Sample records for fork willamette basins

  1. Processes controlling dissolved oxygen and pH in the upper Willamette River basin, Oregon, 1994

    USGS Publications Warehouse

    Pogue, Ted R.; Anderson, Chauncey W.

    1995-01-01

    In July and August of 1994, the U. S. Geological Survey in cooperation with the Oregon Department of Environmental Quality (ODEQ) collected data to document the spatial extent and diel variability of dissolved oxygen (DO) concentrations and pH levels in selected reaches of streams in the upper Willamette River Basin. These data were also collected to identify primary factors that control DO concentrations downstream from major point sources as well as to provide ODEQ with data to refine calibration of their steady-state DO and nutrient models for the upper Willamette River Basin. All of the reaches studied had diel variations in DO and pH. The magnitude of the diel variations in DO ranged from 0.2 to 3.9 milligrams per liter (7 to 50 percent-saturation units based on ambient water temperature and barometric pressure) and in pH from 0.3 to 1.4 units. However, of the reaches studied, only the Coast Fork Willamette River from river mile (RM) 21.7 to 12.5 and the Willamette River from RM 151 to 141.6 had field measured violations of State standards for DO and pH. DO concentration and pH in water depend on many factors. Data were collected to examine several major factors, including BOD (biochemical oxygen demand), carbonaceous BOD, nitrogenous BOD, and measures of photosynthetic activity. Of the four study reaches, only a short stretch of the Coast Fork Willamette River has potential for important levels of oxygen consumption from BOD or nitrification. Additionally, water-column primary-productivity measurements indicated that respiration and photosynthesis by free-floating algae did not explain the observed diel variations in DO in the study reaches. Results from a simple mathematical model incorporating measures of community respiration and net primary productivities indicated that periphyton are capable of producing a diel variation of the order of magnitude observed during the August study period. In the Willamette River near Peoria, the combined periphyton DO

  2. Estimates of ground-water recharge, base flow, and stream reach gains and losses in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Risley, John C.

    2002-03-19

    Precipitation-runoff models, base-flow-separation techniques, and stream gain-loss measurements were used to study recharge and ground-water surface-water interaction as part of a study of the ground-water resources of the Willamette River Basin. The study was a cooperative effort between the U.S. Geological Survey and the State of Oregon Water Resources Department. Precipitation-runoff models were used to estimate the water budget of 216 subbasins in the Willamette River Basin. The models were also used to compute long-term average recharge and base flow. Recharge and base-flow estimates will be used as input to a regional ground-water flow model, within the same study. Recharge and base-flow estimates were made using daily streamflow records. Recharge estimates were made at 16 streamflow-gaging-station locations and were compared to recharge estimates from the precipitation-runoff models. Base-flow separation methods were used to identify the base-flow component of streamflow at 52 currently operated and discontinued streamflow-gaging-station locations. Stream gain-loss measurements were made on the Middle Fork Willamette, Willamette, South Yamhill, Pudding, and South Santiam Rivers, and were used to identify and quantify gaining and losing stream reaches both spatially and temporally. These measurements provide further understanding of ground-water/surface-water interactions.

  3. Summary of environmental flow monitoring for the Sustainable Rivers Project on the Middle Fork Willamette and McKenzie Rivers, western Oregon, 2014–15

    USGS Publications Warehouse

    Jones, Krista L.; Mangano, Joseph F.; Wallick, J. Rose; Bervid, Heather D.; Olson, Melissa; Keith, Mackenzie K.; Bach, Leslie

    2016-11-07

    This report presents the results of an ongoing environmental flow monitoring study by The Nature Conservancy (TNC), U.S. Army Corps of Engineers (USACE), and U.S. Geological Survey in support of the Sustainable Rivers Project (SRP) of TNC and USACE. The overarching goal of this study is to evaluate and characterize relations between streamflow, geomorphic processes, and black cottonwood (Populus trichocarpa) recruitment on the Middle Fork Willamette and McKenzie Rivers, western Oregon, that were hypothesized in earlier investigations. The SRP can use this information to plan future monitoring and scientific investigations, and to help mitigate the effects of dam operations on streamflow regimes, geomorphic processes, and biological communities, such as black cottonwood forests, in consultation with regional experts. The four tasks of this study were to:Compare the hydrograph from Water Year (WY) 2015 with hydrographs from WYs 2000–14 and the SRP flow recommendations,Assess short-term and system-wide changes in channel features and vegetation throughout the alluvial valley section of the Middle Fork Willamette River (2005–12),Examine changes in channel features and vegetation over two decades (1994–2014) for two short mapping zones on the Middle Fork Willamette and McKenzie Rivers, andComplete a field investigation of summer stage and the growth of black cottonwood and other vegetation on the Middle Fork Willamette and McKenzie Rivers in summer 2015.

  4. Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon

    USGS Publications Warehouse

    Herrera, Nora B.; Burns, Erick R.; Conlon, Terrence D.

    2014-01-01

    Full appropriation of tributary streamflow during summer, a growing population, and agricultural needs are increasing the demand for groundwater in the Willamette Basin. Greater groundwater use could diminish streamflow and create seasonal and long-term declines in groundwater levels. The U.S. Geological Survey (USGS) and the Oregon Water Resources Department (OWRD) cooperated in a study to develop a conceptual and quantitative understanding of the groundwater-flow system of the Willamette Basin with an emphasis on the Central Willamette subbasin. This final report from the cooperative study describes numerical models of the regional and local groundwater-flow systems and evaluates the effects of pumping on groundwater and surface‑water resources. The models described in this report can be used to evaluate spatial and temporal effects of pumping on groundwater, base flow, and stream capture. The regional model covers about 6,700 square miles of the 12,000-square mile Willamette and Sandy River drainage basins in northwestern Oregon—referred to as the Willamette Basin in this report. The Willamette Basin is a topographic and structural trough that lies between the Coast Range and the Cascade Range and is divided into five sedimentary subbasins underlain and separated by basalts of the Columbia River Basalt Group (Columbia River basalt) that crop out as local uplands. From north to south, these five subbasins are the Portland subbasin, the Tualatin subbasin, the Central Willamette subbasin, the Stayton subbasin, and the Southern Willamette subbasin. Recharge in the Willamette Basin is primarily from precipitation in the uplands of the Cascade Range, Coast Range, and western Cascades areas. Groundwater moves downward and laterally through sedimentary or basalt units until it discharges locally to wells, evapotranspiration, or streams. Mean annual groundwater withdrawal for water years 1995 and 1996 was about 400 cubic feet per second; irrigation withdrawals

  5. ALTERNATIVE FUTURES FOR THE WILLAMETTE RIVER BASIN, OREGON

    EPA Science Inventory

    Alternative futures analysis is an assessment approach designed to inform community decisions regarding land and water use. We conducted an alternative futures analysis in the Willamette River Basin in western Oregon. Based on detailed input from local stakeholders, three alter...

  6. Ground-water hydrology of the Willamette basin, Oregon

    USGS Publications Warehouse

    Conlon, Terrence D.; Wozniak, Karl C.; Woodcock, Douglas; Herrera, Nora B.; Fisher, Bruce J.; Morgan, David S.; Lee, Karl K.; Hinkle, Stephen R.

    2005-01-01

    The Willamette Basin encompasses a drainage of 12,000 square miles and is home to approximately 70 percent of Oregon's population. Agriculture and population are concentrated in the lowland, a broad, relatively flat area between the Coast and Cascade Ranges. Annual rainfall is high, with about 80 percent of precipitation falling from October through March and less than 5 percent falling in July and August, the peak growing season. Population growth and an increase in cultivation of crops needing irrigation have produced a growing seasonal demand for water. Because many streams are administratively closed to new appropriations in summer, ground water is the most likely source for meeting future water demand. This report describes the current understanding of the regional ground-water flow system, and addresses the effects of ground-water development. This study defines seven regional hydrogeologic units in the Willamette Basin. The highly permeable High Cascade unit consists of young volcanic material found at the surface along the crest of the Cascade Range. Four sedimentary hydrogeologic units fill the lowland between the Cascade and Coast Ranges. Young, highly permeable coarse-grained sediments of the upper sedimentary unit have a limited extent in the floodplains of the major streams and in part of the Portland Basin. Extending over much of the lowland where the upper sedimentary unit does not occur, silts and clays of the Willamette silt unit act as a confining unit. The middle sedimentary unit, consisting of permeable coarse-grained material, occurs beneath the Willamette silt and upper sedimentary units and at the surface as terraces in the lowland. Beneath these units is the lower sedimentary unit, which consists of predominantly fine-grained sediments. In the northern part of the basin, lavas of the Columbia River basalt unit occur at the surface in uplands and beneath the basin-fill sedimentary units. The Columbia River basalt unit contains multiple

  7. MODELING WILDLIFE RESPONSE TO LANDSCAPE CHANGE IN OREGON'S WILLAMETTE RIVER BASIN

    EPA Science Inventory

    The PATCH simulation model was used to predict the response of 17 wildlife species to
    three plausible scenarios of habitat change in Oregon's Willamette River Basin. This 30
    thousand square-kilometer basin comprises about 12% of the state of Oregon, encompasses extensive f...

  8. FUTURE WATER ALLOCATION AND IN-STREAM VALUES IN THE WILLAMETTE RIVER BASIN: A BASIN-WIDE ANALYSIS

    EPA Science Inventory

    Our research investigated the impact on surface water resources of three different scenarios for the future development of the Willamette River Basin in Oregon (USA). Water rights in the basin, and in the western United States in general, are based on a system of law that binds ...

  9. Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rinella, F.A.; McKenzie, S.W.; Wille, S.A.

    1981-01-01

    During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)

  10. Synthesis of downstream fish passage information at projects owned by the U.S. Army Corps of Engineers in the Willamette River Basin, Oregon

    USGS Publications Warehouse

    Hansen, Amy C.; Kock, Tobias J.; Hansen, Gabriel S.

    2017-08-07

    The U.S. Army Corps of Engineers (USACE) operates the Willamette Valley Project (Project) in northwestern Oregon, which includes a series of dams, reservoirs, revetments, and fish hatcheries. Project dams were constructed during the 1950s and 1960s on rivers that supported populations of spring Chinook salmon (Oncorhynchus tshawytscha), winter steelhead (O. mykiss), and other anadromous fish species in the Willamette River Basin. These dams, and the reservoirs they created, negatively affected anadromous fish populations. Efforts are currently underway to improve passage conditions within the Project and enhance populations of anadromous fish species. Research on downstream fish passage within the Project has occurred since 1960 and these efforts are documented in numerous reports and publications. These studies are important resources to managers in the Project, so the USACE requested a synthesis of existing literature that could serve as a resource for future decision-making processes. In 2016, the U.S. Geological Survey conducted an extensive literature review on downstream fish passage studies within the Project. We identified 116 documents that described studies conducted during 1960–2016. Each of these documents were obtained, reviewed, and organized by their content to describe the state-of-knowledge within four subbasins in the Project, which include the North Santiam, South Santiam, McKenzie, and Middle Fork Willamette Rivers. In this document, we summarize key findings from various studies on downstream fish passage in the Willamette Project. Readers are advised to review specific reports of interest to insure that study methods, results, and additional considerations are fully understood.

  11. WILLAMETTE RIVER BASIN TRAJECTORIES OF ENVIRONMENTAL AND ECOLOGICAL CHANGE: A PLANNING ATLAS

    EPA Science Inventory

    The Pacific Northwest Ecosystem Research Consortium, consisting of scientists at EPA-WED, Oregon State University, and the University of Oregon, completed a planning atlas for the Willamette River Basin in western Oregon. The atlas describes ecological conditions and human activ...

  12. Geomorphic responses of gravel bed rivers to fine sediment releases during annual reservoir drawdowns: Spatial patterns and magnitude of aggradation along Fall Creek and Middle Fork Willamette River, Oregon

    NASA Astrophysics Data System (ADS)

    Keith, M. K.; Wallick, R.; Taylor, G.; Mangano, J.; White, J.; Schenk, L.

    2016-12-01

    Drawdowns at Fall Creek Lake, Oregon—one of 13 U.S. Army Corp of Engineers reservoirs in the Willamette Valley Project—lower lake levels to facilitate downstream passage of juvenile spring Chinook salmon through the 55-m high dam. The annual (since 2011) winter drawdowns have improved fish passage, but temporarily lowering Fall Creek Lake nearly to streambed levels has increased downstream transport of predominantly fine (<2 mm) sediment to the lower gravel bed reaches of Fall Creek and the Middle Fork Willamette River. The annual release of reservoir sediments into these historically dynamic reaches has uncertain consequences for aquatic and riparian habitats. In this study, we 1) document reach-scale geomorphic responses to sediment released from Fall Creek Lake over 2011-15 and 2) evaluate linkages between reservoir operations, sediment releases, and resulting downstream responses. Results so far show aggradation of off-channel features such as side-channels, although deposition patterns have changed over 2011-15. Sites along Fall Creek that filled with sand during earlier drawdowns accumulated silt and clay during the 2015 drawdown. Further downstream on the Middle Fork Willamette River, some sites have aggraded almost 2 m with sand through 2015, although most off-channel aggradation has been less than 0.6 meters. During winter of 2015-16, we measured deposition at nine sites; most high bar and low floodplain deposition occurred during 2 weeks after the drawdown when flows were about 35-75% higher than those during the drawdown, suggesting post-drawdown dam operations potentially could be used to minimize associated sediment impacts.

  13. Transient storage assessments of dye-tracer injections in rivers of the Willamette Basin, Oregon

    USGS Publications Warehouse

    Laenen, A.; Bencala, K.E.

    2001-01-01

    Rhodamine WT dye-tracer injections in rivers of the Willamette Basin yield concentration-time curves with characteristically long recession times suggestive of active transient storage processes. The scale of drainage areas contributing to the stream reaches studied in the Willamette Basin ranges from 10 to 12,000 km2. A transient storage assessment of the tracer studies has been completed using the U.S. Geological Survey's One-dimensional Transport with Inflow and Storage (OTIS) model, which incorporates storage exchange and decay functions along with the traditional dispersion and advection transport equation. The analysis estimates solute transport of the dye. It identifies first-order decay coefficients to be on the order of 10-5/sec for the nonconservative Rhodamine WT. On an individual subreach basis, the first-order decay is slower (typically by an order of magnitude) than the transient storage process, indicating that nonconservative tracers may be used to evaluate transient storage in rivers. In the transient storage analysis, a dimensionless parameter (As/A) expresses the spatial extent of storage zone area relative to stream cross section. In certain reaches of Willamette Basin pool-and-riffle, gravel-bed rivers, this parameter was as large as 0.5. A measure of the storage exchange flux was calculated for each stream subreach in the simulation analysis. This storage exchange is shown subjectively to be higher at higher stream discharges. Hyporheic linkage between streams and subsurface flows is the probable physical mechanism contributing to a significant part of this inferred active transient storage. Hyporheic linkages are further suggested by detailed measurements of river discharge with an Acoustic Doppler Current Profiler system delineating zones in two large rivers where water alternately enters and leaves the surface channels through graveland-cobble riverbeds. Measurements show patterns of hyporheic exchange that are highly variable in time and

  14. Development of a Willingness to Pay Survey for Willamette Basin Spring Chinook and Winter Steelhead Recovery

    EPA Science Inventory

    Salmon fisheries are a high-profile icon of the Pacific Northwest. Spring Chinook and winter-run steelhead are both listed as federally endangered species in the Willamette basin, the most populated and developed watershed in Oregon. Despite being a high profile issue, there are ...

  15. Extreme Rainfall Analysis using Bayesian Hierarchical Modeling in the Willamette River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.

    2016-12-01

    We present preliminary results of ongoing research directed at evaluating the worth of including various covariate data to support extreme rainfall analysis in the Willamette River basin using Bayesian hierarchical modeling (BHM). We also compare the BHM derived extreme rainfall estimates with their respective counterparts obtained from a traditional regional frequency analysis (RFA) using the same set of rain gage extreme rainfall data. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams in the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two-thirds of Oregon's population and 20 of the 25 most populous cities in the state. Extreme rainfall estimates are required to support risk-informed hydrologic analyses for these projects as part of the USACE Dam Safety Program. We analyze daily annual rainfall maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme rainfall by return level. Our intent is to profile for the USACE an alternate methodology to a RFA which was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. Unlike RFA, the advantage of a BHM-based analysis of hydrometeorological extremes is its ability to account for non-stationarity while providing robust estimates of uncertainty. BHM also allows for the inclusion of geographical and climatological factors which we show for the WRB influence regional rainfall extremes. Moreover, the Bayesian framework permits one to combine additional data types into the analysis; for example, information derived via elicitation and causal information expansion data, both being additional opportunities for future related research.

  16. MODELING WILDLIFE HABITAT SUITABILITY IN THE WILLAMETTE BASIN: A COMPARISON OF PAST, PRESENT AND A RANGE OF POSSIBLE FUTURES (CA. 2050)

    EPA Science Inventory

    The effects of three possible land use futures in the Willamette Basin are evaluated with respect to present and historic conditions of wildlife habitat. Basin wide land use/land cover maps were developed by the Pacific Northwest Ecosystem Research Consortium (PNW-ERC) in coopera...

  17. Predicting the Total Abundance of Resident Salmonids within the Willamette River Basin, Oregon - a Macroecological Modeling Approach

    EPA Science Inventory

    I present a simple, macroecological model of fish abundance that was used to estimate the total number of non-migratory salmonids within the Willamette River Basin (western Oregon). The model begins with empirical point estimates of net primary production (NPP in g C/m2) in fore...

  18. Environmental settings of the South Fork Iowa River basin, Iowa, and the Bogue Phalia basin, Mississippi, 2006-10

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Rose, Claire E.; Kalkhoff, Stephen J.

    2012-01-01

    Studies of the transport and fate of agricultural chemicals in different environmental settings were conducted by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program's Agricultural Chemicals Team (ACT) at seven sites across the Nation, including the South Fork Iowa River basin in central Iowa and the Bogue Phalia basin in northwestern Mississippi. The South Fork Iowa River basin is representative of midwestern agriculture, where corn and soybeans are the predominant crops and a large percentage of the cultivated land is underlain by artificial drainage. The Bogue Phalia basin is representative of corn, soybean, cotton, and rice cropping in the humid, subtropical southeastern United States. Details of the environmental settings of these basins and the data-collection activities conducted by the USGS ACT over the 2006-10 study period are described in this report.

  19. Shallow aquifer storage and recovery (SASR): Initial findings from the Willamette Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Neumann, P.; Haggerty, R.

    2012-12-01

    A novel mode of shallow aquifer management could increase the volumetric potential and distribution of groundwater storage. We refer to this mode as shallow aquifer storage and recovery (SASR) and gauge its potential as a freshwater storage tool. By this mode, water is stored in hydraulically connected aquifers with minimal impact to surface water resources. Basin-scale numerical modeling provides a linkage between storage efficiency and hydrogeological parameters, which in turn guides rulemaking for how and where water can be stored. Increased understanding of regional groundwater-surface water interactions is vital to effective SASR implementation. In this study we (1) use a calibrated model of the central Willamette Basin (CWB), Oregon to quantify SASR storage efficiency at 30 locations; (2) estimate SASR volumetric storage potential throughout the CWB based on these results and pertinent hydrogeological parameters; and (3) introduce a methodology for management of SASR by such parameters. Of 3 shallow, sedimentary aquifers in the CWB, we find the moderately conductive, semi-confined, middle sedimentary unit (MSU) to be most efficient for SASR. We estimate that users overlying 80% of the area in this aquifer could store injected water with greater than 80% efficiency, and find efficiencies of up to 95%. As a function of local production well yields, we estimate a maximum annual volumetric storage potential of 30 million m3 using SASR in the MSU. This volume constitutes roughly 9% of the current estimated summer pumpage in the Willamette basin at large. The dimensionless quantity lag #—calculated using modeled specific capacity, distance to nearest in-layer stream boundary, and injection duration—exhibits relatively high correlation to SASR storage efficiency at potential locations in the CWB. This correlation suggests that basic field measurements could guide SASR as an efficient shallow aquifer storage tool.

  20. Ground-water and water-chemistry data for the Willamette basin, Oregon

    USGS Publications Warehouse

    Orzol, Leonard L.; Wozniak, Karl C.; Meissner, Tiffany R.; Lee, Douglas B.

    2000-01-01

    This report presents ground-water data collected and compiled as part of a study of the ground-water resources of the Willamette River Basin, Oregon. The report includes tabulated information and a location map for 1,234 field-located water wells and 6 springs, hydrographs showing water-level fluctuations during various time periods for 265 of the wells, borehole geophysical data for 16 wells, and water-chemistry analyses from 125 wells and 6 springs. These data, as well as data for 4,752 additional fieldlocated wells and 1 spring, are included on a CD-ROM. In addition, the locations of the field-located wells and springs are provided in geographic information system formats on the CD-ROM.

  1. Preliminary flood-duration frequency estimates using naturalized streamflow records for the Willamette River Basin, Oregon

    USGS Publications Warehouse

    Lind, Greg D.; Stonewall, Adam J.

    2018-02-13

    In this study, “naturalized” daily streamflow records, created by the U.S. Army Corps of Engineers and the Bureau of Reclamation, were used to compute 1-, 3-, 7-, 10-, 15-, 30-, and 60-day annual maximum streamflow durations, which are running averages of daily streamflow for the number of days in each duration. Once the annual maximum durations were computed, the floodduration frequencies could be estimated. The estimated flood-duration frequencies correspond to the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent probabilities of their occurring or being exceeded each year. For this report, the focus was on the Willamette River Basin in Oregon, which is a subbasin of the Columbia River Basin. This study is part of a larger one encompassing the entire Columbia Basin.

  2. Geologic Carbon Sequestration in a Lightly Explored Basin: the Puget-Willamette Lowland

    NASA Astrophysics Data System (ADS)

    Jackson, J. S.

    2007-12-01

    The Puget-Willamette Lowland is located between the Cascade Range and Olympic Mountains-Coast Range. Exploration for oil and gas there commenced in 1890. Over 700 wells subsequently drilled yield one commercial gas discovery. Eocene sediments deposited west of an ancestral Cascade Range include a coal-bearing sequence covering much of the Puget-Willamette Lowland. The terrestrial deposits pass into marine deposits to the west. Syn- depositional normal faulting and strike-slip faulting are evident in several sub-basins. In the southern Lowland, normal faults were modified by episodes of late Eocene and Miocene transpression, which resulted in mild inversion of older normal faults Preserved sediments indicate that local subsidence continued into Miocene- Pliocene time, and was followed in the northern Lowland by extensive Pleistocene glaciation. In the northern Lowland, Holocene faulting is recognized in outcrop and is interpreted on seismic data acquired in Puget Sound. Structures formed by early Miocene or earlier events may have trapped migrating hydrocarbons. Structures formed or modified by Holocene faulting very probably post-date hydrocarbon generation and migration. The region appears to host potential geologic sequestration targets, including coals, sandstones, and vesicular basalt flows. The size and location of potential traps is poorly constrained by present data. Experience in better explored fore arc basins suggests 10 to 30 percent of the basin may be deformed into suitable trapping geometries. Modern seismic data is required to identify potential sequestration traps. More than one well will be required to confirm the presence and size of these traps. The present boom in oil and gas drilling has created a robust environment for seismic and drilling companies, who command unprecedented rates for their services. Only one seismic crew is presently active on the West Coast, and only a few exploration drilling rigs are available. If this environment

  3. Thermal effects of dams in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2010-01-01

    where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm

  4. Geologic features of dam sites in the Nehalem, Rogue, and Willamette River basins, Oregon, 1935-37

    USGS Publications Warehouse

    Piper, A.M.

    1947-01-01

    The present report comprises brief descriptions of geologic features at 19 potential dam sites in the Nehalem, Rogue, and Willamette River basins in western Oregon. The topography of these site and of the corresponding reservoir site was mapped in 1934-36 under an allocation of funds, by the Public Works Administration for river-utilization surveys by the Conservation Branch of the United States Geological Survey. The field program in Oregon has been under the immediate charge of R. O. Helland. The 19 dam sites are distributed as follows: three on the Nehalem River, on the west or Pacific slope of the Oregon Coast range; four on Little Butte Creek and two on Evans Creek, tributaries of the Rogue River in the eastern part of the Klamath Mountains; four on the South and Middle Santiam Rivers, tributaries of the Willamette River from the west slope of the Cascade mountains; and six on tributaries of the Willamette River from the east slope of the Coast Range. Except in the Evans Creek basin, all the rocks in the districts that were studied are of comparatively late geological age. They include volcanic rocks, crystalline rocks of several types, marine and nonmarine sedimentary rocks, and recent stream deposits. The study of geologic features has sought to estimate the bearing power and water-tightness of the rocks at each dam site, also to place rather broad limits on the type of dam for which the respective sites seem best suited. It was not considered necessary to study the corresponding reservoir sites in detail for excessive leakage appears to be unlikely. Except at three of the four site in the Santiam River basin, no test pits have been dug nor exploratory holes drilled, so that geologic features have been interpreted wholly from natural outcrops and from highway and railroad cuts. Because these outcrops and cuts are few, many problems related to the construction and maintenance of dams can not be answered at the this time and all critical features of the sites

  5. Flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Lane County, Oregon

    USGS Publications Warehouse

    Hess, Glen W.; Haluska, Tana L.

    2016-04-13

    Digital flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Oregon, were developed by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers (USACE). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected stages at the USGS streamgage at Coast Fork Willamette River near Goshen, Oregon (14157500), at State Highway 58. Current stage at the streamgage for estimating near-real-time areas of inundation may be obtained at http://waterdata.usgs.gov/or/nwis/uv/?site_no=14157500&PARAmeter_cd=00065,00060. In addition, the National Weather Service (NWS) forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, areas of inundation were provided by USACE. The inundated areas were developed from flood profiles simulated by a one-dimensional unsteady step‑backwater hydraulic model. The profiles were checked by the USACE using documented high-water marks from a January 2006 flood. The model was compared and quality assured using several other methods. The hydraulic model was then used to determine eight water-surface profiles at various flood stages referenced to the streamgage datum and ranging from 11.8 to 19.8 ft, approximately 2.6 ft above the highest recorded stage at the streamgage (17.17 ft) since 1950. The intervals between stages are variable and based on annual exceedance probability discharges, some of which approximate NWS action stages.The areas of inundation and water depth grids provided to USGS by USACE were used to create interactive flood‑inundation maps. The availability of these maps with current stage from USGS streamgage and forecasted stream stages from the NWS provide emergency management

  6. Associations among fish assemblage structure and environmental variables in Willamette Basin streams, Oregon

    USGS Publications Warehouse

    Waite, I.R.; Carpenter, K.D.

    2000-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, fish were collected from 24 selected stream sites in the Willamette Basin during 1993-1995 to determine the composition of the fish assemblages and their relation to the chemical and physical environment. Variance in fish relative abundance was greater among all sites than among spatially distinct reaches within a site (spatial variation) or among multiple sampled years at a site (temporal variation). Therefore, data from a single reach in an individual year was considered to be a reliable estimator of the fish assemblage structure at a site when the data were normalized by percent relative abundance. Multivariate classification and ordination were used to examine patterns in environmental variables and fish relative abundance over differing spatial scales (among versus within ecoregions). Across all ecoregions (all sites), fish assemblages were primarily structured along environmental gradients of water temperature and stream gradient (coldwater, high-gradient forested sites versus warmwater, low-gradient Willamette Valley sites); this pattern superseded patterns that were ecoregion specific. Water temperature, dissolved oxygen, and physical habitat (e.g., riparian canopy and percent riffles) were associated with patterns of fish assemblages across all ecoregions; however, pesticide and total phosphorus concentrations were more important than physical habitat within the Willamette Valley ecoregion. Consideration of stream site stratification (e.g., stream size, ecoregion, and stream gradient), identification of fish to species level (particularly the sculpin family), and detailed measurement of habitat, diurnal dissolved oxygen, and water temperature were critical in evaluating the composition of fish assemblages in relation to land use. In general, these low-gradient valley streams typical of other agricultural regions had poor riparian systems and showed increases in water

  7. Seasonal and spatial variability of nutrients and pesticides in streams of the Willamette Basin, Oregon, 1993-95

    USGS Publications Warehouse

    Rinella, F.A.; Janet, M.L.

    1998-01-01

    From April 1993 to September 1995, the U.S. Geological Survey conducted a study of the occurrence and distribution of nutrients and pesticides in surface water of the Willamette and Sandy River Basins, Oregon, as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. About 260 samples were collected at 51 sites during the study; of these, more than 60 percent of the pesticide samples and more than 70 percent of the nutrient samples were collected at 7 sites in a fixed-station network (primary sites) to characterize seasonal water-quality variability related to a variety of land-use activities. Samples collected at the remain ing 44 sites were used primarily to characterize spatial water- quality variability in agricultural river subbasins located throughout the study area.This report describes concentrations of 4 nutrient species (total nitrogen, filtered nitrite plus nitrate, total phosphorus, and soluble reactive phosphorus) and 86 pesticides and pesticide degradation products in streams, during high- and low-flow conditions, receiving runoff from urban, agricultural, forested, and mixed-use lands. Although most nutrient and pesticide concentrations were relatively low, some concentrations exceeded maximum contaminant levels for drinking water and water-quality criteria for chronic toxicity established for the protection of freshwater aquatic life. The largest number of exceedances generally occurred at sites receiving predominantly agricultural inputs. Total nitrogen, filtered nitrite plus nitrate, total phosphorus, and soluble reactive phosphorus concentrations were detected in 89 to 98 percent of the samples; atrazine, simazine, metolachlor, and desethylatrazine were detected in 72 to 94 percent of the samples. Fifty different pesticides and degradation products was detected during the 2-1/2 year study.Seasonally, peak nutrient and pesticide concentrations at the seven primary sites were observed during winter and spring rains

  8. Development of CE-QUAL-W2 models for the Middle Fork Willamette and South Santiam Rivers, Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Stonewall, Adam J.; Sullivan, Annett B.; Kim, Yoonhee; Rounds, Stewart A.

    2013-01-01

    Hydrodynamic (CE-QUAL-W2) models of Hills Creek Lake (HCL), Lookout Point Lake (LOP), and Dexter Lake (DEX) on the Middle Fork Willamette River (MFWR), and models of Green Peter Lake and Foster Lake on the South Santiam River systems in western Oregon were updated and recalibrated for a wide range of flow and meteorological conditions. These CE-QUAL-W2 models originally were developed by West Consultants, Inc., for the U.S. Army Corps of Engineers. This study by the U.S. Geological Survey included a reassessment of the models’ calibration in more recent years—2002, 2006, 2008, and 2011—categorized respectively as low, normal, high, and extremely high flow calendar years. These years incorporated current dam-operation practices and more available data than the time period used in the original calibration. Modeled water temperatures downstream of both HCL and LOP-DEX on the MFWR were within an average of 0.68 degree Celsius (°C) of measured values; modeled temperatures downstream of Foster Dam on the South Santiam River were within an average of 0.65°C of measured values. A new CE-QUAL-W2 model was developed and calibrated for the riverine MFWR reach between Hills Creek Dam and the head of LOP, allowing an evaluation of the flow and temperature conditions in the entire MFWR system from HCL to Dexter Dam. The complex bathymetry and long residence time of HCL, combined with the relatively deep location of the power and regulating outlet structures at Hills Creek Dam, led to a HCL model that was highly sensitive to several outlet and geometric parameters related to dam structures (STR TOP, STR BOT, STR WIDTH). Release temperatures from HCL were important and often persisted downstream as they were incorporated in the MFWR model and the LOP-DEX model (downstream of MFWR). The models tended to underpredict the measured temperature of water releases from Dexter Dam during the late-September-through-December drawdown period in 2002, and again (to a lesser extent) in

  9. Continuous hydrologic simulation of runoff for the Middle Fork and South Fork of the Beargrass Creek basin in Jefferson County, Kentucky

    USGS Publications Warehouse

    Jarrett, G. Lynn; Downs, Aimee C.; Grace-Jarrett, Patricia A.

    1998-01-01

    The Hydrological Simulation Pro-gram-FORTRAN (HSPF) was applied to an urban drainage basin in Jefferson County, Ky to integrate the large amounts of information being collected on water quantity and quality into an analytical framework that could be used as a management and planning tool. Hydrologic response units were developed using geographic data and a K-means analysis to characterize important hydrologic and physical factors in the basin. The Hydrological Simulation Program FORTRAN Expert System (HSPEXP) was used to calibrate the model parameters for the Middle Fork Beargrass Creek Basin for 3 years (June 1, 1991, to May 31, 1994) of 5-minute streamflow and precipitation time series, and 3 years of hourly pan-evaporation time series. The calibrated model parameters were applied to the South Fork Beargrass Creek Basin for confirmation. The model confirmation results indicated that the model simulated the system within acceptable tolerances. The coefficient of determination and coefficient of model-fit efficiency between simulated and observed daily flows were 0.91 and 0.82, respectively, for model calibration and 0.88 and 0.77, respectively, for model confirmation. The model is most sensitive to estimates of the area of effective impervious land in the basin; the spatial distribution of rain-fall; and the lower-zone evapotranspiration, lower-zone nominal storage, and infiltration-capacity parameters during recession and low-flow periods. The error contribution from these sources varies with season and antecedent conditions.

  10. Watershed scale response to climate change--South Fork Flathead River Basin, Montana

    USGS Publications Warehouse

    Chase, Katherine J.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the South Fork Flathead River Basin, Montana.

  11. Use of BasinTemp to model summer stream temperatures in the south fork of Ten Mile River, CA

    Treesearch

    Rafael Real de Asua; Ethan Bell; Bruce Orr; Peter Baker; Kevin Faucher

    2012-01-01

    We used BasinTemp to predict summer stream temperatures in South Fork Ten Mile River (SFTMR), Mendocino County. BasinTemp is a temperature model that attempts to quantify the basin-wide effects of high summer stream temperatures in basins where the data inputs are scarce. It assumes that direct solar radiation is the chief...

  12. Drainage areas of the Twelvepole Creek basin, West Virginia; Big Sandy River basin, West Virginia; Tug Fork basin, Virginia, Kentucky, West Virginia

    USGS Publications Warehouse

    Wilson, M.W.

    1979-01-01

    Drainage areas were determined for 61 basins in the Twelvepole Creek basin, West Virginia; 11 basins of the Big Sandy River Basin, West Virginia; and 210 basins in the Tug Fork basin of Virginia, Kentucky, and West Virginia. Most basins with areas greater than 5 square miles were included. Drainage areas were measured with electronic digitizing equipment, and supplementary measurements were made with a hand planimeter. Stream mileages were determined by measuring, with a graduated plastic strip, distances from the mouth of each stream to the measuring point on that stream. Mileages were reported to the nearest one-hundredth of a mile in all cases. The latitude and longitude of each measuring point was determined with electronic digitizing equipment and is reported to the nearest second. The information is listed in tabular form in downstream order. Measuring points for the basins are located in the tables by intersecting tributaries, by counties, by map quadrangles, or by latitude and longitude. (Woodard-USGS)

  13. Surface-water quality assessment of the North Fork Red River basin upstream from Lake Altus, Oklahoma, 2002

    USGS Publications Warehouse

    Smith, S. Jerrod; Schneider, M.L.; Masoner, J.R.; Blazs, R.L.

    2003-01-01

    Elevated salinity in the North Fork Red River is a major concern of the Bureau of Reclamation W. C. Austin Project at Lake Altus. Understanding the relation between surface-water runoff, ground-water discharge, and surface-water quality is important for maintaining the beneficial use of water in the North Fork Red River basin. Agricultural practices, petroleum production, and natural dissolution of salt-bearing bedrock have the potential to influence the quality of nearby surface water. The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, sampled stream discharge and water chemistry at 19 stations on the North Fork Red River and tributaries. To characterize surface-water resources of the basin in a systematic manner, samples were collected synoptically during receding streamflow conditions during July 8-11, 2002. Together, sulfate and chloride usually constitute greater than half of the dissolved solids. Concentrations of sulfate ranged from 87.1 to 3,450 milligrams per liter. The minimum value was measured at McClellan Creek near Back (07301220), and the maximum value was measured at Bronco Creek near Twitty (07301303). Concentrations of chloride ranged from 33.2 to 786 milligrams per liter. The minimum value was measured at a North Fork Red River tributary (unnamed) near Twitty (07301310), and the maximum value was measured at the North Fork Red River near Back (07301190), the most upstream sample station.

  14. LIFE HISTORY MONITORING OF SALMONIDS IN THE WEST FORK SMITH RIVER, UMPQUA BASIN, OREGON

    EPA Science Inventory

    As a life-cycle monitoring basin for the Oregon Salmon Plan, the Oregon Department of Fish and Wildlife has estimated adult returns, distribution and smolt outmigration of coho, chinook and winter steelhead in the West Fork Smith River since 1998. In 2001/2002, the Environmenta...

  15. Variation in watershed nitrogen input and export across the Willamette River Basin

    NASA Astrophysics Data System (ADS)

    Goodwin, K. E.; Compton, J. E.; Sobota, D. J.

    2011-12-01

    Nitrogen (N) export from watersheds is influenced by hydrology, land use/cover, and the timing and spatial arrangement of N inputs and removal within basins. We examined the relationship between N input and watershed N export for 25 monitoring stations between 1996 and 2006 within the Willamette River Basin, western Oregon USA. We hypothesized that N export would be strongly correlated with N inputs, and that much of the N inputs comes from agricultural activities located in lowland portions of the basin. We also expected that N export would be strongly seasonal, reflecting the Mediterranean climate of the region. We found a wide range of export from the monitored WRB sub-basins, ranging from 1 to nearly 70 kg N ha-1 yr-1. Lower per unit area N export reflected a high proportion of watershed area in the predominantly forested Cascade Mountains, while the higher N export basins had a greater proportion of agricultural areas, particularly areas dominated by cultivated crops with high N requirements. Export of N varied greatly from year to year (up to nearly 200%), responding to interannual changes in precipitation and runoff. Export was strongly seasonal, with at least 50%, and often 75%, of the N export occurring during the fall and winter months. Snowmelt dominated Cascade Mountain streams tended to maintain flow and N export during the summer, compared with the basins draining Coast-Range and valley areas, which have less snow and spring rain inputs to maintain summer flow. Agricultural N inputs of synthetic and manure fertilizer were strongly correlated with N export from the sub-basins. Across the WRB, N export appears to be more strongly related to fertilizer application rates, as opposed to agricultural areas, indicating the importance of specific crops and crop practices as opposed to considering all agricultural lands the same in analyses of watershed N dynamics. This reinforces the need for careful tracking of N inputs to inform water quality monitoring and

  16. CHANGES IN FISH ASSEMBLAGE STRUCTURE IN THE MAINSTEM WILLAMETTE RIVER, OREGON

    EPA Science Inventory

    The Willamette River has a mean annual discharge of 680 m3s-1. In the 1940s it was polluted by organic wastes, resulting in low dissolved oxygen concentrations and floating and benthic sludge deposits that hindered salmon migration and navigation. Following basin-wide secondary...

  17. Water-Quality, Bed-Sediment, and Biological Data (October 2007 through September 2008) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2009-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 23 sites from October 2007 through September 2008. Bed-sediment and biota samples were collected once at 13 sites during August 2008. This report presents the analytical results and quality assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2007 through September 2008. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at sites where seasonal daily values of turbidity were being determined and at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the

  18. Water-quality, bed-sediment, and biological data (October 2008 through September 2009) and statistical summaries of long-term data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2010-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 24 sites from October 2008 through September 2009. Bed-sediment and biota samples were collected once at 13 sites during August 2009. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2008 through September 2009. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined as well as at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record

  19. Summary of information on aquatic biota and their habitats in the Willamette Basin, Oregon, through 1995

    USGS Publications Warehouse

    Altman, Bob; Henson, C.M.; Waite, I.R.

    1997-01-01

    Aquatic toxicological investigations in the basin have focused primarily on fish. These studies have addressed chlorinated pesticides, polychlorinated biphenyls (PCBs), dioxins and furans, polycyclic aromatic hydrocarbons (PAHs), and trace elements in aquatic tissue, as well as fish health assessments, skeletal abnormalities, and aquatic toxicological responses. Several pesticides exceeded U.S. Environmental Protection Agency and State water-quality criteria for the protection of aquatic life. Elevated PCB, dioxin, and furan concentrations were associated with point sources, such as pulp and paper mills. Elevated concentrations of mercury in aquatic tissue were associated with several reservoirs. Fish health assessments and skeletal abnormality studies detected high levels of abnormalities in fish from the main stem Willamette River. Few investigations have examined aquatic toxicological responses, such as enzyme induction assays, growth assays, and biomarker studies.

  20. Assessing Mechanisms of Climate Change Impact on the Upland Forest Water Balance of the Willamette River Basin

    NASA Astrophysics Data System (ADS)

    Turner, D. P.; Conklin, D. R.; Vache, K. B.; Schwartz, C.; Nolin, A. W.; Chang, H.; Watson, E.; John, B.

    2016-12-01

    Projected changes in air temperature, precipitation, and vapor pressure for the Willamette River Basin (Oregon, USA) over the next century will have significant impacts on the river basin water balance, notably on the amount of evapotranspiration (ET). Mechanisms of impact on ET will be both direct and indirect, but there is limited understanding of their absolute and relative magnitudes. Here we developed a spatially-explicit, daily time-step, modeling infrastructure to simulate the basin-wide water balance that accounts for meteorological influences, as well as effects mediated by changing vegetation cover type, leaf area, and ecophysiology. Three CMIP5 climate scenarios (LowClim, Reference, HighClim) were run for the 2010 to 2100 period. Besides warmer temperatures, the climate scenarios were characterized by wetter winters and increasing vapor pressure deficits. In the mid-range Reference scenario, our landscape simulation model (Envision) projected a continuation of forest cover on the uplands but a 3-fold increase in area burned per year. A decline (12-30%) in basin-wide mean leaf area index (LAI) in forests was projected in all scenarios. The lower LAIs drove a corresponding decline in ET. In a sensitivity test, the effect of increasing CO2 on stomatal conductance induced a further substantial decrease (11-18%) in basin-wide mean ET. The net effect of decreases in ET and increases in winter precipitation was an increase in annual streamflow. These results support the inclusion of changes in land cover, land use, LAI, and ecophysiology in efforts to anticipate impacts of climate change on basin-scale water balances.

  1. The impact of snowpack decline on high elevation surface-water flow in the Willamette River: a stable isotope perspective

    NASA Astrophysics Data System (ADS)

    Brooks, J. R.; Johnson, H.; Cline, S. P.; Rugh, W.

    2015-12-01

    Much of the water that people in Western Oregon rely on comes from the snowpack in the Cascade Range, and this snowpack is expected to decrease in coming years with climate change. In fact, the past five years have shown dramatic variation in snowpack from a high of 174% of normal in 2010-11 to a low of 11% for 2014-15, one of the lowest on record. During this timeframe, we have monitored the stable isotopes of water within the Willamette River twice monthly, and mapped the spatial variation of water isotopes across the basin. Within the Willamette Basin, stable isotopes of water in precipitation vary strongly with elevation and provide a marker for determining the mean elevation from which water in the Willamette River is derived. In the winter when snow accumulates in the mountains, low elevation precipitation (primarily rain) contributes the largest proportion of water to the Willamette River. During summer when rainfall is scarce and demand for water is the greatest, water in the Willamette River is mainly derived from high elevation snowmelt. Our data indicate that the proportion of water from high elevation decreased with decreasing snowpack. We combine this information with the river flow data to estimate the volume reduction related to snow pack reduction during the dry summer. Observed reductions in the contribution of high elevation water to the Willamette River after just two years of diminished snowpack indicate that the hydrologic system responds relatively rapidly to changing snowpack volume. Reconciling the demands between human use and biological instream requirements during summer will be challenging under climatic conditions in which winter snowpack is reduced compared to historical amounts.

  2. Relations of habitat-specific algal assemblages to land use and water chemistry in the Willamette Basin, Oregon

    USGS Publications Warehouse

    Carpenter, K.D.; Waite, I.R.

    2000-01-01

    Benthic algal assemblages, water chemistry, and habitat were characterized at 25 stream sites in the Willamette Basin, Oregon, during low flow in 1994. Seventy-three algal samples yielded 420 taxa - Mostly diatoms, blue-green algae, and green algae. Algal assemblages from depositional samples were strongly dominated by diatoms (76% mean relative abundance), whereas erosional samples were dominated by blue-green algae (68% mean relative abundance). Canonical correspondence analysis (CCA) of semiquantitative and qualitative (presence/absence) data sets identified four environmental variables (maximum specific conductance, % open canopy, pH, and drainage area) that were significant in describing patterns of algal taxa among sites. Based on CCA, four groups of sites were identified: Streams in forested basins that supported oligotrophic taxa, such as Diatoma mesodon; small streams in agricultural and urban basins that contained a variety of eutrophic and nitrogen-heterotrophic algal taxa; larger rivers draining areas of mixed land use that supported planktonic, eutrophic, and nitrogen-heterotrophic algal taxa; and streams with severely degraded or absent riparian vegetation (> 75% open canopy) that were dominated by other planktonic, eutrophic, and nitrogen-heterotrophic algal taxa. Patterns in water chemistry were consistent with the algal autecological interpretations and clearly demonstrated relationships between land use, water quality, and algal distribution patterns.

  3. 33 CFR 207.680 - Willamette River, Oreg.; use, administration, and navigation of canal and locks at Willamette...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., administration, and navigation of canal and locks at Willamette Falls, Oreg. 207.680 Section 207.680 Navigation... Willamette Falls, Oreg. (a) Administration—(1) Administrative jurisdiction. The canal and locks and all... VHF-FM radio on channel 14, at WUJ 363, Willamette Falls Locks or by telephone or otherwise notifying...

  4. 33 CFR 207.680 - Willamette River, Oreg.; use, administration, and navigation of canal and locks at Willamette...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., administration, and navigation of canal and locks at Willamette Falls, Oreg. 207.680 Section 207.680 Navigation... Willamette Falls, Oreg. (a) Administration—(1) Administrative jurisdiction. The canal and locks and all... VHF-FM radio on channel 14, at WUJ 363, Willamette Falls Locks or by telephone or otherwise notifying...

  5. 33 CFR 207.680 - Willamette River, Oreg.; use, administration, and navigation of canal and locks at Willamette...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., administration, and navigation of canal and locks at Willamette Falls, Oreg. 207.680 Section 207.680 Navigation... Willamette Falls, Oreg. (a) Administration—(1) Administrative jurisdiction. The canal and locks and all... VHF-FM radio on channel 14, at WUJ 363, Willamette Falls Locks or by telephone or otherwise notifying...

  6. Changes in fish assemblage structure in the main-stem Willamette River, Oregon

    EPA Science Inventory

    The Willamette River if Oregon’s largest river, with a basin area of 29,800 km² and a mean annual discharge of 680 m³/3. Beginning in the 1890s, the channel was greatly simplified for navigation. By the 1940s, it was polluted by organic wastes, which resulted in low dissolved o...

  7. Spawning patterns of Pacific Lamprey in tributaries to the Willamette River, Oregon

    USGS Publications Warehouse

    Mayfield, M.P.; Schultz, Luke; Wyss, Lance A.; Clemens, B. J.; Schreck, Carl B.

    2014-01-01

    Addressing the ongoing decline of Pacific Lamprey Entosphenus tridentatus across its range along the west coast of North America requires an understanding of all life history phases. Currently, spawning surveys (redd counts) are a common tool used to monitor returning adult salmonids, but the methods are in their infancy for Pacific Lamprey. To better understand the spawning phase, our objective was to assess temporal spawning trends, redd abundance, habitat use, and spatial patterns of spawning at multiple spatial scales for Pacific Lamprey in the Willamette River basin, Oregon. Although redd density varied considerably across surveyed reaches, the observed temporal patterns of spawning were related to physical habitat and hydrologic conditions. As has been documented in studies in other basins in the Pacific Northwest, we found that redds were often constructed in pool tailouts dominated by gravel, similar to habitat used by spawning salmonids. Across the entire Willamette Basin, Pacific Lampreys appeared to select reaches with alluvial geology, likely because this is where gravel suitable for spawning accumulated. At the tributary scale, spawning patterns were not as strong, and in reaches with nonalluvial geology redds were more spatially clumped than in reaches with alluvial geology. These results can be used to help identify and conserve Pacific Lamprey spawning habitat across the Pacific Northwest.

  8. Water-Quality, Bed-Sediment, and Biological Data (October 2006 through September 2007) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2008-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2006 through September 2007. Bed-sediment and biological samples were collected once at 12 sites during August 2007. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2006 through September 2007. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for samples collected at sites where seasonal daily values of turbidity were being determined. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  9. Water-Quality, Bed-Sediment, and Biological Data (October 2005 through September 2006) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2007-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2005 through September 2006. Bed-sediment and biological samples were collected once at 12 sites during August 2006. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2005 through September 2006. Water-quality data include concentrations of selected major ions, trace ele-ments, and suspended sediment. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sed-iment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-ele-ment concentrations in the fine-grained fraction. Bio-logical data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  10. Water temperature effects from simulated dam operations and structures in the Middle Fork Willamette River, western Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Turner, Daniel F.; Rounds, Stewart A.

    2016-09-14

    Significant FindingsStreamflow and water temperature in the Middle Fork Willamette River (MFWR), western Oregon, have been regulated and altered since the construction of Lookout Point, Dexter, and Hills Creek Dams in 1954 and 1961, respectively. Each year, summer releases from the dams typically are cooler than pre-dam conditions, with the reverse (warmer than pre-dam conditions) occurring in autumn. This pattern has been detrimental to habitat of endangered Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR winter steelhead (O. mykiss) throughout multiple life stages. In this study, scenarios testing different dam-operation strategies and hypothetical dam-outlet structures were simulated using CE-QUAL-W2 hydrodynamic/temperature models of the MFWR system from Hills Creek Lake (HCR) to Lookout Point (LOP) and Dexter (DEX) Lakes to explore and understand the efficacy of potential flow and temperature mitigation options.Model scenarios were run in constructed wet, normal, and dry hydrologic calendar years, and designed to minimize the effects of Hills Creek and Lookout Point Dams on river temperature by prioritizing warmer lake surface releases in May–August and cooler, deep releases in September–December. Operational scenarios consisted of a range of modified release rate rules, relaxation of power-generation constraints, variations in the timing of refill and drawdown, and maintenance of different summer maximum lake levels at HCR and LOP. Structural scenarios included various combinations of hypothetical floating outlets near the lake surface and hypothetical new outlets at depth. Scenario results were compared to scenarios using existing operational rules that give temperature management some priority (Base), scenarios using pre-2012 operational rules that prioritized power generation over temperature management (NoBlend), and estimated temperatures from a without-dams condition (WoDams).Results of the tested model scenarios led

  11. Exploring factors controlling the variability of pesticide concentrations in the Willamette River Basin using tree-based models

    USGS Publications Warehouse

    Qian, S.S.; Anderson, Chauncey W.

    1999-01-01

    We analyzed available concentration data of five commonly used herbicides and three pesticides collected from small streams in the Willamette River Basin in Oregon to identify factors that affect the variation of their concentrations in the area. The emphasis of this paper is the innovative use of classification and regression tree models for exploratory data analysis as well as analyzing data with a substantial amount of left-censored values. Among variables included in this analysis, land-use pattern in the watershed is the most important for all but one (simazine) of the eight pesticides studied, followed by geographic location, intensity of agriculture activities in the watershed (represented by nutrient concentrations in the stream), and the size of the watershed. The significant difference between urban sites and agriculture sites is the variability of stream concentrations. While all 16 nonurban watersheds have significantly higher variation than urban sites, the same is not necessarily true for the mean concentrations. Seasonal variation accounts for only a small fraction of the total variance in all eight pesticides.We analyzed available concentration data of five commonly used herbicides and three pesticides collected from small streams in the Willamette River Basin in Oregon to identify factors that affect the variation of their concentrations in the area. The emphasis of this paper is the innovative use of classification and regression tree models for exploratory data analysis as well as analyzing data with a substantial amount of left-censored values. Among variables included in this analysis, land-use pattern in the watershed is the most important for all but one (simazine) of the eight pesticides studied, followed by geographic location, intensity of agriculture activities in the watershed (represented by nutrient concentrations in the stream), and the size of the watershed. The significant difference between urban sites and agriculture sites is the

  12. Role of large- and fine-scale variables in predicting catch rates of larval Pacific lamprey in the Willamette Basin, Oregon

    USGS Publications Warehouse

    Schultz, Luke; Mayfield, Mariah P.; Sheoships, Gabe T.; Wyss, Lance A.; Clemens, Benjamin J.; Whitlock, Steven L.; Schreck, Carl B.

    2016-01-01

    Pacific lamprey Entosphenus tridentatus is an anadromous fish native to the Pacific Northwest of the USA. That has declined substantially over the last 40 years. Effective conservation of this species will require an understanding of the habitat requirements for each life history stage. Because its life cycle contains extended freshwater rearing (3–8 years), the larval stage may be a critical factor limiting abundance of Pacific lamprey. The objective of our study was to estimate the influence of barriers and habitat characteristics on the catch-per-unit-effort (CPUE) of larval Pacific lamprey in the Willamette River Basin, Oregon, USA. We sampled lampreys at multiple locations in wadeable streams throughout the basin in 2011–13 and used an information theoretic approach to examine the relative influence of fine- and large-scale predictors of CPUE. Pacific lamprey was observed across the basin, but its relative abundance appeared to be limited by the presence of natural and artificial barriers in some sub-basins. Lower velocity habitats such as off-channel areas and pools contained higher densities of larval lamprey; mean Pacific lamprey CPUE in off-channel habitats was 4 and 32 times greater than in pools and riffles respectively. Restoration and conservation strategies that improve fish passage, enhance natural hydrologic and depositional processes and increase habitat heterogeneity will likely benefit larval Pacific lamprey.

  13. 15. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM, LEFT FORK TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM, LEFT FORK TO SETTLING BASIN, SHOWING RIGHT FORK WITH GATE IN PLACE AND A FEW NEEDLES IN PLACE - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  14. Water-quality trends for selected sampling sites in the upper Clark Fork Basin, Montana, water years 1996-2010

    USGS Publications Warehouse

    Sando, Steven K.; Vecchia, Aldo V.; Lorenz, David L.; Barnhart, Elliott P.

    2014-01-01

    A large-scale trend analysis was done on specific conductance, selected trace elements (arsenic, cadmium, copper, iron, lead, manganese, and zinc), and suspended-sediment data for 22 sites in the upper Clark Fork Basin for water years 1996–2010. Trend analysis was conducted by using two parametric methods: a time-series model (TSM) and multiple linear regression on time, streamflow, and season (MLR). Trend results for 1996–2010 indicate moderate to large decreases in flow-adjusted concentrations (FACs) and loads of copper (and other metallic elements) and suspended sediment in Silver Bow Creek upstream from Warm Springs. Deposition of metallic elements and suspended sediment within Warm Springs Ponds substantially reduces the downstream transport of those constituents. However, mobilization of copper and suspended sediment from floodplain tailings and stream banks in the Clark Fork reach from Galen to Deer Lodge is a large source of metallic elements and suspended sediment, which also affects downstream transport of those constituents. Copper and suspended-sediment loads mobilized from within this reach accounted for about 40 and 20 percent, respectively, of the loads for Clark Fork at Turah Bridge (site 20); whereas, streamflow contributed from within this reach only accounted for about 8 percent of the streamflow at Turah Bridge. Minor changes in FACs and loads of copper and suspended sediment are indicated for this reach during 1996–2010. Clark Fork reaches downstream from Deer Lodge are relatively smaller sources of metallic elements than the reach from Galen to Deer Lodge. In general, small decreases in loads and FACs of copper and suspended sediment are indicated for Clark Fork sites downstream from Deer Lodge during 1996–2010. Thus, although large decreases in FACs and loads of copper and suspended sediment are indicated for Silver Bow Creek upstream from Warm Springs, those large decreases are not translated to the more downstream reaches largely

  15. Spatial Patterns of Mercury Bioaccumulation in the Upper Clark Fork River Basin, MT

    NASA Astrophysics Data System (ADS)

    Staats, M. F.; Langner, H.; Moore, J. N.

    2010-12-01

    The Upper Clark Fork River Basin (UCFRB) in Montana has a legacy of historic gold/silver mine waste that contributes large quantities of mercury into the watershed. Mercury bioaccumulation at higher levels of the aquatic food chain, such as the mercury concentration in the blood of pre-fledge osprey, exhibit an irregular spatial signature based on the location of the nests throughout the river basin. Here we identify regions with a high concentration of bioavailable mercury and the major factors that allow the mercury to bioaccumulate within trophic levels. This identification is based on the abundance of mercury sources and the potential for mercury methylation. To address the source term, we did a survey of total mercury in fine sediments along selected UCFRB reaches, along with the assessment of environmental river conditions (percentage of backwaters/wetlands, water temperature and pH, etc). In addition, we analyzed the mercury levels of a representative number of macroinvertebrates and fish from key locations. The concentration of total mercury in sediment, which varies from reach to reach (tributaries of the Clark Fork River, <0.05 mg/kg to the main stem of the river, >5mg/kg) affects the concentration of mercury found at various trophic levels. However, reaches with a low supply of mine waste-derived mercury can also yield substantial concentrations of mercury in the biota, due to highly favorable conditions for mercury methylation. We identify that the major environmental factor that affects the methylation potential in the UCFRB is the proximity and connectivity of wetland areas to the river.

  16. Use of a watershed-modeling approach to assess hydrologic effects of urbanization, North Fork Pheasant Branch basin near Middleton, Wisconsin

    USGS Publications Warehouse

    Steuer, Jeffrey J.; Hunt, R.J.

    2001-01-01

    The North Fork Pheasant Branch Basin in Dane County, Wisconsin is expected to undergo development. There are concerns that development will adversely affect water resources with increased flood peaks, increased runoff volumes, and increased pollutant loads. To provide a scientific basis for evaluating the hydrologic system response to development the Precipitation Runoff Modeling System (PRMS) was used to model the upper Pheasant Branch Creek watershed with an emphasis on the North Fork Basin. The upper Pheasant Branch Creek (18.3 mi2; 11,700 acres) Basin was represented with 21 Hydrologic Response Units (daily time step) and 50 flow planes (5-minute time steps). Precipitation data from the basin outlet streamflow-gaging station located at Highway 12 and temperature data from a nearby airport were used to drive the model. Continuous discharge records at three gaging stations were used for model calibration. To qualitatively assess model representation of small subbasins, periodic reconnaissance, often including a depth measurement, was made after precipitation to determine the occurrence of flow in ditches and channels from small subbasins. As a further effort to verify the model on a small subbasin scale, continuous-stage sensors (15-minute intervals) measured depth at the outlets of three small subbasins (500 to 1,200 acres). Average annual precipitation for the simulation period from 1993 to 1998 was 35.2 inches. The model simulations showed that, on average, 23.9 inches were intercepted by vegetation, or lost to evapotranspiration, 6.0 inches were infiltrated and moved to the regional ground-water system, and 4.8 inches contributed to the upper Pheasant Branch streamflow. The largest runoff event during the calibration interval was in July 1993 (746 ft3/sec; with a recurrence interval of approximately 25 years). Resulting recharge rates from the calibrated model were subsequently used as input into a ground-water-flow model. Average annual recharge varied

  17. Water-quality, bed-sediment, and biological data (October 2009 through September 2010) and statistical summaries of data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2012-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork basin. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2009 through September 2010. Bed-sediment and biota samples were collected once at 13 sites during August 2010. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2009 through September 2010. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  18. Water-quality, bed-sediment, and biological data (October 2011 through September 2012) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2014-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2011 through September 2012. Bed-sediment and biota samples were collected once at 13 sites during August 2012. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2011 through September 2012. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record since 1985.

  19. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the Whitewater River and East Fork White River Basins, Indiana, 2002

    USGS Publications Warehouse

    Caskey, Brian J.; Frey, Jeffrey W.; Lowe, B. Scott

    2007-01-01

    Data were gathered from May through September 2002 at 76 randomly selected sites in the Whitewater River and East Fork White River Basins, Indiana, for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (land use and drainage area) and biolog-ical-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Compo-nents Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related using Spearman's rho to the seasonal algal-biomass, basin-charac-teristics, habitat, seasonal nutrient, and biological-community attribute and metric score data. The periphyton PC1 site score was not significantly related to the nine habitat or 12 nutrient variables examined. One land-use variable, drainage area, was negatively related to the periphyton PC1. Of the 43 fish-community attributes and metrics examined, the periphyton PC1 was negatively related to one attribute (large-river percent) and one metric score (car-nivore percent metric score). It was positively related to three fish-community attributes (headwater percent, pioneer percent, and simple lithophil percent). The periphyton PC1 was not statistically related to any of the 21 invertebrate-community attributes or metric scores examined. Of the 12 nutrient variables examined two were nega-tively related to the seston PC1 site score in two seasons: total Kjeldahl nitrogen (July and September), and TP (May and September). There were no statistically significant relations between the seston PC1 and the five basin-characteristics or nine habitat variables examined. Of the 43 fish-community attributes and metrics examined, the seston PC1 was positively related to one attribute (headwater percent) and negatively related to one metric score (large-river percent metric score) . Of the 21 invertebrate-community attributes

  20. Nitrate attenuation in the Missoula Flood Deposits Aquitard (Willamette Silt) of the Willamette Valley, Oregon

    NASA Astrophysics Data System (ADS)

    Arighi, L.; Haggerty, R.; Myrold, D. D.; Iverson, J.; Baham, J. E.; Madin, I. P.; Arendt, J.

    2005-12-01

    Low-permeability geologic units may offer significant chemical and hydraulic protection of adjacent aquifers, and are important for managing groundwater quality, especially in areas with significant non-point source contamination. Nitrate in the Willamette Valley is attenuated across the Willamette Silt, a semi-confining unit overlying a regionally important aquifer. To quantify the main mechanism responsible for nitrate attenuation, soil cores were taken at 19 locations, and profiles of nitrate concentrations were constructed for each site. In 7 locations a sharp, major geochemical transition - a "redoxcline" - is present near the base of the Willamette Silt; this redoxcline is characterized by a color change from red-brown to blue-gray, an increase in iron(II) concentration, a rise in pH, and the appearance of carbonate minerals. At all sites where a significant surface input of nitrate was detected, the nitrate signal was attenuated before reaching the base of the silt. Denitrifier Enzyme Activity assays from one site show no denitrification potential in the profile, suggesting that a non-biological mechanism is responsible. We suggest that iron(II) is reducing the nitrate abiotically to nitrite, and that the blue-gray reducing zone of Willamette Silt is indicative of the presence of sufficient iron(II) for the reaction to go forward. To increase the usefulness of this study to regional water management agencies, a thickness isopach map of the reduced zone was created both for the northern and southern Willamette Valley to help determine areas where nitrate is most likely to be attenuated.

  1. Water-quality, bed-sediment, and biological data (October 2014 through September 2015) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.

    2017-01-19

    Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2014 through September 2015. Bed-sediment and biota samples were collected once at 13 sites during August 2015.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2014 through September 2015. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. At 12 sites, samples for analysis of dissolved organic carbon and turbidity were collected. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  2. Water-quality, bed-sediment, and biological data (October 2010 through September 2011) and statistical summaries of data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2013-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork basin of western Montana; additional water samples were collected from near Galen to near Missoula at select sites as part of a supplemental sampling program. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2010 through September 2011. Bed-sediment and biota samples were collected once at 14 sites during August 2011. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2010 through September 2011. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  3. Water-quality, bed-sediment, and biological data (October 2015 through September 2016) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.

    2018-03-30

    Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2015 through September 2016. Bed-sediment and biota samples were collected once at 13 sites during August 2016.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2015 through September 2016. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Samples for analysis of turbidity were collected at 13 sites, whereas samples for analysis of dissolved organic carbon were collected at 10 sites. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained (less than 0.063 millimeter) fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  4. Input-form data for the U.S. Geological Survey assessment of the Devonian and Mississippian Bakken and Devonian Three Forks Formations of the U.S. Williston Basin Province, 2013

    USGS Publications Warehouse

    ,; Gaswirth, Stephanie B.; Marra, Kristen R.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Higley, Debra K.; Klett, Timothy R.; Lewan, Michael D.; Lillis, Paul G.; Schenk, Christopher J.; Tennyson, Marilyn E.; Whidden, Katherine J.

    2013-01-01

    In 2013, the U.S. Geological Survey assessed the technically recoverable oil and gas resources of the Bakken and Three Forks Formations of the U.S. portion of the Williston Basin. The Bakken and Three Forks Formations were assessed as continuous and hypothetical conventional oil accumulations using a methodology similar to that used in the assessment of other continuous- and conventional-type assessment units throughout the United States. The purpose of this report is to provide supplemental documentation and information used in the Bakken-Three Forks assessment.

  5. 9. 'CRIB DAM IN LAKE FORK RIVER AT HEADING OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. 'CRIB DAM IN LAKE FORK RIVER AT HEADING OF LAKE FORK CANAL, UINTAH PROJECT. TWO SLUICEWAYS TWENTY FEET WIDE HAVE BEEN LEFT IN THE DAM TO PASS BOULDERS DURING HIGH WATER. THESE SLUICEWAYS ARE CLOSED BY LOGS AND HAY DURING LOW WATER.' Date unknown - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT

  6. Dissolved-Solids Load in Henrys Fork Upstream from the Confluence with Antelope Wash, Wyoming, Water Years 1970-2009

    USGS Publications Warehouse

    Foster, Katharine; Kenney, Terry A.

    2010-01-01

    Annual dissolved-solids load at the mouth of Henrys Fork was estimated by using data from U.S. Geological Survey streamflow-gaging station 09229500, Henrys Fork near Manila, Utah. The annual dissolved-solids load for water years 1970-2009 ranged from 18,300 tons in 1977 to 123,300 tons in 1983. Annual streamflows for this period ranged from 14,100 acre-feet in 1977 to 197,500 acre-feet in 1983. The 25-percent trimmed mean dissolved-solids load for water years 1970-2009 was 44,300 tons per year at Henrys Fork near Manila, Utah. Previous simulations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model for dissolved solids specific to water year 1991 conditions in the Upper Colorado River Basin predicted an annual dissolved-solids load of 25,000 tons for the Henrys Fork Basin upstream from Antelope Wash. On the basis of computed dissolved-solids load data from Henrys Fork near Manila, Utah, together with estimated annual dissolved-solids load from Antelope Wash and Peoples Canal, this prediction was adjusted to 37,200 tons. As determined by simulations with the Upper Colorado River Basin SPARROW model, approximately 56 percent (14,000 tons per year) of the dissolved-solids load at Henrys Fork upstream from Antelope Wash is associated with the 21,500 acres of irrigated agricultural lands in the upper Henrys Fork Basin.

  7. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the West Fork White River Basin, Indiana, 2001

    USGS Publications Warehouse

    Frey, Jeffrey W.; Caskey, Brian J.; Lowe, B. Scott

    2007-01-01

    Data were gathered from July through September 2001 at 34 randomly selected sites in the West Fork White River Basin, Indiana for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (drainage area and land use) and biological-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Components Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related, using Spearman's rho, to the seasonal algal-biomass, basin-characteristics, habitat, seasonal nutrient, biological-community attribute and metric score data. The periphyton PC1 site score, which was most influenced by ash-free dry mass, was negatively related to one (percent closed canopy) of nine habitat variables examined. Of the 43 fish-community attributes and metric scores examined, the periphyton PC1 was positively related to one fish-community attribute (percent tolerant). Of the 21 invertebrate-community attributes and metric scores examined, the periphyton PC1 was positively related to one attribute (Ephemeroptera, Plecoptera, and Trichoptera (EPT) index) and one metric score (EPT index metric score). The periphyton PC1 was not related to the five basin-characteristic or 12 nutrient variables examined. The seston PC1 site score, which was most influenced by particulate organic carbon, was negatively related to two of the 12 nutrient variables examined: total Kjeldahl nitrogen (July) and total phosphorus (July). Of the 43 fish-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (large-river percent). Of the 21 invertebrate-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (EPT-to-total ratio). The seston PC1 was not related to the five basin-characteristics or nine habitat variables

  8. Water-quality trends and constituent-transport analysis for selected sampling sites in the Milltown Reservoir/Clark Fork River Superfund Site in the upper Clark Fork Basin, Montana, water years 1996–2015

    USGS Publications Warehouse

    Sando, Steven K.; Vecchia, Aldo V.

    2016-07-20

    During the extended history of mining in the upper Clark Fork Basin in Montana, large amounts of waste materials enriched with metallic contaminants (cadmium, copper, lead, and zinc) and the metalloid trace element arsenic were generated from mining operations near Butte and milling and smelting operations near Anaconda. Extensive deposition of mining wastes in the Silver Bow Creek and Clark Fork channels and flood plains had substantial effects on water quality. Federal Superfund remediation activities in the upper Clark Fork Basin began in 1983 and have included substantial remediation near Butte and removal of the former Milltown Dam near Missoula. To aid in evaluating the effects of remediation activities on water quality, the U.S. Geological Survey began collecting streamflow and water-quality data in the upper Clark Fork Basin in the 1980s.Trend analysis was done on specific conductance, selected trace elements (arsenic, copper, and zinc), and suspended sediment for seven sampling sites in the Milltown Reservoir/Clark Fork River Superfund Site for water years 1996–2015. The most upstream site included in trend analysis is Silver Bow Creek at Warm Springs, Montana (sampling site 8), and the most downstream site is Clark Fork above Missoula, Montana (sampling site 22), which is just downstream from the former Milltown Dam. Water year is the 12-month period from October 1 through September 30 and is designated by the year in which it ends. Trend analysis was done by using a joint time-series model for concentration and streamflow. To provide temporal resolution of changes in water quality, trend analysis was conducted for four sequential 5-year periods: period 1 (water years 1996–2000), period 2 (water years 2001–5), period 3 (water years 2006–10), and period 4 (water years 2011–15). Because of the substantial effect of the intentional breach of Milltown Dam on March 28, 2008, period 3 was subdivided into period 3A (October 1, 2005–March 27, 2008

  9. Hydraulic geometry and sediment data for the South Fork Salmon River, Idaho, 1985-86

    USGS Publications Warehouse

    Williams, Rhea P.; O'Dell, Ivalou; Megahan, Walter F.

    1989-01-01

    Hydraulic geometry, suspended-sediment, and bedload samples were collected at three sites in the upper reach of the South Fork Salmon River drainage basin from April 1985 to June 1986. Sites selected were South Fork Salmon River near Krassel Ranger Station, Buckhorn Creek, and North Fork Lick Creek. Results of the data collection are presented in this report.

  10. Precipitation-runoff and streamflow-routing models for the Willamette River basin, Oregon

    USGS Publications Warehouse

    Laenen, Antonius; Risley, John C.

    1997-01-01

    With an input of current streamflow, precipitation, and air temperature data the combined runoff and routing models can provide current estimates of streamflow at almost 500 locations on the main stem and major tributaries of the Willamette River with a high degree of accuracy. Relative contributions of surface runoff, subsurface flow, and ground-water flow can be assessed for 1 to 10 HRU classes in each of 253 subbasins identified for precipitation-runoff modeling. Model outputs were used with a water-quality model to simulate the movement of dye in the Pudding River as an example

  11. Prediction method of sediment discharge from forested basin

    Treesearch

    Kazutoki Abe; Ushio Kurokawa; Robert R. Ziemer

    2000-01-01

    An estimation model for sediment discharge from a forested basin using Universal Soil Loss Equation and delivery ratio was developed. Study basins are North fork and South fork in Caspar Creek, north California, where Forest Service, USDA has been using water and sediment discharge from both basins since 1962. The whole basin is covered with the forest, mainly...

  12. 52. Photocopy of photograph (Plate XXI, Modjeski report) WILLAMETTE BRIDGE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photocopy of photograph (Plate XXI, Modjeski report) WILLAMETTE BRIDGE, DIAGRAM SHOWING RATE OF PROGRESS IN SINKING CAISSONS - Burlington Northern Railroad Bridge, Spanning Willamette River at River Mile 6.9, Portland, Multnomah County, OR

  13. Assessment of undiscovered oil resources in the Bakken and Three Forks Formations, Williston Basin Province, Montana, North Dakota, and South Dakota, 2013

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Marra, Kristen R.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Higley, Debra K.; Klett, Timothy R.; Lewan, Michael D.; Lillis, Paul G.; Schenk, Christopher J.; Tennyson, Marilyn E.; Whidden, Katherine J.

    2013-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered volumes of 7.4 billion barrels of oil, 6.7 trillion cubic feet of associated/dissolved natural gas, and 0.53 billion barrels of natural gas liquids in the Bakken and Three Forks Formations in the Williston Basin Province of Montana, North Dakota, and South Dakota.

  14. VEGETATION CHARACTERIZATION OF THREE CONTRASTING RIPARIAN SITES, WILLAMETTE VALLEY, OR

    EPA Science Inventory

    Much of the native riparian vegetation of the Willamette Valley, Oregon, has been replaced with agricultural crops or invasive non-native plant species. Detailed information about current Willamette Valley riparian vegetation is generally lacking. Plant species composition data...

  15. 14. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM TOWARD SETTLING BASIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM TOWARD SETTLING BASIN, SHOWING RIGHT FORK TO BYPASS, LEFT FORK TO BASIN - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  16. Maps Showing Inundation Depths, Ice-Rafted Erratics, and Sedimentary Facies of Late Pleistocene Missoula Floods in the Willamette Valley, Oregon

    USGS Publications Warehouse

    Minervini, J.M.; O'Connor, J. E.; Wells, R.E.

    2003-01-01

    Glacial Lake Missoula, impounded by the Purcell Trench lobe of the late Pleistocene Cordilleran Icesheet, repeatedly breached its ice dam, sending floods as large as 2,500 cubic kilometers racing across the Channeled Scabland and down the Columbia River valley to the Pacific Ocean. Peak discharges for some floods exceeded 20 million cubic meters per second. At valley constrictions along the flood route, floodwaters temporarily ponded behind each narrow zone. One such constriction at Kalama Gap-northwest of Portland-backed water 120-150 meters high in the Portland basin, and backflooded 200 km south into Willamette Valley. Dozens of floods backed up into the Willamette Valley, eroding 'scabland' channels, and depositing giant boulder gravel bars in areas of vigorous currents as well as bedded flood sand and silt in backwater areas. Also, large chunks of ice entrained from the breached glacier dam rafted hundreds of 'erratic' rocks, leaving them scattered among the flanking foothills and valley bottom. From several sources and our own mapping, we have compiled information on many of these features and depict them on physiographic maps derived from digital elevation models of the Portland Basin and Willamette Valley. These maps show maximum flood inundation levels, inundation levels associated with stratigraphic evidence of repeated floodings, distribution of flood deposits, and sites of ice-rafted erratics. Accompanying these maps, a database lists locations, elevations, and descriptions of approximately 400 ice-rafted erratics-most compiled from early 20th-century maps and notes of A.M. Piper and I.S. Allison.

  17. 76 FR 53054 - Safety Zone; TriMet Bridge Project, Willamette River; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ...-AA00 Safety Zone; TriMet Bridge Project, Willamette River; Portland, OR AGENCY: Coast Guard, DHS... the TriMet Bridge on the Willamette River, in Portland, OR. This action is necessary to ensure the... Zone: TriMet Bridge Project, Willamette River; Portland, OR in the Federal Register (76 FR 86). We...

  18. Geomorphic and vegetation processes of the Willamette River floodplain, Oregon: current understanding and unanswered science questions

    USGS Publications Warehouse

    Wallick, J. Rose; Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Hulse, David; Gregory, Stanley V.

    2013-01-01

    4. How is the succession of native floodplain vegetation shaped by present-day flow and sediment conditions? Answering these questions will produce baseline data on the current distributions of landforms and habitats (question 1), the extent of the functional floodplain (question 2), and the effects of modern flow and sediment regimes on future floodplain landforms, habitats, and vegetation succession (questions 3 and 4). Addressing questions 1 and 2 is a logical next step because they underlie questions 3 and 4. Addressing these four questions would better characterize the modern Willamette Basin and help in implementing and setting realistic targets for ongoing management strategies, demonstrating their effectiveness at the site and basin scales, and anticipating future trends and conditions.

  19. 77 FR 20718 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... Bridge crosses the Willamette River at mile 11.7 and provides 90 feet of vertical clearance above... schedule that governs the Broadway Bridge across the Willamette River, mile 11.7, at Portland, OR. This deviation is necessary to accommodate the Bridge to Brews foot race scheduled for April 15, 2012. This...

  20. Changes in streamflow and summary of major-ion chemistry and loads in the North Fork Red River basin upstream from Lake Altus, northwestern Texas and western Oklahoma, 1945-1999

    USGS Publications Warehouse

    Smith, S. Jerrod; Wahl, Kenneth L.

    2003-01-01

    Upstream from Lake Altus, the North Fork Red River drains an area of 2,515 square miles. The quantity and quality of surface water are major concerns at Lake Altus, and water-resource managers and consumers need historical information to make informed decisions about future development. The Lugert-Altus Irrigation District relies on withdrawals from the lake to sustain nearly 46,000 acres of agricultural land. Kendall's tau tests of precipitation data indicated no statistically significant trend over the entire 100 years of available record. However, a significant increase in precipitation occurred in the last 51 years. Four streamflow-gaging stations with more than 10 years of record were maintained in the basin. These stations recorded no significant trends in annual streamflow volume. Two stations, however, had significant increasing trends in the base-flow index, and three had significant decreasing trends in annual peak flows. Major-ion chemistry in the North Fork Red River is closely related to the chemical composition of the underlying bedrock. Two main lithologies are represented in the basin upstream from Lake Altus. In the upper reaches, young and poorly consolidated sediments include a range of sizes from coarse gravel to silt and clay. Nearsurface horizons commonly are cemented as calcium carbonate caliche. Finer-grained gypsiferous sandstones and shales dominate the lower reaches of the basin. A distinct increase in dissolved solids, specifically sodium, chloride, calcium, and sulfate, occurs as the river flows over rocks that contain substantial quantities of gypsum, anhydrite, and dolomite. These natural salts are the major dissolved constituents in the North Fork Red River.

  1. Replication fork reversal triggers fork degradation in BRCA2-defective cells.

    PubMed

    Mijic, Sofija; Zellweger, Ralph; Chappidi, Nagaraja; Berti, Matteo; Jacobs, Kurt; Mutreja, Karun; Ursich, Sebastian; Ray Chaudhuri, Arnab; Nussenzweig, Andre; Janscak, Pavel; Lopes, Massimo

    2017-10-16

    Besides its role in homologous recombination, the tumor suppressor BRCA2 protects stalled replication forks from nucleolytic degradation. Defective fork stability contributes to chemotherapeutic sensitivity of BRCA2-defective tumors by yet-elusive mechanisms. Using DNA fiber spreading and direct visualization of replication intermediates, we report that reversed replication forks are entry points for fork degradation in BRCA2-defective cells. Besides MRE11 and PTIP, we show that RAD52 promotes stalled fork degradation and chromosomal breakage in BRCA2-defective cells. Inactivation of these factors restores reversed fork frequency and chromosome integrity in BRCA2-defective cells. Conversely, impairing fork reversal prevents fork degradation, but increases chromosomal breakage, uncoupling fork protection, and chromosome stability. We propose that BRCA2 is dispensable for RAD51-mediated fork reversal, but assembles stable RAD51 nucleofilaments on regressed arms, to protect them from degradation. Our data uncover the physiopathological relevance of fork reversal and illuminate a complex interplay of homologous recombination factors in fork remodeling and stability.BRCA2 is involved in both homologous recombination (HR) and the protection of stalled replication forks from degradation. Here the authors reveal how HR factors cooperate in fork remodeling, showing that BRCA2 supports RAD51 loading on the regressed arms of reversed replication forks to protect them from degradation.

  2. Environmental stresses and skeletal deformities in fish from the Willamette River, Oregon

    USGS Publications Warehouse

    Villeneuve, Daniel L.; Curtis, Lawrence R.; Jenkins, Jeffrey J.; Warner, Kara E.; Tilton, Fred; Kent, Michael L.; Watral, Virginia G.; Cunningham, Michael E.; Markle, Douglas F.; Sethajintanin, Doolalai; Krissanakriangkrai, Oraphin; Johnson, Eugene R.; Grove, Robert

    2005-01-01

    The Willamette River, one of 14 American Heritage Rivers, flows through the most densely populated and agriculturally productive region of Oregon. Previous biological monitoring of the Willamette River detected elevated frequencies of skeletal deformities in fish from certain areas of the lower (Newberg pool [NP], rivermile [RM] 26−55) and middle (Wheatland Ferry [WF], RM 72−74) river, relative to those in the upper river (Corvallis [CV], RM 125−138). The objective of this study was to determine the likely cause of these skeletal deformities. In 2002 and 2003, deformity loads in Willamette River fishes were 2−3 times greater at the NP and WF locations than at the CV location. There were some differences in water quality parameters between the NP and CV sites, but they did not readily explain the difference in deformity loads. Concentrations of bioavailable metals were below detection limits (0.6−1 μg/L). Concentrations of bioavailable polychlorinated biphenyls (PCBs) and chlorinated pesticides were generally below 0.25 ng/L. Concentrations of bioavailable polycyclic aromatic hydrocarbons were generally less than 5 ng/L. Concentrations of most persistent organic pollutants were below detection limits in ovary/oocyte tissue samples and sediments, and those that were detected were not significantly different among sites. Bioassay of Willamette River water extracts provided no evidence that unidentified compounds or the complex mixture of compounds present in the extracts could induce skeletal deformities in cyprinid fish. However, metacercariae of a digenean trematode were directly associated with a large percentage of deformities detected in two Willamette River fishes, and similar deformities were reproduced in laboratory fathead minnows exposed to cercariae extracted from Willamette River snails. Thus, the weight of evidence suggests that parasitic infection, not chemical contaminants, was the primary cause of skeletal deformities observed in Willamette

  3. East Fork Watershed Cooperative: Toward better system-scale ...

    EPA Pesticide Factsheets

    The East Fork Watershed Cooperative is a group intent on understanding how to best manage water quality in a large mixed-use Midwestern watershed system. The system contains a reservoir that serves as a source of drinking water and is popular for water recreation. The reservoir is experience harmful algal blooms. The system including the reservoir has become a significant case study for EPA ORD research and development. The Cooperative includes affiliates from the USACE, the OHIO EPA, the USGS, the USDA, and local Soil and Water Conservation districts as well as utility operators and water quality protection offices. The presentation includes a description of the water quality monitoring and modeling program in the watershed, followed by the results of using the watershed model to estimate the costs associated with nutrient reduction to Harsha Lake, and then ends with an explanation of temporal changes observed for important factors controlling harmful algae in Harsha Lake and how this lake relates to other reservoirs in the Ohio River Basin. This presentation is an invited contribution to the Ohio River Basin Water Quality Workshop sponsored by the US ACE and the US EPA. The presentation describes the activities of the East Fork Watershed Cooperative and the knowledge it has gained to help better manage a case study watershed system over the last few years. The East Fork of the Little Miami River is the focal watershed. It is a significant tributary to the Lit

  4. 77 FR 14970 - Safety Zones; Sellwood Bridge Project, Willamette River; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ...-AA00 Safety Zones; Sellwood Bridge Project, Willamette River; Portland, OR AGENCY: Coast Guard, DHS... effect throughout the duration of the construction and renewal of the Sellwood Bridge on the Willamette... construction area while transiting in the vicinity of the Sellwood Bridge project; however, the establishment...

  5. 33 CFR 165.1312 - Security Zone; Portland Rose Festival on Willamette River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Portland Rose Festival on Willamette River. 165.1312 Section 165.1312 Navigation and Navigable Waters COAST GUARD... § 165.1312 Security Zone; Portland Rose Festival on Willamette River. (a) Location. The following area...

  6. 33 CFR 165.1312 - Security Zone; Portland Rose Festival on Willamette River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Portland Rose Festival on Willamette River. 165.1312 Section 165.1312 Navigation and Navigable Waters COAST GUARD... § 165.1312 Security Zone; Portland Rose Festival on Willamette River. (a) Location. The following area...

  7. 78 FR 6209 - Safety Zone; Grain-Shipment Vessels, Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... 1625-AA00 Safety Zone; Grain-Shipment Vessels, Columbia and Willamette Rivers AGENCY: Coast Guard, DHS... temporary safety zone around all inbound and outbound grain-shipment vessels involved in commerce with the Columbia Grain facility on the Willamette River in Portland, OR, the United Grain Corporation facility on...

  8. 77 FR 74587 - Safety Zone; Grain-Shipment Vessels, Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... 1625-AA00 Safety Zone; Grain-Shipment Vessels, Columbia and Willamette Rivers AGENCY: Coast Guard, DHS... inbound and outbound grain-shipment vessels involved in commerce with the Columbia Grain facility on the Willamette River in Portland, OR, and the United Grain Corporation facility on the Columbia River in...

  9. 78 FR 4331 - Safety Zone; Sellwood Bridge Move; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... 1625-AA00 Safety Zone; Sellwood Bridge Move; Willamette River, Portland, OR AGENCY: Coast Guard, DHS... the Sellwood Bridge, located on the Willamette River in Portland, Oregon, while it is being relocated 66 feet downriver as part of the new Sellwood Bridge construction project. This action is necessary...

  10. Is It Working? Lysimeter Monitoring in the Southern Willamette Valley Groundwater Management Area

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater ...

  11. 27 CFR 9.90 - Willamette Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) “Roseburg,” Location Diagram NL 10-2, 1958 (revised 1970). (c) Boundaries. The Willamette Valley... valleys of Little River, Mosby Creek, Sharps Creek and Lost Creek to the intersection of R1W/R1E and State...

  12. 77 FR 15263 - Security Zone; Portland Rose Festival on Willamette River; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... Zone; Portland Rose Festival on Willamette River; Portland, OR AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Portland Rose Festival... Willamette River during the Portland Rose festival. During the enforcement period, no person or vessel may...

  13. Development of a precipitation-runoff model to simulate unregulated streamflow in the South Fork Flathead River Basin, Montana

    USGS Publications Warehouse

    Chase, K.J.

    2011-01-01

    This report documents the development of a precipitation-runoff model for the South Fork Flathead River Basin, Mont. The Precipitation-Runoff Modeling System model, developed in cooperation with the Bureau of Reclamation, can be used to simulate daily mean unregulated streamflow upstream and downstream from Hungry Horse Reservoir for water-resources planning. Two input files are required to run the model. The time-series data file contains daily precipitation data and daily minimum and maximum air-temperature data from climate stations in and near the South Fork Flathead River Basin. The parameter file contains values of parameters that describe the basin topography, the flow network, the distribution of the precipitation and temperature data, and the hydrologic characteristics of the basin soils and vegetation. A primary-parameter file was created for simulating streamflow during the study period (water years 1967-2005). The model was calibrated for water years 1991-2005 using the primary-parameter file. This calibration was further refined using snow-covered area data for water years 2001-05. The model then was tested for water years 1967-90. Calibration targets included mean monthly and daily mean unregulated streamflow upstream from Hungry Horse Reservoir, mean monthly unregulated streamflow downstream from Hungry Horse Reservoir, basin mean monthly solar radiation and potential evapotranspiration, and daily snapshots of basin snow-covered area. Simulated streamflow generally was in better agreement with observed streamflow at the upstream gage than at the downstream gage. Upstream from the reservoir, simulated mean annual streamflow was within 0.0 percent of observed mean annual streamflow for the calibration period and was about 2 percent higher than observed mean annual streamflow for the test period. Simulated mean April-July streamflow upstream from the reservoir was about 1 percent lower than observed streamflow for the calibration period and about 4

  14. 77 FR 25080 - Safety Zones; TriMet Bridge Project, Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ...-AA00 Safety Zones; TriMet Bridge Project, Willamette River, Portland, OR AGENCY: Coast Guard, DHS... trestles and construction cranes involved in the construction of the TriMet Bridge on the Willamette River... project. These safety zones replace the prior safety zones established for the TriMet Bridge construction...

  15. Geology of the Holocene surficial uranium deposit of the north fork of Flodelle Creek, northeastern Washington ( USA).

    USGS Publications Warehouse

    Johnson, S.Y.; Otton, J.K.; Macke, D.L.

    1987-01-01

    The N fork of Flodelle Creek drainage basin in NE Washington contains the first surficial U deposit to be mined in the US. The U was leached from granitic bedrock and fixed in organic-rich pond sediments. The distribution of these pond sediments and, therefore, the U has been strongly influenced by relict glacial topography, slope proceses, and beaver activity. Ponds in the drainage basin have been sinks for fine-grained, organic-rich sediments. These organic-rich sediments provide a suitable geochemical environment for precipitation and adsorption of uranium leached from granitic bedrock into ground, spring, and surface waters. Processes of pond formation have thus been important in the development of surficial U deposits in the N fork of Flodelle Creek drainage basin and may have similar significance in other areas.-from Authors

  16. Investigation of trends in flooding in the Tug Fork basin of Kentucky, Virginia, and West Virginia

    USGS Publications Warehouse

    Hirsch, Robert M.; Scott, Arthur G.; Wyant, Timothy

    1982-01-01

    Statistical analysis indicates that the average size of annual-flood peaks of the Tug Fork (Ky., Va., and W. Va.) has been increasing. However, additional statistical analysis does not indicate that the flood levels that were exceeded typically once or twice a year in the period 1947-79 are any more likely to be exceeded now than in 1947. Possible trends in streamchannel size also are investigated at three locations. No discernible trends in channel size are noted. Further statistical analysis of the trend in the size of annual-flood peaks shows that much of the annual variation is related to local rainfall and to the 'natural' hydrologic response in a relatively undisturbed subbasin. However, some statistical indication of trend persists after accounting for these natural factors, though it is of borderline statistical significance. Further study in the basin may relate flood magnitudes to both rainfall and to land use.

  17. 76 FR 25278 - Safety Zone; TriMet Bridge Project, Willamette River; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ...-AA00 Safety Zone; TriMet Bridge Project, Willamette River; Portland, OR AGENCY: Coast Guard, DHS... safety zone during the construction of the TriMet Bridge on the Willamette River, in Portland, OR. This..., will be starting construction of the new Portland-Milwaukie Light Rail Bridge on July 1, 2011 (with in...

  18. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha in the Willamette River, Oregon, USA

    USGS Publications Warehouse

    Billman, E.J.; Whitman, L.D.; Schroeder, R.K.; Sharpe, C.S.; Noakes, David L. G.; Schreck, Carl B.

    2014-01-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  19. 33 CFR 162.225 - Columbia and Willamette Rivers, Washington and Oregon; administration and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Columbia and Willamette Rivers, Washington and Oregon; administration and navigation. 162.225 Section 162.225 Navigation and Navigable Waters... NAVIGATION REGULATIONS § 162.225 Columbia and Willamette Rivers, Washington and Oregon; administration and...

  20. 33 CFR 162.225 - Columbia and Willamette Rivers, Washington and Oregon; administration and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Columbia and Willamette Rivers, Washington and Oregon; administration and navigation. 162.225 Section 162.225 Navigation and Navigable Waters... NAVIGATION REGULATIONS § 162.225 Columbia and Willamette Rivers, Washington and Oregon; administration and...

  1. 33 CFR 162.225 - Columbia and Willamette Rivers, Washington and Oregon; administration and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Columbia and Willamette Rivers, Washington and Oregon; administration and navigation. 162.225 Section 162.225 Navigation and Navigable Waters... NAVIGATION REGULATIONS § 162.225 Columbia and Willamette Rivers, Washington and Oregon; administration and...

  2. 33 CFR 162.225 - Columbia and Willamette Rivers, Washington and Oregon; administration and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Columbia and Willamette Rivers, Washington and Oregon; administration and navigation. 162.225 Section 162.225 Navigation and Navigable Waters... NAVIGATION REGULATIONS § 162.225 Columbia and Willamette Rivers, Washington and Oregon; administration and...

  3. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    USGS Publications Warehouse

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride

  4. Grand Forks/East Grand Forks ITS strategy plan

    DOT National Transportation Integrated Search

    2001-01-15

    The Grand Forks/East Grand Forks (GF/EGF) Area's Intelligent Transportation Systems (ITS) Strategy Plan is an effort by the GF/EGF Metropolitan Planning Organization (MPO) and its partners to develop a plan for deploying Intelligent Transportation Sy...

  5. Spatial and Temporal Patterns of Dissolved Organic Matter Characteristics in the Upper Willamette River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Lee, B. S.; Lajtha, K.

    2014-12-01

    Dissolved organic matter (DOM) leaching through soil affects soil carbon sequestration and the carbon metabolism of receiving water bodies. Improving our understanding of the sources and fate of DOM at varying spatial and temporal patterns is crucial for land management decisions. However, little is known about how DOM sources change with land use types and seasonal flow patterns. In the Willamette River Basin (WRB), which is home to Oregon's major cities including Portland and Salem, forested headwaters transition to agricultural and urban land. The climate of WRB has a distinctive seasonal pattern with dry warm summers and wet winters driven by winter precipitation and snowmelt runoff between November and March. This study examined DOM fluorescence characteristic in stream water from 21 locations collected monthly and 16 locations collected seasonally to identify the sources and fate of DOM in the upper WRB in contrasting land uses. DOC and dissolved organic nitrogen concentrations increased as the flow rate increased during winter precipitation at all sites. This indicates that increased flow rate increased the connectivity between land and nearby water bodies. DOM fluorescent properties varied among land use types. During the first precipitation event after a long dry summer, a microbial DOM signature in agricultural areas increased along with nitrate concentrations. This may be because accumulated nutrients on land during the dry season flowed to nearby streams during the first rain event and promoted microbial growth in the streams. During the month of the highest flow rate in 2014, sampling sites near forest showed evidence of a greater terrestrial DOM signature compared to its signature during the dry season. This indicates fluorescent DOM characteristics in streams vary as the flow connectivity changes even within the same land type.

  6. Estimated loads of suspended sediment and selected trace elements transported through the Clark Fork basin, Montana, in selected periods before and after the breach of Milltown Dam (water years 1985-2009)

    USGS Publications Warehouse

    Sando, Steven K.; Lambing, John H.

    2011-01-01

    Milltown Reservoir is a National Priorities List Superfund site in the upper Clark Fork basin of western Montana where sediments enriched in trace elements from historical mining and ore processing have been deposited since the completion of Milltown Dam in 1908. Milltown Dam was breached on March 28, 2008, as part of Superfund remediation activities to remove the dam and excavate contaminated sediment that had accumulated in Milltown Reservoir. In preparation for the breach of Milltown Dam, permanent drawdown of Milltown Reservoir began on June 1, 2006, and lowered the water-surface elevation by about 10 to 12 feet. After the breach of Milltown Dam, the water-surface elevation was lowered an additional 17 feet. Hydrologic data-collection activities were conducted by the U.S. Geological Survey in cooperation with U.S. Environmental Protection Agency to estimate loads of suspended sediment and trace elements transported through the Clark Fork basin before and after the breach of Milltown Dam. This report presents selected results of the data-collection activities.

  7. Assessment of water and proppant quantities associated with petroleum production from the Bakken and Three Forks Formations, Williston Basin Province, Montana and North Dakota, 2016

    USGS Publications Warehouse

    Haines, Seth S.; Varela, Brian A.; Hawkins, Sarah J.; Gianoutsos, Nicholas J.; Thamke, Joanna N.; Engle, Mark A.; Tennyson, Marilyn E.; Schenk, Christopher J.; Gaswirth, Stephanie B.; Marra, Kristen R.; Kinney, Scott A.; Mercier, Tracey J.; Martinez, Cericia D.

    2017-06-23

    The U.S. Geological Survey (USGS) has completed an assessment of water and proppant requirements and water production associated with the possible future production of undiscovered oil and gas resources in the Three Forks and Bakken Formations (Late Devonian to Early Mississippian) of the Williston Basin Province in Montana and North Dakota. This water and proppant assessment is directly linked to the geology-based assessment of the undiscovered, technically recoverable continuous oil and gas resources that is described in USGS Fact Sheet 2013–3013.

  8. 77 FR 64722 - Safety Zone: Leukemia & Lymphoma Light the Night Walk Fireworks Display; Willamette River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... 1625-AA00 Safety Zone: Leukemia & Lymphoma Light the Night Walk Fireworks Display; Willamette River... Steele Bridge and the Burnside Bridge, and will be enforced during the Leukemia & Lymphoma Light the... Light the Night Walk Fireworks Display; Willamette River, Portland, OR. (a) Location. The following area...

  9. Sequence-stratigraphic controls on sandstone diagenesis: An example from the Williams Fork formation, Piceance Basin, Colorado

    NASA Astrophysics Data System (ADS)

    Aboktef, Adel

    This study documents the distribution of diagenetic alterations in Williams Fork fluvial sandstones, assess sequence stratigraphic controls on diagenetic features, and addresses diagenetic impacts on porosity. Petrographic point counts of 220 thin sections from six wells forms the database. The near absence of potassium feldspar and volcanic rock fragments in the lower Williams Fork interval and increasing plagioclase content upward represent changes in sediment provenance rather than stratigraphic variability in diagenesis. The lower Williams Fork sands are from sedimentary sources whereas middle and upper Williams Fork sands include input from magmatic arcs and basement uplifts. Compaction, early and late cementation, dissolution, and replacement by calcite or clay minerals combined to alter Williams Fork sandstones. Infiltration of clays occurred prior to any burial. Chlorite, quartz, non-ferroan calcite, compaction and dissolution features, and kaolinite formed during eo-diagenesis at <70°C. More quartz, compaction and dissolution features, plus albite, illite, mixed-layer illite/smectite, ferroan calcite, and dolomite formed in the meso-diagenetic realm (>70°C). Four of these features show spatial variability with respect to systems tracts. Infiltrated clays are concentrated in lowstand systems tracts (LST) and highstand systems tracts (HST) because accommodation space rose slow or fell during deposition of those sands, which led to prolonged sand body exposure on floodplain and ample opportunities for downward percolation of mud during flood events. Concentration of pseudomatrix (mud intraclasts) in HST and LST deposits resulted from floodplain erosion when base-level fell with decreasing accommodation space. Authigenic chlorite formed in the HST and transgressive systems tracts (TST) of the upper half of the Williams Fork Formation because volcanic clasts are abundant in that interval. Quartz overgrowths are more likely to exceed 7% in TST deposits for

  10. Prey of nesting ospreys on the Willamette and Columbia Rivers, Oregon and Washington

    USGS Publications Warehouse

    Johnson, B.L.; Kaiser, J.L.; Henny, C.J.; Grove, R.A.

    2008-01-01

    To more effectively use ospreys as a biomonitoring tool and to better assess contaminant pathways, the diet of nesting ospreys (Pandion haliaetus) was studied along the lower Columbia and upper mainstem Willamette rivers by evaluating prey remains collected from wire baskets constructed under artificial feeding perches installed near nest sites and from the ground beneath natural feeding perches and nests. Prey remains from 1997-2004 on the Columbia River and 1993 (previously published) and 2001 on the Willamette River were evaluated and compared. Largescale suckers (Catostomus macrocheilus) were the predominate fish species identified in collections from the Columbia River (61.5% [84.3% biomass]) and Willamette River (76.0% [92.7% biomass]). Prey fish diversity, when based only on ground collections, was higher in the Columbia (2.45) than the Willamette river (1.92) (P = 0.038). Prey fish diversity in collections from the Willamette River did not differ between this study (2001) and previous study (1993) (P = 0.62). Fishbones recovered in wire baskets are likely more representative of osprey diet compared to bones recovered from the ground, because prey diversity was higher among basket samples compared to ground collections (wire basket diversity = 5.25 vs. ground collection diversity = 2.45, P = 0.011). Soft-boned salmonids (Oncorhynchus spp.), American shad (Alosa sapidissima), and mountain whitefish (Prosopium williamsoni) were probably underrepresented in collections obtained from the ground. Study results suggest that baskets provide a better method for assessing osprey diet than other indirect methods. These findings augment available osprey food-habits information and provide additional biological and ecological information to better assess potential impacts of various environmental contaminants on nesting ospreys.

  11. LAKE FORK

    EPA Science Inventory

    The Lake Fork of the Arkansas River Watershed has been adversely affected through mining, water diversion and storage projects, grazing, logging, and other human influences over the past 120 years. It is the goals of the LFWWG to improve the health of Lake fork by addressing th...

  12. Postwildfire debris-flow hazard assessment of the area burned by the 2013 West Fork Fire Complex, southwestern Colorado

    USGS Publications Warehouse

    Verdin, Kristine L.; Dupree, Jean A.; Stevens, Michael R.

    2013-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2013 West Fork Fire Complex near South Fork in southwestern Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within and just downstream from the burned area, and to estimate the same for 54 drainage basins of interest within the perimeter of the burned area. Input data for the debris-flow models included topographic variables, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm; (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm; and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm. Estimated debris-flow probabilities at the pour points of the 54 drainage basins of interest ranged from less than 1 to 65 percent in response to the 2-year storm; from 1 to 77 percent in response to the 10-year storm; and from 1 to 83 percent in response to the 25-year storm. Twelve of the 54 drainage basins of interest have a 30-percent probability or greater of producing a debris flow in response to the 25-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 2,400 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages also were predicted to produce substantial debris flows. One of the 54 drainage basins of interest had the highest combined hazard ranking, while 9 other basins had the second highest combined hazard ranking. Of these 10 basins with the 2 highest

  13. 78 FR 57261 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers... temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels... Columbia and Willamette Rivers and their tributaries. For grain- shipment vessels, this safety zone extends...

  14. 78 FR 33224 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers... Guard is establishing a temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the Willamette River in...

  15. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwabe, Lawrence; Tiley, Mark; Perkins, Raymond R.

    2000-11-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchananmore » 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.« less

  16. Mining-related metals in terrestrial food webs of the upper Clark Fork River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorok, R.A.; LaTier, A.J.; Butcher, M.K.

    1994-12-31

    Fluvial deposits of tailings and other mining-related waste in selected riparian habitats of the Upper Clark Fork River basin (Montana) have resulted in metals enriched soils. The significance of metals exposure to selected wildlife species was evaluated by measuring tissue residues of metals (arsenic, cadmium, copper, lead, zinc) in key dietary species, including dominant grasses (tufted hair grass and redtop), willows, alfalfa, barley, invertebrates (grasshoppers, spiders, and beetles), and deer mice. Average metals concentrations in grasses, invertebrates, and deer mice collected from tailings-affected sites were elevated relative to reference to reference levels. Soil-tissue bioconcentration factors for grasses and invertebrates weremore » generally lower than expected based on the range of values in the literature, indicating the reduced bioavailability of metals from mining waste. In general, metals concentrations in willows, alfalfa, and barley were not elevated above reference levels. Using these data and plausible assumptions for other exposure parameters for white-tailed deer, red fox, and American kestrel, metals intake was estimated for soil and diet ingestion pathways. Comparisons of exposure estimates with toxicity reference values indicated that the elevated concentrations of metals in key food web species do not pose a significant risk to wildlife.« less

  17. Monitoring and Mapping Off-Channel Water Quality in the Willamette River, Oregon

    NASA Astrophysics Data System (ADS)

    Buccola, N. L.; Rounds, S. A.; Smith, C.; Anderson, C.; Jones, K.; Mangano, J.; Wallick, R.

    2016-12-01

    The floodplain of the Willamette River in northwestern Oregon includes remnant slower-moving sloughs, side-channels, and alcoves that provide rearing habitat and potential cool-water sources for native cold-water fish species, such as the federally threatened Chinook salmon. The mapping and characterization of the hydraulics and water sources of these off-channel areas is the first step toward protecting and restoring these resources for future generations. A primary focus of this study is to determine how flow management can increase the habitat value of these off-channel areas, especially during summer low-flow periods when water temperatures in the main channel regularly exceed lethal temperatures for salmonids. The U.S. Geological Survey, in cooperation with U.S. Army Corps of Engineers and Oregon State University, has been measuring the characteristics of off-channel water quality in the Willamette River under a variety of water levels in summer 2015-16. About 30 diverse off-channel sites within the Willamette floodplain are being monitored and compared with conditions in the main channel. Hourly water temperature, conductivity, and dissolved oxygen (DO) data are being collected at a subset of these sites. Some deep off-channel pools have substantial, consistent cool-water inflows that can dominate locally, allowing them to function as cold-water refuges for salmonids at varying mainstem Willamette flows. Other sloughs have varying characteristics due to intermittent connections to the main channel, depending on river levels. A vibrant community of algae and aquatic macrophytes often coincide with thick layers of fine sediment or organic detritus near the bed, producing low DO zones (<5 mg/L) in many slower-moving off-channel areas. We propose some preliminary hydro-geomorphic categories to better explain cool inflows as sourced from regional groundwater aquifers or localized subsurface river features. A better understanding of the processes governing the

  18. Eukaryotic DNA Replication Fork.

    PubMed

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  19. Utilizing Multi-Ensemble of Downscaled CMIP5 GCMs to Investigate Trends and Spatial and Temporal Extent of Drought in Willamette Basin

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, A.; Beal, B.; Moradkhani, H.

    2015-12-01

    Changing climate and potential future increases in global temperature are likely to have impacts on drought characteristics and hydrologic cylce. In this study, we analyze changes in temporal and spatial extent of meteorological and hydrological droughts in future, and their trends. Three statistically downscaled datasets from NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), Multivariate Adaptive Constructed Analogs (MACA), and Bias Correction and Spatial Disagregation (BCSD-PSU) each consisting of 10 CMIP5 Global Climate Models (GCM) are utilized for RCP4.5 and RCP8.5 scenarios. Further, Precipitation Runoff Modeling System (PRMS) hydrologic model is used to simulate streamflow from GCM inputs and assess the hydrological drought characteristics. Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI) are the two indexes used to investigate meteorological and hydrological drought, respectively. Study is done for Willamette Basin with a drainage area of 29,700 km2 accommodating more than 3 million inhabitants and 25 dams. We analyze our study for annual time scale as well as three future periods of near future (2010-2039), intermediate future (2040-2069), and far future (2070-2099). Large uncertainty is found from GCM predictions. Results reveal that meteorological drought events are expected to increase in near future. Severe to extreme drought with large areal coverage and several years of occurance is predicted around year 2030 with the likelihood of exceptional drought for both drought types. SPI is usually showing positive trends, while SDI indicates negative trends in most cases.

  20. Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2007-01-01

    Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate

  1. Is it working? A look at the changing nutrient practices in the Southern Willamette Valley's Groundwater Management Area

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater ...

  2. Effects of Forecasted Climate Change on Stream Temperatures in the Nooksack River Basin

    NASA Astrophysics Data System (ADS)

    Truitt, S. E.; Mitchell, R. J.; Yearsley, J. R.; Grah, O. J.

    2017-12-01

    The Nooksack River in northwest Washington State provides valuable habitat for endangered salmon species, as such it is critical to understand how stream temperatures will be affected by forecasted climate change. The Middle and North Forks basins of the Nooksack are high-relief and glaciated, whereas the South Fork is a lower relief rain and snow dominated basin. Due to a moderate Pacific maritime climate, snowpack in the basins is sensitive to temperature increases. Previous modeling studies in the upper Nooksack basins indicate a reduction in snowpack and spring runoff, and a recession of glaciers into the 21st century. How stream temperatures will respond to these changes is unknown. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) coupled with a glacier dynamics model and the River Basin Model (RBM) to simulate hydrology and stream temperature from present to the year 2100. We calibrate the DHSVM and RBM to the three forks in the upper 1550 km2 of the Nooksack basin, which contain an estimated 3400 hectares of glacial ice. We employ observed stream-temperature data collected over the past decade and hydrologic data from the four USGS streamflow monitoring sites within the basin and observed gridded climate data developed by Linveh et al. (2013). Field work was conducted in the summer of 2016 to determine stream morphology, discharge, and stream temperatures at a number of stream segments for the RBM calibration. We simulate forecast climate change impacts, using gridded daily downscaled data from global climate models of the CMIP5 with RCP4.5 and RCP8.5 forcing scenarios developed using the multivariate adaptive constructed analogs method (MACA; Abatzoglou and Brown, 2011). Simulation results project a trending increase in stream temperature as a result of lower snowmelt and higher air temperatures into the 21st century, especially in the lower relief, unglaciated South Fork basin.

  3. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    USGS Publications Warehouse

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    Stratigraphic and chronologic information collected for Quaternary deposits in the Willamette Valley, Oregon, provides a revised stratigraphic framework that serves as a basis for a 1:250,000-scale map, as well as for thickness estimates of widespread Quaternary geologic units. We have mapped 11 separate Quaternary units that are differentiated on the basis of stratigraphic, topographic, pedogenic, and hydrogeologic properties. In summation, these units reflect four distinct episodes in the Quaternary geologic development of the Willamette Valley: 1) Fluvial sands and gravels that underlie terraces flanking lowland margins and tributary valleys were probably deposited between 2.5 and 0.5 million years ago. They are the oldest widespread surficial Quaternary deposits in the valley. Their present positions and preservation are undoubtedly due to postdepositional tectonic deformation - either by direct tectonic uplift of valley margins, or by regional tectonic controls on local base level. 2) Tertiary and Quaternary excavation or tectonic lowering of the Willamette Valley accommodated as much as 500 m (meters) of lacustrine and fluvial fill. Beneath the lowland floor, much of the upper 10 to 50 m of fill is Quaternary sand and gravel deposited by braided channel systems in subhorizontal sheets 2 to 10 m thick. These deposits grade to gravel fans 40 to 100 m thick where major Cascade Range rivers enter the valley and are traced farther upstream as much thinner valley trains of coarse gravel. The sand and gravel deposits have ages that range from greater than 420,000 to about 12,000 years old. A widely distributed layer of sand and gravel deposited at about 12 ka (kiloannum, thousands of years before the present) is looser and probably more permeable than older sand and gravel. Stratigraphic exposures and drillers' logs indicate that this late Pleistocene unit is mostly between 5 and 20 m thick where it has not been subsequently eroded by the Willamette River and its

  4. 77 FR 62442 - Safety Zone; Oregon City Bridge Grand Opening Fireworks Display; Willamette River, Oregon City, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... 1625-AA00 Safety Zone; Oregon City Bridge Grand Opening Fireworks Display; Willamette River, Oregon City, OR AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone on the Willamette River between the Oregon City Bridge and the Interstate 205 Bridge...

  5. Quality of surface waters in the lower Columbia River Basin

    USGS Publications Warehouse

    Santos, John F.

    1965-01-01

    This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the

  6. Progress report on the effects of highway construction on suspended-sediment discharge in the Coal River and Trace Fork, West Virginia, 1975-81

    USGS Publications Warehouse

    Downs, S.C.; Appel, David H.

    1986-01-01

    Construction of the four-lane Appalachian Corridon G highway disturbed about 2 sq mi in the Coal River and 0.35 sq mi of the 4.75 sq mi Trace Fork basin in southern West Virginia. Construction had a negligible effect on runoff and suspended-sediment load in the Coal River and its major tributaries, the Little Coal and Big Coal Rivers. Drainage areas of the mainstem sites in the Coal River basin ranged from 269 to 862 sq mi, and average annual suspended-sediment yields ranged from 535 to 614 tons/sq mi for the 1975-81 water years. Suspended-sediment load in the smaller Trace Fork basin (4.72 sq mi) was significantly affected by the highway construction. Based on data from undisturbed areas upstream from construction, the normal background load at Trace Fork downstream from construction during the period July 1980 to September 1981 was estimated to be 830 tons; the measured load was 2,385 tons. Runoff from the 0.35 sq mi area disturbed by highway construction transported approximately 1,550 tons of sediment. Suspended-sediment loads from the construction zone were also higher than normal background loads during storms. (USGS)

  7. 78 FR 21064 - Drawbridge Operation Regulations; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    .... This deviation is necessary to accommodate Portland's Rock-n-Roll Half Marathon. This deviation allows... of the Rock-n-Roll Half Marathon event. The Hawthorne Bridge crosses the Willamette River at mile 13...

  8. 78 FR 24676 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    .... This deviation is necessary to accommodate the Rose Festival Rock N Roll Half Marathon. [[Page 24677... associated with the Rose Festival Rock N Roll Half Marathon. The Steel Bridge crosses the Willamette River at...

  9. Streamflow and water-quality properties in the West Fork San Jacinto River Basin and regression models to estimate real-time suspended-sediment and total suspended-solids concentrations and loads in the West Fork San Jacinto River in the vicinity of Conroe, Texas, July 2008-August 2009

    USGS Publications Warehouse

    Bodkin, Lee J.; Oden, Jeannette H.

    2010-01-01

    To better understand the hydrology (streamflow and water quality) of the West Fork San Jacinto River Basin downstream from Lake Conroe near Conroe, Texas, including spatial and temporal variation in suspended-sediment (SS) and total suspended-solids (TSS) concentrations and loads, the U.S. Geological Survey, in cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality, measured streamflow and collected continuous and discrete water-quality data during July 2008-August 2009 in the West Fork San Jacinto River Basin downstream from Lake Conroe. During July 2008-August 2009, discrete samples were collected and streamflow measurements were made over the range of flow conditions at two streamflow-gaging stations on the West Fork San Jacinto River: West Fork San Jacinto River below Lake Conroe near Conroe, Texas (station 08067650) and West Fork San Jacinto River near Conroe, Texas (station 08068000). In addition to samples collected at these two main monitoring sites, discrete sediment samples were also collected at five additional monitoring sites to help characterize water quality in the West Fork San Jacinto River Basin. Discrete samples were collected semimonthly, regardless of flow conditions, and during periods of high flow resulting from storms or releases from Lake Conroe. Because the period of data collection was relatively short (14 months) and low flow was prevalent during much of the study, relatively few samples collected were representative of the middle and upper ranges of historical daily mean streamflows. The largest streamflows tended to occur in response to large rainfall events and generally were associated with the largest SS and TSS concentrations. The maximum SS and TSS concentrations at station 08067650 (180 and 133 milligrams per liter [mg/L], respectively) were on April 19, 2009, when the instantaneous streamflow was the third largest associated with a discrete sample at the station. SS concentrations

  10. Summary of surface-water-quality data collected for the Northern Rockies Intermontane Basins National Water-Quality Assessment Program in the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, water years 1999-2001

    USGS Publications Warehouse

    Beckwith, Michael A.

    2003-01-01

    Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore

  11. Community Based Demonstration Projects: Willamette Ecosystem Services Project (WESP)

    EPA Science Inventory

    EPA’s Ecosystem Services Research Program in the Office of Research and Development is focused on the study of ecosystem services and the benefits to human well-being provided by ecological systems. As part of this research effort, the Willamette Ecosystems Services Project (WE...

  12. Is it working? A look at the changing nutrient practices in the Southern Willamette Valley’s Groundwater Management Area

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 to address the occurrence of high groundw...

  13. Water Quality and Biological Characteristics of the Middle Fork of the Saline River, Arkansas, 2003-06

    USGS Publications Warehouse

    Galloway, Joel M.; Petersen, James C.; Shelby, Erica L.; Wise, Jim A.

    2008-01-01

    The Middle Fork of the Saline River has many qualities that have been recognized by State and Federal agencies. The Middle Fork provides habitat for several rare aquatic species and is part of a larger stream system (the Upper Saline River) that is known for relatively high levels of species richness and relatively high numbers of species of concern. Water-quality samples were collected and streamflow was measured by the U.S. Geological Survey at three sites in the Middle Fork Basin between October 2003 and October 2006. The Arkansas Department of Environmental Quality collected discrete synoptic water-quality samples from eight sites between January 2004 and October 2006. The Arkansas Department of Environmental Quality also sampled fish (September-October 2003) and benthic macroinvertebrate communities (September 2003-December 2005) at five sites. Streamflow varied annually among the three streamflow sites from October 2003 to October 2006. The mean annual streamflow for Brushy Creek near Jessieville (MFS06) was 0.72 cubic meters per second for water years 2004-2006. The Middle Fork below Jessieville (MFS05) had a mean annual streamflow of 1.11 cubic meters per second for water years 2004-2006. The Middle Fork near Owensville (MFS02), the most downstream site, had a mean annual streamflow of 3.01 cubic meters per second. The greatest streamflows at the three sites generally occurred in the winter and spring and the least in the summer. Nutrient dynamics in the Middle Fork are controlled by activities in the basin and processes that occur in the stream. Point sources and nonpoint sources of nutrients occur in the Middle Fork Basin that could affect the water-quality. Nitrogen and phosphorus concentrations generally were greatest in Mill Creek (MFS04E) and in the Middle Fork immediately downstream from the confluence with Mill Creek (MFS04) with decreasing concentrations at sites farther downstream in Middle Fork. The site in Mill Creek is located downstream from a

  14. 77 FR 29897 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... traffic associated with the Rose Parade in Portland, Oregon. This deviation allows the upper deck of the... with the Rose Parade. The Steel Bridge crosses the Willamette River at mile 12.1 and is a double-deck...

  15. Runoff generation from neighboring headwater basins with differing glacier coverage using the distributed hydrological model WaSiM, Eklutna, Alaska

    NASA Astrophysics Data System (ADS)

    Ostman, J. S.; Loso, M.; Liljedahl, A. K.; Gaedeke, A.; Geck, J. E.

    2017-12-01

    Many Alaska glaciers are thinning and retreating, and glacier wastage is projected to affect runoff processes from glacierized basins. Accordingly, effective resource management in glacierized watersheds requires quantification of a glacier's role on streamflow generation. The Eklutna catchment (311 km2) supplies water and electricity for Anchorage, Alaska (pop. 300,000) via Eklutna Lake. The Eklutna headwaters include the West Fork (64 km2, 46% glacier), and the East Fork (101 km2, 12% glacier). Total average annual discharge (2009-2015) is similar from the West (42,100 m3) and East (42,200 m3) forks, while specific annual runoff from the West Fork (2940 mm) exceeds that of the East Fork (1500 mm). To better understand what controls runoff, we are simulating the Eklutna annual water budget using a distributed watershed-level hydrological model. We force the Water Flow and Balance Simulation Model (WaSiM) using continuous air temperature, precipitation, wind speed, shortwave incoming radiation, and relative humidity primarily measured in the West Fork basin. We use Eklutna Glacier snow accumulation and ablation to calibrate the snowmelt and glacier sub-modules. Melt season discharge from the West and East forks is used for runoff comparison. Preliminary results show 2013-2015 simulated glacier point balances (accumulation and melt) are within 15% of glacier stake observations. Runoff was effectively modeled in the West Fork (NSE=0.80), while being over-predicted in the East Fork , which we attribute to a lack of forcing data in the less-glacierized basin. The simulations suggest that 78% of West Fork total runoff is from glacier melt, compared with <40% in the East Fork where glacier runoff contribution is higher during low-snow years.

  16. EFFECTS OF RESOURCE DEVELOPMENT ON WATER QUALITY IN THE BIG SOUTH FORK NATIONAL RIVER AND RECREATION AREA, TENNESSEE AND KENTUCKY.

    USGS Publications Warehouse

    Carey, William P.; ,

    1984-01-01

    The South Fork Cumberland River begins in Tennessee at the confluence of the New River and Clear Fork. Strip mining for coal in the New River basin has been ongoing for decades with little reclamation prior to 1977. Water-quality data show that suspended-sediment and dissolved-constituent loads from the New River dominate the water quality in the National River and Recreation Area. The suspended sediment can impart a highly turbid and aesthetically displeasing appearance to the water during low-flow periods which are times of maximum recreational use. High suspended-sediment concentrations are also potentially harmful to the aquatic habitat in the Recreation Area. In addition to the suspended-sediment load, a large supply of coarse material is slowly moving through the channels of the New River basin toward the Recreation Area.

  17. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery

    PubMed Central

    Murphy, Anar K.; Fitzgerald, Michael; Ro, Teresa; Kim, Jee Hyun; Rabinowitsch, Ariana I.; Chowdhury, Dipanjan; Schildkraut, Carl L.

    2014-01-01

    Phosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress. The ability of phosphorylated RPA to stimulate fork recovery is mediated through the PALB2 tumor suppressor protein. RPA phosphorylation increased localization of PALB2 and BRCA2 to RPA-bound nuclear foci in cells experiencing replication stress. Phosphorylated RPA also stimulated recruitment of PALB2 to single-strand deoxyribonucleic acid (DNA) in a cell-free system. Expression of mutant RPA2 or loss of PALB2 expression led to significant DNA damage after replication stress, a defect accentuated by poly-ADP (adenosine diphosphate) ribose polymerase inhibitors. These data demonstrate that phosphorylated RPA recruits repair factors to stalled forks, thereby enhancing fork integrity during replication stress. PMID:25113031

  18. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery.

    PubMed

    Murphy, Anar K; Fitzgerald, Michael; Ro, Teresa; Kim, Jee Hyun; Rabinowitsch, Ariana I; Chowdhury, Dipanjan; Schildkraut, Carl L; Borowiec, James A

    2014-08-18

    Phosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress. The ability of phosphorylated RPA to stimulate fork recovery is mediated through the PALB2 tumor suppressor protein. RPA phosphorylation increased localization of PALB2 and BRCA2 to RPA-bound nuclear foci in cells experiencing replication stress. Phosphorylated RPA also stimulated recruitment of PALB2 to single-strand deoxyribonucleic acid (DNA) in a cell-free system. Expression of mutant RPA2 or loss of PALB2 expression led to significant DNA damage after replication stress, a defect accentuated by poly-ADP (adenosine diphosphate) ribose polymerase inhibitors. These data demonstrate that phosphorylated RPA recruits repair factors to stalled forks, thereby enhancing fork integrity during replication stress. © 2014 Murphy et al.

  19. An Isotopic view of water and nitrogen transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    EPA Science Inventory

    Background/Question/MethodsGroundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nit...

  20. Project Planning for Cougar Dam during 2010

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Cougar Dam is a 158 m-tall, rock fill dam located about 63 km east of Springfield, Oregon. Completed in 1963, the dam is owned and operated by the U.S. Army Corps of Engineers (USACE). It impounds Cougar Reservoir, which is 9.7 km long, has a surface area of 518 ha, and is predominately used for flood control. The pool elevation typically ranges from a maximum conservation pool of 515 m (1,690 ft) National Geodetic Vertical Datum (NGVD) in summer to a minimum flood control elevation of 467 m (1,532 ft NGVD) in winter. The reservoir thermally stratifies in the summer, has an average depth of 37 m, and holds 153,500 acre-feet when full. Cougar Dam is located on the South Fork of the McKenzie River 7 km upstream from the mainstem McKenzie River, a tributary of the Willamette River. The McKenzie River Basin basin supports the largest remaining population of wild spawning spring Chinook salmon in the Willamette River Basin (National Oceanic and Atmospheric Administration; NOAA, 2008). Cougar Dam and others were collectively deemed to cause jeopardy to the sustainability of anadromous fish stocks in the Willamette River Basin (NOAA, 2008). Prior to dam construction, as many as 805 redds were observed in the South Fork of the McKenzie River (Willis and others, 1960) and it is estimated that 40 km of spawning habitat were lost when access was blocked after dam construction. The 2008 Willamette Biological Opinion (BIOP) requires improvements to operations and structures to reduce impacts on Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR steelhead (O. mykiss; NOAA, 2008). In 2010, an adult fish collection facility was completed below Cougar Dam to collect returning adult salmon for transport to spawning habitats above the dam. Before that time, returning adult spring Chinook salmon were transported to upstream spawning areas as part of a trap-and-haul program with adults passed ranging annually from 0 to 1,038 (Taylor, 2000). The progeny of

  1. The Columbia-Willamette Skill Builders Consortium. Final Performance Report.

    ERIC Educational Resources Information Center

    Portland Community Coll., OR.

    The Columbia-Willamette Skill Builders Consortium was formed in early 1988 in response to a growing awareness of the need for improved workplace literacy training and coordinated service delivery in Northwest Oregon. In June 1990, the consortium received a National Workplace Literacy Program grant to develop and demonstrate such training. The…

  2. Quality of shallow ground water in alluvial aquifers of the Willamette Basin, Oregon, 1993-95

    USGS Publications Warehouse

    Hinkle, Stephen R.

    1997-01-01

    The current (1993?95) quality of shallow ground water (generally, <25 meters below land surface) in Willamette Basin alluvium is described using results from two studies. A Study-Unit Survey, or regional assessment of shallow groundwater quality in alluvium, was done from June through August 1993. During the Study-Unit Survey, data were collected from 70 domestic wells chosen using a random-selection process and located mostly in areas of agricultural land use. An urban Land-Use Study, which was a reconnaissance of shallow urban ground-water quality from 10 monitoring wells installed in areas of residential land use, was done in July 1995. Concentrations of nitrite plus nitrate (henceforth, nitrate, because nitrite concentrations were low) ranged from <0.05 to 26 mg N/L (milligrams nitrogen per liter) in ground water from 70 Study-Unit-Survey wells; concentrations exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 10 mg N/L in 9 percent of Study-Unit-Survey samples. Relationships were observed between nitrate concentrations and dissolved-oxygen concentrations, the amount of clay present within and overlying aquifers, overlying geology, and upgradient land use. Tritium (3H) data indicate that 21 percent of Study-Unit-Survey samples represented water recharged prior to 1953. Nitrogen-fertilizer application rates in the basin have increased greatly over the past several decades. Thus, some observed nitrate concentrations may reflect nitrogen loading rates that were smaller than those presently applied in the basin. Concentrations of phosphorus ranged from <0.01 to 2.2 mg/L in 70 Study-Unit-Survey wells and exceeded 0.10 mg/L in 60 percent of the samples. Phosphorus and nitrate concentrations were inversely correlated. From 1 to 5 pesticides and pesticide degradation products (henceforth, pesticides) were detected in ground water from each of 23 Study-Unit-Survey wells (33 percent of 69 wells sampled for pesticides) for a total

  3. Hydrogeologic framework and groundwater/surface-water interactions of the South Fork Nooksack River Basin, northwestern Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.

    2014-01-01

    A hydrogeologic framework of the South Fork (SF) Nooksack River Basin in northwestern Washington was developed and hydrologic data were collected to characterize the groundwater-flow system and its interaction with surface‑water features. In addition to domestic, agricultural, and commercial uses of groundwater within the SF Nooksack River Basin, groundwater has the potential to provide ecological benefits by maintaining late-summer streamflows and buffering stream temperatures. Cold-water refugia, created and maintained in part by groundwater, have been identified by water-resource managers as key elements to restore the health and viability of threatened salmonids in the SF Nooksack River. The SF Nooksack River drains a 183-square mile area of the North Cascades and the Puget Lowland underlain by unconsolidated glacial and alluvial sediments deposited over older sedimentary, metamorphic, and igneous bedrock. The primary aquifer that interacts with the SF Nooksack River was mapped within unconsolidated glacial outwash and alluvial sediment. The lower extent of this unit is bounded by bedrock and fine-grained, poorly sorted unconsolidated glaciomarine and glaciolacustrine sediments. In places, these deposits overlie and confine an aquifer within older glacial sediments. The extent and thickness of the hydrogeologic units were assembled from mapped geologic units and lithostratigraphic logs of field-inventoried wells. Generalized groundwater-flow directions within the surficial aquifer were interpreted from groundwater levels measured in August 2012; and groundwater seepage gains and losses to the SF Nooksack River were calculated from synoptic streamflow measurements made in the SF Nooksack River and its tributaries in September 2012. A subset of the field-inventoried wells was measured at a monthly interval to determine seasonal fluctuations in groundwater levels during water year 2013. Taken together, these data provide the foundation for a future groundwater

  4. 78 FR 18480 - Drawbridge Operation Regulations; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-0154] Drawbridge Operation Regulations; Willamette River, Portland, OR AGENCY: Coast Guard, DHS. ACTION: Notice of deviation from drawbridge regulation. SUMMARY: The Coast Guard has issued a temporary deviation from the...

  5. A New Hydrogeological Research Site in the Willamette River Floodplain

    EPA Science Inventory

    The Willamette River is a ninth-order tributary of the Columbia which passes through a productive and populous region in northwest Oregon. Where unconstrained by shoreline revetments, the floodplain of this river is a high-energy, dynamic system which supports a variety of ripari...

  6. Rinne revisited: steel versus aluminum tuning forks.

    PubMed

    MacKechnie, Cheryl A; Greenberg, Jesse J; Gerkin, Richard C; McCall, Andrew A; Hirsch, Barry E; Durrant, John D; Raz, Yael

    2013-12-01

    (1) Determine whether tuning fork material (aluminum vs stainless steel) affects Rinne testing in the clinical assessment of conductive hearing loss (CHL). (2) Determine the relative acoustic and mechanical outputs of 512-Hz tuning forks made of aluminum and stainless steel. Prospective, observational. Outpatient otology clinic. Fifty subjects presenting May 2011 to May 2012 with negative or equivocal Rinne in at least 1 ear and same-day audiometry. Rinne test results using aluminum and steel forks were compared and correlated with the audiometric air-bone gap. Bench top measurements using sound-level meter, microphone, and artificial mastoid. Patients with CHL were more likely to produce a negative Rinne test with a steel fork than with an aluminum fork. Logistic regression revealed that the probability of a negative Rinne reached 50% at a 19 dB air-bone gap for stainless steel versus 27 dB with aluminum. Bench top testing revealed that steel forks demonstrate, in effect, more comparable air and bone conduction efficiencies while aluminum forks have relatively lower bone conduction efficiency. We have found that steel tuning forks can detect a lesser air-bone gap compared to aluminum tuning forks. This is substantiated by observations of clear differences in the relative acoustic versus mechanical outputs of steel and aluminum forks, reflecting underlying inevitable differences in acoustic versus mechanical impedances of these devices, and thus efficiency of coupling sound/vibratory energy to the auditory system. These findings have clinical implications for using tuning forks to determine candidacy for stapes surgery.

  7. 21 CFR 882.1525 - Tuning fork.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tuning fork. 882.1525 Section 882.1525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1525 Tuning fork. (a) Identification. A tuning fork...

  8. 21 CFR 882.1525 - Tuning fork.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tuning fork. 882.1525 Section 882.1525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1525 Tuning fork. (a) Identification. A tuning fork...

  9. Water-quality, bed-sediment, and biological data (October 1993 through September 1994) and statistical summaries of data for streams in the Upper Clark Fork basin, Montana

    USGS Publications Warehouse

    Lambing, J.H.; Hornberger, Michelle I.; Axtmann, E.V.; Dodge, K.A.

    1995-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a program to characterize aquatic resources in the upper Clark Fork basin of western Montana. Water- quality data were obtained periodically at 16 stations during October 1993 through September 1994 (water year 1994); daily suspended-sediment data were obtained at six of these stations. Bed-sediment and biological data were obtained at 11 stations in August 1994. Sampling stations were located on the Clark Fork and major tributaries. The primary constituents analyzed were trace elements associated with mine tailings from historical mining and smelting activities. Water-quality data include concentrations of major ions, trace elements, and suspended sediment in samples collected periodically during water year 1994. Daily values of streamflow, suspended-sediment concentration, and suspended- sediment discharge are given for six stations. Bed- sediment data include trace-element concentrations in the fine and bulk fractions. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota. Statistical summaries of bed sediment, and biological data are provided for the period of record at each station since 1985.

  10. 77 FR 41685 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... deviation is necessary to accommodate Portland's Big Float event. This deviation allows the bridge to remain... of the Big Float event. The Hawthorne Bridge crosses the Willamette River at mile 13.1 and provides 49 feet of vertical clearance above Columbia River Datum 0.0 while in the closed position. Vessels...

  11. Combining computer and manual overlays—Willamette River Greenway Study

    Treesearch

    Asa Hanamoto; Lucille Biesbroeck

    1979-01-01

    We will present a method of combining computer mapping with manual overlays. An example of its use is the Willamette River Greenway Study produced for the State of Oregon Department of Transportation in 1974. This one year planning study included analysis of data relevant to a 286-mile river system. The product is a "wise use" plan which conserves the basic...

  12. U.S. Geological Survey 2013 assessment of undiscovered resources in the Bakken and Three Forks Formations of the U.S. Williston Basin Province

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Marra, Kristen R.

    2014-01-01

    The Upper Devonian Three Forks and Upper Devonian to Lower Mississippian Bakken Formations comprise a major United States continuous oil resource. Current exploitation of oil is from horizontal drilling and hydraulic fracturing of the Middle Member of the Bakken and upper Three Forks, with ongoing exploration of the lower Three Forks, and the Upper, Lower, and Pronghorn Members of the Bakken Formation. In 2008, the U.S. Geological Survey (USGS) estimated a mean of 3.65 billion bbl of undiscovered, technically recoverable oil resource within the Bakken Formation. The USGS recently reassessed the Bakken Formation, which included an assessment of the underlying Three Forks Formation. The Pronghorn Member of the Bakken Formation, where present, was included as part of the Three Forks assessment due to probable fluid communication between reservoirs. For the Bakken Formation, five continuous and one conventional assessment units (AUs) were defined. These AUs are modified from the 2008 AU boundaries to incorporate expanded geologic and production information. The Three Forks Formation was defined with one continuous and one conventional AU. Within the continuous AUs, optimal regions of hydrocarbon recovery, or “sweet spots,” were delineated and estimated ultimate recoveries were calculated for each continuous AU. Resulting undiscovered, technically recoverable resource estimates were 3.65 billion bbl for the five Bakken continuous oil AUs and 3.73 billion bbl for the Three Forks Continuous Oil AU, generating a total mean resource estimate of 7.38 billion bbl. The two conventional AUs are hypothetical and represent a negligible component of the total estimated resource (8 million barrels of oil).

  13. 76 FR 28315 - Security Zone; Portland Rose Festival on Willamette River

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Zone; Portland Rose Festival on Willamette River AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Portland Rose Festival Security Zone in... River during the Portland Rose festival. During the enforcement period, no person or vessel may enter or...

  14. Assessing mercury exposure and effects to American dippers in headwater streams near mining sites.

    PubMed

    Henny, Charles J; Kaiser, James L; Packard, Heidi A; Grove, Robert A; Taft, Michael R

    2005-10-01

    To evaluate mercury (Hg) exposure and possible adverse effects of Hg on American dipper (Cinclus mexicanus) reproduction, we collected eggs and nestling feathers and the larval/nymph form of three Orders of aquatic macroinvertebrates (Ephemeroptera, Plecoptera and Trichoptera = EPT) important in their diet from three major headwater tributaries of the upper Willamette River, Oregon in 2002. The Coast Fork Willamette River is contaminated with Hg due to historical cinnabar (HgS) mining at the Black Butte Mine; the Row River is affected by past gold-mining operations located within the Bohemia Mining District, where Hg was used in the amalgamation process to recover gold; and the Middle Fork Willamette River is the reference area with no known mining. Methyl mercury (MeHg) concentrations (geometric mean) in composite EPT larvae (111.9 ng/g dry weight [dw] or 19.8 ng/g wet weight [ww]), dipper eggs (38.5 ng/g ww) and nestling feathers (1158 ng/g ww) collected from the Coast Fork Willamette were significantly higher than MeHg concentrations in EPT and dipper samples from other streams. Total mercury (THg) concentrations in surface sediments along the same Hg-impacted streams were investigated by others in 1999 (Row River tributaries) and 2002 (Coast Fork). The reported sediment THg concentrations paralleled our biological findings. Dipper breeding territories at higher elevations had fewer second clutches; however, dipper reproductive success along all streams (including the lower elevation and most Hg-contaminated Coast Fork), was judged excellent compared to other studies reviewed. Furthermore, MeHg concentrations in EPT samples from this study were well below dietary concentrations in other aquatic bird species, such as loons and ducks, reported to cause Hg-related reproductive problems. Our data suggest that either dipper feathers or EPT composites used to project MeHg concentrations in dipper feathers (with biomagnification factor of 10-20x) may be used, but with

  15. Assessing mercury exposure and effects to American dippers in headwater streams near mining sites

    USGS Publications Warehouse

    Henny, Charles J.; Kaiser, James L.; Packard, Heidi A.; Grove, Robert A.; Taft, Mike R.

    2005-01-01

    To evaluate mercury (Hg) exposure and possible adverse effects of Hg on American dipper (Cinclus mexicanus) reproduction, we collected eggs and nestling feathers and the larval/nymph form of three Orders of aquatic macroinvertebrates (Ephemeroptera, Plecoptera and Trichoptera = EPT) important in their diet from three major headwater tributaries of the upper Willamette River, Oregon in 2002. The Coast Fork Willamette River is contaminated with Hg due to historical cinnabar (HgS) mining at the Black Butte Mine; the Row River is affected by past gold-mining operations located within the Bohemia Mining District, where Hg was used in the amalgamation process to recover gold; and the Middle Fork Willamette River is the reference area with no known mining. Methyl mercury (MeHg) concentrations (geometric mean) in composite EPT larvae (111.9 ng/g dry weight [dw] or 19.8 ng/g wet weight [ww]), dipper eggs (38.5 ng/g ww) and nestling feathers (1158 ng/g ww) collected from the Coast Fork Willamette were significantly higher than MeHg concentrations in EPT and dipper samples from other streams. Total mercury (THg) concentrations in surface sediments along the same Hg-impacted streams were investigated by others in 1999 (Row River tributaries) and 2002 (Coast Fork). The reported sediment THg concentrations paralleled our biological findings. Dipper breeding territories at higher elevations had fewer second clutches; however, dipper reproductive success along all streams (including the lower elevation and most Hg-contaminated Coast Fork), was judged excellent compared to other studies reviewed. Furthermore, MeHg concentrations in EPT samples from this study were well below dietary concentrations in other aquatic bird species, such as loons and ducks, reported to cause Hg-related reproductive problems. Our data suggest that either dipper feathers or EPT composites used to project MeHg concentrations in dipper feathers (with biomagnification factor of 10a??20??) may be used, but

  16. Selected elements and organic chemicals in bed sediment and fish tissue of the Tualatin River basin, Oregon, 1992-96

    USGS Publications Warehouse

    Bonn, Bernadine A.

    1999-01-01

    This report describes the results of a reconnaissance survey of elements and organic compounds found in bed sediment and fish tissue in streams of the Tualatin River Basin. The basin is in northwestern Oregon to the west of the Portland metropolitan area (fig. 1). The Tualatin River flows for about 80 miles, draining an area of about 712 square miles, before it enters the Willamette River. Land use in the basin changes from mostly forested in the headwaters, to mixed forest and agriculture, to predominately urban. The basin supports a growing population of more than 350,000 people, most of whom live in lower parts of the basin. Water quality in the Tualatin River and its tributaries is expected to be affected by the increasing urbanization of the basin.

  17. EFFECTS OF HABITAT DEGRADATION ON BIOLOGICAL ENDPOINTS IN THE SOUTH FORK BROAD RIVER BASIN, GEORGIA

    EPA Science Inventory

    Many of the streams of the lower Piedmont ecoregion in Georgia have been negatively impacted to some degree by habitat degradation due primarily to sedimentation. The South Fork of the Broad River watershed has been designated as sediment impacted under Section 303(d) of the Clea...

  18. 3. View of Clark Fork Vehicle Bridge facing southwest. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of Clark Fork Vehicle Bridge facing southwest. Bridge from north shore of Clark Fork River. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  19. 4. View of Clark Fork Vehicle Bridge facing northeast. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of Clark Fork Vehicle Bridge facing northeast. Bridge from south shoreof Clark Fork River showing 4 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  20. Surface-water quality of coal-mine lands in Raccoon Creek Basin, Ohio

    USGS Publications Warehouse

    Wilson, K.S.

    1985-01-01

    The Ohio Department of Natural Resources, Division of Reclamation, plans to reclaim abandoned surface mines in the Raccoon Creek watershed in southern Ohio. Historic water-quality data collected between 1975 and 1983 were complied and analyzed in terms of eight selected mine-drainage characteristics to develop a data base for individual subbasin reclamation projects. Areas of mine drainage affecting Raccoon Creek basin, the study Sandy Run basin, the Hewett Fork basin, and the Little raccoon Creek basin. Surface-water-quality samples were collected from a 41-site network from November 1 through November 3, 1983, Results of the sampling reaffirmed that the major sources of mine drainage to Raccoon Creek are in the Little Raccoon Creek basin, and the Hewett Fork basin. However, water quality at the mouth of Sandy Run indicated that it is not a source of mine drainage to Raccoon Creek. Buffer Run, Goose Run, an unnamed tributary to Little Raccoon Creek, Mulga Run, and Sugar Run were the main sources of mine drainage sampled in the Little Raccoon Creek basin. All sites sampled in the East Branch Raccoon Creek basin were affected by mine drainage. This information was used to prepare a work plan for additional data collection before, during, and after reclamation. The data will be used to define the effectiveness of reclamation effects in the basin.

  1. Water-quality, bed-sediment, and biological data (October 2012 through September 2013) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2014-01-01

    This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2012 through September 2013. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity and dissolved organic carbon were analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical sum-maries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  2. The Late Cretaceous Middle Fork caldera, its resurgent intrusion, and enduring landscape stability in east-central Alaska

    USGS Publications Warehouse

    Bacon, Charles R.; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Slack, John F.

    2014-01-01

    The Middle Fork is a relatively well preserved caldera within a broad region of Paleozoic metamorphic rocks and Mesozoic plutons bounded by northeast-trending faults. In the relatively downdropped and less deeply exhumed crustal blocks, Cretaceous–Early Tertiary silicic volcanic rocks attest to long-term stability of the landscape. Within the Middle Fork caldera, the granite porphyry is interpreted to have been exposed by erosion of thick intracaldera tuff from an asymmetric resurgent dome. The Middle Fork of the North Fork of the Fortymile River incised an arcuate valley into and around the caldera fill on the west and north and may have cut down from within an original caldera moat. The 70 Ma land surface is preserved beneath proximal outflow tuff at the west margin of the caldera structure and beneath welded outflow tuff 16–23 km east-southeast of the caldera in a paleovalley. Within ∼50 km of the Middle Fork caldera are 14 examples of Late Cretaceous (?)–Tertiary felsic volcanic and hypabyssal intrusive rocks that range in area from <1 km2 to ∼100 km2. Rhyolite dome clusters north and northwest of the caldera occupy tectonic basins associated with northeast-trending faults and are relatively little eroded. Lava of a latite complex, 12–19 km northeast of the caldera, apparently flowed into the paleovalley of the Middle Fork of the North Fork of the Fortymile River. To the northwest of the Middle Fork caldera, in the Mount Harper crustal block, mid-Cretaceous plutonic rocks are widely exposed, indicating greater total exhumation. To the southeast of the Middle Fork block, the Mount Veta block has been uplifted sufficiently to expose a ca. 68–66 Ma equigranular granitic pluton. Farther to the southeast, in the Kechumstuk block, the flat-lying outflow tuff remnant in Gold Creek and a regionally extensive high terrace indicate that the landscape there has been little modified since 70 Ma other than entrenchment of tributaries in response to post–2

  3. 2. View of Clark Fork Vehicle Bridge facing northeast. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Clark Fork Vehicle Bridge facing northeast. Bridge from south shore of Clark Fork River showing 4 1/2 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  4. 7. View of Clark Fork Vehicle Bridge facing northwest. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View of Clark Fork Vehicle Bridge facing northwest. Bridge from south shore of Clark Fork River showing 4 1/2 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  5. An Isotopic View of Water and Nitrate Transport Through the Vadose Zone in Oregon’s Southern Willamette Valley’s Groundwater Management Area (S-GWMA)

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceedi...

  6. 1. View of Clark Fork Vehicle Bridge facing west. Panorama ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Clark Fork Vehicle Bridge facing west. Panorama showing the entire span of bridge from north shore of the Clark Fork River. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  7. 5. View of Clark Fork Vehicle Bridge facing east. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Clark Fork Vehicle Bridge facing east. Bridge from south shore of Clark Fork River-southernmost span. 1900-era Northern Pacific Railway Bridge in background. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  8. At the centre of the tuning fork

    NASA Image and Video Library

    2015-11-02

    This galaxy is known as Mrk 820 and is classified as a lenticular galaxy — type S0 on the Hubble Tuning Fork. The Hubble Tuning Fork is used to classify galaxies according to their morphology. Elliptical galaxies look like smooth blobs in the sky and lie on the handle of the fork. They are arranged along the handle based on how elliptical they are, with the more spherical galaxies furthest from the tines of the fork, and the more egg-shaped ones closest to the end of the handle where it divides. The two prongs of the tuning fork represent types of unbarred and barred spiral galaxies. Lenticular galaxies like Mrk 820 are in the transition zone between ellipticals and spirals and lie right where the fork divides. A closer look at the appearance of Mrk 820 reveals hints of a spiral structure embedded in a circular halo of stars. Surrounding Mrk 820 in this image is good sampling of other galaxy types, covering almost every type found on the Hubble Tuning Fork, both elliptical and spiral. Most of the smears and specks are distant galaxies, but the prominent bright object at the bottom is a foreground star called TYC 4386-787-1. A version of this image was entered into the Hubble's Hidden Treasures image processing competition by contestant Judy Schmidt.

  9. Vegetation dynamics of restored and remnant Willamette Valley, OR wet prairie wetlands

    EPA Science Inventory

    Wet prairie wetlands are now one of the rarest habitat types in the Willamette Valley of Oregon, USA. Less than two percent of their historic extent remains, with most having been converted into agricultural fields (Christy and Alverson 2011, ONHP 1983). This habitat is the obl...

  10. 77 FR 38723 - Safety Zones; Sellwood Bridge Project, Willamette River; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ...-AA00 Safety Zones; Sellwood Bridge Project, Willamette River; Portland, OR AGENCY: Coast Guard, DHS... effect throughout the duration of the construction and renewal of the Sellwood Bridge located on the... the construction area while transiting in the vicinity of the Sellwood Bridge project; however, the...

  11. 77 FR 15009 - Safety Zones; Sellwood Bridge Project, Willamette River; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ...-AA00 Safety Zones; Sellwood Bridge Project, Willamette River; Portland, OR AGENCY: Coast Guard, DHS... zones to remain in effect throughout the duration of the construction and renewal of the Sellwood Bridge... safe distance from the construction area while transiting in the vicinity of the Sellwood Bridge...

  12. Geomorphic Change Induced by 100 years of Flow Alteration on the Diamond Fork River, Central Utah

    NASA Astrophysics Data System (ADS)

    Jones, J.; Belmont, P.; Wilcock, P. R.

    2017-12-01

    Changes in hydrology and sediment supply affect the form of rivers. The rate of change of fluvial form is controlled by a variety of factors, including valley confinement, sediment size, and antecedent condition. The Diamond Fork River in central Utah has been altered by trans-basin flows delivered from the Colorado River system for over a century. Beginning in 1915, water used for irrigation was delivered through a tributary, Sixth Water Creek, with daily summer flows regularly exceeding the 50 - 100 year flood. Elevated flows caused drastic geomorphic change - resulting in incision and widening of the channel, and the destruction of riparian vegetation. Beginning in 1997, the outlet for the trans-basin diversion was moved downstream on Sixth Water, bypassing a large landslide, and flows were drastically reduced in 2004 through management actions. We delineated eight distinct process domains for the Sixth Water-Diamond Fork system and examined the response of each process domain to the altered flow and sediment regimes through the analysis of aerial photographs and repeat cross-sections. We measured a variety of channel metrics, including channel width, areal extent of bars and islands, and sinuosity in ArcGIS. Results indicate that unconfined reaches that were wide and braided during the period of elevated flows have narrowed to become single threaded and meandering in response to the reduced flows. Confined reaches have experienced minor changes since the reduction in flows, suggesting that confinement is a primary control on the degree of channel response. These findings and complimentary studies will provide managers of Sixth Water and Diamond Fork with a greater understanding of the physical response of the streams, and the resulting effects on ecological communities.

  13. 8. View of Clark Fork Vehicle Bridge facing southwest. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of Clark Fork Vehicle Bridge facing southwest. Looking at understructure of northernmost span. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  14. 20. View of Clark Fork Vehicle Bridge facing up. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of Clark Fork Vehicle Bridge facing up. Looking at understructure of northernmost span. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  15. 18. View of Clark Fork Vehicle Bridge facing north. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View of Clark Fork Vehicle Bridge facing north. Looking at north concrete abutment and timber stringers. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  16. Water-power resources in upper Carson River basin, California-Nevada, A discussion of potential development of power and reservoir sites on east and west forks, Carson River

    USGS Publications Warehouse

    Pumphrey, Harold L.

    1955-01-01

    West Fork Carson River offers the best opportunity for power development in the Carson River basin. The Hope Valley reservoir site could be developed to provide adequate storage regulation and concentration of fall would permit utilization of 1,400 feet of head in 51h miles below the clam site, or 1,900 feet of head in about 972 miles below the dam site; however, the average annual runoff susceptible of development is only about 70,000 acre-feet which limits the power that could be developed continuously in an average year with regulation to about 8,700 kilowatts utilizing 1,400 feet of head, or 12,000 kilowatts utilizing 1,900 feet of head. The method and degree of development will be determined to large extent by the method devised to supplement regulated flows from the Hope Valley reservoir to supply the water already appropriated for irrigation. If the Hope Valley site and the Watasheamu site on East Fork Carson River were developed coordinately water could be transferred to the West Fork for distribution through canals leading from that stream thus satisfying the deficiency due to regulation at Hope Valley and release of stored water on a power schedule. This would permit utilization of the entire 1,900 feet of fall. Independent development of the West Fork for optimum power production would require re-regulation of releases from Hope Valley reservoir and storage of a considerable part of the fall and winter flow for use during the irrigation season. Adequate storage capacity is apparently not available on the West Fork below Hope Valley; but offstream storage may be available in Diamond Valley which could be utilized by diversion from the West Fork near Woodfords. This would limit the utilization of the stream for power purposes to the development of the 1,400 feet of head between the Hope Valley dam site and Wood fords. In a year of average discharge East Fork Carson River and three of its principal tributaries could be developed to produce about 13

  17. Water-quality, bed-sediment, and biological data (October 2013 through September 2014) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.

    2015-12-24

    This report presents the analytical results and qualityassurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2013 through September 2014. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. At 12 sites, dissolved organic carbon and turbidity samples were collected. In addition, nitrogen (nitrate plus nitrite) samples were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-ele­ment concentrations in the fine-grained fraction. Biological data include trace-element concentrations in wholebody tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  18. 19. View of Clark Fork Vehicle Bridge facing north. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of Clark Fork Vehicle Bridge facing north. Looking at north abutment and underside of northernmost span. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  19. High-resolution digital elevation model of Mount St. Helens crater and upper North Fork Toutle River basin, Washington, based on an airborne lidar survey of September 2009

    USGS Publications Warehouse

    Mosbrucker, Adam

    2014-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the North Fork Toutle River basin, which drains the northern flank of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, built a sediment retention structure on the North Fork Toutle River in 1989 to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From September 16–20, 2009, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 214 square kilometers (83 square miles) of Mount St. Helens and the upper North Fork Toutle River basin from the sediment retention structure to the volcano's crater. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle, Coldwater, and Spirit Lakes. Final results averaged about five laser last

  20. 22. View of Clark Fork Vehicle Bridge facing downwest side. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. View of Clark Fork Vehicle Bridge facing down-west side. Looking at road deck and vertical laced channel. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  1. 21. View of Clark Fork Vehicle Bridge facing west. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. View of Clark Fork Vehicle Bridge facing west. Looking at bridge deck, guard rail, juncture of two bridge spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  2. 11. View of Clark Fork Vehicle Bridge facing northwest. Southernmost ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. View of Clark Fork Vehicle Bridge facing northwest. Southernmost span. Plaque was originally located where striped traffic sign is posted. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  3. Water-Quality, Bed-Sediment, and Biological Data (October 2004 through September 2005) and Statistical Summaries of Data for Streams in the Upper Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2006-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a long-term monitoring program, conducted in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the upper Clark Fork basin of western Montana. Sampling sites were located on the Clark Fork, six major tributaries, and three smaller tributaries. Water-quality samples were collected periodically at 18 sites during October 2004 through September 2005 (water year 2005). Bed-sediment and biological samples were collected once in August 2005. The primary constituents analyzed were trace elements associated with tailings from historical mining and smelting activities. This report summarizes the results of water-quality, bed-sediment, and biota samples col-lected in water year 2005 and provides statistical summaries of data collected since 1985. Water-quality data for samples collected periodically from streams include concentrations of selected major ions, trace ele-ments, and suspended sediment. Daily values of suspended-sed-iment concentration and suspended-sediment discharge were determined for three sites. Bed-sediment data include trace-ele-ment concentrations in the fine-grained fraction. Bio-logical data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota. Statistical summaries of water-quality, bed-sediment, and biological data are provided for the period of record since 1985 for each site.

  4. 23. View of Clark Fork Vehicle Bridge facing upwest side. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. View of Clark Fork Vehicle Bridge facing up-west side. Looking at structural connection of top chord, vertical laced channel and diagonal bars. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  5. 13. View of Clark Fork Vehicle Bridge facing south. Concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of Clark Fork Vehicle Bridge facing south. Concrete barrier blocks access. Plaque was originally located where strioed traffic sign is posted at right. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  6. 12. View of Clark Fork Vehicle Bridge facing south. Approach ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. View of Clark Fork Vehicle Bridge facing south. Approach from the north road. Plaque was originally located where striped traffic sign is posted. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  7. 14. View of Clark Fork Vehicle Bridge facing north. Approach ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of Clark Fork Vehicle Bridge facing north. Approach from the south. Concrete barrier blocks access. Plaque was originally located where striped traffic sign is posted at right. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  8. LONGITUDINAL AND LATERAL PATTERNS IN PHYSICAL AND CHEMICAL ATTRIBUTES OF WILLAMETTE RIVERINE HABITAT

    EPA Science Inventory

    The Willamette River in western Oregon is the tenth largest river in the conterminous U. S. Plans are being developed to restore ecological function to the main corridor of the river. Our riverine research has developed a basic understanding of some of the ecological functions ...

  9. 76 FR 48070 - Regulated Navigation Area, Zidell Waterfront Property, Willamette River, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... Regulated Navigation Area (RNA) at the Zidell Waterfront Property located on the Willamette River in Portland, Oregon. This RNA is necessary to preserve the integrity of an engineered sediment cap as part of... shoreline soil in these areas. As such, this RNA is necessary to help ensure the cap is protected and will...

  10. 24. View of one of the plaques from Clark Fork ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. View of one of the plaques from Clark Fork Vehicle Bridge. Presently located at the Bonner County Historical Museum in Sandpoint, Idaho. A plaque was attached at each end of the bridge. Only one remains. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  11. 75 FR 20523 - Regulated Navigation Areas; Port of Portland Terminal 4, Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... contaminated sediment and shoreline soil in these areas. As such, the RNAs are necessary to help ensure the... Areas (RNA) at the Port of Portland Terminal 4 on the Willamette River in [[Page 20524

  12. 78 FR 70858 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... 1625-AA00 Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and... establishing temporary safety zones around the following Pacific Northwest Grain Handlers Association... Commodities facility on the Willamette River in Portland, OR. These safety zones extend approximately between...

  13. Patterns of Ground Water Movement in a Portion of the Willamette River Floodplain, Oregon

    EPA Science Inventory

    In reaches unconstrained by revetments, the Willamette River and its floodplain along its lowland mainstem is a continually evolving system. Several channel reconstruction and restoration projects have been implemented or planned in order to obtain beneficial services along the r...

  14. Concentrations, and estimated loads and yields of nutrients and suspended sediment in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Nutrients, primarily nitrogen and phosphorus compounds, naturally occur but also are applied to land in the form of commercial fertilizers and livestock waste to enhance plant growth. Concentrations, estimated loads and yields, and sources of nitrite plus nitrate, total phosphorus, and orthophosphate were evaluated in streams of the Little River Basin to assist the Commonwealth of Kentucky in developing 'total maximum daily loads' (TMDLs) for streams in the basin. The Little River Basin encompasses about 600 square miles in Christian and Trigg Counties, and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. A total of 92 water samples were collected at four fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at five synoptic-network sites during the same period. Median concentrations of nitrogen, phosphorus, and suspended sediment varied spatially and seasonally. Concentrations of nitrogen were higher in the spring (March-May) after fertilizer application and runoff. The highest concentration of nitrite plus nitrate-5.7 milligrams per liter (mg/L)-was detected at the South Fork Little River site. The Sinking Fork near Cadiz site had the highest median concentration of nitrite plus nitrate (4.6 mg/L). The North Fork Little River site and the Little River near Cadiz site had higher concentrations of orthophosphate in the fall and lower concentrations in the spring. Concentrations of orthophosphate remained high during the summer (June-August) at the North Fork Little River site possibly because of the contribution of wastewater effluent to streamflow. Fifty-eight percent of the concentrations of total phosphorus at the nine sites exceeded the U.S. Environmental Protection Agency recommended maximum concentration limit of

  15. 77 FR 74777 - Safety Zones; Grain-Shipment Assistance Vessels; Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... 1625-AA00 Safety Zones; Grain-Shipment Assistance Vessels; Columbia and Willamette Rivers AGENCY: Coast... temporary safety zones around the following four vessels: the motor vessel Daniel Foss, IMO 7638454, the... Connor Foss, Official 1238813. These safety zones apply while these vessels are located on the waters of...

  16. Training Guidelines: Fork Lift Truck Driving.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    This manual of operative training guidelines for fork lift truck driving has been developed by the Ceramics, Glass and Mineral Products Industry Training Board (Great Britain) in consultation with a number of firms which manufacture fork lift trucks or which already have training--programs for their use. The purpose of the guidelines is to assist…

  17. Chloride control and monitoring program in the Wichita River Basin, Texas, 1996-2009

    USGS Publications Warehouse

    Haynie, M.M.; Burke, G.F.; Baldys, Stanley

    2011-01-01

    Water resources of the Wichita River Basin in north-central Texas are vital to the water users in Wichita Falls, Tex., and surrounding areas. The Wichita River Basin includes three major forks of the Wichita River upstream from Lake Kemp, approximately 50 miles southwest of Wichita Falls, Tex. The main stem of the Wichita River is formed by the confluence of the North Wichita River and Middle Fork Wichita River upstream from Truscott Brine Lake. The confluence of the South Wichita River with the Wichita River is northwest of Seymour, Tex. (fig. 1). Waters from the Wichita River Basin, which is part of the Red River Basin, are characterized by high concentrations of chloride and other salinity-related constituents from salt springs and seeps (hereinafter salt springs) in the upper reaches of the basin. These salt springs have their origins in the Permian Period when the Texas Panhandle and western Oklahoma areas were covered by a broad shallow sea. Over geologic time, evaporation of the shallow seas resulted in the formation of salt deposits, which today are part of the geologic formations underlying the area. Groundwater in these formations is characterized by high chloride concentrations from these salt deposits, and some of this groundwater is discharged by the salt springs into the Wichita River.

  18. DISTRIBUTION OF AQUATIC OFF-CHANNEL HABITATS AND ASSOCIATED RIPARIAN VEGETATION, WILLAMETTE RIVER, OREGON, USA

    EPA Science Inventory

    The extent of aquatic off-channel habitats such as secondary and side channels, sloughs, and alcoves, have been reduced more than 50% since the 1850s along the upper main stem of the Willamette River, Oregon, USA. Concurrently, the hydrogeomorphic potential, and associated flood...

  19. ATR-like kinase Mec1 facilitates both chromatin accessibility at DNA replication forks and replication fork progression during replication stress

    PubMed Central

    Rodriguez, Jairo; Tsukiyama, Toshio

    2013-01-01

    Faithful DNA replication is essential for normal cell division and differentiation. In eukaryotic cells, DNA replication takes place on chromatin. This poses the critical question as to how DNA replication can progress through chromatin, which is inhibitory to all DNA-dependent processes. Here, we developed a novel genome-wide method to measure chromatin accessibility to micrococcal nuclease (MNase) that is normalized for nucleosome density, the NCAM (normalized chromatin accessibility to MNase) assay. This method enabled us to discover that chromatin accessibility increases specifically at and ahead of DNA replication forks in normal S phase and during replication stress. We further found that Mec1, a key regulatory ATR-like kinase in the S-phase checkpoint, is required for both normal chromatin accessibility around replication forks and replication fork rate during replication stress, revealing novel functions for the kinase in replication stress response. These results suggest a possibility that Mec1 may facilitate DNA replication fork progression during replication stress by increasing chromatin accessibility around replication forks. PMID:23307868

  20. Development of a Mechanistically Based, Basin-Scale Stream Temperature Model: Applications to Cumulative Effects Modeling

    Treesearch

    Douglas Allen; William Dietrich; Peter Baker; Frank Ligon; Bruce Orr

    2007-01-01

    We describe a mechanistically-based stream model, BasinTemp, which assumes that direct shortwave radiation moderated by riparian and topographic shading, controls stream temperatures during the hottest part of the year. The model was developed to support a temperature TMDL for the South Fork Eel basin in Northern California and couples a GIS and a 1-D energy balance...

  1. USGS assessment of water and proppant requirements and water production associated with undiscovered petroleum in the Bakken and Three Forks Formations

    USGS Publications Warehouse

    Haines, Seth S.; Varela, Brian; Hawkins, Sarah J.; Gianoutsos, Nicholas J.; Tennyson, Marilyn E.

    2017-01-01

    The U.S. Geological Survey (USGS) has conducted an assessment of water and proppant requirements, and water production volumes, associated with possible future production of undiscovered petroleum resources in the Bakken and Three Forks Formations, Williston Basin, USA. This water and proppant assessment builds directly from the 2013 USGS petroleum assessment for the Bakken and Three Forks Formations, and it has been conducted using a new water and proppant assessment methodology that builds from the established USGS methodology for assessment of undiscovered petroleum in continuous reservoirs. We determined the assessment input values through extensive analysis of available data on per-well water and proppant use for hydraulic fracturing, including trends over time and space. We determined other assessment inputs through analysis of regional water-production trends.

  2. 27 CFR 9.113 - North Fork of Long Island.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false North Fork of Long Island... North Fork of Long Island. (a) Name. The name of the viticultural area described in this section is “North Fork of Long Island.” (b) Approved maps. The appropriate maps for determining the boundaries of...

  3. 27 CFR 9.113 - North Fork of Long Island.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false North Fork of Long Island... North Fork of Long Island. (a) Name. The name of the viticultural area described in this section is “North Fork of Long Island.” (b) Approved maps. The appropriate maps for determining the boundaries of...

  4. 27 CFR 9.113 - North Fork of Long Island.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false North Fork of Long Island... North Fork of Long Island. (a) Name. The name of the viticultural area described in this section is “North Fork of Long Island.” (b) Approved maps. The appropriate maps for determining the boundaries of...

  5. The ophiolitic North Fork terrane in the Salmon River region, central Klamath Mountains, California

    USGS Publications Warehouse

    Ando, C.J.; Irwin, W.P.; Jones, D.L.; Saleeby, J.B.

    1983-01-01

    Jurassic thrust faults.The North Fork terrane appears to contain no arc volcanic rocks or arc-derived detritus, suggesting that it neither constituted the base for an arc nor was in a basinal setting adjacent to an arc sediment source. Details of the progressive accretion and evolutionary relationship of the North Fork to other terranes of the Klamath Mountains are not yet clear.

  6. Approach view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  7. Elevation view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the North Fork Butter Creek Bridge, view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  8. Approach view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  9. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae

    PubMed Central

    Szyjka, Shawn J.; Aparicio, Jennifer G.; Viggiani, Christopher J.; Knott, Simon; Xu, Weihong; Tavaré, Simon; Aparicio, Oscar M.

    2008-01-01

    Replication fork stalling at a DNA lesion generates a damage signal that activates the Rad53 kinase, which plays a vital role in survival by stabilizing stalled replication forks. However, evidence that Rad53 directly modulates the activity of replication forks has been lacking, and the nature of fork stabilization has remained unclear. Recently, cells lacking the Psy2–Pph3 phosphatase were shown to be defective in dephosphorylation of Rad53 as well as replication fork restart after DNA damage, suggesting a mechanistic link between Rad53 deactivation and fork restart. To test this possibility we examined the progression of replication forks in methyl-methanesulfonate (MMS)-damaged cells, under different conditions of Rad53 activity. Hyperactivity of Rad53 in pph3Δ cells slows fork progression in MMS, whereas deactivation of Rad53, through expression of dominant-negative Rad53-KD, is sufficient to allow fork restart during recovery. Furthermore, combined deletion of PPH3 and PTC2, a second, unrelated Rad53 phosphatase, results in complete replication fork arrest and lethality in MMS, demonstrating that Rad53 deactivation is a key mechanism controlling fork restart. We propose a model for regulation of replication fork progression through damaged DNA involving a cycle of Rad53 activation and deactivation that coordinates replication restart with DNA repair. PMID:18628397

  10. Ground-water pumpage in the Willamette lowland regional aquifer system, Oregon and Washington, 1990

    USGS Publications Warehouse

    Collins, Charles A.; Broad, Tyson M.

    1996-01-01

    Ground-water pumpage for 1990 was estimated for an area of about 5,700 square miles in northwestern Oregon and southwestern Washington as part of the Puget-Willamette Lowland Regional Aquifer System Analysis study. The estimated total ground-water pumpage in 1990 was about 340,000 acre-feet. Ground water in the study area is pumped mainly from Quaternary sediment; lesser amounts are withdrawn from Tertiary volcanic materials. Large parts of the area are used for agriculture, and about two and one-half times as much ground water was pumped for irrigation as for either public- supply or industrial needs. Estimates of ground- water pumpage for irrigation in the central part of the Willamette Valley were generated by using image-processing techniques and Landsat Thematic Mapper data. Field data and published reports were used to estimate pumpage for irrigation in other parts of the study area. Information on public- supply and industrial pumpage was collected from Federal, State, and private organizations and individuals.

  11. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  12. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  13. Detail perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  14. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  15. Variation in watershed nitrogen input and export across the Willamette River Basin

    EPA Science Inventory

    Nitrogen (N) export from watersheds is influenced by hydrology, land use/cover, and the timing and spatial arrangement of N inputs and removal within basins. We examined the relationship between N input and watershed N export for 25 monitoring stations between 1996 and 2006 with...

  16. Chemical characterization of sediments and pore water from the upper Clark Fork River and Milltown Reservoir, Montana

    USGS Publications Warehouse

    Brumbaugh, W. G.; Ingersoll, C.G.; Kemble, N.E.; May, T.W.; Zajicek, J.L.

    1994-01-01

    The upper Clark Fork River basin in western Montana is widely contaminated by metals from past mining, milling, and smelting activities As part of a comprehensive ecological risk assessment for the upper Clark Fork River, we measured physical and chemical characteristics of surficial sediment samples that were collected from depositional zones for subsequent toxicity evaluations Sampling stations included five locations along the upper 200 km of the river, six locations in or near Milltown Reservoir (about 205 km from the river origin), and two tributary reference sites Concentrations of As, Cd, Cu, Mn, Pb, and Zn decreased from the upper stations to the downstream stations in the Clark Fork River but then increased in all Milltown Reservoir stations to levels similar to uppermost river stations Large percentages (50 to 90%) of the total Cd, Cu, Pb, and Zn were extractable by dilute (3 n) HCl for all samples Copper and zinc accounted for greater than 95% of extractable metals on a molar basis Acid-volatile sulfide (AVS) concentrations were typically moderate (0 6 to 23 μmol/g) in grab sediment samples and appeared to regulate dissolved (filterable) concentrations of Cd, Cu, and Zn in sediment pore waters Acid volatile sulfide is important in controlling metal solubility in the depositional areas of the Clark Fork River and should be monitored in any future studies Spatial variability within a sampling station was high for Cu, Zn, and AVS, therefore, the potential for toxicity to sediment dwelling organisms may be highly localized.

  17. Topographic view of the North Fork Butter Creek Bridge (located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the North Fork Butter Creek Bridge (located center of frame), view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  18. Drainage areas in the Vermillion River basin in eastern South Dakota

    USGS Publications Warehouse

    Benson, Rick D.; Freese, M.D.; Amundson, Frank D.

    1988-01-01

    Above-normal precipitation in the northern portion of the Vermillion River basin from 1982 through 1987 caused substantial rises in lake levels in the Lake Thompson chain of lakes, resulting in discharge from Lake Thompson to the East Fork Vermillion River. Prior to 1986, the Lake Thompson chain of lakes was thought to be a noncontributing portion of the Vermillion River basin. To better understand surface drainage, the map delineates all named stream basins, and all unnamed basins larger than approximately 10 sq mi within the Vermillion River basin in South Dakota and lists by stream name the area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey 7 1/2 minute topographic maps. Two tables list areas of drainage basins and reaches, as well as drainage areas above gaging stations. (USGS)

  19. Development of Tuning Fork Based Probes for Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Jalilian, Romaneh; Yazdanpanah, Mehdi M.; Torrez, Neil; Alizadeh, Amirali; Askari, Davood

    2014-03-01

    This article reports on the development of tuning fork-based AFM/STM probes in NaugaNeedles LLC for use in atomic force microscopy. These probes can be mounted on different carriers per customers' request. (e.g., RHK carrier, Omicron carrier, and tuning fork on a Sapphire disk). We are able to design and engineer tuning forks on any type of carrier used in the market. We can attach three types of tips on the edge of a tuning fork prong (i.e., growing Ag2Ga nanoneedles at any arbitrary angle, cantilever of AFM tip, and tungsten wire) with lengths from 100-500 μm. The nanoneedle is located vertical to the fork. Using a suitable insulation and metallic coating, we can make QPlus sensors that can detect tunneling current during the AFM scan. To make Qplus sensors, the entire quartz fork will be coated with an insulating material, before attaching the nanoneedle. Then, the top edge of one prong is coated with a thin layer of conductive metal and the nanoneedle is attached to the fork end of the metal coated prong. The metal coating provides electrical connection to the tip for tunneling current readout and to the electrodes and used to read the QPlus current. Since the amount of mass added to the fork is minimal, the resonance frequency spectrum does not change and still remains around 32.6 KHz and the Q factor is around 1,200 in ambient condition. These probes can enhance the performance of tuning fork based atomic microscopy.

  20. Termination of DNA replication forks: "Breaking up is hard to do".

    PubMed

    Bailey, Rachael; Priego Moreno, Sara; Gambus, Agnieszka

    2015-01-01

    To ensure duplication of the entire genome, eukaryotic DNA replication initiates from thousands of replication origins. The replication forks move through the chromatin until they encounter forks from neighboring origins. During replication fork termination forks converge, the replisomes disassemble and topoisomerase II resolves the daughter DNA molecules. If not resolved efficiently, terminating forks result in genomic instability through the formation of pathogenic structures. Our recent findings shed light onto the mechanism of replisome disassembly upon replication fork termination. We have shown that termination-specific polyubiquitylation of the replicative helicase component - Mcm7, leads to dissolution of the active helicase in a process dependent on the p97/VCP/Cdc48 segregase. The inhibition of terminating helicase disassembly resulted in a replication termination defect. In this extended view we present hypothetical models of replication fork termination and discuss remaining and emerging questions in the DNA replication termination field.

  1. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks*

    PubMed Central

    Kim, Hyun-Suk; Nickoloff, Jac A.; Wu, Yuehan; Williamson, Elizabeth A.; Sidhu, Gurjit Singh; Reinert, Brian L.; Jaiswal, Aruna S.; Srinivasan, Gayathri; Patel, Bhavita; Kong, Kimi; Burma, Sandeep; Lee, Suk-Hee; Hromas, Robert A.

    2017-01-01

    Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5′ end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5′-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5′ end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5′-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5′ end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks. PMID:28049724

  2. On the sound field radiated by a tuning fork

    NASA Astrophysics Data System (ADS)

    Russell, Daniel A.

    2000-12-01

    When a sounding tuning fork is brought close to the ear, and rotated about its long axis, four distinct maxima and minima are heard. However, when the same tuning fork is rotated while being held at arm's length from the ear only two maxima and minima are heard. Misconceptions concerning this phenomenon are addressed and the fundamental mode of the fork is described in terms of a linear quadrupole source. Measured directivity patterns in the near field and far field of several forks agree very well with theoretical predictions for a linear quadrupole. Other modes of vibration are shown to radiate as dipole and lateral quadrupole sources.

  3. Willamette Valley Ecoregion: Chapter 3 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Wilson, Tamara S.; Sorenson, Daniel G.

    2012-01-01

    The Willamette Valley Ecoregion (as defined by Omernik, 1987; U.S. Environmental Protection Agency, 1997) covers approximately 14,458 km² (5,582 mi2), making it one of the smallest ecoregions in the conterminous United States. The long, alluvial Willamette Valley, which stretches north to south more than 193 km and ranges from 32 to 64 km wide, is nestled between the sedimentary and metamorphic Coast Ranges (Coast Range Ecoregion) to the west and the basaltic Cascade Range (Cascades Ecoregion) to the east (fig. 1). The Lewis and Columbia Rivers converge at the ecoregion’s northern boundary in Washington state; however, the majority of the ecoregion falls within northwestern Oregon. Interstate 5 runs the length of the valley to its southern boundary with the Klamath Mountains Ecoregion. Topography here is relatively flat, with elevations ranging from sea level to 122 m. This even terrain, coupled with mild, wet winters, warm, dry summers, and nutrient-rich soil, makes the Willamette Valley the most important agricultural region in Oregon. Population centers are concentrated along the valley floor. According to estimates from the Oregon Department of Fish and Wildlife (2006), over 2.3 million people lived in Willamette Valley in 2000. Portland, Oregon, is the largest city, with 529,121 residents (U.S. Census Bureau, 2000). Other sizable cities include Eugene, Oregon; Salem (Oregon’s state capital); and Vancouver, Washington. Despite the large urban areas dotting the length of the Willamette Valley Ecoregion, agriculture and forestry products are its economic foundation (figs. 2,3). The valley is a major producer of grass seed, ornamental plants, fruits, nuts, vegetables, and grains, as well as poultry, beef, and dairy products. The forestry and logging industries also are primary employers of the valley’s rural residents (Rooney, 2008). These activities have affected the watershed significantly, with forestry and agricultural runoff contributing to river

  4. Water-quality, bed-sediment, and biological data (October 1992 through September 1993) and statistical summaries of water-quality data (March 1985 through September 1993) for streams in the upper Clark Fork basin, Montana

    USGS Publications Warehouse

    Lambing, John H.

    1994-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a program to characterize aquatic resources in the upper Clark Fork basin of western Montana. Water-quality data were obtained periodically at 16 stations during October 1992 through September 1993 (water year 1993); daily suspended-sediment data were obtained at six of these stations. Bed-sediment and biological data were obtained at 11 stations in August 1993. Sampling stations were located on the Clark Fork and major tributaries. The primary constituents analyzed were trace elements associated with mine tailings from historic mining and smelting activities. Water-quality data include concentra- tions of major ions, trace elements, and suspended sediment in samples collected periodically during water year 1993. A statistical summary of water- quality data is provided for the period of record at each station since 1985. Daily values of streamflow, suspended-sediment concentration, and suspended-sediment discharge are given for six stations. Bed-sediment data include trace- element concentrations in the fine and bulk fractions. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota.

  5. Checkpoint-dependent RNR induction promotes fork restart after replicative stress.

    PubMed

    Morafraile, Esther C; Diffley, John F X; Tercero, José Antonio; Segurado, Mónica

    2015-01-20

    The checkpoint kinase Rad53 is crucial to regulate DNA replication in the presence of replicative stress. Under conditions that interfere with the progression of replication forks, Rad53 prevents Exo1-dependent fork degradation. However, although EXO1 deletion avoids fork degradation in rad53 mutants, it does not suppress their sensitivity to the ribonucleotide reductase (RNR) inhibitor hydroxyurea (HU). In this case, the inability to restart stalled forks is likely to account for the lethality of rad53 mutant cells after replication blocks. Here we show that Rad53 regulates replication restart through the checkpoint-dependent transcriptional response, and more specifically, through RNR induction. Thus, in addition to preventing fork degradation, Rad53 prevents cell death in the presence of HU by regulating RNR-expression and localization. When RNR is induced in the absence of Exo1 and RNR negative regulators, cell viability of rad53 mutants treated with HU is increased and the ability of replication forks to restart after replicative stress is restored.

  6. Virus incidence in orchardgrass (Dactylis glomerata L.) seed production fields in the Willamette Valley

    USDA-ARS?s Scientific Manuscript database

    A survey was conducted over the course of three years (2014-2016) for the presence of Barley yellow dwarf virus (BYDV-MAV and BYDV-PAV), Cereal yellow dwarf virus (CYDV-RPV), and Cocksfoot mottle virus (CfMV) in orchardgrass (Dactylis glomerata) fields in the Willamette Valley, Oregon. There was an ...

  7. Initial Geomorphic Responses to Removal of Milltown Dam, Clark Fork River, Montana, USA

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Brinkerhoff, D.; Woelfle-Erskine, C.

    2008-12-01

    The removal of Milltown Dam on the Clark Fork River, Montana, USA, is creating a field-scale experiment on upstream and downstream responses to dam removal and on how gravel-bed rivers respond to sediment pulses. Milltown Dam was removed in 2008, reconnecting the Clark Fork River to its upstream basin in terms of sediment transport and fish passage. This dam removal is especially notable because (1) it is the largest dam removal to date in the United States in terms of the volume of reservoir sediment potentially available for downstream transport (over 3 million m3; 1.7 million m3 are being mechanically removed); and (2) the dam is the downstream end of the largest Superfund site in the United States, the Clark Fork Complex, and reservoir sediments are composed largely of contaminated mine tailings. Data collection on pre- and post-dam removal channel morphology, bed sediment characteristics, and sediment loads are being used to investigate spatial and temporal patterns of sediment transport and deposition associated with this dam removal. In the first several months following breaching of the dam, snowmelt runoff with a 3-year recurrence interval peak caused substantial erosion and downstream transport of metals-laden sediments from Milltown reservoir. Reservoir sediments in the Clark Fork arm of Milltown reservoir eroded at levels far exceeding modeling predictions as a result of both incision to the new base level created by dam removal and bank retreat of over 200 m in reaches upstream of a constructed bypass reach and remediation area. Copper and other metals in these eroded reservoir sediments provide a tracer for identifying whether sediment deposits observed downstream of the dam originated from Milltown reservoir or uncontaminated tributaries and indicate that Milltown sediments have reached over 200 km downstream. Downstream deposition has been greatest along channel margins and in side-channel areas, whereas the transport capacity of the active channel

  8. 75 FR 20778 - Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ...-AA87 Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR AGENCY: Coast... during the Portland Rose Festival Fleet Week from June 2, 2010, through June 7, 2010. The security zone... is a need to provide a security zone for the 2010 Portland Rose Festival Fleet Week, and there is...

  9. Force regulated dynamics of RPA on a DNA fork

    PubMed Central

    Kemmerich, Felix E.; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf

    2016-01-01

    Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg2+ concentrations, such that human RPA can melt DNA in absence of force. PMID:27016742

  10. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia

    USGS Publications Warehouse

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.

    2006-01-01

    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  11. Ecological Functions of Off-Channel Habitats of the Willamette River, Oregon, Database and Documentation (1997-2001)

    EPA Science Inventory

    The database from the Ecological Functions of Off-Channel Habitats of the Willamette River, Oregon project (OCH Project) contains data collected from 1997 through 2001 from multiple research areas of the project, and project documents such as the OCH Research Plan, Quality Assura...

  12. Regulation of Replication Fork Advance and Stability by Nucleosome Assembly

    PubMed Central

    Prado, Felix; Maya, Douglas

    2017-01-01

    The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging. PMID:28125036

  13. Roaring Fork Motor Nature Trail, Title Sheet Great Smoky ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roaring Fork Motor Nature Trail, Title Sheet - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  14. Hydrologic and hydraulic analyses for the Black Fork Mohican River Basin in and near Shelby, Ohio

    USGS Publications Warehouse

    Huitger, Carrie A.; Ostheimer, Chad J.; Koltun, G.F.

    2016-05-06

    Hydrologic and hydraulic analyses were done for selected reaches of five streams in and near Shelby, Richland County, Ohio. The U.S. Geological Survey (USGS), in cooperation with the Muskingum Watershed Conservancy District, conducted these analyses on the Black Fork Mohican River and four tributaries: Seltzer Park Creek, Seltzer Park Tributary, Tuby Run, and West Branch. Drainage areas of the four stream reaches studied range from 0.51 to 60.3 square miles. The analyses included estimation of the 10-, 2-, 1-, and 0.2-percent annual-exceedance probability (AEP) flood-peak discharges using the USGS Ohio StreamStats application. Peak discharge estimates, along with cross-sectional and hydraulic structure geometries, and estimates of channel roughness coefficients were used as input to step-backwater models. The step-backwater water models were used to determine water-surface elevation profiles of four flood-peak discharges and a regulatory floodway. This study involved the installation of, and data collection at, a streamflow-gaging station (Black Fork Mohican River at Shelby, Ohio, 03129197), precipitation gage (Rain gage at Reservoir Number Two at Shelby, Ohio, 405209082393200), and seven submersible pressure transducers on six selected river reaches. Two precipitation-runoff models, one for the winter events and one for nonwinter events for the headwaters of the Black Fork Mohican River, were developed and calibrated using the data collected. With the exception of the runoff curve numbers, all other parameters used in the two precipitation-runoff models were identical. The Nash-Sutcliffe model efficiency coefficients were 0.737, 0.899, and 0.544 for the nonwinter events and 0.850 and 0.671 for the winter events. Both of the precipitation-runoff models underestimated the total volume of water, with residual runoff ranging from -0.27 inches to -1.53 inches. The results of this study can be used to assess possible mitigation options and define flood hazard areas that

  15. 1. Roaring Fork Motor Nature Trail, entrance sign. Great ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Roaring Fork Motor Nature Trail, entrance sign. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  16. 9. Roaring Fork Motor Nature Trail, Reagan House. Great ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Roaring Fork Motor Nature Trail, Reagan House. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  17. Evaluation of persistent hydrophobic organic compounds in the Columbia River Basin using semipermeable-membrane devices

    USGS Publications Warehouse

    McCarthy, K.A.; Gale, R.W.

    2001-01-01

    Persistent hydrophobic organic compounds are of concern in the Columbia River because they have been correlated with adverse effects on wildlife. We analysed samples from nine main-stem and six tributary sites throughout the Columbia River Basin (Washington and Oregon) for polychlorinated dibenzo-p-dioxins, dibenzofurans, polychlorinated biphenyls, organochlorine pesticides, and priority-pollutant polycyclic aromatic hydrocarbons. Because these compounds may have important biological consequences at aqueous concentrations well below the detection limits associated with conventional sampling methods, we used semipermeable-membrane devices to sample water and achieved parts-per-quintillion detection limits. All of these compound classes were prevalent within the basin, but concentrations of many analytes were highest in the vicinity of Portland-Vancouver, indicating that the Willamette subbasin-and perhaps the urban area in particular-is an important source of these compounds. Data collected during basin low-flow conditions in 1997 and again during basin high-flow conditions in 1998 indicate that in-stream processes such as dilution by relatively clean inflow, and flow through island hyporheic zones may be important mechanisms for attenuating dissolved concentrations of hydrophobic compounds.

  18. Claspin Promotes Normal Replication Fork Rates in Human Cells

    PubMed Central

    Helleday, Thomas; Caldecott, Keith W.

    2008-01-01

    The S phase-specific adaptor protein Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of Chk1 by ataxia-telangiectasia and Rad3-related (ATR). Evidence suggests that these components of the ATR pathway also play a critical role during physiological S phase. Chk1 is required for high rates of global replication fork progression, and Claspin interacts with the replication machinery and might therefore monitor normal DNA replication. Here, we have used DNA fiber labeling to investigate, for the first time, whether human Claspin is required for high rates of replication fork progression during normal S phase. We report that Claspin-depleted HeLa and HCT116 cells display levels of replication fork slowing similar to those observed in Chk1-depleted cells. This was also true in primary human 1BR3 fibroblasts, albeit to a lesser extent, suggesting that Claspin is a universal requirement for high replication fork rates in human cells. Interestingly, Claspin-depleted cells retained significant levels of Chk1 phosphorylation at both Ser317 and Ser345, raising the possibility that Claspin function during normal fork progression may extend beyond facilitating phosphorylation of either individual residue. Consistent with this possibility, depletion of Chk1 and Claspin together doubled the percentage of very slow forks, compared with depletion of either protein alone. PMID:18353973

  19. Force regulated dynamics of RPA on a DNA fork.

    PubMed

    Kemmerich, Felix E; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf

    2016-07-08

    Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg(2+) concentrations, such that human RPA can melt DNA in absence of force. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. RELATIONSHIPS BETWEEN DISSOLVED NITROGEN AND LANDUSE/LANDCOVER AT TWO SPATIAL SCALES IN THE CALAPOOIA RIVER WATERSHED, OREGON

    EPA Science Inventory

    The Calapooia River, a major tributary to the Willamette River in Oregon, provides an outstanding opportunity to study dynamics of dissolved nitrogen (DN) in a multiple landuse watershed. The watershed is typical of many found in the Willamette basin, with National Forest land i...

  1. PUTTING SCIENCE INTO ACTION: FISH-HABITAT RELATIONSHIPS IN PACIFIC NORTHWEST STREAMS

    EPA Science Inventory

    The Calapooia River, a major tributary to the Willamette River in Oregon, provides an outstanding opportunity to study dynamics of dissolved nitrogen (DN) in a multiple landuse watershed. The watershed is typical of many found in the Willamette basin, with National Forest land i...

  2. RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks.

    PubMed

    Elia, Andrew E H; Wang, David C; Willis, Nicholas A; Boardman, Alexander P; Hajdu, Ildiko; Adeyemi, Richard O; Lowry, Elizabeth; Gygi, Steven P; Scully, Ralph; Elledge, Stephen J

    2015-10-15

    We have used quantitative proteomics to profile ubiquitination in the DNA damage response (DDR). We demonstrate that RPA, which functions as a protein scaffold in the replication stress response, is multiply ubiquitinated upon replication fork stalling. Ubiquitination of RPA occurs on chromatin, involves sites outside its DNA binding channel, does not cause proteasomal degradation, and increases under conditions of fork collapse, suggesting a role in repair at stalled forks. We demonstrate that the E3 ligase RFWD3 mediates RPA ubiquitination. RFWD3 is necessary for replication fork restart, normal repair kinetics during replication stress, and homologous recombination (HR) at stalled replication forks. Mutational analysis suggests that multisite ubiquitination of the entire RPA complex is responsible for repair at stalled forks. Multisite protein group sumoylation is known to promote HR in yeast. Our findings reveal a similar requirement for multisite protein group ubiquitination during HR at stalled forks in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. 8. Roaring Fork Motor Nature Trail, handbuilt rock pile. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Roaring Fork Motor Nature Trail, hand-built rock pile. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  4. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism

    PubMed Central

    Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel MA; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin AM; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S

    2017-01-01

    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication, and protect, repair and restart damaged forks. Here we identify DONSON as a novel fork protection factor, and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilises forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATR-dependent signalling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity, and potentiating chromosomal instability. Hypomorphic mutations substantially reduce DONSON protein levels and impair fork stability in patient cells, consistent with defective DNA replication underlying the disease phenotype. In summary, we identify mutations in DONSON as a common cause of microcephalic dwarfism, and establish DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability. PMID:28191891

  5. Hydrology of Eagle Creek Basin and effects of groundwater pumping on streamflow, 1969-2009

    USGS Publications Warehouse

    Matherne, Anne Marie; Myers, Nathan C.; McCoy, Kurt J.

    2010-01-01

    Urban and resort development and drought conditions have placed increasing demands on the surface-water and groundwater resources of the Eagle Creek Basin, in southcentral New Mexico. The Village of Ruidoso, New Mexico, obtains 60-70 percent of its water from the Eagle Creek Basin. The village drilled four production wells on Forest Service land along North Fork Eagle Creek; three of the four wells were put into service in 1988 and remain in use. Local citizens have raised questions as to the effects of North Fork well pumping on flow in Eagle Creek. In response to these concerns, the U.S. Geological Survey, in cooperation with the Village of Ruidoso, conducted a hydrologic investigation from 2007 through 2009 of the potential effect of the North Fork well field on streamflow in North Fork Eagle Creek. Mean annual precipitation for the period of record (1942-2008) at the Ruidoso climate station is 22.21 inches per year with a range from 12.27 inches in 1970 to 34.81 inches in 1965. Base-flow analysis indicates that the 1970-80 mean annual discharge, direct runoff, and base flow were 2,260, 1,440, and 819 acre-ft/yr, respectively, and for 1989-2008 were 1,290, 871, and 417 acre-ft/yr, respectively. These results indicate that mean annual discharge, direct runoff, and base flow were less during the 1989-2008 period than during the 1970-80 period. Mean annual precipitation volume for the study area was estimated to be 12,200 acre-feet. Estimated annual evapotranspiration for the study area ranged from 8,730 to 8,890 acre-feet. Estimated annual basin yield for the study area was 3,390 acre-ft or about 28 percent of precipitation. On the basis of basin-yield computations, annual recharge was estimated to be 1,950 acre-ft, about 16 percent of precipitation. Using a chloride mass-balance method, groundwater recharge over the study area was estimated to average 490 acre-ft, about 4.0 percent of precipitation. Because the North Fork wells began pumping in 1988, 1969

  6. Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently

    PubMed Central

    Yu, Chuanhe; Gan, Haiyun

    2017-01-01

    ABSTRACT Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal. PMID:28784720

  7. Floods of July 23-26, 2010, in the Little Maquoketa River and Maquoketa River Basins, Northeast Iowa

    USGS Publications Warehouse

    Eash, David A.

    2012-01-01

    Minor flooding occurred July 23, 2010, in the Little Maquoketa River Basin and major flooding occurred July 23–26, 2010, in the Maquoketa River Basin in northeast Iowa following severe thunderstorm activity over the region during July 22–24. A breach of the Lake Delhi Dam on July 24 aggravated flooding on the Maquoketa River. Rain gages at Manchester and Strawberry Point, Iowa, recorded 72-hour-rainfall amounts of 7.33 and 12.23 inches, respectively, on July 24. The majority of the rainfall occurred during a 48-hour period. Within the Little Maquoketa River Basin, a peak-discharge estimate of 19,000 cubic feet per second (annual flood-probability estimate of 4 to 10 percent) at the discontinued 05414500 Little Maquoketa River near Durango, Iowa streamgage on July 23 is the sixth largest flood on record. Within the Maquoketa River Basin, peak discharges of 26,600 cubic feet per second (annual flood-probability estimate of 0.2 to 1 percent) at the 05416900 Maquoketa River at Manchester, Iowa streamgage on July 24, and of 25,000 cubic feet per second (annual flood-probability estimate of 1 to 2 percent) at the 05418400 North Fork Maquoketa River near Fulton, Iowa streamgage on July 24 are the largest floods on record for these sites. A peak discharge affected by the Lake Delhi Dam breach on July 24 at the 05418500 Maquoketa River near Maquoketa, Iowa streamgage, located downstream of Lake Delhi, of 46,000 cubic feet per second on July 26 is the third highest on record. High-water marks were measured at five locations along the Little Maquoketa and North Fork Little Maquoketa Rivers between U.S. Highway 52 near Dubuque and County Road Y21 near Rickardsville, a distance of 19 river miles. Highwater marks were measured at 28 locations along the Maquoketa River between U.S. Highway 52 near Green Island and State Highway 187 near Arlington, a distance of 142 river miles. High-water marks were measured at 13 locations along the North Fork Maquoketa River between

  8. Women in Non-Traditional Jobs in the Mid-Willamette Valley Manpower Consortium. A Research Project.

    ERIC Educational Resources Information Center

    Governor's Commission for Women, Salem, OR.

    This study discusses the presence of women in non-traditional positions funded by CETA II and VI and the CETA programs, policies, and procedures offering opportunities for women to enter non-traditional occupations. Information was collected via interviews and questionnaires to determine the status of CETA workers in the Mid-Willamette Valley…

  9. Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe.

    PubMed

    Margalef, Pol; Kotsantis, Panagiotis; Borel, Valerie; Bellelli, Roberto; Panier, Stephanie; Boulton, Simon J

    2018-01-25

    Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1 -/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Distribution of dissolved pesticides and other water quality constituents in small streams, and their relation to land use, in the Willamette River Basin, Oregon, 1996

    USGS Publications Warehouse

    Anderson, Chauncey W.; Wood, Tamara M.; Morace, Jennifer L.

    1997-01-01

    Water quality samples were collected at sites in 16 randomly selected agricultural and 4 urban subbasins as part of Phase III of the Willamette River Basin Water Quality Study in Oregon during 1996. Ninety-five samples were collected and analyzed for suspended sediment, conventional constituents (temperature, dissolved oxygen, pH, specific conductance, nutrients, biochemical oxygen demand, and bacteria) and a suite of 86 dissolved pesticides. The data were collected to characterize the distribution of dissolved pesticide concentrations in small streams (drainage areas 2.6? 13 square miles) throughout the basin, to document exceedances of water quality standards and guidelines, and to identify the relative importance of several upstream land use categories (urban, agricultural, percent agricultural land, percent of land in grass seed crops, crop diversity) and seasonality in affecting these distributions. A total of 36 pesticides (29 herbicides and 7 insecticides) were detected basinwide. The five most frequently detected compounds were the herbicides atrazine (99% of samples), desethylatrazine (93%), simazine (85%), metolachlor (85%), and diuron (73%). Fifteen compounds were detected in 12?35% of samples, and 16 compounds were detected in 1?9% of samples. Water quality standards or criteria were exceeded more frequently for conventional constituents than for pesticides. State of Oregon water quality standards were exceeded at all but one site for the indicator bacteria E. coli, 3 sites for nitrate, 10 sites for water temperature, 4 sites for dissolved oxygen, and 1 site for pH. Pesticide concentrations, which were usually less than 1 part per billion, exceeded State of Oregon or U.S. Environmental Protection Agency aquatic life toxicity criteria only for chlorpyrifos, in three samples from one site; such criteria have been established for only two other detected pesticides. However, a large number of unusually high concentrations (1?90 parts per billion) were

  11. Fork rotation and DNA precatenation are restricted during DNA replication to prevent chromosomal instability.

    PubMed

    Schalbetter, Stephanie A; Mansoubi, Sahar; Chambers, Anna L; Downs, Jessica A; Baxter, Jonathan

    2015-08-18

    Faithful genome duplication and inheritance require the complete resolution of all intertwines within the parental DNA duplex. This is achieved by topoisomerase action ahead of the replication fork or by fork rotation and subsequent resolution of the DNA precatenation formed. Although fork rotation predominates at replication termination, in vitro studies have suggested that it also occurs frequently during elongation. However, the factors that influence fork rotation and how rotation and precatenation may influence other replication-associated processes are unknown. Here we analyze the causes and consequences of fork rotation in budding yeast. We find that fork rotation and precatenation preferentially occur in contexts that inhibit topoisomerase action ahead of the fork, including stable protein-DNA fragile sites and termination. However, generally, fork rotation and precatenation are actively inhibited by Timeless/Tof1 and Tipin/Csm3. In the absence of Tof1/Timeless, excessive fork rotation and precatenation cause extensive DNA damage following DNA replication. With Tof1, damage related to precatenation is focused on the fragile protein-DNA sites where fork rotation is induced. We conclude that although fork rotation and precatenation facilitate unwinding in hard-to-replicate contexts, they intrinsically disrupt normal chromosome duplication and are therefore restricted by Timeless/Tipin.

  12. Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin

    USGS Publications Warehouse

    Connor, W.P.; Sneva, J.G.; Tiffan, K.F.; Steinhorst, R.K.; Ross, D.

    2005-01-01

    Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however, that some fall Chinook salmon juveniles in the Snake River basin spent their first winter in a reservoir and resumed seaward movement the following spring at age 1 (hereafter, reservoir-type juveniles). We collected wild and hatchery ocean-type fall Chinook salmon juveniles in 1997 and wild and hatchery reservoir-type juveniles in 1998 to assess the condition of the reservoir-type juveniles at the onset of seaward movement. The ocean-type juveniles averaged 112-139 mm fork length, and the reservoir-type juveniles averaged 222-224 mm fork length. The large size of the reservoir-type juveniles suggested a high potential for survival to salt water and subsequent return to freshwater. Scale pattern analyses of the fall Chinook salmon spawners we collected during 1998-2003 supported this point. Of the spawners sampled, an overall average of 41% of the wild fish and 51% of the hatchery fish had been reservoir-type juveniles. Males that had been reservoir-type juveniles often returned as small "minijacks" (wild, 16% of total; hatchery, 40% of total), but 84% of the wild males, 60% of the hatchery males, and 100% of the wild and hatchery females that had been reservoir-type juveniles returned at ages and fork lengths commonly observed in populations of Chinook salmon. We conclude that fall Chinook salmon in the Snake River basin exhibit two alternative juvenile life histories, namely ocean-type and reservoir-type. ?? Copyright by the American Fisheries Society 2005.

  13. An environmental streamflow assessment for the Santiam River basin, Oregon

    USGS Publications Warehouse

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual

  14. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism.

    PubMed

    Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel M A; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin A M; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S

    2017-04-01

    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.

  15. Fluvial sediment study of Fishtrap and Dewey Lakes drainage basins, Kentucky - Virginia

    USGS Publications Warehouse

    Curtis, William F.; Flint, Russell F.; George, Frederick H.; Santos, John F.

    1978-01-01

    Fourteen drainage basins above Fishtrap and Dewey Lakes in the Levisa Fork and Johns Creek drainage basins of eastern Kentucky and southwestern Virginia were studied to determine sedimentation rates and origin of sediment entering the two lakes. The basins ranged in size from 1.68 to 297 square miles. Sediment yields ranged from 2,890 to 21,000 tons per square mile where surface-mining techniques predominated, and from 732 to 3 ,470 tons per square mile where underground mining methods predominated. Yields, in terms of tons per acre-foot of runoff, ranged from 2.2 to 15 for surface-mined areas, and from 0.5 to 2.7 for underground-mined areas. Water and sediment discharges from direct runoff during storms were compared for selected surface-mined and underground-mined areas. Data points of two extensively surface-mined areas, one from the current project and one from a previous project in Beaver Creek basin, McCreary County, Kentucky, grouped similarly in magnitude and by season. Disturbed areas from mining activities determined from aerial photographs reached 17 percent in one study area where extensive surface mining was being practiced. For most areas where underground mining was practiced, percentage disturbed area was almost negligible. Trap efficiency of Fishtrap Lake was 89 percent, and was 62 percent for Dewey Lake. Average annual deposition rates were 464 and 146 acre-feet for Fishtrap and Dewey Lakes, respectively. The chemical quality of water in the Levisa Fork basin has been altered by man 's activities. (Woodard-USGS)

  16. 33 CFR 165.1323 - Regulated Navigation Area: Willamette River Portland, Oregon Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Regulated Navigation Area: Willamette River Portland, Oregon Captain of the Port Zone. 165.1323 Section 165.1323 Navigation and..., Oregon Captain of the Port Zone. (a) Location. The following is a regulated navigation area (RNA): All...

  17. 33 CFR 165.1322 - Regulated Navigation Area: Willamette River Portland, Oregon Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Regulated Navigation Area: Willamette River Portland, Oregon Captain of the Port Zone. 165.1322 Section 165.1322 Navigation and..., Oregon Captain of the Port Zone. (a) Location. The following is a regulated navigation area (RNA): All...

  18. Hyporheic Microbial Biofilms as Indicators of Heavy and Rare Earth Metals in the Clark Fork Basin, Montana

    NASA Astrophysics Data System (ADS)

    Barnhart, E. P.; Hornberger, M.; Hwang, C.; Dror, I.; Bouskill, N.; Short, T.; Cain, D.; Fields, M. W.

    2016-12-01

    The ability to effectively monitor the impact of hard rock mining activities on rivers and streams is a growing concern given the large number of active and abandoned mines in the western United States. One such example, the Clark Fork Basin (CFB), western Montana, was extensively mined for copper in the early 20th century: it is now one of largest U.S. EPA superfund sites. Microbial biofilms are at the base of the lotic food chain and may provide a useful biomonitoring tool for the assessment of metal toxicity due to their environmental ubiquity, rapidity of response to environmental perturbation, and importance in determining metal mobility. Hyporheic microbial biofilms from the CFB were sampled in 2014, concurrent with the USGS National Research Programs (NRP) long-term site monitoring of metals in bed sediment and aquatic benthic insects. Integration of the DNA sequencing results from the hyporheic biofilms with the sediment and insect metal concentrations correlated several bacterial phyla with metal contamination. For example, the genus Lysobacter was strongly associated with copper (Cu) bioaccumulation in the aquatic insect Hydropsyche. These results support previous studies identifying Lysobacter as a bacterial genus that is resistant to Cu ions. Our analysis is the first to indicate that specific microorganisms can act as biomarkers of Cu contamination in rivers. Moreover, our work demonstrates that changes at the microbial community level in the hyporheic zone can be coupled to observed perturbations across higher trophic levels. In 2015, extensive remediation occurred at several of the sites sampled in 2014, providing an excellent opportunity to revisit the sites and examine the temporal variability of identified biomarkers and the short-term effectiveness of remediation. In addition, samples were analyzed for rare earth metals, of which little is known, and could provide additional insight into other metals that change the microbial community structure.

  19. Permian evaporites in the Permian basin of southwestern United States

    USGS Publications Warehouse

    Johnson, K.S.

    1997-01-01

    During Permian time, a broad and shallow inland sea covered much of southwestern United States, extending northward from west Texas into northwestern Kansas. Slow but continual subsidence beneath all parts of this vast Permian basin caused deposition of a thick sequence of Permian red beds and evaporites, including dolomite, gypsum/anhydrite, salt, and potash. Evaporite units are notably thick and laterally persistent throughout the Permian basin. The entire Permian System ranges up to 2,000 m thick in various parts of the basin, and individual formations, consisting mostly of gypsum/anhydrite and salt, commonly are 60-500 m thick. Evaporite deposits are oldest in the northern part of the Permian basin, and they generally are progressively younger toward the south. The site of principal salt deposition during early Leonardian time (Wellington evaporites) was in Kansas and northwestern Oklahoma; it then shifted southward into western Oklahoma and the Texas Panhandle during late Leonardian and early Guadalupian time (Lower Clear Fork/Lower Cimarron evaporites, Upper Clear Fork/Upper Cimarron evaporites, and San Andres/Blaine evaporites); and finally into west Texas and southeastern New Mexico during late Guadalupian and Ochoan time (Artesia, Castile, Salado, and Rustler evaporites). These evaporites comprise a significant resource for the region: rock salt is produced from dry mines, brine fields, and solar-salt operations at 18 locations; gypsum is mined at 13 sites; potash is produced from 5 underground mines in the world-famous Carlsbad potash district; and sulfur is produced by the Frasch process at one site.

  20. The fecundity of fork-tailed threadfin bream (Nemipterus furcosus) in Bangka, Bangka Belitung

    NASA Astrophysics Data System (ADS)

    Utami, E.; Safitriyani, E.; Gatra Persada, Leo

    2018-04-01

    Fork-tailed threadfin bream (Nemipterus furcosus) is one of important economic fishes in Bangka. The sustainability of fork-tailed threadfin bream is threatened by degradation of natural habitat. Information of reproductive is needed for further management. The objective of this study was to examine fecundity of fork-tailed threadfin bream. The mean values of temperature was 28.83 ± 0,37°C, respectively. Sex ratio during sampling showed that female fork-tailed threadfin bream greater than male population. Berried female fork-tailed threadfin bream found from March until November. The greatest number of berried female fork-tailed threadfin bream showed in July with berried female value of 25. Fork-tailed threadfin bream fecundity was 19951 and 66628, respectively. The fecundity data can be used to access the reproductive potential of fish stock and also as an assessment on stock size of their natural population.

  1. Inter-Fork Strand Annealing causes genomic deletions during the termination of DNA replication.

    PubMed

    Morrow, Carl A; Nguyen, Michael O; Fower, Andrew; Wong, Io Nam; Osman, Fekret; Bryer, Claire; Whitby, Matthew C

    2017-06-06

    Problems that arise during DNA replication can drive genomic alterations that are instrumental in the development of cancers and many human genetic disorders. Replication fork barriers are a commonly encountered problem, which can cause fork collapse and act as hotspots for replication termination. Collapsed forks can be rescued by homologous recombination, which restarts replication. However, replication restart is relatively slow and, therefore, replication termination may frequently occur by an active fork converging on a collapsed fork. We find that this type of non-canonical fork convergence in fission yeast is prone to trigger deletions between repetitive DNA sequences via a mechanism we call Inter-Fork Strand Annealing (IFSA) that depends on the recombination proteins Rad52, Exo1 and Mus81, and is countered by the FANCM-related DNA helicase Fml1. Based on our findings, we propose that IFSA is a potential threat to genomic stability in eukaryotes.

  2. RELATIONSIPS BETWEEN AQUATIC INVERTEBRATE ASSEMBLAGES AND REACH AND LANDSCAPE ATTRIBUTES ON WADEABLE, WILLAMETTE VALLEY STREAMS IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    In summer 1997, we sampled reaches in 24 wadeable, Willamette Valley ecoregion streams draining agriculturally-infiuenced watersheds. Within these reaches, physical habitat, water chemistry, aquatic invertebrate and fish data and samples were collected. Low-level air photos were ...

  3. Phosphorus Concentrations, Loads, and Yields in the Illinois River Basin, Arkansas and Oklahoma, 1997-2001

    USGS Publications Warehouse

    Pickup, Barbara E.; Andrews, William J.; Haggard, Brian E.; Green, W. Reed

    2003-01-01

    The Illinois River and tributaries, Flint Creek and the Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus increases in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30- day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. Data from water-quality samples from 1997 to 2001 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and flowweighted concentrations in the Illinois River basin. Phosphorus concentrations in the Illinois River basin generally were significantly greater in runoff-event samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River stations than at Flint Creek and the Baron Fork. Loads appeared to generally increase with time during 1997-2001 at all stations, but this increase might be partly attributable to the beginning of runoff-event sampling in the basin in July 1999. Base-flow loads at stations on the Illinois River were about 10 times greater than those on the Baron Fork and 5 times greater than those on Flint Creek. Runoff components of the annual total phosphorus load ranged from 58.7 to 96.8 percent from 1997-2001. Base-flow and runoff loads were generally greatest in spring (March through May) or summer (June through August), and were least in fall (September through November). Total yields of phosphorus ranged from 107 to 797 pounds per year per square mile. Greatest yields were at Flint Creek near Kansas (365 to 797 pounds per

  4. Summer distribution and species richness of non-native fishes in the mainstem Willamette River, oregon, 1944-2006

    EPA Science Inventory

    We reviewed the results of seven extensive and two reach-specific fish surveys conducted on the mainstem Willamette River between 1944 and 2006 to document changes in the summer distribution and species richness of non-native fishes through time and the relative abundances of the...

  5. Economic analysis of temperature reduction in a large river floodplain: An exploratory study of the WIllamette River, Oregon

    EPA Science Inventory

    This paper examines ecosystem restoration practices that focus on water temperature reductions in the upper mainstem Willamette River, Oregon, for the benefit of endangered salmonids and other native cold-water species. The analysis integrates hydrologic, natural science and eco...

  6. Chk1 promotes replication fork progression by controlling replication initiation

    PubMed Central

    Petermann, Eva; Woodcock, Mick; Helleday, Thomas

    2010-01-01

    DNA replication starts at initiation sites termed replication origins. Metazoan cells contain many more potential origins than are activated (fired) during each S phase. Origin activation is controlled by the ATR checkpoint kinase and its downstream effector kinase Chk1, which suppresses origin firing in response to replication blocks and during normal S phase by inhibiting the cyclin-dependent kinase Cdk2. In addition to increased origin activation, cells deficient in Chk1 activity display reduced rates of replication fork progression. Here we investigate the causal relationship between increased origin firing and reduced replication fork progression. We use the Cdk inhibitor roscovitine or RNAi depletion of Cdc7 to inhibit origin firing in Chk1-inhibited or RNAi-depleted cells. We report that Cdk inhibition and depletion of Cdc7 can alleviate the slow replication fork speeds in Chk1-deficient cells. Our data suggest that increased replication initiation leads to slow replication fork progression and that Chk1 promotes replication fork progression during normal S phase by controlling replication origin activity. PMID:20805465

  7. A Galaxy at the Center of the Hubble Tuning Fork

    NASA Image and Video Library

    2017-12-08

    This galaxy is known as Mrk 820 and is classified as a lenticular galaxy — type S0 on the Hubble Tuning Fork. The Hubble Tuning Fork is used to classify galaxies according to their morphology. Elliptical galaxies look like smooth blobs in the sky and lie on the handle of the fork. They are arranged along the handle based on how elliptical they are, with the more spherical galaxies furthest from the tines of the fork, and the more egg-shaped ones closest to the end of the handle where it divides. The two prongs of the tuning fork represent types of unbarred and barred spiral galaxies. Lenticular galaxies like Mrk 820 are in the transition zone between ellipticals and spirals and lie right where the fork divides. A closer look at the appearance of Mrk 820 reveals hints of a spiral structure embedded in a circular halo of stars. Surrounding Mrk 820 in this image is a good sampling of other galaxy types, covering almost every type found on the Hubble Tuning Fork, both elliptical and spiral. Most of the smears and specks are distant galaxies, but the prominent bright object at the bottom is a foreground star called TYC 4386-787-1. Credit: ESA/Hubble & NASA and N. Gorin (STScI), Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. 5. Roaring Fork Motor Nature Trail, vista at stop three. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Roaring Fork Motor Nature Trail, vista at stop three. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  9. 7. Roaring Fork Motor Nature Trail, rocks along edge of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Roaring Fork Motor Nature Trail, rocks along edge of road. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  10. 2. Roaring Fork Motor Nature Trail, road view before first ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Roaring Fork Motor Nature Trail, road view before first stop. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  11. 6. Roaring Fork Motor Nature Trail, road view after stop ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Roaring Fork Motor Nature Trail, road view after stop four. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  12. Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project

    NASA Astrophysics Data System (ADS)

    Jaeger, W. K.; Plantinga, A.

    2013-12-01

    This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of

  13. 3. Roaring Fork Motor Nature Trail, view between second and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Roaring Fork Motor Nature Trail, view between second and third stops - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  14. 11. Roaring Fork Motor Nature Trail, boulders along road after ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Roaring Fork Motor Nature Trail, boulders along road after stop 13. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  15. Plant succession after hydrologic disturbance: Inferences from contemporary vegetation on a chronosequence of bars, Willamette River, Oregon, USA

    EPA Science Inventory

    Historic unconstrained, unregulated streamflow along the upper mainstem of the Willamette River, Oregon, produced a floodplain of coalescent bars supporting a mosaic of vegetation patches. We sampled the contemporary vegetation of 42 bars formed 3 to 64 + years ago in four, 1 km...

  16. South Fork Latrine, east elevation showing structure in context, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Latrine, east elevation showing structure in context, view west - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  17. South Fork Latrine, oblique view showing south and east sides; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Latrine, oblique view showing south and east sides; view northwest - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  18. South Fork Latrine showing north and west sides, general view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Latrine showing north and west sides, general view to southeast - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  19. 12. Roaring Fork Motor Nature Trail, place of a thousand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Roaring Fork Motor Nature Trail, place of a thousand drips, view from road. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  20. Floods of September 15-16, 1992, in the Thompson, Weldon, and Chariton River basins, south-central Iowa

    USGS Publications Warehouse

    Eash, D.A.; Koppensteiner, B.A.

    1997-01-01

    Water-surface-elevation profiles and peak discharges for the floods of September 15-16, 1992, in the Thompson, Weldon, and Chariton River Basins, south-central Iowa, are presented in this report. The profiles illustrate the 1992 floods along the Thompson, Weldon, Chariton, and South Fork Chariton Rivers and along Elk Creek in the south-central Iowa counties of Adair, Clarke, Decatur, Lucas, Madison, Ringgold, Union, and Wayne. Water-surface-elevation profiles for the floods of July 4, 1981, along the Chariton River in Lucas County and along the South Fork Chariton River in Wayne County also are included in the report for comparative purposes. The September 15-16, 1992, floods are the largest known peak discharges at gaging stations Thompson River at Davis City (station number 06898000) 57,000 cubic feet per second, Weldon River near Leon (station number 06898400) 76,200 cubic feet per second, Chariton River near Chariton (station number 06903400) 37,700 cubic feet per second, and South Fork Chariton River near Promise City (station number 06903700) 70,600 cubic feet per second. The peak discharges were, respectively, 1.7, 2.6, 1.4, and 2.1 times larger than calculated 100-year recurrence-interval discharges. The report provides information on flood stages and discharges and floodflow frequencies for streamflow-gaging stations in the Thompson, Weldon, and Chariton River Basins using flood information collected through 1995. Information on temporary bench marks and reference points established in the Thompson and Weldon River Basins during 1994-95, and in the Chariton River Basin during 1983-84 and 1994-95, also is included in the report. A flood history summarizes rainfall conditions and damages for floods that occurred during 1947, 1959, 1981, 1992, and 1993.

  1. THE FORK AND THE KINASE: A DNA REPLICATION TALE FROM A CHK1 PERSPECTIVE

    PubMed Central

    González Besteiro, Marina A.; Gottifredi, Vanesa

    2014-01-01

    Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. The checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged-DNA. Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Such findings unveil a puzzling connection between Chk1 and DNA-lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, the multifaceted and versatile functions of Chk1 at ongoing forks and replication origins determine the extent and quality of the cellular response to replication stress. PMID:25795119

  2. Thickness of unconsolidated deposits of the Puget Sound aquifer system, Washington and British Columbia

    USGS Publications Warehouse

    Jones, M.A.

    1996-01-01

    The Puget-Willamette Lowland is located in western Washington, western Oregon, and a small part of southwestern British Columbia, Canada. The Puget-Willamette Lowland study area is composed of two distinct subareas, the Puget Sound Lowland and the Willamette Lowland. This report presents the results of mapping the thickness of the unconsolidated deposits in the Puget Sound Lowland. The thickness of the unconsolidated deposits ranges from a discontinuous veneer in areas of bedrock outcrop to more than 3,600 feet. Available information shows that the unconsolidated deposits are thickest in the Fraser-Whatcom, Everett, Seattle, and Tacoma Basins. The mapped thickness of the unconsolidated deposits in the Tacoma Basin is probably underestimated because of the scarcity of wells penetrating the full thickness of the unconsolidated deposits and the lack of sufficient marine-seismic data.

  3. Principal Facts of Gravity data in the Northern Willamette Valley and Vicinity, Northwestern Oregon and Southwestern Washington

    USGS Publications Warehouse

    Morin, Robert L.; Wheeler, Karen L.; McPhee, Darcy K.; Dinterman, Philip A.; Watt, Janet T.

    2007-01-01

    Gravity data were collected from 2004 through 2006 to assist in mapping subsurface geology in the northern Willamette Valley and vicinity, northwestern Oregon and southwestern Washington. Prior to this effort to improve the gravity data coverage in the study area, very little regional data were available. This report gives the principle facts for 2710 new gravity stations and 1446 preexisting gravity stations. Much of the study area is now covered with data of sufficient density to define basin boundaries and correlate with many of the larger fault systems. ,p> The study area lies between 44? 52.5 and 46? N latitude and between 122? 15 and 123? 37.5 W longitude. Although this is a continuing project and more gravity data is expected to be collected, this report is being published to show the progress of the data collection. The majority of these data are spaced at about 1.6 km (1 mile), but three closely spaced profiles were measured in the Portland area across several faults. To obtain a 1.6 km grid of data points would require about 5120 gravity stations. To date we have collected 2710 stations. Including the preexisting data points, the total number of stations is 4156, and complete regional coverage is about 80 percent at this time.

  4. Assessment of hand-transmitted vibration exposure from motorized forks used for beach-cleaning operations.

    PubMed

    McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G

    2013-01-01

    Motorized vibrating manure forks were used in beach-cleaning operations following the massive Deepwater Horizon oil spill in the Gulf of Mexico during the summer of 2010. The objectives of this study were to characterize the vibration emissions of these motorized forks and to provide a first approximation of hand-transmitted vibration exposures to workers using these forks for beach cleaning. Eight operators were recruited to operate the motorized forks during this laboratory study. Four fork configurations were used in the study; two motor speeds and two fork basket options were evaluated. Accelerations were measured near each hand as the operators completed the simulated beach-cleaning task. The dominant vibration frequency for these tools was identified to be around 20 Hz. Because acceleration was found to increase with motor speed, workers should consider operating these tools with just enough speed to get the job done. These forks exhibited considerable acceleration magnitudes when unloaded. The study results suggest that the motor should not be operated with the fork in the unloaded state. Anti-vibration gloves are not effective at attenuating the vibration frequencies produced by these forks, and they may even amplify the transmitted vibration and increase hand/arm fatigue. While regular work gloves are suitable, vibration-reducing gloves may not be appropriate for use with these tools. These considerations may also be generally applicable for the use of motorized forks in other workplace environments.

  5. AMPHIBIAN OCCURRENCE AND AQUATIC INVADERS IN A CHANGING LANDSCAPE: IMPLICATIONS FOR WETLAND MITIGATION IN THE WILLAMETTE VALLEY, OREGON, USA

    EPA Science Inventory

    Despite concern about the conservation status of amphibians in western North America, few field studies have documented occurrence patterns of amphibians relative to potential stressors. We surveyed wetland fauna in Oregon Willamette Valley and used an information theoretic appro...

  6. South Fork Telephone Switchboard Building, oblique view of east side; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Telephone Switchboard Building, oblique view of east side; view northwest - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  7. South Fork Telephone Switchboard Building, interior west room showing hardwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Telephone Switchboard Building, interior west room showing hardwood floor; view south - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  8. South Fork Latrine, interior showing head with steel tank mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Latrine, interior showing head with steel tank mounted to wall; view south - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  9. 14. Roaring Fork Motor Nature Trail, Place of a thousand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Roaring Fork Motor Nature Trail, Place of a thousand drips, view with three culvert pipes. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  10. The Pacific Northwest Hydrological Observatory (PNW HO): Hypothesis and model testing power through diversity

    NASA Astrophysics Data System (ADS)

    McDonnell, J. J.; Grant, G.; Hulse, D.

    2004-12-01

    The Pacific Northwest Hydrological Observatory (PNW HO) is a proposed national facility for the examination of the linkages between hydrologic and biogeochemical cycles, sustainability of water resources in the face of increasing human demands and climate change, hydrologic and ecosystem interactions, and hydrologic extremes. The PNW HO infrastructure will support research that examines forcings, feedbacks and couplings across hydro-eco-climatic interfaces, process scaling, and development of new predictive schemes and methods to reduce predictive uncertainty. Much of the data collection infrastructure is already in place, in the form of USGS gauging, local and State data recording. The PNW HO includes a novel experimental design that twins two neighboring watersheds-the humid Willamette and arid Deschutes River Basins-that represent a full range of landscape gradients and societal problems relating to water quantity and quality. Workers at the PNW HO will be able to build upon existing synthesis documents in the form of the Willamette River Basin Planning Atlas and recent AGU Monograph on the Deschutes River Basin. The PNW HO design builds upon the HJ Andrews LTER site in the headwaters and recent listing of the Willamette River Basin as a UNESCO HELP international observatory. The PNW HO has access to one of the richest SNOTEL datasets in North America along the divide between the Willamette and Deschutes Basins. The Willamette is a USGS NAWQA basin and the Deschutes has been the focus of a major USGS groundwater investigation, and is one of five sites nationally in the Fire Learning Network. Finally, and perhaps most importantly for technology transfer of HO science to policy and practice, the PNW HO enjoys a rather unique combination of Oregon's state-based land use planning and doctrine of prior appropriations water law (land use planning and water rights). While there are certainly areas in the West where human populations are growing as fast or faster, none

  11. 33 CFR 165.T13-240 - Safety Zones; Pacific Northwest Grain Handlers Association Facilities; Columbia and Willamette...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Handlers Association Facilities; Columbia and Willamette Rivers. (a) Definitions. As used in this section... Officer as defined in Revised Code of Washington section 10.93.020 (b) Locations. The following areas are... River Captain of the Port Zone enclosed by three lines and the shoreline: line one starting on the...

  12. Pesticides and pesticide degradates in the East Fork Little Miami River and William H. Harsha Lake, southwestern Ohio, 1999-2000

    USGS Publications Warehouse

    Funk, Jason M.; Reutter, David C.; Rowe, Gary L.

    2003-01-01

    In 1999 and 2000, the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program conducted a national pilot study of pesticides and degradates in drinking-water supplies, in cooperation with the U.S. Environmental Protection Agency (USEPA). William H. Harsha Lake, which provides drinking water for several thousand people in southwestern Ohio, was selected as one of the drinking-water supplies for this study. East Fork Little Miami River is the main source of water to Harsha Lake and drains a predominantly agricultural basin. Samples were collected from the East Fork Little Miami River upstream from Harsha Lake, at the drinking-water intake at Harsha Lake, at the outfall just below Harsha Lake, and from treated water at the Bob McEwen Treatment Plant. These samples were analyzed using standardized methods developed for the NAWQA Program. In all, 42 pesticide compounds (24 herbicides, 4 insecticides, 1 fungicide, and 13 degradates) were detected at least once in samples collected during this study. No compound in the treated water samples exceeded any drinking-water standard, although atrazine concentrations in untreated water exceeded the USEPA Maximum Contaminant Level (MCL) for drinking water (3 ?g/L) on four occasions. At least eight compounds were detected with greater than 60 percent frequency at each sampling location. Herbicides, such as atrazine, alachlor, acetochlor, cyanazine, metolachlor, and simazine, were detected most frequently. Rainfall affected the pesticide concentrations in surface waters of the East Fork Little Miami River Basin. Drought conditions from May through November 1999 led to lower streamflow and pesticide concentrations throughout southwestern Ohio. More normal climate conditions during 2000 resulted in higher streamflows and seasonally higher concentrations in the East Fork Little Miami River and Harsha Lake for some pesticides Comparison of pesticide concentrations in untreated lake water and treated drinking water

  13. DNA Replication Origins and Fork Progression at Mammalian Telomeres

    PubMed Central

    Higa, Mitsunori; Fujita, Masatoshi; Yoshida, Kazumasa

    2017-01-01

    Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions. PMID:28350373

  14. Status of the dirty darter, Etheostoma olivaceum, and bluemask darter, Etheostoma (Doration)sp. , with notes on fishes of the Caney Fork River system, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layman, S.R.; Simons, A.M.; Wood, R.M.

    1993-04-01

    Seventy-six localities were sampled in the Caney Fork River system and adjacent Cumberland River tributaries. Etheostoma olivaceum was found in small creeks from nine tributaries of lower Caney Fork River and three tributaries of the Cumberland River in the Nashville Basin physiographic province. The species was most abundant around slab rocks and rubble over bedrock in slow to moderate current. Etheostoma olivaceum was common throughout its small range; however, given widespread habitat degradation from agriculture, the species should retain its [open quotes]deemed in need of management[close quotes] status in Tennessee. The bluemask darter, Etheostoma (Doration) sp., was collected in slowmore » to moderate current over sand and gravel in Collins River, Rocky River, Cane Creek, and Caney Fork River. All four populations were isolated upstream of Great Falls Reservoir in the Highland Rim physiographic province. The species was found in a 37-km reach of Collins River but was restricted to reaches of 0.2 to 4.3 km in the other three streams. Threats to the species include pesticides from plant nurseries, siltation, gravel dredging, and acid mine drainage. The authors recommend that the bluemask darter be listed as state and federally protected. Two new records were established for the rare Barrens darter, Etheostoma forbesi, in lower Collins River and Barren Fork River, and eight previously unknown records of the species were identified from older museum collections. 21 refs., 1 fig., 1 tab.« less

  15. South Fork Telephone Switchboard Building, general view in setting showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Telephone Switchboard Building, general view in setting showing (N) side; view (S) - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  16. South Fork Telephone Switchboard Building, oblique view of (W) and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Telephone Switchboard Building, oblique view of (W) and (S) sides, view to northeast - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  17. Accurate aging of juvenile salmonids using fork lengths

    USGS Publications Warehouse

    Sethi, Suresh; Gerken, Jonathon; Ashline, Joshua

    2017-01-01

    Juvenile salmon life history strategies, survival, and habitat interactions may vary by age cohort. However, aging individual juvenile fish using scale reading is time consuming and can be error prone. Fork length data are routinely measured while sampling juvenile salmonids. We explore the performance of aging juvenile fish based solely on fork length data, using finite Gaussian mixture models to describe multimodal size distributions and estimate optimal age-discriminating length thresholds. Fork length-based ages are compared against a validation set of juvenile coho salmon, Oncorynchus kisutch, aged by scales. Results for juvenile coho salmon indicate greater than 95% accuracy can be achieved by aging fish using length thresholds estimated from mixture models. Highest accuracy is achieved when aged fish are compared to length thresholds generated from samples from the same drainage, time of year, and habitat type (lentic versus lotic), although relatively high aging accuracy can still be achieved when thresholds are extrapolated to fish from populations in different years or drainages. Fork length-based aging thresholds are applicable for taxa for which multiple age cohorts coexist sympatrically. Where applicable, the method of aging individual fish is relatively quick to implement and can avoid ager interpretation bias common in scale-based aging.

  18. The fork and the kinase: a DNA replication tale from a CHK1 perspective.

    PubMed

    González Besteiro, Marina A; Gottifredi, Vanesa

    2015-01-01

    Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. Checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged DNA. Subsequently, Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Indeed, such findings have unveiled a puzzling connection between Chk1 and DNA lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, Chk1 is a multifaceted and versatile signaling factor that acts at ongoing forks and replication origins to determine the extent and quality of the cellular response to replication stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Behavioral assumptions of conservation policy: conserving oak habitat on family-forest land in the Willamette Valley, Oregon

    Treesearch

    A. Paige Fischer; John C. Bliss

    2008-01-01

    Designing policies that harness the motivations of landowners is essential for conserving threatened habitats on private lands. Our goal was to understand how to apply ethnographic information about family-forest owners to the design of conservation policy for Oregon white oak (Quercus garryana) in the Willamette Valley, Oregon (U.S.A.). We examined...

  20. Quartz tuning-fork oscillations in He II and drag coefficient

    NASA Astrophysics Data System (ADS)

    Gritsenko, I. A.; Zadorozhko, A. A.; Neoneta, A. S.; Chagovets, V. K.; Sheshin, G. A.

    2011-07-01

    The temperature dependencies of drag coefficient for quartz tuning forks of various geometric dimensions, immersed in the He II, were determined experimentally in the temperature range 0.1-3 K. It is identified, that these dependencies are similar, but the values of drag coefficient are different for tuning forks with different geometric dimensions. It is shown, that the obtained specific drag coefficient depends only on the temperature and frequency of vibrations, when the value of drag coefficient is normalized to the surface area of moving tuning-fork prong. The temperature dependencies of normalized drag coefficient for the tuning forks of various dimensions, wire, and microsphere, oscillating in the Не II, are compared. It is shown, that in the ballistic regime of scattering of quasiparticles, these dependencies are identical and have a slope proportional to T4, which is determined by the density of thermal excitations. In the hydrodynamic regime at T > 0.5 K, the behavior of the temperature dependence of specific drag coefficient is affected by the size and frequency of vibrating body. The empirical relation, which allows to describe the behavior of specific drag coefficient for vibrating tuning forks, microsphere, and wire everywhere over the temperature region and at various frequencies, is proposed.

  1. Tectonic evolution of the Tualatin basin, northwest Oregon, as revealed by inversion of gravity data

    USGS Publications Warehouse

    McPhee, Darcy K.; Langenheim, Victoria E.; Wells, Ray; Blakely, Richard J.

    2014-01-01

    The Tualatin basin, west of Portland (Oregon, USA), coincides with a 110 mGal gravity low along the Puget-Willamette lowland. New gravity measurements (n = 3000) reveal a three-dimensional (3-D) subsurface geometry suggesting early development as a fault-bounded pull-apart basin. A strong northwest-trending gravity gradient coincides with the Gales Creek fault, which forms the southwestern boundary of the Tualatin basin. Faults along the northeastern margin in the Portland Hills and the northeast-trending Sherwood fault along the southeastern basin margin are also associated with gravity gradients, but of smaller magnitude. The gravity low reflects the large density contrast between basin fill and the mafic crust of the Siletz terrane composing basement. Inversions of gravity data indicate that the Tualatin basin is ∼6 km deep, therefore 6 times deeper than the 1 km maximum depth of the Miocene Columba River Basalt Group (CRBG) in the basin, implying that the basin contains several kilometers of low-density pre-CRBG sediments and so formed primarily before the 15 Ma emplacement of the CRBG. The shape of the basin and the location of parallel, linear basin-bounding faults along the southwest and northeast margins suggest that the Tualatin basin originated as a pull-apart rhombochasm. Pre-CRBG extension in the Tualatin basin is consistent with an episode of late Eocene extension documented elsewhere in the Coast Ranges. The present fold and thrust geometry of the Tualatin basin, the result of Neogene compression, is superimposed on the ancestral pull-apart basin. The present 3-D basin geometry may imply stronger ground shaking along basin edges, particularly along the concealed northeast edge of the Tualatin basin beneath the greater Portland area.

  2. Characterization of salinity loads and selenium loads in the Smith Fork Creek region of the Lower Gunnison River Basin, western Colorado, 2008-2009

    USGS Publications Warehouse

    Richards, Rodney J.; Linard, Joshua I.; Hobza, Christopher M.

    2014-01-01

    The lower Gunnison River Basin of the Colorado River Basin has elevated salinity and selenium levels. The Colorado River Basin Salinity Control Act of June 24, 1974 (Public Law 93–320, amended by Public Law 98–569), authorized investigation of the Lower Gunnison Basin Unit Salinity Control Project by the U.S. Department of the Interior. The Bureau of Reclamation (Reclamation) and the Natural Resources Conservation Service are responsible for assessing and implementing measures to reduce salinity and selenium loading in the Colorado River Basin. Cost-sharing programs help farmers, ranchers, and canal companies improve the efficiency of water delivery systems and irrigation practices. The delivery systems (irrigation canals) have been identified as potential sources of seepage, which can contribute to salinity loading. Reclamation wants to identify seepage from irrigation systems in order to maximize the effectiveness of the various salinity-control methods, such as polyacrylamide lining and piping of irrigation canals programs. The U.S. Geological Survey, in cooperation with Reclamation, developed a study to characterize the salinity and selenium loading of seven subbasins in the Smith Fork Creek region and identify where control efforts can be maximized to reduce salinity and selenium loading. Total salinity loads ranged from 27.9±19.1 tons per year (t/yr) to 87,500±80,500 t/yr. The four natural subbasins—BkKm, RCG1, RCG2, and SF1—had total salinity loads of 27.9±19.1 t/yr, 371±248 t/yr, 2,180±1,590 t/yr, and 4,200±2,720 t/yr, respectively. The agriculturally influenced sites had salinity loads that ranged from 7,580±6,900 t/yr to 87,500±80,500 t/yr. Salinity loads for the subbasins AL1, B1, CK1, SF2, and SF3 were 7,580±6,900 t/yr; 28,300±26,700 t/yr; 48,700±36,100 t/yr; 87,500±80,900 t/yr; and 52,200±31,800 t/yr, respectively. The agricultural salinity load was separated into three components: tail water, deep percolation, and canal seepage

  3. Climate impacts on connectivity of snowmelt to flow in the ...

    EPA Pesticide Factsheets

    Much of the water that people in Western Oregon rely on comes from snowpack in the Cascade Range, and this snowpack is expected to decrease in coming years with climate change. In fact, the past 6 years have shown dramatic variation in snowpack, from a high of 174% of normal in 2010-11 to a low of 11% for 2014-15, one of the lowest on record. During this timeframe, we have monitored the stable isotopes of water within the Willamette River twice monthly, and mapped the spatial variation of water isotopes across the basin. Within the Willamette Basin, stable isotopes of water in precipitation vary strongly with elevation and provide a marker for determining the mean elevation from which water in the Willamette River is derived. In winter, when snow accumulates in the mountains, low elevation precipitation (primarily rain) contributes the largest proportion of water to the Willamette River. During summer, when rainfall is scarce and demand for water is the greatest, water in the Willamette River is mainly derived from high elevation snowmelt. Our data indicate that the proportion of water from high elevation decreased with decreasing snowpack. We combine this information with river flow data to estimate the volume reduction related to snowpack reduction during the dry summer. Observed reductions in the contribution of high elevation water to the Willamette River after just 2 years of diminished snowpack indicate that the hydrologic system responds relatively

  4. Simulation of streamflow and sediment transport in two surface-coal-mined basins in Fayette County, Pennsylvania

    USGS Publications Warehouse

    Sams, J. I.; Witt, E. C.

    1995-01-01

    The Hydrological Simulation Program - Fortran (HSPF) was used to simulate streamflow and sediment transport in two surface-mined basins of Fayette County, Pa. Hydrologic data from the Stony Fork Basin (0.93 square miles) was used to calibrate HSPF parameters. The calibrated parameters were applied to an HSPF model of the Poplar Run Basin (8.83 square miles) to evaluate the transfer value of model parameters. The results of this investigation provide information to the Pennsylvania Department of Environmental Resources, Bureau of Mining and Reclamation, regarding the value of the simulated hydrologic data for use in cumulative hydrologic-impact assessments of surface-mined basins. The calibration period was October 1, 1985, through September 30, 1988 (water years 1986-88). The simulated data were representative of the observed data from the Stony Fork Basin. Mean simulated streamflow was 1.64 cubic feet per second compared to measured streamflow of 1.58 cubic feet per second for the 3-year period. The difference between the observed and simulated peak stormflow ranged from 4.0 to 59.7 percent for 12 storms. The simulated sediment load for the 1987 water year was 127.14 tons (0.21 ton per acre), which compares to a measured sediment load of 147.09 tons (0.25 ton per acre). The total simulated suspended-sediment load for the 3-year period was 538.2 tons (0.30 ton per acre per year), which compares to a measured sediment load of 467.61 tons (0.26 ton per acre per year). The model was verified by comparing observed and simulated data from October 1, 1988, through September 30, 1989. The results obtained were comparable to those from the calibration period. The simulated mean daily discharge was representative of the range of data observed from the basin and of the frequency with which specific discharges were equalled or exceeded. The calibrated and verified parameters from the Stony Fork model were applied to an HSPF model of the Poplar Run Basin. The two basins are in

  5. Assembly of Slx4 signaling complexes behind DNA replication forks.

    PubMed

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-08-13

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress. © 2015 The Authors.

  6. Potential impact of lava flows on regional water supplies: case study of central Oregon Cascades volcanism and the Willamette Valley, USA

    NASA Astrophysics Data System (ADS)

    Deligne, Natalia; Cashman, Katharine; Grant, Gordon; Jefferson, Anne

    2013-04-01

    Lava flows are often considered to be natural hazards with localized bimodal impact - they completely destroy everything in their path, but apart from the occasional forest fire, cause little or no damage outside their immediate footprint. However, in certain settings, lava flows can have surprising far reaching impacts with the potential to cause serious problems in distant urban areas. Here we present results from a study of the interaction between lava flows and surface water in the central Oregon Cascades, USA, where we find that lava flows in the High Cascades have the potential to cause considerable water shortages in Eugene, Oregon (Oregon's second largest metropolitan area) and the greater Willamette Valley (home to ~70% of Oregon's population). The High Cascades host a groundwater dominated hydrological regime with water residence times on the order of years. Due to the steady output of groundwater, rivers sourced in the High Cascades are a critical water resource for Oregon, particularly in August and September when it has not rained for several months. One such river, the McKenzie River, is the sole source of drinking water for Eugene, Oregon, and prior to the installation of dams in the 1960s accounted for ~40% of late summer river flow in the Willamette River in Portland, 445 river km downstream of the source of the McKenzie River. The McKenzie River has been dammed at least twice by lava flows during the Holocene; depending the time of year that these eruptions occurred, we project that available water would have decreased by 20% in present-day Eugene, Oregon, for days to weeks at a time. Given the importance of the McKenzie River and its location on the margin of an active volcanic area, we expect that future volcanic eruptions could likewise impact water supplies in Eugene and the greater Willamette Valley. As such, the urban center of Eugene, Oregon, and also the greater Willamette Valley, is vulnerable to the most benign of volcanic hazards, lava

  7. Advancing the Fork detector for quantitative spent nuclear fuel verification

    DOE PAGES

    Vaccaro, S.; Gauld, I. C.; Hu, J.; ...

    2018-01-31

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations.more » A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This study describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false

  8. Advancing the Fork detector for quantitative spent nuclear fuel verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccaro, S.; Gauld, I. C.; Hu, J.

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations.more » A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This study describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false

  9. Advancing the Fork detector for quantitative spent nuclear fuel verification

    NASA Astrophysics Data System (ADS)

    Vaccaro, S.; Gauld, I. C.; Hu, J.; De Baere, P.; Peterson, J.; Schwalbach, P.; Smejkal, A.; Tomanin, A.; Sjöland, A.; Tobin, S.; Wiarda, D.

    2018-04-01

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations. A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This paper describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms

  10. Channelization and floodplain forests: impacts of accelerated sedimentation and valley plug formation on floodplain forests of the Middle Fork Forked Deer River, Tennessee, USA

    Treesearch

    Sonja N. Oswalt; Sammy L. King

    2005-01-01

    We evaluated the severe degradation of floodplain habitats resulting from channelization and concomitant excessive coarse sedimentation on the Middle Fork Forked Deer River in west Tennessee from 2000 to 2003. Land use practices have resulted in excessive sediment in the tributaries and river system eventually resulting in sand deposition on the floodplain, increased...

  11. Tuning Forks and Monitor Screens.

    ERIC Educational Resources Information Center

    Harrison, M. A. T.

    2000-01-01

    Defines the vibrations of a tuning fork against a computer monitor screen as a pattern that can illustrate or explain physical concepts like wave vibrations, wave forms, and phase differences. Presents background information and demonstrates the experiment. (Author/YDS)

  12. Height growth and site index curves for Douglas-fir on dry sites in the Willamette National Forest.

    Treesearch

    Joseph E Means; Mary E. Helm

    1985-01-01

    Equations and curves are presented for estimating height and site index of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) on hot, dry sites in the Willamette National Forest in western Oregon. The equations are based on the dissected stems of 27 trees. The curves differ from those previously published for Douglas-fir. Instructions are presented...

  13. The Western Pond Turtle; Habitat and History, 1993-1994 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Dan C.

    1994-08-01

    The western pond turtle is known from many areas of Oregon. The majority of sightings and other records occur in the major drainages of the Klamath, Rogue, Umpqua, Willamette and Columbia River systems. A brief overview is presented of the evolution of the Willamette-Puget Sound hydrographic basin. A synopsis is also presented of the natural history of the western pond turtle, as well as, the status of this turtle in the Willamette drainage basin. The reproductive ecology and molecular genetics of the western pond turtle are discussed. Aquatic movements and overwintering of the western pond turtle are evaluated. The effectmore » of introduced turtle species on the status of the western pond turtle was investigated in a central California Pond. Experiments were performed to determine if this turtle could be translocated as a mitigation strategy.« less

  14. Stream-temperature patterns of the Muddy Creek basin, Anne Arundel County, Maryland

    USGS Publications Warehouse

    Pluhowski, E.J.

    1981-01-01

    Using a water-balance equation based on a 4.25-year gaging-station record on North Fork Muddy Creek, the following mean annual values were obtained for the Muddy Creek basin: precipitation, 49.0 inches; evapotranspiration, 28.0 inches; runoff, 18.5 inches; and underflow, 2.5 inches. Average freshwater outflow from the Muddy Creek basin to the Rhode River estuary was 12.2 cfs during the period October 1, 1971, to December 31, 1975. Harmonic equations were used to describe seasonal maximum and minimum stream-temperature patterns at 12 sites in the basin. These equations were fitted to continuous water-temperature data obtained periodically at each site between November 1970 and June 1978. The harmonic equations explain at least 78 percent of the variance in maximum stream temperatures and 81 percent of the variance in minimum temperatures. Standard errors of estimate averaged 2.3C (Celsius) for daily maximum water temperatures and 2.1C for daily minimum temperatures. Mean annual water temperatures developed for a 5.4-year base period ranged from 11.9C at Muddy Creek to 13.1C at Many Fork Branch. The largest variations in stream temperatures were detected at thermograph sites below ponded reaches and where forest coverage was sparse or missing. At most sites the largest variations in daily water temperatures were recorded in April whereas the smallest were in September and October. The low thermal inertia of streams in the Muddy Creek basin tends to amplify the impact of surface energy-exchange processes on short-period stream-temperature patterns. Thus, in response to meteorologic events, wide ranging stream-temperature perturbations of as much as 6C have been documented in the basin. (USGS)

  15. An allocation of undiscovered oil and gas resources to Big South Fork National Recreation Area and Obed Wild and Scenic River, Kentucky and Tennessee

    USGS Publications Warehouse

    Schenk, Christopher J.; Klett, Timothy R.; Charpentier, Ronald R.; Cook, Troy A.; Pollastro, Richard M.

    2006-01-01

    The U.S. Geological Survey (USGS) estimated volumes of undiscovered oil and gas resources that may underlie Big South Fork National Recreation Area and Obed Wild and Scenic River in Kentucky and Tennessee. Applying the results of existing assessments of undiscovered resources from three assessment units in the Appalachian Basin Province and three plays in the Cincinnati Arch Province that include these land parcels, the USGS allocated approximately (1) 16 billion cubic feet of gas, 15 thousand barrels of oil, and 232 thousand barrels of natural gas liquids to Big South Fork National Recreation Area; and (2) 0.5 billion cubic feet of gas, 0.6 thousand barrels of oil, and 10 thousand barrels of natural gas liquids to Obed Wild and Scenic River. These estimated volumes of undiscovered resources represent potential volumes in new undiscovered fields, but do not include potential additions to reserves within existing fields.

  16. Effects of Transposable Elements on the Expression of the Forked Gene of Drosophila Melanogaster

    PubMed Central

    Hoover, K. K.; Chien, A. J.; Corces, V. G.

    1993-01-01

    The products of the forked gene are involved in the formation and/or maintenance of a temporary fibrillar structure within the developing bristle rudiment of Drosophila melanogaster. Mutations in the forked locus alter this structure and result in aberrant development of macrochaetae, microchaetae and trichomes. The locus has been characterized at the molecular level by walking, mutant characterization and transcript analysis. Expression of the six forked transcripts is temporally restricted to midlate pupal development. At this time, RNAs of 6.4, 5.6, 5.4, 2.5, 1.9 and 1.1 kilobases (kb) are detected by Northern analysis. The coding region of these RNAs has been found to be within a 21-kb stretch of genomic DNA. The amino terminus of the proteins encoded by the 5.4- and 5.6-kb forked transcripts contain tandem copies of ankyrin-like repeats that may play an important role in the function of forked-encoded products. The profile of forked RNA expression is altered in seven spontaneous mutations characterized during this study. Three forked mutations induced by the insertion of the gypsy retrotransposon contain a copy of this element inserted into an intron of the gene. In these mutants, the 5.6-, 5.4- and 2.5-kb forked mRNAs are truncated via recognition of the polyadenylation site in the 5' long terminal repeat of the gypsy retrotransposon. These results help explain the role of the forked gene in fly development and further our understanding of the role of transposable elements in mutagenesis. PMID:8244011

  17. 77 FR 39675 - Wallowa-Whitman National Forest, Baker County, OR; North Fork Burnt River Mining

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...-Whitman National Forest, Baker County, OR; North Fork Burnt River Mining AGENCY: Forest Service, USDA... North Fork Burnt River Mining Record of Decision will replace and supercede the 2004 North Fork Burnt...

  18. Ground-water conditions and geologic reconnaissance of the Upper Sevier River basin, Utah

    USGS Publications Warehouse

    Carpenter, Carl H.; Robinson, Gerald B.; Bjorklund, Louis Jay

    1967-01-01

    The upper Sevier River basin is in south-central Utah and includes an area of about 2,400 .square miles of high plateaus and valleys. It comprises the entire Sevier River drainage basin above Kingston, including the East Fork Sevier River and its tributaries. The basin was investigated to determine general ground-water conditions, the interrelation of ground water and surface water, the effects of increasing the pumping of ground water, and the amount of ground water in storage.The basin includes four main valleys - Panguitch Valley, Circle Valley, East Fork Valley, and Grass Valley - which are drained by the Sevier River, the East Fork Sevier River, and Otter Creek. The plateaus surrounding the valleys consist of sedimentary and igneous rocks that range in age from Triassic to Quaternary. The valley fill, which is predominantly alluvial gravel, sand, silt, and clay, has a maximum thickness of more than 800 feet.The four main valleys constitute separate ground-water basins. East Fork Valley basin is divided into Emery Valley, Johns Valley, and Antimony subbasins, and Grass Valley basin is divided into Koosharem and Angle subbasins. Ground water occurs under both artesian and water-table conditions in all the basins and subbasins except Johns Valley, Emery Valley, and Angle subbasins, where water is only under water-table conditions. The water is under artesian pressure in beds of gravel and sand confined by overlying beds of silt and clay in the downstream parts of Panguitch Valley basin, Circle Valley basin, and Antimony subbasin, and in most of Koosharem subbasin. Along the sides and upstream ends of these basins, water is usually under water-table conditions.About 1 million acre-feet of ground water that is readily available to wells is stored in the gravel and sand of the upper 200 feet of saturated valley fill. About 570,000 acre-feet is stored in Panguitch Valley basin, about 210,000 in Circle Valley basin, about 6,000 in Emery Valley subbasin, about 90

  19. 16 CFR 1512.14 - Requirements for fork and frame assembly.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Requirements for fork and frame assembly... assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N (200 lbf) or at least 39.5 J (350 in-lb) of energy, whichever results in the greater force, in accordance...

  20. 16 CFR 1512.14 - Requirements for fork and frame assembly.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Requirements for fork and frame assembly... assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N (200 lbf) or at least 39.5 J (350 in-lb) of energy, whichever results in the greater force, in accordance...

  1. 16 CFR 1512.14 - Requirements for fork and frame assembly.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for fork and frame assembly... assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N (200 lbf) or at least 39.5 J (350 in-lb) of energy, whichever results in the greater force, in accordance...

  2. 16 CFR 1512.14 - Requirements for fork and frame assembly.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Requirements for fork and frame assembly... assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N (200 lbf) or at least 39.5 J (350 in-lb) of energy, whichever results in the greater force, in accordance...

  3. Is it working? A look at the changing nutrient practices in Oregon's Southern Willamette Valley Groundwater Management Area

    NASA Astrophysics Data System (ADS)

    Pearlstein, S.; Compton, J.; Eldridge, A.; Henning, A.; Selker, J. S.; Brooks, J. R.; Schmitz, D.

    2016-12-01

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. Previous work in the 1990s in the Willamette Valley by researchers at Oregon State University determined the importance of cover crops and irrigation practices and made recommendations to the local farm community for reducing nitrogen (N) leaching. We are currently re-sampling many of the same fields studied by OSU to examine the influence of current crops and nutrient management practices on nitrate leaching below the rooting zone. This study represents important crops currently grown in the GWMA and includes four grass fields, three vegetable row-crop fields, two peppermint and wheat fields, and one each of hazelnuts and blueberries. New nutrient management practices include slow release fertilizers and precision agriculture approaches in some of the fields. Results from the first two years of sampling show nitrate leaching is lower in some crops like row crops grown for seed and higher in others like perennial rye grass seed when compared to the 1990s data. We will use field-level N input-output balances in order to determine the N use efficiency and compare this across crops and over time. The goal of this project is to provide information and tools that will help farmers, managers and conservation groups quantify the water quality benefits of management practices they are conducting or funding.

  4. Cancer therapy and replication stress: forks on the road to perdition.

    PubMed

    Kotsantis, Panagiotis; Jones, Rebecca M; Higgs, Martin R; Petermann, Eva

    2015-01-01

    Deregulated DNA replication occurs in cancer where it contributes to genomic instability. This process is a target of cytotoxic therapies. Chemotherapies exploit high DNA replication in cancer cells by modifying the DNA template or by inhibiting vital enzymatic activities that lead to slowing or stalling replication fork progression. Stalled replication forks can be converted into toxic DNA double-strand breaks resulting in cell death, i.e., replication stress. While likely crucial for many cancer treatments, replication stress is poorly understood due to its complexity. While we still know relatively little about the role of replication stress in cancer therapy, technical advances in recent years have shed new light on the effect that cancer therapeutics have on replication forks and the molecular mechanisms that lead from obstructed fork progression to cell death. This chapter will give an overview of our current understanding of replication stress in the context of cancer therapy. © 2015 Elsevier Inc. All rights reserved.

  5. Hydrologic conditions and water-quality conditions following underground coal mining in the North Fork of the Right Fork of Miller Creek drainage basin, Carbon and Emery Counties, Utah, 2004-2005

    USGS Publications Warehouse

    Wilkowske, C.D.; Cillessen, J.L.; Brinton, P.N.

    2007-01-01

    In 2004 and 2005, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, reassessed the hydrologic system in and around the drainage basin of the North Fork of the Right Fork (NFRF) of Miller Creek, in Carbon and Emery Counties, Utah. The reassessment occurred 13 years after cessation of underground coal mining that was performed beneath private land at shallow depths (30 to 880 feet) beneath the NFRF of Miller Creek. This study is a follow-up to a previous USGS study of the effects of underground coal mining on the hydrologic system in the area from 1988 to 1992. The previous study concluded that mining related subsidence had impacted the hydrologic system through the loss of streamflow over reaches of the perennial portion of the stream, and through a significant increase in dissolved solids in the stream. The previous study also reported that no substantial differences in spring-water quality resulted from longwall mining, and that no clear relationship between mining subsidence and spring discharge existed.During the summers of 2004 and 2005, the USGS measured discharge and collected water-quality samples from springs and surface water at various locations in the NFRF of Miller Creek drainage basin, and maintained a streamflow-gaging station in the NFRF of Miller Creek. This study also utilized data collected by Cyprus–Plateau Mining Corporation from 1992 through 2001.Of thirteen monitored springs, five have discharge levels that have not returned to those observed prior to August 1988, which is when longwall coal mining began beneath the NFRF of Miller Creek. Discharge at two of these five springs appears to fluctuate with wet and dry cycles and is currently low due to a drought that occurred from 1999–2004. Discharge at two other of the five springs did not increase with increased precipitation during the mid-1990s, as was observed at other monitored springs. This suggests that flowpaths to these springs may have been altered by

  6. Structure of the replication fork in ultraviolet light-irradiated human cells.

    PubMed Central

    Cordeiro-Stone, M; Schumacher, R I; Meneghini, R

    1979-01-01

    The DNA extracted from xeroderma pigmentosum human fibroblasts previously irradiated with 12.5 J/m2 of UV light and pulse-labeled for 45 min with radioactive and (or) heavy precursors, was used to determine the structural characteristics of the replication fork. Density equilibrium centrifugation experiments showed that a fork moved 6 micrometer in 45 min and bypassed 3 pyrimidine dimers in both strands. The same length was covered in 15-20 min in control cells. The delay in irradiated cells was apparently due to pyrimidine dimers acting as temporary blocks to the fork movement. Evidence for this interpretation comes from kinetics of incorporation of [3H]thymidine into DNA, which show that the time necessary to attain a new stable level of DNA synthesis in irradiated cells is equivalent to that required for the replication fork to cover the interdimer distance in one strand. On the other hand, the action of S1 nuclease on DNA synthesized soon after irradiation gives rise to a bimodal distribution in neutral sucrose gradients, one peak corresponding to 43 X 10(6) daltons and the other to 3 X 10(6) daltons. These two DNA species are generated by the attack of the S1 nuclease on single-stranded regions associated with the replication fork. A possible explanation for these results is given by a model according to which there is a delayed bypass of the dimer in the leading strand and the appearance of gaps opposite pyrimidine dimers in the lagging strand, as a direct consequence of the discontinuous mode of DNA replication. In terms of the model, the DNA of 43 X 10(6) daltons corresponds to the leading strand, linked to the unreplicated branch of the forks, whereas the piece of 3 X 10(6) daltons is the intergap DNA coming from the lagging strand. Pulse and chase experiments reveal that the low molecular weight DNA grows in a pattern that suggests that more than one gap may be formed per replication fork. PMID:233582

  7. Structure of the replication fork in ultraviolet light-irradiated human cells.

    PubMed

    Cordeiro-Stone, M; Schumacher, R I; Meneghini, R

    1979-08-01

    The DNA extracted from xeroderma pigmentosum human fibroblasts previously irradiated with 12.5 J/m2 of UV light and pulse-labeled for 45 min with radioactive and (or) heavy precursors, was used to determine the structural characteristics of the replication fork. Density equilibrium centrifugation experiments showed that a fork moved 6 micrometer in 45 min and bypassed 3 pyrimidine dimers in both strands. The same length was covered in 15-20 min in control cells. The delay in irradiated cells was apparently due to pyrimidine dimers acting as temporary blocks to the fork movement. Evidence for this interpretation comes from kinetics of incorporation of [3H]thymidine into DNA, which show that the time necessary to attain a new stable level of DNA synthesis in irradiated cells is equivalent to that required for the replication fork to cover the interdimer distance in one strand. On the other hand, the action of S1 nuclease on DNA synthesized soon after irradiation gives rise to a bimodal distribution in neutral sucrose gradients, one peak corresponding to 43 X 10(6) daltons and the other to 3 X 10(6) daltons. These two DNA species are generated by the attack of the S1 nuclease on single-stranded regions associated with the replication fork. A possible explanation for these results is given by a model according to which there is a delayed bypass of the dimer in the leading strand and the appearance of gaps opposite pyrimidine dimers in the lagging strand, as a direct consequence of the discontinuous mode of DNA replication. In terms of the model, the DNA of 43 X 10(6) daltons corresponds to the leading strand, linked to the unreplicated branch of the forks, whereas the piece of 3 X 10(6) daltons is the intergap DNA coming from the lagging strand. Pulse and chase experiments reveal that the low molecular weight DNA grows in a pattern that suggests that more than one gap may be formed per replication fork.

  8. Note: Enhanced energy harvesting from low-frequency magnetic fields utilizing magneto-mechano-electric composite tuning-fork.

    PubMed

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-06-01

    A magnetic-field energy harvester using a low-frequency magneto-mechano-electric (MME) composite tuning-fork is proposed. This MME composite tuning-fork consists of a copper tuning fork with piezoelectric Pb(Zr(1-x)Ti(x))O3 (PZT) plates bonded near its fixed end and with NdFeB magnets attached at its free ends. Due to the resonance coupling between fork prongs, the MME composite tuning-fork owns strong vibration and high Q value. Experimental results show that the proposed magnetic-field energy harvester using the MME composite tuning-fork exhibits approximately 4 times larger maximum output voltage and 7.2 times higher maximum power than the conventional magnetic-field energy harvester using the MME composite cantilever.

  9. Environmental Assessment Deicer Recovery at Grand Forks AFB, North Dakota

    DTIC Science & Technology

    2004-12-15

    Air Force Base (AFB), North Dakota. Contacts: 319 CES/CEVA 525 Tuskegee Airmen Boulevard (Blvd) Grand Forks AFB, ND...ACRONYMS, ABBREVIATIONS, AND TERMS AAM Annual Arithmetic Mean ACM Asbestos Containing Material AFB Air Force Base AFI Air Force Instruction AICUZ...meter 10 GFAFB Grand Forks Air Force Base HAP Hazardous Air Pollutants hr Hour H2S Hydrogen Sulfide IRP Installation Restoration

  10. Use of modflow drain package for simulating inter-basin transfer in abandoned coal mines

    USGS Publications Warehouse

    Kozar, Mark D.; McCoy, Kurt J.

    2017-01-01

    Simulation of groundwater flow in abandoned mines is difficult, especially where flux to and from mines is unknown or poorly quantified, and inter-basin transfer of groundwater occurs. A 3-year study was conducted in the Elkhorn area, West Virginia to better understand groundwater-flow processes and inter-basin transfer in above drainage abandoned coal mines. The study area was specifically selected, as all mines are located above the elevation of tributary receiving streams, to allow accurate measurements of discharge from mine portals and tributaries for groundwater model calibration. Abandoned mine workings were simulated in several ways, initially as a layer of high hydraulic conductivity bounded by lower permeability rock in adjacent strata, and secondly as rows of higher hydraulic conductivity embedded within a lower hydraulic conductivity coal aquifer matrix. Regardless of the hydraulic conductivity assigned to mine workings, neither approach to simulate mine workings could accurately reproduce the inter-basin transfer of groundwater from adjacent watersheds. To resolve the problem, a third approach was developed. The MODFLOW DRAIN package was used to simulate seepage into and through mine workings discharging water under unconfined conditions to Elkhorn Creek, North Fork, and tributaries of the Bluestone River. Drain nodes were embedded in a matrix of uniform hydraulic conductivity cells that represented the coal mine aquifer. Drain heads were empirically defined from well observations, and elevations were based on structure contours for the Pocahontas No. 3 mine workings. Use of the DRAIN package to simulate mine workings as an internal boundary condition resolved the inter-basin transfer problem, and effectively simulated a shift from a topographic- dominated to a dip-dominated flow system, by dewatering overlying unmined strata and shifting the groundwater drainage divide up dip within the Pocahontas No. 3 coal seam several kilometers into the adjacent

  11. Replication Fork Protection Factors Controlling R-Loop Bypass and Suppression.

    PubMed

    Chang, Emily Yun-Chia; Stirling, Peter C

    2017-01-14

    Replication-transcription conflicts have been a well-studied source of genome instability for many years and have frequently been linked to defects in RNA processing. However, recent characterization of replication fork-associated proteins has revealed that defects in fork protection can directly or indirectly stabilize R-loop structures in the genome and promote transcription-replication conflicts that lead to genome instability. Defects in essential DNA replication-associated activities like topoisomerase, or the minichromosome maintenance (MCM) helicase complex, as well as fork-associated protection factors like the Fanconi anemia pathway, both appear to mitigate transcription-replication conflicts. Here, we will highlight recent advances that support the concept that normal and robust replisome function itself is a key component of mitigating R-loop coupled genome instability.

  12. Stereo photo series for quantifying forest residues in the Douglas-Fir-Hemlock type of the Willamette National Forest.

    Treesearch

    Roger D. Ottmar; Colin C. Hardy; Robert E. Vihnanek

    1990-01-01

    A series of stereo photographs displays a range of residue loadings for harvested units in the Douglas-fir-western hemlock cover type common to the Willamette National Forest. Postburn residue levels are also represented for the Douglas-fir-western hemlock types. Information with each photo includes measured quadratic means and weights for various size classes, woody...

  13. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    Treesearch

    Megan K. Walsh; Christopher A. Pearl; Cathy Whitlock; Patrick J. Bartlein; Marc A. Worona

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11 000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11 000-7500 calendar years before present [cal yr BP]), warmer, drier summers than at...

  14. Oak Grove Fork Habitat Improvement Project, 1988 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettin, Scott

    The Lower Oak Grove Fork of the Clackamas River is a fifth-order tributary of the Clackamas River drainage supporting depressed runs of coho and chinook salmon, and summer and winter steelhead. Habitat condition rating for the Lower Oak Grove is good, but smelt production estimates are below the average for Clackamas River tributaries. Limiting factors in the 3.8 miles of the Lower Oak Grove supporting anadromous fish include an overall lack of quality spawning and rearing habitat. Beginning in 1986. measures to improve fish habitat in the Lower Oak Grove were developed in coordination with the Oregon Department of Fishmore » and Wildlife (ODF&W) and Portland General Electric (PGE) fisheries biologists. Prior to 1986, no measures had been applied to the stream to mitigate for PGE's storage and regulation of flows in the Oak Grove Fork (Timothy Lake, Harriet Lake). Catchable rainbow trout are stocked by ODF&W two or three times a year during the trout fishing season in the lowermost portion of the Oak Grove Fork near two Forest Service campgrounds (Ripplebrook and Rainbow). The 1987 field season marked the third year of efforts to improve fish habitat of the Lower Oak Grove Fork and restore anadromous fish production. The efforts included the development of an implementation plan for habitat improvement activities in the Lower Oak Grove Fork. post-project monitoring. and maintenance of the 1986 improvement structures. No new structures were constructed or placed in 1987. Fiscal year 1988 brought a multitude of changes which delayed implementation of plans developed in 1987. The most prominent change was the withdrawal of the proposed Spotted Owl Habitat Area (SOHA) which overlapped the Oak Grove project implementation area. Another was the change in the Forest Service biologist responsible for implementation and design of this project.« less

  15. Archaeological Investigations on the East Fork of the Salmon River, Custer County, Idaho.

    DTIC Science & Technology

    1984-01-01

    coniferous environment in addition to pine marten (Martes americana), red squirrel (Tamiasciurus hudsonicus), porcupine (Erithizon dorsatum), mountain vole...can be seen in small herds throughout the East Fork valley from the Salmon River to Big Boulder Creek. Two bands of Rocky Mountain bighorn sheep...utilize the Challis Planning Unit, one on the East Fork and the other in the Birch Creek area. The East Fork herd is comprised of approximately 50-70

  16. [History of the tuning fork. I: Invention of the tuning fork, its course in music and natural sciences. Pictures from the history of otorhinolaryngology, presented by instruments from the collection of the Ingolstadt German Medical History Museum].

    PubMed

    Feldmann, H

    1997-02-01

    G. Cardano, physician, mathematician, and astrologer in Pavia, Italy, in 1550 described how sound may be perceived through the skull. A few years later H. Capivacci, also a physician in Padua, realized that this phenomenon might be used as a diagnostic tool for differentiating between hearing disorders located either in the middle ear or in the acoustic nerve. The German physician G. C. Schelhammer in 1684 was the first to use a common cutlery fork in further developing the experiments initiated by Cardano and Capivacci. For a long time to come, however, there was no demand for this in practical otology. The tuning fork was invented in 1711 by John Shore, trumpeter and lutenist to H. Purcell and G.F. Händel in London. A picture of Händel's own tuning fork, probably the oldest tuning fork in existence, is presented here for the first time. There are a number of anecdotes connected with the inventor of the tuning fork, using plays on words involving the name Shore, and mixing up pitch-pipe and pitchfork. Some of these are related here. The tuning fork as a musical instrument soon became a success throughout Europe. The German physicist E. F. F. Chladni in Wittenberg around 1800 was the first to systematically investigate the mode of vibration of the tuning fork with its nodal points. Besides this, he and others tried to construct a complete musical instrument based on sets of tuning forks, which, however, were not widely accepted. J. H. Scheibler in Germany in 1834 presented a set of 54 tuning forks covering the range from 220 Hz to 440 Hz, at intervals of 4 Hz. J. Lissajous in Paris constructed a very elaborate tuning fork with a resonance box, which was intended to represent the international standard of the musical note A with 435 vibrations per second, but this remained controversial. K. R. Koenig, a German physicist living in Paris, invented a tuning fork which was kept in continuous vibration by a clockwork. H. Helmholtz, physiologist in Heidelberg, in 1863

  17. Status of the Mussel Resource in Little South Fork Cumberland River

    Treesearch

    Melvin L. Warren; Wendell R. Haag; Brooks M. Burr

    1999-01-01

    As recently as the 198Os, the Little South Fork Cumberland River of southeastern Kentucky supported a diverse freshwater mussel fauna (Starnes and Bogan 1982; Appendix A). The Little South Fork represented one of the last rivers to support a high number of mussel species in the Cumberland River drainage of Kentucky and Tennessee. The river was first surveyed...

  18. 16 CFR § 1512.14 - Requirements for fork and frame assembly.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Requirements for fork and frame assembly. Â... assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N (200 lbf) or at least 39.5 J (350 in-lb) of energy, whichever results in the greater force, in accordance...

  19. Numerical performance analysis of quartz tuning fork-based force sensors

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur E.; Schwarz, Udo D.

    2017-01-01

    Quartz tuning fork-based force sensors where one prong is immobilized onto a holder while the other one is allowed to oscillate freely (‘qPlus’ configuration) are in widespread use for high-resolution scanning probe microscopy applications. Due to the small size of the tuning forks (≈3 mm) and the complexity of the sensor assemblies, the reliable and repeatable manufacturing of the sensors has been challenging. In this paper, we investigate the contribution of the amount and location of the epoxy glue used to attach the tuning fork to its holder on the sensor’s performance. Towards this end, we use finite element analysis to model the entire sensor assembly and to perform static and dynamic numerical simulations. Our analysis reveals that increasing the thickness of the epoxy layer between prong and holder results in a decrease of the sensor’s spring constant, eigenfrequency, and quality factor while showing an increasing deviation from oscillation in its primary modal shape. Adding epoxy at the sides of the tuning fork also leads to a degradation of the quality factor even though in this case, spring constant and eigenfrequency rise in tandem with a lessening of the deviation from its ideal modal shape.

  20. Temporal Dynamics and Spatial Variation of Azoxystrobin and Propiconazole Resistance in Zymoseptoria tritici: A Hierarchical Survey of Commercial Winter Wheat Fields in the Willamette Valley, Oregon.

    PubMed

    Hagerty, Christina H; Anderson, Nicole P; Mundt, Christopher C

    2017-03-01

    Fungicide resistance can cause disease control failure in agricultural systems, and is particularly concerning with Zymoseptoria tritici, the causal agent of Septoria tritici blotch of wheat. In North America, the first quinone outside inhibitor resistance in Z. tritici was discovered in the Willamette Valley of Oregon in 2012, which prompted this hierarchical survey of commercial winter wheat fields to monitor azoxystrobin- and propiconazole-resistant Z. tritici. Surveys were conducted in June 2014, January 2015, May 2015, and January 2016. The survey was organized in a hierarchical scheme: regions within the Willamette Valley, fields within the region, transects within the field, and samples within the transect. Overall, frequency of azoxystrobin-resistant isolates increased from 63 to 93% from June 2014 to January 2016. Resistance to azoxystrobin increased over time even within fields receiving no strobilurin applications. Propiconazole sensitivity varied over the course of the study but, overall, did not significantly change. Sensitivity to both fungicides showed no regional aggregation within the Willamette Valley. Greater than 80% of spatial variation in fungicide sensitivity was at the smallest hierarchical scale (within the transect) of the survey for both fungicides, and the resistance phenotypes were randomly distributed within sampled fields. Results suggest a need for a better understanding of the dynamics of fungicide resistance at the landscape level.

  1. EXAMINATION OF HABITAT USE AND DISPERSAL OF EXOTIC BULLFROGS AND THEIR POTENTIAL IMPACT ON NATIVE AMPHIBIAN COMMUNITIES IN THE WILLAMETTE VALLEY, OREGON

    EPA Science Inventory

    Bullfrogs (Rana catesbeiana) are exotic in the west and have been implicated in the decline of western pond turtles and native ranids. Habitat alterations that favor bullfrogs have enhanced populations, particularly in agricultural areas such as the Willamette Valley. I will pres...

  2. Recent sedimentation and surface-water flow patterns on the flood plain of the North Fork Forked Deer River, Dyer County, Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Diehl, T.H.

    1993-01-01

    Sedimentation in the 19th and 20th centuries has had a major effect on surface-water drainage conditions along a 7-mile section of the North, Fork Forked Deer River flood plain, Dyer County, Tenn. During the century prior to 1930, 5 to 12 feet of sediment were deposited over much of the flood plain, resulting in channel obstruction and widespread flooding. The estimated bankfull capacity of the natural channel before it was channelized in 19 16 was comparable to the base flow of the river during the 1980's. Ditching of the river between 191i6 and 1;9,21 was followed by reductions in sedimentation rates over parts of the flood plain. However, the effects of sedimentation have persisted. Occlusions along the natural channel of the river have divided this stream reach into a series of sloughs. These sloughs continue to fill with sediment and are surrounded by ponds that have expanded since 1941. Degradation of the North Fork Forked Deer ditch may eventually reduce ponding over much of the flood plain. Active incision of headcuts in both banks of the ditch is enhancing the drainage of widespread ponded areas. These headcuts likely will have limited effect on drainage of most tributaries. The highest recent sedimentation rates, in places more than 0.2 foot per year, are concentrated near the flood-plain margin along tributary streams. In conjunction with beaver dams and debris, ongoing sedimentation has blocked flow in several tributaries, posing a flood hazard to agricultural land near the flood-plain margin. The occluded tributaries likely will continue to overflow unless they are periodically dredged or their sediment loads are reduced.

  3. Study on vacuum packaging reliability of micromachined quartz tuning fork gyroscopes

    NASA Astrophysics Data System (ADS)

    Fan, Maoyan; Zhang, Lifang

    2017-09-01

    Packaging technology of the micromachined quartz tuning fork gyroscopes by vacuum welding has been experimentally studied. The performance of quartz tuning fork is influenced by the encapsulation shell, encapsulation method and fixation of forks. Alloy solder thick film is widely used in the package to avoid the damage of the chip structure by the heat resistance and hot temperature, and this can improve the device performance and welding reliability. The results show that the bases and the lids plated with gold and nickel can significantly improve the airtightness and reliability of the vacuum package. Vacuum packaging is an effective method to reduce the vibration damping, improve the quality factor and further enhance the performance. The threshold can be improved nearly by 10 times.

  4. Tuning fork enhanced interferometric photoacoustic spectroscopy: a new method for trace gas analysis

    NASA Astrophysics Data System (ADS)

    Köhring, M.; Pohlkötter, A.; Willer, U.; Angelmahr, M.; Schade, W.

    2011-01-01

    A photoacoustic trace gas sensor based on an optical read-out method of a quartz tuning fork is shown. Instead of conventional piezoelectric signal read-out, as applied in well-known quartz-enhanced photoacoustic spectroscopy (QEPAS), an interferometric read-out method for measurement of the tuning fork's oscillation is presented. To demonstrate the potential of the optical read-out of tuning forks in photoacoustics, a comparison between the performances of a sensor with interferometric read-out and conventional QEPAS with piezoelectric read-out is reported. The two sensors show similar characteristics. The detection limit (L) for the optical read-out is determined to be L opt=(2598±84) ppm (1 σ) compared to L elec=(2579±78) ppm (1 σ) for piezoelectric read-out. In both cases the detection limit is defined by the thermal noise of the tuning fork.

  5. Water-quality and algal conditions in the Clackamas River basin, Oregon, and their relations to land and water management

    USGS Publications Warehouse

    Carpenter, Kurt D.

    2003-01-01

    In 1998, the U.S. Geological Survey sampled the Clackamas River, its major tributaries, and reservoirs to characterize basic water quality (nutrients, dissolved oxygen, pH, temperature, and conductance), water quantity (water sources within the basin), and algal conditions (biomass and species composition). Sampling locations reflected the dominant land uses in the basin (forest management, agriculture, and urban development) as well as the influence of hydroelectric projects, to examine how these human influences might be affecting water quality and algal conditions. Nuisance algal growths, with accompanying negative effects on water quality, were observed at several locations in the basin during this study. Algal biomass in the lower Clackamas River reached a maximum of 300 mg/m2 chlorophyll a, producing nuisance algal conditions, including fouled stream channels and daily fluctuations in pH and dissolved oxygen concentrations to levels that did not meet water-quality standards. Algal biomass was highest at sites immediately downstream from the hydroelectric project's reservoirs and/or powerhouses. Nuisance algal conditions also were observed in some of the tributaries, including the North Fork of the Clackamas River, Clear Creek, Rock Creek, and Sieben Creek. High amounts of drifting algae increased turbidity levels in the Clackamas River during June, which coincided with a general increase in the concentration of disinfection by-products found in treated Clackamas River water used for drinking, presumably due to the greater amounts of organic matter in the river. The highest nutrient concentrations were found in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks), where most of the agriculture and urban development is concentrated. Of these, the greatest load of nutrients came from Deep Creek, which had both high nutrient concentrations and relatively high streamflow. Streams draining forestland in the upper basin (upper Clackamas River

  6. High-affinity DNA-binding Domains of Replication Protein A (RPA) Direct SMARCAL1-dependent Replication Fork Remodeling*

    PubMed Central

    Bhat, Kamakoti P.; Bétous, Rémy; Cortez, David

    2015-01-01

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. PMID:25552480

  7. High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling.

    PubMed

    Bhat, Kamakoti P; Bétous, Rémy; Cortez, David

    2015-02-13

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Floods of November-December 1950 in the Central Valley basin, California

    USGS Publications Warehouse

    Paulsen, C.G.

    1953-01-01

    maxima on Bear, Yuba, Feather, and upper Sacramento Rivers, nor on west side tributaries of lower Sacramento River, Calaveras River, and upper San Joaquin River (above Friant Reservoir). Notable high rates of discharge were 354 cfs per square mile from 39.5 square miles in North Fork of Middle Fork Tule River, 225 cfs per square mile from 198 square miles in Rubicon River, 115 cfs per square mile from 999 square miles in North Fork of American River and 93.7 cfs per square mile from 1,921 square miles in American River at Fair Oaks. This report presents a general description of the 1950 flood, details and estimates of the damage incurred, records of stage and discharge for the period of the flood at 171 stream-gaging stations, records of storage in 14 reservoirs, a summary of peak discharges with comparative data for previous floods at 252 measurement points, and tables showing crest stages along the main stem and major tributary channels of the Sacramento and San Joaquin Rivers. The report also includes a discussion of meteorologic and hydrologic conditions associated with the flood, examples of the flood regulation afforded by storage reservoirs, a brief study of runoff characteristics, and a summary and comparison with previous floods in the Central Valley basin.

  9. Quantity and quality of streamflow in the White River basin, Colorado and Utah

    USGS Publications Warehouse

    Boyle, J.M.; Covay, K.J.; Bauer, D.P.

    1984-01-01

    The water quality and flow of existing streams in the White River basin, located in northwestern Colorado and northeastern Utah, are adequate for present uses, but future development (such as energy) may affect stream quality and quantity. Present conditions are described as a baseline to enable planners to allocate available water and to measure changes in quantity and quality of water in the future. The White River basin contains extensive energy resources consisting of oil, natural gas, coal, and oil shale. Large quantities of water will be required for energy-resource development and associated municipal and industrial uses. An average of 70% of the annual flow in the White River occurs during May, June, and July as a result of snowmelt runoff. The 7-day, 10-year low-flow discharges/sq mi and the 1-day, 25-year high-flow discharges/sq mi are larger in the eastern part of the basin than in the western part. Flow-duration curves indicate that high flows in the White River and the North and South Fork White Rivers result mainly from snowmelt runoff and that base flow is sustained throughout the year by groundwater discharge from the alluvial and bedrock aquifers. Water type varies in the basin; however, calcium and sodium are the dominantly occurring cations and sulfate and bicarbonate are the dominantly occurring anions. Computed total annual dissolved-solids loads in the White River range from 31 ,800 tons/yr in the North Fork White River to 284,000 tons/yr at the mouth. A 10% increase to a 14% decrease of the dissolved-solids load could result at the mouth of the White River near Ouray, Utah. This corresponds to a 5% increase to a 10% decrease in dissolved-solids concentration. The seasonal pattern of stream temperatures was found to fit a harmonic curve. (Lantz-PTT)

  10. Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation.

    PubMed

    Feng, Wenyi; Di Rienzi, Sara C; Raghuraman, M K; Brewer, Bonita J

    2011-10-01

    Chromosome breakage as a result of replication stress has been hypothesized to be the direct consequence of defective replication fork progression, or "collapsed" replication forks. However, direct and genome-wide evidence that collapsed replication forks give rise to chromosome breakage is still lacking. Previously we showed that a yeast replication checkpoint mutant mec1-1, after transient exposure to replication impediment imposed by hydroxyurea (HU), failed to complete DNA replication, accumulated single-stranded DNA (ssDNA) at the replication forks, and fragmented its chromosomes. In this study, by following replication fork progression genome-wide via ssDNA detection and by direct mapping of chromosome breakage after HU exposure, we have tested the hypothesis that the chromosome breakage in mec1 cells occurs at collapsed replication forks. We demonstrate that sites of chromosome breakage indeed correlate with replication fork locations. Moreover, ssDNA can be detected prior to chromosome breakage, suggesting that ssDNA accumulation is the common precursor to double strand breaks at collapsed replication forks.

  11. Estimated Loads of Suspended Sediment and Selected Trace Elements Transported through the Milltown Reservoir Project Area Before and After the Breaching of Milltown Dam in the Upper Clark Fork Basin, Montana, Water Year 2008

    USGS Publications Warehouse

    Lambing, John H.; Sando, Steven K.

    2009-01-01

    This report presents estimated daily and cumulative loads of suspended sediment and selected trace elements transported during water year 2008 at three streamflow-gaging stations that bracket the Milltown Reservoir project area in the upper Clark Fork basin of western Montana. Milltown Reservoir is a National Priorities List Superfund site where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. Milltown Dam was breached on March 28, 2008, as part of Superfund remedial activities to remove the dam and contaminated sediment that had accumulated in Milltown Reservoir. The estimated loads transported through the project area during the periods before and after the breaching of Milltown Dam, and for the entire water year 2008, were used to quantify the net gain or loss (mass balance) of suspended sediment and trace elements within the project area during the transition from a reservoir environment to a free-flowing river. This study was done in cooperation with the U.S. Environmental Protection Agency. Streamflow during water year 2008 compared to long-term streamflow, as represented by the record for Clark Fork above Missoula (water years 1930-2008), generally was below normal (long-term median) from about October 2007 through April 2008. Sustained runoff started in mid-April, which increased flows to near normal by mid-May. After mid-May, flows sharply increased to above normal, reaching a maximum daily mean streamflow of 16,800 cubic feet per second (ft3/s) on May 21, which essentially equaled the long-term 10th-exceedance percentile for that date. Flows substantially above normal were sustained through June, then decreased through the summer and reached near-normal by August. Annual mean streamflow during water year 2008 (3,040 ft3/s) was 105 percent of the long-term mean annual streamflow (2,900 ft3/s). The annual peak flow (17,500 ft3/s) occurred on May 21 and was 112

  12. Water quality of the Crescent River basin, Lake Clark National Park and Preserve, Alaska, 2003-2004

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2006-01-01

    The U.S. Geological Survey and the National Park Service conducted a water-quality investigation of the Crescent River Basin in Lake Clark National Park and Preserve from May 2003 through September 2004. The Crescent River Basin was studied because it has a productive sockeye salmon run that is important to the Cook Inlet commercial fishing industry. Water-quality, biology, and limnology characteristics were assessed. Glacier-fed streams that flow into Crescent Lake transport suspended sediment that is trapped by the lake. Suspended sediment concentrations from the Lake Fork Crescent River (the outlet stream of Crescent Lake) were less than 10 milligrams per liter, indicating a high trapping efficiency of Crescent Lake. The North Fork Crescent River transports suspended sediment throughout its course and provides most of the suspended sediment to the main stem of the Crescent River downstream from the confluence of the Lake Fork Crescent River. Three locations on Crescent Lake were profiled during the summer of 2004. Turbidity profiles indicate sediment plumes within the water column at various times during the summer. Turbidity values are higher in June, reflecting the glacier-fed runoff into the lake. Lower values of turbidity in August and September indicate a decrease of suspended sediment entering Crescent Lake. The water type throughout the Crescent River Basin is calcium bicarbonate. Concentrations of nutrients, major ions, and dissolved organic carbon are low. Alkalinity concentrations are generally less than 20 milligrams per liter, indicating a low buffering capacity of these waters. Streambed sediments collected from three surface sites analyzed for trace elements indicated that copper concentrations at all sites were above proposed guidelines. However, copper concentrations are due to the local geology, not anthropogenic factors. Zooplankton samples from Crescent Lake indicated the main taxa are Cyclops sp., a Copepod, and within that taxa were a

  13. USING INTERNAL RADIO TRANSMITTERS TO DETERMINE THE BEHAVIORAL RESPONSE OF BULLFROGS, RANA CATESBEIANA, TO SEASONAL POND DRYING IN THE WILLAMETTE VALLEY, OREGON

    EPA Science Inventory

    We implanted radio tags in adult bullfrogs from three ponds located in a Willamette Valley game reserve to determine their behavior and habitat use as the ponds dried during late summer. We used radio telemetry and a Global Position System (GPS) to locate and record the position ...

  14. Base flow (1966-2009) and streamflow gain and loss (2010) of the Brazos River from the New Mexico-Texas State line to Waco, Texas

    USGS Publications Warehouse

    Baldys, Stanley; Schalla, Frank E.

    2012-01-01

    Streamflow was measured at 66 sites from June 6–9, 2010, and at 68 sites from October 16–19, 2010, to identify reaches in the upper Brazos River Basin that were gaining or losing streamflow. Gaining reaches were identified in each of the five subbasins. The gaining reach in the Salt Fork Brazos River Basin began at USGS streamflow-gaging station 08080940 Salt Fork Brazos River at State Highway 208 near Clairemont, Tex. (site SF–6), upstream from where Duck Creek flows into the Salt Fork Brazos River and continued downstream past USGS streamflow-gaging station 08082000 Salt Fork Brazos River near Aspermont, Tex. (site SF–9), to the outlet of the basin. In the Double Mountain Fork Brazos River Basin, a gaining reach from near Post, Tex., downstream to the outlet of the basin was identified. Two gaining reaches were identified in the Clear Fork Brazos River Basin—one from near Roby, Tex., downstream to near Noodle, Tex., and second from Hawley, Tex., downstream to Nugent, Tex. Most of the North Bosque River was characterized as gaining streamflow. Streamflow gains were identified in the main stem of the Brazos River from where the Brazos River main stem forms at the confluence of the Salt Fork Brazos River and Double Mountain Fork Brazos River near Knox City, Tex., downstream to near Seymour, Tex.

  15. Geology and water resources of the Bighorn Basin, Wyoming

    USGS Publications Warehouse

    Fisher, C.A.

    1906-01-01

    A general account of the surface waters is given, including a statement of their present and proposed uses for irrigation, and the economic products of a geologic nature are also described. The region considered comprises the Bighorn basin, a part of the Clark Fork basin, and the slopes of the adjoining mountain ranges, the entire area comprising 8,500 square miles. As shown on fig. 1, it is situated mainly in Bighorn County, in the northwestern part of Wyoming, and includes the greater portion of the area lying between meridians 107° 15' and 109° 15' and parallels 43° 40' and 45°. It is bounded on the north by Montana, on the east by the Bighorn Mountains, on the south by Bighorn and Owl Creek mountains, and on the west by Shoshone, Absaroka, and Beartooth mountains.

  16. Ribosomal DNA replication fork barrier and HOT1 recombination hot spot: shared sequences but independent activities.

    PubMed

    Ward, T R; Hoang, M L; Prusty, R; Lau, C K; Keil, R L; Fangman, W L; Brewer, B J

    2000-07-01

    In the ribosomal DNA of Saccharomyces cerevisiae, sequences in the nontranscribed spacer 3' of the 35S ribosomal RNA gene are important to the polar arrest of replication forks at a site called the replication fork barrier (RFB) and also to the cis-acting, mitotic hyperrecombination site called HOT1. We have found that the RFB and HOT1 activity share some but not all of their essential sequences. Many of the mutations that reduce HOT1 recombination also decrease or eliminate fork arrest at one of two closely spaced RFB sites, RFB1 and RFB2. A simple model for the juxtaposition of RFB and HOT1 sequences is that the breakage of strands in replication forks arrested at RFB stimulates recombination. Contrary to this model, we show here that HOT1-stimulated recombination does not require the arrest of forks at the RFB. Therefore, while HOT1 activity is independent of replication fork arrest, HOT1 and RFB require some common sequences, suggesting the existence of a common trans-acting factor(s).

  17. Assessment of suspended-sediment transport, bedload, and dissolved oxygen during a short-term drawdown of Fall Creek Lake, Oregon, winter 2012-13

    USGS Publications Warehouse

    Schenk, Liam N.; Bragg, Heather M.

    2014-01-01

    The drawdown of Fall Creek Lake resulted in the net transport of approximately 50,300 tons of sediment from the lake during a 6-day drawdown operation, based on computed daily values of suspended-sediment load downstream of Fall Creek Dam and the two main tributaries to Fall Creek Lake. A suspended-sediment budget calculated for 72 days of the study period indicates that as a result of drawdown operations, there was approximately 16,300 tons of sediment deposition within the reaches of Fall Creek and the Middle Fork Willamette River between Fall Creek Dam and the streamgage on the Middle Fork Willamette River at Jasper, Oregon. Bedload samples collected at the station downstream of Fall Creek Dam during the drawdown were primarily composed of medium to fine sands and accounted for an average of 11 percent of the total instantaneous sediment load (also termed sediment discharge) during sample collection. Monitoring of dissolved oxygen at the station downstream of Fall Creek Dam showed an initial decrease in dissolved oxygen concurrent with the sediment release over the span of 5 hours, though the extent of dissolved oxygen depletion is unknown because of extreme and rapid fouling of the probe by the large amount of sediment in transport. Dissolved oxygen returned to background levels downstream of Fall Creek Dam on December 18, 2012, approximately 1 day after the end of the drawdown operation.

  18. Origin of Meter-Size Granite Basins in the Southern Sierra Nevada, California

    USGS Publications Warehouse

    Moore, James G.; Gorden, Mary A.; Robinson, Joel E.; Moring, Barry C.

    2008-01-01

    Meter-size granite basins are found in a 180-km belt extending south from the South Fork of the Kings River to Lake Isabella on the west slope of the southern Sierra Nevada, California. Their origin has long been debated. A total of 1,033 basins have been inventoried at 221 sites. The basins occur on bedrock granitic outcrops at a median elevation of 1,950 m. Median basin diameter among 30 of the basin sites varies from 89 to 170 cm, median depth is 12 to 63 cm. Eighty percent of the basin sites also contain smaller bedrock mortars (~1-2 liters in capacity) of the type used by Native Americans (American Indians) to grind acorns. Features that suggest a manmade origin for the basins are: restricted size, shape, and elevation range; common association with Indian middens and grinding mortars; a south- and west-facing aspect; presence of differing shapes in distinct localities; and location in a food-rich belt with pleasant summer weather. Volcanic ash (erupted A.D. 1240+-60) in the bottom of several of the basins indicates that they were used shortly before ~760 years ago but not thereafter. Experiments suggest that campfires built on the granite will weaken the bedrock and expedite excavation of the basins. The primary use of the basins was apparently in preparing food, including acorns and pine nuts. The basins are among the largest and most permanent artifacts remaining from the California Indian civilization.

  19. HOWARD FORK ACID ROCK DRAINAGE SOURCE INTERCEPTION STUDY; HOWARD FORK OF THE SAN MIGUEL RIVER NEAR OPHIR, COLORADO

    EPA Science Inventory

    This project proposes to analyze regional hydrogeology as it relates to mine workings which discharge significant heavy metals into the Howard Fork of the San Miguel River and recommend strategies to intercept and divert water away from mineralized zones. The study also includes...

  20. Co-localization of polar replication fork barriers and rRNA transcription terminators in mouse rDNA.

    PubMed

    López-estraño, C; Schvartzman, J B; Krimer, D B; Hernández, P

    1998-03-27

    We investigated the replication of the region where transcription terminates in mouse rDNA. It contains a replication fork barrier (RFB) that behaves in a polar manner, arresting only replication forks moving in the direction opposite to transcription. This RFB consists of several closely spaced fork arrest sites that co-localize with the transcription terminator elements, known as Sal boxes. Sal boxes are the target for mTTF-I (murine transcription termination factor I). These results suggest that both termination of rRNA transcription and replication fork arrest may share cis-acting as well as trans-acting factors. Copyright 1998 Academic Press Limited.

  1. Chapter D. Effects of Urbanization on Stream Ecosystems in the Willamette River Basin and Surrounding Area, Oregon and Washington

    USGS Publications Warehouse

    Waite, Ian R.; Sobieszczyk, Steven; Carpenter, Kurt D.; Arnsberg, Andrew J.; Johnson, Henry M.; Hughes, Curt A.; Sarantou, Michael J.; Rinella, Frank A.

    2008-01-01

    This report describes the effects of urbanization on physical, chemical, and biological characteristics of stream ecosystems in 28 watersheds along a gradient of urbanization in the Willamette River basin and surrounding area, Oregon and Washington, from 2003 through 2005. The study that generated the report is one of several urban-effects studies completed nationally by the U.S. Geological Survey National Water-Quality Assessment Program. Watersheds were selected to minimize natural variability caused by factors such as geology, elevation, and climate, and to maximize coverage of different stages of urban development among watersheds. Because land use or population density alone often are not a complete measure of urbanization, a combination of land use, land cover, infrastructure, and socioeconomic variables were integrated into a multimetric urban intensity index (UII) to represent the degree of urban development in each watershed. Physical characteristics studied include stream hydrology, stream temperature, and habitat; chemical characteristics studied include sulfate, chloride, nutrients, pesticides, dissolved and particulate organic and inorganic carbon, and suspended sediment; and biological characteristics studied include algal, macroinvertebrate, and fish assemblages. Semipermeable membrane devices, passive samplers that concentrate trace levels of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons and polychlorinated biphenyls, also were used. The objectives of the study were to (1) examine physical, chemical, and biological responses along the gradient of urbanization and (2) determine the major physical, chemical, and landscape variables affecting the structure of aquatic communities. Common effects documented in the literature of urbanization on instream physical, chemical, and biological characteristics, such as increased contaminants, increased streamflow flashiness, increased concentrations of chemicals, and changes in

  2. The sociology of landowner interest in restoring fire-adapted, biodiverse habitats in the wildland-urban interface of Oregon's Willamette Valley ecoregion

    Treesearch

    Max Nielsen-Pincus; Robert G. Ribe; Bart R. Johnson

    2011-01-01

    In many parts of the world, the combined effects of wildfire, climate change, and population growth in the wildland-urban interface pose increasing risks to both people and biodiversity. These risks are exemplified in western Oregon's Willamette Valley Ecoregion, where population is projected to double by 2050 and climate change is expected to increase wildfire...

  3. Integration of high-resolution seismic and aeromagnetic data for earthquake hazards evaluations: An example from the Willamette Valley, Oregon

    USGS Publications Warehouse

    Liberty, L.M.; Trehu, A.M.; Blakely, R.J.; Dougherty, M.E.

    1999-01-01

    Aeromagnetic and high-resolution seismic reflection data were integrated to place constraints on the history of seismic activity and to determine the continuity of the possibly active, yet largely concealed Mount Angel fault in the Willamette Valley, Oregon. Recent seismic activity possibly related to the 20-km-long fault includes a swarm of small earthquakes near Woodburn in 1990 and the magnitude 5.6 Scotts Mills earthquake in 1993. Newly acquired aeromagnetic data show several large northwest-trending anomalies, including one associated with the Mount Angel fault. The magnetic signature indicates that the fault may actually extend 70 km across the Willamette Valley to join the Newberg and Gales Creek faults in the Oregon Coast Range. We collected 24-fold high-resolution seismic reflection data along two transects near Woodburn, Oregon, to image the offset of the Miocene-age Columbia River Basalts (CRB) and overlying sediments at and northwest of the known mapped extent of the Mount Angel fault. The seismic data show a 100-200-m offset in the CRB reflector at depths from 300 to 700 m. Folded or offset sediments appear above the CRB with decreasing amplitude to depths as shallow as were imaged (approximately 40 m). Modeling experiments based on the magnetic data indicate, however, that the anomaly associated with the Mount Angel fault is not caused solely by an offset of the CRB and overlying sediments. Underlying magnetic sources, which we presume to be volcanic rocks of the Siletz terrane, must have vertical offsets of at least 500 m to fit the observed data. We conclude that the Mount Angel fault appears to have been active since Eocene age and that the Gales Creek, Newberg, and Mount Angel faults should be considered a single potentially active fault system. This fault, as well as other parallel northwest-trending faults in the Willamette Valley, should be considered as risks for future potentially damaging earthquakes.

  4. Rinne test: does the tuning fork position affect the sound amplitude at the ear?

    PubMed

    Butskiy, Oleksandr; Ng, Denny; Hodgson, Murray; Nunez, Desmond A

    2016-03-24

    Guidelines and text-book descriptions of the Rinne test advise orienting the tuning fork tines in parallel with the longitudinal axis of the external auditory canal (EAC), presumably to maximise the amplitude of the air conducted sound signal at the ear. Whether the orientation of the tuning fork tines affects the amplitude of the sound signal at the ear in clinical practice has not been previously reported. The present study had two goals: determine if (1) there is clinician variability in tuning fork placement when presenting the air-conduction stimulus during the Rinne test; (2) the orientation of the tuning fork tines, parallel versus perpendicular to the EAC, affects the sound amplitude at the ear. To assess the variability in performing the Rinne test, the Canadian Society of Otolaryngology - Head and Neck Surgery members were surveyed. The amplitudes of the sound delivered to the tympanic membrane with the activated tuning fork tines held in parallel, and perpendicular to, the longitudinal axis of the EAC were measured using a Knowles Electronics Mannequin for Acoustic Research (KEMAR) with the microphone of a sound level meter inserted in the pinna insert. 47.4 and 44.8% of 116 survey responders reported placing the fork parallel and perpendicular to the EAC respectively. The sound intensity (sound-pressure level) recorded at the tympanic membrane with the 512 Hz tuning fork tines in parallel with as opposed to perpendicular to the EAC was louder by 2.5 dB (95% CI: 1.35, 3.65 dB; p < 0.0001) for the fundamental frequency (512 Hz), and by 4.94 dB (95% CI: 3.10, 6.78 dB; p < 0.0001) and 3.70 dB (95% CI: 1.62, 5.78 dB; p = .001) for the two harmonic (non-fundamental) frequencies (1 and 3.15 kHz), respectively. The 256 Hz tuning fork in parallel with the EAC as opposed to perpendicular to was louder by 0.83 dB (95% CI: -0.26, 1.93 dB; p = 0.14) for the fundamental frequency (256 Hz), and by 4.28 dB (95% CI: 2.65, 5.90 dB; p < 0.001) and 1

  5. Traveltime and reaeration of selected streams in the North Platte and Yampa River basins, Colorado

    USGS Publications Warehouse

    Ruddy, B.C.; Britton, L.J.

    1989-01-01

    Traveltime characteristics were measured using rhodamine WT dye as a tracer in the Canadian and Michigan Rivers in the North Platte river basin and in the Yampa, Elk, and Williams Fork Rivers, and Trout and Fish Creeks in the Yampa River basin of Colorado. Reaeration coefficients were determined by use of the modified-tracer techniques using ethylene and propane gas for selected stream reaches during low-flow conditions. Stream reach velocities determined during traveltime and reaeration measurements ranged from 0.09 mi/hour at 5.1 cu ft/sec on the Canadian River to 4.04 mi/hour at 746 cu ft/sec on the Williams Fork. A modified longitudinal dispersion model or results from cumulative traveltime curves were used to estimate traveltimes in the measured streams for streamflow conditions other than those measured. Traveltime-discharge curves were developed by using the estimated and measured traveltimes. Reaeration coefficients were determined for 20 different subreaches in the study area. Rearation coefficients were determined for 20 different subreaches in the study area. Reaeration coefficients ranged from 1.6/day in a pooled subreach of the Yampa River Craig, Colorado, to 98/day in a turbulent subreach of Trout Creek near Oak Creek, Colorado. (USGS)

  6. Little Known Facts about the Common Tuning Fork.

    ERIC Educational Resources Information Center

    Ong, P. P.

    2002-01-01

    Explains the physical principles of the tuning fork which has a common use in teaching laboratories. Includes information on its vibration, frequency of vibration, elasticity, and reasons for having two prongs. (YDS)

  7. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070 ...

  8. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070 ...

  9. A Cultural Resource Reconnaissance of Two Proposed Bank Unloading Areas, East Grand Forks, Polk County, Minnesota,

    DTIC Science & Technology

    1984-12-01

    architectural or archeotogical evidence was identified. The southern unloading area includes the former sites of a brewery and a sawmill, both of... brewery and a sawmill, both of which were associated with 0 significant historic events and themes in the late nineteenth and early twentieth century...Forks Brewery (1888) . . . . . . . 16 Figure 4. The Grand Forks Lumber Company mill is located at A. -. Building at B is probably the East Grand Forks

  10. Mercury Contributions from Flint Creek and other Tributaries to the Upper Clark Fork River in Northwestern Montana

    NASA Astrophysics Data System (ADS)

    Langner, H.; Young, M.; Staats, M. F.

    2013-12-01

    Flint Creek and the Clark Fork River basin.

  11. 27 CFR 9.65 - North Fork of Roanoke.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Fork of Roanoke.” (b) Approved maps. The appropriate maps for determining the boundaries of the North... and 697 in Roanoke County. (2) Then the boundary follows State Route 697 northeast over Crawford Ridge...

  12. 27 CFR 9.65 - North Fork of Roanoke.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Fork of Roanoke.” (b) Approved maps. The appropriate maps for determining the boundaries of the North... and 697 in Roanoke County. (2) Then the boundary follows State Route 697 northeast over Crawford Ridge...

  13. Escapement and Productivity of Spring Chinook and Summer Steelhead in the John Day River Basin, Technical Report 2004-2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Wayne

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. Spawning ground surveys for spring (stream-type) Chinook salmon were conducted in four main spawning areas (Mainstem, Middle Fork, North Fork, and Granite Creek System) and seven minor spawning areas (South Fork, Camas Creek, Desolation Creek, Trail Creek, Deardorff Creek, Clear Creek, and Big Creek) in the John Day River basin during Augustmore » and September of 2005. Census surveys included 298.2 river kilometers (88.2 rkm within index, 192.4 rkm additional within census, and 17.6 rkm within random survey areas) of spawning habitat. We observed 902 redds and 701 carcasses including 227 redds in the Mainstem, 178 redds in the Middle Fork, 420 redds in the North Fork, 62 redds in the Granite Creek System, and 15 redds in Desolation Creek. Age composition of carcasses sampled for the entire basin was 1.6% age 3, 91.2% age 4, and 7.1% age 5. The sex ratio was 57.4% female and 42.6% male. Significantly more females than males were observed in the Granite Creek System. During 2005, 82.3% of female carcasses sampled had released all of their eggs. Significantly more pre-spawn mortalities were observed in Granite Creek. Nine (1.3%) of 701 carcasses were of hatchery origin. Of 298 carcasses examined, 4.0% were positive for the presence of lesions. A significantly higher incidence of gill lesions was found in the Granite Creek System when compared to the rest of the basin. Of 114 kidney samples tested, two (1.8%) had clinical BKD levels. Both infected fish were age-4 females in the Middle Fork. All samples tested for IHNV were negative. To estimate spring Chinook and summer steelhead smolt-to-adult survival (SAR) we PIT tagged 5

  14. Mouse embryonic stem cells have increased capacity for replication fork restart driven by the specific Filia-Floped protein complex.

    PubMed

    Zhao, Bo; Zhang, Weidao; Cun, Yixian; Li, Jingzheng; Liu, Yan; Gao, Jing; Zhu, Hongwen; Zhou, Hu; Zhang, Rugang; Zheng, Ping

    2018-01-01

    Pluripotent stem cells (PSCs) harbor constitutive DNA replication stress during their rapid proliferation and the consequent genome instability hampers their applications in regenerative medicine. It is therefore important to understand the regulatory mechanisms of replication stress response in PSCs. Here, we report that mouse embryonic stem cells (ESCs) are superior to differentiated cells in resolving replication stress. Specifically, ESCs utilize a unique Filia-Floped protein complex-dependent mechanism to efficiently promote the restart of stalled replication forks, therefore maintaining genomic stability. The ESC-specific Filia-Floped complex resides on replication forks under normal conditions. Replication stress stimulates their recruitment to stalling forks and the serine 151 residue of Filia is phosphorylated in an ATR-dependent manner. This modification enables the Filia-Floped complex to act as a functional scaffold, which then promotes the stalling fork restart through a dual mechanism: both enhancing recruitment of the replication fork restart protein, Blm, and stimulating ATR kinase activation. In the Blm pathway, the scaffolds recruit the E3 ubiquitin ligase, Trim25, to the stalled replication forks, and in turn Trim25 tethers and concentrates Blm at stalled replication forks through ubiquitination. In differentiated cells, the recruitment of the Trim25-Blm complex to replication forks and the activation of ATR signaling are much less robust due to lack of the ESC-specific Filia-Floped scaffold. Thus, our study reveals that ESCs utilize an additional and unique regulatory layer to efficiently promote the stalled fork restart and maintain genomic stability.

  15. Stalled replication forks within heterochromatin require ATRX for protection

    PubMed Central

    Huh, M S; Ivanochko, D; Hashem, L E; Curtin, M; Delorme, M; Goodall, E; Yan, K; Picketts, D J

    2016-01-01

    Expansive growth of neural progenitor cells (NPCs) is a prerequisite to the temporal waves of neuronal differentiation that generate the six-layered neocortex, while also placing a heavy burden on proteins that regulate chromatin packaging and genome integrity. This problem is further reflected by the growing number of developmental disorders caused by mutations in chromatin regulators. ATRX gene mutations cause a severe intellectual disability disorder (α-thalassemia mental retardation X-linked (ATRX) syndrome; OMIM no. 301040), characterized by microcephaly, urogenital abnormalities and α-thalassemia. Although the ATRX protein is required for the maintenance of repetitive DNA within heterochromatin, how this translates to disease pathogenesis remain poorly understood and was a focus of this study. We demonstrate that AtrxFoxG1Cre forebrain-specific conditional knockout mice display poly(ADP-ribose) polymerase-1 (Parp-1) hyperactivation during neurogenesis and generate fewer late-born Cux1- and Brn2-positive neurons that accounts for the reduced cortical size. Moreover, DNA damage, induced Parp-1 and Atm activation is elevated in progenitor cells and contributes to their increased level of cell death. ATRX-null HeLa cells are similarly sensitive to hydroxyurea-induced replication stress, accumulate DNA damage and proliferate poorly. Impaired BRCA1-RAD51 colocalization and PARP-1 hyperactivation indicated that stalled replication forks are not efficiently protected. DNA fiber assays confirmed that MRE11 degradation of stalled replication forks was rampant in the absence of ATRX or DAXX. Indeed, fork degradation in ATRX-null cells could be attenuated by treatment with the MRE11 inhibitor mirin, or exacerbated by inhibiting PARP-1 activity. Taken together, these results suggest that ATRX is required to limit replication stress during cellular proliferation, whereas upregulation of PARP-1 activity functions as a compensatory mechanism to protect stalled forks

  16. ANSYS simulation of the capacitance coupling of quartz tuning fork gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Feng, Lihui; Zhao, Ke; Cui, Fang; Sun, Yu-nan

    2013-12-01

    Coupling error is one of the main error sources of the quartz tuning fork gyroscope. The mechanism of capacitance coupling error is analyzed in this article. Finite Element Method (FEM) is used to simulate the structure of the quartz tuning fork by ANSYS software. The voltage output induced by the capacitance coupling is simulated with the harmonic analysis and characteristics of electrical and mechanical parameters influenced by the capacitance coupling between drive electrodes and sense electrodes are discussed with the transient analysis.

  17. Spring constant of a tuning-fork sensor for dynamic force microscopy

    PubMed Central

    Lange, Manfred; Schmuck, Merlin; Schmidt, Nico; Möller, Rolf

    2012-01-01

    Summary We present an overview of experimental and numerical methods to determine the spring constant of a quartz tuning fork in qPlus configuration. The simple calculation for a rectangular cantilever is compared to the values obtained by the analysis of the thermal excitation and by the direct mechanical measurement of the force versus displacement. To elucidate the difference, numerical simulations were performed taking account of the real geometry including the glue that is used to mount the tuning fork. PMID:23365793

  18. New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir

    USGS Publications Warehouse

    Wells, Ray E.; Haugerud, Ralph A.; Niem, Alan; Niem, Wendy; Ma, Lina; Madin, Ian; Evarts, Russell C.

    2018-04-10

    A geologic map of the greater Portland, Oregon, metropolitan area is planned that will document the region’s complex geology (currently in review: “Geologic map of the greater Portland metropolitan area and surrounding region, Oregon and Washington,” by Wells, R.E., Haugerud, R.A., Niem, A., Niem, W., Ma, L., Evarts, R., Madin, I., and others). The map, which is planned to be published as a U.S. Geological Survey Scientific Investigations Map, will consist of 51 7.5′ quadrangles covering more than 2,500 square miles, and it will represent more than 100 person-years of geologic mapping and studies. The region was mapped at the relatively detailed scale of 1:24,000 to improve understanding of its geology and its earthquake hazards. More than 100 geologic map units will record the 50-million-year history of volcanism, sedimentation, folding, and faulting above the Cascadia Subduction Zone. The geology contributes to the varied terroir of four American Viticultural Areas (AVAs) in the northwestern Willamette Valley: the Yamhill-Carlton, Dundee Hills, Chehalem Mountains, and Ribbon Ridge AVAs. Terroir is defined as the environmental conditions, especially climate and soils, that influence the quality and character of a region’s crops—in this case, grapes for wine.On this new poster (“New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir”), we present the geologic map at a reduced scale (about 1:175,000) to show the general distribution of geologic map units, and we highlight, discuss, and illustrate six major geologic events that helped shape the region and form its terrior. We also discuss the geologic elements that contribute to the character of each of the four AVAs in the northwestern Willamette Valley.

  19. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate

  20. THE GAPS BETWEEN AN INTEGRATED UNDERSTANDING OF CHANNELIZATION, HYDROLOGY AND WATER QUALITY VERSUS HOLISTIC FUTURE MANAGEMENT: A CASE STUDY OF THE WILLAMETTE RIVER, OREGON

    EPA Science Inventory

    Over the last 150 years the main channel of the Willamette River has been drastically altered by human activity. It has changed from a generally meandering and anastamosing river with extensive reaches of broad, active and connected flood plain features to a river with 13 major ...

  1. Archaeological Investigations in the Halls-Fowlkes Region South Fork of the Forked Deer River, West Tennessee

    DTIC Science & Technology

    1985-01-01

    Obion-Forked Deer River and Reelfoot -Indian Creek drainages (Smith 1979a), the Mud Creek drainage (Dye 1975), the Cypress Creek drainages (Peterson 1975...sites have been identified by the presence of Palmer, Cypress Creek, Lost Lake , Decatur, Kirk Stemmed, Big Sandy, Plevna, Haywood, Kirk Corner Notched...necessary to clarify this problem. Several different Mississippian phases, including the Walls, Boxtown, Ensley, Tiptonville and Reelfoot phases have

  2. Channelization and floodplain forests: Impacts of accelerated sedimentation and valley plug formation on floodplain forests of the Middle Fork Forked Deer River, Tennessee, USA

    USGS Publications Warehouse

    Oswalt, S.N.; King, S.L.

    2005-01-01

    We evaluated the severe degradation of floodplain habitats resulting from channelization and concomitant excessive coarse sedimentation on the Middle Fork Forked Deer River in west Tennessee from 2000 to 2003. Land use practices have resulted in excessive sediment in the tributaries and river system eventually resulting in sand deposition on the floodplain, increased overbank flooding, a rise in the groundwater table, and ponding of upstream timber. Our objectives were to: (1) determine the composition of floodplain vegetation communities along the degraded river reach, (2) to isolate relationships among these communities, geomorphic features, and environmental variables and (3) evaluate successional changes based on current stand conditions. Vegetation communities were not specifically associated with predefined geomorphic features; nevertheless, hydrologic and geomorphic processes as a result of channelization have clearly affected vegetation communities. The presence of valley plugs and continued degradation of upstream reaches and tributaries on the impacted study reach has arrested recovery of floodplain plant communities. Historically common species like Liquidambar styraciflua L. and Quercus spp. L. were not important, with importance values (IV) less than 1, and occurred in less than 20% of forested plots, while Acer rubrum L., a disturbance-tolerant species, was the most important species on the site (IV = 78.1) and occurred in 87% of forested plots. The results of this study also indicate that channelization impacts on the Middle Fork Forked Deer River are more temporally and spatially complex than previously described for other river systems. Rehabilitation of this system necessitates a long-term, landscape-scale solution that addresses watershed rehabilitation in a spatially and temporally hierarchical manner. ?? 2005 Elsevier B.V. All rights reserved.

  3. Development of an Environmental Flow Framework for the McKenzie River Basin, Oregon

    USGS Publications Warehouse

    Risley, John; Wallick, J. Rose; Waite, Ian; Stonewall, Adam J.

    2010-01-01

    The McKenzie River is a tributary to the Willamette River in northwestern Oregon. The McKenzie River is approximately 90 miles in length and has a drainage area of approximately 1,300 square miles. Two major flood control dams, a hydropower dam complex, and two hydropower canals significantly alter streamflows in the river. The structures reduce the magnitude and frequency of large and small floods while increasing the annual 7-day minimum streamflows. Stream temperatures also have been altered by the dams and other anthropogenic factors, such as the removal of riparian vegetation and channel simplification. Flow releases from one of the flood control dams are cooler in the summer and warmer in the fall in comparison to unregulated flow conditions before the dam was constructed. In 2006, the Oregon Department of Environmental Quality listed a total of 112.4, 6.3, and 55.7 miles of the McKenzie River basin mainstem and tributary stream reaches as thermally impaired for salmonid rearing, salmonid spawning, and bull trout, respectively. The analyses in this report, along with previous studies, indicate that dams have altered downstream channel morphology and ecologic communities. In addition to reducing the magnitude and frequency of floods, dams have diminished sediment transport by trapping bed material. Other anthropogenic factors, such as bank stabilization, highway construction, and reductions of in-channel wood, also have contributed to the loss of riparian habitat. A comparison of aerial photography taken in 1939 and 2005 showed substantial decreases in secondary channels, gravel bars, and channel sinuosity, particularly along the lower alluvial reaches of the McKenzie River. In addition, bed armoring and incision may contribute to habitat degradation, although further study is needed to determine the extent of these processes. Peak streamflow reduction has led to vegetation colonization and stabilization of formerly active bar surfaces. The large flood control

  4. An annotated bibliography of the hydrology and fishery studies of the South Fork Salmon River

    Treesearch

    Kathleen A. Seyedbagheri; Michael L. McHenry; William S. Platts

    1987-01-01

    A brief summary of the land management history of the South Fork Salmon River (Idaho) watershed includes citations and annotations of published and unpublished reports of fishery and hydrology studies conducted in the South Fork drainage for 1960 to 1986.

  5. Geochemical map of the North Fork John Day River Roadless Area, Grant County, Oregon

    USGS Publications Warehouse

    Evans, James G.

    1986-01-01

    The North Fork John Day River Roadless Area comprised 21,210 acres in the Umatilla and Wallowa-Whitman National Forests, Grant County, Oregon, about 30 miles northwest of Baker, Oregon. The irregularly shaped area extends for about 1 mile on both sides of a 25-mile segment of the North Fork John Day River from Big Creek on the west to North Fork John Day Campground on the east. Most of the roadless area is in the northern half of the Desolation Butte 15-minute quadrangle. The eastern end of the area is in parts of the Granite and Trout Meadows 7½-minute quadrangles.

  6. Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes.

    PubMed

    Hilton, Benjamin A; Liu, Ji; Cartwright, Brian M; Liu, Yiyong; Breitman, Maya; Wang, Youjie; Jones, Rowdy; Tang, Hui; Rusinol, Antonio; Musich, Phillip R; Zou, Yue

    2017-09-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder that is caused by a point mutation in the LMNA gene, resulting in production of a truncated farnesylated-prelamin A protein (progerin). We previously reported that XPA mislocalized to the progerin-induced DNA double-strand break (DSB) sites, blocking DSB repair, which led to DSB accumulation, DNA damage responses, and early replication arrest in HGPS. In this study, the XPA mislocalization to DSBs occurred at stalled or collapsed replication forks, concurrent with a significant loss of PCNA at the forks, whereas PCNA efficiently bound to progerin. This PCNA sequestration likely exposed ds-ssDNA junctions at replication forks for XPA binding. Depletion of XPA or progerin each significantly restored PCNA at replication forks. Our results suggest that although PCNA is much more competitive than XPA in binding replication forks, PCNA sequestration by progerin may shift the equilibrium to favor XPA binding. Furthermore, we demonstrated that progerin-induced apoptosis could be rescued by XPA, suggesting that XPA-replication fork binding may prevent apoptosis in HGPS cells. Our results propose a mechanism for progerin-induced genome instability and accelerated replicative senescence in HGPS.-Hilton, B. A., Liu, J., Cartwright, B. M., Liu, Y., Breitman, M., Wang, Y., Jones, R., Tang, H., Rusinol, A., Musich, P. R., Zou, Y. Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes. © FASEB.

  7. Delisting Process for Endangered Species and Relevance to Populations on Army Lands

    DTIC Science & Technology

    2005-10-01

    Tooth Cave spider Williamson County Commissioners Court 06-07-1993 Delist Negative (59 FR 11755) Uinta Basin hookless cactus National...distributed throughout the bottomlands and prairie woodlands of the lower Columbia, Willamette, and Umpqua River basins in Oregon and southern...proportion of plants that had been affected by OHVs was small primarily because drivers avoid vegetated basins due to the potential tire damage from woody

  8. A complex mechanism determines polarity of DNA replication fork arrest by the replication terminator complex of Bacillus subtilis.

    PubMed

    Duggin, Iain G; Matthews, Jacqueline M; Dixon, Nicholas E; Wake, R Gerry; Mackay, Joel P

    2005-04-01

    Two dimers of the replication terminator protein (RTP) of Bacillus subtilis bind to a chromosomal DNA terminator site to effect polar replication fork arrest. Cooperative binding of the dimers to overlapping half-sites within the terminator is essential for arrest. It was suggested previously that polarity of fork arrest is the result of the RTP dimer at the blocking (proximal) side within the complex binding very tightly and the permissive-side RTP dimer binding relatively weakly. In order to investigate this "differential binding affinity" model, we have constructed a series of mutant terminators that contain half-sites of widely different RTP binding affinities in various combinations. Although there appeared to be a correlation between binding affinity at the proximal half-site and fork arrest efficiency in vivo for some terminators, several deviated significantly from this correlation. Some terminators exhibited greatly reduced binding cooperativity (and therefore have reduced affinity at each half-site) but were highly efficient in fork arrest, whereas one terminator had normal affinity over the proximal half-site, yet had low fork arrest efficiency. The results show clearly that there is no direct correlation between the RTP binding affinity (either within the full complex or at the proximal half-site within the full complex) and the efficiency of replication fork arrest in vivo. Thus, the differential binding affinity over the proximal and distal half-sites cannot be solely responsible for functional polarity of fork arrest. Furthermore, efficient fork arrest relies on features in addition to the tight binding of RTP to terminator DNA.

  9. Von Economo Neurons and Fork Cells: A Neurochemical Signature Linked to Monoaminergic Function.

    PubMed

    Dijkstra, Anke A; Lin, Li-Chun; Nana, Alissa L; Gaus, Stephanie E; Seeley, William W

    2018-01-01

    The human anterior cingulate and frontoinsular cortices are distinguished by 2 unique Layer 5 neuronal morphotypes, the von Economo neurons (VENs) and fork cells, whose biological identity remains mysterious. Insights could impact research on diverse neuropsychiatric diseases to which these cells have been linked. Here, we leveraged the Allen Brain Atlas to evaluate mRNA expression of 176 neurotransmitter-related genes and identified vesicular monoamine transporter 2 (VMAT2), gamma-aminobutyric acid (GABA) receptor subunit θ (GABRQ), and adrenoreceptor α-1A (ADRA1A) expression in human VENs, fork cells, and a minority of neighboring Layer 5 neurons. We confirmed these results using immunohistochemistry or in situ hybridization. VMAT2 and GABRQ expression was absent in mouse cerebral cortex. Although VMAT2 is known to package monoamines into synaptic vesicles, in VENs and fork cells its expression occurs in the absence of monoamine-synthesizing enzymes or reuptake transporters. Thus, VENs and fork cells may possess a novel, uncharacterized mode of cortical monoaminergic function that distinguishes them from most other mammalian Layer 5 neurons. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Water supply, demand, and quality indicators for assessing the spatial distribution of water resource vulnerability in the Columbia River Basin

    USGS Publications Warehouse

    Chang, Heejun; Jung, Il-Won; Strecker, Angela L.; Wise, Daniel; Lafrenz, Martin; Shandas, Vivek; ,; Yeakley, Alan; Pan, Yangdong; Johnson, Gunnar; Psaris, Mike

    2013-01-01

    We investigated water resource vulnerability in the US portion of the Columbia River basin (CRB) using multiple indicators representing water supply, water demand, and water quality. Based on the US county scale, spatial analysis was conducted using various biophysical and socio-economic indicators that control water vulnerability. Water supply vulnerability and water demand vulnerability exhibited a similar spatial clustering of hotspots in areas where agricultural lands and variability of precipitation were high but dam storage capacity was low. The hotspots of water quality vulnerability were clustered around the main stem of the Columbia River where major population and agricultural centres are located. This multiple equal weight indicator approach confirmed that different drivers were associated with different vulnerability maps in the sub-basins of the CRB. Water quality variables are more important than water supply and water demand variables in the Willamette River basin, whereas water supply and demand variables are more important than water quality variables in the Upper Snake and Upper Columbia River basins. This result suggests that current water resources management and practices drive much of the vulnerability within the study area. The analysis suggests the need for increased coordination of water management across multiple levels of water governance to reduce water resource vulnerability in the CRB and a potentially different weighting scheme that explicitly takes into account the input of various water stakeholders.

  11. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North at Fargo and Grand Forks, North Dakota, 2003-12

    USGS Publications Warehouse

    Galloway, Joel M.

    2014-01-01

    The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time

  12. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks.

    PubMed

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia; Evangelou, Konstantinos; Da-Ré, Caterina; Huber, Florian; Padayachy, Laura; Tardy, Sebastien; Nicati, Noemie L; Barriot, Samia; Ochs, Fena; Lukas, Claudia; Lukas, Jiri; Gorgoulis, Vassilis G; Scapozza, Leonardo; Halazonetis, Thanos D

    2016-12-15

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. 1997 flood tracking chart for the Red River of the North basin

    USGS Publications Warehouse

    Wiche, G.J.; Martin, C.R.; Albright, L.L.; Wald, Geraldine B.

    1997-01-01

    The flood tracking chart for the Red River of the North Basin can be used by local citizens and emergency response personnel to determine the latest river stage. By comparing the current stage (water-surface elevation above some datum) and predicted flood crest to the recorded peak stages of previous floods, emergency response personnel and residents can make informed decisions concerning the threat to life and property. The flood tracking chart shows a map of the basin with the location of major real-time streamflow-gaging stations in the basin. Click on a station in the map or in the list below the map. Streamflow and stage information for the last 7 days, current stage relative to recorded peak stages, and streamflow for the previous 18 months are provided in graphic form, along with information such as station location and length of record. The National Weather Service has direct access to all information collected by the USGS for use in their forecasting models and routinely broadcasts the forecast information to the news media and on shortwave radio. The radio frequencies are 162.400 MHz (megahertz) in Petersburg, N. Dak., and Detroit Lakes, Minn.; 162.425 MHz in Webster, N. Dak., and Bemidji, Minn.; 162.450 MHz in Roosevelt, Minn.; 162.475 MHz in Grand Forks and Amenia, N. Dak.; and 162.550 MHz in Thief River Falls, Minn. To use the flood tracking chart for a particular property, determine the approximate elevation of the threatened property and the elevation of the gaging station that is closest to the threatened property. For example, most people in Grand Forks, N. Dak., probably will use the Red River of the North at Grand Forks station. Record the flood elevation for the gaging station. Compare the flood elevation to the elevation of the property to immediately know if the property has an impending threat of flooding. One must be cautioned by the fact that the surface of flowing water is not flat but has a slope. Therefore, the water-surface elevation

  14. Chemical quality of bottom sediments in selected streams, Jefferson County, Kentucky, April-July 1992

    USGS Publications Warehouse

    Moore, B.L.; Evaldi, R.D.

    1995-01-01

    Bottom sediments from 25 stream sites in Jefferson County, Ky., were analyzed for percent volatile solids and concentrations of nutrients, major metals, trace elements, miscellaneous inorganic compounds, and selected organic compounds. Statistical high outliers of the constituent concentrations analyzed for in the bottom sediments were defined as a measure of possible elevated concentrations. Statistical high outliers were determined for at least 1 constituent at each of 12 sampling sites in Jefferson County. Of the 10 stream basins sampled in Jefferson County, the Middle Fork Beargrass Basin, Cedar Creek Basin, and Harrods Creek Basin were the only three basins where a statistical high outlier was not found for any of the measured constituents. In the Pennsylvania Run Basin, total volatile solids, nitrate plus nitrite, and endrin constituents were statistical high outliers. Pond Creek was the only basin where five constituents were statistical high outliers-barium, beryllium, cadmium, chromium, and silver. Nitrate plus nitrite and copper constituents were the only statistical high outliers found in the Mill Creek Basin. In the Floyds Fork Basin, nitrate plus nitrite, phosphorus, mercury, and silver constituents were the only statistical high outliers. Ammonia was the only statistical high outlier found in the South Fork Beargrass Basin. In the Goose Creek Basin, mercury and silver constituents were the only statistical high outliers. Cyanide was the only statistical high outlier in the Muddy Fork Basin.

  15. A model for lignin alteration - Part II: Numerical model of natural gas generation and application to the Piceance Basin, Western Colorado

    USGS Publications Warehouse

    Payne, D.F.; Ortoleva, P.J.

    2001-01-01

    The model presented here simulates a network of parallel and sequential reactions that describe the structural and chemical transformation of lignin-derived sedimentary organic matter (SOM) and the resulting generation of mobile species from shallow burial to approximately low-volatile bituminous rank. The model is calibrated to the Upper Cretaceous Williams Fork Formation coal of the Piceance Basin at the Multi-Well Experiment (MWX) Site, assuming this coal is largely derived from lignin. The model calculates the content of functional groups on the residual molecular species, C, H, and O elemental weight percents of the residual species, and moles of residual molecular species and mobile species (including components of natural gas) through time. The model is generally more sensitive to initial molecular structure of the lignin-derived molecule and the H2O content of the system than to initial temperature, as the former affect the fundamental reaction paths. The model is used to estimate that a total of 314 trillion cubic feet (tcf) of methane is generated by the Williams Fork coal over the basin history. ?? 2001 Elsevier Science Ltd. All rights reserved.

  16. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection

    PubMed Central

    Abeyta, Antonio; Castella, Maria; Jacquemont, Celine; Taniguchi, Toshiyasu

    2017-01-01

    ABSTRACT Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51. PMID:27892797

  17. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection.

    PubMed

    Abeyta, Antonio; Castella, Maria; Jacquemont, Celine; Taniguchi, Toshiyasu

    2017-02-16

    Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51.

  18. 76 FR 46721 - Salmon-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project Environmental Impact... improve the health of the ecosystem and reach the desired future condition. DATES: Comments concerning the... Ecosystem Restoration Project EIS, P.O. Box 180, 11 Casey Rd., North Fork, ID 83466. Comments may also be...

  19. Superfluidity of 4He in dense aerogel studied using quartz tuning fork

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Okamoto, R.; Nakajima, A.; Abe, S.

    2018-03-01

    Superfluid 4He in aerogel is of interest because it has a normal component coupling to gel strand due to viscosity and a superfluid component with zero viscosity. Superfluid helium in aerogel has two sound modes, a slow critical mode and a fast one. In this study, quartz tuning fork was used in order to study acoustic properties of liquid 4He in aerogel with 90% porosity. Two pieces of aerogel were glued on both prongs of quartz tuning fork that had a resonance frequency of 33 kHz. The tuning fork was immersed in liquid 4He from 2 to 20 bar. The resonance frequency increased in the superfluid phase due to decrease in loaded mass. Temperature variation of resonance frequency was explained by that of superfluid density. Superfluid transition in aerogel was 2 mK lower than that without gel. Additional dissipation was observed in the temperature range between 1 K and transition temperature.

  20. The effectiveness of front fork systems at damping accelerations during isolated aspects specific to cross-country mountain biking.

    PubMed

    Macdermid, Paul W; Miller, Matthew C; Fink, Philip W; Stannard, Stephen R

    2017-11-01

    Cross-country mountain bike suspension reportedly enhances comfort and performance through reduced vibration and impact exposure. This study analysed the effectiveness of three different front fork systems at damping accelerations during the crossing of three isolated obstacles (stairs, drop, and root). One participant completed three trials on six separate occasions in a randomised order using rigid, air-sprung, and carbon leaf-sprung forks. Performance was determined by time to cross obstacles, while triaxial accelerometers quantified impact exposure and damping response. Results identified significant main effect of fork type for performance time (p < 0.05). The air-sprung and leaf-sprung forks were significantly slower than the rigid forks for the stairs (p < 0.05), while air-sprung suspension was slower than the rigid for the root protocol (p < 0.05). There were no differences for the drop protocol (p < 0.05). Rigid forks reduced overall exposure (p < 0.05), specifically at the handlebars for the stairs and drop trials. More detailed analysis presented smaller vertical accelerations at the handlebar for air-sprung and leaf-sprung forks on the stairs (p < 0.05), and drop (p < 0.05) but not the root. As such, it appears that the suspension systems tested were ineffective at reducing overall impact exposure at the handlebar during isolated aspects of cross-country terrain features which may be influenced to a larger extent by rider technique.

  1. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteinsmore » retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. We suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.« less

  2. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling

    DOE PAGES

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante; ...

    2015-09-08

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteinsmore » retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. We suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.« less

  3. Persistence of historical logging impacts on channel form in mainstem North Fork Caspar Creek

    Treesearch

    Michael B. Napolitano

    1998-01-01

    The old-growth redwood forest of North Fork Caspar Creek was clear-cut logged between 1860 and 1904. Transportation of logs involved construction of a splash dam in the headwaters of North Fork Caspar Creek. Water stored behind the dam was released during large storms to enable log drives. Before log drives could be conducted, the stream channel had to be prepared by...

  4. East Fork Watershed Cooperative Meeting: Local Representatives Briefing

    EPA Science Inventory

    USEPA research in the East Fork of the Little Miami River Watershed takes a whole system approach to determining how to best manage water quality in this large multi-use watershed. The success of the research relies on effective partnerships with other stakeholders of water quali...

  5. 76 FR 35909 - Temporary Concession Contract for Big South Fork National Recreation Area, TN/KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Recreation Area, TN/KY. SUMMARY: Pursuant to 36 CFR 51.24, public notice is hereby given that the National... Concession Contract for Big South Fork National Recreation Area, TN/KY AGENCY: National Park Service... services within Big South Fork National Recreation Area, Tennessee and Kentucky, for a term not to exceed 3...

  6. Flood-inundation maps for the East Fork White River at Columbus, Indiana

    USGS Publications Warehouse

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 5.4-mile reach of the East Fork White River at Columbus, Indiana, from where the Flatrock and Driftwood Rivers combine to make up East Fork White River to just upstream of the confluence of Clifty Creek with the East Fork White River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03364000&agency_cd=USGS&). The National Weather Service (NWS) forecasts flood hydrographs for the East Fork White River at Columbus, Indiana at their Advanced Hydrologic Prediction Service (AHPS) flood warning system Website (http://water.weather.gov/ahps/), that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. The calibrated hydraulic model was then used to determine 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data), having a 0.37-ft vertical accuracy and a 1.02 ft

  7. Is there sufficient evidence for tuning fork tests in diagnosing fractures? A systematic review.

    PubMed

    Mugunthan, Kayalvili; Doust, Jenny; Kurz, Bodo; Glasziou, Paul

    2014-08-04

    To determine the diagnostic accuracy of tuning fork tests for detecting fractures. Systematic review of primary studies evaluating the diagnostic accuracy of tuning fork tests for the presence of fracture. We searched MEDLINE, CINAHL, AMED, EMBASE, Sports Discus, CAB Abstracts and Web of Science from commencement to November 2012. We manually searched the reference lists of any review papers and any identified relevant studies. Two reviewers independently reviewed the list of potentially eligible studies and rated the studies for quality using the QUADAS-2 tool. Data were extracted to form 2×2 contingency tables. The primary outcome measure was the accuracy of the test as measured by its sensitivity and specificity with 95% CIs. We included six studies (329 patients), with two types of tuning fork tests (pain induction and loss of sound transmission). The studies included patients with an age range 7-60 years. The prevalence of fracture ranged from 10% to 80%. The sensitivity of the tuning fork tests was high, ranging from 75% to 100%. The specificity of the tests was highly heterogeneous, ranging from 18% to 95%. Based on the studies in this review, tuning fork tests have some value in ruling out fractures, but are not sufficiently reliable or accurate for widespread clinical use. The small sample size of the studies and the observed heterogeneity make generalisable conclusion difficult. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Feasibility and safety of modified inverted T-shaped method using linear stapler with movable cartridge fork for esophagojejunostomy following laparoscopic total gastrectomy.

    PubMed

    Ohuchida, Kenoki; Nagai, Eishi; Moriyama, Taiki; Shindo, Koji; Manabe, Tatsuya; Ohtsuka, Takao; Shimizu, Shuji; Nakamura, Masafumi

    2017-01-01

    We previously reported the use of an inverted T-shaped method to obtain a suitable view for hand sewing to close the common entry hole when the linear stapler was fired for esophagojejunostomy after laparoscopic total gastrectomy (LTG). This conventional method involved insertion of the fixed cartridge fork to the Roux limb and the fine movable anvil fork to the esophagus to avoid perforation of the jejunum. However, insertion of the movable anvil fork to the esophagus during this procedure often requires us to strongly push down the main body of the stapler with the fixed cartridge fork to bring the direction of the anvil fork in line with the direction of the long axis of the esophagus while controlling the opening of the movable anvil fork. We therefore modified this complicated inverted T-shaped method using a linear stapler with a movable cartridge fork. This modified method involved insertion of the movable cartridge fork into the Roux limb followed by natural, easy insertion of the fixed anvil fork into the esophagus without controlling the opening of the movable cartridge fork. We performed LTG in a total of 155 consecutive patients with gastric cancer from November 2007 to December 2015 in Kyushu University Hospital. After LTG, we performed the conventional inverted T-shaped method using a linear stapler with a fixed cartridge fork in 61 patients from November 2007 to July 2011 (fixed cartridge group). From August 2011, we used a linear stapler with a movable cartridge fork and performed the modified inverted T-shaped method in 94 patients (movable cartridge group). We herein compare the short-term outcomes in 94 cases of LTG using the modified method (movable cartridge fork) with those in 61 cases using the conventional method (fixed cartridge fork). We found no significant differences in the perioperative or postoperative events between the movable and fixed cartridge groups. One case of anastomotic leakage occurred in the fixed cartridge group, but no

  9. Feasibility and safety of modified inverted T-shaped method using linear stapler with movable cartridge fork for esophagojejunostomy following laparoscopic total gastrectomy

    PubMed Central

    Ohuchida, Kenoki; Moriyama, Taiki; Shindo, Koji; Manabe, Tatsuya; Ohtsuka, Takao; Shimizu, Shuji; Nakamura, Masafumi

    2017-01-01

    Background We previously reported the use of an inverted T-shaped method to obtain a suitable view for hand sewing to close the common entry hole when the linear stapler was fired for esophagojejunostomy after laparoscopic total gastrectomy (LTG). This conventional method involved insertion of the fixed cartridge fork to the Roux limb and the fine movable anvil fork to the esophagus to avoid perforation of the jejunum. However, insertion of the movable anvil fork to the esophagus during this procedure often requires us to strongly push down the main body of the stapler with the fixed cartridge fork to bring the direction of the anvil fork in line with the direction of the long axis of the esophagus while controlling the opening of the movable anvil fork. We therefore modified this complicated inverted T-shaped method using a linear stapler with a movable cartridge fork. This modified method involved insertion of the movable cartridge fork into the Roux limb followed by natural, easy insertion of the fixed anvil fork into the esophagus without controlling the opening of the movable cartridge fork. Methods We performed LTG in a total of 155 consecutive patients with gastric cancer from November 2007 to December 2015 in Kyushu University Hospital. After LTG, we performed the conventional inverted T-shaped method using a linear stapler with a fixed cartridge fork in 61 patients from November 2007 to July 2011 (fixed cartridge group). From August 2011, we used a linear stapler with a movable cartridge fork and performed the modified inverted T-shaped method in 94 patients (movable cartridge group). We herein compare the short-term outcomes in 94 cases of LTG using the modified method (movable cartridge fork) with those in 61 cases using the conventional method (fixed cartridge fork). Results We found no significant differences in the perioperative or postoperative events between the movable and fixed cartridge groups. One case of anastomotic leakage occurred in the

  10. The Sound Field around a Tuning Fork and the Role of a Resonance Box

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2015-01-01

    Atypical two-tine tuning fork is barely audible when held vibrating at an arm's length. It is enough, however, to touch its base to a table or, better, to a resonance box and the emitted sound becomes much louder. An inquiring student may pose questions: (1) Why is a bare tuning fork such a weak emitter of sound? (2) What is the role of the…

  11. Environmental Inventory: Little South Fork Cumberland River.

    DTIC Science & Technology

    1981-11-01

    coal and clay shale. The contact between the Mississippian strata (Pennington Formation ) and...these formations include the Barren Fork coal bed and the Stearns coal zone. In addition to these there are several unnamed coal beds. Number and...Cindy Cliff, Coal Cliff, Sand Cliff and Balls Cliff are being mined by the Greenwood Land and Mining Company of Somerset and Parkers Lake, Kentucky

  12. Influences of summer water temperatures on the movement, distribution, and resources use of fluvial Westslope Cutthroat Trout in the South Fork Clearwater River basin

    USGS Publications Warehouse

    Dobos, Marika E.; Corsi, Matthew P.; Schill, Daniel J.; DuPont, Joseph M.; Quist, Michael C.

    2016-01-01

    Although many Westslope Cutthroat Trout Oncorhynchus clarkii lewisi populations in Idaho are robust and stable, population densities in some systems remain below management objectives. In many of those systems, such as in the South Fork Clearwater River (SFCR) system, environmental conditions (e.g., summer temperatures) are hypothesized to limit populations of Westslope Cutthroat Trout. Radiotelemetry and snorkeling methods were used to describe seasonal movement patterns, distribution, and habitat use of Westslope Cutthroat Trout in the SFCR during the summers of 2013 and 2014. Sixty-six radio transmitters were surgically implanted into Westslope Cutthroat Trout (170–405 mm TL) from May 30–June 25, 2013, and June 20–July 6, 2014. Sedentary and mobile summer movement patterns by Westslope Cutthroat Trout were observed in the SFCR. Westslope Cutthroat Trout were generally absent from the lower SFCR. In the upper region of the SFCR, fish generally moved from the main-stem SFCR into tributaries as water temperatures increased during the summer. Fish remained in the middle region of the SFCR where water temperatures were cooler than in the upper or lower regions of the SFCR. A spatially explicit water temperature model indicated that the upper and lower regions of the SFCR exceeded thermal tolerance levels of Westslope Cutthroat Trout throughout the summer. During snorkeling, 23 Westslope Cutthroat Trout were observed in 13 sites along the SFCR and at low density (mean ± SD, 0.0003 ± 0.0001 fish/m2). The distribution of fish observed during snorkeling was consistent with the distribution of radio-tagged fish in the SFCR during the summer. Anthropogenic activities (i.e., grazing, mining, road construction, and timber harvest) in the SFCR basin likely altered the natural flow dynamics and temperature regime and thereby limited stream habitat in the SFCR system for Westslope Cutthroat Trout.

  13. A watershed's response to logging and roads: South Fork of Caspar Creek, California, 1967-1976

    Treesearch

    Raymond M. Rice; Forest B. Tilley; Patricia A. Datzman

    1979-01-01

    The effect of logging and roadbuilding on erosion and sedimentation are analyzed by comparing the North Fork and South Fork of Caspar Creek, in northern California. Increased sediment production during the 4 years after road construction, was 326 cu yd/sq mi/yr—80 percent greater than that predicted by the predisturbance regression analysis. The average...

  14. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...

  15. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...

  16. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...

  17. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...

  18. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...

  19. Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation

    NASA Astrophysics Data System (ADS)

    Min, Wookee; Bruhn, Christopher; Grigaravicius, Paulius; Zhou, Zhong-Wei; Li, Fu; Krüger, Anja; Siddeek, Bénazir; Greulich, Karl-Otto; Popp, Oliver; Meisezahl, Chris; Calkhoven, Cornelis F.; Bürkle, Alexander; Xu, Xingzhi; Wang, Zhao-Qi

    2013-12-01

    Damaged replication forks activate poly(ADP-ribose) polymerase 1 (PARP1), which catalyses poly(ADP-ribose) (PAR) formation; however, how PARP1 or poly(ADP-ribosyl)ation is involved in the S-phase checkpoint is unknown. Here we show that PAR, supplied by PARP1, interacts with Chk1 via a novel PAR-binding regulatory (PbR) motif in Chk1, independent of ATR and its activity. iPOND studies reveal that Chk1 associates readily with the unperturbed replication fork and that PAR is required for efficient retention of Chk1 and phosphorylated Chk1 at the fork. A PbR mutation, which disrupts PAR binding, but not the interaction with its partners Claspin or BRCA1, impairs Chk1 and the S-phase checkpoint activation, and mirrors Chk1 knockdown-induced hypersensitivity to fork poisoning. We find that long chains, but not short chains, of PAR stimulate Chk1 kinase activity. Collectively, we disclose a previously unrecognized mechanism of the S-phase checkpoint by PAR metabolism that modulates Chk1 activity at the replication fork.

  20. Hydrometeorology Testbed in the American River Basin of Northern California

    NASA Astrophysics Data System (ADS)

    Kingsmill, D.; Lundquist, J.; Jorgensen, D.; McGinley, J.; Werner, K.

    2006-12-01

    In California, most precipitation occurs in the winter, as a mixture of rain at lower elevations and snow in the higher mountains. Storms from the Pacific carry large amounts of moisture, and put people and property at risk from flooding because of the vast urban development and infrastructure in low-lying areas of the central valley of California. Improved flood prediction at finer spatial and temporal resolutions can help minimize these risks. The first step is to accurately measure and predict spatially-distributed precipitation. This is particularly true for river basins with complex orography where the processes that lead to the development of precipitation and determine its distribution and fate on the ground are not well understood. To make progress in this important area, the U.S. National Oceanic and Atmospheric Administration (NOAA) is leading a Hydrometeorology Testbed (HMT) effort designed to accelerate the testing and infusion of new technologies, models, and scientific results from the research community into daily forecasting operations. HMT is a national effort (http://hmt.noaa.gov) that will be implemented in different regions of the U.S. over the next decade. In each region, the focus will be on individual experimental test basins. The first full-scale implementation of HMT, called HMT-West, targets northern California's flood-vulnerable American River Basin (4740 km2) on the west slopes of the Sierra Nevada between Sacramento and Lake Tahoe. The deployment strategy is focused on the North Fork of the basin (875 km2), which is the least- controlled portion of the entire catchment. This basin was selected as a test basin because it has reliable streamflow records dating back to 1941 and has been well characterized by prior field studies (e.g. the Sierra Cooperative Pilot Project) and modeling efforts, focusing on both short-term operations and long-term climate scenarios. Intensive field activities in the North Fork of the American River started in

  1. New Sections and Fossils From the Southern Bighorn Basin, Wyoming Document Faunal Turnover During the PETM

    NASA Astrophysics Data System (ADS)

    Bloch, J. I.; Boyer, D. M.; Strait, S. G.; Wing, S. L.

    2004-12-01

    Though earliest Eocene (Wa-0) mammals are known from the southern Bighorn Basin, late Paleocene mammals are not. Recent discovery of latest Paleocene mammals in section with new Wa-0 faunas and floras at Cabin Fork allows for the first studies of terrestrial biotic change across the Paleocene-Eocene boundary interval outside of the northern Bighorn Basin. A differential GPS was used to map the area and provide a framework for high-resolution biostratigraphy. Least squares interpolation of bedding planes from points marking outcrop of beds reveals high r2 coefficients (0.97-0.98). This indicates that small scale folding is minimal and bed traces are smoothly planar. Beds in the study area strike N-NW (355° ) and dip shallowly W-SW (<1.0° ). Smaller scale undulations are present: to the NE beds strike NW and dip to the SW (342° /1.0° ) whereas those to the SW strike NE and dip NW (5° /1.0° ). Shallow dips allow us to approximate stratigraphic thickness with elevation. Paleocene mammals, including diagnostic Clarkforkian land-mammal age indicators, Aletodon gunnelli, Apheliscus nitidus, and Haplomylus simpsoni, were found in a ferruginous, grit-pebble conglomerate at the base of a channel sand at the top of the Fort Union Fm. The fossiliferous horizon is extensive and has produced over 200 specimens from more than 60 sites for which positions have been determined with sub-meter accuracy. Absence of Plesiadapis cookei and Hyracotherium spp., together with high relative abundance of Phenacodus and Ectocion, indicate this fauna is latest Clarkforkian (Phenacodus-Ectocion Range Zone, Cf-3). Earliest Eocene mammals, including diagnostic Wa-0 taxa Arfia junnei, Copecion davisi, Hyracotherium sandrae, and Diacodexis ilicis, are represented by more than 233 specimens from 70 sites at three levels in the lowest Willwood Formation. The lowest fossils come from paleosols and claygall accumulations in stringer sands approximately 3 meters above the top of the channel sand

  2. Estimation of ground-water recharge from precipitation, runoff into drywells, and on-site waste-disposal systems in the Portland Basin, Oregon and Washington

    USGS Publications Warehouse

    Snyder, D.T.; Morgan, D.S.; McGrath, T.S.

    1994-01-01

    The average recharge rate in the Portland Basin, in northwestern Oregon and southwestern Washington, is estimated to be about 22.0 inches per year. Of that amount, precipitation accounts for about 20.8 inches per year, runoff into drywells 0.9 inches per year, and on-site waste disposal about 0.4 inches per year. Recharge is highest, about 49 inches per year, in the Cascade Range. Recharge is lowest, near zero, along and between the Columbia and Willamette Rivers. Recharge is higher locally in discrete areas owing to recharge from runoff into drywells and on-site, waste-disposal systems in urbanized parts of the study area. In these urbanized areas, recharge ranges from 0 to 49 inches per year.

  3. Water-Quality and Biological Characteristics and Responses to Agricultural Land Retirement in Three Streams of the Minnesota River Basin, Water Years 2006-08

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; Sanocki, Christopher A.; Mohring, Eric H.; Kiesling, Richard L.

    2009-01-01

    Water-quality and biological characteristics in three streams in the Minnesota River Basin were assessed using data collected during water years 2006-08. The responses of nutrient concentrations, suspended-sediment concentrations, and biological characteristics to agricultural land retirement also were assessed. In general, total nitrogen, suspended-sediment, and chlorophyll-a concentrations, and fish resource quality improved with increasing land retirement. The Chetomba Creek, West Fork Beaver Creek, and South Branch Rush River subbasins, which range in size from about 200 to 400 square kilometers, have similar geologic and hydrologic settings but differ with respect to the amount, type, and location of retired agricultural land. Total nitrogen concentrations were largest, with a mean of 15.0 milligrams per liter (mg/L), in water samples from the South Branch Rush River, a subbasin with little to no agricultural land retirement; total nitrogen concentrations were smaller in samples from Chetomba Creek (mean of 10.6 mg/L) and West Fork Beaver Creek (mean of 7.9 mg/L), which are subbasins with more riparian or upland land retirement at the basin scale. Total phosphorus concentrations were not related directly to differing land-retirement percentages with mean concentrations at primary data-collection sites of 0.259 mg/L in the West Fork Beaver Creek subbasin, 0.164 mg/L in the Chetomba Creek subbasin, and 0.180 mg/L in the South Branch Rush River subbasin. Temporal variation in water quality was characterized using data from in-stream water-quality monitors and storm-sediment data. Fish data indicate better resource quality for the West Fork Beaver Creek subbasin than for other subbasins likely due to a combination of factors, including habitat quality, food resources, and dissolved oxygen characteristics. Index of biotic integrity (IBI) scores increased as local land-retirement percentages (within 50 and 100 meters of the streams) increased. Data and analysis from

  4. Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork.

    PubMed

    Parajuli, Shankar; Teasley, Daniel C; Murali, Bhavna; Jackson, Jessica; Vindigni, Alessandro; Stewart, Sheila A

    2017-09-15

    Faithful DNA replication is essential for genome stability. To ensure accurate replication, numerous complex and redundant replication and repair mechanisms function in tandem with the core replication proteins to ensure DNA replication continues even when replication challenges are present that could impede progression of the replication fork. A unique topological challenge to the replication machinery is posed by RNA-DNA hybrids, commonly referred to as R-loops. Although R-loops play important roles in gene expression and recombination at immunoglobulin sites, their persistence is thought to interfere with DNA replication by slowing or impeding replication fork progression. Therefore, it is of interest to identify DNA-associated enzymes that help resolve replication-impeding R-loops. Here, using DNA fiber analysis, we demonstrate that human ribonuclease H1 (RNH1) plays an important role in replication fork movement in the mammalian nucleus by resolving R-loops. We found that RNH1 depletion results in accumulation of RNA-DNA hybrids, slowing of replication forks, and increased DNA damage. Our data uncovered a role for RNH1 in global DNA replication in the mammalian nucleus. Because accumulation of RNA-DNA hybrids is linked to various human cancers and neurodegenerative disorders, our study raises the possibility that replication fork progression might be impeded, adding to increased genomic instability and contributing to disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. 26. MOORSE DRILL CABINET AND FORK ART FABRICATED AT SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. MOORSE DRILL CABINET AND FORK ART FABRICATED AT SHOP (L TO R)- LOOKING SOUTHEAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  6. EVALUATING THE IMPACT OF POLICY OPTIONS ON AGRICULTURAL LANDSCAPES: AN ALTERNATIVE-FUTURES APPROACH

    EPA Science Inventory

    Alternative-futures analysis was used to analyze different scenarios of future growth patterns and attendant resource allocations on the agricultural system of Oregon's Willamette River Basin. A stakeholder group formulated three policy alternatives: a continuation of current tr...

  7. Multi-temporal AirSWOT elevations on the Willamette river: error characterization and algorithm testing

    NASA Astrophysics Data System (ADS)

    Tuozzolo, S.; Frasson, R. P. M.; Durand, M. T.

    2017-12-01

    We analyze a multi-temporal dataset of in-situ and airborne water surface measurements from the March 2015 AirSWOT field campaign on the Willamette River in Western Oregon, which included six days of AirSWOT flights over a 75km stretch of the river. We examine systematic errors associated with dark water and layover effects in the AirSWOT dataset, and test the efficacies of different filtering and spatial averaging techniques at reconstructing the water surface profile. Finally, we generate a spatially-averaged time-series of water surface elevation and water surface slope. These AirSWOT-derived reach-averaged values are ingested in a prospective SWOT discharge algorithm to assess its performance on SWOT-like data collected from a borderline SWOT-measurable river (mean width = 90m).

  8. Class I Histone Deacetylase HDAC1 and WRN RECQ Helicase Contribute Additively to Protect Replication Forks upon Hydroxyurea-induced Arrest.

    PubMed

    Kehrli, Keffy; Phelps, Michael; Lazarchuk, Pavlo; Chen, Eleanor; Monnat, Ray; Sidorova, Julia M

    2016-11-18

    The WRN helicase/exonuclease is mutated in Werner syndrome of genomic instability and premature aging. WRN-depleted fibroblasts, although remaining largely viable, have a reduced capacity to maintain replication forks active during a transient hydroxyurea-induced arrest. A strand exchange protein, RAD51, is also required for replication fork maintenance, and here we show that recruitment of RAD51 to stalled forks is reduced in the absence of WRN. We performed a siRNA screen for genes that are required for viability of WRN-depleted cells after hydroxyurea treatment, and identified HDAC1, a member of the class I histone deacetylase family. One of the functions of HDAC1, which it performs together with a close homolog HDAC2, is deacetylation of new histone H4 deposited at replication forks. We show that HDAC1 depletion exacerbates defects in fork reactivation and progression after hydroxyurea treatment observed in WRN- or RAD51-deficient cells. The additive WRN, HDAC1 loss-of-function phenotype is also observed with a catalytic mutant of HDAC1; however, it does not correlate with changes in histone H4 deacetylation at replication forks. On the other hand, inhibition of histone deacetylation by an inhibitor specific to HDACs 1-3, CI-994, correlates with increased processing of newly synthesized DNA strands in hydroxyurea-stalled forks. WRN co-precipitates with HDAC1 and HDAC2. Taken together, our findings indicate that WRN interacts with HDACs 1 and 2 to facilitate activity of stalled replication forks under conditions of replication stress. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. 35. CHARGING DOOR OF CUPOLA FORM LOFT, WITH FORKS FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. CHARGING DOOR OF CUPOLA FORM LOFT, WITH FORKS FOR FEEDING COKE, FOUNDRY BELOW-LOOKING NORTH. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  10. Effects of rainbow trout fry of a metals-contaminated diet of benthic invertebrates from the Clark Fork River, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, D.F.; Brumbaugh, W.G.; DeLonay, A.J.

    1994-01-01

    The upper Clark Fork River in northwestern Montana has received mining wastes from the Butte and Anaconda areas since 1880. These wastes have contaminated areas of the river bed and floodplain with tailings and heavy metal sludge, resulting in elevated concentration of metals in surface water, sediments, and biota. Rainbow trout Oncorhynchus mykiss were exposed immediately after hatching for 91 d to cadmium, copper, lead, and zinc in water at concentrations simulating those in Clark Fork River. From exogenous feeding (21 d posthatch) through 91 d, fry were also fed benthic invertebrates from the Clark Fork River that contained elevatedmore » concentrations of arsenic, cadmium, copper, and lead. Evaluations of different combinations of diet and water exposure indicated diet-borne metals were more important than water-borne metals - at the concentrations we tested - in reducing survival and growth of rainbow trout. Whole-body metal concentrations ([mu]g/g, wet weight) at 91 d in fish fed Clark Fork invertebrates without exposure to Clark Fork water were arsenic, 1.4; cadmium, 0.16; and copper, 6.7. These were similar to concentrations found in Clark Fork River fishes. Livers from fish on the high-metals diets exhibited degenerative changes and generally lacked glycogen vacuolation. Indigenous Clark Fork River invertebrates provide a concentrated source of metals for accumulation into young fishes, and probably were the cause of decreased survival and growth of age-0 rainbow trout in our laboratory exposures. 30 refs., 8 figs., 4 tabs.« less

  11. 76 FR 35009 - Draft Oil and Gas Management Plan/Environmental Impact Statement for Big South Fork National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... DEPARTMENT OF THE INTERIOR National Park Service [5130-0400-NZM] Draft Oil and Gas Management Plan... Management Plan/ Environmental Impact Statement for Big South Fork National River and Recreation Area and... gas management plan/environmental impact statement (OGMP/DEIS) for the proposed Big South Fork...

  12. 37. BRIDGE 115, SMITH RIVER MIDDLE FORK OREGON STATE HIGHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. BRIDGE 1-15, SMITH RIVER MIDDLE FORK OREGON STATE HIGHWAY 199. JOSEPHINE COUNTY, OREGON. LOOKING SSW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  13. 17. DETAIL VIEW OF WHAT APPEARS TO BE STIRRING FORK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL VIEW OF WHAT APPEARS TO BE STIRRING FORK THAT MIXED COFFEE BEANS AS THEY WERE HUSKED - Hacienda Cafetalera Santa Clara, Coffee Mill, KM 19, PR Route 372, Hacienda La Juanita, Yauco Municipio, PR

  14. Maps showing mines, quarries, prospects, and exposures in the Devils Fork Roadless Area, Scott County, Virginia

    USGS Publications Warehouse

    Behum, Paul T.

    1984-01-01

    The Devils Fork Roadless Area is located at the eastern edge of the Appalachian coal region and is within the Cumberland Mountain section of the Appalachian Plateau physiographic province. Most of the area is drained by Devil Fork and its tributaries. Clinch Rock Branch of Straight Creek, Roddy Branch of Valley Creek, and Stinking Creek, all tributary to the Clinch River, drain small fringe tracts. Altitudes range from about 1,550 ft on the lower part of Straight Fork to about 3,490 ft at Cox Place on Little Mountain. Vegetation varies from mixed hardwoods in the uplands to thickets of conifer, rhododendron, and laurel in moist protected areas, as in coves along drainage courses.

  15. Hydrogeologic framework of the North Fork and surrounding areas, Long Island, New York

    USGS Publications Warehouse

    Schubert, Christopher E.; Bova, Richard G.; Misut, Paul E.

    2004-01-01

    Ground water on the North Fork of Long Island is the sole source of drinking water, but the supply is vulnerable to saltwater intrusion and upconing in response to heavy pumping. Information on the area's hydrogeologic framework is needed to analyze the effects of pumping and drought on ground-water levels and the position of the freshwater-saltwater interface. This will enable water-resource managers and water-supply purveyors to evaluate a wide range of water-supply scenarios to safely meet water-use demands. The extent and thickness of hydrogeologic units and position of the freshwater-saltwater interface were interpreted from previous work and from exploratory drilling during this study.The fresh ground-water reservoir on the North Fork consists of four principal freshwater flow systems (referred to as Long Island mainland, Cutchogue, Greenport, and Orient) within a sequence of unconsolidated Pleistocene and Late Cretaceous deposits. A thick glacial-lake-clay unit appears to truncate underlying deposits in three buried valleys beneath the northern shore of the North Fork. Similar glacial-lake deposits beneath eastern and east-central Long Island Sound previously were inferred to be younger than the surficial glacial deposits exposed along the northern shore of Long Island. Close similarities in thickness and upper-surface altitude between the glacial-lake-clay unit on the North Fork and the glacial-lake deposits in Long Island Sound indicate, however, that the two are correlated at least along the North Fork shore.The Matawan Group and Magothy Formation, undifferentiated, is the uppermost Cretaceous unit on the North Fork and constitutes the Magothy aquifer. The upper surface of this unit contains a series of prominent erosional features that can be traced beneath Long Island Sound and the North Fork. Northwest-trending buried ridges extend several miles offshore from areas southeast of Rocky Point and Horton Point. A promontory in the irregular, north

  16. Geohydrologic Investigations and Landscape Characteristics of Areas Contributing Water to Springs, the Current River, and Jacks Fork, Ozark National Scenic Riverways, Missouri

    USGS Publications Warehouse

    Mugel, Douglas N.; Richards, Joseph M.; Schumacher, John G.

    2009-01-01

    The Ozark National Scenic Riverways (ONSR) is a narrow corridor that stretches for approximately 134 miles along the Current River and Jacks Fork in southern Missouri. Most of the water flowing in the Current River and Jacks Fork is discharged to the rivers from springs within the ONSR, and most of the recharge area of these springs is outside the ONSR. This report describes geohydrologic investigations and landscape characteristics of areas contributing water to springs and the Current River and Jacks Fork in the ONSR. The potentiometric-surface map of the study area for 2000-07 shows that the groundwater divide extends beyond the surface-water divide in some places, notably along Logan Creek and the northeastern part of the study area, indicating interbasin transfer of groundwater between surface-water basins. A low hydraulic gradient occurs in much of the upland area west of the Current River associated with areas of high sinkhole density, which indicates the presence of a network of subsurface karst conduits. The results of a low base-flow seepage run indicate that most of the discharge in the Current River and Jacks Fork was from identified springs, and a smaller amount was from tributaries whose discharge probably originated as spring discharge, or from springs or diffuse groundwater discharge in the streambed. Results of a temperature profile conducted on an 85-mile reach of the Current River indicate that the lowest average temperatures were within or downstream from inflows of springs. A mass-balance on heat calculation of the discharge of Bass Rock Spring, a previously undescribed spring, resulted in an estimated discharge of 34.1 cubic feet per second (ft3/s), making it the sixth largest spring in the Current River Basin. The 13 springs in the study area for which recharge areas have been estimated accounted for 82 percent (867 ft3/s of 1,060 ft3/s) of the discharge of the Current River at Big Spring during the 2006 seepage run. Including discharge from

  17. Sediment transport and storage in North Fork Caspar Creek, Mendocino County, California: water years 1980-1988

    Treesearch

    Michael Brent Napolitano

    1996-01-01

    Abstract - The old-growth redwood forest of North Fork Caspar Creek was clear-cut between 1864 and 1904. Previous research on logging-related changes in suspended sediment and streamflow would suggest that North Fork Caspar Creek has recovered from historical logging (Rice et al., 1979; Ziemer, 1981); research on the influence of large woody debris (LWD) on channel...

  18. Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André

    2017-05-01

    We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.

  19. Hydrologic conditions and hazards in the Kennicott River basin, Wrangell-St. Elias National Park Preserve, Alaska

    USGS Publications Warehouse

    Rickman, R.L.; Rosenkrans, D.S.

    1997-01-01

    McCarthy, Alaska, is on the Kennicott River, about 1 mile from the terminus of Kennicott Glacier in the Wrangell-St. Elias National Park and Preserve. Most visitors to McCarthy and the park cross the West Fork Kennicott River using a hand-pulled tram and cross the East Fork Kennicott River on a temporary footbridge. Outburst floods from glacier-dammed lakes result in channel erosion, aggradation, and migration of the Kennicott River, which disrupt transportation links, destroy property, and threaten life. Hidden Creek Lake, the largest of six glacier-dammed lakes in the Kennicott River Basin, has annual outbursts that cause the largest floods on the Kennicott River. Outbursts from Hidden Creek Lake occur from early fall to mid-summer, and lake levels at the onset of the outbursts have declined between 1909 and 1995. Criteria for impending outbursts for Hidden Creek Lake include lake stage near or above 3,000 to 3,020 feet, stationary or declining lake stage, evidence of recent calving of large ice blocks from the ice margin, slush ice and small icebergs stranded on the lakeshore, and fresh fractures in the ice-margin region. The lower Kennicott Glacier has thinned and retreated since about 1860. The East and West Fork Kennicott River channels migrated in response to changes in the lower Kennicott Glacier. The largest channel changes occur during outburst floods from Hidden Creek Lake, whereas channel changes from the other glacier-dammed lake outbursts are small. Each year, the West Fork Kennicott River conveys a larger percentage of the Kennicott Glacier drainage than it did the previous year. Outburst floods on the Kennicott River cause the river stage to rise over a period of several hours. Smaller spike peaks have a very rapid stage rise. Potential flood magnitude was estimated by combining known maximum discharges from Hidden Creek Lake and Lake Erie outburst floods with a theoretical large regional flood. Flood hazard areas at the transportation corridor were

  20. 117. Laurel Fork Viaduct. Elevation view of this 545 1939 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Laurel Fork Viaduct. Elevation view of this 545 1939 steel girder viaduct. Example of structure with plain reinforced concrete arches. Looking northwest. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  1. ALTERNATIVE FUTURES ANALYSIS: A FRAMEWORK FOR COMMUNITY DECISION-MAKING

    EPA Science Inventory

    Alternative futures analysis is an assessment approach designed to inform community decisions about land and water use. We conducted an alternative futures analysis in Oregon's Willamette River Basin. Three alternative future landscapes for the year 2050 were depicted and compare...

  2. Distribution and abundance of Millicoma Dace in the Coos River Basin, Oregon

    USGS Publications Warehouse

    Scheerer, Paul D.; Peterson, James T.; Clements, Shaun

    2017-01-01

    The Millicoma Dace Rhinichthys cataractae is a form of Longnose Dace endemic to the Coos River drainage in southwestern Oregon. Sparse species records in the Oregon State University Ichthyology Collection and database and infrequent recent encounters prompted surveys to assess the current status and distribution of the species. In 2014, we surveyed locations that had historically supported Millicoma Dace using backpack electrofishing to describe their current distribution and abundance at these locations. In 2015, we extended these surveys further upstream in the South Coos River basin, outside of the documented historical range. We used an N-mixture model to estimate abundance and capture probability for Millicoma Dace at each sampling location. We evaluated the effects of habitat covariates on both capture probability and abundance at each sample site. We found Millicoma Dace were widespread throughout their historical range and in the South Coos River sites outside of their documented historical range. We only found Millicoma Dace associated with native fishes; we did not collect any nonnative fish during our surveys. We collected Millicoma Dace exclusively from swift-water habitats, which were relatively uncommon in the basin, and found them typically associated with cobble or boulder substrates. Millicoma Dace were most abundant in the South Fork Coos and West Fork Millicoma River subbasins. We estimated capture probabilities for Millicoma Dace ranging from 9% when substrate was dominated by bedrock to 28% when substrate was dominated by cobble or gravel. Abundance estimates ranged from 1 to 560 dace per sampling location with a total estimated abundance (sum of site estimates) of over 3200 dace for the sites we sampled.

  3. Far-travelled permian chert of the North Fork terrane, Klamath mountains, California

    USGS Publications Warehouse

    Mankinen, E.A.; Irwin, W.P.; Blome, C.D.

    1996-01-01

    Permian chert in the North Fork terrane and correlative rocks of the Klamath Mountains province has a remanent magnetization that is prefolding and presumably primary. Paleomagnetic results indicate that the chert formed at a paleolatitude of 8.6?? ?? 2.5?? but in which hemisphere remains uncertain. This finding requires that these rocks have undergone at least 8.6?? ?? 4.4?? of northward transport relative to Permian North America since their deposition. Paleontological evidence suggests that the Permian limestone of the Eastern Klamath terrane originated thousands of kilometers distant from North America. The limestone of the North Fork terrane may have formed at a similar or even greater distance as suggested by its faunal affinity to the Eastern Klamath terrane and more westerly position. Available evidence indicates that convergence of the North Fork and composite Central Metamorphic-Eastern Klamath terranes occurred during Triassic or Early Jurassic time and that their joining together was a Middle Jurassic event. Primary and secondary magnetizations indicate that the new composite terrane containing these and other rocks of the Western Paleozoic and Triassic belt behaved as a single rigid block that has been latitudinally concordant with the North American craton since Middle Jurassic time.

  4. A novel device for endoscopic submucosal dissection, the Fork knife

    PubMed Central

    Kim, Hyun Gun; Cho, Joo Young; Bok, Gene Hyun; Cho, Won Young; Kim, Wan Jung; Hong, Su Jin; Ko, Bong Min; Kim, Jin Oh; Lee, Joon Seong; Lee, Moon Sung; Shim, Chan Sup

    2008-01-01

    AIM: To introduce and evaluate the efficacy and technical aspects of endoscopic submucosal dissection (ESD) using a novel device, the Fork knife. METHODS: From March 2004 to April 2008, ESD was performed on 265 gastric lesions using a Fork knife (Endo FS®) (group A) and on 72 gastric lesions using a Flexknife (group B) at a single tertiary referral center. We retrospectively compared the endoscopic characteristics of the tumors, pathological findings, and sizes of the resected specimens. We also compared the en bloc resection rate, complete resection rate, complications, and procedure time between the two groups. RESULTS: The mean size of the resected specimens was 4.27 ± 1.26 cm in group A and 4.29 ± 1.48 cm in group B. The en bloc resection rate was 95.8% (254/265 lesions) in group A and 93.1% (67/72) in group B. Complete ESD without tumor cell invasion of the resected margin was obtained in 81.1% (215/265) of group A and in 73.6% (53/72) of group B. The perforation rate was 0.8% (2/265) in group A and 1.4% (1/72) in group B. The mean procedure time was 59.63 ± 56.12 min in group A and 76.65 ± 70.75 min in group B (P < 0.05). CONCLUSION: The Fork knife (Endo FS®) is useful for clinical practice and has the advantage of reducing the procedure time. PMID:19034979

  5. 8. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading crane, manufactured by Cleveland Tramrail, 2-1/2 ton capacity. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  6. 9. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading crane, manufactured by Cleveland Tramrail, 2-1/2 ton capacity. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  7. Integrating Salmon Recovery, Clean Water Act Compliance, Restoration, and Climate Change Impacts in the South Fork Nooksack River

    EPA Science Inventory

    "The South Fork Nooksack River (SFNR) is an important tributary to the Nooksack River, Bellingham Bay, and the Salish Sea. The South Fork Nooksack River comprises one of the 22 independent populations of spring Chinook in the Puget Sound Chinook Evolutionarily Significant Un...

  8. Human Pif1 helicase unwinds synthetic DNA structures resembling stalled DNA replication forks

    PubMed Central

    George, Tresa; Wen, Qin; Griffiths, Richard; Ganesh, Anil; Meuth, Mark; Sanders, Cyril M.

    2009-01-01

    Pif-1 proteins are 5′→3′ superfamily 1 (SF1) helicases that in yeast have roles in the maintenance of mitochondrial and nuclear genome stability. The functions and activities of the human enzyme (hPif1) are unclear, but here we describe its DNA binding and DNA remodeling activities. We demonstrate that hPif1 specifically recognizes and unwinds DNA structures resembling putative stalled replication forks. Notably, the enzyme requires both arms of the replication fork-like structure to initiate efficient unwinding of the putative leading replication strand of such substrates. This DNA structure-specific mode of initiation of unwinding is intrinsic to the conserved core helicase domain (hPifHD) that also possesses a strand annealing activity as has been demonstrated for the RecQ family of helicases. The result of hPif1 helicase action at stalled DNA replication forks would generate free 3′ ends and ssDNA that could potentially be used to assist replication restart in conjunction with its strand annealing activity. PMID:19700773

  9. Stream-Sediment Geochemistry in Mining-Impacted Drainages of the Yankee Fork of the Salmon River, Custer County, Idaho

    USGS Publications Warehouse

    Frost, Thomas P.; Box, Stephen E.

    2009-01-01

    This reconnaissance study was undertaken at the request of the USDA Forest Service, Region 4, to assess the geochemistry, in particular the mercury and selenium contents, of mining-impacted sediments in the Yankee Fork of the Salmon River in Custer County Idaho. The Yankee Fork has been the site of hard-rock and placer mining, primarily for gold and silver, starting in the 1880s. Major dredge placer mining from the 1930s to 1950s in the Yankee Fork disturbed about a 10-kilometer reach. Mercury was commonly used in early hard-rock mining and placer operations for amalgamation and recovery of gold. During the late 1970s, feasibility studies were done on cyanide-heap leach recovery of gold from low-grade ores of the Sunbeam and related deposits. In the mid-1990s a major open-pit bulk-vat leach operation was started at the Grouse Creek Mine. This operation shut down when gold values proved to be lower than expected. Mercury in stream sediments in the Yankee Fork ranges from below 0.02 ppm to 7 ppm, with the highest values associated with old mill locations and lode and placer mines. Selenium ranges from below the detection limit for this study of 0.2 ppm to 4 ppm in Yankee Fork sediment samples. The generally elevated selenium content in the sediment samples reflect the generally high selenium contents in the volcanic rocks that underlie the Yankee Fork and the presence of gold and silver selenides in some of the veins that were exploited in the early phases of mining.

  10. Disruption of PCNA-lamins A/C interactions by prelamin A induces DNA replication fork stalling.

    PubMed

    Cobb, Andrew M; Murray, Thomas V; Warren, Derek T; Liu, Yiwen; Shanahan, Catherine M

    2016-09-02

    The accumulation of prelamin A is linked to disruption of cellular homeostasis, tissue degeneration and aging. Its expression is implicated in compromised genome stability and increased levels of DNA damage, but to date there is no complete explanation for how prelamin A exerts its toxic effects. As the nuclear lamina is important for DNA replication we wanted to investigate the relationship between prelamin A expression and DNA replication fork stability. In this study we report that the expression of prelamin A in U2OS cells induced both mono-ubiquitination of proliferating cell nuclear antigen (PCNA) and subsequent induction of Pol η, two hallmarks of DNA replication fork stalling. Immunofluorescence microscopy revealed that cells expressing prelamin A presented with high levels of colocalisation between PCNA and γH2AX, indicating collapse of stalled DNA replication forks into DNA double-strand breaks. Subsequent protein-protein interaction assays showed prelamin A interacted with PCNA and that its presence mitigated interactions between PCNA and the mature nuclear lamina. Thus, we propose that the cytotoxicity of prelamin A arises in part, from it actively competing against mature lamin A to bind PCNA and that this destabilises DNA replication to induce fork stalling which in turn contributes to genomic instability.

  11. Direct seeding experiments on the 1951 Forks Burn.

    Treesearch

    Elmer W. Shaw

    1953-01-01

    Late in the summer of 1951 the Port Angeles and Western Railroad fire (commonly called the Forks fire) killed more than a half billion board feet of timber. An area approximately 20 miles long and 2-1/2 miles wide, covering 32,668 acres, was burned. It included fine virgin timber, thrifty plantations, ranch lands, reproduction areas, advanced young growth, logged-off...

  12. Phosphorus Concentrations, Loads, and Yields in the Illinois River Basin, Arkansas and Oklahoma, 2000-2004

    USGS Publications Warehouse

    Tortorelli, Robert L.; Pickup, Barbara E.

    2006-01-01

    The Illinois River and tributaries, Flint Creek and Baron Fork, are designated scenic rivers in Oklahoma. Recent phosphorus levels in streams in the basin have resulted in the growth of excess algae, which have limited the aesthetic benefits of water bodies in the basin, especially the Illinois River and Lake Tenkiller. The Oklahoma Water Resources Board has established a standard for total phosphorus not to exceed the 30-day geometric mean concentration of 0.037 milligram per liter in Oklahoma Scenic Rivers. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, conducted an investigation to summarize phosphorus concentrations and provide estimates of phosphorus loads, yields, and flow-weighted concentrations in the Illinois River and tributaries from January 2000 through December 2004. Data from water-quality samples collected from 2000 to 2004 were used to summarize phosphorus concentrations and estimate phosphorus loads, yields, and mean flow-weighted concentrations in the Illinois River basin for three 3-year periods - 2000-2002, 2001-2003, and 2002-2004, to update a previous report that used data from water-quality samples from 1997 to 2001. This report provides information needed to advance knowledge of the regional hydrologic system and understanding of hydrologic processes, and provides hydrologic data and results useful to multiple parties for interstate compacts. Phosphorus concentrations in the Illinois River basin were significantly greater in runoff samples than in base-flow samples. Phosphorus concentrations generally decreased with increasing base flow, from dilution, and decreased in the downstream direction in the Illinois River from the Watts to Tahlequah stations. Phosphorus concentrations generally increased with runoff, possibly because of phosphorus resuspension, stream bank erosion, and the addition of phosphorus from nonpoint sources. Estimated mean annual phosphorus loads were greater at the Illinois River

  13. In-reservoir behavior, dam passage, and downstream migration of juvenile Chinook salmon and juvenile steelhead from Detroit Reservoir and Dam to Portland, Oregon, February 2013-February 2014

    USGS Publications Warehouse

    Beeman, John W.; Adams, Noah S.

    2015-01-01

    As part of the evaluations conducted at Detroit Dam, we continued to refine and improve methods for monitoring fish movements in the Willamette River. The goal was to develop stable, cost-effective, long-term monitoring arrays suitable for detection of any Juvenile Salmon Acoustic Telemetry System (JSATS)-tagged fish in the Willamette River. These data then could be used to estimate timing, migration rates, and survival of JSATS-tagged fish from various studies in the Willamette River Basin. The challenge, however, is that acoustic telemetry generally performs poorly in shallow, turbulent water, like that found in the Willamette River. We successfully designed, deployed, and maintained a series of monitoring sites near the Oregon cities of Salem, Wilsonville, and Portland. In the spring, detection probabilities at these sites ranged from 0.900 to 1.000. In the fall, the detection probabilities decreased and ranged from 0.526 to 1.000. The lower detection probabilities, particularly at the Salem site (0.526), were owing to loss of data caused by abnormally high flows as well as the 2013 Federal government shutdown, which prevented us from servicing the equipment. The monitoring sites that we installed seem to be robust and enable the efficient use of acoustic-tagged fish for studies of migration or survival in the Willamette River and similar environments.

  14. Photolithography and Selective Etching of an Array of Quartz Tuning Fork Resonators with Improved Impact Resistance Characteristics

    NASA Astrophysics Data System (ADS)

    Lee, Sungkyu

    2001-08-01

    Quartz tuning fork blanks with improved impact-resistant characteristics for use in Qualcomm mobile station modem (MSM)-3000 central processing unit (CPU) chips for code division multiple access (CDMA), personal communication system (PCS), and global system for mobile communication (GSM) systems were designed using finite element method (FEM) analysis and suitable processing conditions were determined for the reproducible precision etching of a Z-cut quartz wafer into an array of tuning forks. Negative photoresist photolithography for the additive process was used in preference to positive photoresist photolithography for the subtractive process to etch the array of quartz tuning forks. The tuning fork pattern was transferred via a conventional photolithographical chromium/quartz glass template using a standard single-sided aligner and subsequent negative photoresist development. A tightly adhering and pinhole-free 600/2000 Å chromium/gold mask was coated over the developed photoresist pattern which was subsequently stripped in acetone. This procedure was repeated on the back surface of the wafer. With the protective metallization area of the tuning fork geometry thus formed, etching through the quartz wafer was performed at 80°C in a ± 1.5°C controlled bath containing a concentrated solution of ammonium bifluoride to remove the unwanted areas of the quartz wafer. The quality of the quartz wafer surface finish after quartz etching depended primarily on the surface finish of the quartz wafer prior to etching and the quality of quartz crystals used. Selective etching of a 100 μm quartz wafer could be achieved within 90 min at 80°C. A selective etching procedure with reproducible precision has thus been established and enables the photolithographic mass production of miniature tuning fork resonators.

  15. Gas Phase Photoacoustic Sensor at 8.41 mu m Using Quartz Tuning Forks and Amplitude Modulated Quantum Cascade Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojcik, Michael D.; Phillips, Mark C.; Cannon, Bret D.

    2006-10-01

    We demonstrate the performance of a novel long-wave infrared photoacoustic laser absorbance spectrometer for gas-phase species using an amplitude modulated (AM) quantum cascade (QC) laser and a quartz tuning fork microphone. Photoacoustic signal was generated by focusing the output of a Fabry-Perot QC laser operating at 8.41 ?m between the legs of a quartz tuning fork which served as a transducer for the transient acoustic pressure wave. The QC laser was modulated at the resonant frequency of the tuning fork (32.8 kHz) and delivered a modest 5.3 mW at the tuning fork. This spectrometer was calibrated using the infrared absorbermore » Freon-134a by performing a simultaneous absorption measurement using a 35 cm absorption cell. The NEAS of this instrument was determined to be 2 x 10{sup -8} W cm-1 Hz{sup -1/2}. A corresponding theoretical analysis of the instrument sensitivity is presented and is capable of quantitatively reproducing the experimental NEAS, indicating that the fundamental sensitivity of this technique is limited by the noise floor of the tuning fork itself.« less

  16. PROJECTING THE BIOLOGICAL CONDITION OF STREAMS UNDER ALTERNATIVE SCENARIOS OF HUMAN LAND USE

    EPA Science Inventory

    We present empirical models for estimating the status of fish and aquatic invertebrate communities in all second to fourth-order streams (1:100,000 scale; total stream length = 6476 km) throughout the Willamette River Basin, Oregon. The models project fish and invertebrate status...

  17. LAND COVER MAPPING IN AN AGRICULTURAL SETTING USING MULTISEASONAL THEMATIC MAPPER DATA

    EPA Science Inventory

    A multiseasonal Landsat Thematic Mapper (TM) data set consisting of five image dates from a single year was used to characterize agricultural and related land cover in the Willamette River Basin (WRB) of western Oregon. Image registration was accomplished using an automated grou...

  18. The Sound Field Around a Tuning Fork and the Role of a Resonance Box

    NASA Astrophysics Data System (ADS)

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2015-02-01

    Atypical two-tine tuning fork is barely audible when held vibrating at an arm's length. It is enough, however, to touch its base to a table or, better, to a resonance box and the emitted sound becomes much louder. An inquiring student may pose questions: Why is a bare tuning fork such a weak emitter of sound?What is the role of the resonance box?Where does energy connected with larger intensity of emitted acoustic waves come from?

  19. Summary of information on synthetic organic compounds and trace elements in tissue of aquatic biota, Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, 1974-96

    USGS Publications Warehouse

    Maret, Terry R.; Dutton, DeAnn M.

    1999-01-01

    As part of the Northern Rockies Intermontane Basins study of the National Water-Quality Assessment Program, data collected between 1974 and 1996 were compiled to describe contaminants in tissue of riverine species. Tissue-contaminant data from 11 monitoring programs and studies representing 28 sites in the study area were summarized. Tissue-contaminant data for most streams generally were lacking. Many studies have focused on and around mining-affected areas on the Clark Fork and Coeur d'Alene Rivers and their major tributaries. DDT and PCBs and their metabolites and congeners were the synthetic organic contaminants most commonly detected in fish tissue. Fish collected from the Spokane River in Washington contained elevated concentrations of PCB arochlors, some of which exceeded guidelines for the protection of human health and predatory wildlife. Tissue samples of fish from the Flathead River watershed contained higher-than-expected concentrations of PCBs, which might have resulted from atmospheric transport. Trace element concentrations in fish and macroinvertebrates collected in and around mining areas were elevated compared with background concentrations. Some cadmium, copper, lead, and mercury concentrations in fish tissue were elevated compared with results from other studies, and some exceeded guidelines. Macroinvertebrates from the Coeur d'Alene River contained higher concentrations of cadmium, lead, and zinc than did macroinvertebrates from other river systems in mining-affected areas. A few sportfish fillet samples, most from the Spokane River in Washington, were collected to assess human health risk. Concentrations of PCBs in these fillets exceeded screening values for the protection of human health. At present, there is no coordinated, long-term fish tissue monitoring program for rivers in the study area, even though contaminants are present in fish at levels considered a threat to human health. Development of a coordinated, centralized national data

  20. Shrub-steppe vegetation trend, Middle Fork Salmon River, Idaho

    Treesearch

    James M. Peek

    2000-01-01

    The Middle Fork Salmon River drainage of the Frank Church River-Of-No-Return Wilderness has a history of livetock grazing from 1890 to 1950, and changes in grazing pressure from native ungulates. High mule deer (Odocoileus hemionus) populations occurred between 1940 and 1960, and high elk (Cervus elaphus) populations occurred in...

  1. Procedure for calculating estimated ultimate recoveries of Bakken and Three Forks Formations horizontal wells in the Williston Basin

    USGS Publications Warehouse

    Cook, Troy A.

    2013-01-01

    Estimated ultimate recoveries (EURs) are a key component in determining productivity of wells in continuous-type oil and gas reservoirs. EURs form the foundation of a well-performance-based assessment methodology initially developed by the U.S. Geological Survey (USGS; Schmoker, 1999). This methodology was formally reviewed by the American Association of Petroleum Geologists Committee on Resource Evaluation (Curtis and others, 2001). The EUR estimation methodology described in this paper was used in the 2013 USGS assessment of continuous oil resources in the Bakken and Three Forks Formations and incorporates uncertainties that would not normally be included in a basic decline-curve calculation. These uncertainties relate to (1) the mean time before failure of the entire well-production system (excluding economics), (2) the uncertainty of when (and if) a stable hyperbolic-decline profile is revealed in the production data, (3) the particular formation involved, (4) relations between initial production rates and a stable hyperbolic-decline profile, and (5) the final behavior of the decline extrapolation as production becomes more dependent on matrix storage.

  2. Records of wells, water levels, and chemical quality of ground water in the French Prairie-Mission Bottom area, northern Willamette Valley, Oregon

    USGS Publications Warehouse

    Price, Don

    1961-01-01

    An investigation of the ground-water resources of the northern Willamette Valley was begun in 1960 as a cooperative program between the Ground Water Branch, U.S. Geological Survey, and the Oregon State Engineer. The northern Willamette Valley area is one of the fastest growing areas of ground-water use within the state. The purpose of the investigation is to obtain an understanding of the availability, movement, and chemical quality of the ground-water resources of the area. This information is needed to attain an optimum development of the ground-water resources of the area and to aid in the prevention of problems of overdevelopment and pollution. The first phase of the program was the collection of well records, water level records, and chemical quality data in the central part of this area, which is known as the French Prairie-Mission Bottom area. The records collected in this phase of the study are essential in the preparation of an interpretive report describing the occurrence and movement of ground-water in the French Prairie-Mission Bottom area. These records, which will not be included in the interpretive report that is being prepared at this time, are being made available in this publication to aid in the location and the development of the ground-water resources of the area, and to serve as a supplement to the forthcoming interpretive report.

  3. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments.

    PubMed

    Kolinjivadi, Arun Mouli; Sannino, Vincenzo; De Antoni, Anna; Zadorozhny, Karina; Kilkenny, Mairi; Técher, Hervé; Baldi, Giorgio; Shen, Rong; Ciccia, Alberto; Pellegrini, Luca; Krejci, Lumir; Costanzo, Vincenzo

    2017-09-07

    Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51 T131P mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. MOF Suppresses Replication Stress and Contributes to Resolution of Stalled Replication Forks.

    PubMed

    Singh, Dharmendra Kumar; Pandita, Raj K; Singh, Mayank; Chakraborty, Sharmistha; Hambarde, Shashank; Ramnarain, Deepti; Charaka, Vijaya; Ahmed, Kazi Mokim; Hunt, Clayton R; Pandita, Tej K

    2018-03-15

    The human MOF (hMOF) protein belongs to the MYST family of histone acetyltransferases and plays a critical role in transcription and the DNA damage response. MOF is essential for cell proliferation; however, its role during replication and replicative stress is unknown. Here we demonstrate that cells depleted of MOF and under replicative stress induced by cisplatin, hydroxyurea, or camptothecin have reduced survival, a higher frequency of S-phase-specific chromosome damage, and increased R-loop formation. MOF depletion decreased replication fork speed and, when combined with replicative stress, also increased stalled replication forks as well as new origin firing. MOF interacted with PCNA, a key coordinator of replication and repair machinery at replication forks, and affected its ubiquitination and recruitment to the DNA damage site. Depletion of MOF, therefore, compromised the DNA damage repair response as evidenced by decreased Mre11, RPA70, Rad51, and PCNA focus formation, reduced DNA end resection, and decreased CHK1 phosphorylation in cells after exposure to hydroxyurea or cisplatin. These results support the argument that MOF plays an important role in suppressing replication stress induced by genotoxic agents at several stages during the DNA damage response. Copyright © 2018 American Society for Microbiology.

  5. Behavior and movements of adult spring Chinook salmon (Oncorhynchus tshawytscha) in the Chehalis River Basin, southwestern Washington, 2015

    USGS Publications Warehouse

    Liedtke, Theresa L.; Zimmerman, Mara S.; Tomka, Ryan G.; Holt, Curt; Jennings, Lyle

    2016-09-14

    Recent interest in flood control and restoration strategies in the Chehalis River Basin has increased the need to understand the current status and ecology of spring Chinook salmon. Based on the extended period between freshwater entry and spawn timing, spring Chinook salmon have the longest exposure of all adult Chinook salmon life histories to the low-flow and high water temperature conditions that typically occur during summer. About 100 adult spring Chinook salmon were found dead in the Chehalis River in July and August 2009. Adult Chinook salmon are known to hold in cool-water refugia during warm summer months, but the extent to which spring Chinook salmon might use thermal refugia in the Chehalis River is unknown. The movements and temperature exposures of adult spring Chinook salmon following their return to the Chehalis River were investigated using radiotelemetry and transmitters equipped with temperature sensors, combined with water temperature monitoring throughout the basin. A total of 23 spring Chinook salmon were radio-tagged between April and early July 2015; 11 were captured and released in the main-stem Chehalis River, and 12 were captured and released in the South Fork Newaukum River. Tagged fish were monitored with a combination of fixed-site monitoring locations and regular mobile tracking, from freshwater entry through the spawning period.Water temperature and flow conditions in the main-stem Chehalis River during 2015 were atypical compared to historical averages. Mean monthly water temperatures between March and July 2015 were higher than any decade since 1960 and mean daily flows were 30–70 percent of the flows in previous years. Overall, 96 percent of the tagged fish were detected, with a mean of 62 d in the detection history of tagged fish. Of the 11 fish released in the main-stem Chehalis River, six fish (55 percent) moved upstream, either shortly after release (2–7 d, 50 percent), or following a short delay (12–18 d, 50 percent

  6. Flood-inundation maps for the East Fork White River at Shoals, Indiana

    USGS Publications Warehouse

    Boldt, Justin A.

    2016-05-06

    Digital flood-inundation maps for a 5.9-mile reach of the East Fork White River at Shoals, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the East Fork White River at Shoals, Ind. (USGS station number 03373500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site SHLI3). NWS AHPS forecast peak stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.Flood profiles were computed for the East Fork White River reach by means of a one-dimensional, step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the current stage-discharge relation (USGS rating no. 43.0) at USGS streamgage 03373500, East Fork White River at Shoals, Ind. The calibrated hydraulic model was then used to compute 26 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from approximately bankfull (10 ft) to the highest stage of the current stage-discharge rating curve (35 ft). The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM), derived from light detection and ranging (lidar) data, to delineate the area flooded at each water level. The areal extent of the 24-ft flood-inundation map was

  7. Flood-inundation maps for the East Fork White River near Bedford, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2014-01-01

    Digital flood-inundation maps for an 1.8-mile reach of the East Fork White River near Bedford, Indiana (Ind.) were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selectedwater levels (stages) at USGS streamgage 03371500, East Fork White River near Bedford, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=03371500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the East Fork White River near Bedford, Ind. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the East Fork White River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03371500, East Fork White River near Bedford, Ind., and documented high-water marks from the flood of June 2008. The calibrated hydraulic model was then used to determine 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from

  8. Restoration release of overtopped Oregon white oak increases 10-year growth and acorn production

    Treesearch

    Warren D. Devine; Constance A. Harrington

    2013-01-01

    In the Willamette Valley-Puget Trough-Georgia Basin ecoregion of the North American Pacific Northwest, there has been widespread encroachment of Douglas-fir (Pseudotsuga menziesii) upon Oregon white oak (Quercus garryana) savanna and woodland stands that were historically maintained by frequent anthropogenic fire. Restoration...

  9. Nitrate removal and denitrification in headwater agricultural streams of the Pacific Northwest

    EPA Science Inventory

    Headwater streams can serve as important sites for nitrogen (N) removal in watersheds. Here we examine the influence of agricultural streams on watershed N export in the Willamette River Basin of western Oregon, USA, a region with mixed agricultural, urban and forestry land uses...

  10. Water and Proppant Requirements and Water Production Associated with Undiscovered Petroleum in the Bakken and Three Forks Formations, North Dakota and Montana, USA

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Varela, B. A.; Thamke, J.; Hawkins, S. J.; Gianoutsos, N. J.; Tennyson, M. E.

    2017-12-01

    Water is used for several stages of oil and gas production, in particular for hydraulic fracturing that is typically used during production of petroleum from low-permeability shales and other rock types (referred to as "continuous" petroleum accumulations). Proppant, often sand, is also consumed during hydraulic fracturing. Water is then produced from the reservoir along with the oil and gas, representing either a disposal consideration or a possible source of water for further petroleum development or other purposes. The U.S. Geological Survey (USGS) has developed an approach for regional-scale estimation of these water and proppant quantities in order to provide an improved understanding of possible impacts and to help with planning and decision-making. Using the new methodology, the USGS has conducted a quantitative assessment of water and proppant requirements, and water production volumes, associated with associated with possible future production of undiscovered petroleum resources in the Bakken and Three Forks Formations, Williston Basin, USA. This water and proppant assessment builds directly from the 2013 USGS petroleum assessment for the Bakken and Three Forks Formations. USGS petroleum assessments incorporate all available geologic and petroleum production information, and include the definition of assessment units (AUs) that specify the geographic regions and geologic formations for the assessment. The 2013 petroleum assessment included 5 continuous AUs for the Bakken Formation and one continuous AU for the Three Forks Formation. The assessment inputs are defined probabilistically, and a Monte Carlo approach provides outputs that include uncertainty bounds. We can summarize the assessment outputs with the mean values of the associated distributions. The mean estimated total volume of water for well drilling and cement for all six continuous AUs is 5.9 billion gallons, and the mean estimated volume of water for hydraulic fracturing for all AUs is 164

  11. Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor

    PubMed Central

    Wang, Rui; Tsow, Francis; Zhang, Xuezhi; Peng, Jhih-Hong; Forzani, Erica S.; Chen, Yongsheng; Crittenden, John C.; Destaillats, Hugo; Tao, Nongjian

    2009-01-01

    A chemical sensor for ozone based on an array of microfabricated tuning forks is described. The tuning forks are highly sensitive and stable, with low power consumption and cost. The selective detection is based on the specific reaction of the polymer with ozone. With a mass detection limit of ∼2 pg/mm2 and response time of 1 second, the sensor coated with a polymer sensing material can detect ppb-level ozone in air. The sensor is integrated into a miniaturized wearable device containing a detection circuit, filtration, battery and wireless communication chip, which is ideal for personal and microenvironmental chemical exposure monitoring. PMID:22346720

  12. East Fork Watershed Cooperative: Toward better system-scale watershed management

    EPA Science Inventory

    The East Fork Watershed Cooperative is a group intent on understanding how to best manage water quality in a large mixed-use Midwestern watershed system. The system contains a reservoir that serves as a source of drinking water and is popular for water recreation. The reservoir i...

  13. Sediment delivery in the North Fork of Caspar Creek

    Treesearch

    Raymond M. Rice

    1996-01-01

    Sediment delivery was estimated for 13 tributary watersheds and the North Fork of Caspar Creek. The ratio of sediment to erosion averaged 16.4%, ranging from 1.0% to 89.7%. Because the data were so highly skewed their median is a better indicator of central tendency than their mean. The median delivery ratio was 6.3%

  14. 40 CFR 131.34 - Kansas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation...

  15. 40 CFR 131.34 - Kansas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation...

  16. 40 CFR 131.34 - Kansas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation...

  17. 40 CFR 131.34 - Kansas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation...

  18. 40 CFR 131.34 - Kansas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Contact Recreation Basin: Solomon Subbasin: Upper North Fork Solomon Ash Creek 10260011 24 Primary Contact... Recreation Subbasin: Lower North Fork Solomon Beaver Creek 10260012 10 Primary Contact Recreation Beaver...

  19. 131. FORKS DIVERSION, HIGH LINE AND LOW LINE CANALS, TWIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    131. FORKS DIVERSION, HIGH LINE AND LOW LINE CANALS, TWIN FALLS COUNTY, SOUTH OF HANSEN, IDAHO; INLET SIDE OF LOW LINE CANAL, WEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  20. 133. FORKS DIVERSION, HIGH LINE AND LOW LINE CANALS, TWIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    133. FORKS DIVERSION, HIGH LINE AND LOW LINE CANALS, TWIN FALLS COUNTY, SOUTH OF HANSEN, IDAHO; VIEW OF OUTLET SIDE OF LOW LINE GATES. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  1. Ecological condition of the East Fork of the Gila River and selected tributaries: Gila National Forest, New Mexico

    Treesearch

    Robert D. Ohmart

    1996-01-01

    Ecological condition of riparian habitats along the East Fork of the Gila River, Main Diamond Creek, lower South Diamond Creek, and Black Canyon Creek are all in very heavily degraded condition. Channel cross-sections show extensive entrenchment, high width-to-depth ratios, and numerous reaches where banks are sloughing into the stream, especially on the East Fork of...

  2. LAND USE AND LOTIC DIATOM ASSEMBLAGES: A MULTI-SPATIAL AND TEMPORAL ASSESSMENT

    EPA Science Inventory

    We assessed the effects of land-use at multiple spatial scales (e.g., catchment, stream network, and stream reach) on periphyton from 25 wadeable streams along a land-use gradient in the Willamette River Basin, Oregon, in a dry season. Additional water chemistry samples were col...

  3. Amphibian occurrence and aquatic invaders in a changing landscape: Implications for wetland mitigation in the Willamette Valley, Oregon

    USGS Publications Warehouse

    Pearl, Christopher A.; Adams, Michael J.; Leuthold, N.; Bury, R. Bruce

    2005-01-01

    Despite concern about the conservation status of amphibians in western North America, few field studies have documented occurrence patterns of amphibians relative to potential stressors. We surveyed wetland fauna in Oregon's Willamette Valley and used an information theoretic approach (AIC) to rank the associations between native amphibian breeding occurrence and wetland characteristics, non-native aquatic predators, and landscape characteristics in a mixed urban-agricultural landscape. Best predictors varied among the five native amphibians and were generally consistent with life history differences. Pacific tree frog (Pseudacris regilla) and long-toed salamander (Ambystoma macrodactylum) occurrence was best predicted by the absence of non-native fish. Northern red-legged frog (Rana a. aurora) and northwestern salamander (Ambystoma gracile) were most strongly related to wetland vegetative characteristics. The occurrence of rough-skinned newts (Taricha granulosa), a migratory species that makes extensive use of terrestrial habitats, was best predicted by greater forest cover within 1 km. The absence of non-native fish was a strong predictor of occurrence for four of the five native species. In contrast, amphibians were not strongly related to native fish presence. We found little evidence supporting negative effects of the presence of breeding populations of bullfrog (Rana catesbeiana) on any native species. Only the two Ambystoma salamanders were associated with wetland permanence. Northwestern salamanders (which usually have a multi-year larval stage) were associated with permanent waters, while long-toed salamanders were associated with temporary wetlands. Although all the species make some use of upland habitats, only one (rough-skinned newt) was strongly associated with surrounding landscape conditions. Instead, our analysis suggests that within-wetland characteristics best predict amphibian occurrence in this region. We recommend that wetland preservation and

  4. Phosphorylation of CMG helicase and Tof1 is required for programmed fork arrest

    PubMed Central

    Bastia, Deepak; Srivastava, Pankaj; Zaman, Shamsu; Choudhury, Malay; Mohanty, Bidyut K.; Bacal, Julien; Langston, Lance D.; Pasero, Philippe; O’Donnell, Michael E.

    2016-01-01

    Several important physiological transactions, including control of replicative life span (RLS), prevention of collision between replication and transcription, and cellular differentiation, require programmed replication fork arrest (PFA). However, a general mechanism of PFA has remained elusive. We previously showed that the Tof1–Csm3 fork protection complex is essential for PFA by antagonizing the Rrm3 helicase that displaces nonhistone protein barriers that impede fork progression. Here we show that mutations of Dbf4-dependent kinase (DDK) of Saccharomyces cerevisiae, but not other DNA replication factors, greatly reduced PFA at replication fork barriers in the spacer regions of the ribosomal DNA array. A key target of DDK is the mini chromosome maintenance (Mcm) 2–7 complex, which is known to require phosphorylation by DDK to form an active CMG [Cdc45 (cell division cycle gene 45), Mcm2–7, GINS (Go, Ichi, Ni, and San)] helicase. In vivo experiments showed that mutational inactivation of DDK caused release of Tof1 from the chromatin fractions. In vitro binding experiments confirmed that CMG and/or Mcm2–7 had to be phosphorylated for binding to phospho-Tof1–Csm3 but not to its dephosphorylated form. Suppressor mutations that bypass the requirement for Mcm2–7 phosphorylation by DDK restored PFA in the absence of the kinase. Retention of Tof1 in the chromatin fraction and PFA in vivo was promoted by the suppressor mcm5-bob1, which bypassed DDK requirement, indicating that under this condition a kinase other than DDK catalyzed the phosphorylation of Tof1. We propose that phosphorylation regulates the recruitment and retention of Tof1–Csm3 by the replisome and that this complex antagonizes the Rrm3 helicase, thereby promoting PFA, by preserving the integrity of the Fob1–Ter complex. PMID:27298353

  5. Using Caffeine as a Water Quality Indicator in the Ambient Monitoring Program for Third Fork Creek Watershed, Durham, North Carolina

    PubMed Central

    Spence, Porché L

    2015-01-01

    Caffeine has been suggested as a chemical indicator for domestic wastewater in freshwater systems, although it is not included in water quality monitoring programs. The Third Fork Creek watershed in Durham, NC, is highly urbanized, with a history of receiving untreated wastewater from leaking and overflowing sanitary sewers. The poor water quality originating in the Third Fork Creek watershed threatens its intended uses and jeopardizes drinking water, aquatic life, and recreational activities provided by Jordan Lake. Organic waste contaminants have been detected in both Third Fork Creek watershed and Jordan Lake; however, the sampling periods were temporary, resulting in a few samples collected during nonstorm periods. It is recommended that (1) the concentration of caffeine and other organic waste contaminants are determined during storm and nonstorm periods and (2) caffeine is monitored regularly with traditional water quality indicators to evaluate the health of Third Fork Creek watershed. PMID:26157335

  6. 130. FORKS DIVERSION, HIGH LINE AND LOW LINE CANALS, TWIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. FORKS DIVERSION, HIGH LINE AND LOW LINE CANALS, TWIN FALLS COUNTY, SOUTH OF HANSEN, IDAHO; OUTLET SIDE OF THE HIGH LINE GATES, NORTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. North Fork Silver Creek Research Natural Area: guidebook supplement 47

    Treesearch

    Reid Schuller; Rachel Showalter; Tom Kaye; Beth Lawrence

    2014-01-01

    This guidebook describes major biological and physical attributes of the 243-ha (600-ac) North Fork Silver Creek Research Natural Area (RNA), Josephine County, Oregon. Chosen to represent the diversity of shrub species that occur in the western Siskiyou Mountains on non-serpentine metamorphic bedrock, the RNA supports manzanita (Arctostaphylos spp...

  8. Simultaneous binding to the tracking strand, displaced strand and the duplex of a DNA fork enhances unwinding by Dda helicase

    PubMed Central

    Aarattuthodiyil, Suja; Byrd, Alicia K.; Raney, Kevin D.

    2014-01-01

    Interactions between helicases and the tracking strand of a DNA substrate are well-characterized; however, the role of the displaced strand is a less understood characteristic of DNA unwinding. Dda helicase exhibited greater processivity when unwinding a DNA fork compared to a ss/ds DNA junction substrate. The lag phase in the unwinding progress curve was reduced for the forked DNA compared to the ss/ds junction. Fewer kinetic steps were required to unwind the fork compared to the ss/ds junction, suggesting that binding to the fork leads to disruption of the duplex. DNA footprinting confirmed that interaction of Dda with a fork leads to two base pairs being disrupted whereas no disruption of base pairing was observed with the ss/ds junction. Neutralization of the phosphodiester backbone resulted in a DNA-footprinting pattern similar to that observed with the ss/ds junction, consistent with disruption of the interaction between Dda and the displaced strand. Several basic residues in the 1A domain which were previously proposed to bind to the incoming duplex DNA were replaced with alanines, resulting in apparent loss of interaction with the duplex. Taken together, these results suggest that Dda interaction with the tracking strand, displaced strand and duplex coordinates DNA unwinding. PMID:25249618

  9. A review of the multiwell experiment in tight gas sandstones of the Mesaverde Group, Piceance Basin, Colorado

    USGS Publications Warehouse

    Nelson, P.H.

    2002-01-01

    The Cretaceous Iles and Williams Fork Formations of the Mesaverde Group contain important reservoir and source rocks for basin-centered gas accumulations in the Piceance Basin of northwestern Colorado. The sandstones in these formations have very low permeability, so low that successful production of gas requires the presence of fractures. To increase gas production, the natural fracture system of these "tight gas sandstones" must be augmented by inducing artificial fractures, while minimizing the amount of formation damage due to introduced fluids. The Multiwell Experiment was undertaken to provide geological characterization, obtain physical property data, and perform stimulation experiments in the Iles and Williams Fork Formations. Three vertical wells and one follow-up slant well were drilled, logged, partially cored, tested for gas production, stimulated in various manners, and tested again. Drawing from published reports and papers, this review paper presents well log, core, and test data from the Multiwell Experiment while emphasizing the geological controls on gas production at the site. Gas production is controlled primarily by a set of regional fractures trending west-northwest. The fractures are vertical, terminating at lithologic boundaries within and at the upper and lower boundaries of sandstone beds. Fractures formed preferentially in sandstones where in situ stress and fracture gradients are lower than in shales and mudstones. The fractures cannot be identified adequately in vertical wellbores; horizontal wells are required. Because present-day maximum horizontal stress is aligned with the regional fractures, artificial fractures induced by pressuring the wellbore form parallel to the regional fractures rather than linking them, with consequent limitations upon enhancement of gas production.

  10. Chemical quality, benthic organisms, and sedimentation in streams draining coal-mined lands in Raccoon Creek basin, Ohio, July 1984 through September 1986

    USGS Publications Warehouse

    Wilson, K.S.

    1988-01-01

    The Ohio Department of Natural Resources, Division of Reclamation, plans widespread reclamation of abandoned coal mines in the Raccoon Creek basin in southeastern Ohio. Throughout Raccoon Creek basin, chemical, biological, and suspended-sediment data were collected from July 1984 through September 1986. Chemical and biological data collected at 17 sites indicate that the East Branch, Brushy Creek, Hewett Fork, and Little Raccoon Creek subbasins, including Flint Run, are affected by drainage from abandoned coal mines. In these basins, median pH values ranged from 2.6 to 5.1, median acidity values ranged from 20 to 1,040 mg/L (milligrams per liter) as CaCo3, and median alkalinity values ranged from 0 to 4 mg/L as CaCo3. Biological data indicate that these basins do not support diverse populations because of degraded water systems. Suspended-sediment yields of 70.7 tons per square mile per year at the headwaters of Raccoon Creek and 54.5 tons per square mile per year near the month of Raccoon Creek indicate that cumulative sedimentation from erosion of abandoned-mine lands is not excessive in the basin.

  11. Baseline channel morphology and bank erosion inventory of South Fork Campbell Creek at Campbell Tract, Anchorage, Alaska, 1999 and 2000

    USGS Publications Warehouse

    Curran, Janet H.

    2001-01-01

    South Fork Campbell Creek drains largely undeveloped land in Anchorage, Alaska, but supports heavy use near the Bureau of Land Management (BLM) Campbell Tract facility for recreation and environmental education. To help assess the impacts of human activities in the basin on biological communities, particularly aquatic and terrestrial biota, morphological changes to the channel bed and banks were monitored for 2 years. Erosion conditions and rates of change were measured and 11 transects were surveyed in three reaches of Campbell Creek near the BLM Campbell Creek Science Center in 1999. Repeat measurements at these 33 transects in 2000 documented noticeable differences between horizontal or vertical channel position at eight transects. Repeat measurements of 51 erosion pins at the survey transects provided details of bank erosion between the 2 years. Annual erosion rates at the erosion pins ranged from 0.81 foot per year of erosion to 0.16 foot per year of deposition.

  12. Environmental Assessment Housing Transfer at Grand Forks AFB, North Dakota

    DTIC Science & Technology

    2005-01-27

    AIR FORCE BASE ...Equipment…………. 28 9 ACRONYMS, ABBREVIATIONS, AND TERMS AAM Annual Arithmetic Mean ACM Asbestos-Containing Material AFB Air Force Base AFI Air ...of No Significant Impact ft Feet ft3/s feet cubed per meter 10 GFAFB Grand Forks Air Force Base HAP Hazardous Air Pollutants hr Hour

  13. Passage and behavior of radio-tagged adult Pacific Lamprey (Entosphenus tridentata) at the Willamette Falls Project, Oregon, 2005-07

    USGS Publications Warehouse

    Mesa, Matthew G.; Magie, Robert J.; Copeland, Elizabeth S.

    2009-01-01

    We used radio telemetry to monitor passage and describe behavior characteristics of adult Pacific lampreys, Entosphenus tridentata, during their upstream migration at the Willamette Falls Project (Project) on the Willamette River near Portland, Oregon. Our objectives were to document: (1) specific routes of passage at the dam and falls; (2) duration of passage through different routes; and (3) overall passage success. During the spring through autumn of 2005 and 2006, fish were captured in a trap located in the fishway at the Project or collected by hand from the falls, surgically implanted with a radio tag, and released 2 kilometers downstream of the Project. We radio tagged 136 lampreys in 2005 and 107 in 2006. In both years, more than 90 percent of the fish returned to the Project with a median travel time of 7-9 hours. Most fish were first detected at the Project from about 20:00-23:00 hours. In 2005, 43 fish (35 percent) successfully passed through the fishway of the Project, which has four separate entrances and three distinct passage channels or legs that converge at one exit. Prior to the installation of flashboards around the perimeter of the falls in July, lampreys used all three legs of the fishway to pass the Project. After flashboards were installed, only fishway leg 1 was used. The peak of passage occurred in August. No fish passed over the falls, but 13 percent of the lampreys that traveled to the Project ascended at least partway up the falls. In 2006, 24 fish (23 percent) passed the Project, again primarily using fishway leg 1. Most fish passed prior to June 9 when the powerhouse was shut down due to construction. Although 19 lampreys ascended the falls, only 2 passed through this route in late June and early July. Flashboards were not installed in 2006. For both years, the time it took for fish to pass through the fishway depended on which leg they used - the median passage time was at least 4-5 hours in fishway legs 2 and 3 and ranged from 23 to

  14. Effects of acid mine drainage on the stream ecosystem of the east fork of the Obey River, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, L.E.; Bulow, F.L.

    1973-01-01

    The stream ecosystem of the east fork of the Obey River, Tennessee was studied from January through December 1970. Emphasis centered on water quality, macroinvertebrates, fish and aquatic flora affected by acid mine drainage. Two control stations were established within the study area, one located below the zone of pollution. A reservoir station was established to detect any neutralization occurring within Dale Hollow Reservoir below the confluence of the east fork and west fork. An area approximately 40 miles in length was found to be severely degraded by acid mine drainage. Limited macroinvertebrate populations existed within this region. Chironomus andmore » Sialis were the predominate benthic indicator organisms present in the polluted zone. Euglena mutabilis was the most abundant representative organism of the aquatic flora. This organism was found to be characteristic of acid mine pollution. Fish were recovered above and below, but not within, the zone of pollution. Fish recovered were characteristic of the type of habitat in which they were collected, being either typical stream or reservoir fish. A fish kill occurred in the east fork embayment of Dale Hollow on August 15, 1970 from acid mine drainage discharged upstream.« less

  15. Diurnal variations in metal concentrations in the Alamosa River and Wightman Fork, southwestern Colorado, 1995-97

    USGS Publications Warehouse

    Ortiz, Roderick F.; Stogner, Sr., Robert W.

    2001-01-01

    A comprehensive sampling network was implemented in the Alamosa River Basin from 1995 to 1997 to address data gaps identified as part of the ecological risk assessment of the Summitville Superfund site. Aluminum, copper, iron, and zinc were identified as the constituents of concern for the risk assessment. Water-quality samples were collected at six sites on the Alamosa River and Wightman Fork by automatic samplers. Several discrete (instantaneous) samples were collected over 24 hours at each site during periods of high diurnal variations in streamflow (May through September). The discrete samples were analyzed individually and duplicate samples were composited to produce a single sample that represented the daily-mean concentration. The diurnal variations in concentration with respect to the theoretical daily-mean concentration (maximum minus minimum divided by daily mean) are presented. Diurnal metal concentrations were highly variable in the Alamosa River and Wightman Fork. The concentration of a metal at a single site could change by several hundred percent during one diurnal cycle. The largest percent change in metal concentrations was observed for aluminum and iron. Zinc concentrations varied the least of the four metals. No discernible or predictable pattern was indicated in the timing of the daily mean, maximum, or minimum concentrations. The percentage of discrete sample concentrations that varied from the daily-mean concentration by thresholds of plus or minus 10, 25, and 50 percent was evaluated. Between 50 and 75 percent of discrete-sample concentrations varied from the daily-mean concentration by more than plus or minus 10 percent. The percentage of samples exceeding given thresholds generally was smaller during the summer period than the snowmelt period. Sampling strategies are critical to accurately define variability in constituent concentration, and conversely, understanding constituent variability is important in determining appropriate sampling

  16. NORTH FORK SMITH RIVER ROADLESS AREA, CALIFORNIA AND OREGON.

    USGS Publications Warehouse

    Gray, Floyd; Hamilton, Michael

    1984-01-01

    Geologic, geochemical, and geophysical investigations and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the North Fork Smith River Roadless Area, California. The area has probable and sustantiated resource potential for nickel, chromium, copper, and mercury and approximately 2300 mining claims exist in or adjacent to the area. The geologic terrane precludes the occurrence of fossil fuel resources.

  17. Hydrologic data for computation of sediment discharge : Toutle and North Fork Toutle Rivers near Mount St. Helens, Washington, water years 1980-84

    USGS Publications Warehouse

    Childers, Dallas; Hammond, Stephen E.; Johnson, William P.

    1988-01-01

    Immediately after the devastating May 18, 1980, eruption of Mount St. Helens, a program was initiated by the U.S. Geological Survey to study the streamflow and sediment characteristics of streams impacted by the eruption. Some of the data gathered in that program are presented in this report. Data are presented for two key sites in the Toutle River basin: North Fork Toutle River near Kid Valley, and Toutle River at Tower Road, near Silver Lake. The types of data presented are appropriate for use with sediment transport formulas; however, the data are also intended for use in a wide variety of additional applications. The data presented in this report are unique because they delineate flow conditions possessing great potential fo sediment transport. The data define unusually high suspended-sediment concentration. Data defining hydraulic, peak discharge, suspended-sediment, and bed-material characteristics are presented. (USGS)

  18. Hydrologic reconnaissance of the Unalakleet River basin, Alaska, 1982-83

    USGS Publications Warehouse

    Sloan, C.E.; Kernodle, D.R.; Huntsinger, Ronald

    1986-01-01

    The Unalakleet River, Alaska, from its headwaters to the confluence of the Chiroskey River has been designated as a wild river and is included in the National Wild and Scenic Rivers System. Yearly low flow, which occurs during the winter, is sustained by groundwater discharge; there are few lakes in the basin and the cold climate prevents winter runoff. The amount of winter streamflow was greatest in the lower parts of streams with the exception of the South River and was apparently proportional to the amount of unfrozen alluvium upstream from the measuring sites. Unit discharge in late winter ranged from nearly zero at the mouth of the South River to 0.24 cu ft/sec/sq mi in the Unalakleet River main stem below Tenmile River. Summer runoff at the time of the reconnaissance may have been slightly higher than normal owing to recent rains. Unit runoff ranged from a low of 1.0 cu ft/sec/sq mi at the South River, to a high value of 2.4 cu ft/sec/sq mi at the North Fork Unalakleet River. Flood marks were present in the basin well above streambank levels but suitable sections to measure the maximum evident flood by slope-area methods were not found. Flood peaks were calculated for the Unalakleet River and its tributaries using basin characteristics. Calculated unit runoff for the 50-year flood ranged from about 17 to 45 cu ft/sec/sq mi. Water quality was good throughout the basin, and an abundant and diversified community of benthic invertebrates was found in samples collected during the summer reconnaissance. Permafrost underlies most of the basin, but groundwater can be found in unfrozen alluvium in the stream valleys, most abundantly in the lower part of the main tributaries and along the main stem of the Unalakleet River. Groundwater sustains river flow through the winter; an estimate of its quantity can be found through low-flow measurements. Groundwater quality in the basin appears to be satisfactory for most uses. Currently, little groundwater is used within the

  19. Hydrogeologic Framework and Occurrence and Movement of Ground Water in the Upper Humboldt River Basin, Northeastern Nevada

    USGS Publications Warehouse

    Plume, Russell W.

    2009-01-01

    The upper Humboldt River basin encompasses 4,364 square miles in northeastern Nevada, and it comprises the headwaters area of the Humboldt River. Nearly all flow of the river originates in this area. The upper Humboldt River basin consists of several structural basins, in places greater than 5,000 feet deep, in which basin-fill deposits of Tertiary and Quaternary age and volcanic rocks of Tertiary age have accumulated. The bedrock of each structural basin and adjacent mountains is composed of carbonate and clastic sedimentary rocks of Paleozoic age and crystalline rocks of Paleozoic, Mesozoic and Cenozoic age. The permeability of bedrock generally is very low except for carbonate rocks, which can be very permeable where circulating ground water has widened fractures through geologic time. The principal aquifers in the upper Humboldt River basin occur within the water-bearing strata of the extensive older basin-fill deposits and the thinner, younger basin-fill deposits that underlie stream flood plains. Ground water in these aquifers moves from recharge areas along mountain fronts to discharge areas along stream flood plains, the largest of which is the Humboldt River flood plain. The river gains flow from ground-water seepage to its channel from a few miles west of Wells, Nevada, to the west boundary of the study area. Water levels in the upper Humboldt River basin fluctuate annually in response to the spring snowmelt and to the distribution of streamflow diverted for irrigation of crops and meadows. Water levels also have responded to extended periods (several years) of above or below average precipitation. As a result of infiltration from the South Fork Reservoir during the past 20 years, ground-water levels in basin-fill deposits have risen over an area as much as one mile beyond the reservoir and possibly even farther away in Paleozoic bedrock.

  20. Molecular basis for PrimPol recruitment to replication forks by RPA.

    PubMed

    Guilliam, Thomas A; Brissett, Nigel C; Ehlinger, Aaron; Keen, Benjamin A; Kolesar, Peter; Taylor, Elaine M; Bailey, Laura J; Lindsay, Howard D; Chazin, Walter J; Doherty, Aidan J

    2017-05-23

    DNA damage and secondary structures can stall the replication machinery. Cells possess numerous tolerance mechanisms to complete genome duplication in the presence of such impediments. In addition to translesion synthesis (TLS) polymerases, most eukaryotic cells contain a multifunctional replicative enzyme called primase-polymerase (PrimPol) that is capable of directly bypassing DNA damage by TLS, as well as repriming replication downstream of impediments. Here, we report that PrimPol is recruited to reprime through its interaction with RPA. Using biophysical and crystallographic approaches, we identify that PrimPol possesses two RPA-binding motifs and ascertained the key residues required for these interactions. We demonstrate that one of these motifs is critical for PrimPol's recruitment to stalled replication forks in vivo. In addition, biochemical analysis reveals that RPA serves to stimulate the primase activity of PrimPol. Together, these findings provide significant molecular insights into PrimPol's mode of recruitment to stalled forks to facilitate repriming and restart.