered and a staggered scheme is employed for the coupling between the mechanical and thermal problems. The results are compared with available commercial codes to show the efficiency and the limitations of PIA.
NASA Astrophysics Data System (ADS)
Anderson, Mark; Bruski, Richard; Groszkiewicz, Daniel; Wagstaff, Bob
A new Direct Chill (DC) casting process is introduced to semi-continuous casting where near net shaped ingots are solidified. This process is currently being used at Alcan Engineered Cast Products (ECP) facility in Jonquiere, Canada, sectioned, then forged at Alcoa Automotive, Kentucky Casting Center (KCC). Finished forgings are machined and assembled into the Ford D/EW98 platform as suspension components. A brief description of the process and the implications on the forging process are presented.
Self-adaptive multimethod optimization applied to a tailored heating forging process
NASA Astrophysics Data System (ADS)
Baldan, M.; Steinberg, T.; Baake, E.
2018-05-01
The presented paper describes an innovative self-adaptive multi-objective optimization code. Investigation goals concern proving the superiority of this code compared to NGSA-II and applying it to an inductor’s design case study addressed to a “tailored” heating forging application. The choice of the frequency and the heating time are followed by the determination of the turns number and their positions. Finally, a straightforward optimization is performed in order to minimize energy consumption using “optimal control”.
Solid State Welding Development at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Ding, Robert J.; Walker, Bryant
2012-01-01
What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.
Stainless-steel elbows formed by spin forging
NASA Technical Reports Server (NTRS)
1964-01-01
Large seamless austenitic stainless steel elbows are fabricated by spin forging /rotary shear forming/. A specially designed spin forging tool for mounting on a hydrospin machine has been built for this purpose.
Development and efficiency assessment of process lubrication for hot forging
NASA Astrophysics Data System (ADS)
Kargin, S.; Artyukh, Viktor; Ignatovich, I.; Dikareva, Varvara
2017-10-01
The article considers innovative technologies in testing and production of process lubricants for hot bulk forging. There were developed new compositions of eco-friendly water-graphite process lubricants for hot extrusion and forging. New approaches to efficiency assessment of process lubricants are developed and described in the following article. Laboratory and field results are presented.
Strength computation of forged parts taking into account strain hardening and damage
NASA Astrophysics Data System (ADS)
Cristescu, Michel L.
2004-06-01
Modern non-linear simulation software, such as FORGE 3 (registered trade mark of TRANSVALOR), are able to compute the residual stresses, the strain hardening and the damage during the forging process. A thermally dependent elasto-visco-plastic law is used to simulate the behavior of the material of the hot forged piece. A modified Lemaitre law coupled with elasticiy, plasticity and thermic is used to simulate the damage. After the simulation of the different steps of the forging process, the part is cooled and then virtually machined, in order to obtain the finished part. An elastic computation is then performed to equilibrate the residual stresses, so that we obtain the true geometry of the finished part after machining. The response of the part to the loadings it will sustain during it's life is then computed, taking into account the residual stresses, the strain hardening and the damage that occur during forging. This process is illustrated by the forging, virtual machining and stress analysis of an aluminium wheel hub.
Powder metallurgy processing of high strength turbine disk alloys
NASA Technical Reports Server (NTRS)
Evans, D. J.
1976-01-01
Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.
Manufacturing Methods and Technology Project Summary Reports
1985-06-01
Computer -Aided Design (CAD)/ Computer -Aided Manufacturing (CAM) Process for the Production of Cold Forged Gears Project 483 6121 - Robotic Welding and...Caliber Projectile Bodies Project 682 8370 - Automatic Inspection and 1-I1 Process Control of Weapons Parts Manufacturing METALS Project 181 7285 - Cast...designed for use on each project. Experience suggested that a general purpose computer interface might be designed that could be used on any project
NASA Astrophysics Data System (ADS)
Pietrzyk, Maciej; Kuziak, Roman; Pidvysots'kyy, Valeriy; Nowak, Jarosław; Węglarczyk, Stanisław; Drozdowski, Krzysztof
2013-07-01
Two copper-based alloys were considered, Cu-1 pct Cr and Cu-0.7 pct Cr-1 pct Si-2 pct Ni. The thermal, electrical, and mechanical properties of these alloys are given in the paper and compared to pure copper and steel. The role of aging and precipitation kinetics in hardening of the alloys is discussed based upon the developed model. Results of plastometric tests performed at various temperatures and various strain rates are presented. The effect of the initial microstructure on the flow stress was investigated. Rheologic models for the alloys were developed. A finite element (FE) model based on the Norton-Hoff visco-plastic flow rule was applied to the simulation of forging of the alloys. Analysis of the die wear for various processes of hot and cold forging is presented as well. A microstructure evolution model was implemented into the FE code, and the microstructure and mechanical properties of final products were predicted. Various variants of the manufacturing cycles were considered. These include different preheating schedules, hot forging, cold forging, and aging. All variants were simulated using the FE method and loads, die filling, tool wear, and mechanical properties of products were predicted. Three variants giving the best combination of forging parameters were selected and industrial trials were performed. The best manufacturing technology for the copper-based alloys is proposed.
Cold forging and chemical heat treatment of the casing of the internal joint for VAZ cars
NASA Astrophysics Data System (ADS)
Arzamastsev, V. A.; Sardaev, N. L.; Kochergin, A. S.
1996-11-01
The technological process of cold forging applied for the first time in the production of the casing of the internal joint with races is described. The process operations of cold forging and the annealing and carburizing regimes for this part me described.
Designing for Instrumentalisation: Constructionist Perspectives on Instrumental Theory
ERIC Educational Resources Information Center
Kynigos, Chronis; Psycharis, Giorgos
2013-01-01
In this paper we aim to contribute to the process of networking between theoretical frames in mathematics education by means of forging connections between Constructionism and Instrumental Theory to discuss a design for instrumentalisation. We specifically focus on instrumentalisation, i.e. the ways in which students make changes to digital…
Design of a high-current downlink using Bi-based superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, B.L.; Lanagan, M.T.; Balachandran, U.
1996-08-01
Recent processing developments in Bi{sub 1.8}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}0{sub x} (BSCCO-2223) bars have produced bulk BSCCO-2223 bars with properties advantageous for power applications. Cold isostatically pressed (CIP) and sinter-forged BSCCO-2223 both have low AC loss, which make them desirable for use in power devices. Thermal conductivity of the CIP bars is lower than that of the previously used sinter-forged samples by a factor of 2. CIP bars with cross-sectional areas of =0.75 cm{sup 2} and carrying 250 A RMS transport current have AC loss values of 30 pJ/cycle-cm at 50 Hz and 77 K. A pair of prototype downlinksmore » were designed and built with sinter forged bars to deliver a continuous AC current of 1500 A over a temperature gradient of 77 to 4.2 K while delivering about -200 MW of heat to the liquid-helium-cooled end. This paper will discuss the design considerations and modeling of downlinks, which supply high AC currents over the 77 to 4.2 K temperature gradient with low thermal losses.« less
Adapted diffusion processes for effective forging dies
NASA Astrophysics Data System (ADS)
Paschke, H.; Nienhaus, A.; Brunotte, K.; Petersen, T.; Siegmund, M.; Lippold, L.; Weber, M.; Mejauschek, M.; Landgraf, P.; Braeuer, G.; Behrens, B.-A.; Lampke, T.
2018-05-01
Hot forging is an effective production method producing safety relevant parts with excellent mechanical properties. The economic efficiency directly depends on the occurring wear of the tools, which limits service lifetime. Several approaches of the presenting research group aim at minimizing the wear caused by interacting mechanical and thermal loads by using enhanced nitriding technology. Thus, by modifying the surface zone layer it is possible to create a resistance against thermal softening provoking plastic deformation and pronounced abrasive wear. As a disadvantage, intensely nitrided surfaces may possibly include the risk of increased crack sensitivity and therefore feature the chipping of material at the treated surface. Recent projects (evaluated in several industrial applications) show the high technological potential of adapted treatments: A first approach evaluated localized treatments by preventing areas from nitrogen diffusion with applied pastes or other coverages. Now, further ideas are to use this principle to structure the surface with differently designed patterns generating smaller ductile zones beneath nitrided ones. The selection of suitable designs is subject to certain geo-metrical requirements though. The intention of this approach is to prevent the formation and propagation of cracks under thermal shock conditions. Analytical characterization methods for crack sensitivity of surface zone layers and an accurate system of testing rigs for thermal shock conditions verified the treatment concepts. Additionally, serial forging tests using adapted testing geometries and finally, tests in the industrial production field were performed. Besides stabilizing the service lifetime and decreasing specific wear mechanisms caused by thermal influences, the crack behavior was influenced positively. This leads to a higher efficiency of the industrial production process and enables higher output in forging campaigns of industrial partners.
Effect of raw materials and hardening process on hardness of manually forged knife
NASA Astrophysics Data System (ADS)
Balkhaya, Suwarno
2017-06-01
Knives are normally made by forging process either using a machine or traditional method by means of hammering process. This present work was conducted to study the effects of steel raw materials and hardening process on the hardness of manually forged knives. The knife samples were made by traditional hammering (forging) process done by local blacksmith. Afterward, the samples were heat treated with two different hardening procedures, the first was based on the blacksmith procedure and the second was systematically done at the laboratory. The forging was done in the temperature ranged between 900-950°C, while the final temperature ranged between 650-675°C. The results showed that knives made of spring steel and heat treated in simulated condition at the laboratory obtained higher level of hardness, i.e. 62 HRC. In general, knives heat treated by local blacksmith had lower level of hardness that those obtained from simulated condition. Therefore, we concluded that the traditional knife quality in term of hardness can be improved by optimizing the heat treatment schedule.
NASA Astrophysics Data System (ADS)
Ram Prabhu, T.
2016-04-01
In the present study, the hot forging design of a typical landing gear barrel was evolved using finite element simulations and validated with experiments. A DEFORM3D software was used to evolve the forging steps to obtain the sound quality part free of defects with minimum press force requirements. The hot forging trial of a barrel structure was carried out in a 30 MN hydraulic press based on the simulation outputs. The tensile properties of the part were evaluated by taking samples from all three orientations (longitudinal, long transverse, short transverse). The hardness and microstructure of the part were also investigated. To study the soundness of the product, fluorescent penetrant inspection and ultrasonic testing were performed in order to identify any potential surface or internal defects in the part. From experiments, it was found that the part was formed successfully without any forging defects such as under filling, laps, or folds that validated the effectiveness of the process simulation. The tensile properties of the part were well above the specification limit (>10%) and the properties variation with respect to the orientation was less than 2.5%. The part has qualified the surface defects level of Mil Std 1907 Grade C and the internal defects level of AMS 2630 Class A (2 mm FBh). The microstructure shows mean grain length and width of 167 and 66 µm in the longitudinal direction. However, microstructure results revealed that the coarse grain structure was observed on the flat surface near the lug region due to the dead zone formation. An innovative and simple method of milling the surface layer after each pressing operation was applied to solve the problem of the surface coarse grain structure.
Prediction of Microstructure in High-Strength Ductile Forging Parts
NASA Astrophysics Data System (ADS)
Urban, M.; Keul, C.; Back, A.; Bleck, W.; Hirt, G.
2010-06-01
Governmental, environmental and economic demands call for lighter, stiffer and at the same time cheaper products in the vehicle industry. Especially safety relevant parts have to be stiff and at the same time ductile. The strategy of this project was to improve the mechanical properties of forging steel alloys by employing a high-strength and ductile bainitic microstructure in the parts while maintaining cost effective process chains to reach these goals for high stressed forged parts. Therefore, a new steel alloy combined with an optimized process chain has been developed. To optimize the process chain with a minimum of expensive experiments, a numerical approach was developed to predict the microstructure of the steel alloy after the process chain based on FEM simulations of the forging and cooling combined with deformation-time-temperature-transformation-diagrams.
Intersubjective decision-making for computer-aided forging technology design
NASA Astrophysics Data System (ADS)
Kanyukov, S. I.; Konovalov, A. V.; Muizemnek, O. Yu.
2017-12-01
We propose a concept of intersubjective decision-making for problems of open-die forging technology design. The intersubjective decisions are chosen from a set of feasible decisions using the fundamentals of the decision-making theory in fuzzy environment according to the Bellman-Zadeh scheme. We consider the formalization of subjective goals and the choice of membership functions for the decisions depending on subjective goals. We study the arrangement of these functions into an intersubjective membership function. The function is constructed for a resulting decision, which is chosen from a set of feasible decisions. The choice of the final intersubjective decision is discussed. All the issues are exemplified by a specific technological problem. The considered concept of solving technological problems under conditions of fuzzy goals allows one to choose the most efficient decisions from a set of feasible ones. These decisions correspond to the stated goals. The concept allows one to reduce human participation in automated design. This concept can be used to develop algorithms and design programs for forging numerous types of forged parts.
ERIC Educational Resources Information Center
Oakes, G. L.; Felton, A. J.; Garner, K. B.
2006-01-01
The BSc in computer aided product design (CAPD) course at the University of Wolverhampton was conceived as a collaborative venture in 1989 between the School of Engineering and the School of Art and Design. The award was at the forefront of forging interdisciplinary collaboration at undergraduate level in the field of product design. It has…
Calculation of recovery plasticity in multistage hot forging under isothermal conditions.
Zhbankov, Iaroslav G; Perig, Alexander V; Aliieva, Leila I
2016-01-01
A widely used method for hot forming steels and alloys, especially heavy forging, is the process of multistage forging with pauses between stages. The well-known effect which accompanies multistage hot forging is metal plasticity recovery in comparison with monotonic deformation. A method which takes into consideration the recovery of plasticity in pauses between hot deformations of a billet under isothermal conditions is proposed. This method allows the prediction of billet forming limits as a function of deformation during the forging stage and the duration of the pause between the stages. This method takes into account the duration of pauses between deformations and the magnitude of subdivided deformations. A hot isothermal upsetting process with pauses was calculated by the proposed method. Results of the calculations have been confirmed with experimental data.
NASA Astrophysics Data System (ADS)
Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe
2018-04-01
In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.
Study on optimum length of raw material in stainless steel high-lock nuts forging
NASA Astrophysics Data System (ADS)
Cheng, Meiwen; Liu, Fenglei; Zhao, Qingyun; Wang, Lidong
2018-04-01
Taking 302 stainless steel (1Cr18Ni9) high-lock nuts for research objects, adjusting the length of raw material, then using DEFORM software to simulate the isothermal forging process of each station and conducting the corresponding field tests to study the effects of raw material size on the stainless steel high-lock nuts forming performance. The tests show that the samples of each raw material length is basically the same as the results of the DEFORM software. When the length of the raw material is 10mm, the appearance size of the parts can meet the design requirements.
The Anatomy of AP1000 Mono-Block Low Pressure Rotor Forging
NASA Astrophysics Data System (ADS)
Jin, Jia-yu; Rui, Shou-tai; Wang, Qun
AP1000 mono-block low pressure (LP) rotor forgings for nuclear power station have maximum ingot weight, maximum diameter and the highest technical requirements. It confronts many technical problems during manufacturing process such as composition segregation and control of inclusion in the large ingot, core compaction during forging, control of grain size and mechanical performance. The rotor forging were anatomized to evaluate the manufacturing level of CFHI. This article introduces the anatomical results of this forging. The contents include chemical composition, mechanical properties, inclusions and grain size and other aspects from the full-length and full cross-section of this forging. The fluctuation of mechanical properties, uniformity of microstructure and purity of chemical composition were emphasized. The results show that the overall performance of this rotor forging is particularly satisfying.
NASA Technical Reports Server (NTRS)
Gayda, John (Technical Monitor); Lemsky, Joe
2004-01-01
NASA dual microstructure heat treatment technology previously demonstrated on single forging heat treat batches of a generic disk shape was successfully demonstrated on a multiple disk batch of a production shape component. A group of four Rolls-Royce Corporation 3rd Stage AE2100 forgings produced from alloy ME209 were successfully dual microstructure heat treated as a single heat treat batch. The forgings responded uniformly as evidenced by part-to-part consistent thermocouple recordings and resultant macrostructures, and from ultrasonic examination. Multiple disk DMHT processing offers a low cost alternative to other published dual microstructure processing techniques.
Tailorable Burning Behavior of Ti14 Alloy by Controlling Semi-Solid Forging Temperature.
Chen, Yongnan; Yang, Wenqing; Zhan, Haifei; Zhang, Fengying; Huo, Yazhou; Zhao, Yongqing; Song, Xuding; Gu, Yuantong
2016-08-16
Semi-solid processing (SSP) is a popular near-net-shape forming technology for metals, while its application is still limited in titanium alloy mainly due to its low formability. Recent works showed that SSP could effectively enhance the formability and mechanical properties of titanium alloys. The processing parameters such as temperature and forging rate/ratio, are directly correlated with the microstructure, which endow the alloy with different chemical and physical properties. Specifically, as a key structural material for the advanced aero-engine, the burn resistant performance is a crucial requirement for the burn resistant titanium alloy. Thus, this work aims to assess the burning behavior of Ti14, a kind of burn resistant alloy, as forged at different semi-solid forging temperatures. The burning characteristics of the alloy are analyzed by a series of burning tests with different burning durations, velocities, and microstructures of burned sample. The results showed that the burning process is highly dependent on the forging temperature, due to the fact that higher temperatures would result in more Ti₂Cu precipitate within grain and along grain boundaries. Such a microstructure hinders the transport of oxygen in the stable burning stage through the formation of a kind of oxygen isolation Cu-enriched layer under the burn product zone. This work suggests that the burning resistance of the alloy can be effectively tuned by controlling the temperature during the semi-solid forging process.
Simulation of 7050 Wrought Aluminum Alloy Wheel Die Forging and its Defects Analysis based on DEFORM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Shiquan; Yi Youping; Zhang Yuxun
2010-06-15
Defects such as folding, intercrystalline cracking and flow lines outcrop are very likely to occur in the forging of aluminum alloy. Moreover, it is difficult to achieve the optimal set of process parameters just by trial and error within an industrial environment. In producing 7050 wrought aluminum alloy wheel, a rigid-plastic finite element method (FEM) analysis has been performed to optimize die forging process. Processing parameters were analyzed, focusing on the effects of punch speed, friction factor and temperature. Meanwhile, mechanism as well as the evolution with respect to the defects of the wrought wheel was studied in details. Frommore » an analysis of the results, isothermal die forging was proposed for producing 7050 aluminum alloy wheel with good mechanical properties. Finally, verification experiment was carried out on hydropress.« less
Improved Warm-Working Process For An Iron-Base Alloy
NASA Technical Reports Server (NTRS)
Cone, Fred P.; Cryns, Brendan J.; Miller, John A.; Zanoni, Robert
1992-01-01
Warm-working process produces predominantly unrecrystallized grain structure in forgings of iron-base alloy A286 (PWA 1052 composition). Yield strength and ultimate strength increased, and elongation and reduction of area at break decreased. Improved process used on forgings up to 10 in. thick and weighing up to 900 lb.
Forging New Partnerships: Lessons from the Dissemination of Agricultural Training Videos in Benin
ERIC Educational Resources Information Center
Okry, Florent; Van Mele, Paul; Houinsou, Felix
2014-01-01
Purpose: This article evaluates the dissemination and use of rice training videos by radio stations, farmers, farmer associations and extension services in Benin. It pays attention to positive deviants and process innovation within a "hands-off experiment". Design/methodology/approach: Using questionnaires and checklists we interviewed…
A material based approach to creating wear resistant surfaces for hot forging
NASA Astrophysics Data System (ADS)
Babu, Sailesh
Tools and dies used in metal forming are characterized by extremely high temperatures at the interface, high local pressures and large metal to metal sliding. These harsh conditions result in accelerated wear of tooling. Lubrication of tools, done to improve metal flow drastically quenches the surface layers of the tools and compounds the tool failure problem. This phenomenon becomes a serious issue when parts forged at complex and are expected to meet tight tolerances. Unpredictable and hence uncontrolled wear and degradation of tooling result in poor part quality and premature tool failure that result in high scrap, shop downtime, poor efficiency and high cost. The objective of this dissertation is to develop a computer-based methodology for analyzing the requirements hot forging tooling to resist wear and plastic deformation and wear and predicting life cycle of forge tooling. Development of such is a system is complicated by the fact that wear and degradation of tooling is influenced by not only the die material used but also numerous process controls like lubricant, dilution ratio, forging temperature, equipment used, tool geometries among others. Phenomenological models available u1 the literature give us a good thumb rule to selecting materials but do not provide a way to evaluate pits performance in field. Once a material is chosen, there are no proven approaches to create surfaces out of these materials. Coating approaches like PVD and CVD cannot generate thick coatings necessary to withstand the conditions under hot forging. Welding cannot generate complex surfaces without several secondary operations like heat treating and machining. If careful procedures are not followed, welds crack and seldom survive forging loads. There is a strong need for an approach to selectively, reliably and precisely deposit material of choice reliably on an existing surface which exhibit not only good tribological properties but also good adhesion to the substrate. Dissertation outlines development of a new cyclic contact test design to recreate intermittent tempering seen in hot forging. This test has been used to validate the use of tempering parameters in modeling of in-service softening of tool steel surfaces. The dissertation also outlines an industrial case study, conducted at a forging company, to validate the wear model. This dissertation also outlines efforts at Ohio State University, to deposit Nickel Aluminide on AISI H13 substrate, using Laser Engineered Net Shaping (LENS). Dissertation reports results from an array of experiments conducted using LENS 750 machine, at various power levels, table speeds and hatch spacing. Results pertaining to bond quality, surface finish, compositional gradients and hardness are provided. Also, a thermal-based finite element numerical model that was used to simulate the LENS process is presented, along with some demonstrated results.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The course provides students with advanced and exploratory experience in the area of plastic deformation of metals and in the changing of the physical characteristics of metals by the controlled application and timed removal of heat. Course content includes goals, specific objectives, safety in forge work, forging tools and equipment, industrial…
Tailorable Burning Behavior of Ti14 Alloy by Controlling Semi-Solid Forging Temperature
Chen, Yongnan; Yang, Wenqing; Zhan, Haifei; Zhang, Fengying; Huo, Yazhou; Zhao, Yongqing; Song, Xuding; Gu, Yuantong
2016-01-01
Semi-solid processing (SSP) is a popular near-net-shape forming technology for metals, while its application is still limited in titanium alloy mainly due to its low formability. Recent works showed that SSP could effectively enhance the formability and mechanical properties of titanium alloys. The processing parameters such as temperature and forging rate/ratio, are directly correlated with the microstructure, which endow the alloy with different chemical and physical properties. Specifically, as a key structural material for the advanced aero-engine, the burn resistant performance is a crucial requirement for the burn resistant titanium alloy. Thus, this work aims to assess the burning behavior of Ti14, a kind of burn resistant alloy, as forged at different semi-solid forging temperatures. The burning characteristics of the alloy are analyzed by a series of burning tests with different burning durations, velocities, and microstructures of burned sample. The results showed that the burning process is highly dependent on the forging temperature, due to the fact that higher temperatures would result in more Ti2Cu precipitate within grain and along grain boundaries. Such a microstructure hinders the transport of oxygen in the stable burning stage through the formation of a kind of oxygen isolation Cu-enriched layer under the burn product zone. This work suggests that the burning resistance of the alloy can be effectively tuned by controlling the temperature during the semi-solid forging process. PMID:28773820
Near-Net Forging Technology Demonstration Program
NASA Technical Reports Server (NTRS)
Hall, I. Keith
1996-01-01
Significant advantages in specific mechanical properties, when compared to conventional aluminum (Al) alloys, make aluminum-lithium (Al-Li) alloys attractive candidate materials for use in cryogenic propellant tanks and dry bay structures. However, the cost of Al-Li alloys is typically five times that of 2219 aluminum. If conventional fabrication processes are employed to fabricate launch vehicle structure, the material costs will restrict their utilization. In order to fully exploit the potential cost and performance benefits of Al-Li alloys, it is necessary that near-net manufacturing methods be developed to off-set or reduce raw material costs. Near-net forging is an advanced manufacturing method that uses elevated temperature metal movement (forging) to fabricate a single piece, near-net shape, structure. This process is termed 'near-net' because only a minimal amount of post-forge machining is required. The near-net forging process was developed to reduce the material scrap rate (buy-to-fly ratio) and fabrication costs associated with conventional manufacturing methods. The goal for the near-net forging process, when mature, is to achieve an overall cost reduction of approximately 50 percent compared with conventional manufacturing options for producing structures fabricated from Al-Li alloys. This NASA Marshall Space Flight Center (MSFC) sponsored program has been a part of a unique government / industry partnership, coordinated to develop and demonstrate near-net forging technology. The objective of this program was to demonstrate scale-up of the near-net forging process. This objective was successfully achieved by fabricating four integrally stiffened, 170- inch diameter by 20-inch tall, Al-Li alloy 2195, Y-ring adapters. Initially, two 2195 Al-Li ingots were converted and back extruded to produce four cylindrical blockers. Conventional ring rolling of the blockers was performed to produce ring preforms, which were then contour ring rolled to produce 'contour preforms'. All of the contour preforms on this first-of-a-kind effort were imperfect, and the ingot used to fabricate two of the preforms was of an earlier vintage. As lessons were learned throughout the program, the tooling and procedures evolved, and hence the preform quality. Two of the best contour preforms were near- net forged to produce a process pathfinder Y-ring adapter and a 'mechanical properties pathfinder' Y-ring adapter. At this point, Lockheed Martin Astronautics elected to procure additional 2195 aluminum-lithium ingot of the latest vintage, produce two additional preforms, and substitute them for older vintage material non-perfectly filled preforms already produced on this contract. The existing preforms could have been used to fulfill the requirements of the contract.
NASA Technical Reports Server (NTRS)
Brennecke, M. W.
1978-01-01
The mechanical properties, including fracture toughness, and stress corrosion properties of four types of 2219-T852 aluminum alloy hand forgings are presented. Weight of the forgings varied between 450 and 3500 lb at the time of heat treatment and dimensions exceeded the maximum covered in existing specifications. The forgings were destructively tested to develop reliable mechanical property data to replace estimates employed in the design of the Space Shuttle Solid Rocket Booster (SRB) and to establish minimum guaranteed properties for structural refinement and for entry into specification revisions. The report summarizes data required from the forgers and from the SRB Structures contractor.
SUNY Contracts for Cogeneration.
ERIC Educational Resources Information Center
Freeman, Laurie
1996-01-01
The State University of New York-Stony Brook forged a public-private partnership to fund a new plan for cogeneration, a two-step process that uses one fuel source--natural gas--to make two forms of energy. The agreement is designed to free the university from the need to make ongoing capital investment in its utility infrastructure. (MLF)
Manufacturing Methods & Technology Project Execution Report. First CY 83.
1983-11-01
UCCURRENCE. H 83 5180 MMT FOR METAL DEWAR AND UNBONDED LEADS THE GOLD WIRE BONDED CONNECTIOkS ARE MADE BY HAND WHICH IS A TEDIOUS AND EXPENSIVE PROCESS. THE...ATTACHMENTS CURRENT FILAMENT WOUND COMPOSIIE ROCKET MOTOR CASES REQUIRE FORGED METAL POLE PIECESt NOZZLE CLOSURE ATTACHMENT RINGS, AND OTHER ATTACHMENT RINGS... ELASTOMER INSULATOR PROCESS LARGE TACTICAL ROCKET MOTOR INSULATORS ARE COSTLY, LACK DESIGN CHANGE FLEXIBILITY AND SUFFER LONG LEAD TIMES. CURRENT
DataForge: Modular platform for data storage and analysis
NASA Astrophysics Data System (ADS)
Nozik, Alexander
2018-04-01
DataForge is a framework for automated data acquisition, storage and analysis based on modern achievements of applied programming. The aim of the DataForge is to automate some standard tasks like parallel data processing, logging, output sorting and distributed computing. Also the framework extensively uses declarative programming principles via meta-data concept which allows a certain degree of meta-programming and improves results reproducibility.
Continuous Severe Plastic Deformation Processing of Aluminum Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan Srinivasan; Prabir K. Chaudhury; Balakrishna Cherukuri
2006-06-30
Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising ofmore » these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced by SPD techniques. This combination of properties makes UFG metals produced by SPD very attractive as machining, forging or extrusion stock, both from the point of view of formability as well as energy and cost saving. However, prior to this work there had been no attempt to transfer these potential benefits observed in the laboratory scale to industrial shop floor. The primary reason for this was that the laboratory scale studies had been conducted to develop a scientific understanding of the processes that result in grain refinement during SPD. Samples that had been prepared in the laboratory scale were typically only about 10-mm diameter and 50-mm long (about 0.5-inch diameter and 2-inches long). The thrust of this project was three-fold: (i) to show that the ECAE/P process can be scaled up to produce long samples, i.e., a continuous severe plastic deformation (CSPD) process, (ii) show the process can be scaled up to produce large cross section samples that could be used as forging stock, and (iii) use the large cross-section samples to produce industrial size forgings and demonstrate the potential energy and cost savings that can be realized if SPD processed stock is adopted by the forging industry. Aluminum alloy AA-6061 was chosen to demonstrate the feasibility of the approach used. The CSPD process developed using the principles of chamber-less extrusion and drawing, and was demonstrated using rolling and wire drawing equipment that was available at Oak Ridge National Laboratory. In a parallel effort, ECAE/P dies were developed for producing 100-mm square cross section SPD billets for subsequent forging. This work was carried out at Intercontinental Manufacturing Co. (IMCO), Garland TX. Forging studies conducted with the ECAE/P billets showed that many of the potential benefits of using UFG material can be realized. In particular, the material yield can be increased, and the amount of material that is lost as scrap can be reduced by as much as 50%. Forging temperatures can also be reduced by over 150ºC, resulting in energy savings in the operation of billet heating furnaces. Looking at only the energy required to make forgings from stock materials, estimated energy savings associated with reduced scrap and lower furnace operating temperatures were greater than 40% if ECAE/P stock material was used instead of conventionally extruded stock. Subsequent heat treatment of the forged materials to the T6 condition showed that the mechanical properties of parts made from the ECAE/P stock material were the same as of those made from conventional extruded stock material. Therefore, the energy and cost savings benefits can be realized by the use SPD processed material as forging stock without sacrificing properties in the final part.« less
NASA Astrophysics Data System (ADS)
Behrens, Bernd-Arno; Chugreeva, Anna; Chugreev, Alexander
2018-05-01
Hot forming as a coupled thermo-mechanical process comprises numerous material phenomena with a corresponding impact on the material behavior during and after the forming process as well as on the final component performance. In this context, a realistic FE-simulation requires reliable mathematical models as well as detailed thermo-mechanical material data. This paper presents experimental and numerical results focused on the FE-based simulation of a hot forging process with a subsequent heat treatment step aiming at the prediction of the final mechanical properties and residual stress state in the forged component made of low alloy CrMo-steel DIN 42CrMo4. For this purpose, hot forging experiments of connecting rod geometry with a corresponding metallographic analysis and x-ray residual stress measurements have been carried out. For the coupled thermo-mechanical-metallurgical FE-simulations, a special user-defined material model based on the additive strain decomposition method and implemented in Simufact Forming via MSC.Marc solver features has been used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullins, W.M.; Irwin, R.D.; Malas, J.C. III
The aim of this study is to determine the feasibility of using acoustic emission as a monitoring technique for metal forging operations. From the sensor development paradigm proposed by McClean et al. the most likely approach to determining feasibility for application is through signal recognition. For this reason, signature prediction and analysis was chosen to determine the suitability for forging applications.
Shi, Chengcheng; Jiang, Shaosong; Zhang, Kaifeng
2017-01-01
This paper focuses on the fabrication of as-forged Ti46.5Al2Cr1.8Nb-(W, B) alloy via pulse current auxiliary isothermal forging (PCIF). The starting material composed of near gamma (NG) microstructure was fabricated by adopting pre-alloyed powders via hot pressing sintering (HPS) at 1300 °C. Isothermal compression tests were conducted at a strain rate range of 0.001–0.1 s−1 and a temperature range of 1125–1275 °C to establish the constitutive model and processing map. The optimal hot deformation parameters were successfully determined (in a strain rate range of 10−3–2.5 × 10−3 s−1 and temperature range of 1130–1180 °C) based on the hot processing map and microstructure observation. Accordingly, an as-forged TiAl based alloy without cracks was successfully fabricated by PCIF processing at 1175 °C with a nominal strain rate of 10−3 s−1. Microstructure observation indicated that complete dynamic recrystallization (DRX) and phase transformation of γ→α2 occurred during the PCIF process. The elongation of as-forged alloy was 136%, possessing a good secondary hot workability, while the sintered alloy was only 66% when tested at 900 °C with a strain rate of 2 × 10−4 s−1. PMID:29258198
Shi, Chengcheng; Jiang, Shaosong; Zhang, Kaifeng
2017-12-16
This paper focuses on the fabrication of as-forged Ti46.5Al2Cr1.8Nb-(W, B) alloy via pulse current auxiliary isothermal forging (PCIF). The starting material composed of near gamma (NG) microstructure was fabricated by adopting pre-alloyed powders via hot pressing sintering (HPS) at 1300 °C. Isothermal compression tests were conducted at a strain rate range of 0.001-0.1 s -1 and a temperature range of 1125-1275 °C to establish the constitutive model and processing map. The optimal hot deformation parameters were successfully determined (in a strain rate range of 10 -3 -2.5 × 10 -3 s -1 and temperature range of 1130-1180 °C) based on the hot processing map and microstructure observation. Accordingly, an as-forged TiAl based alloy without cracks was successfully fabricated by PCIF processing at 1175 °C with a nominal strain rate of 10 -3 s -1 . Microstructure observation indicated that complete dynamic recrystallization (DRX) and phase transformation of γ→α₂ occurred during the PCIF process. The elongation of as-forged alloy was 136%, possessing a good secondary hot workability, while the sintered alloy was only 66% when tested at 900 °C with a strain rate of 2 × 10 -4 s -1 .
Optimising mechanical properties of hot forged nickel superalloy 625 components
NASA Astrophysics Data System (ADS)
Singo, Nthambe; Coles, John; Rosochowska, Malgorzata; Lalvani, Himanshu; Hernandez, Jose; Ion, William
2018-05-01
Hot forging and subsequent heat treatment were resulting in substandard mechanical properties of nickel superalloy, Alloy 625, components. The low strength was found to be due to inadequate deformation during forging, excessive grain growth and precipitation of carbides during subsequent heat treatment. Experimentation in a drop forging company and heat treatment facility led to the establishment of optimal parameters to minimise grain size and mitigate the adverse effects of carbide precipitation, leading to successful fulfilment of mechanical property specifications. This was achieved by reducing the number of operations, maximising the extent of deformation by changing the slug dimensions and its orientation in the die, and minimising the time of exposure to elevated temperatures in both the forging and subsequent heat treatment processes to avoid grain growth.
NASA Astrophysics Data System (ADS)
Zhang, Saifei; Zeng, Weidong; Gao, Xiongxiong; Zhao, Xingdong; Li, Siqing
2017-10-01
The present study investigates the mechanical properties of large-scale beta-processed Ti-17 forgings because of the increasing interest in beta thermal-mechanical processing method for fabricating compressor disks or blisks in aero-engines due to its advantage in damage tolerance performance. Three Ti-17 disks with different weights of 57, 250 and 400 kg were prepared by beta processing techniques firstly for comparative study. The results reveal a significant `size effect' in beta-processed Ti-17 disks, i.e., dependences of high cycle fatigue, tensile properties and fracture toughness of beta-processed Ti-17 disks on disk size (or weight). With increasing disk weight from 57 to 400 kg, the fatigue limit (fatigue strength at 107 cycles, R = -1) was reduced from 583 to 495 MPa, tensile yield strength dropped from 1073 to 1030 MPa, while fracture toughness ( K IC) rose from 70.9 to 95.5 MPaṡm1/2. Quantitative metallography analysis shows that the `size effect' of mechanical properties can be attributed to evident differences between microstructures of the three disk forgings. With increasing disk size, nearly all microstructural components in the basket-weave microstructure, including prior β grain, α layers at β grain boundaries (GB- α) and α lamellas at the interior of the grains, get coarsened to different degrees. Further, the microstructural difference between the beta-processed disks is proved to be the consequence of longer pre-forging soaking time and lower post-forging cooling rate for large disks than small ones. Finally, suggestions are made from the perspective of microstructural control on how to improve mechanical properties of large-scale beta-processed Ti-17 forgings.
Deformation Mechanisms in Tube Billets from Zr-1%Nb Alloy under Radial Forging
NASA Astrophysics Data System (ADS)
Perlovich, Yuriy; Isaenkova, Margarita; Fesenko, Vladimir; Krymskaya, Olga; Zavodchikov, Alexander
2011-05-01
Features of the deformation process by cold radial forging of tube billets from Zr-1%Nb alloy were reconstructed on the basis of X-ray data concerning their structure and texture. The cold radial forging intensifies grain fragmentation in the bulk of billet and increases significantly the latent hardening of potentially active slip systems, so that operation only of the single slip system becomes possible. As a result, in radially-forged billets unusual deformation and recrystallization textures arise. These textures differ from usual textures of α-Zr by the mutual inversion of crystallographic axes, aligned along the axis of tube.
Development of high purity large forgings for nuclear power plants
NASA Astrophysics Data System (ADS)
Tanaka, Yasuhiko; Sato, Ikuo
2011-10-01
The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.
HaploForge: a comprehensive pedigree drawing and haplotype visualization web application.
Tekman, Mehmet; Medlar, Alan; Mozere, Monika; Kleta, Robert; Stanescu, Horia
2017-12-15
Haplotype reconstruction is an important tool for understanding the aetiology of human disease. Haplotyping infers the most likely phase of observed genotypes conditional on constraints imposed by the genotypes of other pedigree members. The results of haplotype reconstruction, when visualized appropriately, show which alleles are identical by descent despite the presence of untyped individuals. When used in concert with linkage analysis, haplotyping can help delineate a locus of interest and provide a succinct explanation for the transmission of the trait locus. Unfortunately, the design choices made by existing haplotype visualization programs do not scale to large numbers of markers. Indeed, following haplotypes from generation to generation requires excessive scrolling back and forth. In addition, the most widely used program for haplotype visualization produces inconsistent recombination artefacts for the X chromosome. To resolve these issues, we developed HaploForge, a novel web application for haplotype visualization and pedigree drawing. HaploForge takes advantage of HTML5 to be fast, portable and avoid the need for local installation. It can accurately visualize autosomal and X-linked haplotypes from both outbred and consanguineous pedigrees. Haplotypes are coloured based on identity by descent using a novel A* search algorithm and we provide a flexible viewing mode to aid visual inspection. HaploForge can currently process haplotype reconstruction output from Allegro, GeneHunter, Merlin and Simwalk. HaploForge is licensed under GPLv3 and is hosted and maintained via GitHub. https://github.com/mtekman/haploforge. r.kleta@ucl.ac.uk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NERVA nozzle design status report
NASA Technical Reports Server (NTRS)
Williams, J. J.; Pickering, J. L.; Ackerman, R. G.
1972-01-01
The results of the design analyses are presented along with the status of the attained design maturity of the structural elements of the nozzle jacket and various aspects of the coolant passages. The design analyses relating to the nozzle shell were based on design allowables as supported by cursory values obtained from ARMCO 22-13-5 nozzle forgings. The major aspects of the coolant passages considered include: low cycle thermal fatigue, ability to operate at 4500 R gas temperature, tube buckling, and susceptibility to erosion. The scope of the analysis is limited to processes leading to reliability assessments of failure mechanisms.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
..., LLC......... Hubbardton Forge, 04/06/12 The firm designs and manufactures hand- LLC., P.O. Box 827... workers, or threat thereof, and to a decrease in sales or production of each petitioning firm. List of... U.S. Highway 90W, 04/23/12 The firm manufactures processed food for San Antonio, TX 78237. human...
NASA Technical Reports Server (NTRS)
DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Superplumes offer a new approach for understanding global C cycles. Isotopes help to discern the impacts of geological, environmental and biological processes ujpun the evolution of these cycles. For example, C-13/C-12 values of coeval sedimentary organics and carbonates give global estimates of the fraction of C buried as organics (Forg), which today lies near 0.2. Before Oxygenic photosynthesis arose, our biosphere obtained reducing power for biosynthesis solely from thermal volatiles and rock alteration. Thus Forg was dominated by the mantle redox state, which has remained remarkably constant for greater than Gy. Recent data confirm that the long-term change in Forg had been small, indicating that the mantle redox buffer remains important even today. Oxygenic photosynthesis enabled life to obtain additional reducing power by splitting the water molecule. Accordingly, biological organic production rose above the level constrained by the mantle-derived flux of reduced species. For example, today, chemoautotrophs harvesting energy from hydrothermal emanations can synthesize at most between 0.2 x 10(exp 12) and 2x 10(exp 12) mol C yr-1 of organic C globally. In contrast, global photosynthetic productivity is estimated at 9000 x 10(exp 12) mol C yr-1. Occasionally photosynthetic productivity did contribute to dramatically -elevated Forg values (to 0.4 or more) as evidenced by very high carbonate C-13/C-12. The interplay between biological, tectonic and other environmental factors is illustrated by the mid-Archean to mid-Proterozoic isotopic record. The relatively constant C-13/C-12 values of Archean carbonates support the view that photosynthetically-driven Forg increases were not yet possible. In contrast, major excursions in C-13/C-12, and thus also in Forg, during the early Proterozoic confirmed the global importance of oxygenic photosynthesis by that time. Remarkably, the superplume event at 1.9 Ga did not trigger another major Forg increase, despite the favorable conditions for organic burial that were evidenced by elevated sea levels and higher black shale abundances. Perhaps those superplume-rated processes that favored enhanced organic burial were offset by the ability of mantle-derived redox buffering, which was enhanced during the superplume event, to limit excursions in Forg.
NASA Technical Reports Server (NTRS)
2008-01-01
Friction Stir Welding (FSW) is a solid-state joining process-a combination of extruding and forging-ideal for use when the original metal characteristics must remain as unchanged as possible. While exploring methods to improve the use of FSW in manufacturing, engineers at Marshall Space Flight Center created technologies to address the method's shortcomings. MTS Systems Corporation, of Eden Prairie, Minnesota, discovered the NASA-developed technology and then signed a co-exclusive license agreement to commercialize Marshall's design for use in high-strength structural alloys. The resulting process offers the added bonuses of being cost-competitive, efficient, and most importantly, versatile.
NASA Astrophysics Data System (ADS)
Hu, Chengliang; Chen, Lunqiang; Zhao, Zhen; Gong, Aijun; Shi, Weibing
2018-05-01
The combination of hot/warm and cold forging with an intermediate controlled cooling process is a promising approach to saving costs in the manufacture of automobile parts. In this work, the effects of the ferrite-pearlite microstructure, which formed after controlled cooling, on the cold forgeability of a medium-carbon steel were investigated. Different specimens for both normal and notched tensile tests were directly heated to high temperature and then cooled down at different cooling rates, producing different ferrite volume fractions, ranging from 6.69 to 40.53%, in the ferrite-pearlite microstructure. The yield strength, ultimate tensile strength, elongation rate, percentage reduction of area, and fracture strain were measured by tensile testing. The yield strength, indicating deformation resistance, and fracture strain, indicating formability, were used to evaluate the cold forgeability. As the ferrite volume fraction increased, the cold forgeability of the dual-phase ferritic-pearlitic steel improved. A quantitatively relationship between the ferrite volume fraction and the evaluation indexes of cold forgeability for XC45 steel was obtained from the test data. To validate the mathematical relationship, different tensile specimens machined from real hot-forged workpieces were tested. There was good agreement between the predicted and measured values. Our predictions from the relationship for cold forgeability had an absolute error less than 5%, which is acceptable for industrial applications and will help to guide the design of combined forging processes.
JPRS Report, Science & Technology, Japan
1991-01-31
final test. Keywords: Spherical Pressure Hull, Titanium Alloy , Three-Dimensional Machining, Electron Beam Welding . 1. Introduction In bodies like... processed (the heat treatment involving high-temperature heating and rapid quenching in order to obtain finer grains of the titanium alloy ) and...given m Table 3. The test results were all satisfactory. Forged material of titanium alloy , manufactured by forging, beta processing , and billet
NASA Astrophysics Data System (ADS)
Abedian, A.; Poursina, M.; Golestanian, H.
2007-05-01
Radial forging is an open die forging process used for reducing the diameter of shafts, tubes, stepped shafts and axels, and creating internal profiles for tubes such as rifling of gun barrels. In this work, a comprehensive study of multi-pass hot radial forging of short hollow and solid products are presented using 2-D axisymmetric finite element simulation. The workpiece is modeled as an elastic-viscoplastic material. A mixture of Coulomb law and constant limit shear is used to model the die-workpiece and mandrel-workpiece contacts. Thermal effects are also taken in to account. Three-pass radial forging of solid cylinders and tube products are considered. Temperature, stress, strain and metal flow distribution are obtained in each pass through thermo-mechanical simulation. The numerical results are compared with available experimental data and are in good agreement with them.
NASA Astrophysics Data System (ADS)
Wei, Xialu; Maximenko, Andrey L.; Back, Christina; Izhvanov, Oleg; Olevsky, Eugene A.
2017-07-01
Theoretical studies on the densification kinetics of the new spark plasma sinter-forging (SPS-forging) consolidation technique and of the regular SPS have been carried out based on the continuum theory of sintering. Both modelling and verifying experimental results indicate that the loading modes play important roles in the densification efficiency of SPS of porous ZrC specimens. Compared to regular SPS, SPS-forging is shown to be able to enhance the densification more significantly during later sintering stages. The derived analytical constitutive equations are utilised to evaluate the high-temperature creep parameters of ZrC under SPS conditions. SPS-forging and regular SPS setups are combined to form a new SPS hybrid loading mode with the purpose of reducing shape irregularity in the SPS-forged specimens. Loading control is imposed to secure the geometry as well as the densification of ZrC specimens during hybrid SPS process.
United States Air Force Graduate Student Summer Support Program (1985). Technical Report. Volume 2.
1985-12-01
C. , "A Thermodynamic and Continuum Approach to the Design and Control of Precision Forging Processes," Master’s Thesis , Wright State University, Aug...on mobile platforms, space will usually be a design consideration. This consideration will 48-4 •.J o,-. " limit the size of the laser used with the...Dichromated Gelatin Emulsions for Recording Phase Holograms," Master’s Thesis USAF Institute of Technology, December 1975, AD-A019320- 7. Graube, A
Fabrication of a Bronze Age Sword using Ancient Techniques
NASA Astrophysics Data System (ADS)
Sapiro, David; Webler, Bryan
2016-12-01
A khopesh was cast and forged for the TMS 2016 Bladesmithing Symposium. The khopesh was the first sword style, originating during the Bronze Age in the Near East. The manufacturing process used in this study closely followed Bronze Age techniques to determine the plausibility of open mold casting coupled with cold work and annealing cycles. Forging and annealing cycles substantially increased blade strength and diminished intergranular δ-phase inclusions. While a functional blade was not completed due to casting defects, the process gives valuable insight into the effort required to fabricate a khopesh during the Bronze Age. Forging and annealing cycles following casting were necessary to produce the mechanical properties desired in a sword.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Michael J.
The materials of construction of tritium reservoirs are forged stainless steels. During service, the structural properties of the stainless steel change over time because of the diffusion of tritium into the reservoir wall and its radioactive decay to helium-3. This aging effect can cause cracks to initiate and grow which could result in a tritium leak or delayed failure of a tritium reservoir. Numerous factors affect the tendency for crack formation and propagation and are being investigated in this program. The goal of the research is to provide relevant fracture mechanics data that can be used by the design agenciesmore » in their assessments of tritium reservoir structural integrity. In this status report, new experimental results are presented on the effects of tritium and decay helium on the cracking properties of specimens taken from actual tritium reservoir forgings instead of the experimental forgings of past programs. The properties measured are more representative of actual reservoir properties because the microstructure of the specimens tested are more like that of the actual tritium reservoirs. The program was designed to measure the effects of material variables on tritium compatibility and includes two stainless steels (Type 304L and 316L stainless steel), multiple yield strengths (360-500 MPa), and multiple forging shapes (Stem, Cup, and Block).« less
Development of a novel cold forging process to manufacture eccentric shafts
NASA Astrophysics Data System (ADS)
Pasler, Lukas; Liewald, Mathias
2018-05-01
Since the commercial usage of compact combustion engines, eccentric shafts have been used to transform translational into rotational motion. Over the years, several processes to manufacture these eccentric shafts or crankshafts have been developed. Especially for single-cylinder engines manufactured in small quantities, built crankshafts disclose advantages regarding tooling costs and performance. Those manufacturing processes do have one thing in common: They are all executed at elevated temperatures to enable the material to be formed to high forming degree. In this paper, a newly developed cold forging process is presented, which combines lateral extrusion and shifting for manufacturing a crank in one forming operation at room temperature. In comparison to the established upsetting and shifting methods to manufacture such components, the tool cavity or crank web thickness remains constant. Therefore, the developed new process presented in this paper consists of a combination of shifting and extrusion of the billet, which allows pushing material into the forming zone during shifting. In order to reduce the tensile stresses induced by the shifting process, compressive stresses are superimposed. It is expected that the process limits will be expanded regarding the horizontal displacement and form filling. In the following report, the simulation and design of the tooling concept are presented. Experiments were conducted and compared with corresponding simulation results afterwards.
Deformation processes in forging ceramics
NASA Technical Reports Server (NTRS)
Cannon, R. M.; Rhodes, W. H.
1973-01-01
The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging was utilized to investigate both the flow and fracture processes involved. Deformation studies of very fine grain Al203 revealed an apparent transition in behavior, characterized by a shift in the strain rate sensitivity from 0.5 at low stresses to near unity at higher stresses. The behavior is indicative of a shift in control between two dependent mechanisms, one of which is indicated to be cation limited diffusional creep with significant boundary enhancement. The possible contributions of slip, indicated by crystallographic texture, interface control of the diffusional creep and inhomogeneous boundary sliding are also discussed. Additional experiments indicated an independence of deformation behavior on MgO doping and retained hot pressing impurities, at least for ultrafine grained material, and also an independence of test atmosphere.
Zhang, Yu-Cun; Wei, Bin; Fu, Xian-Bin
2014-02-01
A temperature field detection method based on long-wavelength infrared spectrum for hot forging is proposed in the present paper. This method combines primary spectrum pyrometry and three-stage FP-cavity LCTF. By optimizing the solutions of three group nonlinear equations in the mathematical model of temperature detection, the errors are reduced, thus measuring results will be more objective and accurate. Then the system of three-stage FP-cavity LCTF was designed on the principle of crystal birefringence. The system realized rapid selection of any wavelength in a certain wavelength range. It makes the response of the temperature measuring system rapid and accurate. As a result, without the emissivity of hot forging, the method can acquire exact information of temperature field and effectively suppress the background light radiation around the hot forging and ambient light that impact the temperature detection accuracy. Finally, the results of MATLAB showed that the infrared spectroscopy through the three-stage FP-cavity LCTF could meet the requirements of design. And experiments verified the feasibility of temperature measuring method. Compared with traditional single-band thermal infrared imager, the accuracy of measuring result was improved.
Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun
2018-01-01
In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases. PMID:29342883
Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun
2018-01-13
In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg 17 Al 12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.
Thermal modeling of cogging process using finite element method
NASA Astrophysics Data System (ADS)
Khaled, Mahmoud; Ramadan, Mohamad; Fourment, Lionel
2016-10-01
Among forging processes, incremental processes are those where the work piece undergoes several thermal and deformation steps with small increment of deformation. They offer high flexibility in terms of the work piece size since they allow shaping wide range of parts from small to large size. Since thermal treatment is essential to obtain the required shape and quality, this paper presents the thermal modeling of incremental processes. The finite element discretization, spatial and temporal, is exposed. Simulation is performed using commercial software Forge 3. Results show the thermal behavior at the beginning and at the end of the process.
Impact of tool wear on cross wedge rolling process stability and on product quality
NASA Astrophysics Data System (ADS)
Gutierrez, Catalina; Langlois, Laurent; Baudouin, Cyrille; Bigot, Régis; Fremeaux, Eric
2017-10-01
Cross wedge rolling (CWR) is a metal forming process used in the automotive industry. One of its applications is in the manufacturing process of connecting rods. CWR transforms a cylindrical billet into a complex axisymmetrical shape with an accurate distribution of material. This preform is forged into shape in a forging die. In order to improve CWR tool lifecycle and product quality it is essential to understand tool wear evolution and the physical phenomena that change on the CWR process due to the resulting geometry of the tool when undergoing tool wear. In order to understand CWR tool wear behavior, numerical simulations are necessary. Nevertheless, if the simulations are performed with the CAD geometry of the tool, results are limited. To solve this difficulty, two numerical simulations with FORGE® were performed using the real geometry of the tools (both up and lower roll) at two different states: (1) before starting lifecycle and (2) end of lifecycle. The tools were 3D measured with ATOS triple scan by GOM® using optical 3D measuring techniques. The result was a high-resolution point cloud of the entire geometry of the tool. Each 3D point cloud was digitalized and converted into a STL format. The geometry of the tools in a STL format was input for the 3D simulations. Both simulations were compared. Defects of products obtained in simulation were compared to main defects of products found industrially. Two main defects are: (a) surface defects on the preform that are not fixed in the die forging operation; and (b) Preform bent (no longer straight), with two possible impacts: on the one hand that the robot cannot grab it to take it to the forging stage; on the other hand, an unfilled section in the forging operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, James; Mandal, Animesh
X-ray computed tomography (XCT) was used to characterise the internal microstructure and clustering behaviour of TiB{sub 2} particles in in-situ processed Al-Cu metal matrix composites prepared by casting method. Forging was used in semi-solid state to reduce the porosity and to uniformly disperse TiB{sub 2} particles in the composite. Quantification of porosity and clustering of TiB{sub 2} particles was evaluated for different forging reductions (30% and 50% reductions) and compared with an as-cast sample using XCT. Results show that the porosity content was decreased by about 40% due to semi-solid forging as compared to the as-cast condition. Further, XCT resultsmore » show that the 30% forging reduction resulted in greater uniformity in distribution of TiB{sub 2} particles within the composite compared to as-cast and the 50% forge reduction in semi-solid state. These results show that the application of forging in semi-solid state enhances particle distribution and reduces porosity formation in cast in-situ Al-Cu-TiB{sub 2} metal matrix composites. - Highlights: •XCT was used to visualise 3D internal structure of Al-Cu-TiB{sub 2} MMCs. •Al-Cu-TiB{sub 2} MMC was prepared by casting using flux assisted synthesis method. •TiB{sub 2} particles and porosity size distribution were evaluated. •Results show that forging in semi-solid condition decreases the porosity content and improve the particle dispersion in MMCs.« less
NASA Astrophysics Data System (ADS)
Huang, Shiquan; Yi, Youping; Li, Pengchuan
2011-05-01
In recent years, multi-scale simulation technique of metal forming is gaining significant attention for prediction of the whole deformation process and microstructure evolution of product. The advances of numerical simulation at macro-scale level on metal forming are remarkable and the commercial FEM software, such as Deform2D/3D, has found a wide application in the fields of metal forming. However, the simulation method of multi-scale has little application due to the non-linearity of microstructure evolution during forming and the difficulty of modeling at the micro-scale level. This work deals with the modeling of microstructure evolution and a new method of multi-scale simulation in forging process. The aviation material 7050 aluminum alloy has been used as example for modeling of microstructure evolution. The corresponding thermal simulated experiment has been performed on Gleeble 1500 machine. The tested specimens have been analyzed for modeling of dislocation density, nucleation and growth of recrystallization(DRX). The source program using cellular automaton (CA) method has been developed to simulate the grain nucleation and growth, in which the change of grain topology structure caused by the metal deformation was considered. The physical fields at macro-scale level such as temperature field, stress and strain fields, which can be obtained by commercial software Deform 3D, are coupled with the deformed storage energy at micro-scale level by dislocation model to realize the multi-scale simulation. This method was explained by forging process simulation of the aircraft wheel hub forging. Coupled the results of Deform 3D with CA results, the forging deformation progress and the microstructure evolution at any point of forging could be simulated. For verifying the efficiency of simulation, experiments of aircraft wheel hub forging have been done in the laboratory and the comparison of simulation and experiment result has been discussed in details.
Microstructure Analysis on 6061 Aluminum Alloy after Casting and Diffuses Annealing Process
NASA Astrophysics Data System (ADS)
Wang, H. Q.; Sun, W. L.; Xing, Y. Q.
One factory using semi-continuous casting process produce the ф200×6000 mm 6061 aluminium alloy barstock, and then rotary forged for car wheels. 6061 distorting aluminium alloy is an forged aluminum alloy, and mainly containing Mg, Si, Cu and other alloying elements. The main strengthening phase is Mg2Si, and also has few phase of (FeMn) 3Si2Al15. In order to eliminate the segregation and separation which present in the crystal boundary, and make the distortion to be uniform, and does not present ear and fracture defects after the forging. So the 6061 distorting aluminium alloy adopt the diffusion annealing heat treatment before the forging process.According to the current conditions, we use the diffusion annealing which have the different heating temperature and different holding time.The best process we can obtain from the test which can improve the production efficiency and reduce the material waste, improve the mechanical properties, and eliminate the overheated film on the surface.Then,we using OM,SEM and EDS to analyse the microstructure and the chemical composition of compound between the surface and centre. The result shows that the amount of segregation were different in the surface and in the center, and the different diffusion annealing can cause the phase change in the surface and the center.
Reliability of system for precise cold forging
NASA Astrophysics Data System (ADS)
Krušič, Vid; Rodič, Tomaž
2017-07-01
The influence of scatter of principal input parameters of the forging system on the dimensional accuracy of product and on the tool life for closed-die forging process is presented in this paper. Scatter of the essential input parameters for the closed-die upsetting process was adjusted to the maximal values that enabled the reliable production of a dimensionally accurate product at optimal tool life. An operating window was created in which exists the maximal scatter of principal input parameters for the closed-die upsetting process that still ensures the desired dimensional accuracy of the product and the optimal tool life. Application of the adjustment of the process input parameters is shown on the example of making an inner race of homokinetic joint from mass production. High productivity in manufacture of elements by cold massive extrusion is often achieved by multiple forming operations that are performed simultaneously on the same press. By redesigning the time sequences of forming operations at multistage forming process of starter barrel during the working stroke the course of the resultant force is optimized.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
... County (see Docket 29-2011). The facility is used to produce aircraft turbine engine components of forged... aircraft turbine engines for the U.S. market and export. The manufacturing process under FTZ procedures... procedures that applies to aircraft turbine engine components and forged rings of titanium (duty rates--free...
Properties of Ti-6Al-4V spun formed fuze supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, N.R.; Gates, G.
1985-05-01
Spin forming is designated as the primary fabrication process for the Ti-6A1-4V, W-87 fuze support. This process reduces the amount of rough machining during production, the cost of the starting material and the lead time from order to delivery of finished parts compared with parts made from forgings. However, because the amount of deformation from the spin forming process varies greatly within the part, the properties resulting from spin forming the fuze supports are unknown. This study shows that the properties and microstructure of the highly deformed walls of the fuze support are similar to those of forgings, while themore » properties and microstructure of the lightly deformed nose are similar to those of the parent plate. A solution treatment at 1750/sup 0/F/1h/WQ (954/sup 0/C) followed by a 900/sup 0/F (482/sup 0/C) four hour age gives the desired properties. Additionally, microstructural evaluation shows that the temperatures during spin forming are maintained within desired limits and that no significant microstructural changes occur during subsequent elevated temperature processing of the finished part. This study shows that solution treated and aged parts meet all required properties for all conditions to which the fuze supports will be subjected.« less
NASA Astrophysics Data System (ADS)
Ghanaraja, S.; Gireesha, B. L.; Ravikumar, K. S.; Likith, P.
2018-04-01
During the past few years, material design has changed prominence to pursue light weight, environment friendliness, low cost, quality, higher service temperature, higher elastic modulus, improved wear resistance and performance. Straight monolithic materials have limitations in achieving the above decisive factors. To overcome these limitations and to convince the ever increasing demand of modern day technology, Attention has been shifted towards Metal Matrix Composites (MMC). Stir casting route is most hopeful for synthesizing discontinuous reinforcement aluminium matrix composites because of its relative simplicity and easy adaptability with all shape casting process used in metal casting industry. Hybridization of metal matrix composites is the introduction of more than one type/kind, size and shape of reinforcement during processing of composites. It is carried out to obtain synergistic properties of different reinforcements and matrix used, which may not be rea1ised in monolithic alloy or in conventional monocomposites. The present study involves synthesis of hybrid composites by addition of the desired amount of Silicon Carbide (SiC) and Rice Husk Ash (RHA) particles in to the molten Al 1100-Mg alloy through stir casting technique fallowed by hot forging of the cast composites. The influence of increasing in the wt% (3, 6, 9, 12 and 15 wt%) of SiC particles addition (3 wt% Rice husk ash kept constant) on evolution of microstructure is studied through XRD and SEM and their impact on the mechanical properties like hardness and tensile strength of the resulting forged hybrid composites has been investigated.
Nuclear valve manufacturer selects stainless forgings
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1976-02-01
Forged type 316 stainless steel components for nuclear valves are described. Automatic plasma arc welding with powder filler alloys is employed for hardfacing. Seat ring forgings are surfaced four-at-a-time with Stellite No. 156 in a sequential manner to minimize heat input to the individual components. After cladding and machining, seat rings are welded into the valve body using a semiautomatic, hot-wire gas tungsten-arc process. Disc faces and guide slots are surfaced with Stellite No. 6. The valve stem is machined from 17-4PH forged bar stock in the H-1100 condition. The heat treatment is specified to minimize pitting under prolonged exposuremore » to wet packing. A 12 rms (0.3 $mu$m) surface finish minimizes tearing of the packing and subsequent leakage. The link and stem pin are SA 564 Grade 660 (in the H-1100 condition) and ASTM A637 Grade 718 respectively. (JRD)« less
Application of multi-grid method on the simulation of incremental forging processes
NASA Astrophysics Data System (ADS)
Ramadan, Mohamad; Khaled, Mahmoud; Fourment, Lionel
2016-10-01
Numerical simulation becomes essential in manufacturing large part by incremental forging processes. It is a splendid tool allowing to show physical phenomena however behind the scenes, an expensive bill should be paid, that is the computational time. That is why many techniques are developed to decrease the computational time of numerical simulation. Multi-Grid method is a numerical procedure that permits to reduce computational time of numerical calculation by performing the resolution of the system of equations on several mesh of decreasing size which allows to smooth faster the low frequency of the solution as well as its high frequency. In this paper a Multi-Grid method is applied to cogging process in the software Forge 3. The study is carried out using increasing number of degrees of freedom. The results shows that calculation time is divide by two for a mesh of 39,000 nodes. The method is promising especially if coupled with Multi-Mesh method.
Securing the High Seas: America’s Global Maritime Constabulatory Power
2008-03-12
at www.heritage.org/ Research/HomelandSecurity/bg1950.cfm. 29. Construcciones Aeronáuticas, SA. 16 Securing the High Seas: America’s Global Maritime...Coast Guard ships (National Security Cutter, Off-Shore Patrol Cutter, and Fast Response Cutter) and many Navy ships currently in design or construction ...forge complementary maritime strategies. Only by developing common doctrine, creating greater synergy in the construction of core assets, and forging a
NASA Astrophysics Data System (ADS)
Klemz, Francis B.
Forging provides an elegant solution to the problem of producing complicated shapes from heated metal. This study attempts to relate some of the important parameters involved when considering, simple upsetting, closed die forging and extrusion forging.A literature survey showed some of the empirical graphical and statistical methods of load prediction together with analytical methods of estimating load and energy. Investigations of the effects of high strain rate and temperature on the stress-strain properties of materials are also evident.In the present study special equipment including an experimental drop hammer and various die-sets have been designed and manufactured. Instrumentation to measure load/time and displacement/time behaviour, of the deformed metal, has been incorporated and calibrated. A high speed camera was used to record the behaviour mode of test pieces used in the simple upsetting tests.Dynamic and quasi-static material properties for the test materials, lead and aluminium alloy, were measured using the drop-hammer and a compression-test machine.Analytically two separate mathematical solutions have been developed: A numerical technique using a lumped-massmodel for the analysis of simple upsetting and closed-die forging and, for extrusion forging, an analysis which equates the shear and compression energy requirements tothe work done by the forging load.Cylindrical test pieces were used for all the experiments and both dry and lubricated test conditions were investigated. The static and dynamic tests provide data on Load, Energy and the Profile of the deformed billet. In addition for the Extrusion Forging, both single ended and double ended tests were conducted. Material dependency was also examined by a further series of tests on aluminium and copper.Comparison of the experimental and theoretical results was made which shows clearly the effects of friction and high strain rate on load and energy requirements and the deformation mode of the billet. For the axisymmetric shapes considered, it was found that the load, energy requirement and profile could be predicted with reasonable accuracy.
Forge.mil Home About FAQs News Resources Support Top 10 FAQs What is the Forge.mil Program? What is SoftwareForge? What is ProjectForge? Is there a Forge.mil site on SIPRNET? What is the difference between SoftwareForge and ProjectForge? What capabilities are available in the system? What are the guidelines for
Simulations and Experiments of the Nonisothermal Forging Process of a Ti-6Al-4V Impeller
NASA Astrophysics Data System (ADS)
Prabhu, T. Ram
2016-09-01
In the present study, a nonisothermal precision forging process of a Ti-6Al-4V first-stage impeller for the gas turbine engine was simulated using the finite element software. The simulation results such as load requirements, damage, velocity field, stress, strain, and temperature distributions are discussed in detail. Simulations predicted the maximum load requirement of about 80 MN. The maximum temperature loss was observed at the contour surface regions. The center and contour regions are the high-strained regions in the part. To validate the model, forging experiments mimicking simulations were performed in the α + β phases region (930 °C). The selected locations of the part were characterized for tensile properties at 27 and 200 °C, hardness, microstructure, grain size, and the amount of primary α phase based on the strain distribution results. The soundness of the forged part was verified using fluorescent penetrant test (Mil Std 2175 Grade A) and ultrasonic test (AMS 2630 class A1). From the experimental results, it was found that the variations in the hardness, tensile properties at room, and elevated temperature are not significant. The microstructure, grain size, and primary α phase content are nearly same.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Michael J.
This study reports on the effects of hydrogen isotopes, crack orientation, and specimen geometry on the fracture toughness of stainless steels. Fracture toughness variability was investigated for Type 21-6-9 stainless steel using the 7K0004 forging. Fracture toughness specimens were cut from the forging in two different geometric configurations: arc shape and disc shape. The fracture toughness properties were measured at ambient temperature before and after exposure to hydrogen gas and compared to prior studies. There are three main conclusions that can be drawn from the results. First, the fracture toughness properties of actual reservoir forgings and contemporary heats of steelmore » are much higher than those measured in earlier studies that used heats of steel from the 1980s and 1990s and forward extruded forgings which were designed to simulate reservoir microstructures. This is true for as-forged heats as well as forged heats exposed to hydrogen gas. Secondly, the study confirms the well-known observation that cracks oriented parallel to the forging grain flow will propagate easier than those oriented perpendicular to the grain flow. However, what was not known, but is shown here, is that this effect is more pronounced, particularly after hydrogen exposures, when the forging is given a larger upset. In brick forgings, which have a relatively low amount of upset, the fracture toughness variation with specimen orientation is less than 5%; whereas, in cup forgings, the fracture toughness is about 20% lower than that forging to show how specimen geometry affects fracture toughness values. The American Society for Testing Materials (ASTM) specifies minimum specimen section sizes for valid fracture toughness values. However, sub-size specimens have long been used to study tritium effects because of the physical limitation of diffusing hydrogen isotopes into stainless steel at mild temperatures so as to not disturb the underlying forged microstructure. This study shows that fracture toughness values of larger specimens are higher and more representative of the material’s fracture behavior in a fully constrained tritium reservoir. The toughness properties measured for sub-size specimens were about 65-75% of the values for larger specimens. While the data from sub-size specimens are conservative, they may be overly so. The fracture toughness properties from sub-size specimens are valuable in that they can be used for tritium effects studies and show the same trends and alloy differences as those seen from larger specimen data. Additional work is planned, including finite element modeling, to see if sub-size specimen data could be adjusted in some way to be more closely aligned with the actual material behavior in a fully constrained pressure vessel.« less
Equal channel angular pressing (ECAP) and forging of commercially pure titanium (CP-Ti)
NASA Astrophysics Data System (ADS)
Krystian, Maciej; Huber, Daniel; Horky, Jelena
2017-10-01
Pure titanium with ultra-fine grained (UFG) microstructure is an exceptionally interesting material for biomedical and dental applications due to its very good biocompatibility and high strength. Such bulk, high-strength UFG materials are commonly produced by different Severe Plastic Deformation (SPD) techniques, whereof Equal Channel Angular Pressing (ECAP) is the most commonly used one. In this investigation commercially pure (CP) titanium (grade 2) was processed by ECAP using a die with a channel diameter of 20mm and an intersection angle of 105°. Six passes using route B120 (in which the billet is rotated between subsequent passes by 120°) at a temperature of 400°C were performed leading to a substantial grain refinement and an increase of strength and hardness. Subsequently, a thermal treatment study on ECAP-processed samples at different temperatures and for different time periods was carried out revealing the stability limit for ECAP CP-Ti as well as the best conditions leading to an improvement in both, strength and ductility. Furthermore, room temperature forging of the as-received (AR; hot-rolled and annealed) as well as ECAP-processed material was conducted. Tensile tests and hardness mappings revealed that forging is capable to further increase the strength of ECAP CP-Ti by more than 20%. Moreover, the mechanical properties are significantly more homogenous than after forging only.
Analysis of Forgery Attack on One-Time Proxy Signature and the Improvement
NASA Astrophysics Data System (ADS)
Wang, Tian-Yin; Wei, Zong-Li
2016-02-01
In a recent paper, Yang et al. (Quant. Inf. Process. 13(9), 2007-2016, 2014) analyzed the security of one-time proxy signature scheme Wang and Wei (Quant. Inf. Process. 11(2), 455-463, 2012) and pointed out that it cannot satisfy the security requirements of unforgeability and undeniability because an eavesdropper Eve can forge a valid proxy signature on a message chosen by herself. However, we find that the so-called proxy message-signature pair forged by Eve is issued by the proxy signer in fact, and anybody can obtain it as a requester, which means that the forgery attack is not considered as a successful attack. Therefore, the conclusion that this scheme cannot satisfy the security requirements of proxy signature against forging and denying is not appropriate in this sense. Finally, we study the reason for the misunderstanding and clarify the security requirements for proxy signatures.
NASA Technical Reports Server (NTRS)
1991-01-01
Typical design simplification ideas which reduce costs; combustion chamber design simplification; combustion chambers; castings vs. machined and welded forgings; automated inspection; and life cycle costs are outlined. This presentation is represented by viewgraphs.
Hot isostatically pressed manufacture of high strength MERL 76 disk and seal shapes
NASA Technical Reports Server (NTRS)
Eng, R. D.; Evans, D. J.
1982-01-01
The feasibility of using MERL 76, an advanced high strength direct hot isostatic pressed powder metallurgy superalloy, as a full scale component in a high technology, long life, commercial turbine engine were demonstrated. The component was a JT9D first stage turbine disk. The JT9D disk rim temperature capability was increased by at least 22 C and the weight of JT9D high pressure turbine rotating components was reduced by at least 35 pounds by replacement of forged Superwaspaloy components with hot isostatic pressed (HIP) MERL 76 components. The process control plan and acceptance criteria for manufacture of MERL 76 HIP consolidated components were generated. Disk components were manufactured for spin/burst rig test, experimental engine tests, and design data generation, which established lower design properties including tensile, stress-rupture, 0.2% creep and notched (Kt = 2.5) low cycle fatigue properties, Sonntag, fatigue crack propagation, and low cycle fatigue crack threshold data. Direct HIP MERL 76, when compared to conventionally forged Superwaspaloy, is demonstrated to be superior in mechanical properties, increased rim temperature capability, reduced component weight, and reduced material cost by at least 30% based on 1980 costs.
Fallon, Nevada FORGE Seismic Reflection Profiles
Blankenship, Doug; Faulds, James; Queen, John; Fortuna, Mark
2018-02-01
Newly reprocessed Naval Air Station Fallon (1994) seismic lines: pre-stack depth migrations, with interpretations to support the Fallon FORGE (Phase 2B) 3D Geologic model. Data along seven profiles (>100 km of total profile length) through and adjacent to the Fallon site were re-processed. The most up-to-date, industry-tested seismic processing techniques were utilized to improve the signal strength and coherency in the sedimentary, volcanic, and Mesozoic crystalline basement sections, in conjunction with fault diffractions in order to improve the identification and definition of faults within the study area.
Nanoforging - Innovation in three-dimensional processing and shaping of nanoscaled structures.
Landefeld, Andreas; Rösler, Joachim
2014-01-01
This paper describes the shaping of freestanding objects out of metallic structures in the nano- and submicron size. The technique used, called nanoforging, is very similar to the macroscopic forging process. With spring actuated tools produced by focused ion beam milling, controlled forging is demonstrated. With only three steps, a conical bar stock is transformed to a flat- and semicircular bent bar stock. Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques.
Strain Evolution in Cold-Warm Forged Steel Components Studied by Means of EBSD Technique
Bonollo, Franco; Bassan, Fabio; Berto, Filippo
2017-01-01
Electron BackScatter Diffraction (EBSD) in conjunction with Field-Emission Environmental Scanning Electron Microscopy (FEG-ESEM) has been used to evaluate the microstructural and local plastic strain evolution in different alloys (AISI 1005, AISI 304L and Duplex 2205) deformed by a single-stage cold and warm forging process. The present work is aimed to describe the different behavior of the austenite and ferrite during plastic deformation as a function of different forging temperatures. Several topological EBSD maps have been measured on the deformed and undeformed states. Then, image quality factor, distributions of the grain size and misorientation have been analyzed in detail. In the austenitic stainless steel, the γ-phase has been found to harden more easily, then α-phase and γ-phase in AISI 1005 and in duplex stainless steel, sequentially. Compared to the high fraction of continuous dynamic recrystallized austenitic zones observed in stainless steels samples forged at low temperatures, the austenitic microstructure of samples forged at higher temperatures, 600–700 °C, has been found to be mainly characterized by large and elongated grains with some colonies of fine nearly-equiaxed grains attributed to discontinuous dynamic recrystallization. PMID:29258249
Application Of Numerical Modelling To Ribbed Wire Rod Dimensions Precision Increase
NASA Astrophysics Data System (ADS)
Szota, Piotr; Mróz, Sebastian; Stefanik, Andrzej
2007-05-01
The paper presents the results of theoretical and experimental investigations of the process of rolling square ribbed wire rod designed for concrete reinforcement. Numerical modelling of the process of rolling in the finishing and pre-finishing grooves was carried out using the Forge2005® software. In the investigation, particular consideration was given to the analysis of the effect of pre-finished band shape on the formation of ribs on the finished wire rod in the finishing groove. The results of theoretical studies were verified in experimental tests, which were carried out in a wire rolling mill.
2014-10-01
Porosity from gas entrapment & shrinkage 4 Continuous Fiber Ti Metal Matrix Composites (Aircraft panels and rotor components) [14...process models for casting, forging, and welding , and software capability to integrate various independent models with design, thermal, and structural...Applications, Ph.D. Thesis, Queen’s College, University of Oxford, (2007). 14. S.A. Singerman and J.J. Jackson, Titanium Metal Matrix Composites for
Microstructural Evaluation of Forging Parameters for Superalloy Disks
NASA Technical Reports Server (NTRS)
Falsey, John R.
2004-01-01
Forgings of nickel base superalloy were formed under several different strain rates and forging temperatures. Samples were taken from each forging condition to find the ASTM grain size, and the as large as grain (ALA). The specimens were mounted in bakelite, polished, etched and then optical microscopy was used to determine grain size. The specimens ASTM grain sizes from each forging condition were plotted against strain rate, forging temperature, and presoak time. Grain sizes increased with increasing forging temperature. Grain sizes also increased with decreasing strain rates and increasing forging presoak time. The ALA had been determined from each forging condition using the ASTM standard method. Each ALA was compared with the ASTM grain size of each forging condition to determine if the grain sizes were uniform or not. The forging condition of a strain rate of .03/sec and supersolvus heat treatment produced non uniform grains indicated by critical grain growth. Other anomalies are noted as well.
NASA Astrophysics Data System (ADS)
Loucif, Abdelhalim; Ben Fredj, Emna; Harris, Nathan; Shahriari, Davood; Jahazi, Mohammad; Lapierre-Boire, Louis-Philippe
2018-03-01
A-type macrosegregation refers to the channel chemical heterogeneities that can be formed during solidification in large size steel ingots. In this research, a combination of experiment and simulation was used to study the influence of open die forging parameters on the evolution of A-type macrosegregation patterns during a multistep forging of a 40 metric ton (MT) cast, high-strength steel ingot. Macrosegregation patterns were determined experimentally by macroetch along the longitudinal axis of the forged and heat-treated ingot. Mass spectroscopy, on more than 900 samples, was used to determine the chemical composition map of the entire longitudinal sectioned surface. FORGE NxT 1.1 finite element modeling code was used to predict the effect of forging sequences on the morphology evolution of A-type macrosegregation patterns. For this purpose, grain flow variables were defined and implemented in a large scale finite element modeling code to describe oriented grains and A-type segregation patterns. Examination of the A-type macrosegregation showed four to five parallel continuous channels located nearly symmetrical to the axis of the forged ingot. In some regions, the A-type patterns became curved or obtained a wavy form in contrast to their straight shape in the as-cast state. Mass spectrometry analysis of the main alloying elements (C, Mn, Ni, Cr, Mo, Cu, P, and S) revealed that carbon, manganese, and chromium were the most segregated alloying elements in A-type macrosegregation patterns. The observed differences were analyzed using thermodynamic calculations, which indicated that changes in the chemical composition of the liquid metal can affect the primary solidification mode and the segregation intensity of the alloying elements. Finite element modeling simulation results showed very good agreement with the experimental observations, thereby allowing for the quantification of the influence of temperature and deformation on the evolution of the shape of the macrosegregation channels during the open die forging process.
NASA Astrophysics Data System (ADS)
Loucif, Abdelhalim; Ben Fredj, Emna; Harris, Nathan; Shahriari, Davood; Jahazi, Mohammad; Lapierre-Boire, Louis-Philippe
2018-06-01
A-type macrosegregation refers to the channel chemical heterogeneities that can be formed during solidification in large size steel ingots. In this research, a combination of experiment and simulation was used to study the influence of open die forging parameters on the evolution of A-type macrosegregation patterns during a multistep forging of a 40 metric ton (MT) cast, high-strength steel ingot. Macrosegregation patterns were determined experimentally by macroetch along the longitudinal axis of the forged and heat-treated ingot. Mass spectroscopy, on more than 900 samples, was used to determine the chemical composition map of the entire longitudinal sectioned surface. FORGE NxT 1.1 finite element modeling code was used to predict the effect of forging sequences on the morphology evolution of A-type macrosegregation patterns. For this purpose, grain flow variables were defined and implemented in a large scale finite element modeling code to describe oriented grains and A-type segregation patterns. Examination of the A-type macrosegregation showed four to five parallel continuous channels located nearly symmetrical to the axis of the forged ingot. In some regions, the A-type patterns became curved or obtained a wavy form in contrast to their straight shape in the as-cast state. Mass spectrometry analysis of the main alloying elements (C, Mn, Ni, Cr, Mo, Cu, P, and S) revealed that carbon, manganese, and chromium were the most segregated alloying elements in A-type macrosegregation patterns. The observed differences were analyzed using thermodynamic calculations, which indicated that changes in the chemical composition of the liquid metal can affect the primary solidification mode and the segregation intensity of the alloying elements. Finite element modeling simulation results showed very good agreement with the experimental observations, thereby allowing for the quantification of the influence of temperature and deformation on the evolution of the shape of the macrosegregation channels during the open die forging process.
Material saving by means of CWR technology using optimization techniques
NASA Astrophysics Data System (ADS)
Pérez, Iñaki; Ambrosio, Cristina
2017-10-01
Material saving is currently a must for the forging companies, as material costs sum up to 50% for parts made of steel and up to 90% in other materials like titanium. For long products, cross wedge rolling (CWR) technology can be used to obtain forging preforms with a suitable distribution of the material along its own axis. However, defining the correct preform dimensions is not an easy task and it could need an intensive trial-and-error campaign. To speed up the preform definition, it is necessary to apply optimization techniques on Finite Element Models (FEM) able to reproduce the material behaviour when being rolled. Meta-models Assisted Evolution Strategies (MAES), that combine evolutionary algorithms with Kriging meta-models, are implemented in FORGE® software and they allow reducing optimization computation costs in a relevant way. The paper shows the application of these optimization techniques to the definition of the right preform for a shaft from a vehicle of the agricultural sector. First, the current forging process, based on obtaining the forging preform by means of an open die forging operation, is showed. Then, the CWR preform optimization is developed by using the above mentioned optimization techniques. The objective is to reduce, as much as possible, the initial billet weight, so that a calculation of flash weight reduction due to the use of the proposed preform is stated. Finally, a simulation of CWR process for the defined preform is carried out to check that most common failures (necking, spirals,..) in CWR do not appear in this case.
1982-10-01
TANK- AUTOMOTIVE COMMAND RESEARCH AND DEVELOPMENT CENTER ýAj Warren, Michigan 48090 A;••~ ISILJI REPRODUCTION QUALITY NOTICE This document is the best...CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE U. S. Army Tank- Automotive Command October 1982 Attention: DRSTA-RCKM 13. NUMBER OF PAGES Warren...Forging of Sprial Bevel Gears". It is being conducted under the direction of Mr. Donald Ostberg of the Metals & Welding Subfunction (DRSTA/RCKM) of the
NASA Astrophysics Data System (ADS)
Liu, Wei; Li, Ying-jun; Jia, Zhen-yuan; Zhang, Jun; Qian, Min
2011-01-01
In working process of huge heavy-load manipulators, such as the free forging machine, hydraulic die-forging press, forging manipulator, heavy grasping manipulator, large displacement manipulator, measurement of six-dimensional heavy force/torque and real-time force feedback of the operation interface are basis to realize coordinate operation control and force compliance control. It is also an effective way to raise the control accuracy and achieve highly efficient manufacturing. Facing to solve dynamic measurement problem on six-dimensional time-varying heavy load in extremely manufacturing process, the novel principle of parallel load sharing on six-dimensional heavy force/torque is put forward. The measuring principle of six-dimensional force sensor is analyzed, and the spatial model is built and decoupled. The load sharing ratios are analyzed and calculated in vertical and horizontal directions. The mapping relationship between six-dimensional heavy force/torque value to be measured and output force value is built. The finite element model of parallel piezoelectric six-dimensional heavy force/torque sensor is set up, and its static characteristics are analyzed by ANSYS software. The main parameters, which affect load sharing ratio, are analyzed. The experiments for load sharing with different diameters of parallel axis are designed. The results show that the six-dimensional heavy force/torque sensor has good linearity. Non-linearity errors are less than 1%. The parallel axis makes good effect of load sharing. The larger the diameter is, the better the load sharing effect is. The results of experiments are in accordance with the FEM analysis. The sensor has advantages of large measuring range, good linearity, high inherent frequency, and high rigidity. It can be widely used in extreme environments for real-time accurate measurement of six-dimensional time-varying huge loads on manipulators.
Deformation behavior of TC6 alloy in isothermal forging
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Li, Miaoquan; Zhu, Dasong; Xiong, Aiming
2005-10-01
Isothermal compression of the TC6 alloy was carried out in a Thermecmaster-Z (Wuhan Iron and Steel Corporation, P.R. China) simulator at deformation temperatures of 800˜1040 °C, strain rates of 0.001˜50.0 s-1, and maximum height reduction of 50%. The deformation behavior of the TC6 alloy in isothermal forging was characterized based on stress-strain behavior and kinetic analysis. The activation energy of deformation obtained in the isothermal forging of the TC6 alloy was 267.49 kJ/mol in the β phase region and 472.76 kJ/mol in the α+β phase region. The processing map was constructed based on the dynamic materials model, and the optimal deformation parameters were obtained. Constitutive equations describing the flow stress as a function of strain rate, strain, and deformation temperature were proposed for the isothermal forging of the TC6 alloy, and a good agreement between the predicted and experimental stress-strain curves was achieved.
Deducing material quality in cast and hot-forged steels by new bending test
NASA Astrophysics Data System (ADS)
Valberg, Henry; Langøy, Morten; Nedreberg, Mette; Helvig, Torgeir
2017-10-01
A special bend test has been developed and applied for the purpose of characterization and comparison of the material ductility in crankpin steel discs manufactured by casting, or casting subsequently followed by hot open-die forging (ODF) or closed-die forging (CDF). The bending test specimen consists of a small rectangular plate of material with a round hole cut out in the middle. The "eye-shape" specimens were cut out from various positions either near to the surface of, or from the interior of the discs. The test method revealed differences in ductility for the investigated materials, and for different depth positions inside the discs. The roughening of the specimen surface on the top-side of the specimen bend also varied dependent on the processing method for the material. Current results show that this test method is useful for evaluation of material quality in differently processed material. Experimental bend test results are presented for differently processed variants of the same material, i.e., crankpin discs either made by solely casting or casting subsequently followed by hot working either by ODF or CDF.
NASA Astrophysics Data System (ADS)
Scheid, James Eric
Aluminum-lined shaped charges are used in special applications where jet and / or slug residue in the target is undesired. The three different microstructures of the aluminum liners studied herein resulted from three different manufacturing interpretations of the same design. One interpretation was completely machining the liners from best available annealed round stock. The second was to cold-forge the liners from annealed round-stock in an open-die forge to near-final dimensions, and then machine the liners to the final dimensions. The third variant in this study was to use the above forged liner, but with annealing after the machining. These three manufacturing choices resulted in significant variations in shaped charge performance. The goal of this research was to clarify the relationships between the liner metal microstructure and properties, and the corresponding shaped charge dynamic flow behavior. What began as an investigation into user-reported performance problems associated inherently with liner manufacturing processes and resultant microstructure, resolved into new understandings of the relationships between aluminum liner microstructure and shaped charge collapse kinetics. This understanding was achieved through an extensive literature review and the comprehensive characterization of the material properties of three variants of an 1100 aluminum shaped charge liner with a focus on collapse and nascent jet formation. The machined liner had a microstructure with large millimeter-sized grains and fine particles aligned in bands parallel to the charge axis. The forged liner microstructure consisted of very small one micrometer-sized (1 mum) subgrains and fine particles aligned largely in bands elongated parallel to the liner contour. The annealed liner was characterized by ten micrometer (10 mum) sized equiaxed grains with residual fine particles in the forged alignment. This characterization was enabled by the development, execution and validation of a custom explosive experiment that delivered meaningful, full-scale shock deformed samples for analysis. The experiment arrested the collapse of actual, as-fabricated liners in the first microseconds of development. This experiment, performed with only 2% of the explosive mass of the full charge, revealed new insights into material-dependent variations in liner collapse including a striking image of the formation of a shaped charge jet axial hole. The highly strain-hardened and elongated forged liner was the best performer of the three. Less energy from the explosive was dissipated by dislocation generation. This translated to more efficient flow whereas the softer materials behaved as shock absorbers delaying flow. A set of hypotheses was formulated and critiqued based on these observations. The key findings were the effects of grain size, and shear bands induced in the microstructure through cold work enabled efficient liner flow. These bands provide highly localized dislocation highways enabling the matrix adjacent to the bands to deform plastically at higher velocity. Where such bands are unavailable, the pressure must first develop bands of smaller grains, thus decreasing energy available for flow. Collapse velocities were then associated with the number of shear bands, the organization of mobile dislocations, material strain, and liner geometry. Microstructures with the ability to deform with the direction of liner collapse at lower stresses will form jets with a higher velocity and elongate earlier. The effect is higher performance at shorter standoffs. This relationship can be used to predict material behavior under explosive load, guiding engineering choices while designing with respect to anticipated shock loading. The explosive experiment designed here has obvious application in refining the performance of other warheads, and in the hydrodynamic modeling of material properties.
Simulation and design of ECT differential bobbin probes for the inspection of cracks in bolts
NASA Astrophysics Data System (ADS)
Ra, S. W.; Im, K. H.; Lee, S. G.; Kim, H. J.; Song, S. J.; Kim, S. K.; Cho, Y. T.; Woo, Y. D.; Jung, J. A.
2015-12-01
All Various defects could be generated in bolts for a use of oil filters for the manufacturing process and then may affect to the safety and quality in bolts. Also, fine defects may be imbedded in oil filter system during multiple forging manufacturing processes. So it is very important that such defects be investigated and screened during the multiple manufacturing processes. Therefore, in order effectively to evaluate the fine defects, the design parameters for bobbin-types were selected under a finite element method (FEM) simulations and Eddy current testing (ECT). Especially the FEM simulations were performed to make characterization in the crack detection of the bolts and the parameters such as number of turns of the coil, the coil size and applied frequency were calculated based on the simulation results.
Advances in Solid State Joining of Haynes 230 High Temperature Alloy
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Schneider, Judy; Walker, Bryant
2010-01-01
The J-2X engine is being designed for NASA s new class of crew and launch vehicles, the Ares I and Ares V. The J-2X is a LOX/Hydrogen upper stage engine with 294,000 lbs of thrust and a minimum Isp of 448 seconds. As part of the design criteria to meet the performance requirements a large film-cooled nozzle extension is being designed to further expand the hot gases and increases the specific impulse. The nozzle extension is designed using Haynes 230, a nickel-chromium-tungsten-molybdenum superalloy. The alloy was selected for its high strength at elevated temperatures and resistance to hydrogen embrittlement. The nozzle extension is manufactured from Haynes 230 plate spun-forged to form the contour and chemically-milled pockets for weight reduction. Currently fusion welding is being evaluated for joining the panels which are then mechanically etched and thinned to required dimensions for the nozzle extension blank. This blank is then spun formed into the parabolic geometry required for the nozzle. After forming the nozzle extension, weight reduction pockets are chemically milled into the nozzle. Fusion welding of Haynes results in columnar grains which are prone to hot cracking during forming processes. This restricts the ability to use spin forging to produce the nozzle contour. Solid state joining processes are being pursued as an alternative process to produce a structure more amenable to spin forming. Solid state processes have been shown to produce a refined grain structure within the joint regions as illustrated in Figure 1. Solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature. The work presented in this presentation investigates the feasibility of joining the Haynes 230 alloy using the solid state welding processes of FSW and TSW. Process descriptions and attributes of each weld process will be presented. Weld process set-up and welding techniques will be discussed leading to the challenges experienced in joining the superalloy. Mechanical property data will also be presented.
Nanoforging – Innovation in three-dimensional processing and shaping of nanoscaled structures
Rösler, Joachim
2014-01-01
Summary Background: This paper describes the shaping of freestanding objects out of metallic structures in the nano- and submicron size. The technique used, called nanoforging, is very similar to the macroscopic forging process. Results: With spring actuated tools produced by focused ion beam milling, controlled forging is demonstrated. With only three steps, a conical bar stock is transformed to a flat- and semicircular bent bar stock. Conclusion: Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques. PMID:25161840
Performance Assessment Method for a Forged Fingerprint Detection Algorithm
NASA Astrophysics Data System (ADS)
Shin, Yong Nyuo; Jun, In-Kyung; Kim, Hyun; Shin, Woochang
The threat of invasion of privacy and of the illegal appropriation of information both increase with the expansion of the biometrics service environment to open systems. However, while certificates or smart cards can easily be cancelled and reissued if found to be missing, there is no way to recover the unique biometric information of an individual following a security breach. With the recognition that this threat factor may disrupt the large-scale civil service operations approaching implementation, such as electronic ID cards and e-Government systems, many agencies and vendors around the world continue to develop forged fingerprint detection technology, but no objective performance assessment method has, to date, been reported. Therefore, in this paper, we propose a methodology designed to evaluate the objective performance of the forged fingerprint detection technology that is currently attracting a great deal of attention.
Manufacturing Methods and Technology Project Summary Reports.
1980-12-01
deposition of chrome-copper (Cr- Cu ), dry-film photoresist application, photolithographic masking, spray etching, die bonding, ultrasonic...4) cold roll forging. Of these, the cold roll forging process is the most widely used for the pro- duction of steel and low alloy blades. It provides... sprayed Mo- Al -Ni both provide relatively good wear resistance, see Figure 1. The powder -flame sprayed aluminum bronze did not perform as well. 147 -S t. I
Seismic Data from Roosevelt Hot Springs, Utah FORGE Study Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, John
This set of data contains raw and processed 2D and 3D seismic data from the Utah FORGE study area near Roosevelt Hot Springs. The zipped archives numbered from 1-100 to 1001-1122 contain 3D seismic uncorrelated shot gatherers SEG-Y files. The zipped archives numbered from 1-100C to 1001-1122C contain 3D seismic correlated shot gatherers SEG-Y files. Other data have intuitive names.
Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process
NASA Astrophysics Data System (ADS)
Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu
This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.
Army Combat Medic Resilience: The Process of Forging Loyalty.
Abraham, Preetha A; Russell, Dale W; Huffman, Sarah; Deuster, Patricia; Gibbons, Susanne W
2018-03-01
This study presents a grounded theory analysis of in-depth interviews of United States Army Combat Medics (CMs) who had served in Iraq and/or Afghanistan. The study explores how 17 CMs nominated by their peers as resilient cope with military stressors in order to identify the factors that enable them to thrive amidst harsh conditions. Four distinct categories of characteristics unique to this group emerged: (1) social bonding, (2) readiness, (3) dual loyalty as performance, and (4) leader by example. Forging loyalty underpins these characteristics and represents the main process used by resilient CMs and comprised three behavior patterns: (1) commitment to the family, (2) commitment to the military mission, and (3) commitment to their guiding religious and spiritual beliefs. Prominent behavioral tendencies of forging loyalty likely developed during childhood and re-enforced by families, friends, and other role models. Based on the findings, new training and education efforts should focus on developing positive emotional, environmental, and social resources to enhance the health and well-being of service members and their families.
Low cost fabrication development for oxide dispersion strengthened alloy vanes
NASA Technical Reports Server (NTRS)
Perkins, R. J.; Bailey, P. G.
1978-01-01
Viable processes were developed for secondary working of oxide dispersion strengthened (ODS) alloys to near-net shapes (NNS) for aircraft turbine vanes. These processes were shown capable of producing required microstructure and properties for vane applications. Material cost savings of 40 to 50% are projected for the NNS process over the current procedures which involve machining from rectangular bar. Additional machining cost savings are projected. Of three secondary working processes evaluated, directional forging and plate bending were determined to be viable NNS processes for ODS vanes. Directional forging was deemed most applicable to high pressure turbine (HPT) vanes with their large thickness variations while plate bending was determined to be most cost effective for low pressure turbine (LPT) vanes because of their limited thickness variations. Since the F101 LPT vane was selected for study in this program, development of plate bending was carried through to establishment of a preliminary process. Preparation of ODS alloy plate for bending was found to be a straight forward process using currently available bar stock, providing that the capability for reheating between roll passes is available. Advanced ODS-NiCrAl and ODS-FeCrAl alloys were utilized on this program. Workability of all alloys was adequate for directional forging and plate bending, but only the ODS-FeCrAl had adequate workability for shaped preform extrustion.
Thermal Stir Welding: A New Solid State Welding Process
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey
2003-01-01
Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.
Thermal Stir Welding: A New Solid State Welding Process
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)
2002-01-01
Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.
NASA Astrophysics Data System (ADS)
Opiela, M.
2014-09-01
The paper presents the results of thermomechanical treatment via forging on the microstructure and mechanical properties of newly obtained microalloyed steel containing 0.28% C, 1.41% Mn, 0.027% Nb, 0.028% Ti, and 0.019% V. The investigated steel is assigned to the production of forged elements for the automotive industry. Conditions of forging using the thermomechanical processing method were developed based on plastometric tests. Continuous and double-hit compression tests were conducted using the Gleeble 3800 thermomechanical simulator. The samples were investigated in a temperature range from 900 to 1100 °C and a strain rate of 1 and 10 s-1. To determine the recrystallization kinetics of plastically deformed austenite, discontinuous compression tests of samples using the applied deformation were conducted in a temperature range from 900 to 1100 °C with isothermal holding of the specimens between successive deformations for 2-100 s. Observations of the microstructures of thin foils were conducted using a TITAN80-300 FEI transmission electron microscope. The applied thermomechanical treatment allows to obtain a fine-grained microstructure of the austenite during hot-working and production of forged parts. These acquire advantageous mechanical properties and guaranteed crack resistance after controlled cooling from the end plastic deformation temperature and successive tempering. Forgings produced using the thermomechanical treatment method, consecutively subjected to tempering in a temperature range from 550 to 650 °C, reveal values of YS0.2 which equal from 994 to 892 MPa, UTS from 1084 to 958 MPa, KV from 69 to 109 J, KV-40 from 55 to 83 J, and a hardness ranging from 360 to 300 HBW.
NASA Technical Reports Server (NTRS)
Tilghman, Chris; Askey, William; Hopkins, Steven
1989-01-01
Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.
Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications
NASA Technical Reports Server (NTRS)
Bjorkman, Gerry; Cantrell, Mark; Carter, Robert
2003-01-01
Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading the way for future circumferential weld implementation.
Formation of β-NiAl Phase During Casting of a Ni-Based Superalloy
NASA Astrophysics Data System (ADS)
Detrois, Martin; Jablonski, Paul D.
2018-04-01
A high-refractory Ni-based superalloy prototype was melted on a research scale while simulating industry practices. Ingots were vacuum induction melted and subjected to a computationally optimized homogenization heat treatment prior to fabrication which consisted of forging and hot rolling. Failure of one of the ingots at the early stage of the forging process was attributed to the precipitation of the β-NiAl phase during melting which stabilized the eutectic constituent.
Current forgings and their properties for steam generator of nuclear plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukada, Hisashi; Suzuki, Komei; Kusuhashi, Mikio
1997-12-31
Current steel forgings for steam generator (SG) of PWR plant are reviewed in the aspect of design and material improvement. The following three items are introduced. The use of integral type steel forgings for the fabrication of steam generator enhances the structural integrity and makes easier fabrication and inspection including in-service inspection. The following examples of current integral type forgings developed by the Japan Steel Works, Ltd. (JSW) are introduced: (1) primary head integrated with nozzles, manways and supports; (2) steam drum head integrated with nozzle and handhole; (3) conical shell integrated with cylindrical sections and handholes. In order tomore » decrease the weight of steam generator, the high strength materials such as SA508, Cl.3a steel have been adopted in some cases. The properties of this steel are introduced and the chemistry and heat treatment condition are discussed. As one of the methods to minimize the macro- and micro-segregations, the use of vacuum carbon deoxidation (VCD), i.e. deoxidization of steel by gaseous CO reaction, with addition of Al for grain refining was investigated. The properties of SA508, Cl.3 steels with Low Si content are compared with those of conventional one.« less
Hot forging of roll-cast high aluminum content magnesium alloys
NASA Astrophysics Data System (ADS)
Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio
2017-10-01
This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.
Residual stress analysis on AA6061+22% Al2O3p simple shape demonstrators of a wheel hub
NASA Astrophysics Data System (ADS)
Giuliani, Alessandra; Albertini, Gianni; Fiori, Fabrizio; Girardin, Emmanuelle
2004-07-01
The effects of thermal treatments in a component for automotive industry are considered: the induced residual stresses in wheel hubs were investigated. Measurements have been carried out on two identical simple shape demonstrators made of AA6061+22% Al2O3p in order to evaluate the stress conditions after forging and T6 treatment and without taking into account the final design of the wheel hub. One sample was analysed in as-forged conditions while the second after forging and T6 treatment (560°C for 2h, 20°C water quenching, artificial aging at 177°C for 10h). Particular attention was given to the stresses in the radial and hoop directions, as the main consequences of the in-service fatigue are expected to be related to stresses along these two directions.
1986-09-01
Pamplet . Forging Industry Association, Cleveland-MT, uncatea. 20. Forging Industry Association, and American Society for Metals. Forging Handbook, edited... Pamplet . The Harris-Thomas Drop Forge Compnyayto--n R, undated. 43. Theeck, Michael F., TECH MOD Program Mana.er. Personal interview. Industrial Base... Brochure . Worcester MA, 3, . 125 "’ VITA Captain Stephen F. O’Neill was born on 19 June 1957 in Pittsfield, Massachusetts. He graduated from high school
Experimental and numerical research on forging with torsion
NASA Astrophysics Data System (ADS)
Petrov, Mikhail A.; Subich, Vadim N.; Petrov, Pavel A.
2017-10-01
Increasing the efficiency of the technological operations of blank production is closely related to the computer-aided technologies (CAx). On the one hand, the practical result represents reality exactly. On the other hand, the development procedure of new process development demands unrestricted resources, which are limited on the SMEs. The tools of CAx were successfully applied for development of new process of forging with torsion and result analysis as well. It was shown, that the theoretical calculations find the confirmation both in praxis and during numerical simulation. The mostly used constructional materials were under study. The torque angles were stated. The simulated results were evaluated by experimental procedure.
Structural materials by powder HIP for fusion reactors
NASA Astrophysics Data System (ADS)
Dellis, C.; Le Marois, G.; van Osch, E. V.
1998-10-01
Tokamak blankets have complex shapes and geometries with double curvature and embedded cooling channels. Usual manufacturing techniques such as forging, bending and welding generate very complex fabrication routes. Hot Isostatic Pressing (HIP) is a versatile and flexible fabrication technique that has a broad range of commercial applications. Powder HIP appears to be one of the most suitable techniques for the manufacturing of such complex shape components as fusion reactor modules. During the HIP cycle, consolidation of the powder is made and porosity in the material disappears. This involves a variation of 30% in volume of the component. These deformations are not isotropic due to temperature gradients in the part and the stiffness of the canister. This paper discusses the following points: (i) Availability of manufacturing process by powder HIP of 316LN stainless steel (ITER modules) and F82H martensitic steel (ITER Test Module and DEMO blanket) with properties equivalent to the forged one.(ii) Availability of powerful modelling techniques to simulate the densification of powder during the HIP cycle, and to control the deformation of components during consolidation by improving the canister design.(iii) Material data base needed for simulation of the HIP process, and the optimisation of canister geometry.(iv) Irradiation behaviour on powder HIP materials from preliminary results.
Okazaki, Yoshimitsu
2012-01-01
Zr, Nb, and Ta as alloying elements for Ti alloys are important for attaining superior corrosion resistance and biocompatibility in the long term. However, note that the addition of excess Nb and Ta to Ti alloys leads to higher manufacturing cost. To develop low-cost manufacturing processes, the effects of hot-forging and continuous-hot-rolling conditions on the microstructure, mechanical properties, hot forgeability, and fatigue strength of Ti-15Zr-4Nb-4Ta alloy were investigated. The temperature dependences with a temperature difference (ΔT) from β-transus temperature (Tβ) for the volume fraction of the α- and β-phases were almost the same for both Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys. In the α-β-forged Ti-15Zr-4Nb-4Ta alloy, a fine granular α-phase structure containing a fine granular β-phase at grain boundaries of an equiaxed α-phase was observed. The Ti-15Zr-4Nb-4Ta alloy billet forged at Tβ-(30 to 50) °C exhibited high strength and excellent ductility. The effects of forging ratio on mechanical strength and ductility were small at a forging ratio of more than 3. The maximum strength (σmax) markedly increased with decreasing testing temperature below Tβ. The reduction in area (R.A.) value slowly decreased with decreasing testing temperature below Tβ. The temperature dependences of σmax for the Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys show the same tendency and might be caused by the temperature difference (ΔT) from Tβ. It was clarified that Ti-15Zr-4Nb-4Ta alloy could be manufactured using the same manufacturing process as for previously approved Ti-6Al-4V alloy, taking into account the difference (ΔT) between Tβ and heat treatment temperature. Also, the manufacturing equivalency of Ti-15Zr-4Nb-4Ta alloy to obtain marketing approval of implants was established. Thus, it was concluded that continuous hot rolling is useful for manufacturing α-β-type Ti alloy.
Processing and Properties of Airframe Materials.
1987-06-01
size to develop a composite with 61% fine grains mixed with 39% coarse grains by volume. The stack was placed inside a stainless steel vacuum bag and...alloys, considerable interest exists for superplastic forming of the alloys. However, the first order priority is to consolidate a void- free and...1o- 0 1 5 " 20 25 Oelto K. bPa (sqrt(m)) Fig. 3.3-38 Secondary cracking vs AK, forged material, as-forged, heat treatment No. 2, including load shed
Development of Replacements for Phoscoating Used in Forging, Extrusion and Metal Forming Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerry Barnett
2003-03-01
Many forging, extrusion, heading and other metal forming processes use graphite-based lubricants, phosphate coatings, and other potentially hazardous or harmful substances to improve the tribology of the metal forming process. The application of phosphate-based coatings has long been studied to determine if other synthetic ''clean'' lubricants could provide the same degree of protection afforded by phoscoatings and its formulations. So far, none meets the cost and performance objectives provided by phoscoatings as a general aid to the metal forming industry. In as much as phoscoatings and graphite have replaced lead-based lubricants, the metal forming industry has had previous experience withmore » a legislated requirement to change processes. However, without a proactive approach to phoscoating replacement, many metal forming processes could find themselves without a cost effective tribology material necessary for the metal forming process« less
NASA Astrophysics Data System (ADS)
Zimin, L. S.; Sorokin, A. G.; Egiazaryan, A. S.; Filimonova, O. V.
2018-03-01
An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. It is widely used in vehicle manufacture, cast-rolling, forging, preheating before rolling, heat treatment, galvanizing and so on. Compared to other heating technologies, induction heating has the advantages of high efficiency, fast heating rate and easy control. The paper presents a new systematic approach to the design and operation of induction heating installations (IHI) in aluminum alloys production. The heating temperature in industrial complexes “induction heating - deformation” is not fixed in advance, but is determined in accordance with the maximization or minimization of the total economic performance during the process of metal heating and deformation. It is indicated that the energy efficient technological complex “IHI – Metal Forming (MF)” can be designed only with regard to its power supply system (PSS). So the task of designing systems of induction heating is to provide, together with the power supply system and forming equipment, the minimum energy costs for the metal retreating.
Identification of the Cause of the Stem Neck Fracture in the Hip Joint Endoprosthesis
NASA Astrophysics Data System (ADS)
Ryniewicz, A. M.; Bojko, Ł.; Ryniewicz, A.; Pałka, P.; Ryniewicz, W.
2018-02-01
Endoprosthesis stem fractures are among the rarest complications that occur after hip joint arthroplasty. The aim of this paper is to evaluate the causes of the fractures of the Aura II stem neck, which is an element of an endoprosthesis implanted in a patient. In order to achieve it, a radiogram was evaluated, the FEM analysis was carried out for the hip joint replaced using the Aura II prosthesis and scanning tests as well as a chemical analysis were performed for the focus of fatigue. The tests performed indicate that the most probable causes leading to the fatigue fracture of the Aura II stem under examination were material defects in the process of casting and forging (forging the material with delamination and the presence of brittle oxides and carbides) that resulted in a significant reduction of strength and resistance to corrosion. In the light of an unprecedented stem neck fracture, this information should be an indication for non-destructive tests of ready-made stems aiming to discover the material and technological defects that may arise in the process of casting and drop forging.
Enhancing Manufacturing Process Education via Computer Simulation and Visualization
ERIC Educational Resources Information Center
Manohar, Priyadarshan A.; Acharya, Sushil; Wu, Peter
2014-01-01
Industrially significant metal manufacturing processes such as melting, casting, rolling, forging, machining, and forming are multi-stage, complex processes that are labor, time, and capital intensive. Academic research develops mathematical modeling of these processes that provide a theoretical framework for understanding the process variables…
31. FORGE, ANVIL, POWER FORGE HAMMER (FRONT TO BACK), AND ...
31. FORGE, ANVIL, POWER FORGE HAMMER (FRONT TO BACK), AND DOORWAY INTO MAIN SHOP-LOOKING SOUTHWEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
Naqshbandi Hayward, Mariam; Paquette-Warren, Jann; Harris, Stewart B
2016-07-26
Given the dramatic rise and impact of chronic diseases and gaps in care in Indigenous peoples in Canada, a shift from the dominant episodic and responsive healthcare model most common in First Nations communities to one that places emphasis on proactive prevention and chronic disease management is urgently needed. The Transformation of Indigenous Primary Healthcare Delivery (FORGE AHEAD) Program partners with 11 First Nations communities across six provinces in Canada to develop and evaluate community-driven quality improvement (QI) initiatives to enhance chronic disease care. FORGE AHEAD is a 5-year research program (2013-2017) that utilizes a pre-post mixed-methods observational design rooted in participatory research principles to work with communities in developing culturally relevant innovations and improved access to available services. This intensive program incorporates a series of 10 inter-related and progressive program activities designed to foster community-driven initiatives with type 2 diabetes mellitus as the action disease. Preparatory activities include a national community profile survey, best practice and policy literature review, and readiness tool development. Community-level intervention activities include community and clinical readiness consultations, development of a diabetes registry and surveillance system, and QI activities. With a focus on capacity building, all community-level activities are driven by trained community members who champion QI initiatives in their community. Program wrap-up activities include readiness tool validation, cost-analysis and process evaluation. In collaboration with Health Canada and the Aboriginal Diabetes Initiative, scale-up toolkits will be developed in order to build on lessons-learned, tools and methods, and to fuel sustainability and spread of successful innovations. The outcomes of this research program, its related cost and the subsequent policy recommendations, will have the potential to significantly affect future policy decisions pertaining to chronic disease care in First Nations communities in Canada. Current ClinicalTrial.gov protocol ID NCT02234973 . Date of Registration: July 30, 2014.
Automotive Manufacturing Processes. Volume III - Casting and Forging Processes
DOT National Transportation Integrated Search
1981-02-01
Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...
Semantics and technologies in modern design of interior stairs
NASA Astrophysics Data System (ADS)
Kukhta, M.; Sokolov, A.; Pelevin, E.
2015-10-01
Use of metal in the design of interior stairs presents new features for shaping, and can be implemented using different technologies. The article discusses the features of design and production technologies of forged metal spiral staircase considering the image semantics based on the historical and cultural heritage. To achieve the objective was applied structural- semantic method (to identify the organization of structure and semantic features of the artistic image), engineering methods (to justify the construction of the object), anthropometry method and ergonomics (to provide usability), methods of comparative analysis (to reveale the features of the way the ladder in different periods of culture). According to the research results are as follows. Was revealed the semantics influence on the design of interior staircase that is based on the World Tree image. Also was suggested rational calculation of steps to ensure the required strength. And finally was presented technology, providing the realization of the artistic image. In the practical part of the work is presented version of forged staircase.
Automated inspection of turbine blades: Challenges and opportunities
NASA Technical Reports Server (NTRS)
Mehta, Manish; Marron, Joseph C.; Sampson, Robert E.; Peace, George M.
1994-01-01
Current inspection methods for complex shapes and contours exemplified by aircraft engine turbine blades are expensive, time-consuming and labor intensive. The logistics support of new manufacturing paradigms such as integrated product-process development (IPPD) for current and future engine technology development necessitates high speed, automated inspection of forged and cast jet engine blades, combined with a capability of retaining and retrieving metrology data for process improvements upstream (designer-level) and downstream (end-user facilities) at commercial and military installations. The paper presents the opportunities emerging from a feasibility study conducted using 3-D holographic laser radar in blade inspection. Requisite developments in computing technologies for systems integration of blade inspection in production are also discussed.
Thermal Stir Welding Development at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Ding, Robert J.
2008-01-01
Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.
40 CFR 467.40 - Applicability; description of the forging subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... forging subcategory. 467.40 Section 467.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ALUMINUM FORMING POINT SOURCE CATEGORY Forging Subcategory § 467.40 Applicability; description of the forging subcategory. This subpart applies to discharges of...
31 CFR 235.1 - Scope of regulations.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE TREASURY FINANCIAL MANAGEMENT SERVICE ISSUANCE OF SETTLEMENT CHECKS FOR FORGED CHECKS DRAWN... checks for checks drawn on designated depositaries of the United States by accountable officers of the...
Application of superalloy powder metallurgy for aircraft engines
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.; Miner, R. V., Jr.
1980-01-01
In the last decade, Government/Industry programs have advanced powder metallurgy-near-net-shape technology to permit the use of hot isostatic pressed (HIP) turbine disks in the commercial aircraft fleet. These disks offer a 30% savings of input weight and an 8% savings in cost compared in cast-and-wrought disks. Similar savings were demonstrated for other rotating engine components. A compressor rotor fabricated from hot-die-forged-HIP superalloy billets revealed input weight savings of 54% and cost savings of 35% compared to cast-and-wrought parts. Engine components can be produced from compositions such as Rene 95 and Astroloy by conventional casting and forging, by forging of HIP powder billets, or by direct consolidation of powder by HIP. However, each process produces differences in microstructure or introduces different defects in the parts. As a result, their mechanical properties are not necessarily identical. Acceptance methods should be developed which recognize and account for the differences.
Characterization of Cracking and Crack Growth Properties of the C5A Aircraft Tie-Box Forging
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Smith, Stephen W.; Newman, John A.; Willard, Scott A.
2003-01-01
Detailed destructive examinations were conducted to characterize the integrity and material properties of two aluminum alloy (7075-T6) horizontal stabilizer tie box forgings removed.from US. Air Force C5A and C5B transport aircraft. The C5B tie box forging was,found to contain no evidence of cracking. Thirteen cracks were found in the CSA,forging. All but one of the cracks observed in the C5A component were located along the top cap region (one crack was located in the bottom cap region). The cracks in the C5A component initiated at fastener holes and propagated along a highly tunneled intergranular crack path. The tunneled crack growth configuration is a likelv result of surface compressive stress produced during peening of the .forging suijace. The tie box forging ,fatigue crack growth, fracture and stress corrosion cracking (SCC) properties were characterized. Reported herein are the results of laboratory air ,fatigue crack growth tests and 95% relative humidity SCC tests conducted using specimens machined from the C5A ,forging. SCC test results revealed that the C5A ,forging material was susceptible to intergranular environmental assisted cracking: the C5A forging material exhibited a SCC crack-tip stress-intensity factor threshold of less than 6 MPadn. Fracture toughness tests revealed that the C5A forging material exhibited a fracture toughness that was 25% less than the C5B forging. The C5A forging exhibited rapid laboratory air fatigue crack growth rates having a threshold crack-tip stress-intensity factor range of less than 0.8 MPa sup m. Detailed fractographic examinations revealed that the ,fatigue crack intergranular growth crack path was similar to the cracking observed in the C5A tie box forging. Because both fatigue crack propagation and SCC exhibit similar intergranular crack path behavior, the damage mechanism resulting in multi-site cracking of tie box forgings cannot be determined unless local cyclic stresses can be quantified.
Cuadros, Sara; Dell'Amico, Luca
2017-01-01
Abstract Reported herein is a light‐triggered organocatalytic strategy for the desymmetrization of achiral 2‐fluoro‐substituted cyclopentane‐1,3‐diketones. The chemistry is based on an intermolecular aldol reaction of photochemically generated hydroxy‐o‐quinodimethanes and simultaneously forges two adjacent fully substituted carbon stereocenters, with one bearing a stereogenic carbon–fluorine unit. The method uses readily available substrates, a simple chiral organocatalyst, and mild reaction conditions to afford an array of highly functionalized chiral 2‐fluoro‐3‐hydroxycyclopentanones. PMID:28746742
NASA Technical Reports Server (NTRS)
Pfouts, W. R.; Shamblen, C. E.; Mosier, J. S.; Peebles, R. E.; Gorsler, R. W.
1979-01-01
An attempt was made to improve methods for producing powder metallurgy aircraft gas turbine engine parts from the nickel base superalloy known as Rene 95. The parts produced were the high pressure turbine aft shaft for the CF6-50 engine and the stages 5 through 9 compressor disk forgings for the CFM56/F101 engines. A 50% cost reduction was achieved as compared to conventional cast and wrought processing practices. An integrated effort involving several powder producers and a major forging source were included.
31 CFR 235.3 - Settlement of claims.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE TREASURY FINANCIAL MANAGEMENT SERVICE ISSUANCE OF SETTLEMENT CHECKS FOR FORGED CHECKS DRAWN... respect to a check drawn on designated depositaries of the United States, in dollars or in foreign...
Ceramic Inclusions in Powder Metallurgy Disk Alloys: Characterization and Modeling
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.
2001-01-01
Powder metallurgy alloys are increasingly used in gas turbine engines, especially in turbine disk applications. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that are inherent to the powder atomization process. These inclusions can have a potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they typically do not reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where known populations of ceramic particles, whose composition and morphology are designed to mimic the "natural" inclusions, are added to the precursor powder. Surface-connected inclusions have been found to have a particularly large detrimental effect on fatigue life; therefore, the quantity of ceramic "seeds" added is calculated to ensure that a minimum number will intersect the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface area was needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macroscopic slices from extrusions and forgings. Fatigue specimens have been machined from Udimet 720 (a powder metallurgy superalloy) forgings, to determine the effects of the inclusions on fatigue life. The ultimate goal of this study will be to use probabilistic methods to determine the reliability detriment that can be attributed to these ceramic inclusions. This work has been supported by the Ultra Safe and Ultra- Efficient Engine Technologies programs.
SIAM Conference on Geometric Design and Computing. Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2002-03-11
The SIAM Conference on Geometric Design and Computing attracted 164 domestic and international researchers, from academia, industry, and government. It provided a stimulating forum in which to learn about the latest developments, to discuss exciting new research directions, and to forge stronger ties between theory and applications. Final Report
ERIC Educational Resources Information Center
Haudek, Kevin C.; Kaplan, Jennifer J.; Knight, Jennifer; Long, Tammy; Merrill, John; Munn, Alan; Nehm, Ross; Smith, Michelle; Urban-Lurain, Mark
2011-01-01
Concept inventories, consisting of multiple-choice questions designed around common student misconceptions, are designed to reveal student thinking. However, students often have complex, heterogeneous ideas about scientific concepts. Constructed-response assessments, in which students must create their own answer, may better reveal students'…
48 CFR 252.225-7025 - Restriction on acquisition of forgings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of forgings. 252.225-7025 Section 252.225-7025 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7025 Restriction on acquisition of forgings. As prescribed in 225.7102-4, use the following clause: Restriction on Acquisition of Forgings (DEC 2009) (a...
22 CFR 121.10 - Forgings, castings and machined bodies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Forgings, castings and machined bodies. 121.10... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles on the U.S. Munitions List include articles in a partially completed state (such as forgings...
Challenges in Special Steel Making
NASA Astrophysics Data System (ADS)
Balachandran, G.
2018-02-01
Special bar quality [SBQ] is a long steel product where an assured quality is delivered by the steel mill to its customer. The bars have enhanced tolerance to higher stress application and it is demanded for specialised component making. The SBQ bars are sought for component making processing units such as closed die hot forging, hot extrusion, cold forging, machining, heat treatment, welding operations. The final component quality of the secondary processing units depends on the quality maintained at the steel maker end along with quality maintained at the fabricator end. Thus, quality control is ensured at every unit process stages. The various market segments catered to by SBQ steel segment is ever growing and is reviewed. Steel mills need adequate infrastructure and technological capability to make these higher quality steels. Some of the critical stages of processing SBQ and the critical quality maintenance parameters at the steel mill in the manufacture has been brought out.
Steam generator feedwater nozzle transition piece replacement experience at Salem Unit 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patten, D.B.; Perrin, J.S.; Roberts, A.T.
Cracking of steam generator feedwater piping adjacent to the feedwater nozzles has been a recurring problem since 1979 at Salem Unit 1 owned and operated by Public Service Electric and Gas Company. In addition to the cracking problem, erosion-corrosion at the leading edge of the feedwater nozzle thermal sleeve was also observed in 1992. To provide a long-term solution for the pipe cracking and thermal sleeve erosion-corrosion problems, a unique transition piece forging was specially designed, fabricated, and installed for each of the four steam generators during the 1995 outage. This paper discusses the design, fabrication, and installation of themore » transition piece forgings at Salem Unit 1, and the experiences gained from this project. It is believed that these experiences may help other utilities when planning similar replacements in the future.« less
NASA Technical Reports Server (NTRS)
Glaessgen, Edward H.; Schoeppner, Gregory A.
2006-01-01
NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.
Human body as a set of biometric features identified by means of optoelectronics
NASA Astrophysics Data System (ADS)
Podbielska, Halina; Bauer, Joanna
2005-09-01
Human body posses many unique, singular features that are impossible to copy or forge. Nowadays, to establish and to ensure the public security requires specially designed devices and systems. Biometrics is a field of science and technology, exploiting human body characteristics for people recognition. It identifies the most characteristic and unique ones in order to design and construct systems capable to recognize people. In this paper some overview is given, presenting the achievements in biometrics. The verification and identification process is explained, along with the way of evaluation of biometric recognition systems. The most frequently human biometrics used in practice are shortly presented, including fingerprints, facial imaging (including thermal characteristic), hand geometry and iris patterns.
Pyro shock simulation: Experience with the MIPS simulator
NASA Technical Reports Server (NTRS)
Dwyer, Thomas J.; Moul, David S.
1988-01-01
The Mechanical Impulse Pyro Shock (MIPS) Simulator at GE Astro Space Division is one version of a design that is in limited use throughout the aerospace industry, and is typically used for component shock testing at levels up to 10,000 response g's. Modifications to the force imput, table and component boundary conditions have allowed a range of test conditions to be achieved. Twelve different designs of components with weights up to 23 Kg are in the process or have completed qualification testing in the Dynamic Simulation Lab at GE in Valley Forge, Pa. A summary of the experience gained through the use of this simulator is presented as well as examples of shock experiments that can be readily simulated at the GE Astro MIPS facility.
Thermal Management in Friction-Stir Welding of Precipitation-Hardening Aluminum Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Piyush; Reynolds, Anthony
2015-05-25
Process design and implementation in FSW is mostly dependent on empirical information gathered through experience. Basic science of friction stir welding and processing can only be complete when fundamental interrelationships between process control parameters and response variables and resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters like tool rotation and translation rate and forge axis force have complicated and interactive relationships to the process response variables such as peak temperature, time at temperature etc. Of primary influence to the other process response parameters are temperature and its gradient atmore » the deformation and heat affected zones. Through review of pertinent works in the literature and some experimental results from boundary condition work performed in precipitation hardening aluminum alloys this paper will partially elucidate the nature and effects of temperature transients caused by variation of thermal boundaries in Friction Stir Welding.« less
Thermal Management in Friction-Stir Welding of Precipitation-Hardened Aluminum Alloys
NASA Astrophysics Data System (ADS)
Upadhyay, Piyush; Reynolds, Anthony P.
2015-05-01
Process design and implementation in friction-stir welding (FSW) is mostly dependent on empirical information. Basic science of FSW and processing can only be complete when fundamental interrelationships between the process control parameters and response variables and the resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters such as tool rotation, translation rates, and forge axis force have complicated and interactive relationships to process-response variables such as peak temperature and time at temperature. Of primary influence on the other process-response parameters are temperature and its gradient in the deformation and heat-affected zones. Through a review of pertinent works in the literature and results from boundary condition experiments performed in precipitation-hardening aluminum alloys, this article partially elucidates the nature and effects of temperature transients caused by variation of thermal boundaries in FSW.
27 CFR 447.22 - Forgings, castings, and machined bodies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Forgings, castings, and... IMPLEMENTS OF WAR The U.S. Munitions Import List § 447.22 Forgings, castings, and machined bodies. Articles on the U.S. Munitions Import List include articles in a partially completed state (such as forgings...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-457-A-D Third Review] Heavy Forged Hand... Heavy Forged Hand Tools From China. AGENCY: United States International Trade Commission. ACTION: Notice... the antidumping duty orders on heavy forged hand tools from China would be likely to lead to...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-803] Heavy Forged Hand Tools... review on heavy forged hand tools, finished or unfinished, with or without handles from the People's..., 2012) (Tianjin v. United States). \\2\\ See Heavy Forged Hand Tools, Finished or Unfinished, With or...
Machinability of Stellite 6 hardfacing
NASA Astrophysics Data System (ADS)
Benghersallah, M.; Boulanouar, L.; Le Coz, G.; Devillez, A.; Dudzinski, D.
2010-06-01
This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.
Effect of Cold Forging on Microstructure and MechanicalProperties of Al/SiC Composites
NASA Astrophysics Data System (ADS)
Hanamantraygouda, M. B.; Shivakumar, B. P., Dr; Siddappa, P. N.; Sampathkumar, L.; Prashanth, L.
2018-02-01
The objective of this work was to investigate the effect of cold forging on mechanical properties and microstructural study of Al MMCs, at different wt% of SiC and forging cycle. The Al-SiC composite material was fabricated by stir casting method at different weight percentage of SiC such as 2.5, 5, 7.5 and 10%. Further, the deformation characteristics during open-die forging of Al-SiC composite at cold conditions was investigated. Cast and forged composite material was subjected to hardness test, tensile test and impact test. The grain size, microstructure behaviour was investigated using optical microscope. The results show that hardness and strength of Al-SiC composite increases and ductility decreases as compared to Al alloy in both as-cast and forged conditions. Optical microscope images showed that the distribution of SiC in Al matrix was more homogeneous in a forged composite as compared to cast one and reduction of porosity was found. Further, it showed that due to forging cycle the grain size was reduced by 30% to 35% from initial size.
Experimental study on combined cold forging process of backward cup extrusion and piercing
NASA Astrophysics Data System (ADS)
Henry, Robinson; Liewald, Mathias
2018-05-01
A reduction in material usage of cold forged components while maintaining the functional requirements can be achieved using hollow or tubular preforms. These preforms are used to meet lightweight requirements and to decrease production costs of cold formed components. To increase production efficiency in common multi-stage cold forming processes, manufacturing of hollow preforms by combining the processes backward cup extrusion and piercing was established and will be discussed in this paper. Corresponding investigations and experimental studies are reported in this article. The objectives of the experimental investigations have been the detection of significant process parameters, determination of process limits for the combined processes and validation of the numerical investigations. In addition, the general influence concerning surface quality and diameter tolerance of hollow performs are discussed in this paper. The final goal is to summarize a guideline for industrial application, moreover, to transfer the knowledge to industry, as regards what are required part geometries to reduce the number of forming stages as well as tool cost.
Production of ultrafine grained aluminum by cyclic severe plastic deformation at ambient temperature
NASA Astrophysics Data System (ADS)
Bereczki, P.; Szombathelyi, V.; Krallics, G.
2014-08-01
In the present study the possibilities of grain refinement was investigated by applying large-scale of cyclic plastic deformation to aluminum at ambient temperature. The specimens are processed by multiaxial forging, which is one of the severe plastic deformation techniques. The aim of the experiments with the aluminum alloy 6082M was the determination of the equivalent stress and strain by multiaxial forging and the investigation of evolution of mechanical properties in relation with the accumulated deformation in the specimen. The mechanical properties of raw material was determined by plane strain compression test as well as by hardness measurements. The forming experiments were carried out on Gleeble 3800 physical simulator with MaxStrain System. The mechanical properties of the forged specimens were investigated by micro hardness measurements and tensile tests. A mechanical model, based on the principle of virtual velocities was developed to calculate the flow curves using the measured dimensional changes of the specimen and the measured force. With respect to the evolution of these curves, the cyclic growth of the flow stress can be observed at every characteristic points of the calculated flow curves. In accordance with this tendency, the evolution of the hardness along the middle cross section of the deformed volume has also a nonmonotonous characteristic and the magnitudes of these values are much smaller than by the specimen after plane strain compression test. This difference between the flow stresses respect to the monotonic and non-monotonic deformation can be also observed. The formed microstructure, after a 10-passes multiaxial forging process, consists of mainly equiaxial grains in the submicron grain scale.
NASA Astrophysics Data System (ADS)
Zhang, Chao-lei; Xie, li-yao; Liu, Guang-lei; Chen, lie; Liu, Ya-zheng; Li, Jian
2016-09-01
Surface decarburization behavior and its adverse effects of air-cooled forging steel C70S6 for automobile engine fracture splitting connecting rod were investigated comprehensively by mechanical properties, microstructure and fracture morphology analysis. The results show that the surface decarburization in the outer surface of the fracture splitting at the big end bore and the micro-cracks in the decarburized layer are result in the uneven and spalling fracture surfaces of the waster connecting rod product. Besides, partial decarburization is produced between 900 °C and 1250 °C for heating 2 h, and decarburization sensitivity reach maximum at 1150 °C, but no complete decarburization forms for heating 2 h at 650-1250 °C. The decarburized depth follows a parabolic law with the increase of the heating time from 0.5 h to 12 h, and the decarburization sensitivity coefficient is 2.05×10-5 m·s-1/2 at 1200 °C. For the connecting rod manufacturing, surface decarburization must be under effective control during the hot forging process but not the control cooling process.
Initial Study of Friction Pull Plug Welding
NASA Technical Reports Server (NTRS)
Rich, Brian S.
1999-01-01
Pull plug friction welding is a new process being developed to conveniently eliminate defects from welded plate tank structures. The general idea is to drill a hole of precise, optimized dimensions and weld a plug into it, filling the hole perfectly. A conically-shaped plug is rotated at high angular velocity as it is brought into contact with the plate material in the hole. As the plug is pulled into the hole, friction rapidly raises the temperature to the point at which the plate material flows plastically. After a brief heating phase, the plug rotation is terminated. The plug is then pulled upon with a forging force, solidly welding the plug into the hole in the plate. Three aspects of this process were addressed in this study. The transient temperature distribution was analyzed based on slightly idealized boundary conditions for different plug geometries. Variations in hole geometry and ram speed were considered, and a program was created to calculate volumes of displaced material and empty space, as well as many other relevant dimensions. The relation between the axially applied forging force and the actual forging pressure between the plate and plug surfaces was determined for various configurations.
NASA Astrophysics Data System (ADS)
Joseph, Joby; Muthukumaran, S.; Pandey, K. S.
2016-01-01
Present investigation is an attempt to study the weldability characteristics of sintered hot-forged plates of AISI 4135 steel produced through powder metallurgy (P/M) route using matching filler materials of ER80S B2. Compacts of homogeneously blended elemental powders corresponding to the above steel were prepared on a universal testing machine (UTM) by taking pre-weighed powder blend with a suitable die, punch and bottom insert assembly. Indigenously developed ceramic coating was applied on the entire surface of the compacts in order to protect them from oxidation during sintering. Sintered preforms were hot forged to flat, approximately rectangular plates, welded by pulsed current gas tungsten arc welding (PCGTAW) processes with aforementioned filler materials. Microstructural, tensile and hardness evaluations revealed that PCGTAW process with low heat input could produce weldments of good quality with almost nil defects. It was established that PCGTAW joints possess improved tensile properties compared to the base metal and it was mainly attributed to lower heat input, resulting in finer fusion zone grains and higher fusion zone hardness. Thus, the present investigation opens a new and demanding field in research.
Space Transportation Main Engine
NASA Technical Reports Server (NTRS)
Monk, Jan C.
1992-01-01
The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.
Imaging-based optical caliper for objects in hot manufacturing processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Howard
OG Technologies, Inc. (OGT), in conjunction with its industrial and academic partners, proposes to develop an Imaging-Based Optical Caliper (hereafter referred to as OC) for Objects in Hot Manufacturing Processes. The goal is to develop and demonstrate the OC with the synergy of OGT's current technological pool and other innovations to provide a light weight, robust, safe and accurate portable dimensional measurement device for hot objects with integrated wireless communication capacity to enable real time process control. The technical areas of interest in this project are the combination of advanced imaging, Sensor Fusion, and process control. OGT believes that themore » synergistic interactions between its current set of technologies and other innovations could deliver products that are viable and have high impact in the hot manufacture processes, such as steel making, steel rolling, open die forging, and glass industries, resulting in a new energy efficient control paradigm in the operations through improved yield, prolonged tool life and improved quality. In-line dimension measurement and control is of interest to the steel makers, yet current industry focus is on the final product dimension only instead of whole process due to the limit of man power, system cost and operator safety concerns. As sensor technologies advances, the industry started to see the need to enforce better dimensional control throughout the process, but lack the proper tools to do so. OGT along with its industrial partners represent the indigenous effort of technological development to serve the US steel industry. The immediate market that can use and get benefited from the proposed OC is the Steel Industry. The deployment of the OC has the potential to provide benefits in reduction of energy waste, CO2 emission, waste water amount, toxic waste, and so forth. The potential market after further expended function includes Hot Forging and Freight Industries. The OC prototypes were fabricated, and were progressively tested on-site in several steel mill and hot forging facilities for evaluation. Software refinements and new calibration procedures were also carried out to overcome the discovered glitches. Progress was presented to the hot manufacture facilities worldwide. Evidence showed a great interest and practical need for this product. OGT is in the pilot commercialization mode for this new development. The R&D team also successfully developed a 3D measurement function with no additional investment of hardware or equipment to measure low or room temperature object dimensions. Several tests were conducted in the reality environment to evaluate the measurement results. This new application will require additional development in product design.« less
Frontier Observatory for Research in Geothermal Energy: Phase 1 Topical Report Fallon, NV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenship, Douglas A.; Akerley, John; Blake, Kelly
The Department of Energy (DOE) Frontier Observatory for Research in Geothermal Energy (FORGE) is to be a dedicated site where the subsurface scientific and engineering community can develop, test, and improve technologies and techniques for the creation of cost-effective and sustainable enhanced geothermal systems (EGS) in a controlled, ideal environment. The establishment of FORGE will facilitate development of an understanding of the key mechanisms controlling a successful EGS. Execution of FORGE is occurring in three phases with five distinct sub-phases (1, 2A, 2B, 2C, and 3). This report focuses on Phase 1 activities. During Phase 1, critical technical and logisticalmore » tasks necessary to demonstrate the viability of the Fallon FORGE Project site were completed and the commitment and capability of the Fallon FORGE team to execute FORGE was demonstrated. As part of Phase 1, the Fallon FORGE Team provided an assessment of available relevant data and integrated these geologic and geophysical data to develop a conceptual 3-D geologic model of the proposed test location. Additionally, the team prepared relevant operational plans for full FORGE implementation, provided relevant site data to the science and engineering community, engaged in outreach and communications with interested stakeholders, and performed a review of the environmental and permitting activities needed to allow FORGE to progress through Phase 3. The results of these activities are provided as Appendices to this report. The Fallon FORGE Team is diverse, with deep roots in geothermal science and engineering. The institutions and key personnel that comprise the Fallon FORGE Team provide a breadth of geoscience and geoengineering capabilities, a strong and productive history in geothermal research and applications, and the capability and experience to manage projects with the complexity anticipated for FORGE. Fallon FORGE Team members include the U.S. Navy, Ormat Nevada Inc., Sandia National Laboratories (SNL), Lawrence Berkeley National Laboratory (LBNL), the United States Geological Survey (USGS), the University of Nevada, Reno (UNR), GeothermEx/Schlumberger (GeothelinEx), and Itasca Consulting Group (Itasca). The site owners (through direct land ownership or via applicable permits)—the U.S. Navy and Ormat Nevada Inc.—are deeply committed to expanding the development of geothermal resources and are fully supportive of FORGE operations taking place on their lands.« less
Phased array inspection of large size forged steel parts
NASA Astrophysics Data System (ADS)
Dupont-Marillia, Frederic; Jahazi, Mohammad; Belanger, Pierre
2018-04-01
High strength forged steel requires uncompromising quality to warrant advance performance for numerous critical applications. Ultrasonic inspection is commonly used in nondestructive testing to detect cracks and other defects. In steel blocks of relatively small dimensions (at least two directions not exceeding a few centimetres), phased array inspection is a trusted method to generate images of the inside of the blocks and therefore identify and size defects. However, casting of large size forged ingots introduces changes of mechanical parameters such as grain size, the Young's modulus, the Poisson's ratio, and the chemical composition. These heterogeneities affect the wave propagation, and consequently, the reliability of ultrasonic inspection and the imaging capabilities for these blocks. In this context, a custom phased array transducer designed for a 40-ton bainitic forged ingot was investigated. Following a previous study that provided local mechanical parameters for a similar block, two-dimensional simulations were made to compute the optimal transducer parameters including the pitch, width and number of elements. It appeared that depending on the number of elements, backwall reconstruction can generate high amplitude artefacts. Indeed, the large dimensions of the simulated block introduce numerous constructive interferences from backwall reflections which may lead to important artefacts. To increase image quality, the reconstruction algorithm was adapted and promising results were observed and compared with the scattering cone filter method available in the CIVA software.
Modeling Production Plant Forming Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhee, M; Becker, R; Couch, R
2004-09-22
Engineering has simulation tools and experience in modeling forming processes. Y-12 personnel have expressed interest in validating our tools and experience against their manufacturing process activities such as rolling, casting, and forging etc. We have demonstrated numerical capabilities in a collaborative DOE/OIT project with ALCOA that is nearing successful completion. The goal was to use ALE3D to model Alcoa's slab rolling process in order to demonstrate a computational tool that would allow Alcoa to define a rolling schedule that would minimize the probability of ingot fracture, thus reducing waste and energy consumption. It is intended to lead to long-term collaborationmore » with Y-12 and perhaps involvement with other components of the weapons production complex. Using simulations to aid in design of forming processes can: decrease time to production; reduce forming trials and associated expenses; and guide development of products with greater uniformity and less scrap.« less
NASA Astrophysics Data System (ADS)
Biba, Nikolay; Alimov, Artem; Shitikov, Andrey; Stebunov, Sergei
2018-05-01
The demand for high performance and energy efficient transportation systems have boosted interest in lightweight design solutions. To achieve maximum weight reductions, it is not enough just to replace steel parts by their aluminium analogues, but it is necessary to change the entire concept of vehicle design. In this case we must develop methods for manufacturing a variety of critical parts with unusual and difficult to produce shapes. The mechanical properties of the material in these parts must also be optimised and tightly controlled to provide the best distribution within the part volume. The only way to achieve these goals is to implement technology development methods based on simulation of the entire manufacturing chain from preparing a billet through the forming operations and heat treatment of the product. The paper presents an approach to such technology development. The simulation of the technological chain starts with extruding a round billet. Depending on the extrusion process parameters, the billet can have different levels of material workout and variation of grain size throughout the volume. After extrusion, the billet gets formed into the required shape in a forging process. The main requirements at this stage are to get the near net shape of the product without defects and to provide proper configuration of grain flow that strengthens the product in the most critical direction. Then the product undergoes solution treatment, quenching and ageing. The simulation of all these stages are performed by QForm FEM code that provides thermo-mechanical coupled deformation of the material during extrusion and forging. To provide microstructure and heat treatment simulation, special subroutines has been developed by the authors. The proposed approach is illustrated by an industrial case study.
Design, Development and Testing of Inconel Alloy IN718 Spherical Gas Bottle for Oxygen Storage
NASA Astrophysics Data System (ADS)
Chenna Krishna, S.; Agilan, M.; Sudarshan Rao, G.; Singh, Satish Kumar; Narayana Murty, S. V. S.; Venkata Narayana, Ganji; Beena, A. P.; Rajesh, L.; Jha, Abhay K.; Pant, Bhanu
2017-11-01
This paper describes the details of design, manufacture and testing of 200 mm diameter spherical gas bottle of Inconel 718 (IN718) with nominal wall thickness of 2.3 mm. Gas bottle was designed for the specified internal pressure loading with a thickness of 2.9 mm at the circumferential weld which was brought down to 2.3 mm at the membrane locations. Hemispherical forgings produced through closed-die hammer forging were machined and electron beam welded to produce a spherical gas bottle. Duly welded gas bottle was subjected to standard aging treatment to achieve the required tensile strength. Aged gas bottle was inspected for dimensions and other stringent quality requirements using various nondestructive testing techniques. After inspection, gas bottle was subjected to pressure test for maximum expected operating pressure and proof pressure of 25 and 37.5 MPa, respectively. Strain gauges were bonded at different locations on the gas bottle to monitor the strains during the pressure test and correlated with the predicted values. The predicted strain matched well with the experimental strain confirming the design and structural integrity.
Cuadros, Sara; Dell'Amico, Luca; Melchiorre, Paolo
2017-09-18
Reported herein is a light-triggered organocatalytic strategy for the desymmetrization of achiral 2-fluoro-substituted cyclopentane-1,3-diketones. The chemistry is based on an intermolecular aldol reaction of photochemically generated hydroxy-o-quinodimethanes and simultaneously forges two adjacent fully substituted carbon stereocenters, with one bearing a stereogenic carbon-fluorine unit. The method uses readily available substrates, a simple chiral organocatalyst, and mild reaction conditions to afford an array of highly functionalized chiral 2-fluoro-3-hydroxycyclopentanones. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Forgings. 225.7102 Section 225.7102 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF... Forgings. ...
Deformation, recrystallization, strength, and fracture of press-forged ceramic crystals.
NASA Technical Reports Server (NTRS)
Rice, R. W.
1972-01-01
Sapphire and ruby were very difficult to press-forge because they deformed without cracking only in a limited temperature range before they melted. Spinel crystals were somewhat easier and MgO, CaO, and TiC crystals much easier to forge. The degree of recrystallization that occurred during forging (which was related to the ease and type of slip intersections) varied from essentially zero in Al2O3 to complete (i.e., random polycrystalline bodies were produced) in CaO. Forging of bi- and polycrystalline bodies produced incoherent bodies as a result of grain-boundary sliding. Strengths of the forged crystals were comparable to those of dense polycrystalline bodies of similar grain size. However, forged and recrystallized CaO crystals were ductile at lower temperatures than dense hot-pressed CaO. This behavior is attributed to reduced grain-boundary impurities and porosity. Fracture origins could be located, indicating that fracture in the CaO occurs internally as a result of surface work hardening caused by machining.-
Press forging and optical properties of lithium fluoride
NASA Astrophysics Data System (ADS)
Ready, J. F.; Vora, H.
1980-07-01
Lithium fluoride is an important candidate material for windows on high power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals were press forged in one step over the temperature range 300 to 600 C to obtain fine grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40 percent at 400 C to 65 percent at 600 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 C, to total deformations of 69 to 76 percent, with intermediate annealing at 700 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one step forging. The results of characterization of various optical and mechanical properties of single crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described.
Where Have All the Custodians Gone?
ERIC Educational Resources Information Center
Fickes, Michael
2001-01-01
Examines how to reduce college and university custodial turnover rates by forging connections between the job and the campus community. Key points to building these connections are outlined, including training requirements, benefit compensation package design, and cleaning strategies. (GR)
Large forging manufacturing process
Thamboo, Samuel V.; Yang, Ling
2002-01-01
A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.
40 CFR 467.41 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... definitions. For the purpose of this subpart: (a) The “core” of the forging subcategory shall include forging... operation not previously included in the core, performed on-site, following or preceding the forging...
40 CFR 467.41 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... definitions. For the purpose of this subpart: (a) The “core” of the forging subcategory shall include forging... operation not previously included in the core, performed on-site, following or preceding the forging...
NASA Astrophysics Data System (ADS)
Gentzbittel, J. M.; Chu, I.; Burlet, H.
2002-12-01
The production of reduced activation ferritic/martensitic (RAFM) steel by powder metallurgy and high isostatic pressing (HIP) offers numerous advantages for different nuclear applications. The objective of this work is to optimise the Eurofer powder HIP process in order to obtain RAFM solid HIPed steel with similar mechanical properties to those of a forged material. Starting from the forged solid Eurofer steel batch, the material is atomized and the Eurofer powder is characterized in terms of granulometry, chemical composition, surface oxides, etc. Different compaction HIP cycle parameters in the temperature range (950-1100 °C) are tested. The chemical composition of the HIPed material is comparable to the initial forged Eurofer. All the obtained materials are fully dense and the microstructure of the compacted material is well martensitic. The prior austenite grain size seems to be constant in this temperature range. The mechanical tests performed at room temperature reveal acceptable hardness, tensile and Charpy impact properties regarding the ITER specification.
A Secure-Enhanced Data Aggregation Based on ECC in Wireless Sensor Networks
Zhou, Qiang; Yang, Geng; He, Liwen
2014-01-01
Data aggregation is an important technique for reducing the energy consumption of sensor nodes in wireless sensor networks (WSNs). However, compromised aggregators may forge false values as the aggregated results of their child nodes in order to conduct stealthy attacks or steal other nodes' privacy. This paper proposes a Secure-Enhanced Data Aggregation based on Elliptic Curve Cryptography (SEDA-ECC). The design of SEDA-ECC is based on the principles of privacy homomorphic encryption (PH) and divide-and-conquer. An aggregation tree disjoint method is first adopted to divide the tree into three subtrees of similar sizes, and a PH-based aggregation is performed in each subtree to generate an aggregated subtree result. Then the forged result can be identified by the base station (BS) by comparing the aggregated count value. Finally, the aggregated result can be calculated by the BS according to the remaining results that have not been forged. Extensive analysis and simulations show that SEDA-ECC can achieve the highest security level on the aggregated result with appropriate energy consumption compared with other asymmetric schemes. PMID:24732099
Modelling the influence of carbon content on material behavior during forging
NASA Astrophysics Data System (ADS)
Korpała, G.; Ullmann, M.; Graf, M.; Wester, H.; Bouguecha, A.; Awiszus, B.; Behrens, B.-A.; Kawalla, R.
2017-10-01
Nowadays the design of single process steps and even of whole process chains is realized by the use of numerical simulation, in particular finite element (FE) based methods. A detailed numerical simulation of hot forging processes requires realistic models, which consider the relevant material-specific parameters to characterize the material behavior, the surface phenomena, the dies as well as models for the machine kinematic. This data exists partial for several materials, but general information on steel groups depending on alloying elements are not available. In order to generate the scientific input data regarding to material modelling, it is necessary to take into account the mathematical functions for deformation behavior as well as recrystallization kinetic, which depends alloying elements, initial microstructure and reheating mode. Besides the material flow characterization, a detailed description of surface changes caused by oxide scale is gaining in importance, as these phenomena affect the material flow and the component quality. Experiments to investigate the influence of only one chemical element on the oxide scale kinetic and the inner structure at high temperatures are still not available. Most data concerning these characteristics is provided for the steel grade C45, so this steel will be used as basis for the tests. In order to identify the effect of the carbon content on the material and oxidation behavior, the steel grades C15 and C60 will be investigated. This paper gives first approaches with regard to the influence of the carbon content on the oxide scale kinetic and the flow stresses combined with the initial microstructure.
22 CFR 121.10 - Forgings, castings, and machined bodies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings, and machined bodies. The U.S. Munitions List controls as defense articles those forgings, castings, and other unfinished products, such as...
A Short Study of Large Rotary Forged Cylinders
1979-06-01
ESR Steel Hollow ESR Steel Rotary Forge Vacuum Degassed Steel 20. ABSTRACT (Continue on reverse aide It necessary and identity by block number...treatment rging Line was used to produce steel for the Advanced ocram. Cylinders were rotary forged from cast hollow ESR ssed steel . Anomalies in the data...prompted a more detailed The results are presented. Satisfactory properties were cuum degassed steel . However, the very light forging th the very
Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.
2017-04-01
Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.
Residual Stresses in 21-6-9 Stainless Steel Warm Forgings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.
Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.
Looking west inside of the machine/forge shop at chargin door ...
Looking west inside of the machine/forge shop at chargin door of the forging furnace. - U.S. Steel Edgar Thomson Works, Auxiliary Buildings & Shops, Along Monongahela River, Braddock, Allegheny County, PA
Characterization of a Viking Blade Fabricated by Traditional Forging Techniques
NASA Astrophysics Data System (ADS)
Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.
2016-12-01
A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.
NASA Astrophysics Data System (ADS)
Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP
2017-05-01
L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.
Plasma Chamber Design and Fabrication Activities
NASA Astrophysics Data System (ADS)
Parodi, B.; Bianchi, A.; Cucchiaro, A.; Coletti, A.; Frosi, P.; Mazzone, G.; Pizzuto, A.; Ramogida, G.; Coppi, B.
2006-10-01
A fabrication procedure for a typical Plasma Chamber (PC) sector has been developed to cover all the manufacturing phases, from the raw materials specification (including metallurgical processes) to the machining operations, acceptance procedures and vacuum tests. Basically, the sector is made of shaped elements (forged or rolled) welded together using special fixtures and then machined to achieve the final dimensional accuracy. An upgraded design of the plasma chamber's vertical support that can withstand the estimated electromagnetic loads (Eddy and Halo current plus horizontal net force resulting from the worst plasma disruption scenario VDE, Vertical Displacement Event) has been completed. The maintenance of the radial support can take place hands-on with a direct access from outside the cryostat. With the present design, vacuum tightness is achieved by welding conducted with automatic welding heads. On the outer surface of the PC a dedicated duct system, filled by helium gas, is included to cool down the PC to room temperature when needed.
Nano Precipitation and Hardening of Die-Quenched 6061 Aluminum Alloy.
Utsunomiya, Hiroshi; Tada, Koki; Matsumoto, Ryo; Watanabe, Katsumi; Matsuda, Kenji
2018-03-01
Die quenching is applied to an age-hardenable aluminium alloys to obtain super-saturated solid solution. The application is advantageous because it can reduce number of manufacturing processes, and may increase strength by strain aging. If die quenching is realized in forging as well as sheet forming, it may widen industrial applicability further. In this study, Al-Mg-Si alloy AA6061 8 mm-thick billets were reduced 50% in height without cracks by die-quench forging. Supersaturated solid solution was successfully obtained. The die-quenched specimen shows higher hardness with nano precipitates at shorter aging time than the conventional water-quenched specimen.
Simulation of forming a flat forging
NASA Astrophysics Data System (ADS)
Solomonov, K.; Tishchuk, L.; Fedorinin, N.
2017-11-01
The metal flow in some of the metal shaping processes (rolling, pressing, die forging) is subjected to the regularities which determine the scheme of deformation in the metal samples upsetting. The object of the study was the research of the metal flow picture including the contour of the part, the demarcation lines of the metal flow and the flow lines. We have created an algorithm for constructing the metal flow picture, which is based on the representation of the metal flow demarcation line as an equidistant. Computer and physical simulation of the metal flow picture with the help of various software systems confirms the suggested hypothesis.
Development and installation of an advanced beam guidance system on Viking`s 2.4 megawatt EB furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motchenbacher, C.A.; Grosse, I.A.
1994-12-31
Viking Metallurgical is a manufacturer of titanium alloy and superalloy seamless ring forgings for the aerospace industry. For more than 20 years Viking has used electron beam cold hearth melting to recover titanium alloy scrap and to produce commercially pure titanium ingot for direct forging. In the 1970`s Viking pioneered electron beam cold hearth melting and in 1983 added a two-gun, 2.4 MW furnace. As part of Vikings efforts to improve process control we have commissioned and installed a new electron beam guidance system. The system is capable of generating virtually unlimited EB patterns resulting in improved melt control.
Modeling of Texture Evolution During Hot Forging of Alpha/Beta Titanium Alloys (Preprint)
2007-06-01
treatment. The approach was validated via an industrial -scale trail comprising hot pancake forging of Ti- 6Al-4V. 15. SUBJECT TERMS titanium... industrial -scale trial comprising hot pancake forging of Ti-6Al-4V. Keywords: Titanium, Texture, Modeling, Strain Partitioning, Variant Selection... industrial -scale forging of Ti- 6Al-4V. 2. Background A brief review of pertinent previous efforts in the area of texture modeling is presented below
NASA Astrophysics Data System (ADS)
Lorenz, Robby; Hagenah, Hinnerk; Merklein, Marion
2018-05-01
Cold forging processes such as forward rod extrusion can be used to produce high quality components like connection rods, shafts and gears. The main advantages of these extruded components are sufficient surface quality, work hardening, compressive residual stresses and fatigue strength. Since one technical disadvantage of extruded components lies in the achievable tolerance classes, the improvement of these should be of crucial importance. For instance, the attainable workpiece accuracy and component quality can be influenced by adapting the tribological system in such a way that the resulting friction is specifically controlled in order to improve component forming. Lubricant modification is one practical way of adapting the tribological system to the requirements of the forming process. An industrial established and highly efficient lubricant system is the application of a zinc-phosphate conversion layer with a molybdenum disulfide-based lubricant. While offering many advantages, its tribological conditions seem to depend strongly on the layer weight and the application strategy. These parameters and the respective interdependencies have not been sufficiently investigated yet. In order to examine this, the tribological conditions depending on the layer weight are analyzed in greater detail using the Ring-Compression-Test (RCT). This tribometer provides a comparative representation of the forming conditions during cold forging. Furthermore, a potential dependency between the tribological conditions and two different coating techniques is analyzed. The latter are represented by the industrial standards dipping and dip-drumming.
NASA Astrophysics Data System (ADS)
Pettit, J. R.; Walker, A. E.; Lowe, M. J. S.
2015-03-01
Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) method has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.
Forging School-Scientist Partnerships: A Case of Easier Said than Done?
NASA Astrophysics Data System (ADS)
Falloon, Garry
2013-12-01
Since the early 1980s, a number of initiatives have been undertaken worldwide which have involved scientists and teachers working together in projects designed to support the science learning of students. Many of these have attempted to establish school-scientist partnerships. In these, scientists, teachers, and students formed teams engaged in mutually beneficial science-based activities founded on principles such as equal recognition and input, and shared vision, responsibility and risk. This article uses two partnership programmes run by a New Zealand Science Research Institute, to illustrate the challenges faced by scientists and teachers as they attempted to forge meaningful and effective partnerships. It argues that achieving the theorised position of a shared partnership space at the intersection of the worlds of scientists and teachers is problematic, and that scientists must instead be prepared to penetrate deeply into the world of the classroom when undertaking any such interactions. Findings indicate epistemological differences, curriculum and school systems and issues, and teacher efficacy and science knowledge significantly affect the process of partnership formation. Furthermore, it is argued that a re-thinking of partnerships is needed to reflect present economic and education environments, which are very different to those in which they were originally conceived nearly 30 years ago. It suggests that technology has an important role to play in future partnership interactions.
NASA Technical Reports Server (NTRS)
Toland, Ronald W.; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.
2003-01-01
We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al 6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(trademark) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.
Expanding Our Understanding of the Inquiry Process
ERIC Educational Resources Information Center
Stafford, Tish; Stemple, Jennifer
2011-01-01
School librarians know the importance of collaboration. They cannot run effective school library programs unless they work closely with classroom teachers. They have learned that deep collaboration is a fluid process that evolves over time. Only as connections are made and relationships are forged can real instructional progress occur. Yet it…
Qualification of submerged-arc narrow strip cladding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayres, P.S.; Gottschling, J.D.; Jeffers, G.K.
1975-08-01
An unique narrow strip cladding process for use on both plate and forging material for nuclear components was developed. The qualification testing of this low-heat input process for cladding nuclear components, including those of SA508 Class 2 material is described. The theory that explains the acceptable results of these tests is also given. (auth)
Qualification of submerged-arc narrow strip cladding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayres, P.S.; Gottschling, J.D.; Jeffers, G.K.
1976-03-01
Babcock and Wilcox has developed an unique narrow strip cladding process for use on both plate and forging material for nuclear components. The qualification testing of this low-heat input process for cladding nuclear components is described, including those of SA508 Class 2 material. The theory that explains the acceptable results of these tests is also given.
TDNiCr (ni-20Cr-2ThO2) forging studies
NASA Technical Reports Server (NTRS)
Filippi, A. M.
1974-01-01
Elevated temperature tensile and stress rupture properties were evaluated for forged TDNiCr (Ni-20Cr-2ThO2) and related to thermomechanical history and microstructure. Forging temperature and final annealed condition had pronounced influences on grain size which, in turn, was related to high temperature strength. Tensile strength improved by a factor of 8 as grain size changed from 1 to 150 microns. Stress-rupture strength was improved by a factor of 3 to 5 by a grain size increase from 10 to 1000 microns. Some contributions to the elevated temperature strength of very large grain material may also occur from the development of a strong texture and a preponderance of small twins. Other conditions promoting the improvement of high temperature strength were: an increase of total reduction, forging which continued the metal deformation inherent in the starting material, a low forging speed, and prior deformation by extrusion. The mechanical properties of optimally forged TDNiCr compared favorably to those of high strength sheet developed for space shuttle application.
48 CFR 225.7007-1 - Restrictions.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., quality control, testing, and welding (both forging and shot blasting process); and (2) The cost of the components manufactured in the United States exceeds 50 percent of the total cost of components. (b) 10 U.S.C...
Fetsch, Christopher R
2016-04-01
The success of systems neuroscience depends on the ability to forge quantitative links between neural activity and behavior. Traditionally, this process has benefited from the rigorous development and testing of hypotheses using tools derived from classical psychophysics and computational motor control. As our capacity for measuring neural activity improves, accompanied by powerful new analysis strategies, it seems prudent to remember what these traditional approaches have to offer. Here I present a perspective on the merits of principled task design and tight behavioral control, along with some words of caution about interpretation in unguided, large-scale neural recording studies. I argue that a judicious combination of new and old approaches is the best way to advance our understanding of higher brain function in health and disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
76 FR 8773 - Forged Stainless Steel Flanges From India and Taiwan
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-639 and 640 (Third Review)] Forged Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade Commission. ACTION... determine whether revocation of the antidumping duty orders on forged stainless steel flanges from India and...
Queen City Forging Revitalized by Oak Ridge National Lab Partnership – U.S. Department of Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Rob; Blue, Craig
Oak Ridge National Laboratory, with support from the U.S. Department of Energy, teamed up with Queen City Forging, the U.S. Forging Industry, and Infrared Heating Technologies to develop a rapid-infrared heating furnace to produce aluminum turbochargers.
76 FR 50755 - Heavy Forged Hand Tools From China
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-16
... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-457-A-D (Third Review)] Heavy Forged... heavy forged hand tools from China would be likely to lead to continuation or recurrence of material.... The views of the Commission are contained in USITC Publication 4250 (August 2011), entitled Heavy...
Open source pipeline for ESPaDOnS reduction and analysis
NASA Astrophysics Data System (ADS)
Martioli, Eder; Teeple, Doug; Manset, Nadine; Devost, Daniel; Withington, Kanoa; Venne, Andre; Tannock, Megan
2012-09-01
OPERA is a Canada-France-Hawaii Telescope (CFHT) open source collaborative software project currently under development for an ESPaDOnS echelle spectro-polarimetric image reduction pipeline. OPERA is designed to be fully automated, performing calibrations and reduction, producing one-dimensional intensity and polarimetric spectra. The calibrations are performed on two-dimensional images. Spectra are extracted using an optimal extraction algorithm. While primarily designed for CFHT ESPaDOnS data, the pipeline is being written to be extensible to other echelle spectrographs. A primary design goal is to make use of fast, modern object-oriented technologies. Processing is controlled by a harness, which manages a set of processing modules, that make use of a collection of native OPERA software libraries and standard external software libraries. The harness and modules are completely parametrized by site configuration and instrument parameters. The software is open- ended, permitting users of OPERA to extend the pipeline capabilities. All these features have been designed to provide a portable infrastructure that facilitates collaborative development, code re-usability and extensibility. OPERA is free software with support for both GNU/Linux and MacOSX platforms. The pipeline is hosted on SourceForge under the name "opera-pipeline".
Cost analysis of composite fan blade manufacturing processes
NASA Technical Reports Server (NTRS)
Stelson, T. S.; Barth, C. F.
1980-01-01
The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.
Quantum blind dual-signature scheme without arbitrator
NASA Astrophysics Data System (ADS)
Li, Wei; Shi, Ronghua; Huang, Dazu; Shi, Jinjing; Guo, Ying
2016-03-01
Motivated by the elegant features of a bind signature, we suggest the design of a quantum blind dual-signature scheme with three phases, i.e., initial phase, signing phase and verification phase. Different from conventional schemes, legal messages are signed not only by the blind signatory but also by the sender in the signing phase. It does not rely much on an arbitrator in the verification phase as the previous quantum signature schemes usually do. The security is guaranteed by entanglement in quantum information processing. Security analysis demonstrates that the signature can be neither forged nor disavowed by illegal participants or attacker. It provides a potential application for e-commerce or e-payment systems with the current technology.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-803] Heavy Forged Hand Tools (i.e... Administration, Department of Commerce. SUMMARY: As a result of the determinations by the Department of Commerce... on heavy forged hand tools (i.e., [[Page 52314
Construction of a test bench for closed die forging
NASA Astrophysics Data System (ADS)
Batit, G.; Kaczmarek, B.; Ravassard, P.
1984-03-01
A swan neck press was equipped with hydraulic jacks to enable it to press and forge complex shapes in closed dies in one operation without wasting metal. Maximum closing stress is 250 kN, maximum pressing stress is 250 kN, maximum forging stress is 70 kN.
Queen City Forging Revitalized by Oak Ridge National Lab Partnership â U.S. Department of Energy
Mayer, Rob; Blue, Craig
2018-01-16
Oak Ridge National Laboratory, with support from the U.S. Department of Energy, teamed up with Queen City Forging, the U.S. Forging Industry, and Infrared Heating Technologies to develop a rapid-infrared heating furnace to produce aluminum turbochargers.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... Fabricated Products, LLC; Kaiser Aluminum- Greenwood Forge Division; Currently Known As Contech Forgings, LLC..., South Carolina; Amended Certification Regarding Eligibility To Apply or Worker Adjustment Assistance In... Labor issued a Certification of Eligibility to Apply for Worker Adjustment Assistance on October 2, 2009...
Reactor pressure vessel with forged nozzles
Desai, Dilip R.
1993-01-01
Inlet nozzles for a gravity-driven cooling system (GDCS) are forged with a cylindrical reactor pressure vessel (RPV) section to which a support skirt for the RPV is attached. The forging provides enhanced RPV integrity around the nozzle and substantial reduction of in-service inspection costs by eliminating GDCS nozzle-to-RPV welds.
22 CFR 121.10 - Forgings, castings and machined bodies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles on the U.S. Munitions List include articles in a partially completed state (such as forgings... identifiable as defense articles. If the end-item is an article on the U.S. Munitions List (including...
22 CFR 121.10 - Forgings, castings and machined bodies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles on the U.S. Munitions List include articles in a partially completed state (such as forgings... identifiable as defense articles. If the end-item is an article on the U.S. Munitions List (including...
22 CFR 121.10 - Forgings, castings and machined bodies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles on the U.S. Munitions List include articles in a partially completed state (such as forgings... identifiable as defense articles. If the end-item is an article on the U.S. Munitions List (including...
Effect of nickel addition on mechanical properties of powder forged Fe-Cu-C
NASA Astrophysics Data System (ADS)
Archana Barla, Nikki
2018-03-01
Fe-Cu-C system is very popular in P/M industry for its good compressibility and dimensional stability with high strength. Fe-Cu-C is a structural material and is used where high strength with high hardness is required. The composition of powder metallurgy steel plays a vital role in the microstructure and physical properties of the sintered component. Fe-2Cu-0.7C-Ni alloy with varying nickel composition (0%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%) wt. % was prepared by powder metallurgy (P/M) sinter forging process. The present work discuss the effect of varying nickel content on microstructure and mechanical properties.
ERIC Educational Resources Information Center
Whitburn, Robin; Yemoh, Sharon
2012-01-01
Robin Whitburn and Sharon Yemoh describe the design of a school-generated GCSE course on the challenges that British people faced in forging a multicultural society in post-imperial Britain. Drawing on their own research into their students' experience, they build a discipline-based case for teaching about socio-political communal struggles…
NASA Astrophysics Data System (ADS)
Teimouri, Javad; Hosseini, Seyed Rahman; Farmanesh, Khosro
2018-05-01
The purpose of the present work was to investigate the effect of primary carbides and the δ-phase on the anisotropic ductile fracture of Inconel 718 in the forging process. Inconel 718 alloys were prepared by VIM + VAR processes with various carbon contents (0.009 and 0.027 wt.%). Then, the alloys were forged and annealed at temperatures of 980 and 1030 °C. The room temperature mechanical anisotropy of the alloys was evaluated at the longitudinal direction (LD) and transverse direction (TD). Tensile and impact tests were used to characterize the mechanical properties of the specimens. The microstructural characterization and the fractography of the alloys were carried out by FE-SEM. The obtained results showed that the fracture strain and the impact energy in the TD were 30-50% lower than the LD. The fracture was accelerated by the δ-phase, leading to the reduction of impact energy in the longitudinal and the lateral directions up to 50%. The low-carbon alloy indicated similar characteristics in both the LD and the TD. Aligned carbides changed the fracture path from a zigzag path in the LD to a fibrous path in the TD, while the δ-phase created a flat fracture path. The shear lip area ratio in the tensile fracture cross section was decreased by reducing ductility.
NASA Astrophysics Data System (ADS)
Teimouri, Javad; Hosseini, Seyed Rahman; Farmanesh, Khosro
2018-04-01
The purpose of the present work was to investigate the effect of primary carbides and the δ-phase on the anisotropic ductile fracture of Inconel 718 in the forging process. Inconel 718 alloys were prepared by VIM + VAR processes with various carbon contents (0.009 and 0.027 wt.%). Then, the alloys were forged and annealed at temperatures of 980 and 1030 °C. The room temperature mechanical anisotropy of the alloys was evaluated at the longitudinal direction (LD) and transverse direction (TD). Tensile and impact tests were used to characterize the mechanical properties of the specimens. The microstructural characterization and the fractography of the alloys were carried out by FE-SEM. The obtained results showed that the fracture strain and the impact energy in the TD were 30-50% lower than the LD. The fracture was accelerated by the δ-phase, leading to the reduction of impact energy in the longitudinal and the lateral directions up to 50%. The low-carbon alloy indicated similar characteristics in both the LD and the TD. Aligned carbides changed the fracture path from a zigzag path in the LD to a fibrous path in the TD, while the δ-phase created a flat fracture path. The shear lip area ratio in the tensile fracture cross section was decreased by reducing ductility.
Energy efficient engine. Volume 2. Appendix A: Component development and integration program
NASA Technical Reports Server (NTRS)
Moracz, D. J.; Cook, C. R.
1981-01-01
The large size and the requirement for precise lightening cavities in a considerable portion of the titanium fan blades necessitated the development of a new manufacturing method. The approach which was selected for development incorporated several technologies including HIP diffusion bonding of titanium sheet laminates containing removable cores and isothermal forging of the blade form. The technology bases established in HIP/DB for composite blades and in isothermal forging for fan blades were applicable for development of the manufacturing process. The process techniques and parameters for producing and inspecting the cored diffusion bonded titanium laminate blade preform were established. The method was demonstrated with the production of twelve hollow simulated blade shapes for evaluation. Evaluations of the critical experiments conducted to establish procedures to produce hollow structures by a laminate/core/diffusion bonding approach are included. In addition the transfer of this technology to produce a hollow fan blade is discussed.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Moore, T. J.
1977-01-01
A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo was conducted. Two mill-processed forms of this alloy were examined. The forged material was essentially processed above the beta transus while the rolled form was subjected to considerable work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.
Photochromic cross-link polymer for color changing and sensing surface
NASA Astrophysics Data System (ADS)
Fu, Richard; Shi, Jianmin; Forsythe, Eric; Srour, Merric
2016-12-01
Photochromic cross-link polymers were developed using patented ultraviolet (UV) photoinitiator and commercial photochromic dyes. The photochromic dyes have been characterized by measuring absorbance before and after UV activation using UV-visible (Vis) spectrometry with varying activation intensities and wavelengths. Photochromic cross-link polymers were characterized by a dynamic xenon and UV light activation and fading system. The curing processes on cloth were established and tested to obtain effective photochromic responses. Both PulseForge photonic curing and PulseForge plus heat surface curing processes had much better photochromic responses (18% to 19%, 16% to 25%, respectively) than the xenon lamp treatment (8%). The newly developed photochromic cross-link polymer showed remarkable coloration contrasts and fast and comparable coloration and fading rates. Those intelligent, controlled color changing and sensing capabilities will be used on flexible and "drapeable" surfaces, which will incorporate ultra-low power sensors, sensor indicators, and identifiers.
Transfer Opportunities Program: Community College of Philadelphia.
ERIC Educational Resources Information Center
McGrath, Dennis
The Transfer Opportunities Program (TOP) at the Community College of Philadelphia (CCP) has focused primarily on faculty development and curriculum design as the essential elements in improving the transfer prospects of students. Extensive faculty development activities were undertaken to forge collegial agreements about standards of literacy and…
A Survey of European Robotics Research.
1984-01-27
laboratory had an ASEA est in robotics began with kinetic robot, several machines for automatic sculpture design. He was looking at the forging, and an LSI 11...developed several tools which Davies had constructed two- and three- eased the programming of the ASEA robot. degrees-of-freedom hydraulic manipula
76 FR 31585 - Forged Stainless Steel Flanges From India: Notice of Rescission of Antidumping Duty...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... Flanges From India: Notice of Rescission of Antidumping Duty Administrative Review AGENCY: Import... review of the antidumping duty order on forged stainless steel flanges from India. The period of review... administrative review of the antidumping duty order on forged stainless steel flanges from India. See Antidumping...
40 CFR 420.131 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gaseous (carbon monoxide-carbon dioxide, hydrogen) or solid reactants. (c) The term forging means the hot... commercially (as opposed to fines that may be reprocessed on site). (f) For forging, the term product means the tons of finished steel forgings produced by hot working steel shapes. (g) The term O&G (as HEM) means...
Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin
2012-05-01
High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.
NASA Astrophysics Data System (ADS)
Jin, Chul Kyu; Jang, Chang Hyun; Kang, Chung Gil
2014-01-01
A thin plate (150 × 150 × 1.2 mm) with embedded corrugation is fabricated using the rheoforming method. Semisolid slurry is created using the electromagnetic stirring (EMS) system, and the thin plate is made with the forging die at the 200-ton hydraulic press. The cross sections and microstructures of the slurry with and without stirring are examined. To investigate the effect of the process parameters on the formability, microstructure, and mechanical properties of thin plate the slurry is subjected to 16 types of condition for the forging experiment. The 16 types included the following conditions: Whether the EMS is applied or not, three fractions of the solid phase at 35, 45 and 55 pct; two compression velocities at 30 and 300 mm s-1; and four different compression pressures—100, 150, 200 and 250 MPa. The thin plate's formability is enhanced at higher punch velocity for compressing the slurry, and fine solid particles are uniformly distributed, which in turn, enhances the plate's mechanical properties. The pressure between 150 and 200 MPa is an appropriate condition to form thin plates. A thin plate without defects can be created when the slurry at 35 pct of the solid fraction (f s) was applied at the compression velocity of 300 mm s-1 and 150 MPa of pressure. The surface state of thin plate is excellent with 220 MPa of tensile strength and 13.5 pct of elongation. The primary particles are fine over the entire plate, and there are no liquid segregation-related defects.
NASA Technical Reports Server (NTRS)
Townsend, D. P.
1986-01-01
Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground SISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.
Evolution of the Ultrasonic Inspection of Heavy Rotor Forgings Over the Last Decades
NASA Astrophysics Data System (ADS)
Zimmer, A.; Vrana, J.; Meiser, J.; Maximini, W.; Blaes, N.
2010-02-01
All types of heavy forgings that are used in energy machine industry, rotor shafts as well as discs, retaining rings or tie bolts are subject to extensive nondestructive inspections before they are delivered to the customer. Due to the availability of the parts in simple shapes, these forgings are very well suited for full volmetric inspections using ultrasound. In the beginning, these inspections were carried out manually, using straight beam probes and analogue equipment. Higher requirements in reliability, efficiency, safety and power output in the machines have lead to higher requirements for the ultrasonic inspection in the form of more scanning directions, higher sensitivity demands and improved documentation means. This and the increasing use of high alloy materials for ever growing parts, increase the need for more and more sophisticated methods for testing the forgings. Angle scans and sizing technologies like DGS have been implemented, and for more than 15 years now, mechanized and automated inspections have gained importance since they allow better documentation as well as easier evaluation of the recorded data using different views (B- C- or D-Scans), projections or tomography views. The latest major development has been the availability of phased array probes to increase the flexibility of the inspection systems. Many results of the ongoing research in ultrasonic's have not been implemented yet. Today's availability of fast computers, large and fast data storages allows saving RF inspection data and applying sophisticated signal processing methods. For example linear diffraction tomography methods like SAFT offer tools for 3D reconstruction of inspection data, simplifying sizing and locating of defects as well as for improving signal to noise ratios. While such methods are already applied in medical ultrasonic's, they are still to be implemented in the steel industry. This paper describes the development of the ultrasonic inspection of heavy forgings from the beginning up to today at the example of Saarschmiede GmbH explains the difficulties in implementing changes and gives an outlook over the current progression.
NASA Technical Reports Server (NTRS)
Taminger, Karen M.
2008-01-01
The technological inception and challenges, as well as current applications of the electron beam freeform fabrication (EBF3) process are outlined. The process was motivated by the need for a new metals technology that would be cost-effective, enable the production of new alloys and that would could be used for efficient, lightweight structures. EBF3 is a rapid metal fabrication, layer-additive process that uses no molds or tools and which yields properties equivalent to wrought. The benefits of EBF3 include it near-net shape which minimizes scrap and reduces part count; efficiency in design which allows for lighter weight and enhanced performance; and, its "green" manufacturing process which yields minimal waste products. EBF3 also has a high tensile strength, while a structural test comparison found that EBF3 panels performed 5% lower than machined panels. Technical challenges in the EBF3 process include a need for process control monitoring and an improvement in localized heat response. Currently, the EBF3 process can be used to add details onto forgings and to construct and form complex shapes. However, it has potential uses in a variety of industries including aerospace, automotive, sporting goods and medical implant devices. The novel structural design capabilities of EBF3 have the ability to yield curved stiffeners which may be optimized for performance, low weight, low noise and damage tolerance applications. EBF3 has also demonstrated its usefulness in 0-gravity environments for supportability in space applications.
Roosevelt Hot Springs, Utah FORGE Regional Well Locations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Greg
This archive contains a GIS point feature shapefile that shows the locations of wells in the general region of the Utah FORGE project, near Roosevelt Hot Springs. This includes Utah FORGE deep well 58-32 and wells for which data has been uploaded to the Geothermal Data Repository. The attribute table has a field that contains well names.
3-D Printers Spread from Engineering Departments to Designs across Disciplines
ERIC Educational Resources Information Center
Chen, Angela
2012-01-01
The ability to print a 3-D object may sound like science fiction, but it has been around in some form since the 1980s. Also called rapid prototyping or additive manufacturing, the idea is to take a design from a computer file and forge it into an object, often in flat cross-sections that can be assembled into a larger whole. While the printer on…
Computer Aided Self-Forging Fragment Design,
1978-06-01
This value is reached so quickly that HEMP solutions using work hardening and those using only elastic—perfectly plastic formulations are quite...Elastic— Plastic Flow, UCRL—7322 , Lawrence Radiation Laboratory , Livermore , California (1969) . 4. Giroux , E. D . , HEMP Users Manual, UCRL—5l079...Laboratory, the HEMP computer code has been developed to serve as an effective design tool to simplify this task considerably. Using this code, warheads 78 06
Micro Calorimeter for Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhanagopalan, Shriram
2017-08-01
As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.
The effect of forging history on the strength and microstructure of TDNiCr /Ni-20Cr-2ThO2/
NASA Technical Reports Server (NTRS)
Filippi, A. M.
1975-01-01
Forging variables were evaluated to determine their influence on the elevated temperature strength and microstructure of TDNiCr. Grain size was the principal microstructural feature related to elevated temperature strength and was controlled primarily by the thermomechanical variables of forging temperature and final annealing condition. Tests at 1366 K revealed a factor of eight increase in tensile strength as grain size increased from 1 to 150 microns, while stress-rupture strength improved by three to five times as grain size increased from 15 to 150 microns. Forged material of grain size greater than or equal to about 150 microns displayed a level of elevated temperature strength comparable to that of optimized TDNiCr sheet. The presence of a preponderance of small twins and a strong preferred orientation may have also been factors contributing to the excellent high temperature strength of large grain forged material.
Heavy Deformation of Patented Near-Eutectoid Steel
NASA Astrophysics Data System (ADS)
Khanchandani, Heena; Banerjee, M. K.
2018-01-01
Evolution of microstructure in the patented near-eutectoid steel, forged under varying situations, is critically examined in the present investigation. Steel with 0.74 wt.% carbon is isothermally annealed at 500 °C to obtain fine pearlite microstructure. Steel samples, so patented, are subjected to mechanical deformation by forging at various temperatures with different amount of thickness reduction. Microstructural analyses have revealed that mechanical deformation by forging at lower temperatures brings about partial dissolution of cementite, which is followed by the formation of ɛ-carbide in the microstructures. In contrast, cementite is precipitated within ferrite matrix upon warm or hot forging at higher temperatures. It is further observed that increasing deformation percent during low-temperature forging reduces interlamellar spacing of pearlite, whereas an opposite trend is noticed in case of deformation at higher temperature; moreover, deformation induced the change in interlamellar spacing and formation of fine carbide phases in microstructures has caused appreciable enhancement in hardness of the steel.
Building Brains, Forging Futures: A Call to Action for the Family-Centered Medical Home
ERIC Educational Resources Information Center
Kraft, Colleen
2013-01-01
The family-centered medical home describes an approach to providing comprehensive primary care. Research advances in developmental neuroscience, genetics, and epigenetics offer a framework for understanding the dynamic process of brain development. It is this process that sets the life-course trajectory for an individual; in turn, a child's…
31 CFR 370.40 - Can I be held accountable if my negligence contributes to a forged signature?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Can I be held accountable if my negligence contributes to a forged signature? 370.40 Section 370.40 Money and Finance: Treasury Regulations... if my negligence contributes to a forged signature? (a) General. If your failure to exercise ordinary...
Optical Forging of Graphene into Three-Dimensional Shapes.
Johansson, Andreas; Myllyperkiö, Pasi; Koskinen, Pekka; Aumanen, Jukka; Koivistoinen, Juha; Tsai, Hung-Chieh; Chen, Chia-Hao; Chang, Lo-Yueh; Hiltunen, Vesa-Matti; Manninen, Jyrki J; Woon, Wei Yen; Pettersson, Mika
2017-10-11
Atomically thin materials, such as graphene, are the ultimate building blocks for nanoscale devices. But although their synthesis and handling today are routine, all efforts thus far have been restricted to flat natural geometries, since the means to control their three-dimensional (3D) morphology has remained elusive. Here we show that, just as a blacksmith uses a hammer to forge a metal sheet into 3D shapes, a pulsed laser beam can forge a graphene sheet into controlled 3D shapes in the nanoscale. The forging mechanism is based on laser-induced local expansion of graphene, as confirmed by computer simulations using thin sheet elasticity theory.
Karthigeyan, R.; Ranganath, G.
2013-01-01
This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207
Karthigeyan, R; Ranganath, G
2013-01-01
This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.
NASA Astrophysics Data System (ADS)
Yu, Yingyan; Rosenstock, Dirk; Wolfgarten, Martin; Hirt, Gerhard
2016-10-01
Due to the fact that tooling costs make up to 30% of total costs of the final forged part, the tool life is always one main research topic in closed-die forging [1]. To improve the wear resistance of forging dies, many methods like nitriding and deposition of ceramic layers have been used. However, all these methods will lose its effect after a certain time, then tool repair or exchange is needed, which requires additional time and costs. A new method, which applies an inexpensive and changeable sheet metal on the forging die to protect it from abrasive wear, was firstly proposed in [2]. According to the first investigation, the die cover is effective for decreasing thermal and mechanical loads, but there are still several challenges to overcome in this concept, like wrinkling and thinning of the die cover. Therefore, an experimental study using different geometries and die cover materials is presented within this work. The results indicate the existence of feasible application cases of this concept, since conditions are found under which a die cover made of 22MnB5 still keeps its original shape even after 7 forging cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettit, J. R.; Lowe, M. J. S.; Walker, A. E.
2015-03-31
Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) methodmore » has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.« less
On the Design of Forgiving Biometric Security Systems
NASA Astrophysics Data System (ADS)
Phan, Raphael C.-W.; Whitley, John N.; Parish, David J.
This work aims to highlight the fundamental issue surrounding biometric security systems: it’s all very nice until a biometric is forged, but what do we do after that? Granted, biometric systems are by physical nature supposedly much harder to forge than other factors of authentication since biometrics on a human body are by right unique to the particular human person. Yet it is also due to this physical nature that makes it much more catastrophic when a forgery does occur, because it implies that this uniqueness has been forged as well, threatening the human individuality; and since crime has by convention relied on identifying suspects by biometric characteristics, loss of this biometric uniqueness has devastating consequences on the freedom and basic human rights of the victimized individual. This uniqueness forgery implication also raises the motivation on the adversary to forge since a successful forgery leads to much more impersonation situations when biometric systems are used i.e. physical presence at crime scenes, identification and access to security systems and premises, access to financial accounts and hence the ability to use the victim’s finances. Depending on the gains, a desperate highly motivated adversary may even resort to directly obtaining the victim’s biometric parts by force e.g. severing the parts from the victim’s body; this poses a risk and threat not just to the individual’s uniqueness claim but also to personal safety and well being. One may then wonder if it is worth putting one’s assets, property and safety into the hands of biometrics based systems when the consequences of biometric forgery far outweigh the consequences of system compromises when no biometrics are used.
Bladesmithing at South Dakota School of Mines and Technology
NASA Astrophysics Data System (ADS)
Moehring, Jack; Willman, Michael; Pulscher, Isaac; Rowe, Devin
2016-12-01
A Damascus-style layered blade was made by incorporating bloomery iron and crucible steel. A bloomery furnace was constructed and charged with Black Hills, SD bog iron ore, alloys, and hardwood charcoal. At sufficient temperature, the furnace was bottom-tapped to produce a low carbon iron bloom. A high-carbon crucible steel was made in a natural gas-fired furnace using commercial hematite pellets and coke. The steel was cast into sand molds. The two types of iron/steel were forged together using traditional blacksmithing techniques in a coke-fired forge. The forging process continued until the metal could be evenly worked, signifying the homogenization of the two metals. Once homogenized, the metal was shaped into a blade and subsequently ground into near-final shape, heat-treated, and finish-machined. The microstructure and mechanical properties of the blade were characterized using optical microscopy, hardness and tensile testing. The grain structure of the material varied widely and was not entirely homogenous at the welded layers, but the layers themselves were well-homogenized. The finished blade was compared to a common steel (1095) used for bladesmithing and was found to have similar hardness but significantly lower tensile strength.
Properties of HIPed stainless steel powder
NASA Astrophysics Data System (ADS)
Dellis, Ch.; Le Marois, G.; Gentzbittel, J. M.; Robert, G.; Moret, F.
1996-10-01
In the current design of ITER primary wall, 316LN stainless steel is the reference structural material. Austenitic stainless steel is used for water-cooling channels and structures. As material data on hot isostatic pressed (HIP) 316LN were not available in open literature and from powder producers, the main properties of unirradiated samples have been measured in CEA/CEREM. Fully dense material without any porosity is obtained when appropriate HIP parameters are applied. Microstructural examination and mechanical properties are confirmed that the HIPed 316LN material is equivalent to a very good fine-grain, isotropic and uniformly forged 316LN. Moreover, ultrasonic inspection showed that this fine and uniform microstructure produced a remarkably low noise, which allow the use of transverse waves at very high frequencies (4 MHz). Defects undetectable in forged material will be easily detected in HIPed material.
40 CFR 467.46 - Pretreatment standards for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... off-lbs) of aluminum forged Chromium 0.019 0.008 Cyanide 0.010 0.004 Zinc 0.051 0.021 TTO 0.035 Oil and grease (alternate monitoring parameter) 0.50 0.50 Subpart D Forging Scrubber Liquor Pollutant or... aluminum forged Chromium 0.035 0.014 Cyanide 0.019 0.008 Zinc 0.096 0.040 TTO 0.065 Oil and grease...
Roosevelt Hot Springs, Utah FORGE Earthquake Catalog
Pankow, Kris
2018-03-21
This is the set of earthquake catalogs developed for the Utah FORGE project. These are discussed in the "Utah FORGE Phase 2B Final Topical Report", which can be found on GDR under id: 1038 (See link 'Final Topical Report' in resources below). The details are in section: 'TASK 2B.12: SEISMIC MONITORING PHASE2B FINAL REPORT.' The catalogs are in an Excel file.
Studying Electrical Conductivity Using a 3D Printed Four-Point Probe Station
ERIC Educational Resources Information Center
Lu, Yang; Santino, Luciano M.; Acharya, Shinjita; Anandarajah, Hari; D'Arcy, Julio M.
2017-01-01
The design and fabrication of functional scientific instrumentation allows students to forge a link between commonly reported numbers and physical material properties. Here, a two-point and four-point probe station for measuring electrical properties of solid materials is fabricated via 3D printing utilizing an inexpensive benchtop…
Forging School-Scientist Partnerships: A Case of Easier Said than Done?
ERIC Educational Resources Information Center
Falloon, Garry
2013-01-01
Since the early 1980s, a number of initiatives have been undertaken worldwide which have involved scientists and teachers working together in projects designed to support the science learning of students. Many of these have attempted to establish school-scientist partnerships. In these, scientists, teachers, and students formed teams engaged in…
Passing the Torch: A Model School-Community Project.
ERIC Educational Resources Information Center
Gallagher, Arlene F.; Robinson, Donald
During the 1988-89 school year, a Bicentennial Model Site Program was conducted by the American Bar Association's Special Committee on Youth Education for Citizenship. This program was designed to improve students' understanding of the U.S. Constitution and the Bill of Rights by forging partnerships between schools and communities at the local…
46 CFR 160.061-3 - Design and construction.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Leaders. Wire leaders shall be of stainless steel, and shall be attached to snaps and swivels with not less than six turns of wire. Monofilament leaders shall be blue mist and shall be provided with a 5/8... otherwise specified, all hooks shall be of forged steel, hollow ground with filed out points. The hooks...
46 CFR 160.061-3 - Design and construction.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Leaders. Wire leaders shall be of stainless steel, and shall be attached to snaps and swivels with not less than six turns of wire. Monofilament leaders shall be blue mist and shall be provided with a 5/8... otherwise specified, all hooks shall be of forged steel, hollow ground with filed out points. The hooks...
Bridge Builders: Teacher Leaders Forge Connections and Bring Coherence to Literacy Initiative
ERIC Educational Resources Information Center
Ippolito, Jacy; Dobbs, Christina L.; Charner-Laird, Megin
2014-01-01
This article describes an initiative designed to improve the content-area literacy skills of all students at a Massachusetts high school and to demonstrate the important role teacher leaders play in bridging the various elements of school improvement efforts. Meeting students' language and literacy needs within content-area classrooms is becoming…
Arab Women Principals' Empowerment and Leadership in Israel
ERIC Educational Resources Information Center
Shapira, Tamar; Arar, Khalid; Azaiza, Faisal
2010-01-01
Purpose: This paper's purpose is to tell the life-stories of four women who succeeded in forging paths to senior positions as principals in Arab schools in Israel and to describe the personal, professional and sociopolitical contexts of their principalship. Design/methodology/approach: This is part of a larger research effort that explored the…
Examining Achievement Goals and Causal Attributions Together as Predictors of Academic Functioning
ERIC Educational Resources Information Center
Wolters, Christopher A.; Fan, Weihua; Daugherty, Stacy G.
2013-01-01
This study was designed to forge stronger theoretical and empirical links between achievement goal theory and attribution theory. High school students ("N" = 224) completed a self-report survey that assessed 3 types of achievement goals, 7 types of attributions, and self-efficacy. Results indicated that students' adoption of achievement…
Guide to Working with Model Providers.
ERIC Educational Resources Information Center
Walter, Katie; Hassel, Bryan C.
Often a central feature of a school's improvement efforts is the adoption of a Comprehensive School Reform (CSR) model, an externally developed research-based design for school improvement. Adopting a model is only the first step in CSR. Another important step is forging partnerships with developers of CSR models. This guide aims to help schools…
N18, powder metallurgy superalloy for disks: Development and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guedou, J.Y.; Lautridou, J.C.; Honnorat, Y.
1993-08-01
The preliminary industrial development of a powder metallurgy (PM) superalloy, designated N18, for disk applications has been completed. This alloy exhibits good overall mechanical properties after appropriate processing of the material. These properties have been measured on both isothermally forged and extruded billets, as well as on specimens cut from actual parts. The temperature capability of the alloy is about 700 C for long-term applications and approximately 750 C for short-term use because of microstructural instability. Further improvements in creep and crack propagation properties, without significant reduction in tensile strength, are possible through appropriate thermomechanical processing, which results in amore » large controlled grain size. Spin pit tests on subscale disks have confirmed that the N18 alloy has a higher resistance than PM Astrology and is therefore an excellent alloy for modern turbine disk applications.« less
Characterization of hot bonding of bi-metal C45/25CrMo4 by plane strain compression test
NASA Astrophysics Data System (ADS)
Enaim, Mohammed; Langlois, Laurent; Zimmer-Chevret, Sandra; Bigot, Régis; Krumpipe, Pierre
2018-05-01
The need to produce multifunctional parts in order to conform to complex specifications becomes crucial in today's industrial context. This is why new processes are under study to develop multi-material parts which can satisfy this kind of requirements. This paper investigates the possibility of producing hot bonding of bi-metal C45/25CrMo4 parts by forging. This manufacturing process is a solid state joining process that involves, simultaneously, the welding and shaping of multi-material part. In this study, the C45/25CrMo4 bimetal was investigated. The forging is conducted at 1100°C and the influence of reduction rate on microstructure and bonding was investigated. The bonding model is inspired from Bay's model. Following this model, two parameters govern the solid-state bonding at the interface between materials: normal contact pressure and surface expansion. The objective is to check the bonding quality under different pressure and surface expansion. To achieve this goal, the plane strain compression test is chosen as the characterization test. Finally, simulations and experiments of this test are compared.
NASA Astrophysics Data System (ADS)
Lian, Youyun; Liu, Xiang; Feng, Fan; Song, Jiupeng; Yan, Binyou; Wang, Yingmin; Wang, Jianbao; Chen, Jiming
2017-12-01
The effects of the addition of Y2O3 and hot-deformation on the mechanical properties of tungsten (W) have been studied. The processing route comprises a doping technique for the distribution of Y2O3 particles in a tungsten matrix, conventional sintering in a hydrogen environment, and high-energy-rate forging (HERF). The microstructure of the composite was characterized by using transmission electron microscopy and electron backscattering diffraction imaging technique, and its mechanical properties were studied by means of tensile testing. The thermal shock response of the HERF processed W-Y2O3 was evaluated by applying edge-localized mode-like loads (100 pulses) with a pulse duration of 1 ms and an absorbed power density of up to 1 GW m-2 at various temperatures between room temperature and 200 °C. HERF processing has produced elongated W grains with preferred orientations and a high density of structure defects in the composite. The composite material exhibits high tensile strength and good ductility, and a thermal shock cracking threshold lower than 100 °C.
Materials Safety - Not just Flammability and Toxic Offgassing
NASA Technical Reports Server (NTRS)
Pedley, Michael D.
2007-01-01
For many years, the safety community has focused on a limited subset of materials and processes requirements as key to safety: Materials flammability, Toxic offgassing, Propellant compatibility, Oxygen compatibility, and Stress-corrosion cracking. All these items are important, but the exclusive focus on these items neglects many other items that are equally important to materials safety. Examples include (but are not limited to): 1. Materials process control -- proper qualification and execution of manufacturing processes such as structural adhesive bonding, welding, and forging are crucial to materials safety. Limitation of discussions on materials process control to an arbitrary subset of processes, known as "critical processes" is a mistake, because any process where the quality of the product cannot be verified by inspection can potentially result in unsafe hardware 2 Materials structural design allowables -- development of valid design allowables when none exist in the literature requires extensive testing of multiple lots of materials and is extremely expensive. But, without valid allowables, structural analysis cannot verify structural safety 3. Corrosion control -- All forms of corrosion, not just stress corrosion, can affect structural integrity of hardware 4. Contamination control during ground processing -- contamination control is critical to manufacturing processes such as adhesive bonding and also to elimination foreign objects and debris (FOD) that are hazardous to the crew of manned spacecraft in microgravity environments. 5. Fasteners -- Fastener design, the use of verifiable secondary locking features, and proper verification of fastener torque are essential for proper structural performance This presentation discusses some of these key factors and the importance of considering them in ensuring the safety of space hardware.
Comparative Thermal Aging Effects on PM-HIP and Forged Inconel 690
NASA Astrophysics Data System (ADS)
Bullens, Alexander L.; Bautista, Esteban; Jaye, Elizabeth H.; Vas, Nathaniel L.; Cain, Nathan B.; Mao, Keyou; Gandy, David W.; Wharry, Janelle P.
2018-03-01
This study compares thermal aging effects in Inconel 690 (IN690) produced by forging and powder metallurgy with hot isostatic pressing (PM-HIP). Isothermal aging is carried out over 400-800°C for up to 1000 h and then metallography and nanoindentation are utilized to relate grain microstructure with hardness and yield strength. The PM-HIP IN690 maintains a constant grain size through all aging conditions, while the forged IN690 exhibits limited grain growth at the highest aging temperature and longest aging time. The PM-HIP IN690 exhibits comparable mechanical integrity as the forged material throughout aging: hardness and yield strength are unchanged with 100 h aging, but increase after 1000 h aging at all temperatures. In both the PM-HIP and forged IN690, the Hall-Petch relationship for Ni-based superalloys predicts yield strength for 0-100 h aged specimens, but underestimates yield strength in the 1000 h aged specimens because of thermally induced precipitation.
Process development of two high strength tantalum base alloys (ASTAR-1211C and ASTAR-1511C)
NASA Technical Reports Server (NTRS)
Ammon, R. L.
1974-01-01
Two tantalum base alloys, Ta-12W-1.0Re-0.7Hf-0.025C(ASTAR-1211C) and Ta-15W-1.0Re-0.7Hf-0.025C(ASTAR-1511C), were cast as 12.5 cm (5 inch) diameter ingots and processed to swaged rod, sheet, forged plate, and tubing. Swaged rod was evaluated with respect to low temperature ductility, elevated temperature tensile properties, and elevated temperature creep behavior. A standard swaging process and final annealing schedule were determined. Elevated temperature tensile properties, low temperature impact properties, low temperature DBTT behavior, and extended elevated temperature creep properties were determined. A process for producing ASTAR-1211C and ASTAR-1511C sheet were developed. The DBTT properties of GTA and EB weld sheet given post-weld anneal and thermal aging treatments were determined using bend and tensile specimens. High and low temperature mechanical properties of forging ASTAR-1211C and ASTAR-1511C plate were determined as well as elevated temperature creep properties. Attempts to produce ASTAR-1211C tubing were partially successful while attempts to make ASTAR-1511C tubing were completely unsuccessful.
40 CFR 471.24 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2013 CFR
2013-07-01
... Chromium 0.033 0.014 Zinc 0.109 0.046 Ammonia 9.95 4.37 Fluoride 4.44 1.97 (b) Forging spent lubricants....422 0.177 Ammonia 38.5 17.0 Fluoride 17.2 7.63 (d) Forging equipment cleaning wastewater. Subpart B... (pounds per million off-pounds) of magnesium forged Chromium 0.002 0.0007 Zinc 0.006 0.003 Ammonia 0.532 0...
40 CFR 471.24 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... Chromium 0.033 0.014 Zinc 0.109 0.046 Ammonia 9.95 4.37 Fluoride 4.44 1.97 (b) Forging spent lubricants....422 0.177 Ammonia 38.5 17.0 Fluoride 17.2 7.63 (d) Forging equipment cleaning wastewater. Subpart B... (pounds per million off-pounds) of magnesium forged Chromium 0.002 0.0007 Zinc 0.006 0.003 Ammonia 0.532 0...
40 CFR 471.24 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... Chromium 0.033 0.014 Zinc 0.109 0.046 Ammonia 9.95 4.37 Fluoride 4.44 1.97 (b) Forging spent lubricants....422 0.177 Ammonia 38.5 17.0 Fluoride 17.2 7.63 (d) Forging equipment cleaning wastewater. Subpart B... (pounds per million off-pounds) of magnesium forged Chromium 0.002 0.0007 Zinc 0.006 0.003 Ammonia 0.532 0...
40 CFR 471.24 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Chromium 0.033 0.014 Zinc 0.109 0.046 Ammonia 9.95 4.37 Fluoride 4.44 1.97 (b) Forging spent lubricants....422 0.177 Ammonia 38.5 17.0 Fluoride 17.2 7.63 (d) Forging equipment cleaning wastewater. Subpart B... (pounds per million off-pounds) of magnesium forged Chromium 0.002 0.0007 Zinc 0.006 0.003 Ammonia 0.532 0...
40 CFR 471.24 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... Chromium 0.033 0.014 Zinc 0.109 0.046 Ammonia 9.95 4.37 Fluoride 4.44 1.97 (b) Forging spent lubricants....422 0.177 Ammonia 38.5 17.0 Fluoride 17.2 7.63 (d) Forging equipment cleaning wastewater. Subpart B... (pounds per million off-pounds) of magnesium forged Chromium 0.002 0.0007 Zinc 0.006 0.003 Ammonia 0.532 0...
40 CFR 420.131 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
....131 Specialized definitions. As used in this subpart: (a) The term briquetting operations means a hot... gaseous (carbon monoxide-carbon dioxide, hydrogen) or solid reactants. (c) The term forging means the hot... of briquettes manufactured by hot or cold agglomeration processes. (e) For direct reduced iron (DRI...
40 CFR 420.131 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
....131 Specialized definitions. As used in this subpart: (a) The term briquetting operations means a hot... gaseous (carbon monoxide-carbon dioxide, hydrogen) or solid reactants. (c) The term forging means the hot... of briquettes manufactured by hot or cold agglomeration processes. (e) For direct reduced iron (DRI...
40 CFR 420.131 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
....131 Specialized definitions. As used in this subpart: (a) The term briquetting operations means a hot... gaseous (carbon monoxide-carbon dioxide, hydrogen) or solid reactants. (c) The term forging means the hot... of briquettes manufactured by hot or cold agglomeration processes. (e) For direct reduced iron (DRI...
40 CFR 420.131 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
....131 Specialized definitions. As used in this subpart: (a) The term briquetting operations means a hot... gaseous (carbon monoxide-carbon dioxide, hydrogen) or solid reactants. (c) The term forging means the hot... of briquettes manufactured by hot or cold agglomeration processes. (e) For direct reduced iron (DRI...
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Moore, T. J.
1979-01-01
A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo has been conducted. Two mill-processed forms of this alloy were examined. The forged material had been processed above the beta transus (approximately 1275 K) while the rolled form had been subjected to work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.
Material properties and their influence on the behaviour of tungsten as plasma facing material
NASA Astrophysics Data System (ADS)
Wirtz, M.; Uytdenhouwen, I.; Barabash, V.; Escourbiac, F.; Hirai, T.; Linke, J.; Loewenhoff, Th.; Panayotis, S.; Pintsuk, G.
2017-06-01
With the aim of a possible improvement of the material specification for tungsten, five different tungsten products by different companies and by different production technologies (forging and rolling) are subject to a materials characterization program. Tungsten produced by forging results in an uniaxial elongated grain shape while rolled products have a plate like grain shape which has an influence on the mechanical properties of the material. The materials were investigated with respect to the following parameters: hardness measurements, microstructural investigations, tensile tests and recrystallisation sensitivity tests at 3 different temperatures. The obtained results show that different production processes have an influence on the resulting anisotropic microstructure and the related material properties of tungsten in the as-received state. Additionally, the recrystallization sensitivity varies between the different products, what could be a result of the different production processes. Additionally, two tungsten products were exposed to thermal shocks. The obtained results show that the improved recrystallisation behaviour has no major impact on the thermal shock performance.
On the lightweighting of automobile engine components : forming sheet metal connecting rod
NASA Astrophysics Data System (ADS)
Date, P. P.; Kasture, R. N.; Kore, A. S.
2017-09-01
Reducing the inertia of the reciprocating engine components can lead to significant savings on fuel. A lighter connecting rod (for the same functionality and performance) with a lower material input would be an advantage to the user (customer) and the manufacturer alike. Light materials will make the connecting rod much more expensive compared to those made from steel. Non-ferrous metals are amenable to cold forging of engine components to achieve lightweighting. Alternately, one can make a hollow connecting rod formed from steel sheet, thereby making it lighter, and with many advantages over the conventionally hot forged product. The present paper describes the process of forming a connecting rod from sheet metal. Cold forming (as opposed to high energy needs, lower tool life and the need for greater number of operations and finishing processes in hot forming) would be expected to reduce the cost of manufacture by cold forming. Work hardening during forming is also expected to enhance the in-service performance of the connecting rod.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Ammonia 9.95 4.37 Fluoride 4.44 1.97 (b) Forging spent lubricants—subpart B—BAT. There shall be no...-pounds) of forged magnesium cooled with water Chromium 0.127 0.052 Zinc 0.422 0.177 Ammonia 38.5 17.0... forged Chromium 0.002 0.0007 Zinc 0.006 0.003 Ammonia 0.532 0.234 Fluoride 0.238 0.106 (e) Direct chill...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Ammonia 9.95 4.37 Fluoride 4.44 1.97 (b) Forging spent lubricants—Subpart B—BAT. There shall be no...-pounds) of forged magnesium cooled with water Chromium 0.127 0.052 Zinc 0.422 0.177 Ammonia 38.5 17.0... forged Chromium 0.002 0.0007 Zinc 0.006 0.003 Ammonia 0.532 0.234 Fluoride 0.238 0.106 (e) Direct chill...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Zinc 0.109 0.046 Ammonia 9.95 4.37 Fluoride 4.44 1.97 (b) Forging spent lubricants—subpart B—BAT. There... million off-pounds) of forged magnesium cooled with water Chromium 0.127 0.052 Zinc 0.422 0.177 Ammonia 38...-pounds) of magnesium forged Chromium 0.002 0.0007 Zinc 0.006 0.003 Ammonia 0.532 0.234 Fluoride 0.238 0...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Zinc 0.109 0.046 Ammonia 9.95 4.37 Fluoride 4.44 1.97 (b) Forging spent lubricants—subpart B—BAT. There... million off-pounds) of forged magnesium cooled with water Chromium 0.127 0.052 Zinc 0.422 0.177 Ammonia 38...-pounds) of magnesium forged Chromium 0.002 0.0007 Zinc 0.006 0.003 Ammonia 0.532 0.234 Fluoride 0.238 0...
NASA Technical Reports Server (NTRS)
Young, C. P., Jr.; Gerringer, A. H.; Brooks, T. G.; Berry, R. F., Jr.
1978-01-01
The feasibility of making weld repairs on heavy section 9% nickel steel forgings such as those being manufactured for the National Transonic Facility fan disk and fan drive shaft components was evaluated. Results indicate that 9% nickel steel in heavy forgings has very good weldability characteristics for the particular weld rod and weld procedures used. A comparison of data for known similar work is included.
Hypersonic airbreathing vehicle visions and enhancing technologies
NASA Astrophysics Data System (ADS)
Hunt, James L.; Lockwood, Mary Kae; Petley, Dennis H.; Pegg, Robert J.
1997-01-01
This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes—missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays.
Sustained load crack growth design data for Ti-6Al-4V titanium alloy tanks containing hydrazine
NASA Technical Reports Server (NTRS)
Lewis, J. C.; Kenny, J. T.
1976-01-01
Sustained load crack growth data for Ti-6Al-4V titanium alloy in hydrazine per MIL-P-26536 and refined hydrazine are presented. Fracture mechanics data on crack growth thresholds for heat-treated forgings, aged and unaged welds, and aged and unaged heat-affected zones are reported. Fracture mechanics design curves of crack growth threshold stress intensity versus temperature are generated from 40 to 71 C.
40 CFR 468.02 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operations to reduce friction, heat and wear and ultimately discharged. (r) The term “Total Toxic Organics... phenanthrene toluene trichloroethylene (s) The term “alkaline cleaning rinse for forged parts” shall mean a... “tumbling or burnishing” shall mean the process of polishing, deburring, removing sharp corners, and...
40 CFR 468.02 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operations to reduce friction, heat and wear and ultimately discharged. (r) The term “Total Toxic Organics... phenanthrene toluene trichloroethylene (s) The term “alkaline cleaning rinse for forged parts” shall mean a... “tumbling or burnishing” shall mean the process of polishing, deburring, removing sharp corners, and...
40 CFR 468.02 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operations to reduce friction, heat and wear and ultimately discharged. (r) The term “Total Toxic Organics... phenanthrene toluene trichloroethylene (s) The term “alkaline cleaning rinse for forged parts” shall mean a... “tumbling or burnishing” shall mean the process of polishing, deburring, removing sharp corners, and...
From Prison to Citizenship: The Rhetoric of the Militant British Suffrage Movement.
ERIC Educational Resources Information Center
Kahl, Mary L.
As nineteenth century British feminists found that they could no longer "suffer and be still," they forged alliances with those male political personalities sympathetic to their suffrage demands. Yet these political alliances proved to be of little value in the fight for voting rights, as measures designed to widen the franchise met with…
Children Have the Right to Have Rights
ERIC Educational Resources Information Center
Brandao, Caius
2007-01-01
The United Nations Convention on the Rights of the Child (CRC) has forged a fundamental shift of paradigm in program and public policy design. Whereas in most countries the needs-based approach has historically guided services and policies for children, the CRC sets out a new perspective based on the human rights of all children. This perspective…
Estimating the Effects of Students' Social Networks: Does Attending a Norm-Enforcing School Pay Off?
ERIC Educational Resources Information Center
Carolan, Brian V.
2010-01-01
In an attempt to forge tighter social relations, small school reformers advocate school designs intended to create smaller, more trusting, and more collaborative settings. These efforts to enhance students' social capital in the form of social closure are ultimately tied to improving academic outcomes. Using data derived from ELS: 2002, this study…
Blended Learning: Lessons from Best Practice Sites and the Philadelphia Context. PERC Research Brief
ERIC Educational Resources Information Center
Beaver, Jessica K.; Hallar, Brittan; Westmaas, Lucas; Englander, Katie
2015-01-01
The Philadelphia Education Research Consortium--or PERC--was launched in August 2014 as an innovative partnership designed to provide research and analyses on some of the city's most pressing education issues. This partnership was forged among the School District of Philadelphia, Philadelphia's charter school sector, and Research for Action (RFA).…
Robotic NDE inspection of advanced solid rocket motor casings
NASA Technical Reports Server (NTRS)
Mcneelege, Glenn E.; Sarantos, Chris
1994-01-01
The Advanced Solid Rocket Motor program determined the need to inspect ASRM forgings and segments for potentially catastrophic defects. To minimize costs, an automated eddy current inspection system was designed and manufactured for inspection of ASRM forgings in the initial phases of production. This system utilizes custom manipulators and motion control algorithms and integrated six channel eddy current data acquisition and analysis hardware and software. Total system integration is through a personal computer based workcell controller. Segment inspection demands the use of a gantry robot for the EMAT/ET inspection system. The EMAT/ET system utilized similar mechanical compliancy and software logic to accommodate complex part geometries. EMAT provides volumetric inspection capability while eddy current is limited to surface and near surface inspection. Each aspect of the systems are applicable to other industries, such as, inspection of pressure vessels, weld inspection, and traditional ultrasonic inspection applications.
Optimization of Thixoforging Parameters for C70S6 Steel Connecting Rods
NASA Astrophysics Data System (ADS)
Özkara, İsa Metin; Baydoğan, Murat
2016-11-01
A microalloyed steel, C70S6, with a solidification interval of 1390-1479 °C, was thixoforged in the semisolid state in a closed die at temperatures in the range 1400-1475 °C to form a 1/7 scaled-down model of a passenger vehicle connecting rod. Die design and an optimized thixoforging temperature eliminated the excessive flash and other problems during forging. Tension test samples from connecting rods thixoforged at the optimum temperature of 1440 °C exhibited nearly the same hardness, yield strength, and ultimate tensile strength as conventional hot forged samples but ductility decreased by about 45% due to grain boundary ferrite network formed during cooling from the thixoforging temperature. Thus, C70S6-grade steel can be thixoforged at 1440 °C to form flash-free connecting rods. This conclusion was also validated using FEA analysis.
Evolution of the Ultrasonic Inspection Requirements of Heavy Rotor Forgings Over the Past Decades
NASA Astrophysics Data System (ADS)
Vrana, J.; Zimmer, A.; Bailey, K.; Angal, R.; Zombo, P.; Büchner, U.; Buschmann, A.; Shannon, R. E.; Lohmann, H.-P.; Heinrich, W.
2010-02-01
Heavy rotor forgings for land-based power generation turbines and generators are inspected ultrasonically. Several decades ago the first inspections were conducted using manual, straight beam, contact transducers with simple, non-descript reporting requirements. The development of ultrasonic inspection capabilities, the change in design engineer requirements, improvements of fracture mechanics calculations, experience with turbine operation, experience with the inspection technology, and probability of detection drove the changes that have resulted in the current day inspection requirements: sizing technologies were implemented, detection limits were lowered, angle and pitch/catch (dual crystal) scans were introduced, and most recently automated equipment for the inspection was required. Due to all these changes, model based sizing techniques, like DGS, and modern ultrasonic techniques, like phased array, are being introduced globally. This paper describes the evolution of the ultrasonic inspection requirements over the last decades and presents an outlook for tomorrow.
Singh, Lakhwinder Pal; Bhardwaj, Arvind; Kumar, Deepak Kishore
2012-01-01
Occupational noise exposure and noise-induced hearing loss (NIHL) have been recognized as a problem among workers in Indian industries. The major industries in India are based on manufacturing. There are appreciable numbers of casting and forging units spread across the country. The objective of this study is to determine the prevalence of permanent hearing threshold shift among the workers engaged in Indian iron and steel small and medium enterprises (SMEs) and compared with control group subjects. As a part of hearing protection intervention, audiometric tests were conducted at low (250-1000 Hz), medium (1500-3000 Hz), and high (4000-8000 Hz) frequencies. The occurrence of hearing loss was determined based on hearing threshold levels with a low fence of 25 dB. Comparisons were made for hearing threshold at different frequencies between the exposed and control groups using Student's t test. ANOVA was used for the comparison of hearing threshold dB at different frequencies among occupation and year of experience. A P value <0.05 was considered as statistically significant. All data were presented as mean value (SD). Over 90% of workers engaged in various processes of casting and forging industry showed hearing loss in the noise-sensitive medium and higher frequencies. Occupation was significantly associated with NIHL, and hearing loss was particularly high among the workers of forging section. The analyses revealed a higher prevalence of significant hearing loss among the forging workers compared to the workers associated with other activities. The study shows alarming signals of NIHL, especially in forging workers. The occupational exposure to noise could be minimized by efficient control measures through engineering controls, administrative controls, and the use of personal protective devices. Applications of engineering and/or administrative controls are frequently not feasible in the developing countries for technical and financial reasons. A complete hearing conservation programme, including training, audiometry, job rotation, and the use of hearing protection devices, is the most feasible method for the protection of industrial workers from prevailing noise in workplace environments in the developing countries.
Archaeometallurgical investigation of the iron anchor from the Tantura F shipwreck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aronson, A.; Ashkenazi, D., E-mail: dana@eng.tau.ac.il; Barkai, O.
2013-04-15
The Tantura F shipwreck was a coaster or a fishing vessel about 15.7 m long, discovered in the Dor/Tantura lagoon, Israel in 1995. It was dated to between the mid-7th and the end of the 8th centuries CE. Among the finds excavated were two T-shaped type iron anchors. Of the two anchors, one (anchor A) was thoroughly studied by archaeometallurgical methods in order to identify forge-welding lines, to determine the welding quality and to understand the manufacturing technology. The examinations included X-ray radiography, XRF analysis, optical microscopy, SEM/EDS observation and analysis, OES analysis and microhardness tests. The investigation included characterizationmore » of the composition, microstructure, thermal treatments, forge-welding junctions and slag analysis. The results revealed a heterogeneous microstructure, rich in glassy, fayalite and wüstite slag. Iron based phases included ferrite, pearlite, cementite and Widmanstätten plates, all typical to wrought iron. The forge-welds of Anchor A were located. Each arm was made of one piece, weighing about 2.5–3 kg and the shank was made of a few 1.5–2 kg pieces. The second anchor (anchor B) was only briefly examined visually and with a few radiographs, which support the results from anchor A. The research results revealed significant information about T-shaped anchors and their manufacturing process, including hot-working processes without any additional heat treatments, and folding techniques. The microstructure was similar to other ancient simple tools such as saws, sickles, axes and mortise chisels, and though the technology to make complicated structures and objects, such as swords, existed at that time, the anchors did not require this sophistication; thus simpler techniques were used, presumably because they were more cost-effective. - Highlights: ► Tantura F was a coaster dated to mid-7th–end-8th centuries. ► Two iron anchors were discovered at the Tantura F shipwreck-site. ► Anchor A was manufactured from heterogeneous wrought iron blooms. ► Forge-welding lines were detected using archaeometallurgical methods.« less
Combined stamping-forging for non-axisymmetric product
NASA Astrophysics Data System (ADS)
Taureza, Muhammad; Danno, Atsushi; Song, Xu; Oh, Jin An
2016-10-01
Successive combined stamping-forging (CSF) is proposed to produce multi-thickness non-axisymmetric components. This method involves successive compression to create exclusively outward metal flow. Hitherto, the development of CSF has been mostly done for axisymmetric geometry. Using this technique, defect-free rectangular case component with length to thickness ratio of 40 is produced with lower forging pressure. This technology has potential for high throughput production of parts with multiple thicknesses and high width to thickness ratio.
Identification of forged Bank of England £20 banknotes using IR spectroscopy
NASA Astrophysics Data System (ADS)
Sonnex, Emily; Almond, Matthew J.; Baum, John V.; Bond, John W.
2014-01-01
Bank of England notes of £20 denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. An aim of this work was to develop a non-destructive method so that a small, compact Fourier transform infrared spectrometer (FT-IR) instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 cm-1 arising from νasym (CO32-) from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine £20 notes were observed in the ν(OH) (ca. 3500 cm-1), ν(Csbnd H) (ca. 2900 cm-1) and ν(Cdbnd O) (ca. 1750 cm-1) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper.
Identification of forged Bank of England £20 banknotes using IR spectroscopy.
Sonnex, Emily; Almond, Matthew J; Baum, John V; Bond, John W
2014-01-24
Bank of England notes of £20 denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. An aim of this work was to develop a non-destructive method so that a small, compact Fourier transform infrared spectrometer (FT-IR) instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 cm(-1) arising from νasym (CO3(2-)) from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine £20 notes were observed in the ν(OH) (ca. 3500 cm(-1)), ν(C-H) (ca. 2900 cm(-1)) and ν(C=O) (ca. 1750 cm(-1)) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper. Copyright © 2013 Elsevier B.V. All rights reserved.
Superplastic forging nitride ceramics
Panda, P.C.; Seydel, E.R.; Raj, R.
1988-03-22
A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.
A Life Study of Ausforged, Standard Forged and Standard Machined AISI M-50 Spur Gears
NASA Technical Reports Server (NTRS)
Townsend, D. P.; Bamberger, E. N.; Zaretsky, E. V.
1975-01-01
Tests were conducted at 350 K (170 F) with three groups of 8.9 cm (3.5 in.) pitch diameter spur gears made of vacuum induction melted (VIM) consumable-electrode vacuum-arc melted (VAR), AISI M-50 steel and one group of vacuum-arc remelted (VAR) AISI 9310 steel. The pitting fatigue life of the standard forged and ausforged gears was approximately five times that of the VAR AISI 9310 gears and ten times that of the bending fatigue life of the standard machined VIM-VAR AISI M-50 gears run under identical conditions. There was a slight decrease in the 10-percent life of the ausforged gears from that for the standard forged gears, but the difference is not statistically significant. The standard machined gears failed primarily by gear tooth fracture while the forged and ausforged VIM-VAR AISI M-50 and the VAR AISI 9310 gears failed primarily by surface pitting fatigue. The ausforged gears had a slightly greater tendency to fail by tooth fracture than the standard forged gears.
Evaluation of Subsequent Heat Treatment Routes for Near-β Forged TA15 Ti-Alloy
Sun, Zhichao; Wu, Huili; Yang, He
2016-01-01
TA15 Ti-alloy is widely used to form key load-bearing components in the aerospace field, where excellent service performance is needed. Near-β forging technology provides an attractive way to form these complicated Ti-alloy components but subsequent heat treatment has a great impact on the final microstructure and mechanical properties. Therefore evaluation and determination of the heat treatment route is of particular significance. In this paper, for the near-β forged TA15 alloy, the formation and evolution of microstructures under different subsequent heat treatment routes (annealing, solution and aging, toughening and strengthening) were studied and the cooling mode after forging was also considered. Then, the type and characteristics of the obtained microstructures were discussed through quantitative metallographic analysis. The corresponding mechanical properties (tensile, impact toughness, and fracture toughness) and effects of microstructural characteristics were investigated. Finally, for a required microstructure and performance a reasonable heat treatment route was recommended. The work is of importance for the application and development of near-β forging technology. PMID:28773994
NASA Astrophysics Data System (ADS)
Kiahosseini, Seyed Rahim; Mohammadi Baygi, Seyyed Javad; Khalaj, Gholamreza; Khoshakhlagh, Ali; Samadipour, Razieh
2018-01-01
Cubic specimens from AISI 316 stainless steel were multiaxially forged to 15 passes and annealed at 1200 °C for 1, 2, and 3 h and finally sensitized at 700 °C for 24 h. Examination of samples indicated that the hardness of the annealed samples was reduced from 153 to 110, 81, and 74 HV for as-received sample and under 1, 2, and 3 h of annealing, and increased from 245 to 288 HV for samples forged at 3 and 7 passes. However, no significant changes were observed in a large number of passes and at about 300 HV. Degree of sensitization of samples was increased to approximately 27.3% at 3-h annealing but reduced to 1.23% by 15 passes of MF. The potentiodynamic polarization test shows that the breakdown potentials decreased with annealing time from 0.6 to - 102 (mV/SCE) for as-received and 3-h annealed specimen. These potentials increased to approximately - 16.5 mV with the increase in MF passes to 15. These observations indicated that the chromium carbide deposition affects Cr-depleted zone, which can subsequently affect the degree of sensitization and pitting corrosion resistance of AISI 316 austenitic stainless steel.
Forging a 21st Century Model for Undergraduate Research
ERIC Educational Resources Information Center
Musante, Susan
2011-01-01
Not all biology students get to experience scientific research firsthand, but the National Genomics Research Initiative (NGRI) is working to change that. The NGRI is the first initiative to spring from Howard Hughes Medical Institute's (HHMI) new Science Education Alliance (SEA). At present, a competitive application process determines which…
40 CFR Appendix B to Part 438 - Oily Operations Definitions
Code of Federal Regulations, 2011 CFR
2011-07-01
... part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed either dry... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...
40 CFR Appendix B to Part 438 - Oily Operations Definitions
Code of Federal Regulations, 2013 CFR
2013-07-01
... against the part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...
40 CFR Appendix B to Part 438 - Oily Operations Definitions
Code of Federal Regulations, 2014 CFR
2014-07-01
... against the part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...
40 CFR Appendix B to Part 438 - Oily Operations Definitions
Code of Federal Regulations, 2012 CFR
2012-07-01
... against the part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...
40 CFR Appendix B to Part 438 - Oily Operations Definitions
Code of Federal Regulations, 2010 CFR
2010-07-01
... part. Abrasive blasting includes bead, grit, shot, and sand blasting, and may be performed either dry... between different polarity electrodes, one the part and the other the tool, separated by a small gap. The... mechanical processes such as hammer forging, shot peening, peening, coining, high-energy-rate forming...
Evaluation of a Complex, Multisite, Multilevel Grants Initiative
ERIC Educational Resources Information Center
Rollison, Julia; Hill, Gary; Yu, Ping; Murray, Stephen; Mannix, Danyelle; Mathews-Younes, Anne; Wells, Michael E.
2012-01-01
The Safe Schools/Healthy Students (SS/HS) national evaluation seeks to assess both the implementation process and the results of the SS/HS initiative, exploring factors that have contributed to or detracted from grantee success. Each site is required to forge partnerships with representatives from education, mental health, juvenile justice, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhleman, T.; Dempsey, P.
Although reduced activity has left its mark on engineering budgets and many projects have been delayed, industry remains committed to research and development. This year's emphasis is offshore where new-generation semi-submersibles are under construction for Arctic waters and where equipment technology is reaching maturity. Improved tubulars such as new process-forged drill pipe, special alloy, corrosion-resistant pipe and new tool joint designs are finding eager markets both on and offshore. And back in the office, microcomputers, a curiosity a few years ago, are making significant advances in improving drilling and production operations. Specific examples of this new technology include: Two high-tech,more » high-risk floaters Hard rock sidewall coring tool New torque-resistant tool joint Two improved riser connection systems Breakthrough in drill pipe manufacturing Power-packed portable drilling computer.« less
Clinical Immersion and Biomedical Engineering Design Education: "Engineering Grand Rounds".
Walker, Matthew; Churchwell, André L
2016-03-01
Grand Rounds is a ritual of medical education and inpatient care comprised of presenting the medical problems and treatment of a patient to an audience of physicians, residents, and medical students. Traditionally, the patient would be in attendance for the presentation and would answer questions. Grand Rounds has evolved considerably over the years with most sessions being didactic-rarely having a patient present (although, in some instances, an actor will portray the patient). Other members of the team, such as nurses, nurse practitioners, and biomedical engineers, are not traditionally involved in the formal teaching process. In this study we examine the rapid ideation in a clinical setting to forge a system of cross talk between engineers and physicians as a steady state at the praxis of ideation and implementation.
Microscopic Evaluation of Friction Plug Welds- Correlation to a Processing Analysis
NASA Technical Reports Server (NTRS)
Rabenberg, Ellen M.; Chen, Poshou; Gorti, Sridhar
2017-01-01
Recently an analysis of dynamic forge load data from the friction plug weld (FPW) process and the corresponding tensile test results showed that good plug welds fit well within an analytically determined processing parameter box. There were, however, some outliers that compromised the predictions. Here the microstructure of the plug weld material is presented in view of the load analysis with the intent of further understanding the FPW process and how it is affected by the grain structure and subsequent mechanical properties.
Investigation of fatigue strength of tool steels in sheet-bulk metal forming
NASA Astrophysics Data System (ADS)
Pilz, F.; Gröbel, D.; Merklein, M.
2018-05-01
To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.
Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling
NASA Technical Reports Server (NTRS)
Bonacuse, Pete; Kantzos, Pete; Telesman, Jack
2002-01-01
Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro slices from extrusions and forgings. The ultimate goal of this study will be to use probabilistic methods to determine the reliability detriment that can be attributed to these ceramic inclusions.
Study on recognition algorithm for paper currency numbers based on neural network
NASA Astrophysics Data System (ADS)
Li, Xiuyan; Liu, Tiegen; Li, Yuanyao; Zhang, Zhongchuan; Deng, Shichao
2008-12-01
Based on the unique characteristic, the paper currency numbers can be put into record and the automatic identification equipment for paper currency numbers is supplied to currency circulation market in order to provide convenience for financial sectors to trace the fiduciary circulation socially and provide effective supervision on paper currency. Simultaneously it is favorable for identifying forged notes, blacklisting the forged notes numbers and solving the major social problems, such as armor cash carrier robbery, money laundering. For the purpose of recognizing the paper currency numbers, a recognition algorithm based on neural network is presented in the paper. Number lines in original paper currency images can be draw out through image processing, such as image de-noising, skew correction, segmentation, and image normalization. According to the different characteristics between digits and letters in serial number, two kinds of classifiers are designed. With the characteristics of associative memory, optimization-compute and rapid convergence, the Discrete Hopfield Neural Network (DHNN) is utilized to recognize the letters; with the characteristics of simple structure, quick learning and global optimum, the Radial-Basis Function Neural Network (RBFNN) is adopted to identify the digits. Then the final recognition results are obtained by combining the two kinds of recognition results in regular sequence. Through the simulation tests, it is confirmed by simulation results that the recognition algorithm of combination of two kinds of recognition methods has such advantages as high recognition rate and faster recognition simultaneously, which is worthy of broad application prospect.
EVALUATION OF THE MECHANICAL PROPERTIES OF 9NI-4CO FORGINGS.
FORGING, MECHANICAL PROPERTIES, STEEL , QUENCHING, SPECIFICATIONS, TENSILE PROPERTIES, COMPRESSIVE PROPERTIES, FATIGUE(MECHANICS), TOUGHNESS, STRESS...CORROSION, THERMAL STABILITY, STRAIN(MECHANICS), BAINITE , TEST METHODS, HEAT TREATMENT, CRACK PROPAGATION.
Temperature Contours around Milford FORGE site
Joe Moore
2016-03-09
This submission contains several ArcGIS shapefiles, each with Temperature contour lines at different depths. Subsurface temperature were important for characterizing the geothermal system beneath the FORGE site in Milford, Utah.
Code of Federal Regulations, 2010 CFR
2010-10-01
....7102-1 Policy. When acquiring the following forging items, whether as end items or components, acquire... propulsion shafts Excludes service and landing craft shafts. Periscope tubes All. Ring forgings for bull...
Utah FORGE Site Earthquake Animation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe Moore
This is a .kml earthquake animation covering the period of 1991 - 2011 for the Utah Milford FORGE site. It displays seismic events using different sized bubbles according to magnitude. It covers the general Utah FORGE area (large shaded rectangle) with the final site displayed as a smaller polygon along the northwestern margin. Earthquakes are subdivide into clusters and the time, date, and magnitude of each event is included. Nearby seismic stations are symbolized with triangles. This was created by the University of Utah Seismograph Stations (UUSS).
Post-processing of metal matrix composites by friction stir processing
NASA Astrophysics Data System (ADS)
Sharma, Vipin; Singla, Yogesh; Gupta, Yashpal; Raghuwanshi, Jitendra
2018-05-01
In metal matrix composites non-uniform distribution of reinforcement particles resulted in adverse affect on the mechanical properties. It is of great interest to explore post-processing techniques that can eliminate particle distribution heterogeneity. Friction stir processing is a relatively newer technique used for post-processing of metal matrix composites to improve homogeneity in particles distribution. In friction stir processing, synergistic effect of stirring, extrusion and forging resulted in refinement of grains, reduction of reinforcement particles size, uniformity in particles distribution, reduction in microstructural heterogeneity and elimination of defects.
Advanced Catalytic Combustors for Low Pollutant Emissions
1979-11-01
liner materials in both designs are sheet or forged HS188 . This alloy was designed for stability of the microstructure and properties during heat...625 Inco 718 I: Inca 625 HS188 L605 Hast X Figure 37. Catalytic Combustor Materials. 111 &I ~ 4 L. ,.Add. R service. The hot corrosion resistance of... HS188 is similar to L605 and somewhat F better than Hastelloy X, another common liner material. HS188 exhibits good low cyclo fatigue resistance up to
Development of Improved Design and 3D Printing Manufacture of Cross-Flow Fan Rotor
2016-06-01
the design study, each solver run was monitored. Plotting the value of the mass flows, as well as the torque on the rotor blades , allowed a simple...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) This study determined the optimum blade stagger angle for a cross-flow fan rotor and evaluated the...parametric study determined optimum blade stagger angle using thrust, power, and thrust-to-power ratio as desired output variables. A MarkForged Mark One 3D
Hypersonic airbreathing vehicle visions and enhancing technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, J.L.; Lockwood, M.K.; Petley, D.H.
1997-01-01
This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes{emdash}missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays. {copyright} {ital 1997 American Institute of Physics.}
Bradshaw, Catherine P; Haynes, Katherine Taylor
2012-07-01
Building on growing interest in translational research, this paper provides an overview of a special issue of Administration and Policy in Mental Health and Mental Health Service Research, which is focused on the process of forging and sustaining partnerships to support child mental health prevention and services research. We propose that partnership-focused research is a subdiscipline of translational research which requires additional research to better refine the theoretical framework and the core principles that will guide future research and training efforts. We summarize some of the major themes across the eight original articles and three commentaries included in the special issue. By advancing the science of partnership-focused research we will be able to bridge the gap between child mental health prevention and services research and practice.
Hayward, Mariam Naqshbandi; Mequanint, Selam; Paquette-Warren, Jann; Bailie, Ross; Chirila, Alexandra; Dyck, Roland; Green, Michael; Hanley, Anthony; Tompkins, Jordan; Harris, Stewart
2017-03-23
Given the astounding rates of diabetes and related complications, and the barriers to providing care present in Indigenous communities in Canada, intervention strategies that take into account contextual factors such as readiness to mobilize are needed to maximize improvements and increase the likelihood of success and sustainment. As part of the national FORGE AHEAD Program, we sought to develop, test and validate a clinical readiness consultation tool aimed at assessing the readiness of clinical teams working on-reserve in First Nations communities to participate in quality improvement (QI) to enhance diabetes care in Canada. A literature review was conducted to identify existing readiness tools. The ABCD - SAT was adapted using a consensus approach that emphasized a community-based participatory approach and prioritized the knowledge and wisdom held by community members. The tool was piloted with a group of 16 people from 7 provinces and 11 partnering communities to assess language use, clarity, relevance, format, and ease of completion using examples. Internal reliability analysis and convergence validity were conducted with data from 53 clinical team members from 11 First Nations communities (3-5 per community) who have participated in the FORGE AHEAD program. The 27-page Clinical Readiness Consultation Tool (CRCT) consists of five main components, 21 sub-components, and 74 items that are aligned with the Expanded Chronic Care Model. Five-point Likert scale feedback from the pilot ranged from 3.25 to 4.5. Length of the tool was reported as a drawback but respondents noted that all the items were needed to provide a comprehensive picture of the healthcare system. Results for internal consistency showed that all sub-components except for two were within acceptable ranges (0.77-0.93). The Team Structure and Function sub-component scale had a moderately significant positive correlation with the validated Team Climate Inventory, r = 0.45, p < 0.05. The testing and validation of the FORGE AHEAD CRCT demonstrated that the tool is acceptable, valid and reliable. The CRCT has been successfully used to support the implementation of the FORGE AHEAD Program and the health services changes that partnering First Nations communities have designed and undertaken to improve diabetes care. Current ClinicalTrial.gov protocol ID NCT02234973 . Date of Registration: July 30, 2014.
Magnetic Shield for Adiabatic Demagnetization Refrigerators (ADR)
NASA Technical Reports Server (NTRS)
Chui, Talso C.; Haddad, Nicolas E.
2013-01-01
A new method was developed for creating a less expensive shield for ADRs using 1018 carbon steel. This shield has been designed to have similar performance to the expensive vanadium permendur shields, but the cost is 30 to 50% less. Also, these shields can be stocked in a variety of sizes, eliminating the need for special forgings, which also greatly reduces cost.
ERIC Educational Resources Information Center
Koning, Erin; Houghtby, Beth; Izard, Patrice; Schuler, Jennifer
2014-01-01
This "water cooler" column features e-mail conversations between Erin Koning and three teachers--Beth, Jenna, and Patrice--and is a reflection of their participation in a Chicago Public School (CPS), professional development series designed to support the implementation of the Common Core State Standards (CCSS) in grades K-12. At the…
ERIC Educational Resources Information Center
Lent, Robert W.; Singley, Daniel; Sheu, Hung-Bin; Gainor, Kathy A.; Brenner, Bradley R.; Treistman, Dana; Ades, Lisa
2005-01-01
Central variables of social cognitive theory were adapted to forge an integrative model of well-being, which was designed to offer greater utility for therapeutic and self-directed change efforts than the dominant personality view of well-being. The authors present 2 studies using versions of the social cognitive model to predict domain-specific…
A Design for Life: A Consideration of the Learning Legacy of P.H. Pearse's "The Murder Machine"
ERIC Educational Resources Information Center
Cronin, James G. R.
2016-01-01
In the centenary of the death of Patrick Henry Pearse--one of the leaders of Ireland's 1916 Rebellion--it is interesting to reflect on the relevance of his writing for contemporary approaches to lifelong and lifewide learning. Pearse's essay "The Murder Machine" was forged within the tradition of progressive education movements in the…
Utah FORGE Site Location, Datasets, and Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe Moore
This submission includes the geographic extent shapefile of the Milford FORGE site located in Utah, along with a shapefile of seismometer positions throughout the area, and models of basin depth and potentiometric contours.
Fatigue curve needs for higher strength 2-1/4Cr-1Mo steel for petroleum process vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaske, C.E.
This paper reviews the data needed to develop fatigue design rules for pressure vessels fabricated from heat-treated 2-1/4Cr-1Mo steel (SA-387, Grade 22, Class 2 plates and SA-336, Grade F22 forgings) that are operated or designed to operate at temperatures greater than 371 C (700F). The available data were reviewed, and the results of that review were used to develop recommendations for needed analytical and experimental work. Extension of the fatigue-curve approach currently used for temperatures up to 371 C (700F) and development of a fracture-mechanics-based, crack-growth approach were addressed. Both of these two approaches must include means for assessing themore » time-dependent effects of oxidation and/or creep when fatigue cycling occurs at low stain rates or includes hold times. The recommendations of this study provide a plan for the development of fatigue design rules for the use of heat-treated 2-1/4Cr-1Mo steel at temperatures in the range of 371 to 482 C (700 to 900 F).« less
NASA Astrophysics Data System (ADS)
Simonov, M. Yu.; Simonov, Yu. N.; Shaimanov, G. S.
2018-01-01
The structure, dynamic cracking resistance, and micromechanisms of crack growth in initially highly tempered pipe billets made of structural carbon steel are studied after thermomechanical treatment, including cold plastic deformation by radial forging followed by annealing, under various conditions. The strength is found to be maximum after cold radial forging followed by annealing at 300°C. Cold radial forging and annealing at 600°C are shown to cause the formation of an ultrafine-grained structure with an average grain/subgrain size of 900 nm. The structural features formed in both the axial and the transverse direction after cold radial forging have been revealed. The mechanism of crack growth after heat treatment and thermomechanical treatment has been studied. The fracture surface elements formed during dynamic-crackingresistance tests have been qualitatively analyzed.
Identification of Forged Bank of England 20 Gbp Banknotes Using IR Spectroscopy
NASA Astrophysics Data System (ADS)
Sonnex, Emily
2014-06-01
Bank of England notes of 20 GBP denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. A principal aim of this work was to develop a method so that a small, compact ATR FTIR instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 wn from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine 20 GBP notes were observed in the ν(OH) (ca. 3500 wn), ν(C-H) (ca. 2900 wn) and ν(C=O) (ca. 1750 wn) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper. Further to this, with an announcement by the Bank of England to produce polymer banknotes in the future, the work has been extended using Australian polymer banknotes to show that the method would be transferable.
Valley Forge alternative transportation feasibility study
DOT National Transportation Integrated Search
2004-06-01
NPS, as part of their General Management Plan (GMP) realignment, worked with Volpe to develop a series of alternative transportation methods in Valley Forge National Historical Park. Automobiles are the predominant means of transportation in the park...
ERIC Educational Resources Information Center
Shah, Payal
2014-01-01
In an era of globalization, multifaceted and complex changes have increasingly interconnected geographically dispersed places. A central question of globalization studies concerns whether top-down forces of globalization are forging a global culture or whether processes of globalization from below are able to push back against homogenization by…
Promoting School Psychologist Participation in Transition Services Using the TPIE Model
ERIC Educational Resources Information Center
Talapatra, Devadrita; Roach, Andrew T.; Varjas, Kris; Houchins, David E.; Crimmins, Daniel B.
2018-01-01
Transition services can be used to forge family, school, and community partnerships and foster a successful shift to adult life for students with intellectual disabilities (ID). School psychologists can play a valuable additive role in supporting the transition process due to their graduate training in interpersonal skills; consultation services;…
Structure And Efficiency Of Timber Markets
Brian C. Murray; Jeffrey P. Prestemon
2003-01-01
Perfect competition has long been the standard by which economists have judged the market's ability to achieve an efficient social outcome. The competitive process, unfettered by the imperfections discussed below, forges an outcome in which goods and services are produced at their lowest possible cost, and market equilibrium is achieved at the point at which the...
Processing of Niobium-Lined M240 Machine Gun Barrels
2014-11-01
different materials (the gun steel and the niobium liner). A large chunk of the niobium liner in barrel 2 was torn away from the end of the liner at...it to increase the frictional bond between the liner and gun steel . The barrels with liners were hammer forged by FN. FN experienced some...
ERIC Educational Resources Information Center
Pai, Pei-Yu; Tsai, Hsien-Tung
2011-01-01
Extant studies generally recognise that virtual community building is an effective marketing programme for forging deep and enduring affective bonds with consumers. This study extends previous research by proposing and testing a model that investigates key mediating processes (via trust, satisfaction and identification) that underlie the…
Knowledge Management Formal and Informal Mentoring: An Empirical Investigation in Lebanese Banks
ERIC Educational Resources Information Center
Karkoulian, Silva; Halawi, Leila A.; McCarthy, Richard V.
2008-01-01
Purpose: As businesses continue to forge ahead in the twenty-first century, knowledge management (KM) has materialized as a significant differentiator. The process of creating new knowledge, sharing, and preserving such knowledge, is crucial for achieving competitive advantage. To gain maximum benefit from new knowledge, it must be efficiently…
NASA Astrophysics Data System (ADS)
Ghosh, Rahul; Venugopal, A.; Sankaravelayudham, P.; Panda, Rajiv; Sharma, S. C.; George, Koshy M.; Raja, V. S.
2015-02-01
The influence of thermomechanical treatment on the stress corrosion cracking behavior of AA7075 aluminum alloy forgings was examined in 3.5% NaCl solution by varying the extent of thermomechanical working imparted to each of the conditions. The results show that inadequate working during billet processing resulted in inferior corrosion and mechanical properties. However, more working with intermediate pre-heating stages also led to precipitation of coarse particles resulting in lowering of mechanical properties marginally and a significant reduction in the general/pitting corrosion resistance. The results obtained in the present study indicate that optimum working with controlled pre-heating levels is needed during forging to achieve the desired properties. It is also demonstrated that AA7075 in the over aged condition does not show any environmental cracking susceptibility in spite of the microstructural variations in terms of size and volume fraction of the precipitates. However, the above microstructural variations definitely affected the pitting corrosion and mechanical properties significantly and hence a strict control over the working and pre-heating stages during billet processing is suggested.
West Flank Coso FORGE Magnetotelluric 3D Data
Doug Blankenship
2016-01-01
This is the 3D version of the MT data for the West Flank FORGE area.The Coso geothermal field has had three Magnetotelluric (MT) datasets collected including surveys in 2003, 2006, and 2011. The final collection, in 2011, expanded the survey to the west and covers the West Flank of FORGE area.This most recent data set was collected by Schlumberger/WesternGeco and inverted by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy; the 2003 and 2006 data were integrated for these inversions in the present study.
A new force in the battle against light pollution
NASA Astrophysics Data System (ADS)
Mizon, R.
2009-02-01
A powerful new force in the ever-growing army of those concerned enough to publicly express their opposition to light pollution is Daniel Nixon. Thirty-year-old Daniel, of Wickford, Essex, studied Graphic Design at South East Essex College, Southend, and graduated with a BA (Hons). He is now busily forging a career as a freelance graphic designer. From early on, a special aspect of Dan's work has been what might be termed an "art attack" on light pollution, and in 2008 July he won the coveted Green Award for the best ecological project at the New Designers' Exhibition at the Business Design Centre in London.
Faulds, James E.; Blankenship, Douglas; Hinz, Nicholas H.; Sabin, Andrew; Nordquist, Josh; Hickman, Stephen H.; Glen, Jonathan; Kennedy, Mack; Siler, Drew; Robinson-Tait, Ann; Williams, Colin F.; Drakos, Peter; Calvin, Wendy M.
2015-01-01
The proposed Fallon FORGE site lies within and adjacent to the Naval Air Station Fallon (NASF) directly southeast of the town of Fallon, Nevada, within the large basin of the Carson Sink in west-central Nevada. The site is located on two parcels that include land owned by the NASF and leased and owned by Ormat Nevada, Inc. The Carson Sink in the vicinity of the Fallon site is covered by Quaternary deposits, including alluvial fan, eolian, and lacustrine sediments. Four wells penetrate the entire Neogene section and bottom in Mesozoic basement. Late Miocene to Quaternary basin-fill sediments are 0.5 to >1 km thick and overlie Oligocene-Miocene volcanic and lesser sedimentary rocks. The volcanic section is 0.5 to 1.0 km thick and dominated by Miocene mafic lavas. The Neogene section rests nonconformably on heterogeneous Mesozoic basement, which consists of Triassic-Jurassic metamorphic rocks intruded by Cretaceous granitic plutons. The structural framework is dominated by a gently west-tilted half graben cut by moderately to steeply dipping N- to NNEstriking normal faults that dip both east and west. Quaternary faults have not been observed within the proposed FORGE site. Fallon was selected for a potential FORGE site due to its extensional tectonic setting, abundance of available data, existing infrastructure, and documented temperatures, permeability, and lithologic composition of potential reservoirs that fall within the ranges specified by DOE for FORGE. Since the early 1970s, more than 45 wells have been drilled for geothermal exploration within the area. Four exploration wells within the FORGE site are available for use in the project. Several additional wells are available for monitoring outside the central FORGE site within the NASF and Ormat lease area, including numerous temperature gradient holes. There is an existing, ten-station micro-seismic earthquake (MEQ) array that has been collecting data since 2001; the MEQ array can be expanded to encompass the entire Fallon project. The well data indicate that a sizeable area (~4.5 km2 ) has adequate temperatures in crystalline basement but lacks sufficient permeability within the proposed FORGE site. There are two possible, competent target formations in Mesozoic basement for stimulation in the FORGE project area: 1) Jurassic felsic metavolcanic rocks/and or metaquartzite; and 2) Cretaceous granitic intrusions. These units make up at least 3 km3 in the project area and have target temperatures of ~175-215o C. The abundant well data and detailed geophysical surveys (e.g., gravity, MT, and seismic reflection) provide significant subsurface control for the site and will permit development of a detailed 3D model. The documented temperatures, low permeability, and basement lithologies, as well as abundant available data facilitate development of a site dedicated to testing and improving new EGS technologies and techniques, thus making Fallon an ideal candidate for FORGE.
Behavioral change in patients with severe self-injurious behavior: a patient's perspective.
Kool, Nienke; van Meijel, Berno; Bosman, Maartje
2009-02-01
Semistructured interviews were conducted with 12 women who had successfully stopped self-injuring to gain an understanding of the process of stopping self-injury. The data were analyzed based on the grounded theory method. The researchers found that the process of stopping self-injury consists of six phases. Connection was identified as key to all phases of the process. Nursing interventions should focus on forging a connection, encouraging people who self-injure to develop a positive self-image and learn alternative behavior.
5. VIEW OF 20TON STEAMPOWERED FORGE HAMMER Manufactured by Chambersburg ...
5. VIEW OF 20-TON STEAM-POWERED FORGE HAMMER Manufactured by Chambersburg Engineering Company, Chambersburg, Pennsylvania - Juniata Shops, Blacksmith Shop No. 1, East of Fourth Avenue at Second Street, Altoona, Blair County, PA
Roosevelt Hot Springs, Utah FORGE Rock Properties
Gwynn, Mark
2018-04-07
This is an Excel spreadsheet that contains rock properties from several wells in the Utah FORGE study area. This includes a map of the wells. Data is described in the Final Topical Report included in the resources below.
The effects of composition and thermal path on hot ductility of forging steels
NASA Astrophysics Data System (ADS)
Connolly, Brendan M.
This work examines the effects of composition and thermal path on the hot ductility of several forging steels with varied aluminum and nitrogen content. The primary mechanisms and controlling factors related to hot ductility are identified with a focus on the role of precipitates and segregation. The unique thermal paths and solidification structures of large cross-section forging ingots are discussed. Hot ductility testing is performed in a manner that approximates industrial conditions experienced by large cross-section forging ingots. A computer model for precipitation of aluminum nitride and vanadium nitride in austenite is presented. Industrial material is examined for comparison to experimental findings. It is found that increased aluminum and nitrogen content coarsens the as-solidified structure. The combined effects of microsegregation and uphill diffusion during deformation allow for carbide precipitation at prior austenite grain boundaries which reduces the hot ductility.
Integral isolation valve systems for loss of coolant accident protection
Kanuch, David J.; DiFilipo, Paul P.
2018-03-20
A nuclear reactor includes a nuclear reactor core comprising fissile material disposed in a reactor pressure vessel having vessel penetrations that exclusively carry flow into the nuclear reactor and at least one vessel penetration that carries flow out of the nuclear reactor. An integral isolation valve (IIV) system includes passive IIVs each comprising a check valve built into a forged flange and not including an actuator, and one or more active IIVs each comprising an active valve built into a forged flange and including an actuator. Each vessel penetration exclusively carrying flow into the nuclear reactor is protected by a passive IIV whose forged flange is directly connected to the vessel penetration. Each vessel penetration carrying flow out of the nuclear reactor is protected by an active IIV whose forged flange is directly connected to the vessel penetration. Each active valve may be a normally closed valve.
What history reveals about Forge River pollution on Long Island, New York's south shore.
Swanson, R Lawrence; Brownawell, B; Wilson, Robert E; O'Connell, Christine
2010-06-01
Fifty years ago, the Forge River and Moriches Bay, of Long Island's south shore lagoonal system, achieved notoriety when their polluted conditions were alluded to in a report of the US President's Science Advisory Committee (1965). The Woods Hole Oceanographic Institution investigated the bay throughout the 1950s, identifying duck farming as the cause of "objectionable", "highly contaminated" conditions of these waters. Much has changed: duck farming declined; the river was dredged to remove polluted sediments, improve navigation; and barrier island inlets stabilized. Yet, the river remains seasonally eutrophic. Why? This paper reviews what occurred in the Forge River watershed. While governments aggressively curtailed the impacts of duck pollution, they failed to manage development and sewage pollution. The Forge experience indicates that watershed management is a continuing governmental responsibility as development accelerates. Otherwise, we will always be looking for that instantaneous remediation that is usually not affordable and is socially contentious.
Fallon, Nevada FORGE Well 21-31 Wireline Logs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenship, Doug
Included are the following wireline logs from the Fallon FORGE Well 21-31. Ormat_Forge 21-31_8.5 inch section: FMI data in PDF and DLIS formats; MSCT data in PDF format; Pressure and Temperature data in PDF, LAS, and DLIS formats; Sonic Scanner data in PDF, DLIS, and LAS formats (LAS format contains Stoneley Slowness, Shear Slowness, and Compressional Slowness logs); Triple Combo in PDF, DLIS, and LAS formats; and USIT data in DLIS and PDF formats. Ormat_Forge_21-31_12.25 inch section: Resistivity data in PDF and LAS formats; Sonic Scanner data in PDF, DLIS, and LAS formats (LAS format contains Stoneley Slowness, Shear Slowness,more » and Compressional Slowness logs); Triple Combo in PDF and LAS formats; and Caliper data in PDF format (DLIS format for caliper data is included in the Sonic Scanner DLIS).« less
NASA Astrophysics Data System (ADS)
Qiu, Lemiao; Liu, Xiaojian; Zhang, Shuyou; Sun, Liangfeng
2014-05-01
The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.
Ahmad, Azlan; Lajis, Mohd Amri
2017-01-01
Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future. PMID:28925963
Ahmad, Azlan; Lajis, Mohd Amri; Yusuf, Nur Kamilah
2017-09-19
Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.
NASA Astrophysics Data System (ADS)
Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.
2017-10-01
Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing without surface machining.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doug Blankenship
PDFs of seismic reflection profiles 101,110, 111 local to the West Flank FORGE site. 45 line kilometers of seismic reflection data are processed data collected in 2001 through the use of vibroseis trucks. The initial analysis and interpretation of these data was performed by Unruh et al. (2001). Optim processed these data by inverting the P-wave first arrivals to create a 2-D velocity structure. Kirchhoff images were then created for each line using velocity tomograms (Unruh et al., 2001).
Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape Manufacturing
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.
2006-01-01
Manufacturing of structural metal parts directly from computer aided design (CAD) data has been investigated by numerous researchers over the past decade. Researchers at NASA Langley Research Center are developing a new solid freeform fabrication process, electron beam freeform fabrication (EBF3), as a rapid metal deposition process that works efficiently with a variety of weldable alloys. EBF3 deposits of 2219 aluminium and Ti-6Al-4V have exhibited a range of grain morphologies depending upon the deposition parameters. These materials have exhibited excellent tensile properties comparable to typical handbook data for wrought plate product after post-processing heat treatments. The EBF3 process is capable of bulk metal deposition at deposition rates in excess of 2500 cm3/hr (150 in3/hr) or finer detail at lower deposition rates, depending upon the desired application. This process offers the potential for rapidly adding structural details to simpler cast or forged structures rather than the conventional approach of machining large volumes of chips to produce a monolithic metallic structure. Selective addition of metal onto simpler blanks of material can have a significant effect on lead time reduction and lower material and machining costs.
Electron Beam Freeform Fabrication (EBF3) for Cost Effective Near-Net Shape Manufacturing
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.
2006-01-01
Manufacturing of structural metal parts directly from computer aided design (CAD) data has been investigated by numerous researchers over the past decade. Researchers at NASA Langley Research Center are developing a new solid freeform fabrication process, electron beam freeform fabrication (EBF3), as a rapid metal deposition process that works efficiently with a variety of weldable alloys. EBF3 deposits of 2219 aluminium and Ti-6Al-4V have exhibited a range of grain morphologies depending upon the deposition parameters. These materials have exhibited excellent tensile properties comparable to typical handbook data for wrought plate product after post-processing heat treatments. The EBF3 process is capable of bulk metal deposition at deposition rates in excess of 2500 cubic centimeters per hour (150 in3/hr) or finer detail at lower deposition rates, depending upon the desired application. This process offers the potential for rapidly adding structural details to simpler cast or forged structures rather than the conventional approach of machining large volumes of chips to produce a monolithic metallic structure. Selective addition of metal onto simpler blanks of material can have a significant effect on lead time reduction and lower material and machining costs.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
... had increased and that the subject firm supplied component parts (steel forgings) to several firms... steel forgings produced at the subject firm, the Department did confirm that the subject firm did supply...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-16
... forgings did not contribute importantly to worker separations at the subject firm and no shift of... additional information regarding customers of the subject firm and imports of steel forgings and like or...
NASA Astrophysics Data System (ADS)
Semiatin, S. L.; McClary, K. E.; Rollett, A. D.; Roberts, C. G.; Payton, E. J.; Zhang, F.; Gabb, T. P.
2013-06-01
Plastic flow and microstructure evolution during sub- and supersolvus forging and subsequent supersolvus heat treatment of the powder-metallurgy superalloy LSHR (low-solvus, high-refractory) were investigated to develop an understanding of methods that can be used to obtain a moderately coarse gamma grain size under well-controlled conditions. To this end, isothermal, hot compression tests were conducted over broad ranges of temperature [(1144 K to 1450 K) 871 °C to 1177 °C] and constant true strain rate (0.0005 to 10 s-1). At low temperatures, deformation was generally characterized by flow softening and dynamic recrystallization that led to a decrease in grain size. At high subsolvus temperatures and low strain rates, steady-state flow or flow hardening was observed. These latter behaviors were ascribed to superplastic deformation and microstructure evolution characterized by a constant grain size or concomitant dynamic grain growth, respectively. During supersolvus heat treatment following subsolvus deformation, increases in grain size whose magnitude was a function of the prior deformation conditions were noted. A transition in flow behavior from superplastic to nonsuperplastic and the development during forging at a high subsolvus temperature of a wide (possibly bi- or multimodal) gamma-grain-size distribution having some large grains led to a substantially coarser grain size during supersolvus annealing in comparison to that produced under all other forging conditions.
Intelligence and arms control - a marriage of convenience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschfeld, T.J.
1987-01-01
This book offers the first comprehensive look at how the vast US intelligence network enables negotiators to forge viable arms control agreements. The intelligence role in all three phases of the arms control process is discussed - from the design phase when reliable information is needed, to the execution phase when proposals are modified, to the maintenance phase when agreed-upon obligations begin to constrain adversary behavior and compliance becomes the key political issue. Contributors include: former CIA Director William E. Colby; Douglas George, Chief of the CIA's Control Intelligence Staff, Admiral Bobby R. Inman, former NSA Director; Hans Mark, formermore » Air Force Secretary and NSA administrator; Walt W. Rostow, National Security Adviser to President Johnson; and Paul Warnke, former Director of the Arms Control and Disarmament Agency and Chief Negotiator for SALT II.« less
Calibration of 3D ALE finite element model from experiments on friction stir welding of lap joints
NASA Astrophysics Data System (ADS)
Fourment, Lionel; Gastebois, Sabrina; Dubourg, Laurent
2016-10-01
In order to support the design of such a complex process like Friction Stir Welding (FSW) for the aeronautic industry, numerical simulation software requires (1) developing an efficient and accurate Finite Element (F.E.) formulation that allows predicting welding defects, (2) properly modeling the thermo-mechanical complexity of the FSW process and (3) calibrating the F.E. model from accurate measurements from FSW experiments. This work uses a parallel ALE formulation developed in the Forge® F.E. code to model the different possible defects (flashes and worm holes), while pin and shoulder threads are modeled by a new friction law at the tool / material interface. FSW experiments require using a complex tool with scroll on shoulder, which is instrumented for providing sensitive thermal data close to the joint. Calibration of unknown material thermal coefficients, constitutive equations parameters and friction model from measured forces, torques and temperatures is carried out using two F.E. models, Eulerian and ALE, to reach a satisfactory agreement assessed by the proper sensitivity of the simulation to process parameters.
6. NORTH END OF MACHINE SHOP. FORGE SHOP (HAER No. ...
6. NORTH END OF MACHINE SHOP. FORGE SHOP (HAER No. CA-326-K) ON LEFT, FORD PLANT IN DISTANCE, NE BY 60. - Rosie the Riveter National Historical Park, Machine Shop, 1311 Canal Boulevard, Richmond, Contra Costa County, CA
NASA Astrophysics Data System (ADS)
Bala, Y. G.; Sankaranarayanan, S. Raman; Pandey, K. S.
2015-11-01
The present investigation was carried out to evaluate the densification, mechanical properties, microstructural and fractrography effects of AISI 8630 steel composition developed through powder preform forging under different heat treated conditions. Sintered preforms of different aspect ratios such as 0.6, 0.9, and 1.2 were hot upset forged to disc shape to different height strain to analysis the densification mechanism. Certain relationships relating strains, Poisson's ratio relating densification have revealed the effect of preform geometry on densification kinetics and resulted in the polynomial expression with justified regression coefficient greater the 0.9 or unity. The preforms of aspect ratio of 1.1 were hot upset forged to square cross section bars and transferred to different quenching medium like oil, water, furnace and air to assess its mechanical properties. Comparing the temperament of the heat treatments, sintered forged homogenised water quenched sample upshot in the maximum Tensile strength with least per centage elongation andthe furnace cooled sample shows the maximum toughness with desirable per centage elongation and least tensile strength. Microstructure stated the presence of varying ferrite and pearlite distribution and fractograph studies has disclosed the mixed mode of failure on the effect of varying heat treatments progression has affected the properties significantly.
Los Caminos: Latino/a Youth Forging Pathways in Pursuit of Higher Education
ERIC Educational Resources Information Center
Irizarry, Jason G.
2012-01-01
This article draws from data collected as part of a 3-year ethnographic study that followed two groups of Latino/a students through their final years of high school, the college application process, and for some, the inception of their postsecondary studies. Using Latino/a critical theory as an analytical framework, this article provides insights…
NASA Astrophysics Data System (ADS)
Tang, Fei
Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of the matrix choice (elemental Al) and the "low shear" consolidation methods utilized. This reinforcement effectiveness is further evidenced by elastic modulus measurements of the composites that are very close to the upper bound predictions of the rule of mixtures. The load partitioning measurements by neutron diffraction showed that composite samples made from GARS powders present significantly higher load transfer efficiency than the composites made from commercially atomized powders. Further analysis of the load sharing measurements and the calculated values of the mismatch of coefficient of thermal expansion (CTE) and the geometrically necessary dislocation (GND) effects suggest that these strengthening mechanisms can be combined to predict accurately the strength of the composites. By neutron diffraction measurements, it also was found that the composites consolidated from Al and Al63Cu25Fe12 quasicrystal alloy reinforcement powders have compressive residual stress in the Al matrix, contrary to the tensile residual stress in typical Al/SiC composites. The composites made by the quasi-isostatic forging process exhibited higher tensile strengths and much higher compressive residual stresses than the composites made by the VHP process.
Process Model for Friction Stir Welding
NASA Technical Reports Server (NTRS)
Adams, Glynn
1996-01-01
Friction stir welding (FSW) is a relatively new process being applied for joining of metal alloys. The process was initially developed by The Welding Institute (TWI) in Cambridge, UK. The FSW process is being investigated at NASA/MSEC as a repair/initial weld procedure for fabrication of the super-light-weight aluminum-lithium shuttle external tank. The FSW investigations at MSFC were conducted on a horizontal mill to produce butt welds of flat plate material. The weldment plates are butted together and fixed to a backing plate on the mill bed. A pin tool is placed into the tool holder of the mill spindle and rotated at approximately 400 rpm. The pin tool is then plunged into the plates such that the center of the probe lies at, one end of the line of contact, between the plates and the shoulder of the pin tool penetrates the top surface of the weldment. The weld is produced by traversing the tool along the line of contact between the plates. A lead angle allows the leading edge of the shoulder to remain above the top surface of the plate. The work presented here is the first attempt at modeling a complex phenomenon. The mechanical aspects of conducting the weld process are easily defined and the process itself is controlled by relatively few input parameters. However, in the region of the weld, plasticizing and forging of the parent material occurs. These are difficult processes to model. The model presented here addresses only variations in the radial dimension outward from the pin tool axis. Examinations of the grain structure of the weld reveal that a considerable amount of material deformation also occurs in the direction parallel to the pin tool axis of rotation, through the material thickness. In addition, measurements of the axial load on the pin tool demonstrate that the forging affect of the pin tool shoulder is an important process phenomenon. Therefore, the model needs to be expanded to account for the deformations through the material thickness and the forging affect of the shoulder. The energy balance at the boundary of the plastic region with the environment required that energy flow away from the boundary in both radial directions. One resolution to this problem may be to introduce a time dependency into the process model, allowing the energy flow to oscillate across this boundary. Finally, experimental measurements are needed to verify the concepts used here and to aid in improving the model.
A step-by-step introduction to rule-based design of synthetic genetic constructs using GenoCAD.
Wilson, Mandy L; Hertzberg, Russell; Adam, Laura; Peccoud, Jean
2011-01-01
GenoCAD is an open source web-based system that provides a streamlined, rule-driven process for designing genetic sequences. GenoCAD provides a graphical interface that allows users to design sequences consistent with formalized design strategies specific to a domain, organization, or project. Design strategies include limited sets of user-defined parts and rules indicating how these parts are to be combined in genetic constructs. In addition to reducing design time to minutes, GenoCAD improves the quality and reliability of the finished sequence by ensuring that the designs follow established rules of sequence construction. GenoCAD.org is a publicly available instance of GenoCAD that can be found at www.genocad.org. The source code and latest build are available from SourceForge to allow advanced users to install and customize GenoCAD for their unique needs. This chapter focuses primarily on how the GenoCAD tools can be used to organize genetic parts into customized personal libraries, then how these libraries can be used to design sequences. In addition, GenoCAD's parts management system and search capabilities are described in detail. Instructions are provided for installing a local instance of GenoCAD on a server. Some of the future enhancements of this rapidly evolving suite of applications are briefly described. Copyright © 2011 Elsevier Inc. All rights reserved.
He, Guoai; Tan, Liming; Liu, Feng; Huang, Lan; Huang, Zaiwang; Jiang, Liang
2017-01-01
Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX) process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs) to high angle grain boundaries (HAGBs) and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary. PMID:28772514
NASA Astrophysics Data System (ADS)
Wesling, V.; Treutler, K.; Bick, T.; Stonis, M.; Langner, J.; Kriwall, M.
2018-06-01
In lightweight construction, light metals like aluminum are used in addition to high-strength steels. However, a welded joint of aluminum and steel leads to the precipitation of brittle, intermetallic phases and contact corrosion. Nevertheless, to use the advantages of this combination in terms of weight saving composite hybrid forging has been developed. In this process, an aluminum solid part and a steel sheet were formed in a single step and joined at the same time with zinc as brazing material. For this purpose, the zinc was applied by hot dipping on the aluminum in order to produce a connection via this layer in a forming process, under pressure and heat. Due to the formed intermediate layer of zinc, the formation of the Fe-Al intermetallic phases and the contact corrosion are excluded. By determining the mathematical relationships between joining parameters and the connection properties the strength of a specific joint geometry could be adjusted to reach the level of conventional joining techniques. In addition to the presentation of the joint properties, the influence of the joining process on the structure of the involved materials is also shown. Furthermore, the failure behavior under static tensile and shear stress will be shown.
Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware
Srinivasa, Narayan; Stepp, Nigel D.; Cruz-Albrecht, Jose
2015-01-01
Neuromorphic hardware are designed by drawing inspiration from biology to overcome limitations of current computer architectures while forging the development of a new class of autonomous systems that can exhibit adaptive behaviors. Several designs in the recent past are capable of emulating large scale networks but avoid complexity in network dynamics by minimizing the number of dynamic variables that are supported and tunable in hardware. We believe that this is due to the lack of a clear understanding of how to design self-tuning complex systems. It has been widely demonstrated that criticality appears to be the default state of the brain and manifests in the form of spontaneous scale-invariant cascades of neural activity. Experiment, theory and recent models have shown that neuronal networks at criticality demonstrate optimal information transfer, learning and information processing capabilities that affect behavior. In this perspective article, we argue that understanding how large scale neuromorphic electronics can be designed to enable emergent adaptive behavior will require an understanding of how networks emulated by such hardware can self-tune local parameters to maintain criticality as a set-point. We believe that such capability will enable the design of truly scalable intelligent systems using neuromorphic hardware that embrace complexity in network dynamics rather than avoiding it. PMID:26648839
NASA Astrophysics Data System (ADS)
Kozyrev, Iu. G.
Topics covered include terms, definitions, and classification; operator-directed manipulators; autooperators as used in automated pressure casting; construction and application of industrial robots; and the operating bases of automated systems. Attention is given to adaptive and interactive robots; gripping mechanisms; applications to foundary production, press-forging plants, heat treatment, welding, and assembly operations. A review of design recommendations includes a determination of fundamental structural and technological indicators for industrial robots and a consideration of drive mechanisms.
Future requirements for advanced materials
NASA Technical Reports Server (NTRS)
Olstad, W. B.
1980-01-01
Recent advances and future trends in aerospace materials technology are reviewed with reference to metal alloys, high-temperature composites and adhesives, tungsten fiber-reinforced superalloys, hybrid materials, ceramics, new ablative materials, such as carbon-carbon composite and silica tiles used in the Shuttle Orbiter. The technologies of powder metallurgy coupled with hot isostatic pressing, near net forging, complex large shape casting, chopped fiber molding, superplastic forming, and computer-aided design and manufacture are emphasized.
Roosevelt Hot Springs, Utah FORGE Observation Well Data
Nash, Greg
2018-02-22
This archive contains temperature data for Roosevelt Hot Springs observation wells OH-1, OH-4, OH-5 and OH-7. There are also mud logs for OH-4. These are old datasets obtained from Rocky Mountain Power for use in the Utah FORGE project.
Forging Inclusive Solutions: Experiential Earth Charter Education
ERIC Educational Resources Information Center
Hill, Linda D.
2010-01-01
Forging Inclusive Solutions describes the aims, methodology and outcomes of Inclusive Leadership Adventures, an experiential education curriculum for exploring the Earth Charter. Experiential education builds meaningful relationships, skills, awareness and an inclusive community based on the Earth Charter principles. When we meet people where they…
Doug Blankenship
2016-03-01
x,y,z text file of the downhole lithologic interpretations in the wells in and around the Fallon FORGE site. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.
Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy
NASA Astrophysics Data System (ADS)
Wang, S. D.; Xu, D. K.; Wang, B. J.; Han, E. H.; Dong, C.
2016-04-01
Through investigating and comparing the fatigue behavior of an as-forged Mg-6.7Zn-1.3Y-0.6Zr (wt.%) alloy before and after solid solution treatment (T4) in laboratory air, the effect of T4 treatment on fatigue crack initiation was disclosed. S-N curves illustrated that the fatigue strength of as-forged samples was 110 MPa, whereas the fatigue strength of T4 samples was only 80 MPa. Observations to fracture surfaces demonstrated that for as-forged samples, fatigue crack initiation sites were covered with a layer of oxide film. However, due to the coarse grain structure and the dissolution of MgZn2 precipitates, the activation and accumulation of {10-12} twins in T4 samples were much easier, resulting in the preferential fatigue crack initiation at cracked twin boundaries (TBs). Surface characterization demonstrated that TB cracking was mainly ascribed to the incompatible plastic deformation in the twinned area and nearby α-Mg matrix.
High yttria ferritic ODS steels through powder forging
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.
2017-05-01
Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y2O3 (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility.
Effect of Friction on Barreling during cold Upset Forging of Aluminium 6082 Alloy Solid cylinders
NASA Astrophysics Data System (ADS)
Priyadarshini, Amrita; Kiran, C. P.; Suresh, K.
2018-03-01
Friction is one of the significant factors in forging operations since it affects metal flow in the die, forming load, strain distribution, tool and die life, surface quality of the product etc. In upset forging, the frictional forces at the die-workpiece interface oppose the outward flow of the material due to which the specimen develops a barrel shape. As a result, the deformation becomes non-uniform or inhomogeneous which is undesirable. Barreling can be reduced by applying effective lubricant on the surface of the platens. The objective of the present work is to study experimentally the effect of various frictional conditions (dry, grease, mineral oil) on barreling during upset forging of aluminum 6082 solid cylinders of different aspect ratio (length/diameter: 0.5, 0.75, 1). The friction coefficients are determined using the ring compression test. Curvature of barrel is determined based on the assumption that the curvature of the barrel follows the geometry of circular arc.
NASA Astrophysics Data System (ADS)
Zhu, Jingguo; Li, Menglin; Jiang, Yan; Xie, Tianpeng; Li, Feng; Jiang, Chenghao; Liu, Ruqing; Meng, Zhe
2017-10-01
Online 3-D laser-scanner is a non-contact measurement system with high speed, high precision and easy operation, which can be used to measure heavy and high-temperature forgings. But the current online laser measurement system is mainly a mobile light indicator, which can only be used in the limited environment and lacks the capability of 3-D accurate measurement. This paper mainly introduces the structure of the online high-speed real-time 3-D measurement for heavy high-temperature forgings of Academy of Opto-Electronics (AOE), Chinese Academy of Sciences. Combining TOF pulse distance measurement with hybrid scan mode, the system can scan and acquire point cloud data of an area of 20m×10m with a 75°×40° field of view at the distance of 20m. The entire scanning time is less than 5 seconds with an accuracy of 8mm, which can meet the online dimensional measurement requirements of heavy high-temperature forgings.
Grivas, Theodoros B; Savvidou, Olga D; Psarakis, Spyridon A; Bernard, Pierre-Francois; Triantafyllopoulos, George; Kovanis, Ioannis; Alexandropoulos, Panagiotis
2007-01-01
Introduction Fractures of the neck of the femoral component have been reported in uncemented total hip replacements, however, to our knowledge, no fractures of the neck of a cementless forged titanium alloy femoral stem coated in the proximal third with hydroxy-apatite have been reported in the medical literature. Case presentation This case report describes a fracture of the neck of a cementless forged titanium alloy stem coated in the proximal third with hydroxy-apatite. Conclusion The neck of the femoral stem failed from fatigue probably because of a combination of factors described analytically below. PMID:18062807
Wear resistance of Ti/TiB composites produced by spark plasma sintering
NASA Astrophysics Data System (ADS)
Ozerov, M.; Stepanov, N.; Zherebtsov, S.
2017-12-01
The tribological characteristics of Ti/TiB composites were studied in as-sintered condition and after isothermal multiaxial forging. A mixture of commercially pure Ti and TiB2 powders was used to produce Ti/TiB composites with 8.5 and 17 vol % of TiB via in-situ Ti+TiB2→Ti+TiB reactions during spark plasma sintering at 1000°C. During isothermal multiaxial forging (MAF), the material was exposed to successive compressions along three orthogonal directions at a temperature of 700°C and strain rate of 10-3 s-1 to cumulative strains e = 5.2. The microstructure of the as-sintered composites consisted of TiB whiskers nonuniformly distributed within the Ti matrix. In the forged composites, intensive shortening of TiB whiskers occurred. The hardness of the composites increased greatly compared to that of commercially pure Ti; the hardness also increased with increasing the TiB fraction. The hardness in the forged composites decreased by ˜20% for both composite states. Tribological tests using a standard ball-on-disk geometry showed that the friction coefficient of the Ti/TiB composites increased in comparison with Ti. Increasing the TiB fraction in the composites increased the friction coefficient and decreased the wear factor. It was shown that the tribological characteristics after isothermal multiaxial forging were changed but slightly.
Internal Shear Forging Processes for Missile Primary Structures.
1981-07-20
received condition. The as-received micro- structure displayed elongated recrystallized grains interspersed with particles of precipitate phases. SEM...re- crystallization regime for this alloy, and rolled specimens were reheated to 3160 C between passes, some recrystallization and grain size changes...experiment revealed that the actual solution treatment temperature was probably higher than 5000C. This resulted in melting of the eutectic and solid
ERIC Educational Resources Information Center
Repetti, Dawn M.
2004-01-01
When teachers at Madison Elementary School in Wauwatosa, Wisconsin attended a class to examine test data, they started a change process that led the whole school to learn differently--from teachers to students. This article discusses on how whole-faculty study teams have created stronger professional connections and collaboration between teachers…
Production and fabrication of 2500-lb Nb--Ti ingots to rod
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordier, T.E.; McDonald, W.K.
Interest in Nb--Ti superconducting devices is exploding. This paper outlines the critical production criteria for this material. Areas discussed include ingot blending, melting, forging, extrusion, and rod reducing with emphasis on the metallurgical considerations affecting mechanical properties. Data are included relating process parameters to TEM finding as well as R.T. ductility and optical microscopy. (auth)
Friction Pull Plug Welding in Aluminum Alloys
NASA Technical Reports Server (NTRS)
Brooke, Shane A.; Bradford, Vann; Burkholder, Jonathon
2011-01-01
NASA fs Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for External Tank. FPPW was easily selected as the primary process used to close out the termination hole on the Constellation Program fs ARES I Upper Stage circumferential Self ] Reacting Friction Stir Welds (SR ]FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR ]FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process fs limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.
Friction Pull Plug Welding in Aluminum Alloys
NASA Technical Reports Server (NTRS)
Brooke, Shane A.; Bradford, Vann
2012-01-01
NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.
27 CFR 447.22 - Forgings, castings, and machined bodies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Forgings, castings, and machined bodies. 447.22 Section 447.22 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION IMPORTATION OF ARMS, AMMUNITION AND...
27 CFR 447.22 - Forgings, castings, and machined bodies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Forgings, castings, and machined bodies. 447.22 Section 447.22 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION IMPORTATION OF ARMS, AMMUNITION AND...
27 CFR 447.22 - Forgings, castings, and machined bodies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Forgings, castings, and machined bodies. 447.22 Section 447.22 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION IMPORTATION OF ARMS, AMMUNITION AND...
27 CFR 447.22 - Forgings, castings, and machined bodies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Forgings, castings, and machined bodies. 447.22 Section 447.22 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION IMPORTATION OF ARMS, AMMUNITION AND...
Fallon, Nevada FORGE Geodetic Data
Blankenship, Doug; Eneva, Mariana; Hammond, William
2018-02-01
Fallon FORGE InSAR and geodetic GPS deformation data. InSAR shapefiles are packaged together as .MPK (ArcMap map package, compatible with other GIS platforms), and as .CSV comma-delimited plaintext. GPS data and additional metadata are linked to the Nevada Geodetic Laboratory database at the Univ. of Nevada, Reno (UNR).
Forging a unique nursing partnership with China.
Munn, Flavia
2017-07-12
When members of a London nursing faculty forged a learning partnership with a Chinese counterpart they likely did not expect to be discussing the benefits of using Florence Nightingale lamps to decorate hospital walls. But there is nothing ordinary about the collaboration between King's College London and Nanjing Health School.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
...: 187,264. Estimated Cost (Operation and Maintenance): $0. IV. Public Participation--Submission of... ensures that information is in the desired format, reporting burden (time and costs) is minimal... operated valves and switches. Inspection of Forging Machines, Guards, and Point-of-Operation Protection...
NASA Technical Reports Server (NTRS)
2001-01-01
Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.
Spin Testing of Superalloy Disks With Dual Grain Structure
NASA Technical Reports Server (NTRS)
Hefferman, Tab M.
2006-01-01
This 24-month program was a joint effort between Allison Advanced Development Company (AADC), General Electric Aircraft (GEAE), and NASA Glenn Research Center (GRC). AADC led the disk and spin hardware design and analysis utilizing existing Rolls-Royce turbine disk forging tooling. Testing focused on spin testing four disks: two supplied by GEAE and two by AADC. The two AADC disks were made of Alloy 10, and each was subjected to a different heat treat process: one producing dual microstructure with coarse grain size at the rim and fine grain size at the bore and the other produced single fine grain structure throughout. The purpose of the spin tests was to provide data for evaluation of the impact of dual grain structure on disk overspeed integrity (yielding) and rotor burst criteria. The program culminated with analysis and correlation of the data to current rotor overspeed criteria and advanced criteria required for dual structure disks.
ERIC Educational Resources Information Center
Ellrodt, John Charles; Fico, Maria; Harnett, Susanne; Ramsey, Lori Gerstein; Lopez, Angelina
2014-01-01
The Global Writes (GW) model is a well-designed performing arts integrated literacy program that builds local and global support among students, teachers, and arts partners through the use of innovative technologies. Through local partnerships between schools and arts organizations forged by GW, classroom teachers and local teaching artists build…
Publishing Platform for Scientific Software - Lessons Learned
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin; Fritzsch, Bernadette; Reusser, Dominik; Brembs, Björn; Deinzer, Gernot; Loewe, Peter; Fenner, Martin; van Edig, Xenia; Bertelmann, Roland; Pampel, Heinz; Klump, Jens; Wächter, Joachim
2015-04-01
Scientific software has become an indispensable commodity for the production, processing and analysis of empirical data but also for modelling and simulation of complex processes. Software has a significant influence on the quality of research results. For strengthening the recognition of the academic performance of scientific software development, for increasing its visibility and for promoting the reproducibility of research results, concepts for the publication of scientific software have to be developed, tested, evaluated, and then transferred into operations. For this, the publication and citability of scientific software have to fulfil scientific criteria by means of defined processes and the use of persistent identifiers, similar to data publications. The SciForge project is addressing these challenges. Based on interviews a blueprint for a scientific software publishing platform and a systematic implementation plan has been designed. In addition, the potential of journals, software repositories and persistent identifiers have been evaluated to improve the publication and dissemination of reusable software solutions. It is important that procedures for publishing software as well as methods and tools for software engineering are reflected in the architecture of the platform, in order to improve the quality of the software and the results of research. In addition, it is necessary to work continuously on improving specific conditions that promote the adoption and sustainable utilization of scientific software publications. Among others, this would include policies for the development and publication of scientific software in the institutions but also policies for establishing the necessary competencies and skills of scientists and IT personnel. To implement the concepts developed in SciForge a combined bottom-up / top-down approach is considered that will be implemented in parallel in different scientific domains, e.g. in earth sciences, climate research and the life sciences. Based on the developed blueprints a scientific software publishing platform will be iteratively implemented, tested, and evaluated. Thus the platform should be developed continuously on the basis of gained experiences and results. The platform services will be extended one by one corresponding to the requirements of the communities. Thus the implemented platform for the publication of scientific software can be improved and stabilized incrementally as a tool with software, science, publishing, and user oriented features.
A method for determining spiral-bevel gear tooth geometry for finite element analysis
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Litvin, Faydor L.
1991-01-01
An analytical method was developed to determine gear tooth surface coordinates of face-milled spiral bevel gears. The method uses the basic gear design parameters in conjunction with the kinematical aspects of spiral bevel gear manufacturing machinery. A computer program, SURFACE, was developed. The computer program calculates the surface coordinates and outputs 3-D model data that can be used for finite element analysis. Development of the modeling method and an example case are presented. This analysis method could also find application for gear inspection and near-net-shape gear forging die design.
1991-12-01
850F FOR 2 HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH STEP 4 - 230F FOR 24 HRS TABLE G5 TENSILE RESULTS FOR IN905XL FORGING COMPANY TEST...HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH STEP 4 - 230F FOR 24 HRS 12 TABLE G6 COMPRESSION RESULTS FOR IN905XL FORGING COMPANY TEST...LONG 58.0 11.4 DYNAMICS (*) (*): HEAT TREATED TO THE FOLLOWING SCHEDULE: STEP 1 - 850F FOR 2 HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH
The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy
NASA Astrophysics Data System (ADS)
Yang, Ling
The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta phase on grain boundaries. Effort was made to explore the mechanisms of improving the time dependent crack propagation resistance through thermal processing, several mechanisms were identified in both environment dependent and environment independent category, and they were ranked based on their contributions in affecting crack propagation.
The Ties That Bind: How Social Capital Is Forged and Forfeited in Teacher Communities
ERIC Educational Resources Information Center
Bridwell-Mitchell, E. N.; Cooc, North
2016-01-01
The effects of social capital on school improvement make it important to understand how teachers forge, maintain, or forfeit collegial relationships. Two common explanations focused on formal organizational features and individual characteristics do not address how social capital accrues from informal dynamics of teachers' interactions in…
Fallon, Nevada FORGE Gravity and Magnetics Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenship, Doug; Witter, Jeff; Carpenter, Thomas
This package contains principal facts for new gravity data collected September - November 2017 in support of the Fallon FORGE project. Also included are rock core density and magnetic susceptibility data for key core intervals, used in modeling 2D and 3D gravity inversions. Individual metadata summaries are provided as .pdf within each attached archive.
The Valley Forge Encampment: Epic on the Schuylkill.
ERIC Educational Resources Information Center
Trussell, John B. B., Jr.
Valley Forge, outside Philadelphia (Pennsylvania), has long been recognized as the site of a great victory of the human spirit. Eleven thousand men including Blacks and Indians resided there during the winter of 1777-78 and triumphed over cold, starvation, nakedness, disease, and uncertainty. The encampment site was unprepared for the tattered,…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-803] Heavy Forged Hand Tools (i.e... Administration, International Trade Administration, Department of Commerce. SUMMARY: On January 3, 2011, the Department of Commerce (``Department'') initiated a sunset review of the antidumping duty orders on heavy...
Forging an Identity over the Life-Course
ERIC Educational Resources Information Center
Spiteri, Damian
2009-01-01
Using a social constructionist approach, this study explores the self-perceptions of young men who, when at school, were classed as boys with social, emotional and behavioural difficulties (SEBD). The aim is to understand how these perceptions were forged throughout the young men's life-courses resulting in changing self-identities. The study also…
Family Health and Financial Literacy--Forging the Connection
ERIC Educational Resources Information Center
Braun, Bonnie; Kim, Jinhee; Anderson, Elaine A.
2009-01-01
Families are at-risk of or experiencing a diminished quality of living and life in current economic times and difficult decisions are required. Health and financial literacy are the basis for wise personal and public decision making. Family and consumer sciences (FCS) professionals can forge connections between health and financial literacy to…
Electronic Portfolios in Teacher Education: Forging a Middle Ground
ERIC Educational Resources Information Center
Strudler, Neal; Wetzel, Keith
2012-01-01
At a time when implementation of electronic portfolios (EPs) is expanding, the issues of clarifying their purposes continue to plague teacher education programs. Are student-centered uses of EPs compatible with program assessment and accreditation efforts? Is this an either/or situation, or can a productive middle ground be forged? This article…
ERIC Educational Resources Information Center
Achieve, Inc., 2010
2010-01-01
This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and…
Fallon, Nevada FORGE Fluid Geochemistry
Blankenship, Doug; Ayling, Bridget
2018-03-13
Fluid geochemistry analysis for wells supporting the Fallon FORGE project. Samples were collected from geothermal wells using standard geothermal water sampling techniques, including filtration and acidification of the cation sample to pH < 2 prior to geochemical analysis. Analyses after 2005 were done in reputable commercial laboratories that follow standard protocols for aqueous chemistry analysis.
Bottom head to shell junction assembly for a boiling water nuclear reactor
Fife, Alex Blair; Ballas, Gary J.
1998-01-01
A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening.
Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy
Wang, S. D.; Xu, D. K.; Wang, B. J.; Sheng, L. Y.; Han, E. H.; Dong, C.
2016-01-01
Effect of solid solution treatment (T4) on stress corrosion cracking (SCC) behavior of an as-forged Mg-6.7%Zn-1.3%Y-0.6%Zr (in wt.%) alloy has been investigated using slow strain rate tensile (SSRT) testing in 3.5 wt.% NaCl solution. The results demonstrated that the SCC susceptibility index (ISCC) of as-forged samples was 0.95 and its elongation-to-failure (εf) was only 1.1%. After T4 treatment, the SCC resistance was remarkably improved. The ISCC and εf values of T4 samples were 0.86 and 3.4%, respectively. Fractography and surface observation indicated that the stress corrosion cracking mode for as-forged samples was dominated by transgranular and partially intergranular morphology, whereas the cracking mode for T4 samples was transgranular. In both cases, the main cracking mechanism was associated with hydrogen embrittlement (HE). Through alleviating the corrosion attack of Mg matrix, the influence of HE on the SCC resistance of T4 samples can be greatly suppressed. PMID:27387817
Bottom head to shell junction assembly for a boiling water nuclear reactor
Fife, A.B.; Ballas, G.J.
1998-02-24
A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening. 5 figs.
Microstructure and degradation behavior of forged Fe-Mn-Si alloys
NASA Astrophysics Data System (ADS)
Xu, Zhigang; Hodgson, Michael A.; Cao, Peng
2015-03-01
This work presents a comparative study of a series of Fe-Mn-Si alloys proposed as degradable biomaterials for medical applications. Five Fe-28wt.%Mn-xSi (where x = 0 to 8 wt.%) alloys were fabricated by an arc-melting method. All the as-cast alloys were subsequently subjected to homogenization treatment and hot forging. The microstructure and phase constituents were investigated. It is found that the grain size of the as-forged alloys ranged approximately from 30 to 50 μm. The as-forged Fe-Mn-Si alloys containing Si from 2 to 6 wt.% was comprised of duplex martensitic ɛ and austenitic γ phases; however, the Si-free and 8 wt.% Si alloys only consisted of a single γ phase. After 30 days of static immersion test in a simulated body fluid (SBF) medium, it is found that pitting and general corrosion occur on the sample surfaces. Potentiodynamic analysis reveals that the degradation rate of the Fe-Mn-Si alloys increased gradually with Si content up to 6 wt.%, beyond which the degradation slows down.
NASA Astrophysics Data System (ADS)
Ebrahimzadeh, I.; Ashrafizadeh, F.
2015-01-01
Improvement of die life under hot forging of brass alloys is considered vital from both economical and technical points of view. One of the best methods for improving die life is duplex coatings. In this research, the influence of temperature on the tribological behavior of duplex-coated die steel rubbing against forging brass was investigated. The wear tests were performed on a pin-on-disk machine from room temperature to 700 °C; the pins were made in H13 hot work tool steel treated by plasma nitriding and by PVD coatings of TiN-TiAlN-CrAlN. The disks were machined from a two-phase brass alloy too. The results revealed that the friction coefficient of this tribosystem went through a maximum at 550 °C and decreased largely at 700 °C. Furthermore, the formation of Cr2O3 caused the reduction of friction coefficient at 700 °C. PVD coatings proved their wear resistance up to 550 °C, well above the working temperature of the brass forging dies.
Hiromoto, Sachiko; Onodera, Emi; Chiba, Akihiko; Asami, Katsuhiko; Hanawa, Takao
2005-08-01
Corrosion behaviour and microstructure of developed low-Ni Co-29Cr-(6, 8)Mo (mass%) alloys and a conventional Co-29Cr-6Mo-1Ni alloy (ASTM F75-92) were investigated in saline solution (saline), Hanks' solution (Hanks), and cell culture medium (E-MEM + FBS). The forging ratios of the Co-29Cr-6Mo alloy were 50% and 88% and that of the Co-29Cr-8Mo alloy was 88%. Ni content in the air-formed surface oxide film of the low-Ni alloys was under the detection limit of XPS. The passive current densities of the low-Ni alloys were of the same order of magnitude as that of the ASTM alloy in all the solutions. The passive current densities of all the alloys did not significantly change with the inorganic ions and the biomolecules. The anodic current densities in the secondary passive region of the low-Ni alloys were lower than that of the ASTM alloy in the E-MEM + FBS. Consequently, the low-Ni alloys are expected to show as high corrosion resistance as the ASTM alloy. On the other hand, the passive current density of the Co-29Cr-6Mo alloy with a forging ratio of 50% was slightly lower than that with a forging ratio of 88% in the saline. The refining of grains by further forging causes the increase in the passive current density of the low-Ni alloy.
Ductile Fracture Behaviour of Hot Isostatically Pressed Inconel 690 Superalloy
NASA Astrophysics Data System (ADS)
Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.
2018-04-01
Herein we assess the differences in Charpy impact behavior between Hot Isostatically Pressed and forged Inconel 690 alloy over the temperature range of 300 °C to - 196 °C. The impact toughness of forged 690 exhibited a relatively small temperature dependence, with a maximum difference of ca. 40 J measured between 300 °C and - 196 °C, whereas the HIP'd alloy exhibited a difference of approximately double that of the forged alloy over the same temperature range. We have conducted Charpy impact testing, tensile testing, and metallographic analyses on the as-received materials as well as fractography of the failed Charpy specimens in order to understand the mechanisms that cause the observed differences in material fracture properties. The work supports a recent series of studies which assess differences in fundamental fracture behavior between Hot Isostatically Pressed and forged austenitic stainless steel materials of equivalent grades, and the results obtained in this study are compared to those of the previous stainless steel investigations to paint a more general picture of the comparisons between HIP vs forged material fracture behavior. Inconel 690 was selected in this study since previous studies were unable to completely omit the effects of strain-induced martensitic transformation at the tip of the Chary V-notch from the fracture mechanism; Inconel 690 is unable to undergo strain-induced martensitic transformation due to the alloy's high nickel content, thereby providing a sister study with the omission of any martensitic transformation effects on ductile fracture behavior.
2012-01-01
using Avesta Pickling Paste 101 to determine forging flowlines. No anomalous microstructure was noticed during this examination. This 4”(w) x 45”(l...face of this section through the thickness was machined to a 32 RA surface finish and macro-etched using Avesta Pickling Paste 101 to determine
NASA Technical Reports Server (NTRS)
Toland, Ronald; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.
2003-01-01
In spite of its baseline mechanical stress relief, aluminum 6061-T651 harbors some residual stress that may relieve and distort mirror figure to unacceptable levels at cryogenic operating temperatures unless relieved during fabrication. Cryogenic instruments using aluminum mirrors for both ground-based and space IR astronomy have employed a variety of heat treatment formulae, with mixed results. We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(TM) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.
High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.
Castle, Elinor; Sheridan, Richard; Zhou, Wei; Grasso, Salvatore; Walton, Allan; Reece, Michael J
2017-09-11
In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd 30.0 Fe 61.8 Co 5.8 Ga 0.6 Al 0.1 B 0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m -1 ) and matched remanence (1.16 T) giving a BH max of 230 kJ m -3 .
Melli, Virginia; Rondelli, Gianni; Sandrini, Enrico; Altomare, Lina; Bolelli, Giovanni; Bonferroni, Benedetta; Lusvarghi, Luca; Cigada, Alberto; De Nardo, Luigi
2013-10-01
Industrial manufacturing of prosthesis components could take significant advantage by the introduction of new, cost-effective manufacturing technologies with near net-shape capabilities, which have been developed during the last years to fulfill the needs of different technological sectors. Among them, metal injection molding (MIM) appears particularly promising for the production of orthopedic arthroplasty components with significant cost saving. These new manufacturing technologies, which have been developed, however, strongly affect the chemicophysical structure of processed materials and their resulting properties. In order to investigate this relationship, here we evaluated the effects on electrochemical properties, ion release, and in vitro response of medical grade CoCrMo alloy processed via MIM compared to conventional processes. MIM of the CoCrMo alloy resulted in coarser polygonal grains, with largely varying sizes; however, these microstructural differences between MIM and forged/cast CoCrMo alloys showed a negligible effect on electrochemical properties. Passive current densities values observed were 0.49 µA cm(-2) for MIM specimens and 0.51 µA cm(-2) for forged CoCrMo specimens, with slightly lower transpassive potential in the MIM case; open circuit potential and Rp stationary values showed no significant differences. Moreover, in vitro biocompatibility tests resulted in cell viability levels not significantly different for MIM and conventionally processed alloys. Although preliminary, these results support the potential of MIM technology for the production of CoCrMo components of implantable devices. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Parse, Joseph B.; Wert, J. A.
1991-01-01
Inhomogeneities in the spatial distribution of second phase particles in engineering materials are known to affect certain mechanical properties. Progress in this area has been hampered by the lack of a convenient method for quantitative description of the spatial distribution of the second phase. This study intends to develop a broadly applicable method for the quantitative analysis and description of the spatial distribution of second phase particles. The method was designed to operate on a desktop computer. The Dirichlet tessellation technique (geometrical method for dividing an area containing an array of points into a set of polygons uniquely associated with the individual particles) was selected as the basis of an analysis technique implemented on a PC. This technique is being applied to the production of Al sheet by PM processing methods; vacuum hot pressing, forging, and rolling. The effect of varying hot working parameters on the spatial distribution of aluminum oxide particles in consolidated sheet is being studied. Changes in distributions of properties such as through-thickness near-neighbor distance correlate with hot-working reduction.
1992-06-25
This is a photograph of the Spacelab module for the first United States Microgravity Laboratory (USML-1) mission, showing logos of the Spacelab mission on the left and the USML-1 mission on the right. The USML-1 was one part of a science and technology program that opened NASA's next great era of discovery and established the United States' leadership in space. From investigations designed to gather fundamental knowledge in a variety of areas to demonstrations of new equipment, USML-1 forged the way for future USML missions and helped prepare for advanced microgravity research and processing aboard the Space Station. Thirty-one investigations comprised the payload of the first USML-1 mission. The experiments aboard USML-1 covered five basic areas: fluid dynamics, the study of how liquids and gases respond to the application or absence of differing forces; crystal growth, the production of inorganic and organic crystals; combustion science, the study of the processes and phenomena of burning; biological science, the study of plant and animal life; and technology demonstrations. The USML-1 was managed by the Marshall Space Flight Center and launched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.
PROCESS DEVELOPMENT QUARTERLY REPORT. II. PILOT PLANT WORK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlman, N. ed.
1957-05-01
Progress is reported on the gross solubility of U in digestions of Mallinokrodt feed materials, studies of variables affecting U purity in a TBP hexane extraction cycle, low-acid flowsheet for TBP--hexane extraction process based on a 440 g U/liter in lM HNO/sub 3/ digest liquor, hacking studies in the pilot plant pumperdecanter system, recovery of U from residues from the dingot process, lowering the H level in dingot metal, forging of dingot bar stock, dingot extrusion, fubrication of UO/sub 2/ fuel elements, and the determination of H content of derby and ingot metal. (W.L.H.)
Military Rule and the Problem of Legitimacy: Peru, 1968-1975 and Argentina, 1976-1983
1992-05-01
national development. To develop, Peru needed to forge a modem industrial society as well as an efficient agrarian sector. The military’s first step was...while reserving certain ’key industrial sectors to the state." 11 The military government also developed innovative structural reforms designed to do...away with the old elitist and corrupt way of implementing socioeconomic policies. One of these reforms, the Industrial Community, was to result in
R-EACTR: A Framework for Designing Realistic Cyber Warfare Exercises
2017-09-11
2.1 Environment 3 2.2 Adversary 4 2.3 Communications 4 2.4 Tactics 5 2.5 Roles 5 3 Case Study – Cyber Forge 11 7 3.1 Environment 7 3.2...realism into each aspect of the exercise, and a case study of one exercise where the framework was successfully employed. CMU/SEI-2017-TR-005...network, emulation, logging, reporting Supporting: computer network defense service provider (CNDSP), intelligence, reach-back, higher
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... Environmental Response, Compensation and Liability Act, 42 U.S.C. 9607 and 9613. The claims arise from asbestos contamination at the Valley Forge Asbestos Release Site (the ``Site''), located within the Valley Forge National..., several companies owned and operated an asbestos manufacturing facility on 46 acres within the Site. The...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
...., Including On-Site Leased Workers from People Link Staffing, Forge Staffing, Career Transitions and Talent... Career Transitions and Talent Source were employed on-site at the South Bend, Indiana location of Heraeus... workers leased from Career Transitions and Talent Source working on-site at the South Bend, Indiana...
Social Work and Engineering Collaboration: Forging Innovative Global Community Development Education
ERIC Educational Resources Information Center
Gilbert, Dorie J.
2014-01-01
Interdisciplinary programs in schools of social work are growing in scope and number. This article reports on collaboration between a school of social work and a school of engineering, which is forging a new area of interdisciplinary education. The program engages social work students working alongside engineering students in a team approach to…
Forging Consensus for Implementing Youth Socialization Policy in Northwest China
ERIC Educational Resources Information Center
Fairbrother, Gregory P.
2011-01-01
The goal of this article is to examine how the provincial education media in China play a role of forging consensus among local actors responsible for the implementation of new centrally-promulgated youth socialization policy. In doing so, it also explores the tension among three of the Chinese state's claims to legitimacy: economic development,…
Phenopix: a R package to process digital images of a vegetation cover
NASA Astrophysics Data System (ADS)
Filippa, Gianluca; Cremonese, Edoardo; Migliavacca, Mirco; Galvagno, Marta; Morra di Cella, Umberto; Richardson, Andrew
2015-04-01
Plant phenology is a globally recognized indicator of the effects of climate change on the terrestrial biosphere. Accordingly, new tools to automatically track the seasonal development of a vegetation cover are becoming available and more and more deployed. Among them, near-continuous digital images are being collected in several networks in the US, Europe, Asia and Australia in a range of different ecosystems, including agricultural lands, deciduous and evergreen forests, and grasslands. The growing scientific interest in vegetation image analysis highlights the need of easy to use, flexible and standardized processing techniques. In this contribution we illustrate a new open source package called "phenopix" written in R language that allows to process images of a vegetation cover. The main features include: (i) define of one or more areas of interest on an image and process pixel information within them, (ii) compute vegetation indexes based on red green and blue channels, (iii) fit a curve to the seasonal trajectory of vegetation indexes and extract relevant dates (aka thresholds) on the seasonal trajectory; (iv) analyze image pixels separately to extract spatially explicit phenological information. The utilities of the package will be illustrated in detail for two subalpine sites, a grassland and a larch stand at about 2000 m in the Italian Western Alps. The phenopix package is a cost free and easy-to-use tool that allows to process digital images of a vegetation cover in a standardized, flexible and reproducible way. The software is available for download at the R forge web site (r-forge.r-project.org/projects/phenopix/).
Liquid-metal atomization for hot working preforms
NASA Technical Reports Server (NTRS)
Grant, N. J.; Pelloux, R. M.
1974-01-01
Rapid quenching of a liquid metal by atomization or splat cooling overcomes the major limitation of most solidification processes, namely, the segregation of alloying elements, impurities, and constituent phases. The cooling rates of different atomizing processes are related to the dendrite arm spacings and to the microstructure of the atomized powders. The increased solubility limits and the formation of metastable compounds in splat-cooled alloys are discussed. Consolidation of the powders by hot isostatic compaction, hot extrusion, or hot forging and rolling processes yields billets with properties equivalent to or better than those of the wrought alloys. The application of this powder processing technology to high-performance alloys is reviewed.
A Fundamental Study of Tool Steels Processed from Rapidly Solidified Powders.
1981-12-01
structures, HIP or HIP and hot-worked high speed tool steels and powder forgings of low and medium alloy steels for load- bearing automotive...M7, M7S, M41, M42, M43S, T15 and M50 . These P/M tool steels exhibit a degree of alloy homogeneity and a fineness/uniformity of carbide dispersion...AD-AIl2 758 DREXEL UNIV PHILADEL.PH IA PA DEPT OF MATERIALS ENGINEERING F/6 11/6 A FUNDAMENTAL STUDY OF TOOL STEELS PROCESSED FROM L DEC 81 A
1992-09-09
ASHER Office of the Assistant Secretary of Defense (Program, Analysis & Evaluation) MR. JAMES C. PILGER Office of the Assistant Secretary of the Army...CHANGES TO THE MAJOR WEAPONS SYSTEM ACQUISITION PROCESS The major weapon system acquisition processes forged during the Cold War may not be practical...No one can estimate the extent of cost growth with a high degree of accuracy. However, review of 30-40 years of cold war history dops allow the
Evaluation of material homogeniety as a function of thickness of low-alloy ferritic steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, T.L.; Lambert, M.A.
1989-11-01
A series of Charpy and nil-ductility transition temperature (NDTT) tests were performed on 8 in. and 12 in. thick forgings of A508-4A, A508-4B, and A350-LF3 steels. Three different positions in thickness were tested in the 12 in. forgings, while two locations in the forging were analyzed. Chemical analysis and metallographic examination were also performed on each material and in each thickness location. The material toughness tended to be lower in the thicker forgings and in the center of a given forging. Low relative toughness coincided with well tempered microstructures, where equiaxed ferrite grains had begun to form. These grains aremore » coarser than the packet structure that existed at earlier stages of tempering. Low quench rates (associated with thick sections and central regions of a given thickness) apparently accelerated the structural changes during tempering, which led to microstructures with low toughness. The NDTT results were suspect because most arrests occurred in the heat affected zones (HAZs) of the welds rather than in the parent metal. The measured NDTT values were lower than expected, based on published empirical correlations with Charpy energy. This was particularly true for the A508-4A steel. This provided further evidence that the drop weight tests were actually measuring the arrest properties of the HAZ in most cases. The fact that NDTT values were lower than expected is particularly surprising since the anvil test fixture was machined with a deflection stop 25 percent higher than the standard value.« less
The new science of mind and the future of knowledge.
Kandel, Eric
2013-10-30
Understanding mental processes in biological terms makes available insights from the new science of the mind to explore connections between philosophy, psychology, the social sciences, the humanities, and studies of disorders of mind. In this Perspective we examine how these linkages might be forged and how the new science of the mind might serve as an inspiration for further exploration. Copyright © 2013 Elsevier Inc. All rights reserved.
Research on Materials for High Power Laser Windows
1975-12-01
1974), " Properties of Hot Forged RbCl-KCl Alloys of Low Rubidium Concentrations", Proceedings of the Fourth Annual Conference on Infrared Laser...Sabharwal et al . The grain boundaries in the samples may have been preferentially contaminated during the processing .20 Grain boundary diffusion... deposit account with NTIS is required before this service can be initiated. If you have specific questions concerning this serv- ice, please call
From Bosnia to Baghdad: The Evolution of US Army Special Forces From 1995-2004
2004-09-01
BIJELJINA (OPERATION JOINT FORGE)............................... 13 H . FROM JCO TO SR (OPERATION ALLIED FORCE)......................... 14 I. SPECIAL...would only work with and report on Serbian villages and “Bosniak teams” exclusively focusing their efforts upon Bosnian Muslim villages.25 H . FROM JCO...processing station. Ramadani , the Sefer faction leader, arrived the next day at the demobilization point with approximately 40 faction members, including
Improved Production Of Wrought Articles From Powders
NASA Technical Reports Server (NTRS)
Thomas, James R.; Singleton, Ogle R.
1994-01-01
Improved technique for consolidation of powders into dense articles developed. Peripheral bands used in consolidation, forging, and rolling operations. Facilitates consolidation of dispersion-hardened aluminous powders and composite mixtures for processing to such useful wrought articles as plates and sheets. Potential use in production of plates and sheets and perhaps other objects from "hard" powders, particularly from powders, objects made from which have propensity to crack when mechanically worked to other forms.
NASA Astrophysics Data System (ADS)
Kamakoshi, Y.; Nishida, S.; Kanbe, K.; Shohji, I.
2017-10-01
In recent years, powder metallurgy (P/M) materials have been expected to be applied to automobile products. Then, not only high cost performance but also more strength, wear resistance, long-life and so on are required for P/M materials. As an improvement method of mechanical properties of P/M materials, a densification is expected to be one of effective processes. In this study, to examine behaviours of the densification of Mo-alloyed sintered steel in a cold-forging process, finite element method (FEM) analysis was performed. Firstly, a columnar specimen was cut out from the inner part of a sintered specimen and a load-stroke diagram was obtained by the compression test. 2D FEM analysis was performed using the obtained load-stroke diagram. To correct the errors of stress between the porous mode and the rigid-elastic mode of analysis software, the analysis of a polynominal approximation was performed. As a result, the modified true stress-true strain diagram was obtained for the sintered steel with the densification. Afterwards, 3D FEM analysis of backward extrusion was carried out using the modified true stress-true strain diagram. It was confirmed that both the shape and density of the sintered steel analyzed by new FEM analysis that we suggest correspond well with experimental ones.
NASA Technical Reports Server (NTRS)
Meschter, P. J.; Lederich, R. J.; Oneal, J. E.; Pao, P. S.
1985-01-01
The effects of alloy chemistry and particulate morphology on consolidation behavior and consolidated product properties in rapid solidification processed, powder-metallurgical Al-3Li-1.5Cu-1Mg-0.5Co-0.2Zr and Al-4.4Cu-1.5Mg-Fe-Ni-0.2Zr extrusions and forgings were studied. Microstructures and mechanical properties of both alloys are largely unaffected by particulate production method (vacuum atomization, ultrasonic atomization, or twin-roller quenching) and by particulate solidification rates between 1000 and 100,000 K/s. Consolidation processing by canning, cold compaction, degassing, and hot extrusion is sufficient to yield mechanical properties in the non-Li-containing alloy extrusions which are similar to those of 7075-Al, but ductilities and fracture toughnesses are inferior owing to poor interparticle bonding caused by lack of a vacuum-hot-pressing step during consolidation. Mechanical properties of extrusions are superior to those of forgings owing to the stronger textures produced by the more severe hot working during extrusion. The effects on mechanical properties of dispersoid size and volume fraction, substructural refinement, solid solution strengthening by Mg, and precipitate size and distribution are elucidated for both alloy types.
Simulation and Analysis of One-time Forming Process of Automobile Steering Ball Head
NASA Astrophysics Data System (ADS)
Shi, Peicheng; Zhang, Xujun; Xu, Zengwei; Zhang, Rongyun
2018-03-01
Aiming at the problems such as large machining allowance, low production efficiency and material waste during die forging of ball pin, the cold extrusion process of ball head was studied and the analog simulation of the forming process was carried out by using the finite element analysis software DEFORM-3D. Through the analysis of the equivalent stress strain, velocity vector field and load-displacement curve, the flow regularity of the metal during the cold extrusion process of ball pin was clarified, and possible defects during the molding were predicted. The results showed that this process could solve the forming problem of ball pin and provide theoretical basis for actual production of enterprises.
Creep of A508/533 Pressure Vessel Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard Wright
2014-08-01
ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with themore » very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are allowed by Code Case N-499-2 (now incorporated as an appendix to Section III Division 5 of the Code). This Code Case was developed with a rather sparse data set and focused primarily on rolled plate material (A533 specification). Confirmatory tests of creep behavior of both A508 and A533 are described here that are designed to extend the database in order to build higher confidence in ensuring the structural integrity of the VHTR RPV during off-normal conditions. A number of creep-rupture tests were carried out at temperatures above the 371°C (700°F) Code limit; longer term tests designed to evaluate minimum creep behavior are ongoing. A limited amount of rupture testing was also carried out on welded material. All of the rupture data from the current experiments is compared to historical values from the testing carried out to develop Code Case N-499-2. It is shown that the A508/533 basemetal tested here fits well with the rupture behavior reported from the historical testing. The presence of weldments significantly reduces the time to rupture. The primary purpose of this report is to summarize and record the experimental results in a single document.« less
ERIC Educational Resources Information Center
Petr, Christopher G.
This manual is intended to be used in conjunction with a 1-day training workshop to help parents of children with emotional disorders establish working alliances with protection and advocacy agencies for people with mental illness (PAMIs). The workshop prepares parents for developing specific plans for forging alliances with the state PAMI. The…
Doug Blankenship
2016-03-01
x,y,z downhole temperature data for wells in and around the Fallon FORGE site. Data for the following wells are included: 82-36, 82-19, 84.31, 61-36, 88-24, FOH-3D, FDU-1, and FDU-2. Data are formatted in txt format and in columns for importing into Earthvision Software. Column headers and coordinate system information is stored in the file header.
Roosevelt Hot Springs, Utah FORGE Ground Motion Study Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Joe
Paragon Geophysical contracted Urban Seismic Specialists to conduct A Ground Motion Study, on their Forge 3D project located near in Milford Utah .The test was conducted to measure the effects of the vibrator array on a pipeline owned by Kern River. Testing began November 22nd, and was completed on November 23rd. Demobilizing was completed on November 24, 2017
Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety
USDA-ARS?s Scientific Manuscript database
Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety David N. Kuhn, USDA ARS SHRS, Miami FL Sometimes it's hard to see the value and application of genomics to real world problems. How will sequencing the cacao genome affect West African farmers? Thi...
Superplastic forging nitride ceramics
Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi
1988-03-22
The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.
A Method for Measuring the Hardness of the Surface Layer on Hot Forging Dies Using a Nanoindenter
NASA Astrophysics Data System (ADS)
Mencin, P.; van Tyne, C. J.; Levy, B. S.
2009-11-01
The properties and characteristics of the surface layer of forging dies are critical for understanding and controlling wear. However, the surface layer is very thin, and appropriate property measurements are difficult to obtain. The objective of the present study is to determine if nanoindenter testing provides a reliable method, which could be used to measure the surface hardness in forging die steels. To test the reliability of nanoindenter testing, nanoindenter values for two quenched and tempered steels (FX and H13) are compared to microhardness and macrohardness values. These steels were heat treated for various times to produce specimens with different values of hardness. The heat-treated specimens were tested using three different instruments—a Rockwell hardness tester for macrohardness, a Vickers hardness tester for microhardness, and a nanoindenter tester for fine scale evaluation of hardness. The results of this study indicate that nanoindenter values obtained using a Nanoindenter XP Machine with a Berkovich indenter reliably correlate with Rockwell C macrohardness values, and with Vickers HV microhardness values. Consequently, nanoindenter testing can provide reliable results for analyzing the surface layer of hot forging dies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Daqiang, E-mail: dq80jiang@126.com; Cui, Lishan; Jiang, Jiang
Graphical abstract: - Highlights: • In situ NiTi/Nb(Ti) composites were fabricated. • The transformation temperature was affected by the mixing Ti:Ni atomic ratios. • The NiTi component became micron-scale lamella after forging and rolling. • The composite exhibited high strength and high damping capacity. - Abstract: This paper reports on the creation of a series of in situ NiTi/Nb(Ti) composites with controllable transformation temperatures based on the pseudo-binary hypereutectic transformation of NiTi–Nb system. The composite constituent morphology was controlled by forging and rolling. It is found that the thickness of the NiTi lamella in the composite reached micron level aftermore » the hot-forging and cold-rolling. The NiTi/Nb(Ti) composite exhibited high damping capacity as well as high yield strength.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowdermilk, W. H.; Brothers, L. J.
This was a collaborative effort by Lawrence Livermore National Security (formerly the University of California)/Lawrence Livermore National Laboratory (LLNL), Valley Forge Composite Technologies, Inc., and the following Russian Institutes: P. N. Lebedev Physical Institute (LPI), Innovative Technologies Center.(AUO CIT), Central Design Bureau-Almas (CDB Almaz), Moscow Instrument Automation Research Institute, and Institute for High Energy Physics (IBEP) to develop equipment and procedures for detecting explosive materials concealed in airline checked baggage and cargo.
Comment on "Cheating prevention in visual cryptography".
Chen, Yu-Chi; Horng, Gwoboa; Tsai, Du-Shiau
2012-07-01
Visual cryptography (VC), proposed by Naor and Shamir, has numerous applications, including visual authentication and identification, steganography, and image encryption. In 2006, Horng showed that cheating is possible in VC, where some participants can deceive the remaining participants by forged transparencies. Since then, designing cheating-prevention visual secret-sharing (CPVSS) schemes has been studied by many researchers. In this paper, we cryptanalyze the Hu-Tzeng CPVSS scheme and show that it is not cheating immune. We also outline an improvement that helps to overcome the problem.
Computer-Aided Design and Manufacturing for Closed-Die Forging of Track Shoes and Links
1976-07-01
file. VII-39 CALL RESTRI(TAG) Restores a blanked item. CALL SCROLG( NLINES ,IYTOP) To adjust scroller parameters. Graphics Monitor must be in use... NLINES : Number of lines to be displayed. IYTOP: Y-coordinate of the top line. Each line is 25 units vertical. CALL TRACK To enable the tracking...5. NLINES - The number of lines reserved for the text scroller area when text is displayed along with graphic images. 6. AL - The vertical
Transformational System Concepts and Technologies for Our Future in Space
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.
2004-01-01
Continued constrained budgets and growing national and international interests in the commercialization and development of space requires NASA to be constantly vigilant, to be creative, and to seize every opportunity for assuring the maximum return on space infrastructure investments. Accordingly, efforts are underway to forge new and innovative approaches to transform our space systems in the future to ultimately achieve two or three or five times as much with the same resources. This bold undertaking can be achieved only through extensive cooperative efforts throughout the aerospace community and truly effective planning to pursue advanced space system design concepts and high-risk/high-leverage research and technology. Definitive implementation strategies and roadmaps containing new methodologies and revolutionary approaches must be developed to economically accommodate the continued exploration and development of space. Transformation can be realized through modular design and stepping stone development. This approach involves sustainable budget levels and multi-purpose systems development of supporting capabilities that lead to a diverse amy of sustainable future space activities. Transformational design and development requires revolutionary advances by using modular designs and a planned, stepping stone development process. A modular approach to space systems potentially offers many improvements over traditional one-of-a-kind space systems comprised of different subsystem element with little standardization in interfaces or functionality. Modular systems must be more flexible, scaleable, reconfigurable, and evolvable. Costs can be reduced through learning curve effects and economies of scale, and by enabling servicing and repair that would not otherwise be feasible. This paper briefly discusses achieving a promising approach to transforming space systems planning and evolution into a meaningful stepping stone design, development, and implementation process. The success of this well planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.
Well 9-1 Logs and Data: Roosevelt Hot Spring Area, Utah (FORGE)
Joe Moore
2016-03-03
This is a compilation of logs and data from Well 9-1 in the Roosevelt Hot Springs area in Utah. This well is also in the Utah FORGE study area. The file is in a compressed .zip format and there is a data inventory table (Excel spreadsheet) in the root folder that is a guide to the data that is accessible in subfolders.
Roosevelt Hot Springs, Utah FORGE X-Ray Diffraction Data
Nash, Greg; Jones, Clay
2018-02-07
This dataset contains X-ray diffraction (XRD) data taken from wells and outcrops as part of the DOE GTO supported Utah FORGE project located near Roosevelt Hot Springs. It contains an Excel spreadsheet with the XRD data, a text file with sample site names, types, and locations in UTM, Zone 12, NAD83 coordinates, and a GIS shapefile of the sample locations with attributes.
The Study of New Religious Movements and the Process of Radicalization in Terrorist Groups
2009-11-01
military, therapists , and many other legitimate social organizations.3 In each case individuals are subject to certain well-recognized social psychological...the West were also almost all from the second or third generation of immigrant families and they appeared to be well integrated into the societies in...identity and expectations, providing the symbolic and physical separation needed to forge their own identity; (2) it provides a protective environment
Alloys For Corrosive, Hydrogen-Rich Environments
NASA Technical Reports Server (NTRS)
Mcpherson, William B.; Bhat, Biliyar N.; Chen, Po-Shou; Kuruvilla, A. K.; Panda, Binayak
1993-01-01
"NASA-23" denotes class of alloys resisting both embrittlement by hydrogen and corrosion. Weldable and castable and formed by such standard processes as rolling, forging, and wire drawing. Heat-treated to obtain desired combinations of strength and ductility in ranges of 100 to 180 kpsi yield strength, 120 to 200 kpsi ultimate tensile strength, and 10 to 30 percent elongation at break. Used in place of most common aerospace structural alloy, Inconel(R) 718.
2006-04-01
and actively engage in the larger society and its political processes.108 Dr. Qamar -ul Huda, assistant professor of Islamic Studies and Comparative...August 2003, http://mediaguidetoislam.sfsu.edu/intheus/03d_experience. htm. 109 Qamar -ul Huda, “Forging an American Muslim Identity: Time for...Dictionary of Cultural Literacy, Third Edition. Houghton Mifflin Company, 2002, http://www.bartleby.com/59/6/givemeyourti.html. Huda, Qamar -ul
USSR Report, Political and Sociological Affairs
1986-09-23
travelers don’t skimp even on other advertised shows. This situation is common for cinematic forums of recent years. Every year this official competition...between the various groupings of artists in the twenties consisted in the forging and establishment of socialist realism , a process which ended with the...definitive victory of socialist realism and its heyday in the thirties." /9716 CSO: 1800/582 73 JPRS-UPS-86-046 23 September 1986 CULTURE
Zhao, Yating; Huang, Binbin; Yang, Chao; Chen, Qingqing; Xia, Wujiong
2016-11-04
A photoredox catalytic route to carbamates enabled by visible irradiation (or simply sunlight) has been developed. This process leads to a novel approach to the construction of heterocyclic rings wherein the amide or ester motifs of carbamates were assembled from three isolated components. Large-scale experiments were realized by employing continuous flow techniques, and reuse of photocatalyst demonstrated the green and sustainable aspects of this method.
Sedimentary masses and concepts about tectonic processes at underthrust ocean margins ( subduction).
Scholl, D. W.; von Huene, Roland E.; Vallier, T.L.; Howell, D.G.
1980-01-01
Tectonic processes associated with subduction of oceanic crust, but unrelated to the collision of thick crustal masses or microplates, are presumed by many geologists to significantly affect the formation and deformation of large sedimentary bodies at underthrust ocean margins. More geologists are familiar with the concept of subduction accretion than with other noncollision processes - for example, sediment subduction, subduction erosion, and subduction kneading. In our opinion, no single subduction-related tectonic process is the dominant or typical one that forges the geologic framework of modern underthrust ocean margins. It is likely, therefore, that the rock records of ancient underthrust margins are preserved in a multitude of structural and stratigraphic forms.-from Authors
West Flank Coso, CA FORGE Magnetotelluric Inversion
Doug Blankenship
2016-05-16
The Coso Magnetotelluric (MT) dataset of which the West Flank FORGE MT data is a subset, was collected by Schlumberger / WesternGeco and initially processed by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy. The 2011 data was based on 99 soundings that were centered on the West Flank geothermal prospect. The new soundings along with previous data from 2003 and 2006 were incorporated into a 3D inversion. Full impedance tensor data were inverted in the 1-3000 Hz range. The modelling report notes several noise sources, specifically the DC powerline that is 20,000 feet west of the survey area, and may have affected data in the 0.02 to 10 Hz range. Model cell dimensions of 450 x 450 x 65 feet were used to avoid computational instability in the 3D model. The fit between calculated and observed MT values for the final model run had an RMS value of 1.807. The included figure from the WesternGeco report shows the sounding locations from the 2011, 2006 and 2003 surveys.
Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.
Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M
2011-10-01
The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.
Dry rotary swaging with structured and coated tools
NASA Astrophysics Data System (ADS)
Herrmann, Marius; Schenck, Christian; Kuhfuss, Bernd
2018-05-01
Rotary swaging is a cold bulk forming process for manufacturing of complex bar and tube profiles like axles and gear shafts in the automotive industry. Conventional rotary swaging is carried out under intense use of lubricant usually based on mineral oil. Besides lubrication the lubricant fulfills necessary functions like lubrication, flushing and cooling, but generates costs for recycling, replacement and cleaning of the workpieces. Hence, the development of a dry process design is highly desirable, both under economic and ecological points of view. Therefore, it is necessary to substitute the functions of the lubricant. This was realized by the combination of newly developed a-C:H:W coating systems on the tools to minimize the friction and to avoid adhesion effects. With the application of a deterministic structure in the forging zone of the tools the friction conditions are modified to control the axial process forces. In this study infeed rotary swaging with functionalized tools was experimentally investigated. Therefore, steel and aluminum tubes were formed with and without lubricant. Different structures which were coated and uncoated were implemented in the reduction zone of the tools. The antagonistic effects of coating and structuring were characterized by measuring the axial process force and the produced workpiece quality in terms of roundness and surface roughness. Thus, the presented results allow for further developments towards a dry rotary swaging process.
The benefits of metal-on-metal total hip replacements.
Müller, M E
1995-02-01
The Müller's cast prosthesis with a concentric metal-on-metal articulation and 3 sliding bearings was used in Switzerland from 1965 to 1967. During the next 10 to 15 years, a number of hips in which the metal-to-metal systems were implanted were revised. Rather than osteoporosis and cranial migration occurring, the acetabular roofs were often sclerotic and the components showed no or only minor migration. At surgery, the capsule was almost normal and without signs of inflammation. Histologically, the capsule did not show the usual masses of giant cells associated with polyethylene particles. In the mid-1980s, different designs of metal-on-metal articulations were tested. From 1987 to 1990, this author developed, together with the biomaterial division of Sulzer Medical Technology, a pure titanium shell with a polyethylene-backed 28-mm forged cobalt-chromium liner insert. This combination has been successful, with no revisions required to date. In summary, with the present metal-on-metal articulations it is now possible to stop using the polyethylene. The successful long-term results of the cast cobalt-chromium metal-on-metal articulations of 1966 hold much promise for the future of the new-forged, more-precise, metallic socket.
KAnalyze: a fast versatile pipelined K-mer toolkit
Audano, Peter; Vannberg, Fredrik
2014-01-01
Motivation: Converting nucleotide sequences into short overlapping fragments of uniform length, k-mers, is a common step in many bioinformatics applications. While existing software packages count k-mers, few are optimized for speed, offer an application programming interface (API), a graphical interface or contain features that make it extensible and maintainable. We designed KAnalyze to compete with the fastest k-mer counters, to produce reliable output and to support future development efforts through well-architected, documented and testable code. Currently, KAnalyze can output k-mer counts in a sorted tab-delimited file or stream k-mers as they are read. KAnalyze can process large datasets with 2 GB of memory. This project is implemented in Java 7, and the command line interface (CLI) is designed to integrate into pipelines written in any language. Results: As a k-mer counter, KAnalyze outperforms Jellyfish, DSK and a pipeline built on Perl and Linux utilities. Through extensive unit and system testing, we have verified that KAnalyze produces the correct k-mer counts over multiple datasets and k-mer sizes. Availability and implementation: KAnalyze is available on SourceForge: https://sourceforge.net/projects/kanalyze/ Contact: fredrik.vannberg@biology.gatech.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24642064
KAnalyze: a fast versatile pipelined k-mer toolkit.
Audano, Peter; Vannberg, Fredrik
2014-07-15
Converting nucleotide sequences into short overlapping fragments of uniform length, k-mers, is a common step in many bioinformatics applications. While existing software packages count k-mers, few are optimized for speed, offer an application programming interface (API), a graphical interface or contain features that make it extensible and maintainable. We designed KAnalyze to compete with the fastest k-mer counters, to produce reliable output and to support future development efforts through well-architected, documented and testable code. Currently, KAnalyze can output k-mer counts in a sorted tab-delimited file or stream k-mers as they are read. KAnalyze can process large datasets with 2 GB of memory. This project is implemented in Java 7, and the command line interface (CLI) is designed to integrate into pipelines written in any language. As a k-mer counter, KAnalyze outperforms Jellyfish, DSK and a pipeline built on Perl and Linux utilities. Through extensive unit and system testing, we have verified that KAnalyze produces the correct k-mer counts over multiple datasets and k-mer sizes. KAnalyze is available on SourceForge: https://sourceforge.net/projects/kanalyze/. © The Author 2014. Published by Oxford University Press.
Mu2e transport solenoid prototype design and manufacturing
Fabbricatore, P.; Ambrosio, G.; Cheban, S.; ...
2016-02-08
The Mu2e Transport Solenoid consists of 52 coils arranged in 27 coil modules that form the S-shaped cold mass. Each coil is wound from Al-stabilized NbTi superconductor. The coils are supported by an external structural aluminum shell machined from a forged billet. Most of the coil modules house two coils, with the axis of each coil oriented at an angle of approximately 5° with respect to each other. The coils are indirectly cooled with LHe circulating in tubes welded on the shell. In order to enhance the cooling capacity, pure aluminum sheets connect the inner bore of the coils tomore » the cooling tubes. The coils are placed inside the shell by the means of a shrink-fit procedure. A full-size prototype, with all the features of the full assembly, was successfully manufactured in a collaboration between INFN Genova and Fermilab. In order to ensure an optimal mechanical prestress at the coil-shell interface, the coils are inserted into the shell through a shrink-fitting process. We present the details of the prototype with the design choices as validated by the structural analysis. In conclusion, the fabrication steps are described as well.« less
40 CFR 471.25 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032 Ammonia 9.95... forged magnesium cooled with water Chromium 0.107 0.044 Zinc 0.295 0.122 Ammonia 38.5 17.0 Fluoride 17.2... forged Chromium 0.002 0.0006 Zinc 0.004 0.002 Ammonia 0.532 0.234 Fluoride 0.238 0.106 (e) Direct chill...
40 CFR 471.25 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032 Ammonia 9.95... forged magnesium cooled with water Chromium 0.107 0.044 Zinc 0.295 0.122 Ammonia 38.5 17.0 Fluoride 17.2... forged Chromium 0.002 0.0006 Zinc 0.004 0.002 Ammonia 0.532 0.234 Fluoride 0.238 0.106 (e) Direct chill...