Science.gov

Sample records for fork willamette basins

  1. Bull Trout (Salvelinus Confluentus) Population and Habitat Surveys in the McKenzie and Middle Fork Willamette Basins, 2000 Annual Report.

    SciTech Connect

    Taylor, Greg

    2000-11-28

    Prior to 1978, Dolly Varden Salvelinus malma were classified into an anadromous and interior form. Cavender (1978) classified the interior form as a distinct species, Salvelinus confluentus, the bull trout. Bull trout are large char weighing up to 18 kg and growing to over one meter in length (Goetz 1989). They are distinguished by a broad flat head, large downward curving maxillaries that extend beyond the eye, a well developed fleshy knob and a notch in the lower terminus of the snout, and light colored spots normally smaller than the pupil of the eye (Cavender 1978). Bull trout are found throughout northwestern North America from lat. 41{sup o}N to lat. 60{sup o}N. In Oregon, bull trout were once distributed throughout 12 basins in the Klamath and Columbia River systems including the Clackamas, Santiam, McKenzie and Middle Fork Willamette sub-basins west of the Cascades (Buchanan et al. 1997). However, it is believed bull trout have been extirpated from west of the Cascades with the exception of the McKenzie sub-basin. Before 1963, bull trout in the McKenzie sub-basin were a contiguous population from the mouth to Tamolitch Falls. Following the construction of Cougar and Trail Bridge Reservoirs there are three isolated populations: (1) mainstem McKenzie and tributaries from the mouth to Trail Bridge Reservoir. (2) mainstem McKenzie and tributaries above Trail Bridge Reservoir to Tamolitch Falls. (3) South Fork McKenzie and tributaries above Cougar Reservoir. The study area includes the three aforementioned McKenzie populations, and the Middle Fork Willamette and tributaries above Hills Creek Reservoir. We monitored bull trout populations in the McKenzie and Middle Fork Willamette basins using a combination of sampling techniques including: spawning surveys, standard pool counts, juvenile trapping, radio tracking, electronic fish counters, and a modified Hankin and Reeves protocol to estimate juvenile abundance and density. In addition, we continued to

  2. Bull Trout (Salvelinus Confluentus) Population and Habitat Surveys in the McKenzie and Middle Fork Willamette Basins, 2001 Annual Report.

    SciTech Connect

    Taylor, Greg

    2003-02-01

    Prior to 1978, bull trout were commonly known as dolly varden (Salvelinus malma) and were classified into an anadromous and interior form. Cavender (1978) described the interior form as a distinct species, classifying it as Salvelinus confluentus, the bull trout. Bull trout are large char weighing up to 18 kg and growing to over one meter in length (Goetz 1994). They are distinguished by a broad flat head, large downward curving maxillaries that extend beyond the eye, a fleshy knob and a notch in the lower terminus of the snout, and light colored spots normally smaller than the pupil of the eye (Cavender 1978). Bull trout are found throughout northwestern North America from latitude 41{sup o}N to 60{sup o}N. In Oregon, bull trout were once distributed throughout 12 basins in the Klamath and Columbia River systems including the Clackamas, Santiam, McKenzie and Middle Fork Willamette subbasins west of the Cascades (Buchanan et al. 1997). However, it is likely that bull trout have been extirpated from west of the Cascades with the exception of the McKenzie sub-basin. McKenzie River bull trout were a contiguous population from the mouth to Tamolitch Falls prior to 1963. Three populations were isolated following the construction of Cougar and Trail Bridge Reservoirs which include the mainstem McKenzie and tributaries from the mouth to Trail Bridge Reservoir, mainstem McKenzie and tributaries above Trail Bridge Reservoir to Tamolitch Falls, and the South Fork McKenzie and tributaries above Cougar Reservoir. On June 10, 1998 the U.S. Fish and Wildlife Service (USFWS) listed the Columbia River bull trout population segment as Threatened under the federal Endangered Species Act and Buchanan et al. (1997) listed the bull trout population in the mainstem McKenzie as ''of special concern'', the South Fork McKenzie population as ''high risk of extinction,'' and the population above Trail Bridge Reservoir as ''high risk of extinction.'' Bull trout in the Middle Fork Willamette

  3. Bull Trout Population and Habitat Surveys in the Middle Fork Willamette and McKenzie Rivers, Annual Report 2002.

    SciTech Connect

    Seals, Jason; Reis, Kelly

    2003-10-01

    Bull trout in the Willamette River Basin were historically distributed throughout major tributaries including the Middle Fork Willamette and McKenzie rivers. Habitat degradation, over-harvest, passage barriers, fish removal by rotenone, and hybridization and competition with non-native brook trout are all likely factors that have led to the decline of bull trout in the Willamette Basin (Ratliff and Howell 1992). The U.S. Fish and Wildlife Service listed the Columbia River bull trout population segment as Threatened under the federal Endangered Species Act in 1998. Four bull trout populations were isolated in the upper Willamette River following the construction of flood control dams on the South Fork McKenzie River, McKenzie River, and Middle Fork Willamette River that created Cougar, Trail Bridge, and Hills Creek reservoirs. Buchanan et al. (1997) described the population in the main stem McKenzie as 'of special concern', the South Fork McKenzie population as 'high risk of extinction', the population above Trail Bridge Reservoir as 'high risk of extinction', and bull trout in the Middle Fork Willamette as 'probably extinct'. Various management efforts such as strict angling regulations and passage improvement projects have been implemented to stabilize and rehabilitate bull trout habitat and populations in the McKenzie River over the past 10 years. Since 1997, bull trout fry from Anderson Creek on the upper McKenzie River have been transferred to the Middle Fork Willamette basin above Hills Creek Reservoir in an attempt to re-establish a reproducing bull trout population. This project was developed in response to concerns over the population status and management of bull trout in the McKenzie and Middle Fork Willamette Rivers by the Oregon Department of Fish and Wildlife during the early 1990s. The project was conducted under measure 9.3G(2) of the Columbia Basin Fish and Wildlife Program to monitor the status, life history, habitat needs, and limiting factors for

  4. ALTERNATIVE FUTURES FOR THE WILLAMETTE RIVER BASIN, OREGON

    EPA Science Inventory

    Alternative futures analysis is an assessment approach designed to inform community decisions regarding land and water use. We conducted an alternative futures analysis in the Willamette River Basin in western Oregon. Based on detailed input from local stakeholders, three alter...

  5. Assessing Geomorphic and Vegetative Responses to Environmental Flows in the Willamette River Basin

    NASA Astrophysics Data System (ADS)

    Mangano, J.; Jones, K.; Wallick, R.; Bach, L.; Olson, M.; Bervid, H.

    2015-12-01

    On regulated rivers, restoring flow regimes is a process-based restoration approach that may strongly affect downstream ecosystems. Developing realistic flow targets with meaningful geomorphic and ecological benefits, however, is challenging. For instance, hydraulic, geomorphic and biological processes are affected by more than manipulating water release—sediment supply and transport conditions also require consideration. Also, funding and programmatic directives rarely require the monitoring necessary to adaptively manage environmental flow programs. Recent research in the Willamette River basin in support of the Sustainable Rivers Project (SRP) demonstrates how such a monitoring program can be implemented. At the reach scale, initial efforts have assessed geomorphic and vegetative changes in alluvial sections of the Middle Fork Willamette and McKenzie Rivers using repeat mapping from aerial photographs and flow analyses. Overall, both rivers are largely stable because of reduced discharge, bed-material supply and local revetments, but some reaches of the McKenzie River are more dynamic, perhaps reflecting greater inputs of sediment from unregulated tributaries and higher magnitude peak flows. Repeat, reach-scale mapping on the Middle Fork Willamette River shows that frequent bankfull flows are able to scour minimally vegetated gravel bars and sustain a patchwork of actively shifting bed-material sediment. Repeat mapping on the McKenzie River in summer 2015 will reveal insights about the geomorphic effectiveness of bankfull flows. At the site scale, monitoring at two bars in summer 2015 is linking streamflow with the establishment of black cottonwood. Lastly, a review of hydrographs from 2000-2015 and retrospectively applying stakeholder-defined flow targets showed substantial variability in meeting objectives for the timing and types of flows under traditional regulated conditions and the SRP. Altogether, these related efforts help link streamflow, geomorphic

  6. Processes controlling dissolved oxygen and pH in the upper Willamette River basin, Oregon, 1994

    USGS Publications Warehouse

    Pogue, Ted R.; Anderson, Chauncey W.

    1995-01-01

    In July and August of 1994, the U. S. Geological Survey in cooperation with the Oregon Department of Environmental Quality (ODEQ) collected data to document the spatial extent and diel variability of dissolved oxygen (DO) concentrations and pH levels in selected reaches of streams in the upper Willamette River Basin. These data were also collected to identify primary factors that control DO concentrations downstream from major point sources as well as to provide ODEQ with data to refine calibration of their steady-state DO and nutrient models for the upper Willamette River Basin. All of the reaches studied had diel variations in DO and pH. The magnitude of the diel variations in DO ranged from 0.2 to 3.9 milligrams per liter (7 to 50 percent-saturation units based on ambient water temperature and barometric pressure) and in pH from 0.3 to 1.4 units. However, of the reaches studied, only the Coast Fork Willamette River from river mile (RM) 21.7 to 12.5 and the Willamette River from RM 151 to 141.6 had field measured violations of State standards for DO and pH. DO concentration and pH in water depend on many factors. Data were collected to examine several major factors, including BOD (biochemical oxygen demand), carbonaceous BOD, nitrogenous BOD, and measures of photosynthetic activity. Of the four study reaches, only a short stretch of the Coast Fork Willamette River has potential for important levels of oxygen consumption from BOD or nitrification. Additionally, water-column primary-productivity measurements indicated that respiration and photosynthesis by free-floating algae did not explain the observed diel variations in DO in the study reaches. Results from a simple mathematical model incorporating measures of community respiration and net primary productivities indicated that periphyton are capable of producing a diel variation of the order of magnitude observed during the August study period. In the Willamette River near Peoria, the combined periphyton DO

  7. Wildlife and Wildlife Habitat Loss Assessment Summary at Federal Hydroelectric Facilities; Willamette River Basin, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1986-02-01

    Habitat based assessments were conducted of the US Army Corps of Engineers' hydroelectric projects in the Willamette River Basin, Oregon, to determine losses or gains to wildlife and/or wildlife habitat resulting from the development and operation of the hydroelectric-related components of the facilities. Preconstruction, postconstruction, and recent vegetation cover types at the project sites were mapped based on aerial photographs. Vegetation cover types were identified within the affected areas and acreages of each type at each period were determined. Wildlife target species were selected to represent a cross-section of species groups affected by the projects. An interagency team evaluated the suitability of the habitat to support the target species at each project for each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the projects. The Willamette projects extensively altered or affected 33,407 acres of land and river in the McKenzie, Middle Fork Willamette, and Santiam river drainages. Impacts to wildlife centered around the loss of 5184 acres of old-growth conifer forest, and 2850 acres of riparian hardwood and shrub cover types. Impacts resulting from the Willamette projects included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, furbearers, spotted owls, pileated woodpeckers, and many other wildlife species. Bald eagles and ospreys were benefited by an increase in foraging habitat. The potential of the affected areas to support wildlife was greatly altered as a result of the Willamette projects. Losses or gains in the potential of the habitat to support wildlife will exist over the lives of the projects. Cumulative or system-wide impacts of the Willamette projects were not quantitatively assessed.

  8. Ground-water hydrology of the Willamette basin, Oregon

    USGS Publications Warehouse

    Conlon, Terrence D.; Wozniak, Karl C.; Woodcock, Douglas; Herrera, Nora B.; Fisher, Bruce J.; Morgan, David S.; Lee, Karl K.; Hinkle, Stephen R.

    2005-01-01

    The Willamette Basin encompasses a drainage of 12,000 square miles and is home to approximately 70 percent of Oregon's population. Agriculture and population are concentrated in the lowland, a broad, relatively flat area between the Coast and Cascade Ranges. Annual rainfall is high, with about 80 percent of precipitation falling from October through March and less than 5 percent falling in July and August, the peak growing season. Population growth and an increase in cultivation of crops needing irrigation have produced a growing seasonal demand for water. Because many streams are administratively closed to new appropriations in summer, ground water is the most likely source for meeting future water demand. This report describes the current understanding of the regional ground-water flow system, and addresses the effects of ground-water development. This study defines seven regional hydrogeologic units in the Willamette Basin. The highly permeable High Cascade unit consists of young volcanic material found at the surface along the crest of the Cascade Range. Four sedimentary hydrogeologic units fill the lowland between the Cascade and Coast Ranges. Young, highly permeable coarse-grained sediments of the upper sedimentary unit have a limited extent in the floodplains of the major streams and in part of the Portland Basin. Extending over much of the lowland where the upper sedimentary unit does not occur, silts and clays of the Willamette silt unit act as a confining unit. The middle sedimentary unit, consisting of permeable coarse-grained material, occurs beneath the Willamette silt and upper sedimentary units and at the surface as terraces in the lowland. Beneath these units is the lower sedimentary unit, which consists of predominantly fine-grained sediments. In the northern part of the basin, lavas of the Columbia River basalt unit occur at the surface in uplands and beneath the basin-fill sedimentary units. The Columbia River basalt unit contains multiple

  9. South Fork Holston River basin 1988 biomonitoring

    SciTech Connect

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  10. Water quality in the Willamette Basin, Oregon, 1991-95

    USGS Publications Warehouse

    Wentz, Dennis A.; Bonn, Bernadine A.; Carpenter, Kurt D.; Hinkle, Stephen R.; Janet, Mary L.; Rinella, Frank A.; Uhrich, Mark A.; Waite, Ian R.; Laenen, Antonius; Bencala, Kenneth E.

    1998-01-01

    This report is intended to summarize major findings that emerged between 1991 and 1995 from the water-quality assessment of the Willamette Basin Study Unit and to relate these findings to water-quality issues of regional and national concern. The information is primarily intended for those who are involved in water-resource management. Yet, the information contained here may also interest those who simply wish to know more about the quality of water in the rivers and aquifers in the area where they live.

  11. Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rinella, F.A.; McKenzie, S.W.; Wille, S.A.

    1981-01-01

    During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)

  12. Summary of Environmental Flow Monitoring for the Sustainable Rivers Project on the Middle Fork Willamette and McKenzie Rivers, Western Oregon, 2014–15

    USGS Publications Warehouse

    Jones, Krista L.; Mangano, Joseph F.; Wallick, J. Rose; Bervid, Heather D.; Olson, Melissa; Keith, Mackenzie K.; Bach, Leslie

    2016-11-07

    This report presents the results of an ongoing environmental flow monitoring study by The Nature Conservancy (TNC), U.S. Army Corps of Engineers (USACE), and U.S. Geological Survey in support of the Sustainable Rivers Project (SRP) of TNC and USACE. The overarching goal of this study is to evaluate and characterize relations between streamflow, geomorphic processes, and black cottonwood (Populus trichocarpa) recruitment on the Middle Fork Willamette and McKenzie Rivers, western Oregon, that were hypothesized in earlier investigations. The SRP can use this information to plan future monitoring and scientific investigations, and to help mitigate the effects of dam operations on streamflow regimes, geomorphic processes, and biological communities, such as black cottonwood forests, in consultation with regional experts. The four tasks of this study were to:Compare the hydrograph from Water Year (WY) 2015 with hydrographs from WYs 2000–14 and the SRP flow recommendations,Assess short-term and system-wide changes in channel features and vegetation throughout the alluvial valley section of the Middle Fork Willamette River (2005–12),Examine changes in channel features and vegetation over two decades (1994–2014) for two short mapping zones on the Middle Fork Willamette and McKenzie Rivers, andComplete a field investigation of summer stage and the growth of black cottonwood and other vegetation on the Middle Fork Willamette and McKenzie Rivers in summer 2015.

  13. Thermal effects of dams in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2010-01-01

    where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm

  14. Can Willamette Basin dams be managed to mitigate climate change?

    NASA Astrophysics Data System (ADS)

    Danner, A.; Grant, G. E.

    2011-12-01

    Successful future management of regulated rivers requires knowledge of how dam operations may be affected by global climate change. Here we investigate the effects of changes in flow magnitude and timing on flood control operations and in-stream flow targets for dams in the Willamette basin of Oregon. Our overall goal is to assess whether dams in the Willamette basin can be operated to mitigate potential consequences of climate change, including increased flooding or water shortages, without decreasing the ability reliability of the system to meet its presently defined objectives. At issue is the potential tradeoff between providing adequate streamflow for the summer dry period as precipitation shifts from snow to rain in the winter months and ensuring that there is adequate storage volume available to retain winter and spring storm floodwaters. We employ reservoir modeling to understand the performance of the system under the current climate, and then explore how the system may perform under future climate scenarios. We begin by testing and refining the analysis method using a single dam and reservoir and then expand the analysis to an entire tributary system. For current climate modeling, we use a constructed record of naturalized streamflows as the input to the US Army Corps of Engineers' HEC ResSim 3.0 model. We then calculate streamflow metrics including time of hydrograph peak, recession time, and high and low flow frequencies. Dam performance is characterized through metrics including time to fill and time for drawdown. We also determine the reliability of meeting objectives and targets, as defined by the probability that a given management objective will be met for a specified time period. For future climate modeling using HEC ResSim, we obtain inflow streamflows: (1) from a hydrologic model run with downscaled GCM output, (2) from a hydrologic model run using climate data modified by using the delta method to apply changes in temperature and precipitation

  15. MODELING WILDLIFE RESPONSE TO LANDSCAPE CHANGE IN OREGON'S WILLAMETTE RIVER BASIN

    EPA Science Inventory

    The PATCH simulation model was used to predict the response of 17 wildlife species to
    three plausible scenarios of habitat change in Oregon's Willamette River Basin. This 30
    thousand square-kilometer basin comprises about 12% of the state of Oregon, encompasses extensive f...

  16. Wildlife and Wildlife Habitat Loss Assessment at Dexter Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Dexter Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the project. Preconstruction, post-construction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Dexter Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 445 acres of riparian habitat. Impacts resulting from the Dexter Project included the loss of year-round habitat for black-tailed deer, red fox, mink, beaver, western gray squirrel, ruffed grouse, ring-necked pheasant, California quail, wood duck and nongame species. Bald eagle, osprey, and greater scaup were benefitted by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Dexter Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  17. Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon

    USGS Publications Warehouse

    Herrera, Nora B.; Burns, Erick R.; Conlon, Terrence D.

    2014-01-01

    Full appropriation of tributary streamflow during summer, a growing population, and agricultural needs are increasing the demand for groundwater in the Willamette Basin. Greater groundwater use could diminish streamflow and create seasonal and long-term declines in groundwater levels. The U.S. Geological Survey (USGS) and the Oregon Water Resources Department (OWRD) cooperated in a study to develop a conceptual and quantitative understanding of the groundwater-flow system of the Willamette Basin with an emphasis on the Central Willamette subbasin. This final report from the cooperative study describes numerical models of the regional and local groundwater-flow systems and evaluates the effects of pumping on groundwater and surface‑water resources. The models described in this report can be used to evaluate spatial and temporal effects of pumping on groundwater, base flow, and stream capture. The regional model covers about 6,700 square miles of the 12,000-square mile Willamette and Sandy River drainage basins in northwestern Oregon—referred to as the Willamette Basin in this report. The Willamette Basin is a topographic and structural trough that lies between the Coast Range and the Cascade Range and is divided into five sedimentary subbasins underlain and separated by basalts of the Columbia River Basalt Group (Columbia River basalt) that crop out as local uplands. From north to south, these five subbasins are the Portland subbasin, the Tualatin subbasin, the Central Willamette subbasin, the Stayton subbasin, and the Southern Willamette subbasin. Recharge in the Willamette Basin is primarily from precipitation in the uplands of the Cascade Range, Coast Range, and western Cascades areas. Groundwater moves downward and laterally through sedimentary or basalt units until it discharges locally to wells, evapotranspiration, or streams. Mean annual groundwater withdrawal for water years 1995 and 1996 was about 400 cubic feet per second; irrigation withdrawals

  18. FUTURE WATER ALLOCATION AND IN-STREAM VALUES IN THE WILLAMETTE RIVER BASIN: A BASIN-WIDE ANALYSIS

    EPA Science Inventory

    Our research investigated the impact on surface water resources of three different scenarios for the future development of the Willamette River Basin in Oregon (USA). Water rights in the basin, and in the western United States in general, are based on a system of law that binds ...

  19. Development of a Willingness to Pay Survey for Willamette Basin Spring Chinook and Winter Steelhead Recovery

    EPA Science Inventory

    Salmon fisheries are a high-profile icon of the Pacific Northwest. Spring Chinook and winter-run steelhead are both listed as federally endangered species in the Willamette basin, the most populated and developed watershed in Oregon. Despite being a high profile issue, there are ...

  20. MODELING STREAM MACROINVERTEBRATE COMMUNITY RESPONSE TO LAND COVER IN THE WILLAMETTE BASIN

    EPA Science Inventory

    We analyzed macroinvertebrate data from 104 stream sites in the Willamette basin to develop models of macroinvertebrate response to land use/land cover data that can be used to project future conditions under various alternative land use scenarios. We assessed macroinvertebrate r...

  1. New interpretation of Clarks Fork field, northern Bighorn basin, Montana

    SciTech Connect

    Johnson, J.S.; Lindsley-Griffin, N.

    1986-08-01

    Clarks Fork field is located at the northern edge of the Bighorn basin (T9S, R22E) in Carbon County, Montana. Production was first established in 1944 by General Petroleum Corporation in the Cretaceous Peay Sandstone (basal Frontier) and was later extended to the Cretaceous Greybull (1949) and Lakota (1956) sandstones by British American. Total cumulative hydrocarbons from this field are 1,1789,193 bbl of oil and 3,061,522 mcf of gas, with Lakota sandstones being most productive. Lakota production occurs from a structural-stratigraphic trap in an east-west-trending channel on the axis of Clarks Fork anticline, geographically near the center of the township. Our structural reinterpretation of Clarks Fork field suggests that Elk Basin anticline is a northwest extension of the Elk Basin field anticline. The Elk Basin thrust truncates the north limb of the fold and does not strike to the northwest, as shown by earlier interpretations. They interpret a northwest-striking thrust in the center of the township as a splay off the Elk Basin thrust, and have named it the Clarks Fork thrust. The Clarks Fork anticline is located on the hanging wall of Clarks Fork thrust. Subsurface maps indicate the Clarks Fork area has not been fully developed. Stratigraphic traps in the Lakota and Greybull sandstones are present in several areas of the township. Structural traps in the center and northwest portions of the township may also exist.

  2. Selected flow characteristics of streams in the Willamette River Basin, Oregon

    USGS Publications Warehouse

    Swift, C. H., III

    1966-01-01

    Flow-duration, annual low-flow, and annual high-flow tables through September 30, 1963, are given in this report for 110 stream-gaging stations in the Willamette and Sandy River basins. These tables summarize the basic data needed to define the streamflow characteristics at the gaging stations. The content of each of the three summary tables is described, and techniques for preparing flow-duration curves, low-flow frequency curves, and high-flow frequency curves are explained.

  3. Development of CE-QUAL-W2 models for the Middle Fork Willamette and South Santiam Rivers, Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Stonewall, Adam J.; Sullivan, Annett B.; Kim, Yoonhee; Rounds, Stewart A.

    2013-01-01

    Hydrodynamic (CE-QUAL-W2) models of Hills Creek Lake (HCL), Lookout Point Lake (LOP), and Dexter Lake (DEX) on the Middle Fork Willamette River (MFWR), and models of Green Peter Lake and Foster Lake on the South Santiam River systems in western Oregon were updated and recalibrated for a wide range of flow and meteorological conditions. These CE-QUAL-W2 models originally were developed by West Consultants, Inc., for the U.S. Army Corps of Engineers. This study by the U.S. Geological Survey included a reassessment of the models’ calibration in more recent years—2002, 2006, 2008, and 2011—categorized respectively as low, normal, high, and extremely high flow calendar years. These years incorporated current dam-operation practices and more available data than the time period used in the original calibration. Modeled water temperatures downstream of both HCL and LOP-DEX on the MFWR were within an average of 0.68 degree Celsius (°C) of measured values; modeled temperatures downstream of Foster Dam on the South Santiam River were within an average of 0.65°C of measured values. A new CE-QUAL-W2 model was developed and calibrated for the riverine MFWR reach between Hills Creek Dam and the head of LOP, allowing an evaluation of the flow and temperature conditions in the entire MFWR system from HCL to Dexter Dam. The complex bathymetry and long residence time of HCL, combined with the relatively deep location of the power and regulating outlet structures at Hills Creek Dam, led to a HCL model that was highly sensitive to several outlet and geometric parameters related to dam structures (STR TOP, STR BOT, STR WIDTH). Release temperatures from HCL were important and often persisted downstream as they were incorporated in the MFWR model and the LOP-DEX model (downstream of MFWR). The models tended to underpredict the measured temperature of water releases from Dexter Dam during the late-September-through-December drawdown period in 2002, and again (to a lesser extent) in

  4. Water temperature effects from simulated dam operations and structures in the Middle Fork Willamette River, western Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Turner, Daniel F.; Rounds, Stewart A.

    2016-09-14

    Significant FindingsStreamflow and water temperature in the Middle Fork Willamette River (MFWR), western Oregon, have been regulated and altered since the construction of Lookout Point, Dexter, and Hills Creek Dams in 1954 and 1961, respectively. Each year, summer releases from the dams typically are cooler than pre-dam conditions, with the reverse (warmer than pre-dam conditions) occurring in autumn. This pattern has been detrimental to habitat of endangered Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR winter steelhead (O. mykiss) throughout multiple life stages. In this study, scenarios testing different dam-operation strategies and hypothetical dam-outlet structures were simulated using CE-QUAL-W2 hydrodynamic/temperature models of the MFWR system from Hills Creek Lake (HCR) to Lookout Point (LOP) and Dexter (DEX) Lakes to explore and understand the efficacy of potential flow and temperature mitigation options.Model scenarios were run in constructed wet, normal, and dry hydrologic calendar years, and designed to minimize the effects of Hills Creek and Lookout Point Dams on river temperature by prioritizing warmer lake surface releases in May–August and cooler, deep releases in September–December. Operational scenarios consisted of a range of modified release rate rules, relaxation of power-generation constraints, variations in the timing of refill and drawdown, and maintenance of different summer maximum lake levels at HCR and LOP. Structural scenarios included various combinations of hypothetical floating outlets near the lake surface and hypothetical new outlets at depth. Scenario results were compared to scenarios using existing operational rules that give temperature management some priority (Base), scenarios using pre-2012 operational rules that prioritized power generation over temperature management (NoBlend), and estimated temperatures from a without-dams condition (WoDams).Results of the tested model scenarios led

  5. Thermal exposure of adult Chinook salmon in the Willamette River basin.

    PubMed

    Keefer, Matthew L; Clabough, Tami S; Jepson, Michael A; Naughton, George P; Blubaugh, Timothy J; Joosten, Daniel C; Caudill, Christopher C

    2015-02-01

    Radiotelemetry and archival temperature loggers were used to reconstruct the thermal experience of adult spring Chinook salmon (Oncorhynchus tshawytscha) in the highly regulated Willamette River system in Oregon. The study population is threatened and recovery efforts have been hampered by episodically high prespawn mortality that is likely temperature mediated. Over three years, 310 salmon were released with thermal loggers and 68 were recovered in spawning tributaries, primarily at hatchery trapping facilities downstream from high-head dams. More than 190,000 internal body temperature records were collected (mean ~2800 per fish) and associated with 14 main stem and tributary reaches. Most salmon experienced a wide temperature range (minima ~8-10 °C; maxima ~13-22 °C) and 65% encountered potentially stressful conditions (≥18 °C). The warmest salmon temperatures were in lower Willamette River reaches, where some fish exhibited short-duration behavioral thermoregulation. Cumulative temperature exposure, measured by degree days (DD) above 0 °C, varied more than seven-fold among individuals (range=208-1498 DDs) and more than two-fold among sub-basin populations, on average. Overall, ~72% of DDs accrued in tributaries and ~28% were in the Willamette River main stem. DD differences among individuals and populations were related to migration distance, migration duration, and salmon trapping protocols (i.e., extended pre-collection holding in tributaries versus hatchery collection shortly after tributary entry). The combined data provide spatially- and temporally-referenced information on both short-duration stressful temperature exposure and the biologically important total exposure. Thermal exposure in this population complex proximately influences adult salmon physiology, maturation, and disease processes and ultimately affects prespawn mortality and fitness. The results should help managers develop more effective salmon recovery plans in basins with marginal

  6. Pollution in the lower Columbia Basin in 1948 with particular reference to the Willamette River

    USGS Publications Warehouse

    Fish, F.F.; Rucker, R.R.

    1950-01-01

    Development of the salmon resources of the lower Columbia River Basin appears as sound insurance against the threat of a serious reduction in the runs to the upper river areas through the multiple-purpose programs of water development now under way by the Corps of Engineers, the Bureau of Reclamation, and private interests. Any comprehensive plan for the full development of the fisheries resources in the lower Columbia Basin must be predicated upon accurate knowledge of the waters therein polluted to a degree affecting fish life. Pollution surveys have been made in the lower Columbia Basin at various times in the past -- the most intensive studies having been made in the Willamette Valley.

  7. Fish and Amphibian Use of Vegetated and Non-vegetated Intermittent Channels in the Upper Willamette Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intermittent agricultural drainages found in the lowlands of the upper Willamette Basin provide habitat characteristics that may be preferred by native species of fish and amphibians. Vegetated substrates and lack of vegetation growing in the channels are the most common habitat differences amongst ...

  8. Predicting the Total Abundance of Resident Salmonids within the Willamette River Basin, Oregon - a Macroecological Modeling Approach

    EPA Science Inventory

    I present a simple, macroecological model of fish abundance that was used to estimate the total number of non-migratory salmonids within the Willamette River Basin (western Oregon). The model begins with empirical point estimates of net primary production (NPP in g C/m2) in fore...

  9. Wildlife and Wildlife Habitat Loss Assessment at Hills Creek Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Hills Creek Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1964, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Hills Creek Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 2694 acres of old-growth forest and 207 acres of riparian habitat. Impacts resulting from the Hills Creek Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, black bear, cougar, river otter, beaver, ruffed grouse, spotted owl, and other nongame species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Hills Creek Project, losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  10. Wildlife and Wildlife Habitat Loss Assessment Summary at Lookout Point Dam and Reservoir Project, Middle Fork Willamette River, Oregon; 1985 Final Report.

    SciTech Connect

    Bedrossian, K.L.; Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Lookout Point Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Seventeen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Lookout Point Project extensively altered or affected 6790 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 724 acres of old-growth conifer forest and 118 acres of riparian habitat. Impacts resulting from the Lookout Point Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, western gray squirrel, red fox, mink, beaver, ruffed grouse, ring-necked pheasant, California quail, spotted owl, and other nongame species. Bald eagle and osprey were benefitted by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Lookout Point Project. Loses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  11. Summary of information on aquatic biota and their habitats in the Willamette Basin, Oregon, through 1995

    USGS Publications Warehouse

    Altman, Bob; Henson, C.M.; Waite, I.R.

    1997-01-01

    Aquatic toxicological investigations in the basin have focused primarily on fish. These studies have addressed chlorinated pesticides, polychlorinated biphenyls (PCBs), dioxins and furans, polycyclic aromatic hydrocarbons (PAHs), and trace elements in aquatic tissue, as well as fish health assessments, skeletal abnormalities, and aquatic toxicological responses. Several pesticides exceeded U.S. Environmental Protection Agency and State water-quality criteria for the protection of aquatic life. Elevated PCB, dioxin, and furan concentrations were associated with point sources, such as pulp and paper mills. Elevated concentrations of mercury in aquatic tissue were associated with several reservoirs. Fish health assessments and skeletal abnormality studies detected high levels of abnormalities in fish from the main stem Willamette River. Few investigations have examined aquatic toxicological responses, such as enzyme induction assays, growth assays, and biomarker studies.

  12. Flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Lane County, Oregon

    USGS Publications Warehouse

    Hess, Glen W.; Haluska, Tana L.

    2016-01-01

    Digital flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Oregon, were developed by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers (USACE). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected stages at the USGS streamgage at Coast Fork Willamette River near Goshen, Oregon (14157500), at State Highway 58. Current stage at the streamgage for estimating near-real-time areas of inundation may be obtained at http://waterdata.usgs.gov/or/nwis/uv/?site_no=14157500&PARAmeter_cd=00065,00060. In addition, the National Weather Service (NWS) forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, areas of inundation were provided by USACE. The inundated areas were developed from flood profiles simulated by a one-dimensional unsteady step‑backwater hydraulic model. The profiles were checked by the USACE using documented high-water marks from a January 2006 flood. The model was compared and quality assured using several other methods. The hydraulic model was then used to determine eight water-surface profiles at various flood stages referenced to the streamgage datum and ranging from 11.8 to 19.8 ft, approximately 2.6 ft above the highest recorded stage at the streamgage (17.17 ft) since 1950. The intervals between stages are variable and based on annual exceedance probability discharges, some of which approximate NWS action stages.The areas of inundation and water depth grids provided to USGS by USACE were used to create interactive flood‑inundation maps. The availability of these maps with current stage from USGS streamgage and forecasted stream stages from the NWS provide emergency management

  13. Flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Lane County, Oregon

    USGS Publications Warehouse

    Hess, Glen W.; Haluska, Tana L.

    2016-04-13

    Digital flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Oregon, were developed by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers (USACE). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected stages at the USGS streamgage at Coast Fork Willamette River near Goshen, Oregon (14157500), at State Highway 58. Current stage at the streamgage for estimating near-real-time areas of inundation may be obtained at http://waterdata.usgs.gov/or/nwis/uv/?site_no=14157500&PARAmeter_cd=00065,00060. In addition, the National Weather Service (NWS) forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, areas of inundation were provided by USACE. The inundated areas were developed from flood profiles simulated by a one-dimensional unsteady step‑backwater hydraulic model. The profiles were checked by the USACE using documented high-water marks from a January 2006 flood. The model was compared and quality assured using several other methods. The hydraulic model was then used to determine eight water-surface profiles at various flood stages referenced to the streamgage datum and ranging from 11.8 to 19.8 ft, approximately 2.6 ft above the highest recorded stage at the streamgage (17.17 ft) since 1950. The intervals between stages are variable and based on annual exceedance probability discharges, some of which approximate NWS action stages.The areas of inundation and water depth grids provided to USGS by USACE were used to create interactive flood‑inundation maps. The availability of these maps with current stage from USGS streamgage and forecasted stream stages from the NWS provide emergency management

  14. Associations among fish assemblage structure and environmental variables in Willamette Basin streams, Oregon

    USGS Publications Warehouse

    Waite, I.R.; Carpenter, K.D.

    2000-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, fish were collected from 24 selected stream sites in the Willamette Basin during 1993-1995 to determine the composition of the fish assemblages and their relation to the chemical and physical environment. Variance in fish relative abundance was greater among all sites than among spatially distinct reaches within a site (spatial variation) or among multiple sampled years at a site (temporal variation). Therefore, data from a single reach in an individual year was considered to be a reliable estimator of the fish assemblage structure at a site when the data were normalized by percent relative abundance. Multivariate classification and ordination were used to examine patterns in environmental variables and fish relative abundance over differing spatial scales (among versus within ecoregions). Across all ecoregions (all sites), fish assemblages were primarily structured along environmental gradients of water temperature and stream gradient (coldwater, high-gradient forested sites versus warmwater, low-gradient Willamette Valley sites); this pattern superseded patterns that were ecoregion specific. Water temperature, dissolved oxygen, and physical habitat (e.g., riparian canopy and percent riffles) were associated with patterns of fish assemblages across all ecoregions; however, pesticide and total phosphorus concentrations were more important than physical habitat within the Willamette Valley ecoregion. Consideration of stream site stratification (e.g., stream size, ecoregion, and stream gradient), identification of fish to species level (particularly the sculpin family), and detailed measurement of habitat, diurnal dissolved oxygen, and water temperature were critical in evaluating the composition of fish assemblages in relation to land use. In general, these low-gradient valley streams typical of other agricultural regions had poor riparian systems and showed increases in water

  15. Willamette Basin Comprehensive Study of Water and Related Land Resources: Appendix B--Hydrology

    USGS Publications Warehouse

    ,

    1969-01-01

    The study was undertaken to plan for the proper development of water andrelated land resources of the Willamette Basin in Oregon. Appendix B, along with Appendices A and C, provides supporting data for the functional Appendices D through L. Climate is first discussed, including the climatic significance of geographical features such as the Pacific Ocean, the Columbia Gorge, and the Coast and Cascade Ranges, climatic elements (e.g. , temperature, precipitation, evaporation), and meteorological aspects of major storms--rain, wind, and snow. A description of water resources, their distribution, and their variation at different times are presented. These resources are described in terms of factors influencing the occurrence of water. Specifically reviewed here are surface waters, groundwater, the relationship between surface and groundwater, management programs, and water rights and legal restrictions. Lastly, the adequacy of hydrologic data is reviewed. Statistical and interpretive hydrologic data necessary for broadscale water resources planning are provided. Data assembled are those concerning climate, streamflow, lakes and glaciers, chemical-quality, sediment, stream temperature, and groundwater. Geologic and soils mapping are briefly discussed, and a list of references is provided.

  16. Polychlorinated dibenzo-p-dioxin and dibenzofuran concentration profiles in sediment and fish tissue of the Willamette Basin, Oregon

    USGS Publications Warehouse

    Bonn, B.A.

    1998-01-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) are highly hydrophobic compounds that have been implicated as carcinogens and, more recently, as estrogen disrupters. An occurrence and distribution study of these compounds in the Willamette Basin, Oregon, was conducted by the U.S. Geological Survey as part of the National Water-Quality Assessment Program. Bed sediment was collected from 22 sites; fish tissue was collected from eight sites. PCDD/F were found to be ubiquitous in Willamette Basin sediment. A distinct homolog profile, dominated by octachlorodibenzo-p-dioxin, was observed in sediment throughout the basin. The PCDD homolog profile was consistent at all sites, regardless of total PCDD/F concentration, presence of point sources, subbasin size, geographic location or land use. Principal components analysis revealed a gradient among the homolog profiles that showed increasing dominance of highly chlorinated congeners where human and industrial activity increased. Tissue and bed sediment obtained from the same site did not have similar PCDD/F concentrations or homolog profiles. Fish tissue showed enrichment in less chlorinated congeners and congeners with chlorine substitutions in the 2, 3, 7 and 8 positions.

  17. Spatial and Temporal Patterns of Dissolved Organic Matter Characteristics in the Upper Willamette River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Lee, B. S.; Lajtha, K.

    2014-12-01

    Dissolved organic matter (DOM) leaching through soil affects soil carbon sequestration and the carbon metabolism of receiving water bodies. Improving our understanding of the sources and fate of DOM at varying spatial and temporal patterns is crucial for land management decisions. However, little is known about how DOM sources change with land use types and seasonal flow patterns. In the Willamette River Basin (WRB), which is home to Oregon's major cities including Portland and Salem, forested headwaters transition to agricultural and urban land. The climate of WRB has a distinctive seasonal pattern with dry warm summers and wet winters driven by winter precipitation and snowmelt runoff between November and March. This study examined DOM fluorescence characteristic in stream water from 21 locations collected monthly and 16 locations collected seasonally to identify the sources and fate of DOM in the upper WRB in contrasting land uses. DOC and dissolved organic nitrogen concentrations increased as the flow rate increased during winter precipitation at all sites. This indicates that increased flow rate increased the connectivity between land and nearby water bodies. DOM fluorescent properties varied among land use types. During the first precipitation event after a long dry summer, a microbial DOM signature in agricultural areas increased along with nitrate concentrations. This may be because accumulated nutrients on land during the dry season flowed to nearby streams during the first rain event and promoted microbial growth in the streams. During the month of the highest flow rate in 2014, sampling sites near forest showed evidence of a greater terrestrial DOM signature compared to its signature during the dry season. This indicates fluorescent DOM characteristics in streams vary as the flow connectivity changes even within the same land type.

  18. Geomorphic and vegetation processes of the Willamette River floodplain, Oregon: current understanding and unanswered science questions

    USGS Publications Warehouse

    Wallick, J. Rose; Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Hulse, David; Gregory, Stanley V.

    2013-01-01

    This report summarizes the current understanding of floodplain processes and landforms for the Willamette River and its major tributaries. The area of focus encompasses the main stem Willamette River above Newberg and the portions of the Coast Fork Willamette, Middle Fork Willamette, McKenzie, and North, South and main stem Santiam Rivers downstream of U.S. Army Corps of Engineers dams. These reaches constitute a large portion of the alluvial, salmon-bearing rivers in the Willamette Basin. The geomorphic, or historical, floodplain of these rivers has two zones - the active channel where coarse sediment is mobilized and transported during annual flooding and overbank areas where fine sediment is deposited during higher magnitude floods. Historically, characteristics of the rivers and geomorphic floodplain (including longitudinal patterns in channel complexity and the abundance of side channels, islands and gravel bars) were controlled by the interactions between floods and the transport of coarse sediment and large wood. Local channel responses to these interactions were then shaped by geologic features like bedrock outcrops and variations in channel slope. Over the last 150 years, floods and the transport of coarse sediment and large wood have been substantially reduced in the basin. With dam regulation, nearly all peak flows are now confined to the main channels. Large floods (greater than 10-year recurrence interval prior to basinwide flow regulation) have been largely eliminated. Also, the magnitude and frequency of small floods (events that formerly recurred every 2–10 years) have decreased substantially. The large dams trap an estimated 50–60 percent of bed-material sediment—the building block of active channel habitats—that historically entered the Willamette River. They also trap more than 80 percent of the estimated bed material in the lower South Santiam River and Middle and Coast Forks of the Willamette River. Downstream, revetments further

  19. A Wildlife Habitat Protection, Mitigation and Enhancement Plan for Eight Federal Hydroelectric Facilities in the Willamette River Basin: Final Report.

    SciTech Connect

    Preston, S.K.

    1987-05-01

    The development and operation of eight federal hydroelectric projects in the Willamette River Basin impacted 30,776 acres of prime wildlife habitat. This study proposes mitigative measures for the losses to wildlife and wildlife habitat resulting from these projects, under the direction of the Columbia River Basin (CRB) Fish and Wildlife Program. The CRB Fish and Wildlife Program was adopted in 1982 by the Northwest Power Planning Council, pursuant to the Northwest Power Planning Act of 1980. The proposed mitigation plan is based on the findings of loss assessments completed in 1985, that used a modified Habitat Evaluation Procedure (HEP) to assess the extent of impact to wildlife and wildlife habitat, with 24 evaluation species. The vegetative structure of the impacted habitat was broken down into three components: big game winter range, riparian habitat and old-growth forest. The mitigation plan proposes implementation of the following, over a period of 20 years: (1) purchase of cut-over timber lands to mitigate, in the long-term, for big game winter range, and portions of the riparian habitat and old-growth forest (approx. 20,000 acres); (2) purchase approximately 4,400 acres of riparian habitat along the Willamette River Greenway; and (3) three options to mitigate for the outstanding old-growth forest losses. Monitoring would be required in the early stages of the 100-year plan. The timber lands would be actively managed for elk and timber revenue could provide O and M costs over the long-term.

  20. Geologic features of dam sites in the Nehalem, Rogue, and Willamette River basins, Oregon, 1935-37

    USGS Publications Warehouse

    Piper, A.M.

    1947-01-01

    The present report comprises brief descriptions of geologic features at 19 potential dam sites in the Nehalem, Rogue, and Willamette River basins in western Oregon. The topography of these site and of the corresponding reservoir site was mapped in 1934-36 under an allocation of funds, by the Public Works Administration for river-utilization surveys by the Conservation Branch of the United States Geological Survey. The field program in Oregon has been under the immediate charge of R. O. Helland. The 19 dam sites are distributed as follows: three on the Nehalem River, on the west or Pacific slope of the Oregon Coast range; four on Little Butte Creek and two on Evans Creek, tributaries of the Rogue River in the eastern part of the Klamath Mountains; four on the South and Middle Santiam Rivers, tributaries of the Willamette River from the west slope of the Cascade mountains; and six on tributaries of the Willamette River from the east slope of the Coast Range. Except in the Evans Creek basin, all the rocks in the districts that were studied are of comparatively late geological age. They include volcanic rocks, crystalline rocks of several types, marine and nonmarine sedimentary rocks, and recent stream deposits. The study of geologic features has sought to estimate the bearing power and water-tightness of the rocks at each dam site, also to place rather broad limits on the type of dam for which the respective sites seem best suited. It was not considered necessary to study the corresponding reservoir sites in detail for excessive leakage appears to be unlikely. Except at three of the four site in the Santiam River basin, no test pits have been dug nor exploratory holes drilled, so that geologic features have been interpreted wholly from natural outcrops and from highway and railroad cuts. Because these outcrops and cuts are few, many problems related to the construction and maintenance of dams can not be answered at the this time and all critical features of the sites

  1. Precipitation-runoff and streamflow-routing models for the Willamette River basin, Oregon

    USGS Publications Warehouse

    Laenen, Antonius; Risley, John C.

    1997-01-01

    With an input of current streamflow, precipitation, and air temperature data the combined runoff and routing models can provide current estimates of streamflow at almost 500 locations on the main stem and major tributaries of the Willamette River with a high degree of accuracy. Relative contributions of surface runoff, subsurface flow, and ground-water flow can be assessed for 1 to 10 HRU classes in each of 253 subbasins identified for precipitation-runoff modeling. Model outputs were used with a water-quality model to simulate the movement of dye in the Pudding River as an example

  2. Quality of shallow ground water in alluvial aquifers of the Willamette Basin, Oregon, 1993-95

    USGS Publications Warehouse

    Hinkle, Stephen R.

    1997-01-01

    The current (1993?95) quality of shallow ground water (generally, <25 meters below land surface) in Willamette Basin alluvium is described using results from two studies. A Study-Unit Survey, or regional assessment of shallow groundwater quality in alluvium, was done from June through August 1993. During the Study-Unit Survey, data were collected from 70 domestic wells chosen using a random-selection process and located mostly in areas of agricultural land use. An urban Land-Use Study, which was a reconnaissance of shallow urban ground-water quality from 10 monitoring wells installed in areas of residential land use, was done in July 1995. Concentrations of nitrite plus nitrate (henceforth, nitrate, because nitrite concentrations were low) ranged from <0.05 to 26 mg N/L (milligrams nitrogen per liter) in ground water from 70 Study-Unit-Survey wells; concentrations exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 10 mg N/L in 9 percent of Study-Unit-Survey samples. Relationships were observed between nitrate concentrations and dissolved-oxygen concentrations, the amount of clay present within and overlying aquifers, overlying geology, and upgradient land use. Tritium (3H) data indicate that 21 percent of Study-Unit-Survey samples represented water recharged prior to 1953. Nitrogen-fertilizer application rates in the basin have increased greatly over the past several decades. Thus, some observed nitrate concentrations may reflect nitrogen loading rates that were smaller than those presently applied in the basin. Concentrations of phosphorus ranged from <0.01 to 2.2 mg/L in 70 Study-Unit-Survey wells and exceeded 0.10 mg/L in 60 percent of the samples. Phosphorus and nitrate concentrations were inversely correlated. From 1 to 5 pesticides and pesticide degradation products (henceforth, pesticides) were detected in ground water from each of 23 Study-Unit-Survey wells (33 percent of 69 wells sampled for pesticides) for a total

  3. Environmental settings of the South Fork Iowa River basin, Iowa, and the Bogue Phalia basin, Mississippi, 2006-10

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Rose, Claire E.; Kalkhoff, Stephen J.

    2012-01-01

    Studies of the transport and fate of agricultural chemicals in different environmental settings were conducted by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program's Agricultural Chemicals Team (ACT) at seven sites across the Nation, including the South Fork Iowa River basin in central Iowa and the Bogue Phalia basin in northwestern Mississippi. The South Fork Iowa River basin is representative of midwestern agriculture, where corn and soybeans are the predominant crops and a large percentage of the cultivated land is underlain by artificial drainage. The Bogue Phalia basin is representative of corn, soybean, cotton, and rice cropping in the humid, subtropical southeastern United States. Details of the environmental settings of these basins and the data-collection activities conducted by the USGS ACT over the 2006-10 study period are described in this report.

  4. Relations of habitat-specific algal assemblages to land use and water chemistry in the Willamette Basin, Oregon

    USGS Publications Warehouse

    Carpenter, K.D.; Waite, I.R.

    2000-01-01

    Benthic algal assemblages, water chemistry, and habitat were characterized at 25 stream sites in the Willamette Basin, Oregon, during low flow in 1994. Seventy-three algal samples yielded 420 taxa - Mostly diatoms, blue-green algae, and green algae. Algal assemblages from depositional samples were strongly dominated by diatoms (76% mean relative abundance), whereas erosional samples were dominated by blue-green algae (68% mean relative abundance). Canonical correspondence analysis (CCA) of semiquantitative and qualitative (presence/absence) data sets identified four environmental variables (maximum specific conductance, % open canopy, pH, and drainage area) that were significant in describing patterns of algal taxa among sites. Based on CCA, four groups of sites were identified: Streams in forested basins that supported oligotrophic taxa, such as Diatoma mesodon; small streams in agricultural and urban basins that contained a variety of eutrophic and nitrogen-heterotrophic algal taxa; larger rivers draining areas of mixed land use that supported planktonic, eutrophic, and nitrogen-heterotrophic algal taxa; and streams with severely degraded or absent riparian vegetation (> 75% open canopy) that were dominated by other planktonic, eutrophic, and nitrogen-heterotrophic algal taxa. Patterns in water chemistry were consistent with the algal autecological interpretations and clearly demonstrated relationships between land use, water quality, and algal distribution patterns.

  5. LIFE HISTORY MONITORING OF SALMONIDS IN THE WEST FORK SMITH RIVER, UMPQUA BASIN, OREGON

    EPA Science Inventory

    As a life-cycle monitoring basin for the Oregon Salmon Plan, the Oregon Department of Fish and Wildlife has estimated adult returns, distribution and smolt outmigration of coho, chinook and winter steelhead in the West Fork Smith River since 1998. In 2001/2002, the Environmenta...

  6. Aquatic Species Responses to Changes in Streamflow and Stream Temperature in the Willamette River Basin of Oregon

    NASA Astrophysics Data System (ADS)

    Chang, H.; Psaris, A. M.; Strecker, A.

    2014-12-01

    Climate models project less summer precipitation and hotter temperatures in the Pacific Northwest. These changes will bring earlier snowmelt and reduced summer flow, which will increase stream temperature. Many cold water species will be adversely affected by such changes. However, the spatial and temporal extent of how each stream responds to climate change and how fish species respond to varying degrees of changes in flow and stream temperature across multiple streams has not been thoroughly studied. Using a combination of representative downscaled climate data, a watershed hydrologic model, and regression analysis, we projected future changes in streamflow and temperature and the responses of fish habitat to these changes for several tributaries of the Willamette River basin that exhibits distinct hydrologic landscape regions. Our simulation results suggest that streams located in the High Cascades where groundwater input is high will experience less warming and less flow reduction, thus more resilient to warming. In contrast, streams in transient areas where snow cover is projected to decline substantially will experience the most declines in fish diversity as a result of reduction in flow and highest rise in stream temperature. Our results suggest spatially targeted adaptive management strategies for fishes in a large heterogeneous river basin will be necessary in a rapidly changing climate.

  7. Exploring factors controlling the variability of pesticide concentrations in the Willamette River Basin using tree-based models

    USGS Publications Warehouse

    Qian, S.S.; Anderson, C.W.

    1999-01-01

    We analyzed available concentration data of five commonly used herbicides and three pesticides collected from small streams in the Willamette River Basin in Oregon to identify factors that affect the variation of their concentrations in the area. The emphasis of this paper is the innovative use of classification and regression tree models for exploratory data analysis as well as analyzing data with a substantial amount of left-censored values. Among variables included in this analysis, land-use pattern in the watershed is the most important for all but one (simazine) of the eight pesticides studied, followed by geographic location, intensity of agriculture activities in the watershed (represented by nutrient concentrations in the stream), and the size of the watershed. The significant difference between urban sites and agriculture sites is the variability of stream concentrations. While all 16 nonurban watersheds have significantly higher variation than urban sites, the same is not necessarily true for the mean concentrations. Seasonal variation accounts for only a small fraction of the total variance in all eight pesticides.We analyzed available concentration data of five commonly used herbicides and three pesticides collected from small streams in the Willamette River Basin in Oregon to identify factors that affect the variation of their concentrations in the area. The emphasis of this paper is the innovative use of classification and regression tree models for exploratory data analysis as well as analyzing data with a substantial amount of left-censored values. Among variables included in this analysis, land-use pattern in the watershed is the most important for all but one (simazine) of the eight pesticides studied, followed by geographic location, intensity of agriculture activities in the watershed (represented by nutrient concentrations in the stream), and the size of the watershed. The significant difference between urban sites and agriculture sites is the

  8. Dioxins and furans in bed sediment and fish tissue of the Willamette Basin, Oregon, 1992-95

    USGS Publications Warehouse

    Bonn, B.A.

    1997-01-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) are related compounds that are of interest primarily because of their potential toxicity. They are considered carcinogens and have been implicated as hormone disrupters. An occurrence and distribution study of these compounds in the Willamette Basin, Oregon, was done by the U.S. Geological Survey in 1992- 1995. Bed sediment samples were collected at 22 sites, and fish tissue samples were collected from 8 sites. Samples were analyzed for 10 tetra- through octa- congener class totals and for 17 individual 2,3,7,8-substituted congeners. PCDD/Fs were found in bed sediment and fish tissue throughout the basin, including samples from the most remote forested sites. PCDD/F concentrations in bed sediment at most sites in agricultural and forested areas were similar to those at reference sites worldwide and are probably background concentrations due to atmospheric deposition. The highest concentrations in bed sediment were found at sites where industrial or urban inputs were likely. Potential toxicity at these sites (as measured by toxicity equivalents concentration) was high enough to be associated with increased risk to sensitive wildlife. From 30-60 percent of the toxicity equivalents concentration in bed sediment was due to hepta- and octa- congeners. The most toxic congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), was detected at only 6 of 22 sites. Compared to bed sediment from the same site, fish tissue usually had a lower total PCDD/F concentration, but contained a higher proportion of the most toxic congeners, such as 2,3,7,8-TCDD and 2,3,7,8-tetrachlorodibenzofuran. Because of these differences, toxicity equivalents concentrations in fish were higher than those in bed sediment from the same site at half of the sites where both media were analyzed.

  9. Regional Ecorisk Field investigation, upper Clark Fork River Basin

    SciTech Connect

    Pastorok, R.; LaTier, A.; Ginn, T.

    1995-12-31

    The Regional Ecorisk Field Investigation was conducted at the Clark Fork River Superfund Site (Montana) to evaluate the relationships between plant communities and tailings deposits in riparian habitats and to evaluate food-chain transfer of trace elements to selected wildlife species. Stations were selected to represent a range of vegetation biomass (or cover) values and apparent impact of trace elements, with some areas of lush vegetation, some areas of mostly unvegetated soil (e.g., < 30 percent plant cover), and a gradient in between. For the evaluation of risk to wildlife, bioaccumulation of metals was evaluated in native or naturalized plants, terrestrial invertebrates, and the deer mouse (Peromyscus maniculatus). Potential reproductive effects in the deer mouse were evaluated by direct measurements. For other wildlife species, bioaccumulation data were interpreted in the context of food web exposure models. Total biomass and species richness of riparian plant communities are related to tailings content of soil as indicated by pH and metals concentrations. Risk to populations of omnivorous small mammals such as the deer mouse was not significant. Relative abundance and reproductive condition of the deer mouse were normal, even in areas of high metals enrichment. Based on exposure models and site-specific tissue residue data for dietary species, risk to local populations of predators such as red fox and American kestrel that feed on deer mice and terrestrial invertebrates is not significant. Risk to herbivores related to metals bioaccumulation in plant tissues is not significant. Population level effects in deer and other large wildlife are not expected because of the large home ranges of such species and compensatory demographic factors.

  10. Ecological interactions between hatchery summer steelhead and wild Oncorhynchus mykiss in the Willamette River basin, 2014

    SciTech Connect

    Harnish, Ryan A.; Green, Ethan D.; Vernon, Christopher R.; Mcmichael, Geoffrey A.

    2014-12-01

    The purpose of this study was to determine the extent to which juvenile hatchery summer steelhead and wild winter steelhead overlap in space and time, to evaluate the extent of residualism among hatchery summer steelhead in the South Santiam River, and to evaluate the potential for negative ecological interactions among hatchery summer steelhead and wild winter steelhead. Because it is not possible to visually discern juvenile winter steelhead from resident rainbow trout, we treated all adipose-intact juvenile O. mykiss as one group that represented juvenile wild winter steelhead. The 2014 study objectives were to 1) estimate the proportion of hatchery summer steelhead that residualized in the South Santiam River in 2014, 2) determine the extent to which hatchery and naturally produced O. mykiss overlapped in space and time in the South Santiam River, and 3) characterize the behavioral interactions between hatchery-origin juvenile summer steelhead and naturally produced O. mykiss. We used a combination of radio telemetry and direct observations (i.e., snorkeling) to determine the potential for negative interactions between hatchery summer and wild winter steelhead juveniles in the South Santiam River. Data collected from these two independent methods indicated that a significant portion of the hatchery summer steelhead released as smolts did not rapidly emigrate from the South Santiam River in 2014. Of the 164 radio-tagged steelhead that volitionally left the hatchery, only 66 (40.2%) were detected outside of the South Santiam River. Forty-four (26.8% of 164) of the radio-tagged hatchery summer steelhead successfully emigrated to Willamette Falls. Thus, the last known location of the majority of the tagged fish (98 of 164 = 59.8%) was in the South Santiam River. Thirty-three of the tagged hatchery steelhead were detected in the South Santiam River during mobile-tracking surveys. Of those, 21 were found to be alive in the South Santiam River over three months after

  11. Watershed scale response to climate change--South Fork Flathead River Basin, Montana

    USGS Publications Warehouse

    Chase, Katherine J.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the South Fork Flathead River Basin, Montana.

  12. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat-surveys, conducted in the Willamette River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power

  13. Thin-skinned shortening geometries of the South Fork fault: Bighorn basin, Park County, Wyoming

    SciTech Connect

    Clarey, T.L. )

    1990-01-01

    This paper presents a new interpretation of the South Fork fault in light of thin-skinned thrust theory. Cross sections and seismic data are presented which indicate that the South Fork fault is an allochthonous salient which was emplaced in the Bighorn basin during the early to middle Eocene. All observed structural geometries can be interpreted as developing under a compressional regime, similar to the Wyoming-Utah-Idaho thrust belt. Faults either follow bedding-plane surfaces, cut up section in the direction of tectonic transport or form backthrusts. A single decollement within the Jurassic Gypsum Spring Formation appears to dominate. Tectonic transport was approximately southeast, parallel to tear faults in the allochthonous plate.

  14. Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado

    SciTech Connect

    Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. )

    1996-01-01

    Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

  15. Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado

    SciTech Connect

    Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G.

    1996-12-31

    Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

  16. Variation in watershed nitrogen input and export across the Willamette River Basin

    EPA Science Inventory

    Nitrogen (N) export from watersheds is influenced by hydrology, land use/cover, and the timing and spatial arrangement of N inputs and removal within basins. We examined the relationship between N input and watershed N export for 25 monitoring stations between 1996 and 2006 with...

  17. Continuous hydrologic simulation of runoff for the Middle Fork and South Fork of the Beargrass Creek basin in Jefferson County, Kentucky

    USGS Publications Warehouse

    Jarrett, G. Lynn; Downs, Aimee C.; Grace-Jarrett, Patricia A.

    1998-01-01

    The Hydrological Simulation Pro-gram-FORTRAN (HSPF) was applied to an urban drainage basin in Jefferson County, Ky to integrate the large amounts of information being collected on water quantity and quality into an analytical framework that could be used as a management and planning tool. Hydrologic response units were developed using geographic data and a K-means analysis to characterize important hydrologic and physical factors in the basin. The Hydrological Simulation Program FORTRAN Expert System (HSPEXP) was used to calibrate the model parameters for the Middle Fork Beargrass Creek Basin for 3 years (June 1, 1991, to May 31, 1994) of 5-minute streamflow and precipitation time series, and 3 years of hourly pan-evaporation time series. The calibrated model parameters were applied to the South Fork Beargrass Creek Basin for confirmation. The model confirmation results indicated that the model simulated the system within acceptable tolerances. The coefficient of determination and coefficient of model-fit efficiency between simulated and observed daily flows were 0.91 and 0.82, respectively, for model calibration and 0.88 and 0.77, respectively, for model confirmation. The model is most sensitive to estimates of the area of effective impervious land in the basin; the spatial distribution of rain-fall; and the lower-zone evapotranspiration, lower-zone nominal storage, and infiltration-capacity parameters during recession and low-flow periods. The error contribution from these sources varies with season and antecedent conditions.

  18. Surface-water quality assessment of the North Fork Red River basin upstream from Lake Altus, Oklahoma, 2002

    USGS Publications Warehouse

    Smith, S. Jerrod; Schneider, M.L.; Masoner, J.R.; Blazs, R.L.

    2003-01-01

    Elevated salinity in the North Fork Red River is a major concern of the Bureau of Reclamation W. C. Austin Project at Lake Altus. Understanding the relation between surface-water runoff, ground-water discharge, and surface-water quality is important for maintaining the beneficial use of water in the North Fork Red River basin. Agricultural practices, petroleum production, and natural dissolution of salt-bearing bedrock have the potential to influence the quality of nearby surface water. The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, sampled stream discharge and water chemistry at 19 stations on the North Fork Red River and tributaries. To characterize surface-water resources of the basin in a systematic manner, samples were collected synoptically during receding streamflow conditions during July 8-11, 2002. Together, sulfate and chloride usually constitute greater than half of the dissolved solids. Concentrations of sulfate ranged from 87.1 to 3,450 milligrams per liter. The minimum value was measured at McClellan Creek near Back (07301220), and the maximum value was measured at Bronco Creek near Twitty (07301303). Concentrations of chloride ranged from 33.2 to 786 milligrams per liter. The minimum value was measured at a North Fork Red River tributary (unnamed) near Twitty (07301310), and the maximum value was measured at the North Fork Red River near Back (07301190), the most upstream sample station.

  19. Origin and interpretation of knickpoints in the Big South Fork River basin, Kentucky-Tennessee

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.; McCormack, Sarah; Duan, Jidan; Russo, Joseph P.; Schumacher, Anne M.; Tripathi, Ganesh N.; Brockman, Ruth B.; Mays, Adam B.; Pulugurtha, Sruti

    2010-01-01

    This study investigates the causes of knickpoints and knickzones in the bedrock-controlled streams of the Big South Fork River basin in Kentucky and Tennessee. Knickpoints in the Big South Fork River area vary in form and apparent origins. While some are likely related to base level change and incision in the Cumberland River drainage system, the locations and drainage relations of the knickpoints are not consistent with transmission of an incision signal throughout the network. Local controls predominate in forming steeper channel segments, with no single factor dominant. Knickpoints in the study area are characterized by polygenesis and multiple causality, though several archetypes can be identified. These include rock fall rapids, created by mass wasting from adjacent valley slopes; structurally controlled headwater cliffs; and lithological knickpoints. A fourth category, local incision knickpoints, may be attributable to a variety of factors influencing force:resistance relationships. These results imply that the simple presence of a knickpoint cannot be attributed to any particular cause or history without consideration of the local controls. This further implies that factors such as the spacing of knickpoints may not be an indication of migration rates or that migration has even occurred. However, the analysis of individual profile convexities can shed light on various controls (such as lithology and structure) and other processes (such as valley side mass wasting and local bed incision) important in evolution of fluvially dissected landscapes.

  20. Chapter D. Effects of Urbanization on Stream Ecosystems in the Willamette River Basin and Surrounding Area, Oregon and Washington

    USGS Publications Warehouse

    Waite, Ian R.; Sobieszczyk, Steven; Carpenter, Kurt D.; Arnsberg, Andrew J.; Johnson, Henry M.; Hughes, Curt A.; Sarantou, Michael J.; Rinella, Frank A.

    2008-01-01

    This report describes the effects of urbanization on physical, chemical, and biological characteristics of stream ecosystems in 28 watersheds along a gradient of urbanization in the Willamette River basin and surrounding area, Oregon and Washington, from 2003 through 2005. The study that generated the report is one of several urban-effects studies completed nationally by the U.S. Geological Survey National Water-Quality Assessment Program. Watersheds were selected to minimize natural variability caused by factors such as geology, elevation, and climate, and to maximize coverage of different stages of urban development among watersheds. Because land use or population density alone often are not a complete measure of urbanization, a combination of land use, land cover, infrastructure, and socioeconomic variables were integrated into a multimetric urban intensity index (UII) to represent the degree of urban development in each watershed. Physical characteristics studied include stream hydrology, stream temperature, and habitat; chemical characteristics studied include sulfate, chloride, nutrients, pesticides, dissolved and particulate organic and inorganic carbon, and suspended sediment; and biological characteristics studied include algal, macroinvertebrate, and fish assemblages. Semipermeable membrane devices, passive samplers that concentrate trace levels of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons and polychlorinated biphenyls, also were used. The objectives of the study were to (1) examine physical, chemical, and biological responses along the gradient of urbanization and (2) determine the major physical, chemical, and landscape variables affecting the structure of aquatic communities. Common effects documented in the literature of urbanization on instream physical, chemical, and biological characteristics, such as increased contaminants, increased streamflow flashiness, increased concentrations of chemicals, and changes in

  1. Genetic stratigraphy of the Williams Fork Formation, Sand Wash Basin, Colorado and Wyoming

    SciTech Connect

    Hamilton, D.S. )

    1993-08-01

    The Williams Fork Formation forms the upper part of the Upper Cretaceous Mesaverde Group, Sand Wash basin. The formation can be divided into four genetic depositional sequences each bounded by regionally extensive, low-resistivity shale markers. The markers are continuous across the basin, extending from the southeastern margin to the southern Flank of the Rock Springs uplift. Recognizing these bounding surfaces was relatively straightforward in the eastern half of the basin, where they are interpreted to be maximum marine-flooding surfaces. Recognizing them in the continental facies to the northwest, however, was more difficult, but still achievable with detailed well-log correlation. Presence of the markers to the northwest indicates that either the marine flooding extended farther west than is generally recognized, or that the controls on the flooding (such as shutting off sediment supply) leave a record in the non-marine environment as surfaces of sediment starvation or non-deposition. The four genetic depositional sequences represent progradational clastic wedges of variable areal extend that were deposited during discrete episodes of basin filling. Geometry of the framework sandstones and log-facies character of each of the genetic units indicate a similar depositional style for genetic units 1-3. These units are characterized by upward-coarsening, sandstone-rich linear shoreline systems in the southeast that are bounded updip by aggradational coals and interbedded mudrocks of the coastal plain that, in turn, pass landward into aggradational log motifs of thick, stacked sandstone units and interbedded mudstones on the alluvial plain. Unit 4 is characterized throughout by mudstone-rich coal-bearing facies interpreted as alluvial-plain deposits with lacustrine influence.

  2. Montana's Clark Fork River Basin Task Force: A Vehicle for Integrated Water Resources Management?

    NASA Astrophysics Data System (ADS)

    Shively, David D.; Mueller, Gerald

    2010-11-01

    This article examines what is generally considered to be an unattainable goal in the western United States: integrated water resources management (IWRM). Specifically, we examine an organization that is quite unique in the West, Montana’s Clark Fork River Basin Task Force (Task Force), and we analyze its activities since its formation in 2001 to answer the question: are the activities and contributions of the Task Force working to promote a more strongly integrated approach to water resources management in Montana? After reviewing the concepts underlying IWRM, some of the issues that have been identified for achieving IWRM in the West, and the Montana system of water right allocation and issues it faces, we adapt Mitchell’s IWRM framework and apply it to the analysis of the Task Force’s activities in the context of IWRM. In evaluating the physical, interaction, and protocol/planning/policy components of IWRM, we find that the Task Force has been contributing to the evolution of Montana’s water resources management towards this framework, though several factors will likely continue to prevent its complete realization. The Task Force has been successful in this regard because of its unique nature and charge, and because of the authority and power given it by successive Montana legislatures. Also critical to the success of the organization is its ability to help translate into policy the outcomes of legal and quasi-judicial decisions that have impacted the state’s water resources management agency.

  3. Mining-related metals in terrestrial food webs of the upper Clark Fork River basin

    SciTech Connect

    Pastorok, R.A.; LaTier, A.J.; Butcher, M.K.; Ginn, T.C.

    1994-12-31

    Fluvial deposits of tailings and other mining-related waste in selected riparian habitats of the Upper Clark Fork River basin (Montana) have resulted in metals enriched soils. The significance of metals exposure to selected wildlife species was evaluated by measuring tissue residues of metals (arsenic, cadmium, copper, lead, zinc) in key dietary species, including dominant grasses (tufted hair grass and redtop), willows, alfalfa, barley, invertebrates (grasshoppers, spiders, and beetles), and deer mice. Average metals concentrations in grasses, invertebrates, and deer mice collected from tailings-affected sites were elevated relative to reference to reference levels. Soil-tissue bioconcentration factors for grasses and invertebrates were generally lower than expected based on the range of values in the literature, indicating the reduced bioavailability of metals from mining waste. In general, metals concentrations in willows, alfalfa, and barley were not elevated above reference levels. Using these data and plausible assumptions for other exposure parameters for white-tailed deer, red fox, and American kestrel, metals intake was estimated for soil and diet ingestion pathways. Comparisons of exposure estimates with toxicity reference values indicated that the elevated concentrations of metals in key food web species do not pose a significant risk to wildlife.

  4. Montana's Clark Fork River Basin Task Force: a vehicle for integrated water resources management?

    PubMed

    Shively, David D; Mueller, Gerald

    2010-11-01

    This article examines what is generally considered to be an unattainable goal in the western United States: integrated water resources management (IWRM). Specifically, we examine an organization that is quite unique in the West, Montana's Clark Fork River Basin Task Force (Task Force), and we analyze its activities since its formation in 2001 to answer the question: are the activities and contributions of the Task Force working to promote a more strongly integrated approach to water resources management in Montana? After reviewing the concepts underlying IWRM, some of the issues that have been identified for achieving IWRM in the West, and the Montana system of water right allocation and issues it faces, we adapt Mitchell's IWRM framework and apply it to the analysis of the Task Force's activities in the context of IWRM. In evaluating the physical, interaction, and protocol/planning/policy components of IWRM, we find that the Task Force has been contributing to the evolution of Montana's water resources management towards this framework, though several factors will likely continue to prevent its complete realization. The Task Force has been successful in this regard because of its unique nature and charge, and because of the authority and power given it by successive Montana legislatures. Also critical to the success of the organization is its ability to help translate into policy the outcomes of legal and quasi-judicial decisions that have impacted the state's water resources management agency.

  5. Comparison of streambed sediment and aquatic biota as media for characterizing trace elements and organochlorine compounds in the Willamette Basin, Oregon

    USGS Publications Warehouse

    Wentz, D.A.; Waite, I.R.; Rinella, F.A.

    1998-01-01

    During 1992-93, 27 organochlorine compounds (pesticides plus total PCB) and 17 trace elements were analyzed in bed sediment and aquatic biota from 20 stream sites in the Willamette Basin as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Data from each medium were compared to evaluate their relative effectiveness for assessing occurrence (broadly defined as documentation of important concentrations) of these constituents. Except for Cd, Hg, Se, and Ag, trace element concentrations generally were higher in bed sediment than in biota. Conversely, although frequencies of detection for organochlorine compounds in biota were only slightly greater than in bed sediment, actual concentrations in biota (normalized to lipid) were as much as 19 times those in sediment (normalized to organic carbon). Sculpin (Cottus spp.) and Asiatic clams (Corbicula fluminea), found at 14 and 7 sites, respectively, were the most widespread taxa collected during the study. Concentrations of trace elements, particularly As and Cu, were typically greater in Asiatic clams than in sculpin. In contrast, almost half of the organochlorine compounds analyzed were found in sculpin, but only DDT and its degradation products were detected in Asiatic clams; this may be related to the lipid content of sculpin, which was about three times higher than for clams. Thus, the medium of choice for assessing occurrence depends largely on the constituent(s) of interest.

  6. A multiobjective optimization model for dam removal: an example trading off salmon passage with hydropower and water storage in the Willamette basin

    NASA Astrophysics Data System (ADS)

    Kuby, Michael J.; Fagan, William F.; ReVelle, Charles S.; Graf, William L.

    2005-08-01

    We introduce the use of systematic, combinatorial, multiobjective optimization models to analyse ecological-economic tradeoffs and to support complex decision-making associated with dam removal in a river system. The model's ecological objective enhances salmonid migration and spawning by maximizing drainage area reconnected to the sea. The economic objective minimizes loss of hydropower and storage capacity. We present a proof-of-concept demonstration for the Willamette River watershed (Oregon, USA). The case study shows a dramatic tradeoff in which removing twelve dams reconnects 52% of the basin while sacrificing only 1.6% of hydropower and water-storage capacity. Additional ecological gains, however, come with increasingly steeper economic costs. A second model incorporates existing fish-passage systems. Because of data limitations and model simplifications, these results are intended solely for the purpose of illustrating a novel application of multiobjective programming to dam-removal issues. Far more work would be needed to make policy-relevant recommendations. Nevertheless, this research suggests that the current practice of analysing dam-removal decisions on a dam-by-dam basis be supplemented by evaluation on a river-system basis, trading off economic and ecological goals.

  7. Utilizing Multi-Ensemble of Downscaled CMIP5 GCMs to Investigate Trends and Spatial and Temporal Extent of Drought in Willamette Basin

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, A.; Beal, B.; Moradkhani, H.

    2015-12-01

    Changing climate and potential future increases in global temperature are likely to have impacts on drought characteristics and hydrologic cylce. In this study, we analyze changes in temporal and spatial extent of meteorological and hydrological droughts in future, and their trends. Three statistically downscaled datasets from NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), Multivariate Adaptive Constructed Analogs (MACA), and Bias Correction and Spatial Disagregation (BCSD-PSU) each consisting of 10 CMIP5 Global Climate Models (GCM) are utilized for RCP4.5 and RCP8.5 scenarios. Further, Precipitation Runoff Modeling System (PRMS) hydrologic model is used to simulate streamflow from GCM inputs and assess the hydrological drought characteristics. Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI) are the two indexes used to investigate meteorological and hydrological drought, respectively. Study is done for Willamette Basin with a drainage area of 29,700 km2 accommodating more than 3 million inhabitants and 25 dams. We analyze our study for annual time scale as well as three future periods of near future (2010-2039), intermediate future (2040-2069), and far future (2070-2099). Large uncertainty is found from GCM predictions. Results reveal that meteorological drought events are expected to increase in near future. Severe to extreme drought with large areal coverage and several years of occurance is predicted around year 2030 with the likelihood of exceptional drought for both drought types. SPI is usually showing positive trends, while SDI indicates negative trends in most cases.

  8. Base-flow data for the Little West Fork Basin, Fort Campbell, Tennessee and Kentucky, 1993 and 1994

    USGS Publications Warehouse

    Ladd, D.E.

    1996-01-01

    Base-flow data were collected from selected sites within the Little West Fork Red River basin during high and low base-flow conditions in order to support a study of the source and movement of ground water that supplies the Fort Campbell Military Reservation. Stream and spring discharge, water temperature, and specific-conductance data were collected during low base-flow conditions from 64 sites on September 1 and 13, 1993, and from 64 sites on March 17 and 18, 1994. Discharge was greater during high base-flow conditions than low base-flow conditions. Major tributaries on the south side of the study area consistently had lower flow than the tributaries on the north side. Discharge data were used to categorize stream reaches and sub-basins. Stream reaches were categorized as gaining or losing, wet, dry, or unobserved for each base-flow measurement period. More dry stream reaches occurred during the two low base-flow periods than during the high base-flow period. Sub-basin areas with surplus or deficient flow were also defined. Many areas of deficient flow occurred near the headwaters of the Little West Fork basin under all base-flow conditions. Fewer areas of deficient flow occurred near the mouth of the basin. The flow per square mile for each major tributary basin in the study area was also calculated. The values of flow per square mile for the tributary basins in the northern part of the study area were greater than those for the tributary basins in the southern part of the study area under all base-flow conditions.

  9. Water-quality trends for selected sampling sites in the upper Clark Fork Basin, Montana, water years 1996-2010

    USGS Publications Warehouse

    Sando, Steven K.; Vecchia, Aldo V.; Lorenz, David L.; Barnhart, Elliott P.

    2014-01-01

    A large-scale trend analysis was done on specific conductance, selected trace elements (arsenic, cadmium, copper, iron, lead, manganese, and zinc), and suspended-sediment data for 22 sites in the upper Clark Fork Basin for water years 1996–2010. Trend analysis was conducted by using two parametric methods: a time-series model (TSM) and multiple linear regression on time, streamflow, and season (MLR). Trend results for 1996–2010 indicate moderate to large decreases in flow-adjusted concentrations (FACs) and loads of copper (and other metallic elements) and suspended sediment in Silver Bow Creek upstream from Warm Springs. Deposition of metallic elements and suspended sediment within Warm Springs Ponds substantially reduces the downstream transport of those constituents. However, mobilization of copper and suspended sediment from floodplain tailings and stream banks in the Clark Fork reach from Galen to Deer Lodge is a large source of metallic elements and suspended sediment, which also affects downstream transport of those constituents. Copper and suspended-sediment loads mobilized from within this reach accounted for about 40 and 20 percent, respectively, of the loads for Clark Fork at Turah Bridge (site 20); whereas, streamflow contributed from within this reach only accounted for about 8 percent of the streamflow at Turah Bridge. Minor changes in FACs and loads of copper and suspended sediment are indicated for this reach during 1996–2010. Clark Fork reaches downstream from Deer Lodge are relatively smaller sources of metallic elements than the reach from Galen to Deer Lodge. In general, small decreases in loads and FACs of copper and suspended sediment are indicated for Clark Fork sites downstream from Deer Lodge during 1996–2010. Thus, although large decreases in FACs and loads of copper and suspended sediment are indicated for Silver Bow Creek upstream from Warm Springs, those large decreases are not translated to the more downstream reaches largely

  10. EFFECTS OF HABITAT DEGRADATION ON BIOLOGICAL ENDPOINTS IN THE SOUTH FORK BROAD RIVER BASIN, GEORGIA

    EPA Science Inventory

    Many of the streams of the lower Piedmont ecoregion in Georgia have been negatively impacted to some degree by habitat degradation due primarily to sedimentation. The South Fork of the Broad River watershed has been designated as sediment impacted under Section 303(d) of the Clea...

  11. Effects of surface mining on the hydrology and biology in the Stony Fork basin, Fayette County, Pennsylvania, 1978-85

    USGS Publications Warehouse

    Williams, D.R.; Ritter, J.R.; Mastrilli, T.M.

    1995-01-01

    The effects of surface coal mining on the water quality, sediment discharge, and aquatic biology of streams in the Stony Fork Basin in southwestern Pennsylvania were studied from 1978 through 1985. Data were collected at five stream sites and one mine discharge site. Field data included streamflow, temperature, specific conductance, pH, acidity, and alkalinity. Laboratory analyses included sulfate, aluminum, iron, manganese, zinc, and selected trace elements. Annual streamflow at gaged sites was not substantially different, suggesting that mining did not affect the total volume of streamflow significantly. Comparisons of sediment yields of the upstream control site (site 5) to the downstream site (site 1) indicated that the sediment yield at site 5 was greatest in 1978, 1981-83, and 1985. The sediment yields at both sites in 1979-80 were about the same. Differences in the drainage area sizes and effective control of sediment in the mined areas may explain the lack of increased sediment yield at the downstream site. As mining became more extensive throughout the basin in 1979-80 and later, several water-quality effects were observed downstream. Generally, specific conductance, sulfate, manganese, aluminum, and zinc increased; pH and alkalinity decreased. Acidity and iron typically increased immediately downstream of mined areas. No trace-element concentrations exceeded maximum contaminant levels established by the U.S. Environmental Protection Agency. Surface mining in the Stony Fork Basin severely affected the stream invertebrate and fish populations. During 1977-84, the number of taxonomic groups of invertebrates at sites affected by mine drainage decreased by 45 to 71 percent; the number of fish species decreased by 81 to 88 percent.

  12. Distribution of dissolved pesticides and other water quality constituents in small streams, and their relation to land use, in the Willamette River Basin, Oregon, 1996

    USGS Publications Warehouse

    Anderson, Chauncey W.; Wood, Tamara M.; Morace, Jennifer L.

    1997-01-01

    Water quality samples were collected at sites in 16 randomly selected agricultural and 4 urban subbasins as part of Phase III of the Willamette River Basin Water Quality Study in Oregon during 1996. Ninety-five samples were collected and analyzed for suspended sediment, conventional constituents (temperature, dissolved oxygen, pH, specific conductance, nutrients, biochemical oxygen demand, and bacteria) and a suite of 86 dissolved pesticides. The data were collected to characterize the distribution of dissolved pesticide concentrations in small streams (drainage areas 2.6? 13 square miles) throughout the basin, to document exceedances of water quality standards and guidelines, and to identify the relative importance of several upstream land use categories (urban, agricultural, percent agricultural land, percent of land in grass seed crops, crop diversity) and seasonality in affecting these distributions. A total of 36 pesticides (29 herbicides and 7 insecticides) were detected basinwide. The five most frequently detected compounds were the herbicides atrazine (99% of samples), desethylatrazine (93%), simazine (85%), metolachlor (85%), and diuron (73%). Fifteen compounds were detected in 12?35% of samples, and 16 compounds were detected in 1?9% of samples. Water quality standards or criteria were exceeded more frequently for conventional constituents than for pesticides. State of Oregon water quality standards were exceeded at all but one site for the indicator bacteria E. coli, 3 sites for nitrate, 10 sites for water temperature, 4 sites for dissolved oxygen, and 1 site for pH. Pesticide concentrations, which were usually less than 1 part per billion, exceeded State of Oregon or U.S. Environmental Protection Agency aquatic life toxicity criteria only for chlorpyrifos, in three samples from one site; such criteria have been established for only two other detected pesticides. However, a large number of unusually high concentrations (1?90 parts per billion) were

  13. Use of a rainfall-runoff model for simulating effects of forest management on streamflow in the east Fork Lobster Creek Basin, Oregon. Water resources investigation

    SciTech Connect

    Nakama, L.Y.; Risley, J.C.

    1993-12-31

    The report describes the results of model calibration and validation, and evaluates the extent to which runoff response to timber harvesting and increased road densities in East Fork Lobster Creek Basin can be simulated, using Precipitation-Runoff Modeling System (PRMS), a deterministic, destributed-parameter-modeling system.

  14. Multi-Temporal Land Cover Analysis in the Mid-Willamette Basin, Oregon: Assessment of Riparian Forest Canopy Using Landsat Thematic Mapper Data

    NASA Astrophysics Data System (ADS)

    Stanley, R. J.; Taylor, S. B.

    2010-12-01

    The 11,500 sq. mi. Willamette Basin is home to 70% of Oregon’s population and is associated with an extensive post-settlement history of land cover modification. Existing assessments estimate that between 30 and 44% of riparian zones have been subject to anthropogenic disturbances, which in turn have negatively impacted TMDL levels for temperature and sediment loading (Oregon DEQ, 2009). As such, riparian forest restoration is cited as one of the primary management objectives needed to improve habitat quality. This study involves a regional multi-temporal land cover analysis utilizing Landsat Thematic Mapper (TM) satellite imagery and supervised image classification to document changes in canopy cover (Landsat acquisition years 2000 and 2009). The rectangular study site is oriented north-south and extends from Yamhill to Eugene, occupying a 3,133 sq. mi. footprint that captures the dynamic landuse interface between urban centers, lowland riparian habitats, and Oregon Coast Range forests. Landsat 5 TM data for the study site were acquired via the USGS Global Visualization Viewer with multispectral imagery including 6 reflected bands suited for quantifying broad-scale land cover regimes, including vegetation. Classification training sites for water, forest, and agricultural land-cover categories were selected to accurately represent within-class spectral variability. A supervised classification scheme was employed to compare training signatures against the six reflective bands in each image year. A maximum likelihood algorithm was utilized to delineate land-cover classes with overlapping spectral signatures. Other processing techniques included radiometric normalization of brightness values, and derivation of NDVI and Tasseled Cap vegetative indices. Final classification accuracy was assessed by randomly assigning 100 spatially distributed point samples per class and comparing each to available ground truth. Two distinct landuse domains were delineated within the

  15. Water-quality trends and constituent-transport analysis for selected sampling sites in the Milltown Reservoir/Clark Fork River Superfund Site in the upper Clark Fork Basin, Montana, water years 1996–2015

    USGS Publications Warehouse

    Sando, Steven K.; Vecchia, Aldo V.

    2016-07-20

    During the extended history of mining in the upper Clark Fork Basin in Montana, large amounts of waste materials enriched with metallic contaminants (cadmium, copper, lead, and zinc) and the metalloid trace element arsenic were generated from mining operations near Butte and milling and smelting operations near Anaconda. Extensive deposition of mining wastes in the Silver Bow Creek and Clark Fork channels and flood plains had substantial effects on water quality. Federal Superfund remediation activities in the upper Clark Fork Basin began in 1983 and have included substantial remediation near Butte and removal of the former Milltown Dam near Missoula. To aid in evaluating the effects of remediation activities on water quality, the U.S. Geological Survey began collecting streamflow and water-quality data in the upper Clark Fork Basin in the 1980s.Trend analysis was done on specific conductance, selected trace elements (arsenic, copper, and zinc), and suspended sediment for seven sampling sites in the Milltown Reservoir/Clark Fork River Superfund Site for water years 1996–2015. The most upstream site included in trend analysis is Silver Bow Creek at Warm Springs, Montana (sampling site 8), and the most downstream site is Clark Fork above Missoula, Montana (sampling site 22), which is just downstream from the former Milltown Dam. Water year is the 12-month period from October 1 through September 30 and is designated by the year in which it ends. Trend analysis was done by using a joint time-series model for concentration and streamflow. To provide temporal resolution of changes in water quality, trend analysis was conducted for four sequential 5-year periods: period 1 (water years 1996–2000), period 2 (water years 2001–5), period 3 (water years 2006–10), and period 4 (water years 2011–15). Because of the substantial effect of the intentional breach of Milltown Dam on March 28, 2008, period 3 was subdivided into period 3A (October 1, 2005–March 27, 2008

  16. Records of wells, water levels, and chemical quality of water in the lower Santiam River basin, middle Willamette Valley, Oregon

    USGS Publications Warehouse

    Helm, Donald C.

    1968-01-01

    Basic water data on the lower Santiam River basin is preliminary to a comprehensive hydrologic study of this productive and intensely irrigated area where expanding population and industry increases the demand for water. Highest yielding wells are in shallow alluvial aquifers near the main streams; yields range from several hundred to more than a thousand gpm. Wells in lacustrine and older alluvial aquifers that underlie low, flat terraces have yields from a few tens to a few hundred gpm. Wells in the Salem Hills and in the Cascade Range foothills yield moderate to small quantities of water and tap a variety of geologic units. Tabulated material includes records of representative wells, drillers' logs, and chemical and spectrographic analyses of the ground water.

  17. Water-quality, bed-sediment, and biological data (October 2011 through September 2012) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2014-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2011 through September 2012. Bed-sediment and biota samples were collected once at 13 sites during August 2012. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2011 through September 2012. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record since 1985.

  18. Water-quality, bed-sediment, and biological data (October 2009 through September 2010) and statistical summaries of data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2012-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork basin. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2009 through September 2010. Bed-sediment and biota samples were collected once at 13 sites during August 2010. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2009 through September 2010. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  19. Water-quality trends and constituent-transport analysis for selected sampling sites in the Milltown Reservoir/Clark Fork River Superfund Site in the upper Clark Fork Basin, Montana, water years 1996–2015

    USGS Publications Warehouse

    Sando, Steven K.; Vecchia, Aldo V.

    2016-07-20

    During the extended history of mining in the upper Clark Fork Basin in Montana, large amounts of waste materials enriched with metallic contaminants (cadmium, copper, lead, and zinc) and the metalloid trace element arsenic were generated from mining operations near Butte and milling and smelting operations near Anaconda. Extensive deposition of mining wastes in the Silver Bow Creek and Clark Fork channels and flood plains had substantial effects on water quality. Federal Superfund remediation activities in the upper Clark Fork Basin began in 1983 and have included substantial remediation near Butte and removal of the former Milltown Dam near Missoula. To aid in evaluating the effects of remediation activities on water quality, the U.S. Geological Survey began collecting streamflow and water-quality data in the upper Clark Fork Basin in the 1980s.Trend analysis was done on specific conductance, selected trace elements (arsenic, copper, and zinc), and suspended sediment for seven sampling sites in the Milltown Reservoir/Clark Fork River Superfund Site for water years 1996–2015. The most upstream site included in trend analysis is Silver Bow Creek at Warm Springs, Montana (sampling site 8), and the most downstream site is Clark Fork above Missoula, Montana (sampling site 22), which is just downstream from the former Milltown Dam. Water year is the 12-month period from October 1 through September 30 and is designated by the year in which it ends. Trend analysis was done by using a joint time-series model for concentration and streamflow. To provide temporal resolution of changes in water quality, trend analysis was conducted for four sequential 5-year periods: period 1 (water years 1996–2000), period 2 (water years 2001–5), period 3 (water years 2006–10), and period 4 (water years 2011–15). Because of the substantial effect of the intentional breach of Milltown Dam on March 28, 2008, period 3 was subdivided into period 3A (October 1, 2005–March 27, 2008

  20. Development of a precipitation-runoff model to simulate unregulated streamflow in the South Fork Flathead River Basin, Montana

    USGS Publications Warehouse

    Chase, K.J.

    2011-01-01

    This report documents the development of a precipitation-runoff model for the South Fork Flathead River Basin, Mont. The Precipitation-Runoff Modeling System model, developed in cooperation with the Bureau of Reclamation, can be used to simulate daily mean unregulated streamflow upstream and downstream from Hungry Horse Reservoir for water-resources planning. Two input files are required to run the model. The time-series data file contains daily precipitation data and daily minimum and maximum air-temperature data from climate stations in and near the South Fork Flathead River Basin. The parameter file contains values of parameters that describe the basin topography, the flow network, the distribution of the precipitation and temperature data, and the hydrologic characteristics of the basin soils and vegetation. A primary-parameter file was created for simulating streamflow during the study period (water years 1967-2005). The model was calibrated for water years 1991-2005 using the primary-parameter file. This calibration was further refined using snow-covered area data for water years 2001-05. The model then was tested for water years 1967-90. Calibration targets included mean monthly and daily mean unregulated streamflow upstream from Hungry Horse Reservoir, mean monthly unregulated streamflow downstream from Hungry Horse Reservoir, basin mean monthly solar radiation and potential evapotranspiration, and daily snapshots of basin snow-covered area. Simulated streamflow generally was in better agreement with observed streamflow at the upstream gage than at the downstream gage. Upstream from the reservoir, simulated mean annual streamflow was within 0.0 percent of observed mean annual streamflow for the calibration period and was about 2 percent higher than observed mean annual streamflow for the test period. Simulated mean April-July streamflow upstream from the reservoir was about 1 percent lower than observed streamflow for the calibration period and about 4

  1. Hydrologic and hydraulic analyses for the Black Fork Mohican River Basin in and near Shelby, Ohio

    USGS Publications Warehouse

    Huitger, Carrie A.; Ostheimer, Chad J.; Koltun, G.F.

    2016-05-06

    Hydrologic and hydraulic analyses were done for selected reaches of five streams in and near Shelby, Richland County, Ohio. The U.S. Geological Survey (USGS), in cooperation with the Muskingum Watershed Conservancy District, conducted these analyses on the Black Fork Mohican River and four tributaries: Seltzer Park Creek, Seltzer Park Tributary, Tuby Run, and West Branch. Drainage areas of the four stream reaches studied range from 0.51 to 60.3 square miles. The analyses included estimation of the 10-, 2-, 1-, and 0.2-percent annual-exceedance probability (AEP) flood-peak discharges using the USGS Ohio StreamStats application. Peak discharge estimates, along with cross-sectional and hydraulic structure geometries, and estimates of channel roughness coefficients were used as input to step-backwater models. The step-backwater water models were used to determine water-surface elevation profiles of four flood-peak discharges and a regulatory floodway. This study involved the installation of, and data collection at, a streamflow-gaging station (Black Fork Mohican River at Shelby, Ohio, 03129197), precipitation gage (Rain gage at Reservoir Number Two at Shelby, Ohio, 405209082393200), and seven submersible pressure transducers on six selected river reaches. Two precipitation-runoff models, one for the winter events and one for nonwinter events for the headwaters of the Black Fork Mohican River, were developed and calibrated using the data collected. With the exception of the runoff curve numbers, all other parameters used in the two precipitation-runoff models were identical. The Nash-Sutcliffe model efficiency coefficients were 0.737, 0.899, and 0.544 for the nonwinter events and 0.850 and 0.671 for the winter events. Both of the precipitation-runoff models underestimated the total volume of water, with residual runoff ranging from -0.27 inches to -1.53 inches. The results of this study can be used to assess possible mitigation options and define flood hazard areas that

  2. Assessment of undiscovered oil resources in the Bakken and Three Forks Formations, Williston Basin Province, Montana, North Dakota, and South Dakota, 2013

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Marra, Kristen R.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Higley, Debra K.; Klett, Timothy R.; Lewan, Michael D.; Lillis, Paul G.; Schenk, Christopher J.; Tennyson, Marilyn E.; Whidden, Katherine J.

    2013-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered volumes of 7.4 billion barrels of oil, 6.7 trillion cubic feet of associated/dissolved natural gas, and 0.53 billion barrels of natural gas liquids in the Bakken and Three Forks Formations in the Williston Basin Province of Montana, North Dakota, and South Dakota.

  3. Confederated Tribes of the Umatilla Indian Reservation North Fork John Day River Basin Anadromous Fish Enhancement Project, Annual Report for FY 2000.

    SciTech Connect

    Macy, Tom L.; James, Gary A.

    2003-03-01

    The CTUIR North Fork John Day River Basin Anadromous Enhancement Project (NFJDAFEP) identified and prioritized stream reaches in The North Fork John day River basin for habitat improvements during the 2000 project period. Public out reach was emphasized during this first year of the project. We presented multiple funding and enhancement options to landowners. We concentrated on natural recovery methods, riparian fencing and off-stream livestock water developments. Under this BPA contract four riparian easements were signed protecting almost 5 miles of tributary streams. There are nine offstream water developments associated with these easements. Some landowners chose to participate in other programs based on Tribal outreach efforts. Two landowners chose NRCS programs for enhancement and one chose OWEB as a funding source. Two landowners implemented there own enhancement measures protecting 3 miles of stream. Cooperation between the NRCS/FSA/SWCDs and the Tribe to create joint projects and develop alternative funding scenarios for riparian enhancement was a major effort. The Tribe also worked with the North Fork John Day Watershed Council, USFS and ODFW to coordinate projects and support similar projects throughout the John Day Basin. We provided input to the John Day Summary prepared for the NWPPC by ODFW. The Tribe worked with the Umatilla National Forest on the Clear Creek Dredgetailings Rehabilitation project and coordinated regularly with USFS Fisheries, Hydrology and Range staff.

  4. Confederated Tribes of the Umatilla Indian Reservation North Fork John Day River Basin Anadromous Fish Enhancement Project, Annual Report for FY 2001.

    SciTech Connect

    Macy, Tom L.; James, Gary A.

    2003-03-01

    The CTUIR North Fork John Day River Basin Anadromous Enhancement Project (NFJDAFEP) identified and prioritized stream reaches in The North Fork John day River basin for habitat improvements during the 2000 project period. Public outreach was emphasized during this first year of the project. During the past year we concentrated on satisfying landowner needs, providing cost share alternatives, providing joint projects and starting implementation. We presented multiple funding and enhancement options to landowners. We concentrated on natural recovery methods, riparian fencing and offstream livestock water developments. Under this BPA contract four riparian easements have been signed protecting almost 5 miles of tributary streams. There are nine offstream water developments associated with these easements. Some landowners chose to participate in other programs based on Tribal outreach efforts. Some landowners chose NRCS programs for enhancement and others chose OWEB as a funding source. The exact amount of stream protection due to other funding sources probably exceeds that by BPA, however most would not have entered any program without initial Tribal outreach. Cooperation between the NRCS/FSA/SWCDs and the Tribe to create joint projects and develop alternative funding scenarios for riparian enhancement was a major effort. The Tribe also worked with the North Fork John Day Watershed Council, USFS and ODFW to coordinate projects and support similar projects throughout the John Day Basin.

  5. Investigation of Hyporheic Microbial Biofilms as Indicators of Heavy Metal Toxicity in the Clark Fork Basin, Montana

    NASA Astrophysics Data System (ADS)

    Barnhart, E. P.; Hwang, C.; Bouskill, N.; Hornberger, M.; Fields, M. W.

    2015-12-01

    Water-saturated sediments that underlie a stream channel contain microbial biofilms that are often responsible for the majority of the metabolic activity in river and stream ecosystems. Metal contamination from mining effluent can modify the biofilm community structure, diversity, and activity. Developing a mechanistic understanding of the biofilm response to metal contamination could provide a useful bioindicator of metal toxicity due to the ease of standard biofilm sampling, environmental ubiquity of biofilms and the rapid response of biofilms to environmental perturbation and metal toxicity. Here we present data on the structure of the biofilm community (e.g., microbial population composition and diversity) and trace metal concentrations in water, bed sediment and biota (benthic insects) across 15 sites in the Clark Fork Basin. Sample sites were selected across a historically-monitored metal pollution gradient at shallow riffles with bed sediment predominantly composed of pebbles, cobbles, and sand. Bed-sediment samples (for biofilm analysis) were obtained from the top 20 centimeters of the hyporheic zone and sieved using sterile sieves to obtain homogeneous sediment samples with particle sizes ranging from 1.70 to 2.36 millimeters. Linear discriminant analysis and effect size statistical methods were used to integrate the metals concentration data (for water and benthic-insects samples) with the microbial community analysis to identify microbial biomarkers of metal toxicity. The development of rapid microbial biomarker tools could provide reproducible and quantitative insights into the effectiveness of remediation activities on metal toxicity and advances in the field of environmental biomonitoring.

  6. Water-quality, bed-sediment, and biological data (October 2010 through September 2011) and statistical summaries of data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2013-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork basin of western Montana; additional water samples were collected from near Galen to near Missoula at select sites as part of a supplemental sampling program. The sampling program was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2010 through September 2011. Bed-sediment and biota samples were collected once at 14 sites during August 2011. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2010 through September 2011. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  7. Hydrogeologic framework and groundwater/surface-water interactions of the South Fork Nooksack River Basin, northwestern Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.

    2014-01-01

    A hydrogeologic framework of the South Fork (SF) Nooksack River Basin in northwestern Washington was developed and hydrologic data were collected to characterize the groundwater-flow system and its interaction with surface‑water features. In addition to domestic, agricultural, and commercial uses of groundwater within the SF Nooksack River Basin, groundwater has the potential to provide ecological benefits by maintaining late-summer streamflows and buffering stream temperatures. Cold-water refugia, created and maintained in part by groundwater, have been identified by water-resource managers as key elements to restore the health and viability of threatened salmonids in the SF Nooksack River. The SF Nooksack River drains a 183-square mile area of the North Cascades and the Puget Lowland underlain by unconsolidated glacial and alluvial sediments deposited over older sedimentary, metamorphic, and igneous bedrock. The primary aquifer that interacts with the SF Nooksack River was mapped within unconsolidated glacial outwash and alluvial sediment. The lower extent of this unit is bounded by bedrock and fine-grained, poorly sorted unconsolidated glaciomarine and glaciolacustrine sediments. In places, these deposits overlie and confine an aquifer within older glacial sediments. The extent and thickness of the hydrogeologic units were assembled from mapped geologic units and lithostratigraphic logs of field-inventoried wells. Generalized groundwater-flow directions within the surficial aquifer were interpreted from groundwater levels measured in August 2012; and groundwater seepage gains and losses to the SF Nooksack River were calculated from synoptic streamflow measurements made in the SF Nooksack River and its tributaries in September 2012. A subset of the field-inventoried wells was measured at a monthly interval to determine seasonal fluctuations in groundwater levels during water year 2013. Taken together, these data provide the foundation for a future groundwater

  8. Use of a watershed-modeling approach to assess hydrologic effects of urbanization, North Fork Pheasant Branch basin near Middleton, Wisconsin

    USGS Publications Warehouse

    Steuer, Jeffrey J.; Hunt, R.J.

    2001-01-01

    The North Fork Pheasant Branch Basin in Dane County, Wisconsin is expected to undergo development. There are concerns that development will adversely affect water resources with increased flood peaks, increased runoff volumes, and increased pollutant loads. To provide a scientific basis for evaluating the hydrologic system response to development the Precipitation Runoff Modeling System (PRMS) was used to model the upper Pheasant Branch Creek watershed with an emphasis on the North Fork Basin. The upper Pheasant Branch Creek (18.3 mi2; 11,700 acres) Basin was represented with 21 Hydrologic Response Units (daily time step) and 50 flow planes (5-minute time steps). Precipitation data from the basin outlet streamflow-gaging station located at Highway 12 and temperature data from a nearby airport were used to drive the model. Continuous discharge records at three gaging stations were used for model calibration. To qualitatively assess model representation of small subbasins, periodic reconnaissance, often including a depth measurement, was made after precipitation to determine the occurrence of flow in ditches and channels from small subbasins. As a further effort to verify the model on a small subbasin scale, continuous-stage sensors (15-minute intervals) measured depth at the outlets of three small subbasins (500 to 1,200 acres). Average annual precipitation for the simulation period from 1993 to 1998 was 35.2 inches. The model simulations showed that, on average, 23.9 inches were intercepted by vegetation, or lost to evapotranspiration, 6.0 inches were infiltrated and moved to the regional ground-water system, and 4.8 inches contributed to the upper Pheasant Branch streamflow. The largest runoff event during the calibration interval was in July 1993 (746 ft3/sec; with a recurrence interval of approximately 25 years). Resulting recharge rates from the calibrated model were subsequently used as input into a ground-water-flow model. Average annual recharge varied

  9. Input-form data for the U.S. Geological Survey assessment of the Devonian and Mississippian Bakken and Devonian Three Forks Formations of the U.S. Williston Basin Province, 2013

    USGS Publications Warehouse

    ,; Gaswirth, Stephanie B.; Marra, Kristen R.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Higley, Debra K.; Klett, Timothy R.; Lewan, Michael D.; Lillis, Paul G.; Schenk, Christopher J.; Tennyson, Marilyn E.; Whidden, Katherine J.

    2013-01-01

    In 2013, the U.S. Geological Survey assessed the technically recoverable oil and gas resources of the Bakken and Three Forks Formations of the U.S. portion of the Williston Basin. The Bakken and Three Forks Formations were assessed as continuous and hypothetical conventional oil accumulations using a methodology similar to that used in the assessment of other continuous- and conventional-type assessment units throughout the United States. The purpose of this report is to provide supplemental documentation and information used in the Bakken-Three Forks assessment.

  10. Water-quality, bed-sediment, and biological data (October 2008 through September 2009) and statistical summaries of long-term data for streams in the Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2010-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula, Montana, as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 24 sites from October 2008 through September 2009. Bed-sediment and biota samples were collected once at 13 sites during August 2009. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2008 through September 2009. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined as well as at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record

  11. Water-Quality, Bed-Sediment, and Biological Data (October 2007 through September 2008) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2009-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to near Missoula as part of a long-term monitoring program in the upper Clark Fork basin; additional water samples were collected in the Clark Fork basin from sites near Missoula downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 23 sites from October 2007 through September 2008. Bed-sediment and biota samples were collected once at 13 sites during August 2008. This report presents the analytical results and quality assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2007 through September 2008. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for water samples collected at sites where seasonal daily values of turbidity were being determined and at Clark Fork above Missoula. Nutrients also were analyzed at all the supplemental water-quality sites, except for Clark Fork Bypass, near Bonner. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the

  12. 15. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM, LEFT FORK TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM, LEFT FORK TO SETTLING BASIN, SHOWING RIGHT FORK WITH GATE IN PLACE AND A FEW NEEDLES IN PLACE - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  13. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the Whitewater River and East Fork White River Basins, Indiana, 2002

    USGS Publications Warehouse

    Caskey, Brian J.; Frey, Jeffrey W.; Lowe, B. Scott

    2007-01-01

    Data were gathered from May through September 2002 at 76 randomly selected sites in the Whitewater River and East Fork White River Basins, Indiana, for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (land use and drainage area) and biolog-ical-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Compo-nents Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related using Spearman's rho to the seasonal algal-biomass, basin-charac-teristics, habitat, seasonal nutrient, and biological-community attribute and metric score data. The periphyton PC1 site score was not significantly related to the nine habitat or 12 nutrient variables examined. One land-use variable, drainage area, was negatively related to the periphyton PC1. Of the 43 fish-community attributes and metrics examined, the periphyton PC1 was negatively related to one attribute (large-river percent) and one metric score (car-nivore percent metric score). It was positively related to three fish-community attributes (headwater percent, pioneer percent, and simple lithophil percent). The periphyton PC1 was not statistically related to any of the 21 invertebrate-community attributes or metric scores examined. Of the 12 nutrient variables examined two were nega-tively related to the seston PC1 site score in two seasons: total Kjeldahl nitrogen (July and September), and TP (May and September). There were no statistically significant relations between the seston PC1 and the five basin-characteristics or nine habitat variables examined. Of the 43 fish-community attributes and metrics examined, the seston PC1 was positively related to one attribute (headwater percent) and negatively related to one metric score (large-river percent metric score) . Of the 21 invertebrate-community attributes

  14. Water-Quality, Bed-Sediment, and Biological Data (October 2005 through September 2006) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2007-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2005 through September 2006. Bed-sediment and biological samples were collected once at 12 sites during August 2006. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2005 through September 2006. Water-quality data include concentrations of selected major ions, trace ele-ments, and suspended sediment. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sed-iment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-ele-ment concentrations in the fine-grained fraction. Bio-logical data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  15. Water-Quality, Bed-Sediment, and Biological Data (October 2006 through September 2007) and Statistical Summaries of Long-Term Data for Streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2008-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Milltown Reservoir as part of a long-term monitoring program in the upper Clark Fork basin; additional water-quality samples were collected in the Clark Fork basin from sites near Milltown Reservoir downstream to near the confluence of the Clark Fork and Flathead River as part of a supplemental sampling program. The sampling programs were conducted in cooperation with the U.S. Environmental Protection Agency to characterize aquatic resources in the Clark Fork basin of western Montana, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water-quality samples were collected periodically at 22 sites from October 2006 through September 2007. Bed-sediment and biological samples were collected once at 12 sites during August 2007. This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at all long-term and supplemental monitoring sites from October 2006 through September 2007. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity was analyzed for samples collected at sites where seasonal daily values of turbidity were being determined. Nutrients also were analyzed in the supplemental water-quality samples. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for four sites, and seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of long-term water-quality, bed-sediment, and biological data for sites in the upper Clark Fork basin are provided for the period of record since 1985.

  16. Water-Quality, Bed-Sediment, and Biological Data (October 2004 through September 2005) and Statistical Summaries of Data for Streams in the Upper Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2006-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a long-term monitoring program, conducted in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the upper Clark Fork basin of western Montana. Sampling sites were located on the Clark Fork, six major tributaries, and three smaller tributaries. Water-quality samples were collected periodically at 18 sites during October 2004 through September 2005 (water year 2005). Bed-sediment and biological samples were collected once in August 2005. The primary constituents analyzed were trace elements associated with tailings from historical mining and smelting activities. This report summarizes the results of water-quality, bed-sediment, and biota samples col-lected in water year 2005 and provides statistical summaries of data collected since 1985. Water-quality data for samples collected periodically from streams include concentrations of selected major ions, trace ele-ments, and suspended sediment. Daily values of suspended-sed-iment concentration and suspended-sediment discharge were determined for three sites. Bed-sediment data include trace-ele-ment concentrations in the fine-grained fraction. Bio-logical data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota. Statistical summaries of water-quality, bed-sediment, and biological data are provided for the period of record since 1985 for each site.

  17. Water-quality, bed-sediment, and biological data (October 1993 through September 1994) and statistical summaries of data for streams in the Upper Clark Fork basin, Montana

    USGS Publications Warehouse

    Lambing, J.H.; Hornberger, M.I.; Axtmann, E.V.; Dodge, K.A.

    1995-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a program to characterize aquatic resources in the upper Clark Fork basin of western Montana. Water- quality data were obtained periodically at 16 stations during October 1993 through September 1994 (water year 1994); daily suspended-sediment data were obtained at six of these stations. Bed-sediment and biological data were obtained at 11 stations in August 1994. Sampling stations were located on the Clark Fork and major tributaries. The primary constituents analyzed were trace elements associated with mine tailings from historical mining and smelting activities. Water-quality data include concentrations of major ions, trace elements, and suspended sediment in samples collected periodically during water year 1994. Daily values of streamflow, suspended-sediment concentration, and suspended- sediment discharge are given for six stations. Bed- sediment data include trace-element concentrations in the fine and bulk fractions. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota. Statistical summaries of bed sediment, and biological data are provided for the period of record at each station since 1985.

  18. Water-quality, bed-sediment, and biological data (October 2003 through September 2004) and statistical summaries of data for streams in the Upper Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2005-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a program, conducted in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the upper Clark Fork basin of western Montana. Sampling sites were located on the Clark Fork, five major tributaries, and three smaller tributaries. Water-quality samples were collected periodically at 17 sites during October 2003 through September 2004 (water year 2004). Bed-sediment and biological samples were collected one time in August 2004. The primary constituents analyzed were trace elements associated with tailings from historical mining and smelting activities. This report summarizes the results of water-quality, bed-sediment, and biota samples collected in water year 2004 and provides statistical summaries of data collected since 1985. Water-quality data for samples collected periodically from streams include concentrations of selected major ions, trace elements, and suspended sediment. Daily values of suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Bed-sediment data include trace-element concentrations in the fine-grained and bulk fractions. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota. Statistical summaries of water-quality, bed-sediment, and biological data are provided for the period of record since 1985 for each site.

  19. Water-quality, bed-sediment, and biological data (October 1994 through September 1995) and statistical summaries of data for streams in the upper Clark Fork basin, Montana

    USGS Publications Warehouse

    Dodge, K.A.; Hornberger, M.I.; Axtmann, E.V.

    1996-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a program to characterize aquatic resources in the upper Clark Fork basin of western Montana. Sampling stations were located on the Clark Fork and major tributaries. Water-quality data were obtained periodically at 16 stations during October 1994 through September 1995 (water year 1995). Data for twelve bed-sediment and eleven biological stations were obtained in August 1995. The primary constituents analyzed were trace elements associated with mine tailings from historical mining and smelting activities. Water-quality data include concentrations of major ions, trace element, and suspended sediment in stream samples collected periodically during water year 1995. Daily values of streamflow, suspended- sediment concentrations in the fine-grained and bulk fractions. Biological data include trace- element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota. Statistical summaries of water-quality, bed-sediment, and biological data are provided for the period of record at each station since 1985.

  20. Water-quality, bed-sediment, and biological data (October 2013 through September 2014) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.

    2015-12-24

    This report presents the analytical results and qualityassurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2013 through September 2014. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. At 12 sites, dissolved organic carbon and turbidity samples were collected. In addition, nitrogen (nitrate plus nitrite) samples were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-ele­ment concentrations in the fine-grained fraction. Biological data include trace-element concentrations in wholebody tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  1. Water-quality, bed-sediment, and biological data (October 2012 through September 2013) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Hornberger, Michelle I.; Dyke, Jessica

    2014-01-01

    This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2012 through September 2013. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Turbidity and dissolved organic carbon were analyzed for water samples collected at the four sites where seasonal daily values of turbidity were being determined. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical sum-maries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  2. Physical characteristics of stream subbasins in the Des Moines River, Upper Des Moines River, and East Fork Des Moines River basins, southern Minnesota and northern Iowa

    USGS Publications Warehouse

    Sanocki, Christopher A.

    2000-01-01

    Data that describe the physical characteristics of stream subbasins upstream from selected sites on streams in the Des Moines River, Upper Des Moines River, and East Fork Des Moines River Basins, located in southwestern Minnesota, and northwestern Iowa, are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. Stream sites include outlets of subbasins of at least 5 square miles, and locations of U.S. Geological Survey high-flow, and continuous-record gaging stations.

  3. High-resolution digital elevation model of Mount St. Helens crater and upper North Fork Toutle River basin, Washington, based on an airborne lidar survey of September 2009

    USGS Publications Warehouse

    Mosbrucker, Adam

    2014-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the North Fork Toutle River basin, which drains the northern flank of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, built a sediment retention structure on the North Fork Toutle River in 1989 to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From September 16–20, 2009, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 214 square kilometers (83 square miles) of Mount St. Helens and the upper North Fork Toutle River basin from the sediment retention structure to the volcano's crater. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle, Coldwater, and Spirit Lakes. Final results averaged about five laser last

  4. Changes in fish assemblage structure in the main-stem Willamette River, Oregon

    EPA Science Inventory

    The Willamette River if Oregon’s largest river, with a basin area of 29,800 km² and a mean annual discharge of 680 m³/3. Beginning in the 1890s, the channel was greatly simplified for navigation. By the 1940s, it was polluted by organic wastes, which resulted in low dissolved o...

  5. CHANGES IN FISH ASSEMBLAGE STRUCTURE IN THE MAINSTEM WILLAMETTE RIVER, OREGON

    EPA Science Inventory

    The Willamette River has a mean annual discharge of 680 m3s-1. In the 1940s it was polluted by organic wastes, resulting in low dissolved oxygen concentrations and floating and benthic sludge deposits that hindered salmon migration and navigation. Following basin-wide secondary...

  6. Analysis of characteristics of simulated flows from small surface-mined and undisturbed Appalachian watersheds in the Tug Fork basin of Kentucky, Virginia, and West Virginia

    USGS Publications Warehouse

    Scott, A.G.

    1984-01-01

    Hydrologic and climatologic data were collected at 10 small, mined and unmined watersheds in the Tug Fork basin of Kentucky, Virginia, and West Virginia. These data included continuous records of discharge, precipitation, and air temperature. Daily records of sediment concentrations and sediment discharges were also obtained and periodic observations of water-quality data taken. A compilation of all these data is presented. The observed climatic and hydrologic data from these basins were used to calibrate the U.S. Geological Survey Precipitation-Runoff Modeling System for each watershed. The calibrated models of each basin were then used with a set of nearby, long-term climatic data to simulate a long record of stream-flow. A 68-year record of daily streamflow and 57 years of annual peaks were simulated for each site. These simulated records were analyzed to obtain flood-frequency curves, flow-duration curves, mean-annual discharges, and the 7-day, 10-year low flow for each site. The flow characteristics computed from the simulated records of discharge were analyzed graphically and statistically by regression analysis to investigate the degree of relationship and to define the relationship between mining and runoff. For this sample of small basins, peak flows, discharges for 10- and 50-percent flow durations, and mean-annual flows are directly related to percent of drainage area disturbed (measured from aerial photos) and drainage area. Percent of drainage area disturbed is generally a more statistically significant estimator of discharge than drainage area, particularly for peak flows of higher recurrence intervals. (USGS)

  7. The 1980 Polallie Creek debris flow and subsequent dam-break flood, East Fork Hood River basin, Oregon

    USGS Publications Warehouse

    Gallino, Gary L.; Pierson, Thomas C.

    1984-01-01

    At approximately 9 p.m. on December 25, 1980, intense rainfall and extremely wet antecedent conditions combined to trigger a landslide of approximately 5,000 cubic yards at the head of Polallie Creek Canyon on the northeast flank of Mount Hood. The landslide was transformed rapidly into a debris flow, which surged down the channel at velocities between about 40 and 50 ft/s, eroding and incorporating large volumes of channel fill and uprooted vegetation. When it reached the debris fan at the confluence with the East Fork Hood River, the debris flow deposited approximately 100,000 cubic yards of saturated, poorly sorted debris to a maximum thickness of 35 ft, forming a 750-ft-long temporary dam across the channel. Within approximately 12 minutes, a lake of 85 acre-feet formed behind the blockage, breached the dam, and sent a flood wave down the East Fork Hood River. The combined debris flow and flood resulted in one fatality and over $13 million in damage to a highway, bridges, parks, and a water-supply pipeline. Application of simple momentum- and energy-balance equations, and uniform flow equations resulted in debris flow peak discharges ranging from 50,000 ft3/s to 300,000 ft3/s at different locations in the Polallie Creek Canyon. This wide range is attributed to temporary damming at the boulder- and log-rich flow front in narrow, curving reaches of the channel. When the volume of the solid debris was subtracted out, assuming a minimum peak debris-flow discharge of 100,000 ft3/s at the canyon mouth, a minimum peak-water discharge of 40,000 ft3/s was obtained. A computer dam-break model simulated peak flow for the outbreak flood on the East Fork Hood River in the range of 20,000 to 30,000 ft3/s using various breach shapes and durations of breach between 5 and 15 minutes. A slope conveyance computation 0.25 mi downstream from the dam gave a peak water discharge (solids subtracted out) for the debris-laden flood of 12,000 to 20,000 ft3/s, depending on the channel

  8. Along Middle Fork Road toward North Fork of the Crazy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Along Middle Fork Road toward North Fork of the Crazy Woman Creek Bridge, view to west - North Fork of Crazy Woman Creek Bridge, Spanning North Fork of Crazy Woman Creek at Middle Fork Road, Buffalo, Johnson County, WY

  9. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the West Fork White River Basin, Indiana, 2001

    USGS Publications Warehouse

    Frey, Jeffrey W.; Caskey, Brian J.; Lowe, B. Scott

    2007-01-01

    Data were gathered from July through September 2001 at 34 randomly selected sites in the West Fork White River Basin, Indiana for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (drainage area and land use) and biological-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Components Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related, using Spearman's rho, to the seasonal algal-biomass, basin-characteristics, habitat, seasonal nutrient, biological-community attribute and metric score data. The periphyton PC1 site score, which was most influenced by ash-free dry mass, was negatively related to one (percent closed canopy) of nine habitat variables examined. Of the 43 fish-community attributes and metric scores examined, the periphyton PC1 was positively related to one fish-community attribute (percent tolerant). Of the 21 invertebrate-community attributes and metric scores examined, the periphyton PC1 was positively related to one attribute (Ephemeroptera, Plecoptera, and Trichoptera (EPT) index) and one metric score (EPT index metric score). The periphyton PC1 was not related to the five basin-characteristic or 12 nutrient variables examined. The seston PC1 site score, which was most influenced by particulate organic carbon, was negatively related to two of the 12 nutrient variables examined: total Kjeldahl nitrogen (July) and total phosphorus (July). Of the 43 fish-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (large-river percent). Of the 21 invertebrate-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (EPT-to-total ratio). The seston PC1 was not related to the five basin-characteristics or nine habitat variables

  10. Hydrologic Conditions and Water-Quality Conditions Following Underground Coal Mining in the North Fork of the Right Fork of Miller Creek Drainage Basin, Carbon and Emery Counties, Utah, 2004-2005

    USGS Publications Warehouse

    Wilkowske, C.D.; Cillessen, J.L.; Brinton, P.N.

    2007-01-01

    In 2004 and 2005, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, reassessed the hydrologic system in and around the drainage basin of the North Fork of the Right Fork (NFRF) of Miller Creek, in Carbon and Emery Counties, Utah. The reassessment occurred 13 years after cessation of underground coal mining that was performed beneath private land at shallow depths (30 to 880 feet) beneath the NFRF of Miller Creek. This study is a follow-up to a previous USGS study of the effects of underground coal mining on the hydrologic system in the area from 1988 to 1992. The previous study concluded that mining related subsidence had impacted the hydrologic system through the loss of streamflow over reaches of the perennial portion of the stream, and through a significant increase in dissolved solids in the stream. The previous study also reported that no substantial differences in spring-water quality resulted from longwall mining, and that no clear relationship between mining subsidence and spring discharge existed. During the summers of 2004 and 2005, the USGS measured discharge and collected water-quality samples from springs and surface water at various locations in the NFRF of Miller Creek drainage basin, and maintained a streamflow-gaging station in the NFRF of Miller Creek. This study also utilized data collected by Cyprus-Plateau Mining Corporation from 1992 through 2001. Of thirteen monitored springs, five have discharge levels that have not returned to those observed prior to August 1988, which is when longwall coal mining began beneath the NFRF of Miller Creek. Discharge at two of these five springs appears to fluctuate with wet and dry cycles and is currently low due to a drought that occurred from 1999-2004. Discharge at two other of the five springs did not increase with increased precipitation during the mid-1990s, as was observed at other monitored springs. This suggests that flowpaths to these springs may have been altered by land

  11. Procedure for calculating estimated ultimate recoveries of Bakken and Three Forks Formations horizontal wells in the Williston Basin

    USGS Publications Warehouse

    Cook, Troy A.

    2013-01-01

    Estimated ultimate recoveries (EURs) are a key component in determining productivity of wells in continuous-type oil and gas reservoirs. EURs form the foundation of a well-performance-based assessment methodology initially developed by the U.S. Geological Survey (USGS; Schmoker, 1999). This methodology was formally reviewed by the American Association of Petroleum Geologists Committee on Resource Evaluation (Curtis and others, 2001). The EUR estimation methodology described in this paper was used in the 2013 USGS assessment of continuous oil resources in the Bakken and Three Forks Formations and incorporates uncertainties that would not normally be included in a basic decline-curve calculation. These uncertainties relate to (1) the mean time before failure of the entire well-production system (excluding economics), (2) the uncertainty of when (and if) a stable hyperbolic-decline profile is revealed in the production data, (3) the particular formation involved, (4) relations between initial production rates and a stable hyperbolic-decline profile, and (5) the final behavior of the decline extrapolation as production becomes more dependent on matrix storage.

  12. An Analytical Method for Deriving Reservoir Operation Curves to Maximize Social Benefits from Multiple Uses of Water in the Willamette River Basin

    NASA Astrophysics Data System (ADS)

    Moore, K. M.; Jaeger, W. K.; Jones, J. A.

    2013-12-01

    A central characteristic of large river basins in the western US is the spatial and temporal disjunction between the supply of and demand for water. Water sources are typically concentrated in forested mountain regions distant from municipal and agricultural water users, while precipitation is super-abundant in winter and deficient in summer. To cope with these disparities, systems of reservoirs have been constructed throughout the West. These reservoir systems are managed to serve two main competing purposes: to control flooding during winter and spring, and to store spring runoff and deliver it to populated, agricultural valleys during the summer. The reservoirs also provide additional benefits, including recreation, hydropower and instream flows for stream ecology. Since the storage capacity of the reservoirs cannot be used for both flood control and storage at the same time, these uses are traded-off during spring, as the most important, or dominant use of the reservoir, shifts from buffering floods to storing water for summer use. This tradeoff is expressed in the operations rule curve, which specifies the maximum level to which a reservoir can be filled throughout the year, apart from real-time flood operations. These rule curves were often established at the time a reservoir was built. However, climate change and human impacts may be altering the timing and amplitude of flood events and water scarcity is expected to intensify with anticipated changes in climate, land cover and population. These changes imply that reservoir management using current rule curves may not match future societal values for the diverse uses of water from reservoirs. Despite a broad literature on mathematical optimization for reservoir operation, these methods are not often used because they 1) simplify the hydrologic system, raising doubts about the real-world applicability of the solutions, 2) exhibit perfect foresight and assume stationarity, whereas reservoir operators face

  13. Summary of surface-water-quality data collected for the Northern Rockies Intermontane Basins National Water-Quality Assessment Program in the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, water years 1999-2001

    USGS Publications Warehouse

    Beckwith, Michael A.

    2003-01-01

    Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore

  14. VEGETATION CHARACTERIZATION OF THREE CONTRASTING RIPARIAN SITES, WILLAMETTE VALLEY, OR

    EPA Science Inventory

    Much of the native riparian vegetation of the Willamette Valley, Oregon, has been replaced with agricultural crops or invasive non-native plant species. Detailed information about current Willamette Valley riparian vegetation is generally lacking. Plant species composition data...

  15. 77 FR 43164 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Hawthorne Bridge, mile 13.1, all crossing the Willamette River at Portland, OR. This deviation is necessary..., the Morrison Bridge, mile 12.8, and the Hawthorne Bridge, mile 13.1, all crossing the Willamette...

  16. 53. Photocopy of photograph (Plate XX, Modjeski report) WILLAMETTE BRIDGE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Photocopy of photograph (Plate XX, Modjeski report) WILLAMETTE BRIDGE, WATER GAGE RECORD - Burlington Northern Railroad Bridge, Spanning Willamette River at River Mile 6.9, Portland, Multnomah County, OR

  17. Simulation of storm peaks and storm volumes for selected subbasins in the West Fork Trinity River Basin, Texas, water years 1993-94

    USGS Publications Warehouse

    Raines, T.H.

    1996-01-01

    A model parameter set for use with the Hydrologic Simulation Program FORTRAN watershed model was developed to simulate storm peaks and storm volumes for the 28 subbasins of the West Fork Trinity River Basin upstream from Lake Worth, northwest of Fort Worth, Texas, from the calibration and testing of 5 gaged subbasins. These parameters can be transferred to the 23 ungaged subbasins. The model simulates storm runoff for a channel-routing model that can be used to improve reservoir operation during floods in the basin. Rainfall and runoff data were collected from October 1, 1992, to September 30, 1994. A total of 55 storms were recorded at the 5 streamgage stations during the 24 months. Twelve different pervious land segments were defined based on types of soil, land cover, and watershed slope. A total of 20 process-related parameters were defined for each land segment, and 6 basin-related parameters were defined for each stream reach. The mean absolute errors for the 5 subbasins for simulation of storm peaks range from 48.0 to 470 percent and for simulation of storm volumes range from 34.4 to 416 percent. A sensitivity analysis was done to determine what a change in a parameter value has on the largest storm peak and on the total storm volume. The model then was recalibrated and tested on the basis of the analysis of the sensitivity of parameters and on the analysis of the errors from the initial model calibration and testing. The mean absolute errors for the 5 subbasins using the recalibrated parameters for simulation of storm peaks range from 47.1 to 297 percent, and for simulation of storm volumes range from 27.6 to 193 percent. The model produced better results for simulation of the larger storm peaks and storm volumes than for simulation of the smaller storm peaks and storm volumes, especially after an extended period of no runoff. The same range in errors can be expected when transferring the parameters to the 23 ungaged subbasins. Additional data collection

  18. 78 FR 18480 - Drawbridge Operation Regulations; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... across the Willamette River, miles 12.4, at Portland, Oregon. This deviation is necessary to accommodate... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Willamette River, Portland, OR..., crossing the Willamette River at Portland, OR. The Burnside Bridge provides a vertical clearance of 64...

  19. Influences of summer water temperatures on the movement, distribution, and resources use of fluvial Westslope Cutthroat Trout in the South Fork Clearwater River basin

    USGS Publications Warehouse

    Dobos, Marika E.; Corsi, Matthew P.; Schill, Daniel J.; DuPont, Joseph M.; Quist, Michael

    2016-01-01

    Although many Westslope Cutthroat Trout Oncorhynchus clarkii lewisi populations in Idaho are robust and stable, population densities in some systems remain below management objectives. In many of those systems, such as in the South Fork Clearwater River (SFCR) system, environmental conditions (e.g., summer temperatures) are hypothesized to limit populations of Westslope Cutthroat Trout. Radiotelemetry and snorkeling methods were used to describe seasonal movement patterns, distribution, and habitat use of Westslope Cutthroat Trout in the SFCR during the summers of 2013 and 2014. Sixty-six radio transmitters were surgically implanted into Westslope Cutthroat Trout (170–405 mm TL) from May 30–June 25, 2013, and June 20–July 6, 2014. Sedentary and mobile summer movement patterns by Westslope Cutthroat Trout were observed in the SFCR. Westslope Cutthroat Trout were generally absent from the lower SFCR. In the upper region of the SFCR, fish generally moved from the main-stem SFCR into tributaries as water temperatures increased during the summer. Fish remained in the middle region of the SFCR where water temperatures were cooler than in the upper or lower regions of the SFCR. A spatially explicit water temperature model indicated that the upper and lower regions of the SFCR exceeded thermal tolerance levels of Westslope Cutthroat Trout throughout the summer. During snorkeling, 23 Westslope Cutthroat Trout were observed in 13 sites along the SFCR and at low density (mean ± SD, 0.0003 ± 0.0001 fish/m2). The distribution of fish observed during snorkeling was consistent with the distribution of radio-tagged fish in the SFCR during the summer. Anthropogenic activities (i.e., grazing, mining, road construction, and timber harvest) in the SFCR basin likely altered the natural flow dynamics and temperature regime and thereby limited stream habitat in the SFCR system for Westslope Cutthroat Trout.

  20. Characterization of salinity loads and selenium loads in the Smith Fork Creek region of the Lower Gunnison River Basin, western Colorado, 2008-2009

    USGS Publications Warehouse

    Richards, Rodney J.; Linard, Joshua I.; Hobza, Christopher M.

    2014-01-01

    The lower Gunnison River Basin of the Colorado River Basin has elevated salinity and selenium levels. The Colorado River Basin Salinity Control Act of June 24, 1974 (Public Law 93–320, amended by Public Law 98–569), authorized investigation of the Lower Gunnison Basin Unit Salinity Control Project by the U.S. Department of the Interior. The Bureau of Reclamation (Reclamation) and the Natural Resources Conservation Service are responsible for assessing and implementing measures to reduce salinity and selenium loading in the Colorado River Basin. Cost-sharing programs help farmers, ranchers, and canal companies improve the efficiency of water delivery systems and irrigation practices. The delivery systems (irrigation canals) have been identified as potential sources of seepage, which can contribute to salinity loading. Reclamation wants to identify seepage from irrigation systems in order to maximize the effectiveness of the various salinity-control methods, such as polyacrylamide lining and piping of irrigation canals programs. The U.S. Geological Survey, in cooperation with Reclamation, developed a study to characterize the salinity and selenium loading of seven subbasins in the Smith Fork Creek region and identify where control efforts can be maximized to reduce salinity and selenium loading. Total salinity loads ranged from 27.9±19.1 tons per year (t/yr) to 87,500±80,500 t/yr. The four natural subbasins—BkKm, RCG1, RCG2, and SF1—had total salinity loads of 27.9±19.1 t/yr, 371±248 t/yr, 2,180±1,590 t/yr, and 4,200±2,720 t/yr, respectively. The agriculturally influenced sites had salinity loads that ranged from 7,580±6,900 t/yr to 87,500±80,500 t/yr. Salinity loads for the subbasins AL1, B1, CK1, SF2, and SF3 were 7,580±6,900 t/yr; 28,300±26,700 t/yr; 48,700±36,100 t/yr; 87,500±80,900 t/yr; and 52,200±31,800 t/yr, respectively. The agricultural salinity load was separated into three components: tail water, deep percolation, and canal seepage

  1. Changes in streamflow and summary of major-ion chemistry and loads in the North Fork Red River basin upstream from Lake Altus, northwestern Texas and western Oklahoma, 1945-1999

    USGS Publications Warehouse

    Smith, S. Jerrod; Wahl, Kenneth L.

    2003-01-01

    Upstream from Lake Altus, the North Fork Red River drains an area of 2,515 square miles. The quantity and quality of surface water are major concerns at Lake Altus, and water-resource managers and consumers need historical information to make informed decisions about future development. The Lugert-Altus Irrigation District relies on withdrawals from the lake to sustain nearly 46,000 acres of agricultural land. Kendall's tau tests of precipitation data indicated no statistically significant trend over the entire 100 years of available record. However, a significant increase in precipitation occurred in the last 51 years. Four streamflow-gaging stations with more than 10 years of record were maintained in the basin. These stations recorded no significant trends in annual streamflow volume. Two stations, however, had significant increasing trends in the base-flow index, and three had significant decreasing trends in annual peak flows. Major-ion chemistry in the North Fork Red River is closely related to the chemical composition of the underlying bedrock. Two main lithologies are represented in the basin upstream from Lake Altus. In the upper reaches, young and poorly consolidated sediments include a range of sizes from coarse gravel to silt and clay. Nearsurface horizons commonly are cemented as calcium carbonate caliche. Finer-grained gypsiferous sandstones and shales dominate the lower reaches of the basin. A distinct increase in dissolved solids, specifically sodium, chloride, calcium, and sulfate, occurs as the river flows over rocks that contain substantial quantities of gypsum, anhydrite, and dolomite. These natural salts are the major dissolved constituents in the North Fork Red River.

  2. The impact of snowpack decline on high elevation surface-water flow in the Willamette River: a stable isotope perspective

    NASA Astrophysics Data System (ADS)

    Brooks, J. R.; Johnson, H.; Cline, S. P.; Rugh, W.

    2015-12-01

    Much of the water that people in Western Oregon rely on comes from the snowpack in the Cascade Range, and this snowpack is expected to decrease in coming years with climate change. In fact, the past five years have shown dramatic variation in snowpack from a high of 174% of normal in 2010-11 to a low of 11% for 2014-15, one of the lowest on record. During this timeframe, we have monitored the stable isotopes of water within the Willamette River twice monthly, and mapped the spatial variation of water isotopes across the basin. Within the Willamette Basin, stable isotopes of water in precipitation vary strongly with elevation and provide a marker for determining the mean elevation from which water in the Willamette River is derived. In the winter when snow accumulates in the mountains, low elevation precipitation (primarily rain) contributes the largest proportion of water to the Willamette River. During summer when rainfall is scarce and demand for water is the greatest, water in the Willamette River is mainly derived from high elevation snowmelt. Our data indicate that the proportion of water from high elevation decreased with decreasing snowpack. We combine this information with the river flow data to estimate the volume reduction related to snow pack reduction during the dry summer. Observed reductions in the contribution of high elevation water to the Willamette River after just two years of diminished snowpack indicate that the hydrologic system responds relatively rapidly to changing snowpack volume. Reconciling the demands between human use and biological instream requirements during summer will be challenging under climatic conditions in which winter snowpack is reduced compared to historical amounts.

  3. Water quality in Reedy Fork and Buffalo Creek basins in the Greensboro area, North Carolina, 1986-87

    USGS Publications Warehouse

    Davenport, M.S.

    1989-01-01

    variables to statistically compare water-quality characteristics in selected rural, semideveloped and urban basins. During low-flow sampling, the constituents that differed significantly among all sites were calcium, magnesium, and chloride. During low flows, concentrations of orthophosphate, fluoride, sulfate, and TOC differed at the urban site from the rural and semideveloped and urban sites. There were no significant differences among sites in concentrations of sodium, suspended sediment, nickel, zinc, copper, and mercury during low flows. The Wilcoxon test performed on high-flow data indicated that concentrations of TOC, chloride, sulfate, suspended sediment, and nickel were not significantly different among the sites.

  4. U.S. Geological Survey 2013 assessment of undiscovered resources in the Bakken and Three Forks Formations of the U.S. Williston Basin Province

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Marra, Kristen R.

    2014-01-01

    The Upper Devonian Three Forks and Upper Devonian to Lower Mississippian Bakken Formations comprise a major United States continuous oil resource. Current exploitation of oil is from horizontal drilling and hydraulic fracturing of the Middle Member of the Bakken and upper Three Forks, with ongoing exploration of the lower Three Forks, and the Upper, Lower, and Pronghorn Members of the Bakken Formation. In 2008, the U.S. Geological Survey (USGS) estimated a mean of 3.65 billion bbl of undiscovered, technically recoverable oil resource within the Bakken Formation. The USGS recently reassessed the Bakken Formation, which included an assessment of the underlying Three Forks Formation. The Pronghorn Member of the Bakken Formation, where present, was included as part of the Three Forks assessment due to probable fluid communication between reservoirs. For the Bakken Formation, five continuous and one conventional assessment units (AUs) were defined. These AUs are modified from the 2008 AU boundaries to incorporate expanded geologic and production information. The Three Forks Formation was defined with one continuous and one conventional AU. Within the continuous AUs, optimal regions of hydrocarbon recovery, or “sweet spots,” were delineated and estimated ultimate recoveries were calculated for each continuous AU. Resulting undiscovered, technically recoverable resource estimates were 3.65 billion bbl for the five Bakken continuous oil AUs and 3.73 billion bbl for the Three Forks Continuous Oil AU, generating a total mean resource estimate of 7.38 billion bbl. The two conventional AUs are hypothetical and represent a negligible component of the total estimated resource (8 million barrels of oil).

  5. 9. 'CRIB DAM IN LAKE FORK RIVER AT HEADING OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. 'CRIB DAM IN LAKE FORK RIVER AT HEADING OF LAKE FORK CANAL, UINTAH PROJECT. TWO SLUICEWAYS TWENTY FEET WIDE HAVE BEEN LEFT IN THE DAM TO PASS BOULDERS DURING HIGH WATER. THESE SLUICEWAYS ARE CLOSED BY LOGS AND HAY DURING LOW WATER.' Date unknown - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT

  6. Tuning fork decay.

    PubMed

    Miller, G W

    1979-03-01

    Tuning fork tests are used routinely by many otologists. A different group of otologists find the tests inconsistent and unreliable. This controversy has probably developed because the audiometer has replaced the tuning fork in hearing measurement. As a result, the art of use of the tuning fork is poorly learned. This study examines decay, one of the physical parameters of tuning forks. Measurements of acoustic (sound wave) and vibration (stem movement) decay were made. Alteration in decay due to pressure changes on the fork stem were studied. Acoustic signals were generated in an anechoic chamber. Vibration measurements were obtained using an artificial mastoid. Analysis of the signals was accomplished by a system of amplifiers, filters, tape recorders, and a graphic recorder. Tuning fork sound decay is a property of the instrument which occurs every time the fork is struck. The decay is a constant in decibels per second. The acoustic mode and the vibration mode decay at similar rates for the same fork. The strike frequency (a higher frequency than the fundamental produced when the fork is struck) also has a constant decay rate in decibels per second, and it is reported here for the first time. Force of 800 gm. and less applied to the bottom of the stem in vibration measurement caused minimal decay constant changes. When the physical parameters of the tuning fork (including this information on damping) are fully studied, tuning fork testing should become more of a science and less of an art.

  7. Estimated loads of suspended sediment and selected trace elements transported through the Clark Fork basin, Montana, in selected periods before and after the breach of Milltown Dam (water years 1985-2009)

    USGS Publications Warehouse

    Sando, Steven K.; Lambing, John H.

    2011-01-01

    Milltown Reservoir is a National Priorities List Superfund site in the upper Clark Fork basin of western Montana where sediments enriched in trace elements from historical mining and ore processing have been deposited since the completion of Milltown Dam in 1908. Milltown Dam was breached on March 28, 2008, as part of Superfund remediation activities to remove the dam and excavate contaminated sediment that had accumulated in Milltown Reservoir. In preparation for the breach of Milltown Dam, permanent drawdown of Milltown Reservoir began on June 1, 2006, and lowered the water-surface elevation by about 10 to 12 feet. After the breach of Milltown Dam, the water-surface elevation was lowered an additional 17 feet. Hydrologic data-collection activities were conducted by the U.S. Geological Survey in cooperation with U.S. Environmental Protection Agency to estimate loads of suspended sediment and trace elements transported through the Clark Fork basin before and after the breach of Milltown Dam. This report presents selected results of the data-collection activities.

  8. Water-power resources in upper Carson River basin, California-Nevada, A discussion of potential development of power and reservoir sites on east and west forks, Carson River

    USGS Publications Warehouse

    Pumphrey, Harold L.

    1955-01-01

    West Fork Carson River offers the best opportunity for power development in the Carson River basin. The Hope Valley reservoir site could be developed to provide adequate storage regulation and concentration of fall would permit utilization of 1,400 feet of head in 51h miles below the clam site, or 1,900 feet of head in about 972 miles below the dam site; however, the average annual runoff susceptible of development is only about 70,000 acre-feet which limits the power that could be developed continuously in an average year with regulation to about 8,700 kilowatts utilizing 1,400 feet of head, or 12,000 kilowatts utilizing 1,900 feet of head. The method and degree of development will be determined to large extent by the method devised to supplement regulated flows from the Hope Valley reservoir to supply the water already appropriated for irrigation. If the Hope Valley site and the Watasheamu site on East Fork Carson River were developed coordinately water could be transferred to the West Fork for distribution through canals leading from that stream thus satisfying the deficiency due to regulation at Hope Valley and release of stored water on a power schedule. This would permit utilization of the entire 1,900 feet of fall. Independent development of the West Fork for optimum power production would require re-regulation of releases from Hope Valley reservoir and storage of a considerable part of the fall and winter flow for use during the irrigation season. Adequate storage capacity is apparently not available on the West Fork below Hope Valley; but offstream storage may be available in Diamond Valley which could be utilized by diversion from the West Fork near Woodfords. This would limit the utilization of the stream for power purposes to the development of the 1,400 feet of head between the Hope Valley dam site and Wood fords. In a year of average discharge East Fork Carson River and three of its principal tributaries could be developed to produce about 13

  9. 33 CFR 117.897 - Willamette River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Oregon § 117.897 Willamette River. (a) The draws of... months after notification by the District Commander to do so. (b) The draw of the Oregon State highway.... (ii) Steel Bridge (upper deck only), Portland, mile 12.1. From 8 a.m. to 5 p.m. Monday through...

  10. 33 CFR 117.897 - Willamette River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Oregon § 117.897 Willamette River. (a) The draws of... months after notification by the District Commander to do so. (b) The draw of the Oregon State highway.... (ii) Steel Bridge (upper deck only), Portland, mile 12.1. From 8 a.m. to 5 p.m. Monday through...

  11. The Yampa Bed - A Regionally Extensive Tonstein in the Williams Fork Formation, Northwestern Piceance Creek and Southern Sand Wash Basins, Colorado

    USGS Publications Warehouse

    Brownfield, Michael E.; Johnson, Edward A.

    2008-01-01

    A regionally persistent and distinctive unit of Upper Cretaceous age is here formally named the Yampa Bed of the Williams Fork Formation for exposures in the Yampa, Danforth Hills, and Grand Hogback coal fields, Moffat and Routt Counties, northwest Colorado; the name is derived from the Yampa River valley. The type section was measured in the NE? SW? sec. 6, T. 5 N., R. 91 W., about 8 miles south of Craig, Colo., where the bed is 38 inches thick and lies within the C-D coal bed in the lower part of the Williams Fork Formation, about 165 feet above the Trout Creek Sandstone Member of the Iles Formation. The Yampa Bed is dated at 72.2 ? .1 mega-annum using the K-Ar method. Regionally, the Yampa Bed is a 0.5- to 5-ft-thick, regionally persistent tonstein that can be readily identified in several different lithofacies in the lower part of the Williams Fork Formation. The unit is useful as a regional datum in the correlation of facies within the Williams Fork, and it is easily recognized on geophysical logs by its low resistivity response. Evidence suggests that it is a diagenetically altered airfall ash.

  12. Water-quality, bed-sediment, and biological data (October 1992 through September 1993) and statistical summaries of water-quality data (March 1985 through September 1993) for streams in the upper Clark Fork basin, Montana

    USGS Publications Warehouse

    Lambing, John H.

    1994-01-01

    Water, bed sediment, and biota were sampled in streams from Butte to below Missoula as part of a program to characterize aquatic resources in the upper Clark Fork basin of western Montana. Water-quality data were obtained periodically at 16 stations during October 1992 through September 1993 (water year 1993); daily suspended-sediment data were obtained at six of these stations. Bed-sediment and biological data were obtained at 11 stations in August 1993. Sampling stations were located on the Clark Fork and major tributaries. The primary constituents analyzed were trace elements associated with mine tailings from historic mining and smelting activities. Water-quality data include concentra- tions of major ions, trace elements, and suspended sediment in samples collected periodically during water year 1993. A statistical summary of water- quality data is provided for the period of record at each station since 1985. Daily values of streamflow, suspended-sediment concentration, and suspended-sediment discharge are given for six stations. Bed-sediment data include trace- element concentrations in the fine and bulk fractions. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Quality-assurance data are reported for analytical results of water, bed sediment, and biota.

  13. 4. VIEW UPSTREAM ALONG NORTH FORK OF MIDDLE FORK OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW UPSTREAM ALONG NORTH FORK OF MIDDLE FORK OF TULE RIVER, LOOKING TOWARD DOWNSTREAM SIDE OF BRIDGE AND POWERHOUSE; FLUME AT LEFT. LOOKING EAST. 90mm lens - Tule River Hydroelectric Complex, Tule River Bridge, Spanning North Fork of Middle Fork of Tule River, Springville, Tulare County, CA

  14. 77 FR 41685 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... Willamette River, mile 13.1, at Portland, OR. This deviation is necessary to accommodate Portland's Big Float..., uninterrupted roadway passage of participants of the Big Float event. The Hawthorne Bridge crosses the Willamette River at mile 13.1 and provides 49 feet of vertical clearance above Columbia River Datum 0.0...

  15. 77 FR 29897 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... INFORMATION: Trimet of Portland and the Oregon Department of Transportation have requested that the upper deck... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Willamette River, Portland, OR AGENCY... across the Willamette River, mile 12.1, at Portland, OR. This deviation is necessary to accommodate...

  16. 75 FR 54846 - Hood/Willamette Resource Advisory Committee (RAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Hood/Willamette Resource Advisory Committee (RAC) AGENCY: Forest Service, USDA. ACTION: Action of meeting. SUMMARY: The Hood/Willamette Resource Advisory Committee (RAC... FURTHER INFORMATION CONTACT: For more information regarding this meeting, contact Connie Athman; Mt....

  17. 75 FR 18144 - Hood/Willamette Resource Advisory Committee (RAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ...; ] DEPARTMENT OF AGRICULTURE Hood/Willamette Resource Advisory Committee (RAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Hood/Willamette Resource Advisory Committee (RAC) will meet on... INFORMATION CONTACT: For more information regarding this meeting, contact Connie Athman; Mt. Hood...

  18. 75 FR 21220 - Hood/Willamette Resource Advisory Committee (RAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Forest Service Hood/Willamette Resource Advisory Committee (RAC) AGENCY: Forest Service, USDA. ACTION: Action of meeting. SUMMARY: The Hood/Willamette Resource Advisory Committee (RAC) will meet on Tuesday... meeting, contact Connie Athman; Mt. Hood National Forest; 16400 Champion Way; Sandy, Oregon 97055;...

  19. 76 FR 14897 - Hood/Willamette Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Forest Service Hood/Willamette Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Hood/Willamette Resource Advisory Committee will meet in Salem, Oregon....

  20. 76 FR 19314 - Hood/Willamette Resource Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... Forest Service Hood/Willamette Resource Advisory Committee; Meeting AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Hood/Willamette Resource Advisory Committee will meet in Salem, Oregon... Connie Athman, Mt. Hood National Forest, 16400 Champion Way, Sandy, Oregon 97055. Comments may also...

  1. 76 FR 53114 - Hood/Willamette Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... Forest Service Hood/Willamette Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Hood/Willamette Resource Advisory Committee will meet in Sandy, Oregon. The... September 26, 2011, and begin at 10 a.m ADDRESSES: The meeting will be held at Mt. Hood National...

  2. 76 FR 58768 - Hood/Willamette Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... Forest Service Hood/Willamette Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting location change. SUMMARY: The Hood/Willamette Resource Advisory Committee will meet in... Home, Oregon; (541) 367-5168. Written comments should be sent to Connie Athman, Mt.Hood National...

  3. 14. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM TOWARD SETTLING BASIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INSIDE VIEW OF FLUME, LOOKING DOWNSTREAM TOWARD SETTLING BASIN, SHOWING RIGHT FORK TO BYPASS, LEFT FORK TO BASIN - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  4. Streamflow and water-quality properties in the West Fork San Jacinto River Basin and regression models to estimate real-time suspended-sediment and total suspended-solids concentrations and loads in the West Fork San Jacinto River in the vicinity of Conroe, Texas, July 2008-August 2009

    USGS Publications Warehouse

    Bodkin, Lee J.; Oden, Jeannette H.

    2010-01-01

    To better understand the hydrology (streamflow and water quality) of the West Fork San Jacinto River Basin downstream from Lake Conroe near Conroe, Texas, including spatial and temporal variation in suspended-sediment (SS) and total suspended-solids (TSS) concentrations and loads, the U.S. Geological Survey, in cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality, measured streamflow and collected continuous and discrete water-quality data during July 2008-August 2009 in the West Fork San Jacinto River Basin downstream from Lake Conroe. During July 2008-August 2009, discrete samples were collected and streamflow measurements were made over the range of flow conditions at two streamflow-gaging stations on the West Fork San Jacinto River: West Fork San Jacinto River below Lake Conroe near Conroe, Texas (station 08067650) and West Fork San Jacinto River near Conroe, Texas (station 08068000). In addition to samples collected at these two main monitoring sites, discrete sediment samples were also collected at five additional monitoring sites to help characterize water quality in the West Fork San Jacinto River Basin. Discrete samples were collected semimonthly, regardless of flow conditions, and during periods of high flow resulting from storms or releases from Lake Conroe. Because the period of data collection was relatively short (14 months) and low flow was prevalent during much of the study, relatively few samples collected were representative of the middle and upper ranges of historical daily mean streamflows. The largest streamflows tended to occur in response to large rainfall events and generally were associated with the largest SS and TSS concentrations. The maximum SS and TSS concentrations at station 08067650 (180 and 133 milligrams per liter [mg/L], respectively) were on April 19, 2009, when the instantaneous streamflow was the third largest associated with a discrete sample at the station. SS concentrations

  5. 3. SOUTH FORK OF THE TULE RIVER MIDDLE FORK BRANCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTH FORK OF THE TULE RIVER MIDDLE FORK BRANCH FLUME AT THE NORTH FORK OF THE TULE RIVER MIDDLE FORK CROSSING SHOWING ORIGINAL DIMENSIONAL STONE PIER ON WEST BANK AT PHOTO CENTER, AND REMAINS OF ORIGINAL EAST BANK DIMENSIONAL STONE PIER AT PHOTO LEFT BELOW NEW (ca. 1931) EAST BANK PIER. VIEW TO SOUTHEAST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  6. Storm runoff as related to urbanization based on data collected in Salem and Portland, and generalized for the Willamette Valley, Oregon

    USGS Publications Warehouse

    Laenen, Antonius

    1983-01-01

    Storm runoff as related to urbanization is defined by a series of regression equations for Salem and for the Willamette Valley, Oregon. In addition to data from 17 basins monitored in the Salem area, data from 24 basins gaged in a previous study in Portland, Oregon - Vancouver, Washington were used defining the Willamette Valley equations. Basins used to define equations ranged in size from 0.2 to 26 square miles. Rainfall intensity varied from 1.8 to 2.2 inches for the 6 hour, 0.2 exceedance probability. Sensitivity analyses of equations indicate that urbanization of an undeveloped basin can increase peak discharge more than three times and almost double runoff volume. Much of Portland and Vancouver are located on porous river terraces where dry wells are used to shunt runoff. Much of East Salem is located on previously farmed land where drain tiles used to dewater soils still connect directly to streams. (USGS)

  7. Nitrate attenuation in the Missoula Flood Deposits Aquitard (Willamette Silt) of the Willamette Valley, Oregon

    NASA Astrophysics Data System (ADS)

    Arighi, L.; Haggerty, R.; Myrold, D. D.; Iverson, J.; Baham, J. E.; Madin, I. P.; Arendt, J.

    2005-12-01

    Low-permeability geologic units may offer significant chemical and hydraulic protection of adjacent aquifers, and are important for managing groundwater quality, especially in areas with significant non-point source contamination. Nitrate in the Willamette Valley is attenuated across the Willamette Silt, a semi-confining unit overlying a regionally important aquifer. To quantify the main mechanism responsible for nitrate attenuation, soil cores were taken at 19 locations, and profiles of nitrate concentrations were constructed for each site. In 7 locations a sharp, major geochemical transition - a "redoxcline" - is present near the base of the Willamette Silt; this redoxcline is characterized by a color change from red-brown to blue-gray, an increase in iron(II) concentration, a rise in pH, and the appearance of carbonate minerals. At all sites where a significant surface input of nitrate was detected, the nitrate signal was attenuated before reaching the base of the silt. Denitrifier Enzyme Activity assays from one site show no denitrification potential in the profile, suggesting that a non-biological mechanism is responsible. We suggest that iron(II) is reducing the nitrate abiotically to nitrite, and that the blue-gray reducing zone of Willamette Silt is indicative of the presence of sufficient iron(II) for the reaction to go forward. To increase the usefulness of this study to regional water management agencies, a thickness isopach map of the reduced zone was created both for the northern and southern Willamette Valley to help determine areas where nitrate is most likely to be attenuated.

  8. Watershed characterization for precipitation-runoff modeling system, north fork, American River and east fork, Carson River watersheds, California

    USGS Publications Warehouse

    Smith, J. LaRue; Reece, Brian D.

    1995-01-01

    As part of its Global Change Hydrology Program, the U.S. Geological Survey (USGS) is investigating the potential effects of climate change on the water resources of several river basins in the United States. The American River Basin in California represents the windward slope of the north-central Sierra Nevada, and the California part of the Carson River Basin, most of which is in Nevada, represents the leeward slope. Parts of the American River and Carson River Basins—the North Fork American River and East Fork Carson River watersheds, both in California—were studied to determine the sensitivity of water resources to potential climate change. The water resources of both basins are derived primarily from snowmelt. A geographic information system (GIS) data base has been created to facilitate paired-basin analysis. The GIS data base incorporates (1) land-surface data, which include elevation, land use and land cover, soil type, and geology; (2) hydrologic data, such as stream networks and streamflow-gaging stations; and (3) climatic data, such as snow-course, snow-telemetry, radiosonde, and meteorological data. Precipitation-runoff models were developed and calibrated for the North Fork watershed within the American River Basin and for the East Fork watershed within the Carson River Basin. (These watersheds were selected to represent the climatic and physiographic variability of the two larger basins.) Synthesized climate scenarios then were used in the model to predict potential effects of climate change.

  9. 1. NORTH FORK OF THE TULE RIVER MIDDLE FORK BRANCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTH FORK OF THE TULE RIVER MIDDLE FORK BRANCH FLUME AND CONCRETE DIVERSION DAM SPILLING WATER. CONCRETE ABUTMENTS OF THE ORIGINAL HIGHWAY 190 BRIDGE OVER THE NORTH FORK ARE VISIBLE ON EITHER SIDE OF THE DAM. NEW HIGHWAY 190 BRIDGE IS VISIBLE ACROSS TOP OF PHOTO. VIEW TO NORTH. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  10. 78 FR 24676 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... Festival Rock N Roll Half Marathon. ] This deviation allows the upper deck of the Steel Bridge to remain in... associated with the Rose Festival Rock N Roll Half Marathon. The Steel Bridge crosses the Willamette River...

  11. 78 FR 18477 - Drawbridge Operation Regulations; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... Rose Parade, and Starlight Parade events. This deviation allows the bridge upper deck to remain in the... Starlight Parade and Rose Parade. The Steel Bridge crosses the Willamette River at mile 12.1 and is a...

  12. 77 FR 16927 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... necessary to accommodate the Race for the Roses event scheduled for April 1, 2012. This deviation allows the... of participants of the Race for the Roses event. The Broadway Bridge crosses the Willamette River...

  13. 77 FR 29897 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... efficient movement of light rail and roadway traffic associated with the Rose Parade in Portland, Oregon... roadway traffic associated with the Rose Parade. The Steel Bridge crosses the Willamette River at mile...

  14. 77 FR 50017 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Pasta foot race event. This deviation allows the bridge to remain in the closed position to allow safe... Pints to Pasta event. The Broadway Bridge crosses the Willamette River at mile 11.7 and provides 90...

  15. 78 FR 15879 - Drawbridge Operation Regulation; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... Roses and the Bridge to Brews Run ] & Walk events. This deviation allows the bridge to remain in the... Brews Run & Walk events. The Broadway Bridge crosses the Willamette River at mile 11.7 and provides...

  16. 7. STATION 'L' FROM THE WEST BANK OF THE WILLAMETTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. STATION 'L' FROM THE WEST BANK OF THE WILLAMETTE RIVER LOOKING EAST, SCREEN HOUSES AND TURBINE BUILDINGS IN FOREGROUND - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  17. Is It Working? Lysimeter Monitoring in the Southern Willamette Valley Groundwater Management Area

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater ...

  18. 78 FR 45863 - Drawbridge Operation Regulation; Willamette River at Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ..., and the Hawthorne Bridge, mile 13.1, all crossing the Willamette River at Portland, OR. This deviation... Morrison Bridge, mile 12.8, and the Hawthorne Bridge, mile 13.1, all crossing the Willamette River...

  19. Chemical characteristics, including stable-isotope ratios, of surface water and ground water from selected sources in and near East Fork Armells Creek basin, southeastern Montana, 1985

    USGS Publications Warehouse

    Ferreira, R.F.; Lambing, J.H.; Davis, R.E.

    1989-01-01

    Water samples were collected from 29 sites to provide synoptic chemical data, including stable-isotope ratios, for an area of active surface coal mining and to explore the effectiveness of using the data to chemically distinguish water from different aquifers. Surface-water samples were collected from one spring, four sites on East Armells Creek, one site on Stocker Creek, and two fly-ash ponds. Streamflows in East Fork Armells Creek ranged from no flow in several upstream reaches to 2.11 cu ft/sec downstream from Colstrip, Montana. Only one tributary, Stocker Creek, was observed to contribute surface flow in the study area. Groundwater samples were collected from wells completed in Quaternary alluvium or mine spoils, Rosebud overburden, Rosebud coal bed, McKay coal bed, and sub-McKay deposits of the Tongue River Member, Paleocene Fort Union Formation. Dissolved-solids concentrations, in mg/L, were 840 at the spring, 3,100 to 5,000 in the streams, 13,000 to 22,000 in the ash ponds, and 690 to 4 ,100 in the aquifers. With few exceptions, water from the sampled spring, streams, and wells had similar concentrations of major constituents and trace elements and similar stable-isotope ratios. Water from the fly-ash ponds had larger concentrations of dissolved solids, boron, and manganese and were isotopically more enriched in deuterium and oxygen-18 than water from other sources. Water from individual aquifers could not be distinguished by either ion-composition diagrams or statistical cluster analyses. (USGS)

  20. Geomorphic and vegetation processes of the Willamette River floodplain, Oregon: current understanding and unanswered science questions

    USGS Publications Warehouse

    Wallick, J. Rose; Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Hulse, David; Gregory, Stanley V.

    2013-01-01

    4. How is the succession of native floodplain vegetation shaped by present-day flow and sediment conditions? Answering these questions will produce baseline data on the current distributions of landforms and habitats (question 1), the extent of the functional floodplain (question 2), and the effects of modern flow and sediment regimes on future floodplain landforms, habitats, and vegetation succession (questions 3 and 4). Addressing questions 1 and 2 is a logical next step because they underlie questions 3 and 4. Addressing these four questions would better characterize the modern Willamette Basin and help in implementing and setting realistic targets for ongoing management strategies, demonstrating their effectiveness at the site and basin scales, and anticipating future trends and conditions.

  1. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha in the Willamette River, Oregon, USA

    USGS Publications Warehouse

    Billman, E.J.; Whitman, L.D.; Schroeder, R.K.; Sharpe, C.S.; Noakes, David L. G.; Schreck, Carl B.

    2014-01-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  2. Estimated Loads of Suspended Sediment and Selected Trace Elements Transported through the Milltown Reservoir Project Area Before and After the Breaching of Milltown Dam in the Upper Clark Fork Basin, Montana, Water Year 2008

    USGS Publications Warehouse

    Lambing, John H.; Sando, Steven K.

    2009-01-01

    This report presents estimated daily and cumulative loads of suspended sediment and selected trace elements transported during water year 2008 at three streamflow-gaging stations that bracket the Milltown Reservoir project area in the upper Clark Fork basin of western Montana. Milltown Reservoir is a National Priorities List Superfund site where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. Milltown Dam was breached on March 28, 2008, as part of Superfund remedial activities to remove the dam and contaminated sediment that had accumulated in Milltown Reservoir. The estimated loads transported through the project area during the periods before and after the breaching of Milltown Dam, and for the entire water year 2008, were used to quantify the net gain or loss (mass balance) of suspended sediment and trace elements within the project area during the transition from a reservoir environment to a free-flowing river. This study was done in cooperation with the U.S. Environmental Protection Agency. Streamflow during water year 2008 compared to long-term streamflow, as represented by the record for Clark Fork above Missoula (water years 1930-2008), generally was below normal (long-term median) from about October 2007 through April 2008. Sustained runoff started in mid-April, which increased flows to near normal by mid-May. After mid-May, flows sharply increased to above normal, reaching a maximum daily mean streamflow of 16,800 cubic feet per second (ft3/s) on May 21, which essentially equaled the long-term 10th-exceedance percentile for that date. Flows substantially above normal were sustained through June, then decreased through the summer and reached near-normal by August. Annual mean streamflow during water year 2008 (3,040 ft3/s) was 105 percent of the long-term mean annual streamflow (2,900 ft3/s). The annual peak flow (17,500 ft3/s) occurred on May 21 and was 112

  3. Styles of deposition and diagenesis in the Monahans Clear Fork reservoir: Implications for improved characterization of Leonard reservoirs on the Central basin platform

    SciTech Connect

    Ruppel, S.C. )

    1992-04-01

    The Leonard Series (Lower Permian) of west Texas contains a substantial hydrocarbon resource; the original oil in place in these predominantly carbonate rocks totaled about 14.5 billion bbl. Recovery of this resource has proven difficult, however. Current recovery efficiencies average about 20%, far below the 35% average for other Permian basin carbonate reservoirs. Detailed characterization of the Leonard in the Monahans field (Ward and Winkler counties, Texas) illustrates that poor reservoir performance in these reservoirs is the result of extreme lithologic heterogeniety resulting from cyclic rise and fall of relative sea level. Patterns of both depositional and diagenetic facies are a function of this cyclicity. Three orders of cyclicity are apparent in the Leonard: high-frequency, fifth-order cycles averaging 1-2 m in thickness, fourth-order cycles averaging 15-20 m in thickness, and third-order cycles averaging 200 m in thickness. Diagenetic patterns reflect control by fourth-order and third-order cyclicity. Both depositional and diagenetic trends are modified by local topography. Porosity and permeability also manifest cycle-related trends. Porosity and permeability exhibit opposite relationships to paleotopography. Porosity, which is encountered in tidal-flat and subtidal facies, is greatest on paleotopographic highs, whereas permeability, which is most commonly developed in subtidal facies, is most common on paleotopographic lows. Preliminary investigation of Leonard carbonate sequences elsewhere in the Permian basin reveals analogous styles and patterns of facies development. The concepts and models developed in the Monahans field should help improve characterization of these sequences as well.

  4. Bedload measurements, East Fork River, Wyoming

    PubMed Central

    Leopold, Luna B.; Emmett, William W.

    1976-01-01

    A bedload trap in the riverbed provided direct quantitative measurement of debris-transport rate in the East Fork River, Wyoming, a basin of 466 km2 drainage area. Traction load moves only during the spring snow melt season. Data collected in three spring runoff seasons during which a peak flow of 45 m3/s occurred showed that transport rate is correlated with power expenditure of the flowing water and at high flows becomes directly proportional to power as suggested by Bagnold. PMID:16592302

  5. Summary of information on synthetic organic compounds and trace elements in tissue of aquatic biota, Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, 1974-96

    USGS Publications Warehouse

    Maret, Terry R.; Dutton, DeAnn M.

    1999-01-01

    As part of the Northern Rockies Intermontane Basins study of the National Water-Quality Assessment Program, data collected between 1974 and 1996 were compiled to describe contaminants in tissue of riverine species. Tissue-contaminant data from 11 monitoring programs and studies representing 28 sites in the study area were summarized. Tissue-contaminant data for most streams generally were lacking. Many studies have focused on and around mining-affected areas on the Clark Fork and Coeur d'Alene Rivers and their major tributaries. DDT and PCBs and their metabolites and congeners were the synthetic organic contaminants most commonly detected in fish tissue. Fish collected from the Spokane River in Washington contained elevated concentrations of PCB arochlors, some of which exceeded guidelines for the protection of human health and predatory wildlife. Tissue samples of fish from the Flathead River watershed contained higher-than-expected concentrations of PCBs, which might have resulted from atmospheric transport. Trace element concentrations in fish and macroinvertebrates collected in and around mining areas were elevated compared with background concentrations. Some cadmium, copper, lead, and mercury concentrations in fish tissue were elevated compared with results from other studies, and some exceeded guidelines. Macroinvertebrates from the Coeur d'Alene River contained higher concentrations of cadmium, lead, and zinc than did macroinvertebrates from other river systems in mining-affected areas. A few sportfish fillet samples, most from the Spokane River in Washington, were collected to assess human health risk. Concentrations of PCBs in these fillets exceeded screening values for the protection of human health. At present, there is no coordinated, long-term fish tissue monitoring program for rivers in the study area, even though contaminants are present in fish at levels considered a threat to human health. Development of a coordinated, centralized national data

  6. Concentrations of selected trace elements in fish tissue and streambed sediment in the Clark Fork-Pend Oreille and Spokane River basins, Washington, Idaho, and Montana, 1998

    USGS Publications Warehouse

    Maret, Terry R.; Skinner, K.D.

    2000-01-01

    Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.

  7. 4. View of Clark Fork Vehicle Bridge facing northeast. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of Clark Fork Vehicle Bridge facing northeast. Bridge from south shoreof Clark Fork River showing 4 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  8. 2. View of Clark Fork Vehicle Bridge facing northeast. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Clark Fork Vehicle Bridge facing northeast. Bridge from south shore of Clark Fork River showing 4 1/2 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  9. 1. View of Clark Fork Vehicle Bridge facing west. Panorama ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Clark Fork Vehicle Bridge facing west. Panorama showing the entire span of bridge from north shore of the Clark Fork River. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  10. 7. View of Clark Fork Vehicle Bridge facing northwest. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View of Clark Fork Vehicle Bridge facing northwest. Bridge from south shore of Clark Fork River showing 4 1/2 spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  11. 3. View of Clark Fork Vehicle Bridge facing southwest. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of Clark Fork Vehicle Bridge facing southwest. Bridge from north shore of Clark Fork River. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  12. A New Hydrogeological Research Site in the Willamette River Floodplain

    EPA Science Inventory

    The Willamette River is a ninth-order tributary of the Columbia which passes through a productive and populous region in northwest Oregon. Where unconstrained by shoreline revetments, the floodplain of this river is a high-energy, dynamic system which supports a variety of ripari...

  13. Community Based Demonstration Projects: Willamette Ecosystem Services Project (WESP)

    EPA Science Inventory

    EPA’s Ecosystem Services Research Program in the Office of Research and Development is focused on the study of ecosystem services and the benefits to human well-being provided by ecological systems. As part of this research effort, the Willamette Ecosystems Services Project (WE...

  14. Is it working? A look at the changing nutrient practices in the Southern Willamette Valley's Groundwater Management Area

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater ...

  15. Is it working? A look at the changing nutrient practices in the Southern Willamette Valley’s Groundwater Management Area

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 to address the occurrence of high groundw...

  16. Tuning fork tests: forgotten art.

    PubMed

    Girgis, T F; Shambaugh, G E

    1988-01-01

    Four examples are cited in which tuning fork tests helped in proper selection of patients for surgery, after audiometric air and bone tests were equivocal or gave the wrong diagnostic and prognostic indication.

  17. Tuning Forks and Monitor Screens.

    ERIC Educational Resources Information Center

    Harrison, M. A. T.

    2000-01-01

    Defines the vibrations of a tuning fork against a computer monitor screen as a pattern that can illustrate or explain physical concepts like wave vibrations, wave forms, and phase differences. Presents background information and demonstrates the experiment. (Author/YDS)

  18. Dissolved-Solids Load in Henrys Fork Upstream from the Confluence with Antelope Wash, Wyoming, Water Years 1970-2009

    USGS Publications Warehouse

    Foster, Katharine; Kenney, Terry A.

    2010-01-01

    Annual dissolved-solids load at the mouth of Henrys Fork was estimated by using data from U.S. Geological Survey streamflow-gaging station 09229500, Henrys Fork near Manila, Utah. The annual dissolved-solids load for water years 1970-2009 ranged from 18,300 tons in 1977 to 123,300 tons in 1983. Annual streamflows for this period ranged from 14,100 acre-feet in 1977 to 197,500 acre-feet in 1983. The 25-percent trimmed mean dissolved-solids load for water years 1970-2009 was 44,300 tons per year at Henrys Fork near Manila, Utah. Previous simulations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model for dissolved solids specific to water year 1991 conditions in the Upper Colorado River Basin predicted an annual dissolved-solids load of 25,000 tons for the Henrys Fork Basin upstream from Antelope Wash. On the basis of computed dissolved-solids load data from Henrys Fork near Manila, Utah, together with estimated annual dissolved-solids load from Antelope Wash and Peoples Canal, this prediction was adjusted to 37,200 tons. As determined by simulations with the Upper Colorado River Basin SPARROW model, approximately 56 percent (14,000 tons per year) of the dissolved-solids load at Henrys Fork upstream from Antelope Wash is associated with the 21,500 acres of irrigated agricultural lands in the upper Henrys Fork Basin.

  19. Geomorphic Characterization of the Middle Fork Saline River: Garland, Perry, and Saline Counties, Arkansas

    USGS Publications Warehouse

    Pugh, Aaron L.; Garday, Thomas J.; Redman, Ronald

    2008-01-01

    This report was prepared to help address concerns raised by local residents, State, and Federal agencies about the current geomorphic conditions of the Middle Fork Saline River. Over the past 30 years the Middle Fork Saline River Basin has experienced a marked increase in urbanization. The report summarizes the Middle Fork?s current (2003) channel characteristics at nine stream reaches in the upper 91 square miles of the basin. Assessments at each study reach included comparing measured stream geometry dimensions (cross-sectional area, top width, and mean depth) at bankfull stage to regional hydraulic geometry curves for the Ouachita Mountains Physiographic Province of Arkansas and Oklahoma, evaluations of streambed materials and sinuosity, and classification of individual stream reach types. When compared to the Ouachita Mountains? regional hydraulic geometry curves for natural, stable, stream reaches, five of the nine study reaches had slightly smaller crosssectional areas, longer top widths, and shallower depths. Streambed material analysis indicates that the Middle Fork is a bedrock influenced, gravel dominated stream with lesser amounts of sand and cobbles. Slight increases in sinuosity from 1992 to 2002 at seven of the nine study reaches indicate a slight decrease in stream channel slope. Analyses of the Middle Fork?s hydraulic geometry and sinuosity indicate that the Middle Fork is currently overly wide and shallow, but is slowly adjusting towards a deeper, narrower hydraulic geometry. Using the Rosgen system of channel classification, the two upstream study reaches classified as B4c/1 stream types; which were moderately entrenched, riffle dominated channels, with infrequently spaced pools. The downstream seven study reaches classified as C4/1 stream types; which were slightly entrenched, meandering, gravel-dominated, riffle/ pool channels with well developed flood plains. Analyses of stream reach types suggest that the downstream reaches of the Middle Fork

  20. Passage and behavior of radio-tagged adult Pacific lampreys (Entosphenus tridentatus) at the Willamette Falls Project, Oregon.

    USGS Publications Warehouse

    Mesa, Matthew G.; Magie, Robert J.; Copeland, Elizabeth S.

    2010-01-01

    Populations of Pacific lamprey (Entosphenus tridentatus) in the Columbia River basin have declined and passage problems at dams are a contributing factor. We used radio telemetry to monitor the passage of adult Pacific lampreys at the Willamette Falls Project (a hydroelectric dam integrated into a natural falls) on the Willamette River near Portland, Oregon. In 2005 and 2006, fish were captured at the Project, implanted with a radio tag, and released downstream. We tagged 136 lampreys in 2005 and 107 in 2006. Over 90% of the fish returned to the Project in 7 – 9 h and most were detected from 2000 – 2300 h. In 2005, 43 fish (34%) passed the dam via the fishway, with peak passage in August. No fish passed over the falls, but 13% ascended at least partway up the falls. In 2006, 24 fish (23%) passed the Project using the fishway, with most prior to 9 June when the powerhouse was off. Although 19 lampreys ascended the falls, only two passed via this route. The time for fish to pass through the fishway ranged from 4 – 74 h, depending on route. Many fish stayed in the tailrace for hours to almost a year and eventually moved downstream. Our results indicate that passage of lampreys at the Project is lower than that for lampreys at dams on the Columbia River. Low passage success may result from low river flows, impediments in fishways, delayed tagging effects, changing environmental conditions, or performance or behavioral constraints.

  1. 19. View of Clark Fork Vehicle Bridge facing north. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of Clark Fork Vehicle Bridge facing north. Looking at north abutment and underside of northernmost span. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  2. 20. View of Clark Fork Vehicle Bridge facing up. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of Clark Fork Vehicle Bridge facing up. Looking at understructure of northernmost span. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  3. 21. View of Clark Fork Vehicle Bridge facing west. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. View of Clark Fork Vehicle Bridge facing west. Looking at bridge deck, guard rail, juncture of two bridge spans. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  4. 22. View of Clark Fork Vehicle Bridge facing downwest side. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. View of Clark Fork Vehicle Bridge facing down-west side. Looking at road deck and vertical laced channel. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  5. 18. View of Clark Fork Vehicle Bridge facing north. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View of Clark Fork Vehicle Bridge facing north. Looking at north concrete abutment and timber stringers. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  6. 12. View of Clark Fork Vehicle Bridge facing south. Approach ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. View of Clark Fork Vehicle Bridge facing south. Approach from the north road. Plaque was originally located where striped traffic sign is posted. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  7. 11. View of Clark Fork Vehicle Bridge facing northwest. Southernmost ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. View of Clark Fork Vehicle Bridge facing northwest. Southernmost span. Plaque was originally located where striped traffic sign is posted. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  8. 8. View of Clark Fork Vehicle Bridge facing southwest. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of Clark Fork Vehicle Bridge facing southwest. Looking at understructure of northernmost span. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  9. 33 CFR 165.1312 - Security Zone; Portland Rose Festival on Willamette River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Portland Rose Festival on Willamette River. 165.1312 Section 165.1312 Navigation and Navigable Waters COAST GUARD... § 165.1312 Security Zone; Portland Rose Festival on Willamette River. (a) Location. The following...

  10. 33 CFR 165.1312 - Security Zone; Portland Rose Festival on Willamette River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Portland Rose Festival on Willamette River. 165.1312 Section 165.1312 Navigation and Navigable Waters COAST GUARD... § 165.1312 Security Zone; Portland Rose Festival on Willamette River. (a) Location. The following...

  11. 33 CFR 165.1312 - Security Zone; Portland Rose Festival on Willamette River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Portland Rose Festival on Willamette River. 165.1312 Section 165.1312 Navigation and Navigable Waters COAST GUARD... § 165.1312 Security Zone; Portland Rose Festival on Willamette River. (a) Location. The following...

  12. 33 CFR 165.1312 - Security Zone; Portland Rose Festival on Willamette River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Portland Rose Festival on Willamette River. 165.1312 Section 165.1312 Navigation and Navigable Waters COAST GUARD... § 165.1312 Security Zone; Portland Rose Festival on Willamette River. (a) Location. The following...

  13. 77 FR 15263 - Security Zone; Portland Rose Festival on Willamette River; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... SECURITY Coast Guard 33 CFR Part 165 Security Zone; Portland Rose Festival on Willamette River; Portland... will enforce the Portland Rose Festival Security Zone in 33 CFR 165.1312 from 11 a.m. on June 6, 2012..., including the public vessels present on the Willamette River during the Portland Rose festival. During...

  14. 76 FR 28315 - Security Zone; Portland Rose Festival on Willamette River

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... SECURITY Coast Guard 33 CFR Part 165 Security Zone; Portland Rose Festival on Willamette River AGENCY... Portland Rose Festival Security Zone in 33 CFR 165.1312 from 11 a.m. on June 8, 2011 until 11 a.m. on June... vessels present, on the Willamette River during the Portland Rose festival. During the enforcement...

  15. 33 CFR 165.1312 - Security Zone; Portland Rose Festival on Willamette River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Portland Rose Festival on Willamette River. 165.1312 Section 165.1312 Navigation and Navigable Waters COAST GUARD... § 165.1312 Security Zone; Portland Rose Festival on Willamette River. (a) Location. The following...

  16. 77 FR 19544 - Regulated Navigation Area, Zidell Waterfront Property, Willamette River, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... Area, Zidell Waterfront Property, Willamette River, OR, in the Federal Register (76 FR 48070). We... Regulated Navigation Area (RNA) at the Zidell Waterfront Property located on the Willamette River in Portland, Oregon. This RNA is necessary to preserve the integrity of an engineered sediment cap as part...

  17. 33 CFR 162.225 - Columbia and Willamette Rivers, Washington and Oregon; administration and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... direction of emergency regulations to govern navigation of these streams. (b) Speed. During very high water... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Columbia and Willamette Rivers... NAVIGATION REGULATIONS § 162.225 Columbia and Willamette Rivers, Washington and Oregon; administration...

  18. 33 CFR 162.225 - Columbia and Willamette Rivers, Washington and Oregon; administration and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... direction of emergency regulations to govern navigation of these streams. (b) Speed. During very high water... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Columbia and Willamette Rivers... NAVIGATION REGULATIONS § 162.225 Columbia and Willamette Rivers, Washington and Oregon; administration...

  19. 33 CFR 162.225 - Columbia and Willamette Rivers, Washington and Oregon; administration and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... direction of emergency regulations to govern navigation of these streams. (b) Speed. During very high water... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Columbia and Willamette Rivers... NAVIGATION REGULATIONS § 162.225 Columbia and Willamette Rivers, Washington and Oregon; administration...

  20. 33 CFR 162.225 - Columbia and Willamette Rivers, Washington and Oregon; administration and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... direction of emergency regulations to govern navigation of these streams. (b) Speed. During very high water... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Columbia and Willamette Rivers... NAVIGATION REGULATIONS § 162.225 Columbia and Willamette Rivers, Washington and Oregon; administration...

  1. 33 CFR 162.225 - Columbia and Willamette Rivers, Washington and Oregon; administration and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... direction of emergency regulations to govern navigation of these streams. (b) Speed. During very high water... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Columbia and Willamette Rivers... NAVIGATION REGULATIONS § 162.225 Columbia and Willamette Rivers, Washington and Oregon; administration...

  2. Hydrologic, water-quality, and biological characteristics of the North Fork Flathead River, Montana, water years 2007-2008

    USGS Publications Warehouse

    Mills, Taylor J.; Schweiger, E. William; Mast, M. Alisa; Clow, David W.

    2012-01-01

    In water year 2007, the U.S. Geological Survey, in cooperation with the National Park Service, began a 2-year study to collect hydrologic, water-quality, and biological data to provide a baseline characterization of the North Fork Flathead River from the United States-Canada border to its confluence with the Middle Fork of the Flathead River near Columbia Falls, Montana. Although mining in the Canadian portion of the North Fork Basin was banned in 2010 by a Memorandum of Understanding issued by the Province of British Columbia, baseline characterization was deemed important for the evaluation of any potential future changes in hydrology, water quality, or aquatic biology in the basin. The North Fork Basin above Columbia Falls (including Canada) drains an area of 1,564 square miles, and the study area encompasses the portion of the basin in Montana, which is 1,126 square miles. Seasonal patterns in the hydrology of the North Fork are dominated by the accumulation and melting of seasonal snowpack in the basin. Low-flow conditions occurred during the late-summer, fall, and winter months, and high-flow conditions coincided with the spring snowmelt. Substantial gains in streamflow occurred along the study reach of the North Fork, 85 percent of which were accounted for by tributary inflows during low-flow conditions, indicating unmeasured streamflow inputs along the main stem were 15 percent or less.

  3. Comparison of peak discharges among sites with and without valley fills for the July 8-9, 2001 flood in the headwaters of Clear Fork, Coal River basin, mountaintop coal-mining region, southern West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Brogan, Freddie D.

    2003-01-01

    The effects of mountaintop-removal mining practices on the peak discharges of streams were investigated in six small drainage basins within a 7-square-mile area in southern West Virginia. Two of the small basins had reclaimed valley fills, one basin had reclaimed and unreclaimed valley fills, and three basins did not have valley fills. Indirect measurements of peak discharge for the flood of July 8-9, 2001, were made at six sites on streams draining the small basins. The sites without valley fills had peak discharges with 10- to 25-year recurrence intervals, indicating that rainfall intensities and totals varied among the study basins. The flood-recurrence intervals for the three basins with valley fills were determined as though the peak discharges were those from rural streams without the influence of valley fills, and ranged from less than 2 years to more than 100 years.

  4. Migratory Characteristics of Spring Chinook Salmon in the Willamette River : Annual Report 1991.

    SciTech Connect

    Snelling, John C.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na{sup +}/K{sup +} gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls.

  5. Maps Showing Inundation Depths, Ice-Rafted Erratics, and Sedimentary Facies of Late Pleistocene Missoula Floods in the Willamette Valley, Oregon

    USGS Publications Warehouse

    Minervini, J.M.; O'Connor, J. E.; Wells, R.E.

    2003-01-01

    Glacial Lake Missoula, impounded by the Purcell Trench lobe of the late Pleistocene Cordilleran Icesheet, repeatedly breached its ice dam, sending floods as large as 2,500 cubic kilometers racing across the Channeled Scabland and down the Columbia River valley to the Pacific Ocean. Peak discharges for some floods exceeded 20 million cubic meters per second. At valley constrictions along the flood route, floodwaters temporarily ponded behind each narrow zone. One such constriction at Kalama Gap-northwest of Portland-backed water 120-150 meters high in the Portland basin, and backflooded 200 km south into Willamette Valley. Dozens of floods backed up into the Willamette Valley, eroding 'scabland' channels, and depositing giant boulder gravel bars in areas of vigorous currents as well as bedded flood sand and silt in backwater areas. Also, large chunks of ice entrained from the breached glacier dam rafted hundreds of 'erratic' rocks, leaving them scattered among the flanking foothills and valley bottom. From several sources and our own mapping, we have compiled information on many of these features and depict them on physiographic maps derived from digital elevation models of the Portland Basin and Willamette Valley. These maps show maximum flood inundation levels, inundation levels associated with stratigraphic evidence of repeated floodings, distribution of flood deposits, and sites of ice-rafted erratics. Accompanying these maps, a database lists locations, elevations, and descriptions of approximately 400 ice-rafted erratics-most compiled from early 20th-century maps and notes of A.M. Piper and I.S. Allison.

  6. New aeromagnetic data reveal large strike-slip (?) faults inthe Northern Willamette Valley, Oregon

    USGS Publications Warehouse

    Blakely, R.J.; Wells, R.E.; Tolan, T.L.; Beeson, M.H.; Trehu, A.M.; Liberty, L.M.

    2000-01-01

    High-resolution aeromagnetic data from the northern Willamette Valley, Oregon, reveal large, northwest-striking faults buried beneath Quaternary basin sediments. Several faults known from geologic mapping are well defined by the data and appear to extend far beyond their mapped surface traces. The Mount Angel fault, the likely source of the Richter magnitude (M1) 5.6 earthquake in 1993, is at least 55 km long and may be connected in the subsurface with the Gales Creek fault 25 km farther northwest. Northeast of the Mount Angel fault, a 60-km-long, northwest-striking anomaly may represent a previously unrecognized dextral-slip fault beneath the towns of Canby and Molalla. Vertical offsets along the Mount Angel fault increase with depth, indicating a long history of movement for the fault. Dominantly northwest- trending, relatively straight faults, consistent stepover geometries, offset magnetic anomalies and earthquake focal mechanisms suggest that these faults collectively accommodate significant dextral slip. The 1993 earthquake may have occured on a left-stepping restraining bend along the Mount Angel-Gales Creek fault zone.

  7. Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project

    NASA Astrophysics Data System (ADS)

    Jaeger, W. K.; Plantinga, A.

    2013-12-01

    This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of

  8. Willamette Oxygen Supplementation Studies : Annual Report 1994.

    SciTech Connect

    Ewing, R.D.; Ewing, S.K.; Sheahan, J.E.

    1994-09-01

    Hydropower development and operations in the Columbia River basin have caused the loss of 5 million to 11 million salmonids. An interim goal of the Northwest Power Planning Council is to reestablish these historical numbers by doubling the present runs from 2.5 million adult fish to 5.0 million adult fish. This increase in production will be accomplished through comprehensive management of both wild and hatchery fish, but artificial propagation will play a major role in the augmentation process. The current husbandry techniques in existing hatcheries require improvements that may include changes in rearing densities, addition of oxygen, removal of excess nitrogen, and improvement in raceway design. Emphasis will be placed on the ability to increase the number of fish released from hatcheries that survive to return as adults. Rearing density is one of the most important elements in fish culture. Fish culturists have attempted to rear fish in hatchery ponds at densities that most efficiently use the rearing space available. Such efficiency studies require a knowledge of cost of rearing and the return of adults to the fisheries and to the hatchery.

  9. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  10. 5. View of Clark Fork Vehicle Bridge facing east. Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Clark Fork Vehicle Bridge facing east. Bridge from south shore of Clark Fork River-southernmost span. 1900-era Northern Pacific Railway Bridge in background. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  11. Patterns of Ground Water Movement in a Portion of the Willamette River Floodplain, Oregon

    EPA Science Inventory

    In reaches unconstrained by revetments, the Willamette River and its floodplain along its lowland mainstem is a continually evolving system. Several channel reconstruction and restoration projects have been implemented or planned in order to obtain beneficial services along the r...

  12. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    USGS Publications Warehouse

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  13. Fluvial Landforms and Landscape Transformations on a Large River Floodplain: Willamette River, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Wallick, R.

    2015-12-01

    Recent detailed mapping of the Willamette River floodplain in northwestern Oregon reveals insights into the floodplain landforms, their formative processes, and historical landscape transformations. Hierarchical mapping classification based mainly upon lidar topography, supplemented by aerial photographs, historical channel and soil maps, and targeted coring of floodplain soils, was carried out for 200 km of the mainstem Willamette River floodplain above Willamette Falls where floodplain landforms mainly reflect fluvial and anthropogenic influences. Stark differences in the character and distribution of floodplain landforms and their underlying stratigraphy give rise to three distinct process regimes along the fluvial portion of the Willamette River. Floodplain surfaces along 60 km of the Upper Willamette River floodplain generally rise 1-2 m above the low-flow water surface and are bisected by complex assemblage of overflow channels and large-amplitude abandoned bends formed by avulsions along this historically multi-thread anastomosing reach. Downstream, the 90 km-long Middle Willamette River between Corvallis and Newburg Pool becomes increasingly entrenched within its floodplain, with floodplains gradually rising up to 8 m above the low flow water surface. These floodplain surfaces are dominated by ridge and swale topography with occasional floodbasins reflecting gradual meander migration and floodplain aggradation. The 50 km-long Newberg Pool is entrenched and confined by Pleistocene Missoula flood deposits and bedrock valley walls. This low-gradient reach extends to the lip of the15-m high Willamette Falls. Historical declines in flood magnitude, bed-material supply, large wood, and bank erodibility result in a more stable modern-day floodplain with narrower active-channel corridor flanked by relict landforms formed by historical flow and sediment regime. Landscape transformations vary across the three process regimes but are greatest along Upper Willamette

  14. Replication fork collapse at replication terminator sequences.

    PubMed

    Bidnenko, Vladimir; Ehrlich, S Dusko; Michel, Bénédicte

    2002-07-15

    Replication fork arrest is a source of genome re arrangements, and the recombinogenic properties of blocked forks are likely to depend on the cause of blockage. Here we study the fate of replication forks blocked at natural replication arrest sites. For this purpose, Escherichia coli replication terminator sequences Ter were placed at ectopic positions on the bacterial chromosome. The resulting strain requires recombinational repair for viability, but replication forks blocked at Ter are not broken. Linear DNA molecules are formed upon arrival of a second round of replication forks that copy the DNA strands of the first blocked forks to the end. A model that accounts for the requirement for homologous recombination for viability in spite of the lack of chromosome breakage is proposed. This work shows that natural and accidental replication arrests sites are processed differently.

  15. Effects of controlled burning of chaparral on streamflow and sediment characteristics, East Fork Sycamore Creek, central Arizona

    USGS Publications Warehouse

    Baldys, Stanley; Hjalmarson, H.W.

    1994-01-01

    The effects of controlled burning of part of a chaparral-covered drainage basin on streamflow and sediment characteristics were studied in the upper reaches of the Sycamore Creek basin in central Arizona. A paired-watershed method was used to analyze data collected in two phases separated by the controlled burning of 45 percent of the East Fork Sycamore Creek drainage basin by the U.S. Forest Service on October 31, 1981. Statistically significant increases in streamflow in East Fork occurred from October 26, 1982, through August 25, 1984. Streamflow for August 26, 1984, through the end of data collection for the study on May 31, 1986, was generally at or less than preburn levels. An increase in the percentage of time that flow occurred in East Fork was noted for water years 1983 and 1984. No increase in the magnitude of instantaneous peak flows as a result of the burn was discernable at statistically significant levels. Suspended-sediment yields computed for data collected during water year 1983 were significantly greater in the East Fork drainage basin, 546 tons per square mile, than in the West Fork drainage basin, 22.6 tons per square mile. Suspended-sediment yields computed for East Fork and West Fork for water year 1985, 38.3 and 13.3 tons per square mile, respectively, were much closer in yield. These more uniform yields indicate a possible return to preburn conditions. Data collection did not begin until 11 months after the burn; therefore, the largest increases in streamflow and sediment yields, which commonly occur during the year after a burn, may not have been measured. During the second through fourth years after the burn, smaller increases in stream- flow and sediment yields were found in this study than were found in similar studies in this region.

  16. Migratory Behavior of Adult Spring Chinook Salmon in the Willamette River and its Tributaries: Completion report

    SciTech Connect

    Schreck, Carl B.

    1994-01-01

    Migration patterns of adult spring chinook salmon above Willamette Falls differed depending on when the fish passed the Falls, with considerable among-fish variability. Early-run fish often terminated their migration for extended periods of time, in association with increased flows and decreased temperatures. Mid-run fish tended to migrate steadily upstream at a rate of 30-40 km/day. Late-run fish frequently ceased migrating or fell back downstream after migrating 10-200 km up the Willamette River or its tributaries; this appeared to be associated with warming water during summer and resulted in considerable mortality. Up to 40% of the adult salmon entering the Willamette River System above Willamette Falls (i.e. counted at the ladder) may die before reaching upriver spawning areas. Up to 10% of the fish passing up over Willamette Falls may fall-back below the Falls; some migrate to the Columbia River or lower Willamette River tributaries. If rearing conditions at hatcheries affect timing of adult returns because of different juvenile development rates and improper timing of smolt releases, then differential mortality in the freshwater segment of the adult migrations may confound interpretation of studies evaluating rearing practices.

  17. Topological locking restrains replication fork reversal

    PubMed Central

    Fierro-Fernández, Marta; Hernández, Pablo; Krimer, Dora B.; Stasiak, Andrzej; Schvartzman, Jorge B.

    2007-01-01

    Two-dimensional agarose gel electrophoresis, psoralen cross-linking, and electron microscopy were used to study the effects of positive supercoiling on fork reversal in isolated replication intermediates of bacterial DNA plasmids. The results obtained demonstrate that the formation of Holliday-like junctions at both forks of a replication bubble creates a topological constraint that prevents further regression of the forks. We propose that this topological locking of replication intermediates provides a biological safety mechanism that protects DNA molecules against extensive fork reversals. PMID:17242356

  18. Approach view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  19. Elevation view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the North Fork Butter Creek Bridge, view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  20. Detail perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  1. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  2. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  3. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  4. Approach view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  5. Water-quality data for streams in the Upper North Fork of the Gunnison River, Colorado

    USGS Publications Warehouse

    Norris, J.M.; Maura, W.S.

    1985-01-01

    The upper reaches of the North Fork of the Gunnison River have been an area of active coal mining for many years. Recently, concerns about impacts of coal mining on surface-water quality have been raised. To answer these concerns, information on existing, or background, water quality must be known. To obtain this information for the study area, a program for the synoptic collection of water quality data was established in 1982. Water quality data were collected on continuously flowing streams in the upper North Fork of the Gunnison River basin in 1982 and 1983. Each site was sampled repetitively as changes occurred in streamflow and specific conductance. (USGS)

  6. 21 CFR 882.1525 - Tuning fork.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tuning fork. 882.1525 Section 882.1525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1525 Tuning fork. (a) Identification. A tuning...

  7. 21 CFR 882.1525 - Tuning fork.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tuning fork. 882.1525 Section 882.1525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1525 Tuning fork. (a) Identification. A tuning...

  8. 21 CFR 882.1525 - Tuning fork.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tuning fork. 882.1525 Section 882.1525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1525 Tuning fork. (a) Identification. A tuning...

  9. 21 CFR 882.1525 - Tuning fork.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tuning fork. 882.1525 Section 882.1525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1525 Tuning fork. (a) Identification. A tuning...

  10. 21 CFR 882.1525 - Tuning fork.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tuning fork. 882.1525 Section 882.1525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1525 Tuning fork. (a) Identification. A tuning...

  11. Training Guidelines: Fork Lift Truck Driving.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    This manual of operative training guidelines for fork lift truck driving has been developed by the Ceramics, Glass and Mineral Products Industry Training Board (Great Britain) in consultation with a number of firms which manufacture fork lift trucks or which already have training--programs for their use. The purpose of the guidelines is to assist…

  12. Fifth-wheel fork truck adapter

    NASA Technical Reports Server (NTRS)

    Smith, P. L.

    1969-01-01

    Standard fifth wheel mounted on a rectangular steel structure adapted for use with a fork lift truck provides a fast, safe, and economical way of maneuvering semitrailers in close quarters at plants and warehouses. One operator can move and locate a semitrailer without dismounting from a fork lift truck.

  13. Environment of deposition of Clear Fork Formation: Yoakum County, Texas

    SciTech Connect

    Moore, B.K.

    1987-05-01

    The Clear Fork Formation is Permian (Leonardian) in age and constitutes a major oil-bearing unit in the Permian basin of west Texas. In Yoakum County, west Texas, the upper Clear Fork carbonates record a subtidal upward-shoaling sequence of deposition. A small bryozoan-algal patch reef is situated within these carbonates near the southern edge of the North Basin platform. The reef is completely dolomitized, but paramorphic replacement has facilitated a study of the paleoecology, lateral variations, and community succession within this buildup. Build-ups of this type are scarcely known in strata of Permian age. The reef was apparently founded on a coquina horizon at the base of the buildup. The reef apparently had a low-relief, dome-shaped morphology. The trapping and binding of sediment by bryozoa appear to have been the main constructional process. A significant role was also played by encrusting forams and the early precipitation of submarine cements, both of which added rigidity to the structure. The reef also contains a low-diversity community of other invertebrates. Algal constituents predominate at the basinward edge of the buildup. The reef was formed entirely subaqueously on a broad, relatively shallow tropical marine carbonate shelf environment. An understanding of the lithofacies distribution and paragenesis within this sequence will provide information on porosity variations and the nature and distribution of permeability barriers. Such information is useful in reservoir modeling studies and for secondary recovery techniques in shelf-edge carbonate reservoirs of this type.

  14. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha that express different migratory phenotypes in the Willamette River, Oregon, U.S.A.

    PubMed

    Billman, E J; Whitman, L D; Schroeder, R K; Sharpe, C S; Noakes, D L G; Schreck, C B

    2014-10-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation. PMID:25082498

  15. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha that express different migratory phenotypes in the Willamette River, Oregon, U.S.A.

    PubMed

    Billman, E J; Whitman, L D; Schroeder, R K; Sharpe, C S; Noakes, D L G; Schreck, C B

    2014-10-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  16. 33 CFR 165.1322 - Regulated Navigation Area: Willamette River Portland, Oregon Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Willamette River Portland, Oregon Captain of the Port Zone. 165.1322 Section 165.1322 Navigation and... Areas Thirteenth Coast Guard District § 165.1322 Regulated Navigation Area: Willamette River Portland, Oregon Captain of the Port Zone. (a) Location. The following is a regulated navigation area (RNA):...

  17. Migratory Characteristics of Juvenile Spring Chinook Salmon in the Willamette River : Completion Report 1994.

    SciTech Connect

    Schreck, Carl B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate.

  18. 16 CFR 1512.13 - Requirements for front fork.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Requirements for front fork. 1512.13 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.13 Requirements for front fork. The front fork shall... fork test, § 1512.18(k)(1), without visible evidence of fracture. Sidewalk bicycles need not meet...

  19. 23. View of Clark Fork Vehicle Bridge facing upwest side. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. View of Clark Fork Vehicle Bridge facing up-west side. Looking at structural connection of top chord, vertical laced channel and diagonal bars. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  20. 24. View of one of the plaques from Clark Fork ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. View of one of the plaques from Clark Fork Vehicle Bridge. Presently located at the Bonner County Historical Museum in Sandpoint, Idaho. A plaque was attached at each end of the bridge. Only one remains. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  1. 13. View of Clark Fork Vehicle Bridge facing south. Concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of Clark Fork Vehicle Bridge facing south. Concrete barrier blocks access. Plaque was originally located where strioed traffic sign is posted at right. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  2. 16 CFR 1512.13 - Requirements for front fork.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Requirements for front fork. 1512.13 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.13 Requirements for front fork. The front fork shall... fork test, § 1512.18(k)(1), without visible evidence of fracture. Sidewalk bicycles need not meet...

  3. 16 CFR 1512.13 - Requirements for front fork.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Requirements for front fork. 1512.13 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.13 Requirements for front fork. The front fork shall... fork test, § 1512.18(k)(1), without visible evidence of fracture. Sidewalk bicycles need not meet...

  4. 16 CFR 1512.13 - Requirements for front fork.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for front fork. 1512.13 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.13 Requirements for front fork. The front fork shall... fork test, § 1512.18(k)(1), without visible evidence of fracture. Sidewalk bicycles need not meet...

  5. 14. View of Clark Fork Vehicle Bridge facing north. Approach ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of Clark Fork Vehicle Bridge facing north. Approach from the south. Concrete barrier blocks access. Plaque was originally located where striped traffic sign is posted at right. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  6. 16 CFR 1512.13 - Requirements for front fork.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Requirements for front fork. 1512.13 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.13 Requirements for front fork. The front fork shall... fork test, § 1512.18(k)(1), without visible evidence of fracture. Sidewalk bicycles need not meet...

  7. Ground-water data in the Harrisburg-Halsey area, central Willamette Valley, Oregon

    USGS Publications Warehouse

    Frank, F.J.; Johnson, Nyra A.

    1975-01-01

    THE HARRISBURG-HALSEY AREA COVERS ABOUT 350 SQUARE MILES IN THE CENTRAL WILLAMETTE VALLEY, OREG., AND IS PART OF A BROAD ALLUVIAL PLAIN THAT LIES BETWEEN THE CASCADE AND COAST RANGES IN THE CENTRAL PART OF THE WILLAMETTE VALLEY. MOST OF THE DATA FOR THE 506 WELLS IN THIS REPORT WERE OBTAINED FROM WELL DRILLERS' REPORTS. CHEMICAL ANALYSES OF WATER FROM 36 WELLS ARE TABULATED. MOST OF THE HIGH-YIELD WELLS IN THE AREA PRODUCE WATER FROM ALLUVIAL (SAND AND GRAVEL) AQUIFERS THAT UNDERLIE THE VALLEY PLAIN OR THAT ARE COEXTENSIVE WITH THE PRESENT FLOOD PLAIN OF THE WILLAMETTE RIVER. THE WATER TABLE IN THE ALLUVIAL AQUIFER IS GENERALLY ONLY A FEW FEET BELOW LAND SURFACE. PUMPING LIFTS ARE RELATIVELY SMALL, AND WELLS PRODUCE MODERATE TO LARGE QUANTITIES OF GROUNDWATER OF GOOD CHEMICAL QUALITY.

  8. WRNIP1 protects stalled forks from degradation and promotes fork restart after replication stress.

    PubMed

    Leuzzi, Giuseppe; Marabitti, Veronica; Pichierri, Pietro; Franchitto, Annapaola

    2016-07-01

    Accurate handling of stalled replication forks is crucial for the maintenance of genome stability. RAD51 defends stalled replication forks from nucleolytic attack, which otherwise can threaten genome stability. However, the identity of other factors that can collaborate with RAD51 in this task is poorly elucidated. Here, we establish that human Werner helicase interacting protein 1 (WRNIP1) is localized to stalled replication forks and cooperates with RAD51 to safeguard fork integrity. We show that WRNIP1 is directly involved in preventing uncontrolled MRE11-mediated degradation of stalled replication forks by promoting RAD51 stabilization on ssDNA We further demonstrate that replication fork protection does not require the ATPase activity of WRNIP1 that is however essential to achieve the recovery of perturbed replication forks. Loss of WRNIP1 or its catalytic activity causes extensive DNA damage and chromosomal aberrations. Intriguingly, downregulation of the anti-recombinase FBH1 can compensate for loss of WRNIP1 activity, since it attenuates replication fork degradation and chromosomal aberrations in WRNIP1-deficient cells. Therefore, these findings unveil a unique role for WRNIP1 as a replication fork-protective factor in maintaining genome stability.

  9. Characterizing water quality in the North Fork-Fall Creek Hydrologic Unit Area, Tennessee

    USGS Publications Warehouse

    Byl, Thomas Duane; Mattraw, H.C.

    1995-01-01

    The North Fork-Fall Creek Watershed in Bedford County, Tennessee is a karst terrain with a complex interconnection between ground water and the surface water-drainage network. Multiple sources of agricultural and domestic contamination make the effective design of best management practices difficult. Ongoing investigations by the U.S. Geological Survey and several county, State, and Federal agricultural agencies are attempting to refine source identification and improve the effectiveness of best management practices in the basin.

  10. Principal Facts of Gravity data in the Northern Willamette Valley and Vicinity, Northwestern Oregon and Southwestern Washington

    USGS Publications Warehouse

    Morin, Robert L.; Wheeler, Karen L.; McPhee, Darcy K.; Dinterman, Philip A.; Watt, Janet T.

    2007-01-01

    Gravity data were collected from 2004 through 2006 to assist in mapping subsurface geology in the northern Willamette Valley and vicinity, northwestern Oregon and southwestern Washington. Prior to this effort to improve the gravity data coverage in the study area, very little regional data were available. This report gives the principle facts for 2710 new gravity stations and 1446 preexisting gravity stations. Much of the study area is now covered with data of sufficient density to define basin boundaries and correlate with many of the larger fault systems. ,p> The study area lies between 44? 52.5 and 46? N latitude and between 122? 15 and 123? 37.5 W longitude. Although this is a continuing project and more gravity data is expected to be collected, this report is being published to show the progress of the data collection. The majority of these data are spaced at about 1.6 km (1 mile), but three closely spaced profiles were measured in the Portland area across several faults. To obtain a 1.6 km grid of data points would require about 5120 gravity stations. To date we have collected 2710 stations. Including the preexisting data points, the total number of stations is 4156, and complete regional coverage is about 80 percent at this time.

  11. LONGITUDINAL AND LATERAL PATTERNS IN PHYSICAL AND CHEMICAL ATTRIBUTES OF WILLAMETTE RIVERINE HABITAT

    EPA Science Inventory

    The Willamette River in western Oregon is the tenth largest river in the conterminous U. S. Plans are being developed to restore ecological function to the main corridor of the river. Our riverine research has developed a basic understanding of some of the ecological functions ...

  12. Vegetation dynamics of restored and remnant Willamette Valley, OR wet prairie wetlands

    EPA Science Inventory

    Wet prairie wetlands are now one of the rarest habitat types in the Willamette Valley of Oregon, USA. Less than two percent of their historic extent remains, with most having been converted into agricultural fields (Christy and Alverson 2011, ONHP 1983). This habitat is the obl...

  13. 33 CFR 165.T13-207 - Safety Zones; Sellwood Bridge project, Willamette River; Portland, OR.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Regulations. In accordance with the general regulations in 33 CFR Part 165, subpart C, no person may enter or... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zones; Sellwood Bridge... Coast Guard District § 165.T13-207 Safety Zones; Sellwood Bridge project, Willamette River; Portland,...

  14. 33 CFR 165.T13-207 - Safety Zones; Sellwood Bridge project, Willamette River; Portland, OR.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Regulations. In accordance with the general regulations in 33 CFR Part 165, subpart C, no person may enter or... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety Zones; Sellwood Bridge... Coast Guard District § 165.T13-207 Safety Zones; Sellwood Bridge project, Willamette River; Portland,...

  15. 33 CFR 165.T13-207 - Safety Zones; Sellwood Bridge project, Willamette River; Portland, OR.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Regulations. In accordance with the general regulations in 33 CFR Part 165, subpart C, no person may enter or... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zones; Sellwood Bridge... Coast Guard District § 165.T13-207 Safety Zones; Sellwood Bridge project, Willamette River; Portland,...

  16. 77 FR 38723 - Safety Zones; Sellwood Bridge Project, Willamette River; Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ..., telephone 202-366-9826. SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR... published a notice of proposed rulemaking (NPRM) titled Sellwood Bridge Project, Willamette River (77 FR... 43, and provide substantially improved bicycle and pedestrian facilities. Construction work...

  17. 75 FR 20523 - Regulated Navigation Areas; Port of Portland Terminal 4, Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ..., Portland, OR'' in the Federal Register (74 FR 69047). We received one comment on the proposed rule. There... establishing two Regulated Navigation Areas (RNA) at the Port of Portland Terminal 4 on the Willamette River in ] Portland, Oregon. The RNAs are necessary to preserve the integrity of engineered sediment caps...

  18. 76 FR 48070 - Regulated Navigation Area, Zidell Waterfront Property, Willamette River, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may... Guard proposes the establishment of a Regulated Navigation Area (RNA) at the Zidell Waterfront Property located on the Willamette River in Portland, Oregon. This RNA is necessary to preserve the integrity of...

  19. Historical wetlands in Oregon's Willamette Valley: Implications for restoration of winter waterbird habitat

    USGS Publications Warehouse

    Taft, Oriane W.; Haig, Susan M.

    2003-01-01

    Before agricultural expansion in the 19th century, river valleys of North America supported expanses of wetland habitat. In restoring these landscapes, it is important to understand their historical condition and biological function. Synthesizing historical primary accounts (from explorers, travelers, settlers, and farmers) with contemporary knowledge of these wetland systems, we developed a profile of the wetlands and their use by nonbreeding waterbirds (e.g., waterfowl, wading birds, and shorebirds) within the Willamette Valley, Oregon, ca. 1840. We found evidence for three types of wetlands used by non-breeding waterbirds in fall, winter, and spring: emergent wetlands, riverine wetlands, and wetland prairie. The most extensive wetland type was wetland prairie, which functioned as fall/winter habitat for waterbirds, but only while native Kalapuyans managed the region with fire. Since the mid-1800s, four species, in particular, have decreased their use of the Willamette Valley: trumpeter swan (Cygnus buccinator), snow goose (Chen caerulescens), sandhill crane (Grus canadensis), and long-billed curlew (Numenius americanus). Information suggests that ca. 1840, waterbirds and their habitats were more abundant in the Willamette Valley than today. Restoration of the Willamette Valley landscape is warranted, and today's agricultural wetlandsa??former wetland prairiea??hold highest restoration potential.

  20. 77 FR 9690 - Willamette Valley National Wildlife Refuge Complex, Corvallis, OR; Final Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... process through a notice of intent in the Federal Register (73 FR 11137; February 29, 2008). We released... Federal Register (76 FR 30382; May 25, 2011). The Willamette Valley National Wildlife Refuge Complex..., semipermanent, and permanent wetlands; wet prairies, upland prairie/oak savannas, oak woodlands, mixed...

  1. 78 FR 4331 - Safety Zone; Sellwood Bridge Move; Willamette River, Portland, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ..., Oregon, while it is being relocated 66 feet downriver as part of the new Sellwood Bridge construction project. This action is necessary to ensure the safety of persons and vessels transiting the Willamette... maneuverability for construction operations in this area during the bridge movement operation. The safety...

  2. DISTRIBUTION OF AQUATIC OFF-CHANNEL HABITATS AND ASSOCIATED RIPARIAN VEGETATION, WILLAMETTE RIVER, OREGON, USA

    EPA Science Inventory

    The extent of aquatic off-channel habitats such as secondary and side channels, sloughs, and alcoves, have been reduced more than 50% since the 1850s along the upper main stem of the Willamette River, Oregon, USA. Concurrently, the hydrogeomorphic potential, and associated flood...

  3. Prey of nesting ospreys on the Willamette and Columbia Rivers, Oregon and Washington

    USGS Publications Warehouse

    Johnson, B.L.; Kaiser, J.L.; Henny, C.J.; Grove, R.A.

    2008-01-01

    To more effectively use ospreys as a biomonitoring tool and to better assess contaminant pathways, the diet of nesting ospreys (Pandion haliaetus) was studied along the lower Columbia and upper mainstem Willamette rivers by evaluating prey remains collected from wire baskets constructed under artificial feeding perches installed near nest sites and from the ground beneath natural feeding perches and nests. Prey remains from 1997-2004 on the Columbia River and 1993 (previously published) and 2001 on the Willamette River were evaluated and compared. Largescale suckers (Catostomus macrocheilus) were the predominate fish species identified in collections from the Columbia River (61.5% [84.3% biomass]) and Willamette River (76.0% [92.7% biomass]). Prey fish diversity, when based only on ground collections, was higher in the Columbia (2.45) than the Willamette river (1.92) (P = 0.038). Prey fish diversity in collections from the Willamette River did not differ between this study (2001) and previous study (1993) (P = 0.62). Fishbones recovered in wire baskets are likely more representative of osprey diet compared to bones recovered from the ground, because prey diversity was higher among basket samples compared to ground collections (wire basket diversity = 5.25 vs. ground collection diversity = 2.45, P = 0.011). Soft-boned salmonids (Oncorhynchus spp.), American shad (Alosa sapidissima), and mountain whitefish (Prosopium williamsoni) were probably underrepresented in collections obtained from the ground. Study results suggest that baskets provide a better method for assessing osprey diet than other indirect methods. These findings augment available osprey food-habits information and provide additional biological and ecological information to better assess potential impacts of various environmental contaminants on nesting ospreys.

  4. Tuning fork shear-force feedback.

    PubMed

    Ruiter, A G; van der Werf, K O; Veerman, J A; Garcia-Parajo, M F; Rensen, W H; van Hulst, N F

    1998-03-01

    Investigations have been performed on the dynamics of a distance regulation system based on an oscillating probe at resonance. This was examined at a tuning fork shear-force feedback system, which is used as a distance control mechanism in near-field scanning optical microscopy. In this form of microscopy, a tapered optical fiber is attached to the tuning fork and scanned over the sample surface to be imaged. Experiments were performed measuring both amplitude and phase of the oscillation of the tuning fork as a function of driving frequency and tip-sample distance. These experiments reveal that the resonance frequency of the tuning fork changes upon approaching the sample. Both the amplitude and the phase of the tuning fork can be used as distance control parameter in the feedback system. Using the amplitude a second-order behavior is observed, while with phase only a first-order behavior is observed. Numerical calculations confirm these observations. This first-order behavior results in an improved stability of the feedback system. As an example, a sample consisting of DNA strands on mica was imaged which showed the height of the DNA as 1.4 +/- 0.2 nm.

  5. RELATIONSIPS BETWEEN AQUATIC INVERTEBRATE ASSEMBLAGES AND REACH AND LANDSCAPE ATTRIBUTES ON WADEABLE, WILLAMETTE VALLEY STREAMS IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    In summer 1997, we sampled reaches in 24 wadeable, Willamette Valley ecoregion streams draining agriculturally-infiuenced watersheds. Within these reaches, physical habitat, water chemistry, aquatic invertebrate and fish data and samples were collected. Low-level air photos were ...

  6. AMPHIBIAN OCCURRENCE AND AQUATIC INVADERS IN A CHANGING LANDSCAPE: IMPLICATIONS FOR WETLAND MITIGATION IN THE WILLAMETTE VALLEY, OREGON, USA

    EPA Science Inventory

    Despite concern about the conservation status of amphibians in western North America, few field studies have documented occurrence patterns of amphibians relative to potential stressors. We surveyed wetland fauna in Oregon Willamette Valley and used an information theoretic appro...

  7. Economic analysis of temperature reduction in a large river floodplain: An exploratory study of the WIllamette River, Oregon

    EPA Science Inventory

    This paper examines ecosystem restoration practices that focus on water temperature reductions in the upper mainstem Willamette River, Oregon, for the benefit of endangered salmonids and other native cold-water species. The analysis integrates hydrologic, natural science and eco...

  8. South Fork Latrine showing north and west sides, general view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Latrine showing north and west sides, general view to southeast - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  9. South Fork Latrine, oblique view showing south and east sides; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Latrine, oblique view showing south and east sides; view northwest - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  10. South Fork Latrine, east elevation showing structure in context, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Latrine, east elevation showing structure in context, view west - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  11. 12. Roaring Fork Motor Nature Trail, place of a thousand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Roaring Fork Motor Nature Trail, place of a thousand drips, view from road. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  12. 9. Roaring Fork Motor Nature Trail, Reagan House. Great ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Roaring Fork Motor Nature Trail, Reagan House. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  13. 11. Roaring Fork Motor Nature Trail, boulders along road after ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Roaring Fork Motor Nature Trail, boulders along road after stop 13. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  14. Roaring Fork Motor Nature Trail, Title Sheet Great Smoky ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roaring Fork Motor Nature Trail, Title Sheet - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  15. 6. Roaring Fork Motor Nature Trail, road view after stop ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Roaring Fork Motor Nature Trail, road view after stop four. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  16. 7. Roaring Fork Motor Nature Trail, rocks along edge of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Roaring Fork Motor Nature Trail, rocks along edge of road. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  17. 3. Roaring Fork Motor Nature Trail, view between second and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Roaring Fork Motor Nature Trail, view between second and third stops - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  18. 5. Roaring Fork Motor Nature Trail, vista at stop three. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Roaring Fork Motor Nature Trail, vista at stop three. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  19. 8. Roaring Fork Motor Nature Trail, handbuilt rock pile. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Roaring Fork Motor Nature Trail, hand-built rock pile. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  20. 1. Roaring Fork Motor Nature Trail, entrance sign. Great ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Roaring Fork Motor Nature Trail, entrance sign. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  1. 2. Roaring Fork Motor Nature Trail, road view before first ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Roaring Fork Motor Nature Trail, road view before first stop. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  2. Resonant tuning fork detector for electromagnetic radiation.

    PubMed

    Pohlkötter, Andreas; Willer, Ulrike; Bauer, Christoph; Schade, Wolfgang

    2009-02-01

    A mechanical quartz microresonator (tuning fork) is used to detect electromagnetic radiation. The detection scheme is based on forces created due to the incident electromagnetic radiation on the piezoelectric tuning fork. A force can be created due to the transfer of the photon momentum of the incident electromagnetic radiation. If the surfaces of the tuning fork are nonuniformly heated, a second force acts on it, the so-called photophoretic force. These processes occur for all wavelengths of the incident radiation, making the detector suitable for sensing of ultraviolet, visible, and mid-infrared light, even THz-radiation. Here the detector is characterized in the visible range; noise analysis is performed for 650 nm and 5.26 microm. A linear power characteristic and the dependence on pulse lengths of the incoming light are shown. Examples for applications for the visible and mid-infrared spectral region are given by 2f and absorption spectroscopy of oxygen and nitric oxide, respectively.

  3. Geology of the Holocene surficial uranium deposit of the north fork of Flodelle Creek, northeastern Washington ( USA).

    USGS Publications Warehouse

    Johnson, S.Y.; Otton, J.K.; Macke, D.L.

    1987-01-01

    The N fork of Flodelle Creek drainage basin in NE Washington contains the first surficial U deposit to be mined in the US. The U was leached from granitic bedrock and fixed in organic-rich pond sediments. The distribution of these pond sediments and, therefore, the U has been strongly influenced by relict glacial topography, slope proceses, and beaver activity. Ponds in the drainage basin have been sinks for fine-grained, organic-rich sediments. These organic-rich sediments provide a suitable geochemical environment for precipitation and adsorption of uranium leached from granitic bedrock into ground, spring, and surface waters. Processes of pond formation have thus been important in the development of surficial U deposits in the N fork of Flodelle Creek drainage basin and may have similar significance in other areas.-from Authors

  4. 27 CFR 9.65 - North Fork of Roanoke.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false North Fork of Roanoke. 9... North Fork of Roanoke. (a) Name. The name of the viticultural area described in this section is “North Fork of Roanoke.” (b) Approved maps. The appropriate maps for determining the boundaries of the...

  5. 27 CFR 9.65 - North Fork of Roanoke.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false North Fork of Roanoke. 9... North Fork of Roanoke. (a) Name. The name of the viticultural area described in this section is “North Fork of Roanoke.” (b) Approved maps. The appropriate maps for determining the boundaries of the...

  6. 27 CFR 9.65 - North Fork of Roanoke.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false North Fork of Roanoke. 9... North Fork of Roanoke. (a) Name. The name of the viticultural area described in this section is “North Fork of Roanoke.” (b) Approved maps. The appropriate maps for determining the boundaries of the...

  7. 27 CFR 9.65 - North Fork of Roanoke.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false North Fork of Roanoke. 9... North Fork of Roanoke. (a) Name. The name of the viticultural area described in this section is “North Fork of Roanoke.” (b) Approved maps. The appropriate maps for determining the boundaries of the...

  8. Pyrimidine dimers block simian virus 40 replication forks

    SciTech Connect

    Berger, C.A.; Edenberg, H.J.

    1986-10-01

    UV light produces lesions, predominantly pyrimidine dimers, which inhibit DNA replication in mammalian cells. The mechanism of inhibition is controversial: is synthesis of a daughter strand halted at a lesion while the replication fork moves on and reinitiates downstream, or is fork progression itself blocked for some time at the site of a lesion. We directly addressed this question by using electron microscopy to examine the distances of replication forks from the origin in unirradiated and UV-irradiated simian virus 40 chromosomes. If UV lesions block replication fork progression, the forks should be asymmetrically located in a large fraction of the irradiated molecules; if replication forks move rapidly past lesions, the forks should be symmetrically located. A large fraction of the simian virus 40 replication forks in irradiated molecules were asymmetrically located, demonstrating that UV lesions present at the frequency of pyrimidine dimers block replication forks. As a mechanism for this fork blockage, we propose that polymerization of the leading strand makes a significant contribution to the energetics of fork movement, so any lesion in the template for the leading strand which blocks polymerization should also block fork movement.

  9. 27 CFR 9.65 - North Fork of Roanoke.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false North Fork of Roanoke. 9... North Fork of Roanoke. (a) Name. The name of the viticultural area described in this section is “North Fork of Roanoke.” (b) Approved maps. The appropriate maps for determining the boundaries of the...

  10. CLEAR FORK OF THE BRAZOS SUSPENSION BRIDGE, CIRCA 1896, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLEAR FORK OF THE BRAZOS SUSPENSION BRIDGE, CIRCA 1896, SHOWING INCLINED STAY CABLES EXTENDING FROM TOP OF TOWER TO DECK. 3/4 VIEW FROM BELOW. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX

  11. 27 CFR 9.113 - North Fork of Long Island.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false North Fork of Long Island... North Fork of Long Island. (a) Name. The name of the viticultural area described in this section is “North Fork of Long Island.” (b) Approved maps. The appropriate maps for determining the boundaries...

  12. 27 CFR 9.113 - North Fork of Long Island.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false North Fork of Long Island... North Fork of Long Island. (a) Name. The name of the viticultural area described in this section is “North Fork of Long Island.” (b) Approved maps. The appropriate maps for determining the boundaries...

  13. 27 CFR 9.113 - North Fork of Long Island.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false North Fork of Long Island... North Fork of Long Island. (a) Name. The name of the viticultural area described in this section is “North Fork of Long Island.” (b) Approved maps. The appropriate maps for determining the boundaries...

  14. 27 CFR 9.113 - North Fork of Long Island.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false North Fork of Long Island... North Fork of Long Island. (a) Name. The name of the viticultural area described in this section is “North Fork of Long Island.” (b) Approved maps. The appropriate maps for determining the boundaries...

  15. 27 CFR 9.113 - North Fork of Long Island.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false North Fork of Long Island... North Fork of Long Island. (a) Name. The name of the viticultural area described in this section is “North Fork of Long Island.” (b) Approved maps. The appropriate maps for determining the boundaries...

  16. Topographic view of the North Fork Butter Creek Bridge (located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the North Fork Butter Creek Bridge (located center of frame), view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  17. Development of the Pintle Release Fork Mechanism

    SciTech Connect

    BOGER, R.M.; DALE, R.

    1999-08-27

    An improved method of attachment of the pintle to the piston in the universal sampler is being developed. The mechanism utilizes a forked release disk which captures two balls in a cavity formed by a hole in the piston and a groove in the pintle rod.

  18. Man-induced gradient adjustment of the South Fork Forked Deer River, west Tennessee

    USGS Publications Warehouse

    Simon, A.; Robbins, C.H.

    1987-01-01

    Channel modifications from 1968 to 1969 on the South Fork Forked Deer River in western Tennessee have caused upstream degradation, downstream aggradation, and bank failures along the altered channels, adjacent reaches, and tributaries. The result of these adjustments is a general decrease in gradient as the channel attempts to absorb the imposed increase in energy conditions created by channelization. Headward degradation at a rate of approximately 2.57 km/yr on the South Fork Forked Deer River caused from 1.52 m to about 3.14 m of incision over a 13.5 km reach from 1969 to 1981. As a consequence of substantially increased sediment supply, approximately 2.13 m of aggradation was induced downstream of this reach during the same period. This accumulation represents a 60% recovery of bed level at the downstream site since the completion of channel work in 1969. Gradient adjustment with time is described by exponential decay functions. The length of time required for adjustment to some new quasi-equilibrium condition is computed by these decay functions and is about 20 years from the completion of channel work. Adjusted slopes are less than predisturbed values, probably because straightened channels dissipate less energy by friction, allowing more energy for sediment transport. An equivalent sediment load, therefore, can be transported at a considerably gentler slope. The predisturbed slope exceeds the adjusted slope by an order of magnitude on the downstream reach of the South Fork Forked Deer River. ?? 1987 Springer-Verlag New York Inc.

  19. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks.

    PubMed

    Lecointe, François; Sérèna, Céline; Velten, Marion; Costes, Audrey; McGovern, Stephen; Meile, Jean-Christophe; Errington, Jeffrey; Ehrlich, S Dusko; Noirot, Philippe; Polard, Patrice

    2007-10-01

    In bacteria, several salvage responses to DNA replication arrest culminate in reassembly of the replisome on inactivated forks to resume replication. The PriA DNA helicase is a prominent trigger of this replication restart process, preceded in many cases by a repair and/or remodeling of the arrested fork, which can be performed by many specific proteins. The mechanisms that target these rescue effectors to damaged forks in the cell are unknown. We report that the single-stranded DNA binding (SSB) protein is the key factor that links PriA to active chromosomal replication forks in vivo. This targeting mechanism determines the efficiency by which PriA reaches its specific DNA-binding site in vitro and directs replication restart in vivo. The RecG and RecQ DNA helicases, which are involved in intricate replication reactivation pathways, also associate with the chromosomal replication forks by similarly interacting with SSB. These results identify SSB as a platform for linking a 'repair toolbox' with active replication forks, providing a first line of rescue responses to accidental arrest.

  20. Gaps and forks in DNA replication: Rediscovering old models.

    PubMed

    Lehmann, Alan R; Fuchs, Robert P

    2006-12-01

    Most current models for replication past damaged lesions envisage that translesion synthesis occurs at the replication fork. However older models suggested that gaps were left opposite lesions to allow the replication fork to proceed, and these gaps were subsequently sealed behind the replication fork. Two recent articles lend support to the idea that bypass of the damage occurs behind the fork. In the first paper, electron micrographs of DNA replicated in UV-irradiated yeast cells show regions of single-stranded DNA both at the replication forks and behind the fork, the latter being consistent with the presence of gaps in the daughter-strands opposite lesions. The second paper describes an in vitro DNA replication system reconstituted from purified bacterial proteins. Repriming of synthesis downstream from a blocked fork occurred not only on the lagging strand as expected, but also on the leading strand, demonstrating that contrary to widely accepted beliefs, leading strand synthesis does not need to be continuous.

  1. Shaded-relief and color shaded-relief maps of the Willamette Valley, Oregon

    USGS Publications Warehouse

    Givler, R.W.; Wells, Ray E.

    2001-01-01

    This Open-File Report is released as a digital map database. It includes PostScript plot files that contain images of the map sheets; the images also contain a brief explanation describing the geology and physiography of the study area. The digital map database is a compilation of newly published 10-m digital-elevation-model (DEM) data for western Oregon and represents the physiography of the Willamette Valley.

  2. Dissolved-oxygen regimen of the Willamette River, Oregon, under conditions of basinwide secondary treatment

    USGS Publications Warehouse

    Hines, Walter G.; McKenzie, S.W.; Rickert, D.A.; Rinella, F.A.

    1977-01-01

    For nearly half a century the Willamette River in Oregon experienced severe dissolved-oxygen problems related to large loads of organically rich waste waters from industries and municipalities. Since the mid-1950 's dissolved oxygen quality has gradually improved owing to low-flow augmentation, the achievement of basinwide secondary treatment, and the use of other waste-management practices. As a result, summer dissolved-oxygen levels have increased, salmon runs have returned, and the overall effort is widely regarded as a singular water-quality success. To document the improved dissolved-oxygen regimen, the U.S. Geological Survey conducted intensive studies of the Willamette during the summer low-flow seasons of 1973 and 1974. During each summer the mean daily dissolved-oxygen levels were found to be higher than 5 milligrams per liter throughout the river. Because of the basinwide secondary treatment, carbonaceous deoxygenation rates were low. In addition, almost half of the biochemical oxygen demand entering the Willamette was from diffuse (nonpoint) sources rather than outfalls. These results indicated that point-source biochemical oxygen demand was no longer the primary cause of dissolved-oxygen depletion. Instead, the major causes of deoxygenation were nitrification in a shallow ' surface active ' reach below Salem and an anomalous oxygen demand (believed to be primarily of benthal origin) in Portland Harbor. (Woodard-USGS)

  3. Bioactivity of Meeker and Willamette raspberry (Rubus idaeus L.) pomace extracts.

    PubMed

    Cetojević-Simin, Dragana D; Velićanski, Aleksandra S; Cvetković, Dragoljub D; Markov, Siniša L; Cetković, Gordana S; Tumbas Šaponjac, Vesna T; Vulić, Jelena J; Canadanović-Brunet, Jasna M; Djilas, Sonja M

    2015-01-01

    Taking into account the substantial potential of raspberry processing by-products, pomace extracts from two raspberry cultivars, Meeker and Willamette, were investigated. Total phenolic, flavonoid and anthocyanin contents were determined. Willamette pomace extract (EC₅₀=0.042 mg/ml) demonstrated stronger 2,2-diphenyl-1-picrylhydrazyl DPPH radical-scavenging activity than did Meeker pomace extract (EC₅₀=0.072 mg/ml). The most pronounced cell growth inhibition effect was obtained in the breast adenocarcinoma cell line, reaching EC50 values of 34.8 and 60.3 μg/ml for Willamette and Meeker extracts, respectively. Both extracts demonstrated favourable non-tumor/tumor cell growth ratios and potently increased the apoptosis/necrosis ratio in breast adenocarcinoma and cervix carcinoma cells. In reference and wild bacterial strains, minimal inhibitory concentrations (MIC) were achieved in a concentration range from 0.29 to 0.59 mg/ml, and minimal bactericidal concentrations (MBC) in a range from 0.39 to 0.78 mg/ml. The results indicate significant antioxidant, antiproliferative, proapoptotic and antibacterial activities of raspberry pomace and favour its use as a functional food ingredient.

  4. A synoptic survey of trace metals in bottom sediments of the Willamette River, Oregon

    USGS Publications Warehouse

    Rickert, David A.; Kennedy, V.C.; McKenzie, S.W.; Hines, W.G.

    1977-01-01

    For nearly half a century the Willamette River in Oregon experienced severe dissolved-oxygen problems related to large loads of organically rich waste waters from industries and municipalities. Since the mid-1950 's dissolved oxygen quality has gradually improved owing to low-flow augmentation, the achievement of basinwide secondary treatment, and the use of other waste-management practices. As a result, summer dissolved-oxygen levels have increased, salmon runs have returned, and the overall effort is widely regarded as a singular water-quality success. To document the improved dissolved-oxygen regimen, the U.S. Geological Survey conducted intensive studies of the Willamette during the summer low-flow seasons of 1973 and 1974. During each summer the mean daily dissolved-oxygen levels were found to be higher than 5 milligrams per liter throughout the river. Because of the basinwide secondary treatment, carbonaceous deoxygenation rates were low. In addition, almost half of the biochemical oxygen demand entering the Willamette was from diffuse (nonpoint) sources rather than outfalls. These results indicated that point-source biochemical oxygen demand was no longer the primary cause of dissolved-oxygen depletion. Instead, the major causes of deoxygenation were nitrification in a shallow ' surface active ' reach below Salem and an anomalous oxygen demand (believed to be primarily of benthal origin) in Portland Harbor. (Woodard-USGS)

  5. Landslide Sediment Production in the Middle Fork Eel River: 1940-2002

    NASA Astrophysics Data System (ADS)

    de La Fuente, J. A.; Snavely, W. P.; Miller, A. R.; Elder, D.

    2003-12-01

    A sequential air photo analysis was conducted by the U.S. Forest Service (USFS) and North State Resources in the 753 square mile Middle Fork Eel River basin, under contract to US Environmental Protection Agency as part of a Total Maximum Daily Load (TMDL) assessment. All landslides visible on air photos which appeared to deliver sediment to the stream system were mapped, and the delivered volume estimated. Landslides on undisturbed hillslopes were classified as natural, those within recently burned areas as fire-related, those in harvest units as harvest-related, and those adjacent to roads as road-related. About 5% of the landslides were field verified. Data were then summed for three air photo intervals, spanning the period 1940-2002. A total of 4,122 landslides were inventoried, delivering a total of 24,969,836 cubic yards of sediment to the stream system, and occupying 13,526 acres. The photo interval 1940-1969 accounted for 79% of the delivered volume, 1970-1984 for 8%, and 1985-2002 for 13%. This pattern is similar to that observed in many NW California watersheds where the storms of 1955 and 1964 generated large volumes of landslide sediment. Landslide volume per unit area delivered to streams from 1940-2002 averaged 0.84 cubic yards/acre/year for the Middle Fork Eel, and was highest in the Black Butte River, and Williams-Thatcher subwatersheds which exhibited rates of 1.55 and 1.31 cubic yards/acre/year respectively. The lowest delivery rates were in Upper Middle Fork (0.29), and Round Valley (0.44). Natural landslides accounted for 89.9% of the total, fire-related for 1.9%, harvest-related for 0.4%, road-related for 3.4%, and undetermined 4.4%. A large proportion of the total delivered sediment originated from the toes of large deep seated landslides adjacent to streams. Many of these landslides exhibited multiple years of activity, shedding debris slides of varying sizes at different times. The mapped active landslides are concentrated near streams, but

  6. The Late Cretaceous Middle Fork caldera, its resurgent intrusion, and enduring landscape stability in east-central Alaska

    USGS Publications Warehouse

    Bacon, Charles R.; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Slack, John F.

    2014-01-01

    The Middle Fork is a relatively well preserved caldera within a broad region of Paleozoic metamorphic rocks and Mesozoic plutons bounded by northeast-trending faults. In the relatively downdropped and less deeply exhumed crustal blocks, Cretaceous–Early Tertiary silicic volcanic rocks attest to long-term stability of the landscape. Within the Middle Fork caldera, the granite porphyry is interpreted to have been exposed by erosion of thick intracaldera tuff from an asymmetric resurgent dome. The Middle Fork of the North Fork of the Fortymile River incised an arcuate valley into and around the caldera fill on the west and north and may have cut down from within an original caldera moat. The 70 Ma land surface is preserved beneath proximal outflow tuff at the west margin of the caldera structure and beneath welded outflow tuff 16–23 km east-southeast of the caldera in a paleovalley. Within ∼50 km of the Middle Fork caldera are 14 examples of Late Cretaceous (?)–Tertiary felsic volcanic and hypabyssal intrusive rocks that range in area from <1 km2 to ∼100 km2. Rhyolite dome clusters north and northwest of the caldera occupy tectonic basins associated with northeast-trending faults and are relatively little eroded. Lava of a latite complex, 12–19 km northeast of the caldera, apparently flowed into the paleovalley of the Middle Fork of the North Fork of the Fortymile River. To the northwest of the Middle Fork caldera, in the Mount Harper crustal block, mid-Cretaceous plutonic rocks are widely exposed, indicating greater total exhumation. To the southeast of the Middle Fork block, the Mount Veta block has been uplifted sufficiently to expose a ca. 68–66 Ma equigranular granitic pluton. Farther to the southeast, in the Kechumstuk block, the flat-lying outflow tuff remnant in Gold Creek and a regionally extensive high terrace indicate that the landscape there has been little modified since 70 Ma other than entrenchment of tributaries in response to post–2

  7. EFFECTS OF RESOURCE DEVELOPMENT ON WATER QUALITY IN THE BIG SOUTH FORK NATIONAL RIVER AND RECREATION AREA, TENNESSEE AND KENTUCKY.

    USGS Publications Warehouse

    Carey, William P.

    1984-01-01

    The South Fork Cumberland River begins in Tennessee at the confluence of the New River and Clear Fork. Strip mining for coal in the New River basin has been ongoing for decades with little reclamation prior to 1977. Water-quality data show that suspended-sediment and dissolved-constituent loads from the New River dominate the water quality in the National River and Recreation Area. The suspended sediment can impart a highly turbid and aesthetically displeasing appearance to the water during low-flow periods which are times of maximum recreational use. High suspended-sediment concentrations are also potentially harmful to the aquatic habitat in the Recreation Area. In addition to the suspended-sediment load, a large supply of coarse material is slowly moving through the channels of the New River basin toward the Recreation Area.

  8. Quartz tuning fork based microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Cui, Yong-Tao; Ma, Eric Yue; Shen, Zhi-Xun

    2016-06-01

    Microwave impedance microscopy (MIM), a near-field microwave scanning probe technique, has become a powerful tool to characterize local electrical responses in solid state samples. We present the design of a new type of MIM sensor based on quartz tuning fork and electrochemically etched thin metal wires. Due to a higher aspect ratio tip and integration with tuning fork, such design achieves comparable MIM performance and enables easy self-sensing topography feedback in situations where the conventional optical feedback mechanism is not available, thus is complementary to microfabricated shielded stripline-type probes. The new design also enables stable differential mode MIM detection and multiple-frequency MIM measurements with a single sensor.

  9. Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2007-01-01

    Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate

  10. Water Quality and Biological Characteristics of the Middle Fork of the Saline River, Arkansas, 2003-06

    USGS Publications Warehouse

    Galloway, Joel M.; Petersen, James C.; Shelby, Erica L.; Wise, Jim A.

    2008-01-01

    The Middle Fork of the Saline River has many qualities that have been recognized by State and Federal agencies. The Middle Fork provides habitat for several rare aquatic species and is part of a larger stream system (the Upper Saline River) that is known for relatively high levels of species richness and relatively high numbers of species of concern. Water-quality samples were collected and streamflow was measured by the U.S. Geological Survey at three sites in the Middle Fork Basin between October 2003 and October 2006. The Arkansas Department of Environmental Quality collected discrete synoptic water-quality samples from eight sites between January 2004 and October 2006. The Arkansas Department of Environmental Quality also sampled fish (September-October 2003) and benthic macroinvertebrate communities (September 2003-December 2005) at five sites. Streamflow varied annually among the three streamflow sites from October 2003 to October 2006. The mean annual streamflow for Brushy Creek near Jessieville (MFS06) was 0.72 cubic meters per second for water years 2004-2006. The Middle Fork below Jessieville (MFS05) had a mean annual streamflow of 1.11 cubic meters per second for water years 2004-2006. The Middle Fork near Owensville (MFS02), the most downstream site, had a mean annual streamflow of 3.01 cubic meters per second. The greatest streamflows at the three sites generally occurred in the winter and spring and the least in the summer. Nutrient dynamics in the Middle Fork are controlled by activities in the basin and processes that occur in the stream. Point sources and nonpoint sources of nutrients occur in the Middle Fork Basin that could affect the water-quality. Nitrogen and phosphorus concentrations generally were greatest in Mill Creek (MFS04E) and in the Middle Fork immediately downstream from the confluence with Mill Creek (MFS04) with decreasing concentrations at sites farther downstream in Middle Fork. The site in Mill Creek is located downstream from a

  11. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    USGS Publications Warehouse

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    Stratigraphic and chronologic information collected for Quaternary deposits in the Willamette Valley, Oregon, provides a revised stratigraphic framework that serves as a basis for a 1:250,000-scale map, as well as for thickness estimates of widespread Quaternary geologic units. We have mapped 11 separate Quaternary units that are differentiated on the basis of stratigraphic, topographic, pedogenic, and hydrogeologic properties. In summation, these units reflect four distinct episodes in the Quaternary geologic development of the Willamette Valley: 1) Fluvial sands and gravels that underlie terraces flanking lowland margins and tributary valleys were probably deposited between 2.5 and 0.5 million years ago. They are the oldest widespread surficial Quaternary deposits in the valley. Their present positions and preservation are undoubtedly due to postdepositional tectonic deformation - either by direct tectonic uplift of valley margins, or by regional tectonic controls on local base level. 2) Tertiary and Quaternary excavation or tectonic lowering of the Willamette Valley accommodated as much as 500 m (meters) of lacustrine and fluvial fill. Beneath the lowland floor, much of the upper 10 to 50 m of fill is Quaternary sand and gravel deposited by braided channel systems in subhorizontal sheets 2 to 10 m thick. These deposits grade to gravel fans 40 to 100 m thick where major Cascade Range rivers enter the valley and are traced farther upstream as much thinner valley trains of coarse gravel. The sand and gravel deposits have ages that range from greater than 420,000 to about 12,000 years old. A widely distributed layer of sand and gravel deposited at about 12 ka (kiloannum, thousands of years before the present) is looser and probably more permeable than older sand and gravel. Stratigraphic exposures and drillers' logs indicate that this late Pleistocene unit is mostly between 5 and 20 m thick where it has not been subsequently eroded by the Willamette River and its

  12. The E. coli DNA Replication Fork.

    PubMed

    Lewis, J S; Jergic, S; Dixon, N E

    2016-01-01

    DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.

  13. Checkpoint regulation of replication forks: global or local?

    PubMed

    Iyer, Divya Ramalingam; Rhind, Nicholas

    2013-12-01

    Cell-cycle checkpoints are generally global in nature: one unattached kinetochore prevents the segregation of all chromosomes; stalled replication forks inhibit late origin firing throughout the genome. A potential exception to this rule is the regulation of replication fork progression by the S-phase DNA damage checkpoint. In this case, it is possible that the checkpoint is global, and it slows all replication forks in the genome. However, it is also possible that the checkpoint acts locally at sites of DNA damage, and only slows those forks that encounter DNA damage. Whether the checkpoint regulates forks globally or locally has important mechanistic implications for how replication forks deal with damaged DNA during S-phase.

  14. Seasonal and annual watershed nitrogen export within the Willamette River Basin (Water in Columia conference)

    EPA Science Inventory

    Anthropogenic nitrogen (N) enrichment is recognized as one of the leading threats to aquatic ecosystems and water quality. In order to manage this threat, we need to understand patterns of N input to the landscape and export from watersheds. Nitrogen export from watersheds is i...

  15. Willingness to Pay for Willamette Basin Spring Chinook and Winter Steelhead Recovery

    EPA Science Inventory

    Two of the primary goals of conducting economic valuation studies should be to improve the way in which communities frame choices regarding the allocation of scarce resources and to clarify the trade-offs between alternative outcomes. The challenge of quantifying public preferen...

  16. Analytical data from phases I and II of the Willamette River basin water quality study, Oregon

    USGS Publications Warehouse

    Harrison, Howard E.; Anderson, Chauncey W.; Rinella, Frank A.; Gasser, Timothy M.; Pogue, Ted R.

    1995-01-01

    The data were collected at 50 sites, representing runoff from agricultural, forested, and urbanized subbasins. In Phase I, water samples were collected during high and low flows in 1992 and 1993 to represent a wide range of hydrologic conditions. Bed-sediment samples were collected during low flows in 1993. In Phase II, water samples were collected in the spring of 1994 after the first high-flow event following the application of agricultural fertilizers and pesticides and in the fall during the first high-flow events following the conclusion of the agricultural season.

  17. Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2001-2002.

    SciTech Connect

    Robertson, Shaun; Smith, Brent; Cochran, Brian

    2003-04-01

    In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Middle Fork Oxbow Ranch. Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the Project, HEP analyses undertaken or in progress, and management activities undertaken or in progress'. This report is to be provided to the BPA by 30 April of each year. This is the first annual report filed for the Oxbow Ranch property.

  18. Evolution of tail fork depth in genus Hirundo.

    PubMed

    Hasegawa, Masaru; Arai, Emi; Kutsukake, Nobuyuki

    2016-02-01

    A classic example of a sexually selected trait, the deep fork tail of the barn swallow Hirundo rustica is now claimed to have evolved and be maintained mainly via aerodynamic advantage rather than sexually selected advantage. However, this aerodynamic advantage hypothesis does not clarify which flight habits select for/against deep fork tails, causing diversity of tail fork depth in hirundines. Here, by focusing on the genus Hirundo, we investigated whether the large variation in tail fork depth could be explained by the differential flight habits. Using a phylogenetic comparative approach, we found that migrant species had deeper fork tails, but less colorful plumage, than the other species, indicating that migration favors a specific trait, deep fork tails. At the same time, tail fork depth but not plumage coloration decreased with increasing bill size - a proxy of prey size, suggesting that foraging on larger prey items favors shallower fork tails. Variation of tail fork depth in the genus Hirundo may be explained by differential flight habits, even without assuming sexual selection. PMID:26865972

  19. BALD ROCK AND MIDDLE FORK FEATHER RIVER ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Sorensen, Martin L.; Buehler, Alan R.

    1984-01-01

    The results of a mineral-resource assessment of the Bald Rock and Middle Fork Feather River Roadless Areas in California indicate several areas within the Middle Fork Feather River Roadless Area that have probable mineral-resource potential. A probable potential for placer gold exists at various localities, both in areas covered by Tertiary volcanic rocks and in small streams that drain into the Middle Fork of the Feather River. A probable potential for small deposits of chromite exists in tracts underlain by ultramafic rocks in the Melones fault zone. A probable potential for lead-silver deposits is recognized at the east end of the Middle Fork Feather River Roadless Area.

  20. Impediments to replication fork movement: stabilisation, reactivation and genome instability.

    PubMed

    Lambert, Sarah; Carr, Antony M

    2013-03-01

    Maintaining genome stability is essential for the accurate transmission of genetic material. Genetic instability is associated with human genome disorders and is a near-universal hallmark of cancer cells. Genetic variation is also the driving force of evolution, and a genome must therefore display adequate plasticity to evolve while remaining sufficiently stable to prevent mutations and chromosome rearrangements leading to a fitness disadvantage. A primary source of genome instability are errors that occur during chromosome replication. More specifically, obstacles to the movement of replication forks are known to underlie many of the gross chromosomal rearrangements seen both in human cells and in model organisms. Obstacles to replication fork progression destabilize the replisome (replication protein complex) and impact on the integrity of forked DNA structures. Therefore, to ensure the successful progression of a replication fork along with its associated replisome, several distinct strategies have evolved. First, there are well-orchestrated mechanisms that promote continued movement of forks through potential obstacles. Second, dedicated replisome and fork DNA stabilization pathways prevent the dysfunction of the replisome if its progress is halted. Third, should stabilisation fail, there are mechanisms to ensure damaged forks are accurately fused with a converging fork or, when necessary, re-associated with the replication proteins to continue replication. Here, we review what is known about potential barriers to replication fork progression, how these are tolerated and their impact on genome instability.

  1. Microsatellite diversity in sympatric reproductive ecotypes of pacific steelhead (Oncorhynchus my kiss) from the Middle Fork Eel River, California

    USGS Publications Warehouse

    Nielsen, J.L.; Fountain, M.C.

    1999-01-01

    Genetic differentiation between two reproductive ecotypes of anadromous steelhead found in the Middle Fork Eel River in northern California was tested using 16 microsatellite loci. Twelve of these loci showed significant differences in allelic frequency between the two Middle Fork Eel River steelhead populations (Fisher's exact P<0.05). Fisher's combined test for independence also supported significant genetic separation between the two reproductive ecotype (P<0.001). Analysis of molecular variance indicated that only 1% of the overall microsatellite allelic variation contributed to differences between summer- and winter-run steelhead in the Middle Fork Eel River. Variation found among individuals within the two runs equaled 18.2%. Analyses showed less genetic distance between the two populations of steelhead in the Middle Fork Eel River than in comparisons made with geographically proximate coastal winter-run fish. Divergence time based on genetic distance for the two within-basin reproductive ecotypes was estimated to be 16,000-28,000 years ago. Copyright ?? Munksgaanl 1999.

  2. Nitrate and Pesticide Transport From Tile-Drained Fields in the Willamette Valley, Oregon

    NASA Astrophysics Data System (ADS)

    Warren, K. L.; Rupp, D. E.; Selker, J. S.; Dragila, M. I.; Peachey, R. E.

    2002-12-01

    Tile drainage affects the hydrology and thus the solute transport on agricultural fields by increasing the volume of water that drains from the subsurface. Previous NAWQA studies have shown elevated nitrate levels in wells and high detection frequencies for selected pesticides in Willamette Valley streams. As a substantial area of Willamette Valley agricultural land is tile-drained, it is important to determine the role of tile drains in surface water and ground water pollution. Four fields in the Willamette Valley were instrumented to monitor tile effluent for two winter seasons. On two fields, surface runoff was also monitored for the second season. Field areas ranged from 3 to 30 acres and were cropped in grass, corn, or a grass/corn rotation. Tile effluent nitrate concentrations frequently exceeded 10 ppm on some fields. Flow-weighted averages for each field were 0.87 ppm and 1.36 ppm for two established grass fields, and 8.1 ppm and 14.4 ppm for grass fields that had recently grown corn. Mass losses ranged from 1.15%-6.45% of the applied nitrate through the tile drains. Diuron, Metolachlor, and Chlorpyrifos were tested in selected surface runoff and tile effluent samples. On one field, Metolachlor concentrations were similar in the tile drains and surface runoff. Concentrations in both sources were 10 times lower than the drinking water advisory for Metolachlor. In a second field, Chlorpyrifos concentrations were two orders of magnitude lower than drinking water advisories in both sources. On the same field, Diuron concentrations were significantly higher in the surface runoff than in the tile effluent. Diuron concentrations were 1-2 orders of magnitude higher during the first precipitation events after application in the surface runoff. On a third field, Diuron was at least 10 times lower than drinking water advisories in the tile effluent, with the highest concentrations found in samples collected within 21 days of pesticide application.

  3. Selected ground water data in the Eola-Amity Hills area, northern Willamette Valley, Oregon

    USGS Publications Warehouse

    Price, Don; Johnson, Nyra A.

    1965-01-01

    Occurrence, quality, and availability of ground water differ considerably from place to place in the Eola-Amity Hills area because of the highly diversified geologic and hydrologic conditions. A table relates the geologic situation to the availability of ground water for four areas--Eola-Amity Hills, east and west valley plains, and Willamette River flood plain. Tables show well and spring records, drillers' logs, and chemical analyses of ground water. The final interpretive report will be published by the U.S. Geological Survey.

  4. 33 CFR 117.307 - Miami River, North Fork.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Miami River, North Fork. 117.307 Section 117.307 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.307 Miami River, North Fork. The draw...

  5. 33 CFR 207.370 - Big Fork River, Minn.; logging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Big Fork River, Minn.; logging. 207.370 Section 207.370 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.370 Big Fork River, Minn.; logging. (a) During the...

  6. 33 CFR 117.307 - Miami River, North Fork.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Miami River, North Fork. 117.307 Section 117.307 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.307 Miami River, North Fork. The draw...

  7. 33 CFR 117.307 - Miami River, North Fork.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Miami River, North Fork. 117.307 Section 117.307 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.307 Miami River, North Fork. The draw...

  8. 33 CFR 117.315 - New River, South Fork.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false New River, South Fork. 117.315 Section 117.315 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.315 New River, South Fork. (a) The...

  9. 33 CFR 207.370 - Big Fork River, Minn.; logging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Big Fork River, Minn.; logging. 207.370 Section 207.370 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.370 Big Fork River, Minn.; logging. (a) During the...

  10. 33 CFR 117.307 - Miami River, North Fork.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Miami River, North Fork. 117.307 Section 117.307 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.307 Miami River, North Fork. The draw...

  11. 33 CFR 117.307 - Miami River, North Fork.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Miami River, North Fork. 117.307 Section 117.307 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.307 Miami River, North Fork. The draw...

  12. 33 CFR 117.315 - New River, South Fork.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false New River, South Fork. 117.315 Section 117.315 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.315 New River, South Fork. (a) The...

  13. Musical-grade tuning forks for emergent audiometric screening.

    PubMed

    McCormick, Rodger J; Poling, Mikaela I

    2015-06-11

    We discuss our experience using high-quality, musical-grade tuning forks for emergent audiometric screening in a 22-year-old woman with sudden-onset unilateral hearing sensation loss. We present a framework for using this method when proper audiometric equipment is unavailable but where musical-grade tuning forks can be rapidly supplied.

  14. 33 CFR 117.1063 - Willapa River South Fork.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Willapa River South Fork. 117.1063 Section 117.1063 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Fork. (a) The draw of the Washington State Parks and Recreation Commission bridge across the South...

  15. 33 CFR 207.370 - Big Fork River, Minn.; logging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Big Fork River, Minn.; logging. 207.370 Section 207.370 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.370 Big Fork River, Minn.; logging. (a) During the...

  16. 33 CFR 117.1063 - Willapa River South Fork.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Willapa River South Fork. 117.1063 Section 117.1063 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Fork. (a) The draw of the Washington State Parks and Recreation Commission bridge across the South...

  17. 33 CFR 117.315 - New River, South Fork.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false New River, South Fork. 117.315 Section 117.315 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.315 New River, South Fork. (a) The...

  18. 33 CFR 117.1063 - Willapa River South Fork.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Willapa River South Fork. 117.1063 Section 117.1063 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Fork. (a) The draw of the Washington State Parks and Recreation Commission bridge across the South...

  19. 33 CFR 117.315 - New River, South Fork.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false New River, South Fork. 117.315 Section 117.315 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.315 New River, South Fork. (a) The...

  20. 33 CFR 117.315 - New River, South Fork.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false New River, South Fork. 117.315 Section 117.315 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.315 New River, South Fork. (a) The...

  1. 33 CFR 207.370 - Big Fork River, Minn.; logging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Big Fork River, Minn.; logging. 207.370 Section 207.370 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.370 Big Fork River, Minn.; logging. (a) During the...

  2. 33 CFR 117.1063 - Willapa River South Fork.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Willapa River South Fork. 117.1063 Section 117.1063 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Fork. (a) The draw of the Washington State Parks and Recreation Commission bridge across the South...

  3. 33 CFR 117.1063 - Willapa River South Fork.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Willapa River South Fork. 117.1063 Section 117.1063 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Fork. (a) The draw of the Washington State Parks and Recreation Commission bridge across the South...

  4. South Fork Telephone Switchboard Building, general view in setting showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Telephone Switchboard Building, general view in setting showing (N) side; view (S) - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  5. South Fork Latrine, interior showing head with steel tank mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Latrine, interior showing head with steel tank mounted to wall; view south - Fort McKinley, South Fork Latrine, West side of East Side Drive, approximately 225 feet south of Weymouth Way, Great Diamond Island, Portland, Cumberland County, ME

  6. South Fork Telephone Switchboard Building, interior west room showing hardwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Telephone Switchboard Building, interior west room showing hardwood floor; view south - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  7. South Fork Telephone Switchboard Building, oblique view of (W) and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Telephone Switchboard Building, oblique view of (W) and (S) sides, view to northeast - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  8. South Fork Telephone Switchboard Building, oblique view of east side; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Telephone Switchboard Building, oblique view of east side; view northwest - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  9. Preventing Replication Fork Collapse to Maintain Genome Integrity

    PubMed Central

    Cortez, David

    2015-01-01

    Billions of base pairs of DNA must be replicated trillions of times in a human lifetime. Complete and accurate replication once and only once per cell division cycle is essential to maintain genome integrity and prevent disease. Impediments to replication fork progression including difficult to replicate DNA sequences, conflicts with transcription, and DNA damage further add to the genome maintenance challenge. These obstacles frequently cause fork stalling, but only rarely cause a failure to complete replication. Robust mechanisms ensure that stalled forks remain stable and capable of either resuming DNA synthesis or being rescued by converging forks. However, when failures do happen the fork collapses leading to genome rearrangements, cell death and disease. Despite intense interest, the mechanisms to repair damaged replication forks, stabilize them, and ensure successful replication remain only partly understood. Different models of fork collapse have been proposed with varying descriptions of what happens to the DNA and replisome. Here, I will define fork collapse and describe what is known about how the replication checkpoint prevents it to maintain genome stability. PMID:25957489

  10. 14. Roaring Fork Motor Nature Trail, Place of a thousand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Roaring Fork Motor Nature Trail, Place of a thousand drips, view with three culvert pipes. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  11. Willamette Hatchery Oxygen Supplementation Studies : Annual Report 1993.

    SciTech Connect

    Ewing, R.D.; Ewing, S.K.; Sheahan, J.E.

    1993-11-01

    Hydropower development and operations in the Columbia River basin have caused the loss of 5 million to 11 million salmonids. An interim goal of the Northwest Power Planning Council is to reestablish these historical numbers by doubling the present adult runs from 2.5 million to 5.0 million fish. This increase in production will be accomplished through comprehensive management of both wild and hatchery fish, but artificial propagation will play a major role in the augmentation process. The current husbandry techniques in existing hatcheries require improvements that may include changes in rearing densities, addition of oxygen, removal of excess nitrogen, and improvement in raceway design. Emphasis will be placed on the ability to increase the number of fish released from hatcheries that survive to return as adults.

  12. Twelve Years of Monitoring Phosphorus and Suspended-Solids Concentrations and Yields in the North Fork Ninnescah River above Cheney Reservoir, South-Central Kansas 1997-2008

    USGS Publications Warehouse

    Stone, Mandy L.; Graham, Jennifer L.; Ziegler, Andrew C.

    2009-01-01

    Cheney Reservoir, located on the North Fork Ninnescah River in south-central Kansas, is the primary water supply for the city of Wichita and an important recreational resource. Concerns about taste-and-odor occurrences in Cheney Reservoir have drawn attention to potential pollutants, including total phosphorus (TP) and total suspended solids (TSS). July 2009 was the 15th anniversary of the establishment of the Cheney Reservoir Watershed pollution management plan. The U.S. Geological Survey (USGS), in cooperation with the city of Wichita, has collected water-quality data in the basin since 1996, and has monitored water quality continuously on the North Fork Ninnescah River since 1998. This fact sheet describes 12 years (1997-2008) of computed TP and TSS data and compares these data with water-quality goals for the North Fork Ninnescah River, the main tributary to Cheney Reservoir.

  13. South Fork Tolt River Hydroelectric Project : Adopted Portions of a 1987 Federal Energy Regulatory Commission`s Final Environmental Impact Statement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-07-01

    The South Fork Tolt River Hydroelectric Project that world produce 6.55 average megawatts of firm energy per year and would be sited in the Snohomish River Basin, Washington, was evaluated by the Federal Energy Regulatory commission (FERC) along with six other proposed projects for environmental effects and economic feasibility Based on its economic analysis and environmental evaluation of the project, the FERC staff found that the South Fork Tolt River Project would be economically feasible and would result in insignificant Impacts if sedimentation issues could be resolved. Upon review, the BPA is adopting portions of the 1987 FERC FEIS that concern the South Fork Tolt River Hydroelectric Project and updating specific sections in an Attachment.

  14. fork head domain genes in zebrafish.

    PubMed

    Odenthal, J; Nüsslein-Volhard, C

    1998-07-01

    Nine members of the fork head domain gene family (fkd1-fkd9) were isolated from early cDNA libraries in the zebrafish. They show unique expression patterns in whole-mount RNA in situ hybridization during the first 24 h of embryonic development. These fkd genes fall into three of ten classes, based on sequence similarities within the DNA-binding domain, whereas members for the other seven classes described in other vertebrates were not found. In addition to conserved residues at certain positions in the fork head domain, characteristic transcription activation domains as well as similarities in expression patterns were found for members of the different classes. Members of class I (fkd1/axial, fkd2/Zffkh1, fkd4 and fkd7) are differentially transcribed in unsegmented dorsal axial structures such as the floor plate, the notochord, the hypochord and, in addition, the endoderm. Transcripts of fkd3 and fkd5 (class II) are mainly detected in the cells of the ectoderm which form neural tissues, as is the case for genes of this class in other species. RNAs of the three members of class V (fkd6, fkd8 and fkd9) are expressed in the paraxial mesoderm and transiently in the neuroectoderm. fkd6 is strongly expressed in neural crest cells from early stages on, whereas fkd2 and fkd7 are transcribed in individual neural crest cells in the pharyngula period.

  15. Plant succession after hydrologic disturbance: Inferences from contemporary vegetation on a chronosequence of bars, Willamette River, Oregon, USA

    EPA Science Inventory

    Historic unconstrained, unregulated streamflow along the upper mainstem of the Willamette River, Oregon, produced a floodplain of coalescent bars supporting a mosaic of vegetation patches. We sampled the contemporary vegetation of 42 bars formed 3 to 64 + years ago in four, 1 km...

  16. 77 FR 62442 - Safety Zone; Oregon City Bridge Grand Opening Fireworks Display; Willamette River, Oregon City, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    .... SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Oregon City Bridge Grand Opening Fireworks...: The Coast Guard is establishing a safety zone on the Willamette River between the Oregon City...

  17. 33 CFR 165.T13-209 - Safety Zones; TriMet Bridge Project, Willamette River; Portland, OR.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... In accordance with the general regulations in 33 CFR Part 165, Subpart C, no vessel operator may... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety Zones; TriMet Bridge... Coast Guard District § 165.T13-209 Safety Zones; TriMet Bridge Project, Willamette River; Portland,...

  18. 33 CFR 165.T13-209 - Safety Zones; TriMet Bridge Project, Willamette River; Portland, OR.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... In accordance with the general regulations in 33 CFR Part 165, Subpart C, no vessel operator may... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zones; TriMet Bridge... Coast Guard District § 165.T13-209 Safety Zones; TriMet Bridge Project, Willamette River; Portland,...

  19. 33 CFR 165.T13-209 - Safety Zones; TriMet Bridge Project, Willamette River; Portland, OR.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... In accordance with the general regulations in 33 CFR Part 165, Subpart C, no vessel operator may... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zones; TriMet Bridge... Coast Guard District § 165.T13-209 Safety Zones; TriMet Bridge Project, Willamette River; Portland,...

  20. Summer distribution and species richness of non-native fishes in the mainstem Willamette River, oregon, 1944-2006

    EPA Science Inventory

    We reviewed the results of seven extensive and two reach-specific fish surveys conducted on the mainstem Willamette River between 1944 and 2006 to document changes in the summer distribution and species richness of non-native fishes through time and the relative abundances of the...

  1. 33 CFR 165.1323 - Regulated Navigation Area: Willamette River Portland, Oregon Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Regulated Navigation Area... REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas Thirteenth Coast Guard District § 165.1323 Regulated Navigation Area: Willamette River...

  2. 33 CFR 165.1323 - Regulated Navigation Area: Willamette River Captain of the Port Columbia River Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Regulated Navigation Area... NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation Areas and Limited Access Areas Thirteenth Coast Guard District § 165.1323 Regulated Navigation Area: Willamette River Captain of the...

  3. Ecological Functions of Off-Channel Habitats of the Willamette River, Oregon, Database and Documentation (1997-2001)

    EPA Science Inventory

    The database from the Ecological Functions of Off-Channel Habitats of the Willamette River, Oregon project (OCH Project) contains data collected from 1997 through 2001 from multiple research areas of the project, and project documents such as the OCH Research Plan, Quality Assura...

  4. Ground-water pumpage in the Willamette lowland regional aquifer system, Oregon and Washington, 1990

    USGS Publications Warehouse

    Collins, Charles A.; Broad, Tyson M.

    1996-01-01

    Ground-water pumpage for 1990 was estimated for an area of about 5,700 square miles in northwestern Oregon and southwestern Washington as part of the Puget-Willamette Lowland Regional Aquifer System Analysis study. The estimated total ground-water pumpage in 1990 was about 340,000 acre-feet. Ground water in the study area is pumped mainly from Quaternary sediment; lesser amounts are withdrawn from Tertiary volcanic materials. Large parts of the area are used for agriculture, and about two and one-half times as much ground water was pumped for irrigation as for either public- supply or industrial needs. Estimates of ground- water pumpage for irrigation in the central part of the Willamette Valley were generated by using image-processing techniques and Landsat Thematic Mapper data. Field data and published reports were used to estimate pumpage for irrigation in other parts of the study area. Information on public- supply and industrial pumpage was collected from Federal, State, and private organizations and individuals.

  5. Ground water in the Eola-Amity Hills area, northern Willamette Valley, Oregon

    USGS Publications Warehouse

    Price, Don

    1967-01-01

    The Eola-Amity Hills area ,comprises about 230 square miles on the west side of the Willamette Valley between Salem and McMinnville, Oreg. The area is largely rural, and agriculture is the principal occupation. Rocks ranging in age from Eocene to Recent underlie the area. The oldest rocks are a sequence more than 5,000 feet thick of marine-deposited shale and siltstone strata, with thin interbeds of sandstone that range in age from Eocene to middle Oligocene. They are widely exposed in and west of the Eola-Amity Hills and underlie younger sedimentary and volcanic rocks throughout the study area. In the Eola-Amity Hills and Red Hills of Dundee, the Columbia River Group, a series of eastward-dipping basaltic lava flows locally of Miocene age, and conformably overlies the marine sedimentary rocks. The Columbia River Group ranges in thickness from less than 1 foot to about 900 feet and has an average thickness of about 200 feet. The formation is exposed in the Eola-Amity Hills and Red Hills of Dundee and, at places, extends to the east beneath younger rocks. Overlying the Columbia River Group and marine sedimentary rocks are nonmarine sedimentary deposits that range in thickness from less than 1 foot, where they lap up (to an altitude of about 200 ft) on the flanks of the higher hills, to several hundred feet along the east margin of the study area. These deposits include the Troutdale Formation of Pliocene age, the Willamette Silt of late Pleistocene age, and alluvium of the Willamette River and its tributaries. The Troutdale Formation and the alluvium of the Willamette River contain the most productive aquifers in the Eola-Amity Hills area. These aquifers, which consist mainly of sand and gravel, generally yield moderate to large quantities of water to properly constructed wells. Basalt of the Columbia River Group yields small to moderate quantities of water to wells, and the marine sedimentary rocks and Willamette Silt generally yield small but adequate quantities

  6. Major-ion, nutrient, and trace-element concentrations in the Steamboat Creek basin, Oregon, 1996

    USGS Publications Warehouse

    Rinella, Frank A.

    1998-01-01

    Bottom-sediment concentrations of antimony, arsenic, cadmium, copper, lead, mercury, zinc, and organic carbon were largest in City Creek. In City Creek and Horse Heaven Creek, concentrations for 11 constituents--antimony, arsenic, cadmium, copper, lead, manganese (Horse Heaven Creek only), mercury, selenium, silver, zinc, and organic carbon (City Creek only)--exceeded concentrations considered to be enriched in streams of the nearby Willamette River Basin, whereas in Steamboat Creek only two trace elements--antimony and nickel--exceeded Willamette River enriched concentrations. Bottom-sediment concentrations for six of these constituents in City Creek and Horse Heaven Creek--arsenic, cadmium, copper, lead, mercury, and zinc--also exceeded interim Canadian threshold effect level (TEL) concentrations established for the protection of aquatic life, whereas only four constituents between Singe Creek and Steamboat Creek--arsenic, chromium, copper (Singe Creek only), and nickel--exceeded the TEL concentrations.

  7. 78 FR 29202 - Environmental Impact Statement: Grand Forks County, North Dakota and Polk County, Minnesota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... Federal Highway Administration Environmental Impact Statement: Grand Forks County, North Dakota and Polk... prepared for a proposed highway project in Grand Forks County, North Dakota and Polk County, Minnesota. FOR... Sorlie Bridge over the Red River between Grand Forks, North Dakota and East Grand Forks,...

  8. 77 FR 45597 - Middle Fork American River Project; Notice of Availability of the Draft Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Energy Regulatory Commission Middle Fork American River Project; Notice of Availability of the Draft Environmental Impact Statement for the Middle Fork American River Hydrolectric Project and Intention To Hold... Fork American River Hydroelectric Project (FERC No. 2079), located on the Middle Fork of the...

  9. PTEN regulates RPA1 and protects DNA replication forks.

    PubMed

    Wang, Guangxi; Li, Yang; Wang, Pan; Liang, Hui; Cui, Ming; Zhu, Minglu; Guo, Limei; Su, Qian; Sun, Yujie; McNutt, Michael A; Yin, Yuxin

    2015-11-01

    Tumor suppressor PTEN regulates cellular activities and controls genome stability through multiple mechanisms. In this study, we report that PTEN is necessary for the protection of DNA replication forks against replication stress. We show that deletion of PTEN leads to replication fork collapse and chromosomal instability upon fork stalling following nucleotide depletion induced by hydroxyurea. PTEN is physically associated with replication protein A 1 (RPA1) via the RPA1 C-terminal domain. STORM and iPOND reveal that PTEN is localized at replication sites and promotes RPA1 accumulation on replication forks. PTEN recruits the deubiquitinase OTUB1 to mediate RPA1 deubiquitination. RPA1 deletion confers a phenotype like that observed in PTEN knockout cells with stalling of replication forks. Expression of PTEN and RPA1 shows strong correlation in colorectal cancer. Heterozygous disruption of RPA1 promotes tumorigenesis in mice. These results demonstrate that PTEN is essential for DNA replication fork protection. We propose that RPA1 is a target of PTEN function in fork protection and that PTEN maintains genome stability through regulation of DNA replication.

  10. The Fork+ burnup measurement system: Design and first measurement campaign

    SciTech Connect

    Olson, C.E.; Bronowski, D.R.; McMurtry, W.; Ewing, R.; Jordan, R.; Rivard, D.

    1998-12-31

    Previous work with the original Fork detector showed that burnup as determined by reactor records could be accurately allocated to spent nuclear fuel assemblies. The original Fork detector, designed by Los Alamos National Laboratory, used an ion chamber to measure gross gamma count and a fission chamber to measure neutrons from an activation source, {sup 244}Cm. In its review of the draft Topical Report on Burnup Credit, the US Nuclear Regulatory Commission indicated it felt uncomfortable with a measurement system that depended on reactor records for calibration. The Fork+ system was developed at Sandia National Laboratories under the sponsorship of the Electric Power Research Institute with the aim of providing this independent measurement capability. The initial Fork+ prototype was used in a measurement campaign at the Maine Yankee reactor. The campaign confirmed the applicability of the sensor approach in the Fork+ system and the efficiency of the hand-portable Fork+ prototype in making fuel assembly measurements. It also indicated potential design modifications that will be necessary before the Fork+ can be used effectively on high-burnup spent fuel.

  11. Development of Tuning Fork Based Probes for Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Jalilian, Romaneh; Yazdanpanah, Mehdi M.; Torrez, Neil; Alizadeh, Amirali; Askari, Davood

    2014-03-01

    This article reports on the development of tuning fork-based AFM/STM probes in NaugaNeedles LLC for use in atomic force microscopy. These probes can be mounted on different carriers per customers' request. (e.g., RHK carrier, Omicron carrier, and tuning fork on a Sapphire disk). We are able to design and engineer tuning forks on any type of carrier used in the market. We can attach three types of tips on the edge of a tuning fork prong (i.e., growing Ag2Ga nanoneedles at any arbitrary angle, cantilever of AFM tip, and tungsten wire) with lengths from 100-500 μm. The nanoneedle is located vertical to the fork. Using a suitable insulation and metallic coating, we can make QPlus sensors that can detect tunneling current during the AFM scan. To make Qplus sensors, the entire quartz fork will be coated with an insulating material, before attaching the nanoneedle. Then, the top edge of one prong is coated with a thin layer of conductive metal and the nanoneedle is attached to the fork end of the metal coated prong. The metal coating provides electrical connection to the tip for tunneling current readout and to the electrodes and used to read the QPlus current. Since the amount of mass added to the fork is minimal, the resonance frequency spectrum does not change and still remains around 32.6 KHz and the Q factor is around 1,200 in ambient condition. These probes can enhance the performance of tuning fork based atomic microscopy.

  12. Wireless tuning fork gyroscope for biomedical applications

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, K.

    2003-07-01

    This paper presents the development of a Bluetooth enabled wireless tuning fork gyroscope for the biomedical applications, including gait phase detection system, human motion analysis and physical therapy. This gyroscope is capable of measuring rotation rates between -90 and 90 and it can read the rotation information using a computer. Currently, the information from a gyroscope can trigger automobile airbag deployment during rollover, improve the accuracy and reliability of GPS navigation systems and stabilize moving platforms such as automobiles, airplanes, robots, antennas, and industrial equipment. Adding wireless capability to the existing gyroscope could help to expand its applications in many areas particularly in biomedical applications, where a continuous patient monitoring is quite difficult. This wireless system provides information on several aspects of activities of patients for real-time monitoring in hospitals.

  13. Fork gratings based on ferroelectric liquid crystals.

    PubMed

    Ma, Y; Wei, B Y; Shi, L Y; Srivastava, A K; Chigrinov, V G; Kwok, H-S; Hu, W; Lu, Y Q

    2016-03-21

    In this article, we disclose a fork grating (FG) based on the photo-aligned ferroelectric liquid crystal (FLC). The Digital Micro-mirror Device based system is used as a dynamic photomask to generated different holograms. Because of controlled anchoring energy, the photo alignment process offers optimal conditions for the multi-domain FLC alignment. Two different electro-optical modes namely DIFF/TRANS and DIFF/OFF switchable modes have been proposed where the diffraction can be switched either to no diffraction or to a completely black state, respectively. The FLC FG shows high diffraction efficiency and fast response time of 50µs that is relatively faster than existing technologies. Thus, the FLC FG may pave a good foundation toward optical vertices generation and manipulation that could find applications in a variety of devices. PMID:27136779

  14. Chemical and biological sensing using tuning forks

    SciTech Connect

    Tao, Nongjian; Boussaad, Salah

    2012-07-10

    A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.

  15. Willamette Valley Ecoregion: Chapter 3 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Wilson, Tamara S.; Sorenson, Daniel G.

    2012-01-01

    The Willamette Valley Ecoregion (as defined by Omernik, 1987; U.S. Environmental Protection Agency, 1997) covers approximately 14,458 km² (5,582 mi2), making it one of the smallest ecoregions in the conterminous United States. The long, alluvial Willamette Valley, which stretches north to south more than 193 km and ranges from 32 to 64 km wide, is nestled between the sedimentary and metamorphic Coast Ranges (Coast Range Ecoregion) to the west and the basaltic Cascade Range (Cascades Ecoregion) to the east (fig. 1). The Lewis and Columbia Rivers converge at the ecoregion’s northern boundary in Washington state; however, the majority of the ecoregion falls within northwestern Oregon. Interstate 5 runs the length of the valley to its southern boundary with the Klamath Mountains Ecoregion. Topography here is relatively flat, with elevations ranging from sea level to 122 m. This even terrain, coupled with mild, wet winters, warm, dry summers, and nutrient-rich soil, makes the Willamette Valley the most important agricultural region in Oregon. Population centers are concentrated along the valley floor. According to estimates from the Oregon Department of Fish and Wildlife (2006), over 2.3 million people lived in Willamette Valley in 2000. Portland, Oregon, is the largest city, with 529,121 residents (U.S. Census Bureau, 2000). Other sizable cities include Eugene, Oregon; Salem (Oregon’s state capital); and Vancouver, Washington. Despite the large urban areas dotting the length of the Willamette Valley Ecoregion, agriculture and forestry products are its economic foundation (figs. 2,3). The valley is a major producer of grass seed, ornamental plants, fruits, nuts, vegetables, and grains, as well as poultry, beef, and dairy products. The forestry and logging industries also are primary employers of the valley’s rural residents (Rooney, 2008). These activities have affected the watershed significantly, with forestry and agricultural runoff contributing to river

  16. 117. Laurel Fork Viaduct. Elevation view of this 545 1939 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Laurel Fork Viaduct. Elevation view of this 545 1939 steel girder viaduct. Example of structure with plain reinforced concrete arches. Looking northwest. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  17. Assembly of Slx4 signaling complexes behind DNA replication forks.

    PubMed

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-08-13

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress.

  18. 26. MOORSE DRILL CABINET AND FORK ART FABRICATED AT SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. MOORSE DRILL CABINET AND FORK ART FABRICATED AT SHOP (L TO R)- LOOKING SOUTHEAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  19. 8. EEL RIVER SOUTH FORK BRIDGE, OLD HIGHWAY 101. NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EEL RIVER SOUTH FORK BRIDGE, OLD HIGHWAY 101. NORTH OF LEGGETT, HUMBOLDT COUNTY, CALIFORNIA. LOOKING N. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  20. 9. EEL RIVER SOUTH FORK BRIDGE, OLD HIGHWAY 101. NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. EEL RIVER SOUTH FORK BRIDGE, OLD HIGHWAY 101. NORTH OF LEGGETT, HUMBOLDT COUNTY, CALIFORNIA. LOOKING W. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  1. Little Known Facts about the Common Tuning Fork.

    ERIC Educational Resources Information Center

    Ong, P. P.

    2002-01-01

    Explains the physical principles of the tuning fork which has a common use in teaching laboratories. Includes information on its vibration, frequency of vibration, elasticity, and reasons for having two prongs. (YDS)

  2. Assembly of Slx4 signaling complexes behind DNA replication forks

    PubMed Central

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-01-01

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress. PMID:26113155

  3. 8. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading crane, manufactured by Cleveland Tramrail, 2-1/2 ton capacity. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  4. 9. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF WHEEL RACK FOR BORING MILL. Fork loading crane, manufactured by Cleveland Tramrail, 2-1/2 ton capacity. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  5. TRAIP regulates replication fork recovery and progression via PCNA

    PubMed Central

    Feng, Wanjuan; Guo, Yingying; Huang, Jun; Deng, Yiqun; Zang, Jianye; Huen, Michael Shing-Yan

    2016-01-01

    PCNA is a central scaffold that coordinately assembles replication and repair machineries at DNA replication forks for faithful genome duplication. Here, we describe TRAIP (RNF206) as a novel PCNA-interacting factor that has important roles during mammalian replicative stress responses. We show that TRAIP encodes a nucleolar protein that migrates to stalled replication forks, and that this is accomplished by its targeting of PCNA via an evolutionarily conserved PIP box on its C terminus. Accordingly, inactivation of TRAIP or its interaction with the PCNA clamp compromised replication fork recovery and progression, and leads to chromosome instability. Together, our findings establish TRAIP as a component of the mammalian replicative stress response network, and implicate the TRAIP-PCNA axis in recovery of stalled replication forks. PMID:27462463

  6. 17. DETAIL VIEW OF WHAT APPEARS TO BE STIRRING FORK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL VIEW OF WHAT APPEARS TO BE STIRRING FORK THAT MIXED COFFEE BEANS AS THEY WERE HUSKED - Hacienda Cafetalera Santa Clara, Coffee Mill, KM 19, PR Route 372, Hacienda La Juanita, Yauco Municipio, PR

  7. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.

    SciTech Connect

    Schwabe, Lawrence; Tiley, Mark; Perkins, Raymond R.

    2000-11-01

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.

  8. The MCM helicase: linking checkpoints to the replication fork.

    PubMed

    Forsburg, Susan L

    2008-02-01

    The MCM (minichromosome maintenance) complex is a helicase which is essential for DNA replication. Recent results suggest that the MCM helicase is important for replication fork integrity, and may function as a target of the replication checkpoint. Interactions between MCM proteins, checkpoint kinases, and repair and recovery proteins suggest that MCMs are proximal effectors of replication fork stability in the cell and are likely to play an important role in maintaining genome integrity. PMID:18208397

  9. Detection of Cryptococcus gattii in selected urban parks of the Willamette Valley, Oregon.

    PubMed

    Mortenson, Jack A; Bartlett, Karen H; Wilson, Randy W; Lockhart, Shawn R

    2013-04-01

    Human and animal infections of the fungus Cryptococcus gattii have been recognized in Oregon since 2006. Transmission is primarily via airborne environmental spores and now thought to be locally acquired due to infection in non-migratory animals and humans with no travel history. Previous published efforts to detect C. gattii from tree swabs and soil samples in Oregon have been unsuccessful. This study was conducted to determine the presence of C. gattii in selected urban parks of Oregon cities within the Willamette Valley where both human and animal cases of C. gattii have been diagnosed. Urban parks were sampled due to spatial and temporal overlap of humans, companion animals and wildlife. Two of 64 parks had positive samples for C. gattii. One park had a positive tree and the other park, 60 miles away, had positive bark mulch samples from a walkway. Genotypic subtypes identified included C. gattii VGIIa and VGIIc, both considered highly virulent in murine host models.

  10. Force regulated dynamics of RPA on a DNA fork

    PubMed Central

    Kemmerich, Felix E.; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf

    2016-01-01

    Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg2+ concentrations, such that human RPA can melt DNA in absence of force. PMID:27016742

  11. Claspin promotes normal replication fork rates in human cells.

    PubMed

    Petermann, Eva; Helleday, Thomas; Caldecott, Keith W

    2008-06-01

    The S phase-specific adaptor protein Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of Chk1 by ataxia-telangiectasia and Rad3-related (ATR). Evidence suggests that these components of the ATR pathway also play a critical role during physiological S phase. Chk1 is required for high rates of global replication fork progression, and Claspin interacts with the replication machinery and might therefore monitor normal DNA replication. Here, we have used DNA fiber labeling to investigate, for the first time, whether human Claspin is required for high rates of replication fork progression during normal S phase. We report that Claspin-depleted HeLa and HCT116 cells display levels of replication fork slowing similar to those observed in Chk1-depleted cells. This was also true in primary human 1BR3 fibroblasts, albeit to a lesser extent, suggesting that Claspin is a universal requirement for high replication fork rates in human cells. Interestingly, Claspin-depleted cells retained significant levels of Chk1 phosphorylation at both Ser317 and Ser345, raising the possibility that Claspin function during normal fork progression may extend beyond facilitating phosphorylation of either individual residue. Consistent with this possibility, depletion of Chk1 and Claspin together doubled the percentage of very slow forks, compared with depletion of either protein alone.

  12. Force regulated dynamics of RPA on a DNA fork.

    PubMed

    Kemmerich, Felix E; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf

    2016-07-01

    Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg(2+) concentrations, such that human RPA can melt DNA in absence of force.

  13. Postwildfire debris-flow hazard assessment of the area burned by the 2013 West Fork Fire Complex, southwestern Colorado

    USGS Publications Warehouse

    Verdin, Kristine L.; Dupree, Jean A.; Stevens, Michael R.

    2013-01-01

    This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2013 West Fork Fire Complex near South Fork in southwestern Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within and just downstream from the burned area, and to estimate the same for 54 drainage basins of interest within the perimeter of the burned area. Input data for the debris-flow models included topographic variables, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm; (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm; and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm. Estimated debris-flow probabilities at the pour points of the 54 drainage basins of interest ranged from less than 1 to 65 percent in response to the 2-year storm; from 1 to 77 percent in response to the 10-year storm; and from 1 to 83 percent in response to the 25-year storm. Twelve of the 54 drainage basins of interest have a 30-percent probability or greater of producing a debris flow in response to the 25-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 2,400 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages also were predicted to produce substantial debris flows. One of the 54 drainage basins of interest had the highest combined hazard ranking, while 9 other basins had the second highest combined hazard ranking. Of these 10 basins with the 2 highest

  14. Fascin, may the Forked be with you.

    PubMed

    Okenve-Ramos, Pilar; Llimargas, Marta

    2014-01-01

    The FGFR pathway triggers a wide range of key biological responses. Among others, the Breathless (Btl, Drosophila FGFR1) receptor cascade promotes cell migration during embryonic tracheal system development. However, how the actin cytoskeleton responds to Btl pathway activation to induce cell migration has remained largely unclear. Our recent results shed light into this issue by unveiling a link between the actin-bundling protein Singed (Sn) and the Btl pathway. We showed that the Btl pathway regulates sn, which leads to the stabilization of the actin bundles required for filopodia formation and actin cytoskeleton rearrangement. This regulation contributes to tracheal migration, tracheal branch fusion and tracheal cell elongation. Parallel actin bundles (PABs) are usually cross-linked by more than one actin-bundling protein. Accordingly, we have also shown that sn synergistically interacts with forked (f), another actin crosslinker. In this Extra View we extend f analysis and hypothesize how both actin-bundling proteins may act together to regulate the PABs during tracheal embryonic development. Although both proteins are required for similar tracheal events, we suggest that Sn is essential for actin bundle initiation and stiffening, while F is required for the lengthening and further stabilization of the PABs.

  15. Selected elements and organic chemicals in bed sediment and fish tissue of the Tualatin River basin, Oregon, 1992-96

    USGS Publications Warehouse

    Bonn, Bernadine A.

    1999-01-01

    This report describes the results of a reconnaissance survey of elements and organic compounds found in bed sediment and fish tissue in streams of the Tualatin River Basin. The basin is in northwestern Oregon to the west of the Portland metropolitan area (fig. 1). The Tualatin River flows for about 80 miles, draining an area of about 712 square miles, before it enters the Willamette River. Land use in the basin changes from mostly forested in the headwaters, to mixed forest and agriculture, to predominately urban. The basin supports a growing population of more than 350,000 people, most of whom live in lower parts of the basin. Water quality in the Tualatin River and its tributaries is expected to be affected by the increasing urbanization of the basin.

  16. Single strand transposition at the host replication fork

    PubMed Central

    Lavatine, Laure; He, Susu; Caumont-Sarcos, Anne; Guynet, Catherine; Marty, Brigitte; Chandler, Mick; Ton-Hoang, Bao

    2016-01-01

    Members of the IS200/IS605 insertion sequence family differ fundamentally from classical IS essentially by their specific single-strand (ss) transposition mechanism, orchestrated by the Y1 transposase, TnpA, a small HuH enzyme which recognizes and processes ss DNA substrates. Transposition occurs by the ‘peel and paste’ pathway composed of two steps: precise excision of the top strand as a circular ss DNA intermediate; and subsequent integration into a specific ssDNA target. Transposition of family members was experimentally shown or suggested by in silico high-throughput analysis to be intimately coupled to the lagging strand template of the replication fork. In this study, we investigated factors involved in replication fork targeting and analysed DNA-binding properties of the transposase which can assist localization of ss DNA substrates on the replication fork. We showed that TnpA interacts with the β sliding clamp, DnaN and recognizes DNA which mimics replication fork structures. We also showed that dsDNA can facilitate TnpA targeting ssDNA substrates. We analysed the effect of Ssb and RecA proteins on TnpA activity in vitro and showed that while RecA does not show a notable effect, Ssb inhibits integration. Finally we discuss the way(s) in which integration may be directed into ssDNA at the replication fork. PMID:27466393

  17. Status of the dirty darter, Etheostoma olivaceum, and bluemask darter, Etheostoma (Doration)sp. , with notes on fishes of the Caney Fork River system, Tennessee

    SciTech Connect

    Layman, S.R.; Simons, A.M.; Wood, R.M. )

    1993-04-01

    Seventy-six localities were sampled in the Caney Fork River system and adjacent Cumberland River tributaries. Etheostoma olivaceum was found in small creeks from nine tributaries of lower Caney Fork River and three tributaries of the Cumberland River in the Nashville Basin physiographic province. The species was most abundant around slab rocks and rubble over bedrock in slow to moderate current. Etheostoma olivaceum was common throughout its small range; however, given widespread habitat degradation from agriculture, the species should retain its [open quotes]deemed in need of management[close quotes] status in Tennessee. The bluemask darter, Etheostoma (Doration) sp., was collected in slow to moderate current over sand and gravel in Collins River, Rocky River, Cane Creek, and Caney Fork River. All four populations were isolated upstream of Great Falls Reservoir in the Highland Rim physiographic province. The species was found in a 37-km reach of Collins River but was restricted to reaches of 0.2 to 4.3 km in the other three streams. Threats to the species include pesticides from plant nurseries, siltation, gravel dredging, and acid mine drainage. The authors recommend that the bluemask darter be listed as state and federally protected. Two new records were established for the rare Barrens darter, Etheostoma forbesi, in lower Collins River and Barren Fork River, and eight previously unknown records of the species were identified from older museum collections. 21 refs., 1 fig., 1 tab.

  18. Development of an Environmental Flow Framework for the McKenzie River Basin, Oregon

    USGS Publications Warehouse

    Risley, John; Wallick, J. Rose; Waite, Ian; Stonewall, Adam J.

    2010-01-01

    The McKenzie River is a tributary to the Willamette River in northwestern Oregon. The McKenzie River is approximately 90 miles in length and has a drainage area of approximately 1,300 square miles. Two major flood control dams, a hydropower dam complex, and two hydropower canals significantly alter streamflows in the river. The structures reduce the magnitude and frequency of large and small floods while increasing the annual 7-day minimum streamflows. Stream temperatures also have been altered by the dams and other anthropogenic factors, such as the removal of riparian vegetation and channel simplification. Flow releases from one of the flood control dams are cooler in the summer and warmer in the fall in comparison to unregulated flow conditions before the dam was constructed. In 2006, the Oregon Department of Environmental Quality listed a total of 112.4, 6.3, and 55.7 miles of the McKenzie River basin mainstem and tributary stream reaches as thermally impaired for salmonid rearing, salmonid spawning, and bull trout, respectively. The analyses in this report, along with previous studies, indicate that dams have altered downstream channel morphology and ecologic communities. In addition to reducing the magnitude and frequency of floods, dams have diminished sediment transport by trapping bed material. Other anthropogenic factors, such as bank stabilization, highway construction, and reductions of in-channel wood, also have contributed to the loss of riparian habitat. A comparison of aerial photography taken in 1939 and 2005 showed substantial decreases in secondary channels, gravel bars, and channel sinuosity, particularly along the lower alluvial reaches of the McKenzie River. In addition, bed armoring and incision may contribute to habitat degradation, although further study is needed to determine the extent of these processes. Peak streamflow reduction has led to vegetation colonization and stabilization of formerly active bar surfaces. The large flood control

  19. A multi-fork z-axis quartz micromachined gyroscope.

    PubMed

    Feng, Lihui; Zhao, Ke; Sun, Yunan; Cui, Jianmin; Cui, Fang; Yang, Aiying

    2013-01-01

    A novel multi-fork z-axis gyroscope is presented in this paper. Different from traditional quartz gyroscopes, the lateral electrodes of the sense beam can be arranged in simple patterns; as a result, the fabrication is simplified. High sensitivity is achieved by the multi-fork design. The working principles are introduced, while the finite element method (FEM) is used to simulate the modal and sensitivity. A quartz fork is fabricated, and a prototype is assembled. Impedance testing shows that the drive frequency and sense frequency are similar to the simulations, and the quality factor is approximately 10,000 in air. The scale factor is measured to be 18.134 mV/(°/s) and the nonlinearity is 0.40% in a full-scale input range of ±250 °/s.

  20. A Multi-Fork Z-Axis Quartz Micromachined Gyroscope

    PubMed Central

    Feng, Lihui; Zhao, Ke; Sun, Yunan; Cui, Jianmin; Cui, Fang; Yang, Aiying

    2013-01-01

    A novel multi-fork z-axis gyroscope is presented in this paper. Different from traditional quartz gyroscopes, the lateral electrodes of the sense beam can be arranged in simple patterns; as a result, the fabrication is simplified. High sensitivity is achieved by the multi-fork design. The working principles are introduced, while the finite element method (FEM) is used to simulate the modal and sensitivity. A quartz fork is fabricated, and a prototype is assembled. Impedance testing shows that the drive frequency and sense frequency are similar to the simulations, and the quality factor is approximately 10,000 in air. The scale factor is measured to be 18.134 mV/(°/s) and the nonlinearity is 0.40% in a full-scale input range of ±250 °/s. PMID:24048339

  1. Characterization of the ATPase activity of RecG and RuvAB proteins on model fork structures reveals insight into stalled DNA replication fork repair.

    PubMed

    Abd Wahab, Syafiq; Choi, Meerim; Bianco, Piero R

    2013-09-13

    RecG and RuvAB are proposed to act at stalled DNA replication forks to facilitate replication restart. To clarify the roles of these proteins in fork regression, we used a coupled spectrophotometric ATPase assay to determine how these helicases act on two groups of model fork substrates: the first group mimics nascent stalled forks, whereas the second mimics regressed fork structures. The results show that RecG is active on the substrates in group 1, whereas these are poor substrates for RuvAB. In addition, in the presence of group 1 forks, the single-stranded DNA-binding protein (SSB) enhances the activity of RecG and enables it to compete with excess RuvA. In contrast, SSB inhibits the activity of RuvAB on these substrates. Results also show that the preferred regressed fork substrate for RuvAB is a Holliday junction, not a forked DNA. The active form of the enzyme on the Holliday junction contains a single RuvA tetramer. In contrast, although the enzyme is active on a regressed fork structure, RuvB loading by a single RuvA tetramer is impaired, and full activity requires the cooperative binding of two forked DNA substrate molecules. Collectively, the data support a model where RecG is responsible for stalled DNA replication fork regression. SSB ensures that if the nascent fork has single-stranded DNA character RuvAB is inhibited, whereas the activity of RecG is preferentially enhanced. Only once the fork has been regressed and the DNA is relaxed can RuvAB bind to a RecG-extruded Holliday junction.

  2. Bank stability and channel width adjustment, East Fork River, Wyoming.

    USGS Publications Warehouse

    Andrews, E.D.

    1982-01-01

    Frequent surveys of eight cross sections located in self-formed reaches of the East Fork River, Wyoming, during the 1974 snowmelt flood showed a close relation between channel morphology and scour and fill. Those cross sections narrower than the mean reach width filled at discharges less than bankfull and scoured at discharges greater than bankfull. Those cross sections wider than the mean reach width scoured at discharges less than bankfull and filled at discharges greater than bankfull. Bank stability, and to some extent the adjustment of stream channel width, in the East Fork River study reach appears to be controlled by the processes of scour and fill. -from Author

  3. 77 FR 71611 - Land Acquisitions; North Fork Rancheria of Mono Indians of California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... Bureau of Indian Affairs Land Acquisitions; North Fork Rancheria of Mono Indians of California AGENCY... trust for gaming purposes for the North Fork Rancheria of Mono Indians of California on November 26... land in trust for the North Fork Rancheria of Mono Indians of California under the authority of...

  4. 16 CFR 1512.14 - Requirements for fork and frame assembly.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Requirements for fork and frame assembly... SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.14 Requirements for fork and frame assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N...

  5. Recovery of arrested replication forks by homologous recombination is error-prone.

    PubMed

    Iraqui, Ismail; Chekkal, Yasmina; Jmari, Nada; Pietrobon, Violena; Fréon, Karine; Costes, Audrey; Lambert, Sarah A E

    2012-01-01

    Homologous recombination is a universal mechanism that allows repair of DNA and provides support for DNA replication. Homologous recombination is therefore a major pathway that suppresses non-homology-mediated genome instability. Here, we report that recovery of impeded replication forks by homologous recombination is error-prone. Using a fork-arrest-based assay in fission yeast, we demonstrate that a single collapsed fork can cause mutations and large-scale genomic changes, including deletions and translocations. Fork-arrest-induced gross chromosomal rearrangements are mediated by inappropriate ectopic recombination events at the site of collapsed forks. Inverted repeats near the site of fork collapse stimulate large-scale genomic changes up to 1,500 times over spontaneous events. We also show that the high accuracy of DNA replication during S-phase is impaired by impediments to fork progression, since fork-arrest-induced mutation is due to erroneous DNA synthesis during recovery of replication forks. The mutations caused are small insertions/duplications between short tandem repeats (micro-homology) indicative of replication slippage. Our data establish that collapsed forks, but not stalled forks, recovered by homologous recombination are prone to replication slippage. The inaccuracy of DNA synthesis does not rely on PCNA ubiquitination or trans-lesion-synthesis DNA polymerases, and it is not counteracted by mismatch repair. We propose that deletions/insertions, mediated by micro-homology, leading to copy number variations during replication stress may arise by progression of error-prone replication forks restarted by homologous recombination.

  6. 33 CFR 208.33 - Cheney Dam and Reservoir, North Fork of Ninnescah River, Kans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fork of Ninnescah River, Kans. 208.33 Section 208.33 Navigation and Navigable Waters CORPS OF ENGINEERS..., North Fork of Ninnescah River, Kans. The Bureau of Reclamation, or its designated agent, shall operate... flows in excess of bankfull on the North Fork of Ninnescah and Ninnescah River downstream of...

  7. 16 CFR 1512.14 - Requirements for fork and frame assembly.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for fork and frame assembly... SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.14 Requirements for fork and frame assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N...

  8. 16 CFR 1512.14 - Requirements for fork and frame assembly.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Requirements for fork and frame assembly... SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.14 Requirements for fork and frame assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N...

  9. 16 CFR 1512.14 - Requirements for fork and frame assembly.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Requirements for fork and frame assembly... SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.14 Requirements for fork and frame assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N...

  10. 78 FR 13660 - Middle Fork American River Project; Notice of Availability of the Final Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Energy Regulatory Commission Middle Fork American River Project; Notice of Availability of the Final Environmental Impact Statement for the Middle Fork American River Hydrolectric Project In accordance with the... Projects has reviewed the application for license for the Middle Fork American River Hydroelectric...

  11. 33 CFR 208.33 - Cheney Dam and Reservoir, North Fork of Ninnescah River, Kans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fork of Ninnescah River, Kans. 208.33 Section 208.33 Navigation and Navigable Waters CORPS OF ENGINEERS..., North Fork of Ninnescah River, Kans. The Bureau of Reclamation, or its designated agent, shall operate... flows in excess of bankfull on the North Fork of Ninnescah and Ninnescah River downstream of...

  12. 33 CFR 208.33 - Cheney Dam and Reservoir, North Fork of Ninnescah River, Kans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fork of Ninnescah River, Kans. 208.33 Section 208.33 Navigation and Navigable Waters CORPS OF ENGINEERS..., North Fork of Ninnescah River, Kans. The Bureau of Reclamation, or its designated agent, shall operate... flows in excess of bankfull on the North Fork of Ninnescah and Ninnescah River downstream of...

  13. 33 CFR 208.33 - Cheney Dam and Reservoir, North Fork of Ninnescah River, Kans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fork of Ninnescah River, Kans. 208.33 Section 208.33 Navigation and Navigable Waters CORPS OF ENGINEERS..., North Fork of Ninnescah River, Kans. The Bureau of Reclamation, or its designated agent, shall operate... flows in excess of bankfull on the North Fork of Ninnescah and Ninnescah River downstream of...

  14. 76 FR 62038 - Boundary Establishment for North Fork Crooked National Wild and Scenic River, Ochoco National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Forest Service Boundary Establishment for North Fork Crooked National Wild and Scenic River, Ochoco..., Washington Office, is transmitting the final boundary of the North Fork Crooked National Wild and Scenic.... SUPPLEMENTARY INFORMATION: The North Fork Crooked Wild and Scenic River boundary is available for review at...

  15. 16 CFR 1512.14 - Requirements for fork and frame assembly.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Requirements for fork and frame assembly... SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.14 Requirements for fork and frame assembly. The fork and frame assembly shall be tested for strength by application of a load of 890 N...

  16. 77 FR 39675 - Wallowa-Whitman National Forest, Baker County, OR; North Fork Burnt River Mining

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Wallowa-Whitman National Forest, Baker County, OR; North Fork Burnt... changed to the Whitman District Ranger. This 2012 North Fork Burnt River Mining Record of Decision will replace and supercede the 2004 North Fork Burnt River Mining Record of Decision only where necessary...

  17. 33 CFR 208.33 - Cheney Dam and Reservoir, North Fork of Ninnescah River, Kans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fork of Ninnescah River, Kans. 208.33 Section 208.33 Navigation and Navigable Waters CORPS OF ENGINEERS..., North Fork of Ninnescah River, Kans. The Bureau of Reclamation, or its designated agent, shall operate... flows in excess of bankfull on the North Fork of Ninnescah and Ninnescah River downstream of...

  18. Replication Termination: Containing Fork Fusion-Mediated Pathologies in Escherichia coli.

    PubMed

    Dimude, Juachi U; Midgley-Smith, Sarah L; Stein, Monja; Rudolph, Christian J

    2016-07-25

    Duplication of bacterial chromosomes is initiated via the assembly of two replication forks at a single defined origin. Forks proceed bi-directionally until they fuse in a specialised termination area opposite the origin. This area is flanked by polar replication fork pause sites that allow forks to enter but not to leave. The precise function of this replication fork trap has remained enigmatic, as no obvious phenotypes have been associated with its inactivation. However, the fork trap becomes a serious problem to cells if the second fork is stalled at an impediment, as replication cannot be completed, suggesting that a significant evolutionary advantage for maintaining this chromosomal arrangement must exist. Recently, we demonstrated that head-on fusion of replication forks can trigger over-replication of the chromosome. This over-replication is normally prevented by a number of proteins including RecG helicase and 3' exonucleases. However, even in the absence of these proteins it can be safely contained within the replication fork trap, highlighting that multiple systems might be involved in coordinating replication fork fusions. Here, we discuss whether considering the problems associated with head-on replication fork fusion events helps us to better understand the important role of the replication fork trap in cellular metabolism.

  19. Replication Termination: Containing Fork Fusion-Mediated Pathologies in Escherichia coli

    PubMed Central

    Dimude, Juachi U.; Midgley-Smith, Sarah L.; Stein, Monja; Rudolph, Christian J.

    2016-01-01

    Duplication of bacterial chromosomes is initiated via the assembly of two replication forks at a single defined origin. Forks proceed bi-directionally until they fuse in a specialised termination area opposite the origin. This area is flanked by polar replication fork pause sites that allow forks to enter but not to leave. The precise function of this replication fork trap has remained enigmatic, as no obvious phenotypes have been associated with its inactivation. However, the fork trap becomes a serious problem to cells if the second fork is stalled at an impediment, as replication cannot be completed, suggesting that a significant evolutionary advantage for maintaining this chromosomal arrangement must exist. Recently, we demonstrated that head-on fusion of replication forks can trigger over-replication of the chromosome. This over-replication is normally prevented by a number of proteins including RecG helicase and 3’ exonucleases. However, even in the absence of these proteins it can be safely contained within the replication fork trap, highlighting that multiple systems might be involved in coordinating replication fork fusions. Here, we discuss whether considering the problems associated with head-on replication fork fusion events helps us to better understand the important role of the replication fork trap in cellular metabolism. PMID:27463728

  20. 76 FR 35909 - Temporary Concession Contract for Big South Fork National Recreation Area, TN/KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... contract for Big South Fork National Recreation Area, TN/KY. SUMMARY: Pursuant to 36 CFR 51.24, public... National Park Service Temporary Concession Contract for Big South Fork National Recreation Area, TN/KY... contract for the conduct of certain visitor services within Big South Fork National Recreation...

  1. 76 FR 6114 - Lincoln National Forest, New Mexico, North Fork Eagle Creek Wells Special Use Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... North Fork well field (Village of Ruidoso 2006). The Village of Ruidoso drilled four production wells on...; ] DEPARTMENT OF AGRICULTURE Forest Service Lincoln National Forest, New Mexico, North Fork Eagle Creek Wells... wells on the North Fork of Eagle Creek, located on National Forest System land. The new permit...

  2. Effects of low levels of herbicides on prairie species of the Willamette Valley, Oregon.

    PubMed

    Olszyk, David; Blakeley-Smith, Matthew; Pfleeger, Thomas; Lee, E Henry; Plocher, Milton

    2013-11-01

    The relative sensitivity of 17 noncrop plant species from Oregon's Willamette Valley was determined in response to glyphosate, tribenuron methyl (tribenuron), and fluazifop-p-butyl (fluazifop) herbicides. For glyphosate, Elymus trachycaulus, Festuca arundinacea, Madia elegans, Potentilla gracilis, and Ranunculus occidentalis were the most sensitive species, based on a concentration calculated to reduce shoot dry weight by 25% (IC25 values) of 0.02 to 0.04 × a field application rate of 1112 g active ingredient (a.i.) per hectare. Clarkia amoena and Lupinus albicaulis were the most tolerant to glyphosate, with IC25 values near the field application rate. Clarkia amoena, Prunella vulgaris, and R. occidentalis were the most sensitive to tribenuron, with IC25 values of 0.001 to 0.004 × a field application rate of 8.7 g a.i. ha(-1) for shoot dry weight. Five grass species were tolerant to tribenuron with no significant IC25 values. For fluazifop, 2 native grasses, E. trachycaulus and Danthonia californica, were the most sensitive species, with IC25 values of 0.007 and 0.010 × a field application rate of 210 g a.i. ha(-1) , respectively, for shoot dry weight, while a native grass, Festuca roemeri, and nearly all forbs showed little or no response. These results also indicated that the 3 introduced species used in the present study may be controlled with 1 of the tested herbicides: glyphosate (F. arundinacea), tribenuron (Leucanthemum vulgare), and fluazifop (Cynosurus echinatus). PMID:23881750

  3. Floodplain Formation and Cottonwood Colonization Patterns on the Willamette River, Oregon, USA.

    PubMed

    Dykaar; Wigington

    2000-01-01

    / Using a series of aerial photographs taken between 1936 and 1996, we trace coevolution of floodplain and riparian forest on the Willamette River. Within-channel barforms appear to be the predominant incipient floodplain landform and habitat for primary succession. Interlinked development of bar(s) and erosion of near banks, filling of channels, and establishment and growth of cottonwoods and willows results in coalescence with older floodplain. Sizeand internal structure of riparian forest patches reflect evolution of underlying barforms or channel beds. Floodplain matures as the active channel migrates away by repetition of the bar formation and near-bank erosion process, or is progressively abandoned by infilling and/or constriction with a bar. Other parts of the floodplain are recycled as eroding banks provide the coarse sediment and large woody debris for building new bars. A multichannel planform is maintained as building bars split flow; channels lengthen as bars and islands join into larger assemblages. Avulsion appears to cut new channels only short distances. Given the central role of bars and islands in building new floodplain habitat, we identify their area as a geomorphic indicator of river-floodplain integrity. We measure an 80% decline in bar and island area between 1910 and 1988 within a 22-km section. Dams, riprap, logging, and gravel mining may all be contributing to diminished bar formation rates. Removing obstacles to natural riparian forest creation mechanisms is necessary to regenerate the river-floodplain system and realize its productive potential. PMID:10552104

  4. Chronology and ecology of late Pleistocene megafauna in the northern Willamette Valley, Oregon

    USGS Publications Warehouse

    Gilmour, Daniel M.; Butler, Virginia L.; O'Connor, James E.; Davis, Edward Byrd; Culleton, Brendan J.; Kennett, Douglas J.; Hodgins, Gregory W. L.

    2015-01-01

    Since the mid-19th century, western Oregon's Willamette Valley has been a source of remains from a wide variety of extinct megafauna. Few of these have been previously described or dated, but new chronologic and isotopic analyses in conjunction with updated evaluations of stratigraphic context provide substantial new information on the species present, timing of losses, and paleoenvironmental conditions. Using subfossil material from the northern valley, we use AMS radiocarbon dating, stable isotope (δ13C and δ15N) analyses, and taxonomic dietary specialization and habitat preferences to reconstruct environments and to develop a local chronology of events that we then compare with continental and regional archaeological and paleoenvironmental data. Analysis of twelve bone specimens demonstrates the presence of bison, mammoth, horse, sloth, and mastodon from ~ 15,000–13,000 cal yr BP. The latest ages coincide with changing regional climate corresponding to the onset of the Younger Dryas. It is suggested that cooling conditions led to increased forest cover, and, along with river aggradation, reduced the area of preferred habitat for the larger bodied herbivores, which contributed to the demise of local megafauna. Archaeological evidence for megafauna–human interactions in the Pacific Northwest is scarce, limiting our ability to address the human role in causing extinction.

  5. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    USGS Publications Warehouse

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride

  6. Ten Things You Should Do with a Tuning Fork

    ERIC Educational Resources Information Center

    Lincoln, James

    2013-01-01

    Tuning forks are wonderful tools for teaching physics. Every physics classroom should have several and every physics student should be taught how to use them. In this article, I highlight 10 enriching demonstrations that most teachers might not know, as well as provide tips to enhance the demonstrations teachers might already be doing. Some of…

  7. 80. Laurel Fork Creek Bridge #2. Example of a concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. Laurel Fork Creek Bridge #2. Example of a concrete slab bridge with T beams. It was built in 1937 and the wing walls were faced with stone to blend with its surroundings. Looking northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  8. New histone supply regulates replication fork speed and PCNA unloading

    PubMed Central

    Mejlvang, Jakob; Feng, Yunpeng; Alabert, Constance; Neelsen, Kai J.; Jasencakova, Zuzana; Zhao, Xiaobei; Lees, Michael; Sandelin, Albin; Pasero, Philippe; Lopes, Massimo

    2014-01-01

    Correct duplication of DNA sequence and its organization into chromatin is central to genome function and stability. However, it remains unclear how cells coordinate DNA synthesis with provision of new histones for chromatin assembly to ensure chromosomal stability. In this paper, we show that replication fork speed is dependent on new histone supply and efficient nucleosome assembly. Inhibition of canonical histone biosynthesis impaired replication fork progression and reduced nucleosome occupancy on newly synthesized DNA. Replication forks initially remained stable without activation of conventional checkpoints, although prolonged histone deficiency generated DNA damage. PCNA accumulated on newly synthesized DNA in cells lacking new histones, possibly to maintain opportunity for CAF-1 recruitment and nucleosome assembly. Consistent with this, in vitro and in vivo analysis showed that PCNA unloading is delayed in the absence of nucleosome assembly. We propose that coupling of fork speed and PCNA unloading to nucleosome assembly provides a simple mechanism to adjust DNA replication and maintain chromatin integrity during transient histone shortage. PMID:24379417

  9. Integration of high-resolution seismic and aeromagnetic data for earthquake hazards evaluations: An example from the Willamette Valley, Oregon

    USGS Publications Warehouse

    Liberty, L.M.; Trehu, A.M.; Blakely, R.J.; Dougherty, M.E.

    1999-01-01

    Aeromagnetic and high-resolution seismic reflection data were integrated to place constraints on the history of seismic activity and to determine the continuity of the possibly active, yet largely concealed Mount Angel fault in the Willamette Valley, Oregon. Recent seismic activity possibly related to the 20-km-long fault includes a swarm of small earthquakes near Woodburn in 1990 and the magnitude 5.6 Scotts Mills earthquake in 1993. Newly acquired aeromagnetic data show several large northwest-trending anomalies, including one associated with the Mount Angel fault. The magnetic signature indicates that the fault may actually extend 70 km across the Willamette Valley to join the Newberg and Gales Creek faults in the Oregon Coast Range. We collected 24-fold high-resolution seismic reflection data along two transects near Woodburn, Oregon, to image the offset of the Miocene-age Columbia River Basalts (CRB) and overlying sediments at and northwest of the known mapped extent of the Mount Angel fault. The seismic data show a 100-200-m offset in the CRB reflector at depths from 300 to 700 m. Folded or offset sediments appear above the CRB with decreasing amplitude to depths as shallow as were imaged (approximately 40 m). Modeling experiments based on the magnetic data indicate, however, that the anomaly associated with the Mount Angel fault is not caused solely by an offset of the CRB and overlying sediments. Underlying magnetic sources, which we presume to be volcanic rocks of the Siletz terrane, must have vertical offsets of at least 500 m to fit the observed data. We conclude that the Mount Angel fault appears to have been active since Eocene age and that the Gales Creek, Newberg, and Mount Angel faults should be considered a single potentially active fault system. This fault, as well as other parallel northwest-trending faults in the Willamette Valley, should be considered as risks for future potentially damaging earthquakes.

  10. Characterizing Sediment Flux Using Reconstructed Topography and Bathymetry from Historical Aerial Imagery on the Willamette River, OR.

    NASA Astrophysics Data System (ADS)

    Langston, T.; Fonstad, M. A.

    2014-12-01

    The Willamette is a gravel-bed river that drains ~28,800 km^2 between the Coast Range and Cascade Range in northwestern Oregon before entering the Columbia River near Portland. In the last 150 years, natural and anthropogenic drivers have altered the sediment transport regime, drastically reducing the geomorphic complexity of the river. Previously dynamic multi-threaded reaches have transformed into stable single channels to the detriment of ecosystem diversity and productivity. Flow regulation by flood-control dams, bank revetments, and conversion of riparian forests to agriculture have been key drivers of channel change. To date, little has been done to quantitatively describe temporal and spatial trends of sediment transport in the Willamette. This knowledge is critical for understanding how modern processes shape landforms and habitats. The goal of this study is to describe large-scale temporal and spatial trends in the sediment budget by reconstructing historical topography and bathymetry from aerial imagery. The area of interest for this project is a reach of the Willamette stretching from the confluence of the McKenzie River to the town of Peoria. While this reach remains one of the most dynamic sections of the river, it has exhibited a great loss in geomorphic complexity. Aerial imagery for this section of the river is available from USDA and USACE projects dating back to the 1930's. Above water surface elevations are extracted using the Imagine Photogrammetry package in ERDAS. Bathymetry is estimated using a method known as Hydraulic Assisted Bathymetry in which hydraulic parameters are used to develop a regression between water depth and pixel values. From this, pixel values are converted to depth below the water surface. Merged together, topography and bathymetry produce a spatially continuous digital elevation model of the geomorphic floodplain. Volumetric changes in sediment stored along the study reach are then estimated for different historic periods

  11. An allocation of undiscovered oil and gas resources to Big South Fork National Recreation Area and Obed Wild and Scenic River, Kentucky and Tennessee

    USGS Publications Warehouse

    Schenk, Christopher J.; Klett, Timothy R.; Charpentier, Ronald R.; Cook, Troy A.; Pollastro, Richard M.

    2006-01-01

    The U.S. Geological Survey (USGS) estimated volumes of undiscovered oil and gas resources that may underlie Big South Fork National Recreation Area and Obed Wild and Scenic River in Kentucky and Tennessee. Applying the results of existing assessments of undiscovered resources from three assessment units in the Appalachian Basin Province and three plays in the Cincinnati Arch Province that include these land parcels, the USGS allocated approximately (1) 16 billion cubic feet of gas, 15 thousand barrels of oil, and 232 thousand barrels of natural gas liquids to Big South Fork National Recreation Area; and (2) 0.5 billion cubic feet of gas, 0.6 thousand barrels of oil, and 10 thousand barrels of natural gas liquids to Obed Wild and Scenic River. These estimated volumes of undiscovered resources represent potential volumes in new undiscovered fields, but do not include potential additions to reserves within existing fields.

  12. Mechanisms of dissipation of an oscillating quartz tuning fork immersed in He II at high pressures

    NASA Astrophysics Data System (ADS)

    Gritsenko, I. A.; Zadorozhko, A. A.; Sheshin, G. A.

    2012-12-01

    The dissipative processes that occur with immersing a vibrating tuning fork in superfluid helium are investigated. The tuning forks resonance width Δf of frequencies from 32 to 97 kHz was measured in the temperature range from 0.2 to 2.5 K and He II pressure from SVP to 24.9 atm. Some of the tuning forks were in the original can (closed tuning fork), and for some tuning forks the can was either completely or partially removed (opened fork). We found that for the open tuning forks two dissipation mechanisms are clearly revealed in the temperature dependence of Δf, namely, acoustic radiation and scattering of ballistic thermal excitations at low temperatures, and viscous friction at high temperatures. At low temperatures (below ˜ 0.8 K) acoustic dissipation dominates, and the model of quadrupole oscillator for a tuning fork can be applied. We found that acoustic radiation for closed tuning forks is less effective and appears at lower temperatures. The first experimental data on dissipative processes in the quartz tuning fork-He II system at increased liquid pressures are obtained. It is shown that, for high frequency tuning forks the resonance bandwidth decreases with increasing pressure, i.e., with increasing wavelength of sound λ, according to the law λ-5. At low frequencies and low temperatures, with increasing mean free path of thermal excitations the resonance bandwidth is well described by the model of ballistic scattering.

  13. 33 CFR 165.1326 - Regulated Navigation Areas; Port of Portland Terminal 4, Willamette River, Portland, OR.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Regulated Navigation Areas; Port....050″ W thence to 45° 36′ 09.722″ N/122° 46′ 34.181″ W thence to 45° 36′ 09.425″ N/122° 46′ 33.118″ W...″ N 122° 46′ 20.995″ W. (2) All waters of the Willamette River in Wheeler Bay between Slip 1 and...

  14. 33 CFR 165.1326 - Regulated Navigation Areas; Port of Portland Terminal 4, Willamette River, Portland, OR.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Regulated Navigation Areas; Port....050″ W thence to 45° 36′ 09.722″ N/122° 46′ 34.181″ W thence to 45° 36′ 09.425″ N/122° 46′ 33.118″ W...″ N 122° 46′ 20.995″ W. (2) All waters of the Willamette River in Wheeler Bay between Slip 1 and...

  15. 33 CFR 165.1326 - Regulated Navigation Areas; Port of Portland Terminal 4, Willamette River, Portland, OR.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Regulated Navigation Areas; Port....050″ W thence to 45° 36′ 09.722″ N/122° 46′ 34.181″ W thence to 45° 36′ 09.425″ N/122° 46′ 33.118″ W...″ N 122° 46′ 20.995″ W. (2) All waters of the Willamette River in Wheeler Bay between Slip 1 and...

  16. Oak Grove Fork Habitat Improvement Project, 1988 Annual Report.

    SciTech Connect

    Bettin, Scott

    1989-04-01

    The Lower Oak Grove Fork of the Clackamas River is a fifth-order tributary of the Clackamas River drainage supporting depressed runs of coho and chinook salmon, and summer and winter steelhead. Habitat condition rating for the Lower Oak Grove is good, but smelt production estimates are below the average for Clackamas River tributaries. Limiting factors in the 3.8 miles of the Lower Oak Grove supporting anadromous fish include an overall lack of quality spawning and rearing habitat. Beginning in 1986. measures to improve fish habitat in the Lower Oak Grove were developed in coordination with the Oregon Department of Fish and Wildlife (ODF&W) and Portland General Electric (PGE) fisheries biologists. Prior to 1986, no measures had been applied to the stream to mitigate for PGE's storage and regulation of flows in the Oak Grove Fork (Timothy Lake, Harriet Lake). Catchable rainbow trout are stocked by ODF&W two or three times a year during the trout fishing season in the lowermost portion of the Oak Grove Fork near two Forest Service campgrounds (Ripplebrook and Rainbow). The 1987 field season marked the third year of efforts to improve fish habitat of the Lower Oak Grove Fork and restore anadromous fish production. The efforts included the development of an implementation plan for habitat improvement activities in the Lower Oak Grove Fork. post-project monitoring. and maintenance of the 1986 improvement structures. No new structures were constructed or placed in 1987. Fiscal year 1988 brought a multitude of changes which delayed implementation of plans developed in 1987. The most prominent change was the withdrawal of the proposed Spotted Owl Habitat Area (SOHA) which overlapped the Oak Grove project implementation area. Another was the change in the Forest Service biologist responsible for implementation and design of this project.

  17. BOD1L Is Required to Suppress Deleterious Resection of Stressed Replication Forks.

    PubMed

    Higgs, Martin R; Reynolds, John J; Winczura, Alicja; Blackford, Andrew N; Borel, Valérie; Miller, Edward S; Zlatanou, Anastasia; Nieminuszczy, Jadwiga; Ryan, Ellis L; Davies, Nicholas J; Stankovic, Tatjana; Boulton, Simon J; Niedzwiedz, Wojciech; Stewart, Grant S

    2015-08-01

    Recognition and repair of damaged replication forks are essential to maintain genome stability and are coordinated by the combined action of the Fanconi anemia and homologous recombination pathways. These pathways are vital to protect stalled replication forks from uncontrolled nucleolytic activity, which otherwise causes irreparable genomic damage. Here, we identify BOD1L as a component of this fork protection pathway, which safeguards genome stability after replication stress. Loss of BOD1L confers exquisite cellular sensitivity to replication stress and uncontrolled resection of damaged replication forks, due to a failure to stabilize RAD51 at these forks. Blocking DNA2-dependent resection, or downregulation of the helicases BLM and FBH1, suppresses both catastrophic fork processing and the accumulation of chromosomal damage in BOD1L-deficient cells. Thus, our work implicates BOD1L as a critical regulator of genome integrity that restrains nucleolytic degradation of damaged replication forks.

  18. Termination of DNA replication forks: "Breaking up is hard to do".

    PubMed

    Bailey, Rachael; Priego Moreno, Sara; Gambus, Agnieszka

    2015-01-01

    To ensure duplication of the entire genome, eukaryotic DNA replication initiates from thousands of replication origins. The replication forks move through the chromatin until they encounter forks from neighboring origins. During replication fork termination forks converge, the replisomes disassemble and topoisomerase II resolves the daughter DNA molecules. If not resolved efficiently, terminating forks result in genomic instability through the formation of pathogenic structures. Our recent findings shed light onto the mechanism of replisome disassembly upon replication fork termination. We have shown that termination-specific polyubiquitylation of the replicative helicase component - Mcm7, leads to dissolution of the active helicase in a process dependent on the p97/VCP/Cdc48 segregase. The inhibition of terminating helicase disassembly resulted in a replication termination defect. In this extended view we present hypothetical models of replication fork termination and discuss remaining and emerging questions in the DNA replication termination field.

  19. RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks.

    PubMed

    Elia, Andrew E H; Wang, David C; Willis, Nicholas A; Boardman, Alexander P; Hajdu, Ildiko; Adeyemi, Richard O; Lowry, Elizabeth; Gygi, Steven P; Scully, Ralph; Elledge, Stephen J

    2015-10-15

    We have used quantitative proteomics to profile ubiquitination in the DNA damage response (DDR). We demonstrate that RPA, which functions as a protein scaffold in the replication stress response, is multiply ubiquitinated upon replication fork stalling. Ubiquitination of RPA occurs on chromatin, involves sites outside its DNA binding channel, does not cause proteasomal degradation, and increases under conditions of fork collapse, suggesting a role in repair at stalled forks. We demonstrate that the E3 ligase RFWD3 mediates RPA ubiquitination. RFWD3 is necessary for replication fork restart, normal repair kinetics during replication stress, and homologous recombination (HR) at stalled replication forks. Mutational analysis suggests that multisite ubiquitination of the entire RPA complex is responsible for repair at stalled forks. Multisite protein group sumoylation is known to promote HR in yeast. Our findings reveal a similar requirement for multisite protein group ubiquitination during HR at stalled forks in mammalian cells.

  20. Termination of DNA replication forks: “Breaking up is hard to do”

    PubMed Central

    Bailey, Rachael; Priego Moreno, Sara; Gambus, Agnieszka

    2015-01-01

    To ensure duplication of the entire genome, eukaryotic DNA replication initiates from thousands of replication origins. The replication forks move through the chromatin until they encounter forks from neighboring origins. During replication fork termination forks converge, the replisomes disassemble and topoisomerase II resolves the daughter DNA molecules. If not resolved efficiently, terminating forks result in genomic instability through the formation of pathogenic structures. Our recent findings shed light onto the mechanism of replisome disassembly upon replication fork termination. We have shown that termination-specific polyubiquitylation of the replicative helicase component – Mcm7, leads to dissolution of the active helicase in a process dependent on the p97/VCP/Cdc48 segregase. The inhibition of terminating helicase disassembly resulted in a replication termination defect. In this extended view we present hypothetical models of replication fork termination and discuss remaining and emerging questions in the DNA replication termination field. PMID:25835602

  1. Tectonic evolution of the Tualatin basin, northwest Oregon, as revealed by inversion of gravity data

    USGS Publications Warehouse

    McPhee, Darcy K.; Langenheim, Victoria E.; Wells, Ray; Blakely, Richard J.

    2014-01-01

    The Tualatin basin, west of Portland (Oregon, USA), coincides with a 110 mGal gravity low along the Puget-Willamette lowland. New gravity measurements (n = 3000) reveal a three-dimensional (3-D) subsurface geometry suggesting early development as a fault-bounded pull-apart basin. A strong northwest-trending gravity gradient coincides with the Gales Creek fault, which forms the southwestern boundary of the Tualatin basin. Faults along the northeastern margin in the Portland Hills and the northeast-trending Sherwood fault along the southeastern basin margin are also associated with gravity gradients, but of smaller magnitude. The gravity low reflects the large density contrast between basin fill and the mafic crust of the Siletz terrane composing basement. Inversions of gravity data indicate that the Tualatin basin is ∼6 km deep, therefore 6 times deeper than the 1 km maximum depth of the Miocene Columba River Basalt Group (CRBG) in the basin, implying that the basin contains several kilometers of low-density pre-CRBG sediments and so formed primarily before the 15 Ma emplacement of the CRBG. The shape of the basin and the location of parallel, linear basin-bounding faults along the southwest and northeast margins suggest that the Tualatin basin originated as a pull-apart rhombochasm. Pre-CRBG extension in the Tualatin basin is consistent with an episode of late Eocene extension documented elsewhere in the Coast Ranges. The present fold and thrust geometry of the Tualatin basin, the result of Neogene compression, is superimposed on the ancestral pull-apart basin. The present 3-D basin geometry may imply stronger ground shaking along basin edges, particularly along the concealed northeast edge of the Tualatin basin beneath the greater Portland area.

  2. Mitomycin C reduces abundance of replication forks but not rates of fork progression in primary and transformed human cells

    PubMed Central

    Kehrli, Keffy; Sidorova, Julia M.

    2014-01-01

    DNA crosslinks can block replication in vitro and slow down S phase progression in vivo. We characterized the effect of mitomycin C crosslinker on S phase globally and on individual replication forks in wild type and FANCD2-deficient human cells. FANCD2 is critical to crosslink repair, and is also implicated in facilitating DNA replication. We used DNA fiber analysis to demonstrate persistent reduction in abundance but not progression rate of replication forks during an S phase of MMC-treated cells. FANCD2 deficiency did not eliminate this phenotype. Immunoprecipitation of EdU-labeled DNA indicated that replication was not suppressed in the domains that were undergoing response to MMC as marked by the presence of γH2AX, and in fact γH2AX was overrepresented on DNA that had replicated immediately after MMC in wild type through less so in FANCD2-depleted cells. FANCD2-depleted cells also produced fewer tracks of uninterrupted replication of up to 240Kb long, regardless of MMC treatment. Overall, the data suggest that crosslinks may not pose a block to S phase as a whole, but instead profoundly change its progress by reducing density of replication forks and causing at least a fraction of forks to operate within a DNA damage response-altered chromatin. PMID:25580447

  3. Quality of surface waters in the lower Columbia River Basin

    USGS Publications Warehouse

    Santos, John F.

    1965-01-01

    This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the

  4. USING INTERNAL RADIO TRANSMITTERS TO DETERMINE THE BEHAVIORAL RESPONSE OF BULLFROGS, RANA CATESBEIANA, TO SEASONAL POND DRYING IN THE WILLAMETTE VALLEY, OREGON

    EPA Science Inventory

    We implanted radio tags in adult bullfrogs from three ponds located in a Willamette Valley game reserve to determine their behavior and habitat use as the ponds dried during late summer. We used radio telemetry and a Global Position System (GPS) to locate and record the position ...

  5. EXAMINATION OF HABITAT USE AND DISPERSAL OF EXOTIC BULLFROGS AND THEIR POTENTIAL IMPACT ON NATIVE AMPHIBIAN COMMUNITIES IN THE WILLAMETTE VALLEY, OREGON

    EPA Science Inventory

    Bullfrogs (Rana catesbeiana) are exotic in the west and have been implicated in the decline of western pond turtles and native ranids. Habitat alterations that favor bullfrogs have enhanced populations, particularly in agricultural areas such as the Willamette Valley. I will pres...

  6. THE GAPS BETWEEN AN INTEGRATED UNDERSTANDING OF CHANNELIZATION, HYDROLOGY AND WATER QUALITY VERSUS HOLISTIC FUTURE MANAGEMENT: A CASE STUDY OF THE WILLAMETTE RIVER, OREGON

    EPA Science Inventory

    Over the last 150 years the main channel of the Willamette River has been drastically altered by human activity. It has changed from a generally meandering and anastamosing river with extensive reaches of broad, active and connected flood plain features to a river with 13 major ...

  7. Quality of bottom material and elutriates in the lower Willamette River, Portland Harbor, Oregon

    USGS Publications Warehouse

    Fuhrer, Gregory J.

    1989-01-01

    In October 1983 the U.S. Geological Survey, in cooperation with the U.S. Army Corp of Engineers, collected bottom-material and water samples from Portland Harbor, Oregon to determine concentrations of trace metals and organic compounds in elutriate-test filtrate and bottom material. Of the trace metals examined in bottom material, concentrations of cadmium slightly exceed those of local rocks, whereas lead and zinc exceedance is substantially larger. Of the organochlorine compounds examined in bottom material chlordane, DDD, DDE, DDT, dieldrin, and polychlorinated biphenyls (PCB's) were detected and quantified in at least 30% of the samples tested. A large DDT concentration (2,700 microgram/kilogram) near Doane Lake outlet is indicative of recent contamination. Polychlorinated biphenyls are ubiquitous in bottom sediments; median concentrations are nearly 65 micrograms/kilogram and as large as 550 microgram/kilogram. PCB loading to the Columbia River from Willamette River suspended sediment has been estimated to be 72 kilograms/year, nearly five times the PCB dredge load of 15 kilogram/year. The acid and base-neutral extractable di-n-butyl phthalate and bis (2-ethylhexyl)phthalate occur in sediments of Terminal No. 2 in concentrations as large as 1,965 and 2,200 micrograms/kilogram, respectively. Of the trace metals examined in both standard and oxic elutriate-test filtrate, only copper concentration in an oxic elutriate-test filtrate (19 micrograms/L) exceeded the water quality criteria (5.7 micrograms/L). (USGS)

  8. INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARDIAN-AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO

    SciTech Connect

    F. Jerry Lucia

    2002-01-31

    This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock-fabric flow layers

  9. Seasonal and elevational variation of δ18O and δ2H in the Willamette River basin

    EPA Science Inventory

    Climate change is expected to dramatically alter the timing and quantity of water within the nation’s river systems. These changes are driven by variation in the form, location and amount of precipitation that will affect the temporal and spatial distribution of river source wat...

  10. Computed and estimated pollutant loads, West Fork Trinity River, Fort Worth, Texas, 1997

    USGS Publications Warehouse

    McKee, Paul W.; McWreath, Harry C.

    2001-01-01

    In 1998 the U.S. Geological Survey, in cooperation with the Trinity River Authority, did a study to estimate storm-runoff pollutant loads using two models?a deterministic model and a statistical model; the estimated loads were compared to loads computed from measured data for a large (118,000 acres) basin in the Dallas-Fort Worth, Texas, metropolitan area. Loads were computed and estimated for 12 properties and constituents in runoff from two 1997 storms at streamflow-gaging station 08048543 West Fork Trinity River at Beach Street in Fort Worth. Each model uses rainfall as a primary variable to estimate pollutant load. In addition to using point rainfall at the Beach Street station to estimate pollutant loads, areal-averaged rainfall for the basin was computed to obtain a more representative estimate of rainfall over the basin. Loads estimated by the models for the two storms, using both point and areal-averaged rainfall, generally did not compare closely to computed loads for the 12 water-quality properties and constituents. Both models overestimated loads more frequently than they underestimated loads. The models tended to yield similar estimates for the same property or constituent. In general, areal-averaged rainfall data yielded better estimates of loads than point rainfall data for both models. Neither the deterministic model nor the statistical model (both using areal-averaged rainfall) was consistently better at estimating loads. Several factors could account for the inability of the models to estimate loads closer to computed loads. Chief among them is the fact that neither model was designed for the specific application of this study.

  11. Optimal information provision for maximizing flow in a forked lattice

    NASA Astrophysics Data System (ADS)

    Imai, Takeaki; Nishinari, Katsuhiro

    2015-06-01

    In a forked road, the provision of inappropriate information to car drivers sometimes leads to undesirable situations such as one-sided congestion, which is called the hunting phenomenon in real traffic. To address such problems, we propose a forked exclusion model and investigate the behavior of traffic flow in two routes, providing various types of information to a limited number of traveling particles according to the share rate of information. To analytically understand the phenomena, we develop a coarse-grained representation of the model. By analyzing the model, we find the most effective types of information to minimize particles' travel time and the existence of an optimal share rate according to route conditions.

  12. Optimal information provision for maximizing flow in a forked lattice.

    PubMed

    Imai, Takeaki; Nishinari, Katsuhiro

    2015-06-01

    In a forked road, the provision of inappropriate information to car drivers sometimes leads to undesirable situations such as one-sided congestion, which is called the hunting phenomenon in real traffic. To address such problems, we propose a forked exclusion model and investigate the behavior of traffic flow in two routes, providing various types of information to a limited number of traveling particles according to the share rate of information. To analytically understand the phenomena, we develop a coarse-grained representation of the model. By analyzing the model, we find the most effective types of information to minimize particles' travel time and the existence of an optimal share rate according to route conditions.

  13. A molecular tuning fork in single-molecule mechanochemical sensing.

    PubMed

    Mandal, Shankar; Koirala, Deepak; Selvam, Sangeetha; Ghimire, Chiran; Mao, Hanbin

    2015-06-22

    The separate arrangement of target recognition and signal transduction in conventional biosensors often compromises the real-time response and can introduce additional noise. To address these issues, we combined analyte recognition and signal reporting by mechanochemical coupling in a single-molecule DNA template. We incorporated a DNA hairpin as a mechanophore in the template, which, under a specific force, undergoes stochastic transitions between folded and unfolded hairpin structures (mechanoescence). Reminiscent of a tuning fork that vibrates at a fixed frequency, the device was classified as a molecular tuning fork (MTF). By monitoring the lifetime of the folded and unfolded hairpins with equal populations, we were able to differentiate between the mono- and bivalent binding modes during individual antibody-antigen binding events. We anticipate these mechanospectroscopic concepts and methods will be instrumental for the development of novel bioanalyses.

  14. The verification of reactor operating history using the fork detector

    SciTech Connect

    Menlove, H.O.; Reilly, T.D.; Siebelist, R.

    1996-07-01

    A technique has been developed for verification of light-water reactor operating history from measurements of irradiated fuel assemblies. The Fork detector is used to measure neutron and gross gamma-ray emissions from fuel assemblies. The measurements can be performed a few days after discharge or up to several years later. The neutron and gamma-ray ratios are used to check the consistency of the declared number of irradiated cycles for the assembly in the core. Reactor burnup calculation codes are used to correct the measured neutron rates for different initial enrichments and discontinuous irradiation histories. We have modified the Fork detector so that it can operate in the intense gamma-ray field emitted from freshly discharged fuel. This modification makes it possible to perform fuel verification during the annual fuel-reload and maintenance period.

  15. Optimal information provision for maximizing flow in a forked lattice.

    PubMed

    Imai, Takeaki; Nishinari, Katsuhiro

    2015-06-01

    In a forked road, the provision of inappropriate information to car drivers sometimes leads to undesirable situations such as one-sided congestion, which is called the hunting phenomenon in real traffic. To address such problems, we propose a forked exclusion model and investigate the behavior of traffic flow in two routes, providing various types of information to a limited number of traveling particles according to the share rate of information. To analytically understand the phenomena, we develop a coarse-grained representation of the model. By analyzing the model, we find the most effective types of information to minimize particles' travel time and the existence of an optimal share rate according to route conditions. PMID:26172765

  16. NORTH FORK SMITH RIVER ROADLESS AREA, CALIFORNIA AND OREGON.

    USGS Publications Warehouse

    Gray, Floyd; Hamilton, Michael

    1984-01-01

    Geologic, geochemical, and geophysical investigations and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the North Fork Smith River Roadless Area, California. The area has probable and sustantiated resource potential for nickel, chromium, copper, and mercury and approximately 2300 mining claims exist in or adjacent to the area. The geologic terrane precludes the occurrence of fossil fuel resources.

  17. South Fork Clearwater River Habitat Enhancement, Nez Perce National Forest.

    SciTech Connect

    Siddall, Phoebe

    1992-04-01

    In 1984, the Nez Perce National forest and the Bonneville Power Administration entered into a contractual agreement which provided for improvement of spring chinook salmon and summer steelhead trout habitat in south Fork Clearwater River tributaries. Project work was completed in seven main locations: Crooked River, Red River, Meadow Creek Haysfork Gloryhole, Cal-Idaho Gloryhole, Fisher Placer and Leggett Placer. This report describes restoration activities at each of these sites.

  18. Stalled replication forks within heterochromatin require ATRX for protection

    PubMed Central

    Huh, M S; Ivanochko, D; Hashem, L E; Curtin, M; Delorme, M; Goodall, E; Yan, K; Picketts, D J

    2016-01-01

    Expansive growth of neural progenitor cells (NPCs) is a prerequisite to the temporal waves of neuronal differentiation that generate the six-layered neocortex, while also placing a heavy burden on proteins that regulate chromatin packaging and genome integrity. This problem is further reflected by the growing number of developmental disorders caused by mutations in chromatin regulators. ATRX gene mutations cause a severe intellectual disability disorder (α-thalassemia mental retardation X-linked (ATRX) syndrome; OMIM no. 301040), characterized by microcephaly, urogenital abnormalities and α-thalassemia. Although the ATRX protein is required for the maintenance of repetitive DNA within heterochromatin, how this translates to disease pathogenesis remain poorly understood and was a focus of this study. We demonstrate that AtrxFoxG1Cre forebrain-specific conditional knockout mice display poly(ADP-ribose) polymerase-1 (Parp-1) hyperactivation during neurogenesis and generate fewer late-born Cux1- and Brn2-positive neurons that accounts for the reduced cortical size. Moreover, DNA damage, induced Parp-1 and Atm activation is elevated in progenitor cells and contributes to their increased level of cell death. ATRX-null HeLa cells are similarly sensitive to hydroxyurea-induced replication stress, accumulate DNA damage and proliferate poorly. Impaired BRCA1-RAD51 colocalization and PARP-1 hyperactivation indicated that stalled replication forks are not efficiently protected. DNA fiber assays confirmed that MRE11 degradation of stalled replication forks was rampant in the absence of ATRX or DAXX. Indeed, fork degradation in ATRX-null cells could be attenuated by treatment with the MRE11 inhibitor mirin, or exacerbated by inhibiting PARP-1 activity. Taken together, these results suggest that ATRX is required to limit replication stress during cellular proliferation, whereas upregulation of PARP-1 activity functions as a compensatory mechanism to protect stalled forks

  19. Stalled replication forks within heterochromatin require ATRX for protection.

    PubMed

    Huh, M S; Ivanochko, D; Hashem, L E; Curtin, M; Delorme, M; Goodall, E; Yan, K; Picketts, D J

    2016-05-12

    Expansive growth of neural progenitor cells (NPCs) is a prerequisite to the temporal waves of neuronal differentiation that generate the six-layered neocortex, while also placing a heavy burden on proteins that regulate chromatin packaging and genome integrity. This problem is further reflected by the growing number of developmental disorders caused by mutations in chromatin regulators. ATRX gene mutations cause a severe intellectual disability disorder (α-thalassemia mental retardation X-linked (ATRX) syndrome; OMIM no. 301040), characterized by microcephaly, urogenital abnormalities and α-thalassemia. Although the ATRX protein is required for the maintenance of repetitive DNA within heterochromatin, how this translates to disease pathogenesis remain poorly understood and was a focus of this study. We demonstrate that Atrx(FoxG1Cre) forebrain-specific conditional knockout mice display poly(ADP-ribose) polymerase-1 (Parp-1) hyperactivation during neurogenesis and generate fewer late-born Cux1- and Brn2-positive neurons that accounts for the reduced cortical size. Moreover, DNA damage, induced Parp-1 and Atm activation is elevated in progenitor cells and contributes to their increased level of cell death. ATRX-null HeLa cells are similarly sensitive to hydroxyurea-induced replication stress, accumulate DNA damage and proliferate poorly. Impaired BRCA1-RAD51 colocalization and PARP-1 hyperactivation indicated that stalled replication forks are not efficiently protected. DNA fiber assays confirmed that MRE11 degradation of stalled replication forks was rampant in the absence of ATRX or DAXX. Indeed, fork degradation in ATRX-null cells could be attenuated by treatment with the MRE11 inhibitor mirin, or exacerbated by inhibiting PARP-1 activity. Taken together, these results suggest that ATRX is required to limit replication stress during cellular proliferation, whereas upregulation of PARP-1 activity functions as a compensatory mechanism to protect stalled forks

  20. NORTH FORK OF THE AMERICAN RIVER WILDERNESS STUDY AREA, CALIFORNIA.

    USGS Publications Warehouse

    Harwood, David S.; Federspiel, Francis E.

    1984-01-01

    Mineral-resource surveys of the North Fork of the American River Wilderness study area, California have identified a zone of substantiated resource potential for gold and silver. Zones of probable gold and silver potential occur in the eastern part of the area between the Wubbena and La Trinidad mines and locally around the Marrs mine. A zone with probable chromium potential occurs in the serpentinite belt along the western border of the area. No energy resources were identified in this study.

  1. Supercoiling, knotting and replication fork reversal in partially replicated plasmids

    PubMed Central

    Olavarrieta, L.; Martínez-Robles, M. L.; Sogo, J. M.; Stasiak, A.; Hernández, P.; Krimer, D. B.; Schvartzman, J. B.

    2002-01-01

    To study the structure of partially replicated plasmids, we cloned the Escherichia coli polar replication terminator TerE in its active orientation at different locations in the ColE1 vector pBR18. The resulting plasmids, pBR18-TerE@StyI and pBR18-TerE@EcoRI, were analyzed by neutral/neutral two-dimensional agarose gel electrophoresis and electron microscopy. Replication forks stop at the Ter–TUS complex, leading to the accumulation of specific replication intermediates with a mass 1.26 times the mass of non-replicating plasmids for pBR18-TerE@StyI and 1.57 times for pBR18-TerE@EcoRI. The number of knotted bubbles detected after digestion with ScaI and the number and electrophoretic mobility of undigested partially replicated topoisomers reflect the changes in plasmid topology that occur in DNA molecules replicated to different extents. Exposure to increasing concentrations of chloroquine or ethidium bromide revealed that partially replicated topoisomers (CCCRIs) do not sustain positive supercoiling as efficiently as their non-replicating counterparts. It was suggested that this occurs because in partially replicated plasmids a positive ΔLk is absorbed by regression of the replication fork. Indeed, we showed by electron microscopy that, at least in the presence of chloroquine, some of the CCCRIs of pBR18-Ter@StyI formed Holliday-like junction structures characteristic of reversed forks. However, not all the positive supercoiling was absorbed by fork reversal in the presence of high concentrations of ethidium bromide. PMID:11809877

  2. Molecular clock fork phylogenies: closed form analytic maximum likelihood solutions.

    PubMed

    Chor, Benny; Snir, Sagi

    2004-12-01

    Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM) are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model-three-taxa, two-state characters, under a molecular clock. Quoting Ziheng Yang, who initiated the analytic approach,"this seems to be the simplest case, but has many of the conceptual and statistical complexities involved in phylogenetic estimation."In this work, we give general analytic solutions for a family of trees with four-taxa, two-state characters, under a molecular clock. The change from three to four taxa incurs a major increase in the complexity of the underlying algebraic system, and requires novel techniques and approaches. We start by presenting the general maximum likelihood problem on phylogenetic trees as a constrained optimization problem, and the resulting system of polynomial equations. In full generality, it is infeasible to solve this system, therefore specialized tools for the molecular clock case are developed. Four-taxa rooted trees have two topologies-the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). We combine the ultrametric properties of molecular clock fork trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations for the fork. We finally employ symbolic algebra software to obtain closed formanalytic solutions (expressed parametrically in the input data). In general, four-taxa trees can have multiple ML points. In contrast, we can now prove that each fork topology has a unique(local and global) ML point.

  3. Replication fork stability confers chemoresistance in BRCA-deficient cells.

    PubMed

    Ray Chaudhuri, Arnab; Callen, Elsa; Ding, Xia; Gogola, Ewa; Duarte, Alexandra A; Lee, Ji-Eun; Wong, Nancy; Lafarga, Vanessa; Calvo, Jennifer A; Panzarino, Nicholas J; John, Sam; Day, Amanda; Crespo, Anna Vidal; Shen, Binghui; Starnes, Linda M; de Ruiter, Julian R; Daniel, Jeremy A; Konstantinopoulos, Panagiotis A; Cortez, David; Cantor, Sharon B; Fernandez-Capetillo, Oscar; Ge, Kai; Jonkers, Jos; Rottenberg, Sven; Sharan, Shyam K; Nussenzweig, André

    2016-07-21

    Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance. PMID:27443740

  4. Split quartz tuning fork sensors for enhanced sensitivity force detection

    NASA Astrophysics Data System (ADS)

    Labardi, M.; Lucchesi, M.

    2015-03-01

    Quartz tuning forks (TFs) are often employed in dynamic-mode atomic force microscopy (AFM) as piezoelectric force sensors, to replace the usual AFM microcantilevers, especially in ultra-high vacuum or cryogenic environments. A sharp tip is attached to one of the fork prongs, to obtain atomic scale AFM resolution. We devise a novel TF design by splitting the electrodes of its two prongs, which are produced at the factory as connected to each other, in order to address each of them separately. In such way, the motion of the probe tip can be unambiguously measured, irrespective of the motion of the other prong, which conversely influences its measurement in standard TFs. Furthermore, attachment of the probe tip dramatically spoils the oscillator Q-factor, as it unbalances the two prongs of the TF, with consequent dissipation of energy through the fork holder, due to the motion of the center of mass (CM) of the system. The possibility to independently drive the two prongs of the split TF gives the opportunity to rebalance them just by electrical means, thereby restoring the original Q-factor, by stopping the CM motion. By modeling the split TF as a three-mass, four-spring system, its behavior can be accurately described. Our model is used to explore alternative operation modes with enhanced sensitivity to applied forces.

  5. Mitochondrial transcription termination factor 1 directs polar replication fork pausing.

    PubMed

    Shi, Yonghong; Posse, Viktor; Zhu, Xuefeng; Hyvärinen, Anne K; Jacobs, Howard T; Falkenberg, Maria; Gustafsson, Claes M

    2016-07-01

    During replication of nuclear ribosomal DNA (rDNA), clashes with the transcription apparatus can cause replication fork collapse and genomic instability. To avoid this problem, a replication fork barrier protein is situated downstream of rDNA, there preventing replication in the direction opposite rDNA transcription. A potential candidate for a similar function in mitochondria is the mitochondrial transcription termination factor 1 (MTERF1, also denoted mTERF), which binds to a sequence just downstream of the ribosomal transcription unit. Previous studies have shown that MTERF1 prevents antisense transcription over the ribosomal RNA genes, a process which we here show to be independent of the transcription elongation factor TEFM. Importantly, we now demonstrate that MTERF1 arrests mitochondrial DNA (mtDNA) replication with distinct polarity. The effect is explained by the ability of MTERF1 to act as a directional contrahelicase, blocking mtDNA unwinding by the mitochondrial helicase TWINKLE. This conclusion is also supported by in vivo evidence that MTERF1 stimulates TWINKLE pausing. We conclude that MTERF1 can direct polar replication fork arrest in mammalian mitochondria. PMID:27112570

  6. Protection or resection: BOD1L as a novel replication fork protection factor.

    PubMed

    Higgs, Martin R; Stewart, Grant S

    2016-01-01

    Replication stress, defined as the slowing or stalling of cellular DNA replication forks, represents a serious threat to genome stability. Numerous cellular pathways protect against replication stress and maintain genomic integrity. Among these, the Fanconi Anemia/homologous recombination pathways are critical for recognizing and repairing stalled replication forks. Members of these pathways play a vital role in protecting damaged forks from uncontrolled attack from cellular nucleases, which would otherwise render these irreparable. Recent studies have begun to shed light on the protective factors necessary to suppress nucleolytic over-processing of nascent DNA, and on the different cellular nucleases involved. Here, we review our recent identification of a novel fork protection factor, BOD1L, and discuss its role in preventing the processing of stalled replication forks within the context of current knowledge of the replication fork 'protectosome'.

  7. RecA protein promotes the regression of stalled replication forks in vitro.

    PubMed

    Robu, M E; Inman, R B; Cox, M M

    2001-07-17

    Replication forks are halted by many types of DNA damage. At the site of a leading-strand DNA lesion, forks may stall and leave the lesion in a single-strand gap. Fork regression is the first step in several proposed pathways that permit repair without generating a double-strand break. Using model DNA substrates designed to mimic one of the known structures of a fork stalled at a leading-strand lesion, we show here that RecA protein of Escherichia coli will promote a fork regression reaction in vitro. The regression process exhibits an absolute requirement for ATP hydrolysis and is enhanced when dATP replaces ATP. The reaction is not affected by the inclusion of the RecO and R proteins. We present this reaction as one of several potential RecA protein roles in the repair of stalled and/or collapsed replication forks in bacteria. PMID:11459955

  8. Coordinated protein and DNA remodeling by human HLTF on stalled replication fork.

    PubMed

    Achar, Yathish Jagadheesh; Balogh, David; Haracska, Lajos

    2011-08-23

    Human helicase-like transcription factor (HLTF) exhibits ubiquitin ligase activity for proliferating cell nuclear antigen (PCNA) polyubiquitylation as well as double-stranded DNA translocase activity for remodeling stalled replication fork by fork reversal, which can support damage bypass by template switching. However, a stalled replication fork is surrounded by various DNA-binding proteins which can inhibit the access of damage bypass players, and it is unknown how these proteins become displaced. Here we reveal that HLTF has an ATP hydrolysis-dependent protein remodeling activity, by which it can remove proteins bound to the replication fork. Moreover, we demonstrate that HLTF can displace a broad spectrum of proteins such as replication protein A (RPA), PCNA, and replication factor C (RFC), thereby providing the first example for a protein clearing activity at the stalled replication fork. Our findings clarify how remodeling of a stalled replication fork can occur if it is engaged in interactions with masses of proteins.

  9. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North at Fargo and Grand Forks, North Dakota, 2003-12

    USGS Publications Warehouse

    Galloway, Joel M.

    2014-01-01

    The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time

  10. Calibrating a tuning fork for use as a scanning probe microscope force sensor

    SciTech Connect

    Qin Yexian; Reifenberger, R.

    2007-06-15

    Quartz tuning forks mounted with sharp tips provide an alternate method to silicon microcantilevers for probing the tip-substrate interaction in scanning probe microscopy. The high quality factor and stable resonant frequency of the tuning fork allow accurate measurements of small shifts in the resonant frequency as the tip approaches the substrate. To permit an accurate measure of surface interaction forces, the electrical and piezoelectromechanical properties of a tuning fork have been characterized using a fiber optical interferometer.

  11. Recovery of arrested replication forks by homologous recombination is error-prone.

    PubMed

    Iraqui, Ismail; Chekkal, Yasmina; Jmari, Nada; Pietrobon, Violena; Fréon, Karine; Costes, Audrey; Lambert, Sarah A E

    2012-01-01

    Homologous recombination is a universal mechanism that allows repair of DNA and provides support for DNA replication. Homologous recombination is therefore a major pathway that suppresses non-homology-mediated genome instability. Here, we report that recovery of impeded replication forks by homologous recombination is error-prone. Using a fork-arrest-based assay in fission yeast, we demonstrate that a single collapsed fork can cause mutations and large-scale genomic changes, including deletions and translocations. Fork-arrest-induced gross chromosomal rearrangements are mediated by inappropriate ectopic recombination events at the site of collapsed forks. Inverted repeats near the site of fork collapse stimulate large-scale genomic changes up to 1,500 times over spontaneous events. We also show that the high accuracy of DNA replication during S-phase is impaired by impediments to fork progression, since fork-arrest-induced mutation is due to erroneous DNA synthesis during recovery of replication forks. The mutations caused are small insertions/duplications between short tandem repeats (micro-homology) indicative of replication slippage. Our data establish that collapsed forks, but not stalled forks, recovered by homologous recombination are prone to replication slippage. The inaccuracy of DNA synthesis does not rely on PCNA ubiquitination or trans-lesion-synthesis DNA polymerases, and it is not counteracted by mismatch repair. We propose that deletions/insertions, mediated by micro-homology, leading to copy number variations during replication stress may arise by progression of error-prone replication forks restarted by homologous recombination. PMID:23093942

  12. Nature's complex flume - Using a diagnostic state-and-transition framework to understand post-restoration channel adjustment of the Clark Fork River, Montana

    NASA Astrophysics Data System (ADS)

    Van Dyke, Chris

    2016-02-01

    There is an imperfect symmetry between the patterns of channel evolution observed during laboratory flume experiments and those which materialize in rivers exposed to ambient environmental conditions that produce hydrogeomorphic fluxes which are more complex, contingent, and unpredictable. One strategy to improve our understanding of short- to medium-term channel evolution is to study landscapes that have undergone significant disturbance and have had their biogeomorphic templates reset to a known condition - in effect, creating a flume in nature. This study adopts a diagnostic state-and-transition framework to narrate and document baseline hypotheses for the potential evolutionary trajectories Clark Fork River, near Milltown, Montana. Following dam removal and remediation, a 5-km stretch of the Clark Fork River and its adjoining floodplain were reconstructed. Since flow was introduced to the newly constructed channel in December 2010, complex evolutionary trajectories have been observed on the Clark Fork's mainstem, its secondary channels, and floodplain. Focusing particularly on the river's secondary channels, this paper develops a typology of channel states that have been observed and demonstrates that multiple adjustment trajectories have materialized, sometimes within the same channel. A diagnostic state-and-transition framework offers a parsimonious strategy to quantitatively or qualitatively anticipate the influence of water, sediment, and ecological fluxes on channel evolution at the basin, reach, or segment scale. It provides environmental agencies with a robust method to devise spatially explicit scenario-based management plans for rivers in a variety of geomorphic settings.

  13. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall.

    PubMed

    Yu, Chuanhe; Gan, Haiyun; Han, Junhong; Zhou, Zhi-Xiong; Jia, Shaodong; Chabes, Andrei; Farrugia, Gianrico; Ordog, Tamas; Zhang, Zhiguo

    2014-11-20

    In eukaryotic cells, DNA replication proceeds with continuous synthesis of leading-strand DNA and discontinuous synthesis of lagging-strand DNA. Here we describe a method, eSPAN (enrichment and sequencing of protein-associated nascent DNA), which reveals the genome-wide association of proteins with leading and lagging strands of DNA replication forks. Using this approach in budding yeast, we confirm the strand specificities of DNA polymerases delta and epsilon and show that the PCNA clamp is enriched at lagging strands compared with leading-strand replication. Surprisingly, at stalled forks, PCNA is unloaded specifically from lagging strands. PCNA unloading depends on the Elg1-containing alternative RFC complex, ubiquitination of PCNA, and the checkpoint kinases Mec1 and Rad53. Cells deficient in PCNA unloading exhibit increased chromosome breaks. Our studies provide a tool for studying replication-related processes and reveal a mechanism whereby checkpoint kinases regulate strand-specific unloading of PCNA from stalled replication forks to maintain genome stability.

  14. Linking hyporheic flow and nitrogen cycling near the Willamette River - A large river in Oregon, USA

    USGS Publications Warehouse

    Hinkle, S.R.; Duff, J.H.; Triska, F.J.; Laenen, A.; Gates, E.B.; Bencala, K.E.; Wentz, D.A.; Silva, S.R.

    2001-01-01

    Several approaches were used to characterize ground water/surface water interactions near the Willamette River - A large (ninth order) river in Oregon, USA. A series of potentiometric surface maps demonstrated the presence of highly dynamic hydraulic gradients between rivers and the adjacent aquifer. Hyporheic zone gradients extended on the order of hundreds of meters. River gains and losses at the river stretch scale (tens of kilometers) were consistent with fluxes implied by the potentiometric surface maps, and apparently reflect regional ground water/surface water interactions. Gains and losses of up to 5-10% of streamflow were observed at this scale. On the river reach scale (1-2 km), gains and losses on the order of 5% of streamflow were interpreted as representing primarily local hyporheic exchange. Isotopic and chemical data collected from shallow hyporheic zone wells demonstrated interaction between regional ground water and river water. The origin of sampled hyporheic zone water ranged from a mixture dominated by regional ground water to water containing 100% river water. The common assumption that ground and river water mix primarily in the river channel is not applicable in this system. Isotopic and chemical data also indicated that significant (nearly complete) vegetative nitrate uptake and/or nitrate reduction occurred in water from 4 of 12 hyporheic zone sites. In these cases, it was primarily nitrate transported to the hyporheic zone in regional ground water that was removed from solution. Isotopes of water and nitrate indicated that hyporheic zone water sampled at two sites was composed of water originating as river water and demonstrated that significant vegetative nitrate uptake and nitrate reduction occurred along these hyporheic zone flowpaths. Thus, the hyporheic zone may, in some instances, serve to remove nitrate from river water. Additional investigations with chemical tools and microbial enzyme assays were conducted at one hyporheic site. A

  15. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart.

    PubMed

    Somyajit, Kumar; Saxena, Sneha; Babu, Sharath; Mishra, Anup; Nagaraju, Ganesh

    2015-11-16

    Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.

  16. THE FORK AND THE KINASE: A DNA REPLICATION TALE FROM A CHK1 PERSPECTIVE

    PubMed Central

    González Besteiro, Marina A.; Gottifredi, Vanesa

    2014-01-01

    Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. The checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged-DNA. Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Such findings unveil a puzzling connection between Chk1 and DNA-lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, the multifaceted and versatile functions of Chk1 at ongoing forks and replication origins determine the extent and quality of the cellular response to replication stress. PMID:25795119

  17. Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase.

    PubMed

    Petermann, Eva; Maya-Mendoza, Apolinar; Zachos, George; Gillespie, David A F; Jackson, Dean A; Caldecott, Keith W

    2006-04-01

    Chk1 protein kinase maintains replication fork stability in metazoan cells in response to DNA damage and DNA replication inhibitors. Here, we have employed DNA fiber labeling to quantify, for the first time, the extent to which Chk1 maintains global replication fork rates during normal vertebrate S phase. We report that replication fork rates in Chk1(-/-) chicken DT40 cells are on average half of those observed with wild-type cells. Similar results were observed if Chk1 was inhibited or depleted in wild-type DT40 cells or HeLa cells by incubation with Chk1 inhibitor or small interfering RNA. In addition, reduced rates of fork extension were observed with permeabilized Chk1(-/-) cells in vitro. The requirement for Chk1 for high fork rates during normal S phase was not to suppress promiscuous homologous recombination at replication forks, because inhibition of Chk1 similarly slowed fork progression in XRCC3(-/-) DT40 cells. Rather, we observed an increased number of replication fibers in Chk1(-/-) cells in which the nascent strand is single-stranded, supporting the idea that slow global fork rates in unperturbed Chk1(-/-) cells are associated with the accumulation of aberrant replication fork structures.

  18. Baseline channel morphology and bank erosion inventory of South Fork Campbell Creek at Campbell Tract, Anchorage, Alaska, 1999 and 2000

    USGS Publications Warehouse

    Curran, Janet H.

    2001-01-01

    South Fork Campbell Creek drains largely undeveloped land in Anchorage, Alaska, but supports heavy use near the Bureau of Land Management (BLM) Campbell Tract facility for recreation and environmental education. To help assess the impacts of human activities in the basin on biological communities, particularly aquatic and terrestrial biota, morphological changes to the channel bed and banks were monitored for 2 years. Erosion conditions and rates of change were measured and 11 transects were surveyed in three reaches of Campbell Creek near the BLM Campbell Creek Science Center in 1999. Repeat measurements at these 33 transects in 2000 documented noticeable differences between horizontal or vertical channel position at eight transects. Repeat measurements of 51 erosion pins at the survey transects provided details of bank erosion between the 2 years. Annual erosion rates at the erosion pins ranged from 0.81 foot per year of erosion to 0.16 foot per year of deposition.

  19. North Fork John Day Dredge Tailings Restoration Project Final Report 1997-2002.

    SciTech Connect

    Sanchez, John A.

    2002-12-01

    The USDA Forest Service (USFS) and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) worked together to rehabilitate 2.1 miles of Clear Creek floodplain, a tributary of the North Fork John Day River Basin. Dredge tailing were deposited from mining operations on Clear Creek's floodplain from the 1930's to the 1950's. These tailing confined the stream channel and degraded the floodplain. The work was completed by moving dredge tailing piles adjacent to the Clear Creek channel, using track-mounted excavators and dump trucks. A caterpillar tractor was used to contour the material placed outside the immediate floodplain, blending it into the hillside. The restored floodplain was very near channel bankfull level following excavation and contoured to accept future flood flows. Monitoring was initiated through pre and post-project photo points and cross-section measurements. Work was completed in two efforts. In 1997 and 1998 floodplain restoration was adjacent to the reconstruction of Road 13 from the junction with Road 10 from Clear Creek River Mile 1.9 to 3.1 for a distance of 1.2 miles. In 1999 the Environmental Assessment for Lower Clear Creek--Granite Creek Floodplain Restoration Project was completed for work proposed on Clear Creek from the mouth up to River mile 1.9 and the Granite Creek floodplain from River miles 5.9 to 7.7. Restoration proposed in the 1999 Environmental Assessment is the subject of this report.

  20. Oxbow Conservation Area; Middle Fork John Day River, Annual Report 2003-2004.

    SciTech Connect

    Cochran, Brian

    2004-02-01

    In early 2001, the Confederated Tribes of Warm Springs, through their John Day Basin Office, concluded the acquisition of the Oxbow Ranch, now know as the Oxbow Conservation Area (OCA). Under a memorandum of agreement with the Bonneville Power Administration (BPA), the Tribes are required to provided BPA an 'annual written report generally describing the real property interests in the Project, HEP analyses undertaken or in progress, and management activities undertaken or in progress'. The project during 2003 was crippled due to the aftermath of the BPA budget crisis. Some objectives were not completed during the first half of this contract because of limited funds in the 2003 fiscal year. The success of this property purchase can be seen on a daily basis. Water rights were utilized only in the early, high water season and only from diversion points with functional fish screens. After July 1, all of the OCA water rights were put instream. Riparian fences on the river, Ruby and Granite Boulder creeks continued to promote important vegetation to provide shade and bank stabilization. Hundreds of willow, dogwood, Douglas-fir, and cottonwood were planted along the Middle Fork John Day River. Livestock grazing on the property was carefully managed to ensure the protection of fish and wildlife habitat, while promoting meadow vigor and producing revenue for property taxes. Monitoring of property populations, resources, and management activities continued in 2003 to build a database for future management of this and other properties in the region.

  1. Drainage areas in the Vermillion River basin in eastern South Dakota

    USGS Publications Warehouse

    Benson, Rick D.; Freese, M.D.; Amundson, Frank D.

    1988-01-01

    Above-normal precipitation in the northern portion of the Vermillion River basin from 1982 through 1987 caused substantial rises in lake levels in the Lake Thompson chain of lakes, resulting in discharge from Lake Thompson to the East Fork Vermillion River. Prior to 1986, the Lake Thompson chain of lakes was thought to be a noncontributing portion of the Vermillion River basin. To better understand surface drainage, the map delineates all named stream basins, and all unnamed basins larger than approximately 10 sq mi within the Vermillion River basin in South Dakota and lists by stream name the area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey 7 1/2 minute topographic maps. Two tables list areas of drainage basins and reaches, as well as drainage areas above gaging stations. (USGS)

  2. BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks.

    PubMed

    Willis, Nicholas A; Chandramouly, Gurushankar; Huang, Bin; Kwok, Amy; Follonier, Cindy; Deng, Chuxia; Scully, Ralph

    2014-06-26

    Replication fork stalling can promote genomic instability, predisposing to cancer and other diseases. Stalled replication forks may be processed by sister chromatid recombination (SCR), generating error-free or error-prone homologous recombination (HR) outcomes. In mammalian cells, a long-standing hypothesis proposes that the major hereditary breast/ovarian cancer predisposition gene products, BRCA1 and BRCA2, control HR/SCR at stalled replication forks. Although BRCA1 and BRCA2 affect replication fork processing, direct evidence that BRCA gene products regulate homologous recombination at stalled chromosomal replication forks is lacking, due to a dearth of tools for studying this process. Here we report that the Escherichia coli Tus/Ter complex can be engineered to induce site-specific replication fork stalling and chromosomal HR/SCR in mouse cells. Tus/Ter-induced homologous recombination entails processing of bidirectionally arrested forks. We find that the Brca1 carboxy (C)-terminal tandem BRCT repeat and regions of Brca1 encoded by exon 11-two Brca1 elements implicated in tumour suppression-control Tus/Ter-induced homologous recombination. Inactivation of either Brca1 or Brca2 increases the absolute frequency of 'long-tract' gene conversions at Tus/Ter-stalled forks, an outcome not observed in response to a site-specific endonuclease-mediated chromosomal double-strand break. Therefore, homologous recombination at stalled forks is regulated differently from homologous recombination at double-strand breaks arising independently of a replication fork. We propose that aberrant long-tract homologous recombination at stalled replication forks contributes to genomic instability and breast/ovarian cancer predisposition in BRCA mutant cells.

  3. Amphibian occurrence and aquatic invaders in a changing landscape: Implications for wetland mitigation in the Willamette Valley, Oregon

    USGS Publications Warehouse

    Pearl, Christopher A.; Adams, Michael J.; Leuthold, N.; Bury, R. Bruce

    2005-01-01

    Despite concern about the conservation status of amphibians in western North America, few field studies have documented occurrence patterns of amphibians relative to potential stressors. We surveyed wetland fauna in Oregon's Willamette Valley and used an information theoretic approach (AIC) to rank the associations between native amphibian breeding occurrence and wetland characteristics, non-native aquatic predators, and landscape characteristics in a mixed urban-agricultural landscape. Best predictors varied among the five native amphibians and were generally consistent with life history differences. Pacific tree frog (Pseudacris regilla) and long-toed salamander (Ambystoma macrodactylum) occurrence was best predicted by the absence of non-native fish. Northern red-legged frog (Rana a. aurora) and northwestern salamander (Ambystoma gracile) were most strongly related to wetland vegetative characteristics. The occurrence of rough-skinned newts (Taricha granulosa), a migratory species that makes extensive use of terrestrial habitats, was best predicted by greater forest cover within 1 km. The absence of non-native fish was a strong predictor of occurrence for four of the five native species. In contrast, amphibians were not strongly related to native fish presence. We found little evidence supporting negative effects of the presence of breeding populations of bullfrog (Rana catesbeiana) on any native species. Only the two Ambystoma salamanders were associated with wetland permanence. Northwestern salamanders (which usually have a multi-year larval stage) were associated with permanent waters, while long-toed salamanders were associated with temporary wetlands. Although all the species make some use of upland habitats, only one (rough-skinned newt) was strongly associated with surrounding landscape conditions. Instead, our analysis suggests that within-wetland characteristics best predict amphibian occurrence in this region. We recommend that wetland preservation and

  4. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair.

    PubMed

    Petermann, Eva; Orta, Manuel Luís; Issaeva, Natalia; Schultz, Niklas; Helleday, Thomas

    2010-02-26

    Faithful DNA replication is essential to all life. Hydroxyurea (HU) depletes the cells of dNTPs, which initially results in stalled replication forks that, after prolonged treatment, collapse into DSBs. Here, we report that stalled replication forks are efficiently restarted in a RAD51-dependent process that does not trigger homologous recombination (HR). The XRCC3 protein, which is required for RAD51 foci formation, is also required for replication restart of HU-stalled forks, suggesting that RAD51-mediated strand invasion supports fork restart. In contrast, replication forks collapsed by prolonged replication blocks do not restart, and global replication is rescued by new origin firing. We find that RAD51-dependent HR is triggered for repair of collapsed replication forks, without apparent restart. In conclusion, our data suggest that restart of stalled replication forks and HR repair of collapsed replication forks require two distinct RAD51-mediated pathways.

  5. 77 FR 42761 - Final Environmental Impact Statement for the Oil and Gas Management Plan at Big South Fork...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Fork National River and Recreation Area and Obed Wild and Scenic River, Tennessee and Kentucky AGENCY... Blount, Big South Fork National River ] and Recreation Area and Obed Wild and Scenic River Chief...

  6. Acoustic Resonances in Helium Fluids Excited by Quartz Tuning Forks

    NASA Astrophysics Data System (ADS)

    Salmela, A.; Tuoriniemi, J.; Rysti, J.

    2011-03-01

    Ordinary quartz tuning fork resonators, operated at about 30 or 200 kHz frequency, couple to acoustic first and second sound resonances in helium fluids under certain conditions. We have studied acoustic resonances in supercritical 4He, normal and superfluid 4He, and in isotopic mixtures of helium. Suggestive temperature, pressure, and concentration dependences are given. Furthermore, we propose a thermometric reference point device based on second sound resonances in helium mixtures, and indicate possible differences in the nature of second sound resonances in superfluid 4He and helium mixtures.

  7. MIDDLE FORK OF THE JUDITH RIVER WILDERNESS STUDY AREA, MONTANA.

    USGS Publications Warehouse

    Reynolds, Mitchell W.; Hamilton, Michael

    1984-01-01

    The Middle Fork of the Judith River Wilderness Study Area in Montana has several prospects containing local small inferred resources and several exposed mineral occurrences bearing silver, lead, copper, and gold along its north and west edges with no identified resource potential. Geologic, geophysical, and geochemical studies, conducted to appraise the mineral resources of the study area, identified no other anomalous concentrations of metallic elements. A gem-quality sapphire resource, present near the east boundary, cannot be identified within the study area. The area holds little promise for the occurrence of other mineral or energy resources.

  8. BLACK FORK MOUNTAIN ROADLESS AREA, ARAKANSAS AND OKLAHOMA.

    USGS Publications Warehouse

    Miller, Mary H.

    1984-01-01

    Black Fork Mountain Roadless Area covers about 21 sq mi in the Ouachita National Forest in Polk County, Arkansas and LeFlore County, Oklahoma. On the basis of a mineral survey the area has little promise for the occurrence of metallic mineral resources. Stone and sand and gravel suitable for construction purposes occur in the Jackfork Sandstone and the Stanley Shale which also occur outside the roadless area. Although the potential for gas and oil is unknown and no resource potential was identified, some investigators believe that there is a possibility for the occurrence of gas and oil in the roadless area.

  9. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia

    USGS Publications Warehouse

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.

    2006-01-01

    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  10. UV stalled replication forks restart by re-priming in human fibroblasts.

    PubMed

    Elvers, Ingegerd; Johansson, Fredrik; Groth, Petra; Erixon, Klaus; Helleday, Thomas

    2011-09-01

    Restarting stalled replication forks is vital to avoid fatal replication errors. Previously, it was demonstrated that hydroxyurea-stalled replication forks rescue replication either by an active restart mechanism or by new origin firing. To our surprise, using the DNA fibre assay, we only detect a slightly reduced fork speed on a UV-damaged template during the first hour after UV exposure, and no evidence for persistent replication fork arrest. Interestingly, no evidence for persistent UV-induced fork stalling was observed even in translesion synthesis defective, Polη(mut) cells. In contrast, using an assay to measure DNA molecule elongation at the fork, we observe that continuous DNA elongation is severely blocked by UV irradiation, particularly in UV-damaged Polη(mut) cells. In conclusion, our data suggest that UV-blocked replication forks restart effectively through re-priming past the lesion, leaving only a small gap opposite the lesion. This allows continuation of replication on damaged DNA. If left unfilled, the gaps may collapse into DNA double-strand breaks that are repaired by a recombination pathway, similar to the fate of replication forks collapsed after hydroxyurea treatment.

  11. 33 CFR 208.26 - Altus Dam and Reservoir, North Fork Red River, Okla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Altus Dam and Reservoir, North Fork Red River, Okla. 208.26 Section 208.26 Navigation and Navigable Waters CORPS OF ENGINEERS..., North Fork Red River, Okla. The Bureau of Reclamation, or its designated agent, shall operate the...

  12. 33 CFR 208.26 - Altus Dam and Reservoir, North Fork Red River, Okla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Altus Dam and Reservoir, North Fork Red River, Okla. 208.26 Section 208.26 Navigation and Navigable Waters CORPS OF ENGINEERS..., North Fork Red River, Okla. The Bureau of Reclamation, or its designated agent, shall operate the...

  13. 33 CFR 208.26 - Altus Dam and Reservoir, North Fork Red River, Okla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Altus Dam and Reservoir, North Fork Red River, Okla. 208.26 Section 208.26 Navigation and Navigable Waters CORPS OF ENGINEERS..., North Fork Red River, Okla. The Bureau of Reclamation, or its designated agent, shall operate the...

  14. Analysis of protein dynamics at active, stalled, and collapsed replication forks.

    PubMed

    Sirbu, Bianca M; Couch, Frank B; Feigerle, Jordan T; Bhaskara, Srividya; Hiebert, Scott W; Cortez, David

    2011-06-15

    Successful DNA replication and packaging of newly synthesized DNA into chromatin are essential to maintain genome integrity. Defects in the DNA template challenge genetic and epigenetic inheritance. Unfortunately, tracking DNA damage responses (DDRs), histone deposition, and chromatin maturation at replication forks is difficult in mammalian cells. Here we describe a technology called iPOND (isolation of proteins on nascent DNA) to analyze proteins at active and damaged replication forks at high resolution. Using this methodology, we define the timing of histone deposition and chromatin maturation. Class 1 histone deacetylases are enriched at replisomes and remove predeposition marks on histone H4. Chromatin maturation continues even when decoupled from replisome movement. Furthermore, fork stalling causes changes in the recruitment and phosphorylation of proteins at the damaged fork. Checkpoint kinases catalyze H2AX phosphorylation, which spreads from the stalled fork to include a large chromatin domain even prior to fork collapse and double-strand break formation. Finally, we demonstrate a switch in the DDR at persistently stalled forks that includes MRE11-dependent RAD51 assembly. These data reveal a dynamic recruitment of proteins and post-translational modifications at damaged forks and surrounding chromatin. Furthermore, our studies establish iPOND as a useful methodology to study DNA replication and chromatin maturation.

  15. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  16. Origin & Evolution of the Grand Forks Human Nutrition Research Center, 1970-90

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the early 1960s William E Cornatzer, MD, PhD, suggested the need for increased USDA research concerning human nutrition, and creation of the Grand Forks Human Nutrition Laboratory (Grand Forks Human Nutrition Research Center). He shared ideas with Senator Milton R. Young of North Dakota, who requ...

  17. 33 CFR 208.26 - Altus Dam and Reservoir, North Fork Red River, Okla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Altus Dam and Reservoir, North Fork Red River, Okla. 208.26 Section 208.26 Navigation and Navigable Waters CORPS OF ENGINEERS..., North Fork Red River, Okla. The Bureau of Reclamation, or its designated agent, shall operate the...

  18. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  19. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  20. Replication forks blocked by protein-DNA complexes have limited stability in vitro.

    PubMed

    McGlynn, Peter; Guy, Colin P

    2008-08-29

    There are many barriers that replication forks must overcome in order to duplicate a genome in vivo. These barriers include damage to the template DNA and proteins bound to this template. If replication is halted by such a block, then the block must be either removed or bypassed for replication to continue. If continuation of replication employs the original fork, avoiding the need to reload the replication apparatus, then the blocked replisome must retain functionality. In vivo studies of Escherichia coli replication forks suggest that replication forks blocked by protein-DNA complexes retain the ability to resume replication upon removal of the block for several hours. Here we tested the functional stability of replication forks reconstituted in vitro and blocked by lac repressor-operator complexes. Once a fork comes to a halt at such a block, it cannot continue subsequently to translocate through the block until addition of IPTG induces repressor dissociation. However, the ability to resume replication is retained only for 4-6 min regardless of the topological state of the template DNA. Comparison of our in vitro data with previous in vivo data suggests that either accessory factors that stabilise blocked forks are present in vivo or the apparent stability of blocked forks in vivo is due to continual reloading of the replication apparatus at the site of the block.