NASA Astrophysics Data System (ADS)
Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.
2008-09-01
The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).
NASA Astrophysics Data System (ADS)
Zhu, Shan; Hu, Huiping; Hu, Jiugang; Li, Jiyuan; Hu, Fang; Wang, Yongxi
2017-09-01
In continuation of our interest in the coordination structure of the nickel(II) complex with dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC), it was observed that the coordination sphere was completed by the coordination of two N atoms of pyridine rings in ligands 4PC and four water molecules while no direct interaction between Ni(II) and deprotonated HDNNS was observed. To investigate whether the coordination structure of nickel(II) with the synergistic mixture containing HDNNS and 4PC predominates or not in the copper(II) complex with the synergistic mixtures containing HDNNS and pyridinecarboxylate esters, a copper(II) synergist complex with n-hexyl 3-pyridinecarboxylate ester (L) and naphthalene-2-sulfonic acid (HNS, the short chain analogue of HDNNS), was prepared and studied by X-ray single crystal diffraction, elemental analyses and thermo gravimetric analysis (TGA), respectively. It was shown that the composition of the copper(II) synergist complex was [Cu(H2O)2(L)2(NS)2] and formed a trans-form distorted octahedral coordination structure. Two oxygen atoms of the two coordinated water molecules and two N atoms of the pyridine rings in the ligands L defined the basal plane while two O atoms from two sulfonate anions of the deprotonated HNS ligands occupied the apical positions by direct coordination with Cu(II), which was distinguished from the coordination structure of the nickel(II) synergist complex as reported in our previous work. In the crystal lattice, neighboring molecules [Cu(H2O)2L2(NS)2] were linked through the intermolecular hydrogen bonds between the hydrogen atoms of the coordinated water molecules and the oxygen atoms of the sulfonate anions in the copper(II) synergist complex to form a 2D plane. In order to bridge the gap between the solid state structure of the copper(II) synergist complex and the solution structure of the extracted copper(II) complex with the actual synergistic mixture containing L and HDNNS in the non-polar organic phase, the structures of the two copper(II) complexes were further investigated by Fourier transform infrared spectroscopy (FT-IR) and electrospray ionization mass spectrometry (ESI-MS), and the results indicated that the extracted copper(II) complex in the non-polar organic phase might possess a similar coordination structure as the copper(II) synergist complex.
Facial and meridional isomers of holmium-nitrate N-tert-butylacetamide complexes
NASA Astrophysics Data System (ADS)
Chang, Ye-Di; Xue, Jun-Hui; Kang, Xiao-Yan; Yang, Li-Min; Li, Wei-Hong; Xu, Yi-Zhuang; Zhao, Guo-Zhong; Zhang, Gao-Hui; Liu, Ke-Xin; Chen, Jia-Er; Wu, Jin-Guang
2018-06-01
Two Ho(C6H13NO)3(NO3)3 complexes formed by holmium nitrate and N-tert-butylacetamide (NtBA) (Ho-NtBA(I) in a Cc space group, and Ho-NtBA(II) in a P21/c space group) are reported here to investigate the coordination of lanthanide ions with amide groups. Using X-ray single crystal diffraction, FTIR, Raman, FIR and THz methods the structures of the two complexes were identified, in which Ho3+ is 9-coordinated to three carbonyl oxygen atoms provided by three NtBA ligands and three bidentate nitrate ions to form the "facial" and "meridional" isomers. Their FTIR and Raman spectra indicate the formation of two holmium complexes, the variations of NtBA after holmium coordination and the spectra are similar for the isomers in some extent. Their FIR and THz spectroscopic results show the coordination of holmium ions and THz maybe more sensitive to isomers. The results demonstrate the coordination behaviors of holmium ions and NtBA ligand.
NASA Astrophysics Data System (ADS)
Zheng, Xiang-Jun; Jin, Lin-Pei
2003-07-01
Three supramolecular lanthanum coordination compounds of amino acids, with 1,10-phenanthroline (phen), [La 2(APA) 6(phen) 2(H 2O) 2](ClO 4) 6(phen) 4·2H 2O ( 1), [La 2(ABA) 6(phen) 2(H 2O) 2](ClO 4) 6 (phen) 6·4H 2O ( 2), and [La 2(AHA) 4(phen) 4](ClO 4) 6(phen) 4·2H 2O ( 3) (APA=3-aminopropionic acid; ABA=4-aminobutanoic acid; AHA=6-aminohexanoic acid) were synthesized and characterized by single crystal X-ray diffraction. The results show that the three coordination compounds are all composed of binuclear coordination cations built by metal-ligand coordination. Through hydrogen bonding and π-π stacking interactions, complex 1 forms a two-dimensional supramolecular sheet structure extending in the (001) plane, complex 2 forms a three-dimensional supramolecular network with many cavities occupied by ClO 4- and lattice H 2O molecules, and complex 3 forms a two-dimensional supramolecular lamellar structure in the (100) plane.
Structural study of Cu(II) complexes with benzo[b]furancarboxylic acids
NASA Astrophysics Data System (ADS)
Kalinowska, Diana; Klepka, Marcin T.; Wolska, Anna; Drzewiecka-Antonik, Aleksandra; Ostrowska, Kinga; Struga, Marta
2017-11-01
Four Cu(II) complexes with 2- and 3-benzo[b]furancarboxylic acids have been synthesized and characterized using combination of two spectroscopic techniques. These techniques were: (i) FTIR and (ii) XAFS. FTIR analysis confirmed that complexes were formed and gave insight into identification of possible coordinating groups to the metallic center. XANES analysis indicated that the oxidation state of Cu is +2. EXAFS analysis allowed to identify that the first coordination sphere is formed by 4-5 oxygen atoms with the Cu-O distances around 2 Å. Combining these techniques it was possible to structurally describe novel Cu(II) complexes with benzo[b]furancarboxylic acids.
Peacock, D Matthew; Jiang, Quan; Hanley, Patrick S; Cundari, Thomas R; Hartwig, John F
2018-04-11
We report the formation of phosphine-ligated alkylpalladium(II) amido complexes that undergo reductive elimination to form alkyl-nitrogen bonds and a combined experimental and computational investigation of the factors controlling the rates of these reactions. The free-energy barriers to reductive elimination from t-Bu 3 P-ligated complexes were significantly lower (ca. 3 kcal/mol) than those previously reported from NHC-ligated complexes. The rates of reactions from complexes containing a series of electronically and sterically varied anilido ligands showed that the reductive elimination is slower from complexes of less electron-rich or more sterically hindered anilido ligands than from those containing more electron-rich and less hindered anilido ligands. Reductive elimination of alkylamines also occurred from complexes bearing bidentate P,O ligands. The rates of reactions of these four-coordinate complexes were slower than those for reactions of the three-coordinate, t-Bu 3 P-ligated complexes. The calculated pathway for reductive elimination from rigid, 2-methoxyarylphosphine-ligated complexes does not involve initial dissociation of the oxygen. Instead, reductive elimination is calculated to occur directly from the four-coordinate complex in concert with a lengthening of the Pd-O bond. To investigate this effect experimentally, a four-coordinate Pd(II) anilido complex containing a flexible, aliphatic linker between the P and O atoms was synthesized. Reductive elimination from this complex was faster than that from the analogous complex containing the more rigid, aryl linker. The flexible linker enables full dissociation of the ether ligand during reductive elimination, leading to the faster reaction of this complex.
Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment
DOE R&D Accomplishments Database
Marcus, R. A.
1964-01-01
In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.
Culkin, Darcy A; Hartwig, John F
2002-08-14
A new coupling process, the palladium-catalyzed alpha-arylation of nitriles, was developed by exploring the structure and reactivity of arylpalladium cyanoalkyl complexes. Complexes of 1,2-bis(diphenylphosphino)benzene (DPPBz), 1,1'-bis(di-i-propylphosphino)ferrocene (D(i)()PrPF), racemic-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), and diphenylethylphosphine (PPh(2)Et) were prepared. Coordination to palladium through the alpha-carbon was observed for DPPBz-ligated complexes and for complexes of primary and benzylic nitrile anions. However, the anion of isobutyronitrile was coordinated to palladium through the cyano-nitrogen when the complex was ligated by D(i)()PrPF. The isobutyronitrile anion displaced a phosphine ligand to form a C,N-bridged dimer when generated from PPh(2)Et-ligated palladium. These results suggest that the nitrile anion preferentially coordinates to palladium through the carbon atom in the absence of steric effects. Thermolysis of the arylpalladium cyanoalkyl complexes led to reductive elimination that formed alpha-aryl nitriles. The high yields and short reaction times observed for BINAP-ligated complexes suggested that BINAP-ligated palladium catalysts might be appropriate for the arylation of nitriles. Initial results on a palladium-catalyzed process for the direct coupling of aryl bromides and primary, benzylic, and secondary nitrile anions to form alpha-aryl nitriles in good yields are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritsan, N.P.; Usov, O.M.; Shokhirev, N.V.
1986-07-01
The optical and ESR spectra have been examined for complexes of Cu(I) with various radicals, which contain various numbers of Cl/sup -/ ions in the central-atom coordination sphere. The spin-Hamiltonian parameters have been determined for all these radical complexes, and the observed ESR spectra have been compared with those calculated with allowance for second-order effects. The observed values for the isotropic and anisotropic components of the HFI constant from the central ion have been used to estimate the contributions from the 4s and 3d/sup 2//sub z/ orbitals of the copper ion to the unpaired-electron MO. Quantum-chemical calculations have been performedmore » by the INDO method on the electronic structures and geometries of complexes formed by CH/sub 2/OH with Cu(I) for various Cl/sup -/ contents in the coordination sphere. The radical is coordinated by the ..pi.. orbital on the carbon atom, and the stabilities of the radical complexes decrease as the number of Cl/sup -/ ions in the coordination sphere increases. A geometry close to planar for the CuCl/sub 4//sup 3 -/ fragment in a complex containing four Cl/sup -/ ions.« less
The coordination chemistry of group 15 element ligand complexes--a developing area.
Scheer, Manfred
2008-09-07
A survey of the contemporary challenges of the field of unsubstituted group 15 element ligand complexes (excluding N) is given. The focus of the article is on the coordination chemistry behaviour of such E(n) ligand complexes. This field is subdivided into two areas of reactivity: E(n) ligand complexes with (i) noncoordinated Lewis-acidic cations and (ii) Lewis-acidic coordination compounds containing at least one permanently coordinating ligand. In the latter case, insoluble 1D and 2D polymers respectively are obtained; however, under special conditions soluble, spherical, fullerene-like giant molecules are formed. These nano-sized molecules are up to 2.4 nm in diameter and are able to encapsulate small molecules in their holes. In contrast, the first-mentioned field uses weakly coordinating anions to obtain readily soluble di- and polycationic products. These show depolymerisation tendencies in solution under the formation of oligomer-monomer equilibria and thus reveal dynamic supramolecular aggregation processes.
MacInnis, Morgan C; McDonald, Robert; Ferguson, Michael J; Tobisch, Sven; Turculet, Laura
2011-08-31
Unprecedented diamagnetic, four-coordinate, formally 14-electron (Cy-PSiP)RuX (Cy-PSiP = [κ(3)-(2-R(2)PC(6)H(4))(2)SiMe](-); X = amido, alkoxo) complexes that do not require agostic stabilization and that adopt a highly unusual trigonal pyramidal coordination geometry are reported. The tertiary silane [(2-Cy(2)PC(6)H(4))(2)SiMe]H ((Cy-PSiP)H) reacted with 0.5 [(p-cymene)RuCl(2)](2) in the presence of Et(3)N and PCy(3) to afford [(Cy-PSiP)RuCl](2) (1) in 74% yield. Treatment of 1 with KO(t)Bu led to the formation of (Cy-PSiP)RuO(t)Bu (2, 97% yield), which was crystallographically characterized and shown to adopt a trigonal pyramidal coordination geometry in the solid state. Treatment of 1 with NaN(SiMe(3))(2) led to the formation of (Cy-PSiP)RuN(SiMe(3))(2) (3, 70% yield), which was also found to adopt a trigonal pyramidal coordination geometry in the solid state. The related anilido complexes (Cy-PSiP)RuNH(2,6-R(2)C(6)H(3)) (4, R = H; 5, R = Me) were also prepared in >90% yields by treating 1 with LiNH(2,6-R(2)C(6)H(3)) (R = H, Me) reagents. The solid state structure of 5 indicates a monomeric trigonal pyramidal complex that features a C-H agostic interaction. Complexes 2 and 3 were found to react readily with 1 equiv of H(2)O to form the dimeric hydroxo-bridged complex [(Cy-PSiP)RuOH](2) (6, 94% yield), which was crystallographically characterized. Complexes 2 and 3 also reacted with 1 equiv of PhOH to form the new 18-electron η(5)-oxocyclohexadienyl complex (Cy-PSiP)Ru(η(5)-C(6)H(5)O) (7, 84% yield). Both amido and alkoxo (Cy-PSiP)RuX complexes reacted with H(3)B·NHRR' reagents to form bis(σ-B-H) complexes of the type (Cy-PSiP)RuH(η(2):η(2)-H(2)BNRR') (8, R = R' = H; 9, R = R' = Me; 10, R = H, R' = (t)Bu), which illustrates that such four-coordinate (Cy-PSiP)RuX (X = amido, alkoxo) complexes are able to undergo multiple E-H (E = main group element) bond activation steps. Computational methods were used to investigate structurally related PCP, PPP, PNP, and PSiP four-coordinate Ru complexes and confirmed the key role of the strongly σ-donating silyl group of the PSiP ligand set in enforcing the unusual trigonal pyramidal coordination geometry featured in complexes 2-5, thus substantiating a new strategy for the synthesis of low-coordinate Ru species. The mechanism of the activation of ammonia-borane by such low-coordinate (R-PSiP)RuX (X = amido, alkoxo) species was also studied computationally and was determined to proceed most likely in a stepwise fashion via intramolecular deprotonation of ammonia and subsequent borane B-H bond oxidative addition steps.
NASA Astrophysics Data System (ADS)
Jian, Fang-Fang; Xiao, Hai-Lian; Liu, Fa Qian
2006-12-01
Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN) 4Ni(Im) 3] ∞1, [Hg(SCN) 4Mn(Im) 2] ∞2, and [Hg(SCN) 4Cu(Me-Im) 2 Hg(SCN) 4Cu(Me-Im) 4] ∞3, (Im=imidazole, Me-Im= N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg⋯M⋯Hg chain ( M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN) 4] 2- anion connects three [Ni(Im) 3] 2+ using three SCN ligands giving rise to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN) 4] 2- and [Mn(Im) 2] 2+ to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu 2+ ion lie on octahedral environment.
NASA Astrophysics Data System (ADS)
Slathia, Goldy; Bamzai, K. K.
2017-11-01
Lanthanum chloride—thiourea—l tartaric acid coordinated complex was grown in the form of single crystal by slow evaporation of supersaturated solutions at room temperature. This coordinated complex crystallizes in orthorhombic crystal system having space group P nma. The crystallinity and purity was tested by powder x-ray diffraction. Fourier transform infra red and Raman spectroscopy analysis provide the evidences on structure and mode of coordination. The scanning electron microscopy (SEM) analysis shows the morphology evolution as brought by the increase in composition of lanthanum chloride. The band transitions due to C=O and C=S chromophores remain active in grown complexes and are recorded in the UV-vis optical spectrum. The thermal effects such as dehydration, melting and decomposition were observed by the thermogravimetric and differential thermo analytical (TGA/DTA) analysis. Electrical properties were studied by dielectric analysis in frequency range 100-30 MHz at various temperatures. Increase in values of dielectric constant was observed with change in lanthanum concentration in the coordinated complex.
NASA Astrophysics Data System (ADS)
Liu, Chong-Bo; Wen, Hui-Liang; Tan, Sheng-Shui; Yi, Xiu-Guang
2008-05-01
Two new lanthanide coordination polymers with mixed-carboxylates, [Ln(OX)(HAPA)(H 2O)] n[Ln = Eu ( 1), Ho ( 2); H 2APA = 5-aminoisophthalic acid; OX = oxalate] were obtained by hydrothermal reactions, and characterized by single crystal X-ray diffraction, elemental analysis and IR spectra. Complexes 1 and 2 are both 3-D supramolecular structure, in which lanthanide ions are bridged by oxalate and 5-aminoisophthalate ligands forming 2-D metal-organic framework, and 2-D networks are further architectured to form 3-D supramolecular structures by hydrogen bonds. The two carboxylate groups of H 2APA ligand are all deprotonated and exhibit chelating and bridging bidentate coordination modes, respectively, and the amino group in HAPA presents - NH3+ in the titled complexes. The thermogravimetric analysis was carried out to examine the thermal stability of the titled complexes. And the photoluminescence property of 1 was investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jing-Yun, E-mail: jyunwu@ncnu.edu.tw; Tsai, Chi-Jou; Chang, Ching-Yun
A Zn(II)−salicylaldimine complex [Zn(L{sup salpyca})(H{sub 2}O)]{sub n} (1, where H{sub 2}L{sup salpyca}=4-hydroxy-3-(((pyridin-2-yl)methylimino)methyl)benzoic acid), with a one-dimensional (1D) chain structure, has been successfully converted to a discrete Ni(II)−salicylaldimine complex [Ni(L{sup salpyca})(H{sub 2}O){sub 3}] (2) and an infinite Cu(II)−salicylaldimine complex ([Cu(L{sup salpyca})]·3H{sub 2}O){sub n} (3) through a metal-ion exchange induced structural transformation process. However, such processes do not worked by Mn(II) and Co(II) ions. Solid-state structure analyses reveal that complexes 1–3 form comparable coordinative or supramolecular zigzag chains running along the crystallographic [201] direction. In addition, replacing Zn(II) ion by Ni(II) and Cu(II) ions caused changes in coordination environment and sphere ofmore » metal centers, from a 5-coordinate intermediate geometry of square pyramidal and trigonal bipyramidal in 1 to a 6-coordinate octahedral geometry in 2, and to a 4-coordiante square planar geometry in 3. This study shows that metal-ion exchange serves as a very efficient way of forming new coordination complexes that may not be obtained through direct synthesis. - Graphical abstract: A Zn(II)−salicylaldimine zigzag chain has been successfully converted to a Ni(II)−salicylaldimine supramolecular zigzag chain and a Cu(II)−salicylaldimine coordinative zigzag chain through metal-ion exchange induced structural transformations, which is not achieved by Mn(II) and Co(II) ions.« less
Cole, Marcus L; Deacon, Glen B; Forsyth, Craig M; Junk, Peter C; Konstas, Kristina; Wang, Jun
2007-01-01
Reactions of a range of the readily prepared and sterically tunable N,N'-bis(aryl)formamidines with lanthanoid metals and bis(pentafluorophenyl)mercury (Hg(C6F5)2) in THF have given an extensive series of tris(formamidinato)lanthanoid(III) complexes, [Ln(Form)3(thf)n], namely [La(o-TolForm)3(thf)2], [Er(o-TolForm)3(thf)], [La(XylForm)3(thf)], [Sm(XylForm)3], [Ln(MesForm)3] (Ln=La, Nd, Sm and Yb), [Ln(EtForm)3] (Ln=La, Nd, Sm, Ho and Yb), and [Ln(o-PhPhForm)3] (Ln=La, Nd, Sm and Er). [For an explanation of the N,N'-bis(aryl)formamidinate abbreviations used see Scheme 1.] Analogous attempts to prepare [Yb(o-TolForm)3] by this method invariably yielded [{Yb(o-TolForm)2(mu-OH)(thf)}2], but [Yb(o-TolForm)3] was isolated from a metathesis synthesis. X-ray crystal structures show exclusively N,N'-chelation of the Form ligands and a gradation in coordination number with Ln3+ size and with Form ligand bulk. The largest ligands, MesForm, EtForm and o-PhPhForm give solely homoleptic complexes, the first two being six-coordinate, the last having an eta1-pi-Ar--Ln interaction. Reaction of lanthanoid elements and Hg(C6F5)2 with the still bulkier DippFormH in THF resulted in C--F activation and formation of [Ln(DippForm)2F(thf)] (Ln=La, Ce, Nd, Sm and Tm) complexes, and o-HC6F4O(CH2)4DippForm in which the formamidine is functionalised by a ring-opened THF that has trapped tetrafluorobenzyne. Analogous reactions between Ln metals, Hg(o-HC6F4)2 and DippFormH yielded [Ln(DippForm)2F(thf)] (Ln=La, Sm and Nd) and 3,4,5-F3C6H2O(CH2)4DippForm. X-ray crystal structures of the heteroleptic fluorides show six-coordinate monomers with two chelating DippForm ligands and cisoid fluoride and THF ligands in a trigonal prismatic array. The organometallic species [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] (Ln=Nd or Sm) are obtained from reaction of Nd metal, bis(phenylethynyl)mercury (Hg(C[triple chemical bond]CPh)2) and DippFormH, and the oxidation of [Sm(DippForm)2(thf)2] with Hg(C[triple chemical bond]CPh)2, respectively. The monomeric, six-coordinate, cisoid [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] complexes have trigonal prismatic geometries and rare (for Ln) terminal C[triple chemical bond]CPh groups with contrasting Ln--C[triple chemical bond]C angles (Ln=Nd, 170.9(4) degrees; Ln=Sm, 142.9(7) degrees). Their formation lends support to the view that [Ln(DippForm)2F(thf)] complexes arise from oxidative formation and C--F activation of [Ln(DippForm)2(C6F5)] intermediates.
NASA Astrophysics Data System (ADS)
Karadeniz, Şeyma; Ataol, Cigdem Yuksektepe; Şahin, Onur; İdil, Önder; Bati, Hümeyra
2018-06-01
A new aroylhydrazoneoxime, N'-((2Z, 3E)-3-(hydroxyimino)butan-2-ylidene)-2-phenylacetohydrazide ligand (LH2) and its Ni(II) and Co(II) complexes, have been synthesized and characterized by elemental and thermal analyses, IR and UV-vis spectroscopy, magnetic moment and X-ray diffraction. The antimicrobial activities of these compounds were tested by using minimal inhibitory concentration method (MIC). The ligand-containing aroylhydrazone and oxime groups and its Ni complex crystallize in the triclinic system and P 1 - space group, while its Co complex crystallizes in the monoclinic system and the C 2/c space group. X-ray results show that the ligand in the keto form is transformed into enolic form when it forms coordination. From elemental analysis data, the stoichiometry of Co(II) complex was found to be 1:2 (metal/ligand), but 1:1 for Ni(II). IR spectra indicate that the ligand acts as monoanionic NNO- tridentate and coordination takes place form through the oxime nitrogen, imine nitrogen, and enolate oxygen atoms.
The Behavior of the Ru-bda Water Oxidation Catalysts at Low Oxidation States.
Matheu, Roc; Ghaderian, Abolfazl; Francas, Laia; Chernev, Petko; Ertem, Mehmed; Benet-Buchholz, Jordi; Batista, Victor; Haumann, Michael; Gimbert-Suriñach, Carolina; Sala, Xavier; Llobet, Antoni
2018-06-13
The Ru complex [RuII(bda-κ-N2O2)(N-NH2)2], 1, (bda2- = (2,2'-bipyridine)-6,6'-dicarboxylate; N-NH2 = 4-(pyridin-4-yl)aniline) is used as a synthetic intermediate to prepare Ru-bda complexes that contain the NO+, acetonitrile (MeCN) or H2O ligands at oxidation states II and III. Complex 1 reacts with excess NO+ to form a Ru complex where the aryl amine ligands N-NH2 in 1 are transformed into diazonium salts (N-N2+ = 4-(pyridin-4-yl)benzenediazonium)) together with the formation of a new Ru-NO group at the equatorial zone, to generate [RuII(bda-κ-N2O)(NO)(N-N2)2]3+, 23+. Similarly, complex 1 can also react with a coordinating solvent, such as MeCN, at room temperature leading to complex [RuII(bda-κ-N2O)(MeCN)(N-NH2)2], 3. Finally in acidic aqueous solutions solvent water coordinates the Ru center forming {[RuII(bda-κ-(NO)3)(H2O)(N-NH3)2](H2O)n}2+, 42+, that is strongly hydrogen bonded with additional water molecules at the second coordination sphere. We have additionally characterized the one electron oxidized complex {[RuIII(bda-κ-(NO)3.5)(H2O)(N-NH3)2](H2O)n}3+, 53+. The coordination mode of the complexes has been studied both in the solid state and in solution through single-crystal XRD, X-ray absorption spectroscopy, variable-temperature NMR and DFT calculations. While the κ-N2O is the main coordination mode for 23+ and 3, an equilibrium that involves isomers with κ-N2O and κ-NO2 coordination modes and neighboring hydrogen bonded water molecules is observed for 42+ and 53+. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumakov, Yu. M.; Paholnitcaia, A. Yu.; Petrenko, P. A.
Two crystal modifications of nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper (I and II) and two modifications of chloro-(2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) copper (III and IV) have been synthesized and studied by X-ray diffraction. In structures I and II, the copper atoms coordinate a monodeprotonated molecule of the organic ligand, nitrate ions, and a water molecule. In crystals of I, the complexes are monomeric, whereas complexes II are linked via nitrate ions to form polymeric chains. In both structures the coordination polyhedron of the copper atom can be described as a distorted tetragonal bipyramid—(4 + 1 + 1) in I and (4 + 2) in II. These coordinationmore » polyherdra have different compositions. In structures III and IV, the metal atoms coordinate a monodeprotonated (2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazole molecule and chloride ions. In III the complex-forming ion has square-planar coordination geometry, whereas structure IV consists of centrosymmetric dimers with two bridging chlorine atoms. It was found that nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper possesses antitumor activity.« less
Martínez-Araya, Jorge Ignacio
2012-09-01
Caffeic acid (C(9)H(8)O(4)) and its conjugate base C(9)H(7)O(4) (-) (anionic form-known as caffeate) were analyzed computationally through the use of quantum chemistry to assess their intrinsic global and local reactivity using the tools of conceptual density functional theory. The anionic form was found to be better at coordinating the silver cation than caffeic acid thus suggesting the use of caffeate as a complexation agent. The complexation capability of caffeate was compared with that of some of the most common ligand agents used to coordinate silver cations. Local reactivity descriptors allowed identification of the preferred sites on caffeate for silver cation coordination thus generating a plausible silver complex. All silver complexes were analyzed thermodynamically considering interaction energies in both gas and aqueous phases; the complexation free energy in aqueous phase was also determined. These results suggest that more attention be paid to the caffeate anion and its derivatives because this work has shed new light on the behavior of this anion in the recovery of silver cations that could be exploited in silver mining processes in a environmentally friendly way.
Pan, Lin; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Zhu, Hailiang; Zhao, Xinlu; Qu, Dan; Niu, Fang; You, Zhonglu
2016-06-01
A series of new copper(II) complexes were prepared. They are [CuL(1)(NCS)] (1), [CuClL(1)]·CH3OH (2), [CuClL(2)]·CH3OH (3), [CuL(3)(NCS)]·CH3OH (4), [CuL(4)(NCS)]·0.4H2O (5), and [CuL(5)(bipy)] (6), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, 4-bromo-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide and 2-chloro-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, respectively, L(5) is the dianionic form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra and single crystal X-ray diffraction. The Cu atoms in complexes 1, 2, 3, 4 and 5 are coordinated by the NOO donor set of the aroylhydrazone ligands, and one Cl or thiocyanate N atom, forming square planar coordination. The Cu atom in complex 6 is in a square pyramidal coordination, with the NOO donor set of L(1), and one N atom of bipy defining the basal plane, and with the other N atom of bipy occupying the apical position. Complexes 1, 2, 3, 4 and 5 show effective urease inhibitory activities, with IC50 values of 5.14, 0.20, 4.06, 5.52 and 0.26μM, respectively. Complex 6 has very weak activity against urease, with IC50 value over 100μM. Molecular docking study of the complexes with the Helicobacter pylori urease was performed. The relationship between structures and urease inhibitory activities indicated that copper complexes with square planar coordination are better models for urease inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura
2013-01-01
A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.
Motokawa, Ryuhei; Kobayashi, Tohru; Endo, Hitoshi; ...
2015-10-26
This study uses small-angle neutron scattering (SANS) to elucidate the coordination structure of the complex of mono-acetyl-substituted dibenzo-20-crown-6-ether (ace-DB20C6) with cesium ions (Cs +). SANS profiles obtained for the complex of ace-DB20C6 and Cs + (ace-DB20C6/Cs) in deuterated dimethyl sulfoxide indicated that Cs + coordination resulted in a more compact structure than the free ace-DB20C6. The data were fitted well with SANS profiles calculated using Debye function for scattering on an absolute scattering intensity scale. For this theoretical calculation of the scattering profiles, the coordination structure proposed based on density functional theory calculation was used. Furthermore, we conclude that themore » SANS analysis experimentally supports the proposed coordination structure of ace-DB20C6/Cs and suggests the following: (1) the complex of ace-DB20C6 and Cs + is formed with an ace-DB20C6/Cs molar ratio of 1/1 and (2) the two benzene rings of ace-DB20C6 fold around Cs + above the center of the crown ether ring of ace-DB20C6.« less
Allen, James W A; Higham, Christopher W; Zajicek, Richard S; Watmough, Nicholas J; Ferguson, Stuart J
2002-01-01
The oxidized form of Paracoccus pantotrophus cytochrome cd(1) nitrite reductase, as isolated, has bis-histidinyl co-ordination of the c haem and His/Tyr co-ordination of the d(1) haem. On reduction, the haem co-ordinations change to His/Met and His/vacant respectively. If the latter form of the enzyme is reoxidized, a conformer is generated in which the ferric c haem is His/Met co-ordinated; this can revert to the 'as isolated' state of the enzyme over approx. 20 min at room temperature. However, addition of nitrite to the enzyme after a cycle of reduction and reoxidation produces a kinetically stable, all-ferric complex with nitrite bound to the d(1) haem and His/Met co-ordination of the c haem. This complex is catalytically active with the physiological electron donor protein pseudoazurin. The effective dissociation constant for nitrite is 2 mM. Evidence is presented that d(1) haem is optimized to bind nitrite, as opposed to other anions that are commonly good ligands to ferric haem. The all-ferric nitrite bound state of the enzyme could not be generated stoichiometrically by mixing nitrite with the 'as isolated' conformer of cytochrome cd(1) without redox cycling. PMID:12086580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motokawa, Ryuhei; Kobayashi, Tohru; Endo, Hitoshi
This study uses small-angle neutron scattering (SANS) to elucidate the coordination structure of the complex of mono-acetyl-substituted dibenzo-20-crown-6-ether (ace-DB20C6) with cesium ions (Cs +). SANS profiles obtained for the complex of ace-DB20C6 and Cs + (ace-DB20C6/Cs) in deuterated dimethyl sulfoxide indicated that Cs + coordination resulted in a more compact structure than the free ace-DB20C6. The data were fitted well with SANS profiles calculated using Debye function for scattering on an absolute scattering intensity scale. For this theoretical calculation of the scattering profiles, the coordination structure proposed based on density functional theory calculation was used. Furthermore, we conclude that themore » SANS analysis experimentally supports the proposed coordination structure of ace-DB20C6/Cs and suggests the following: (1) the complex of ace-DB20C6 and Cs + is formed with an ace-DB20C6/Cs molar ratio of 1/1 and (2) the two benzene rings of ace-DB20C6 fold around Cs + above the center of the crown ether ring of ace-DB20C6.« less
Chen, Wanmin; Tang, Xiaoliang; Dou, Wei; Ju, Zhenghua; Xu, Benhua; Xu, Wenxuan; Liu, Weisheng
2016-04-14
A semi-rigid ligand could capture effectively Yb(3+) ions to form a stable Yb(3+) complex and provide a potential cavity to accommodate alkali metal ions. Only K(+) ions could induce the Yb(3+) complex to form a 1D coordination polymer and promote the in situ formation of an NIR membrane coated with bigger Yb(3+) complex crystallites under mild conditions.
Synthesis, structures and properties of three copper complexes with dibutyldithiocarbamate ligand
NASA Astrophysics Data System (ADS)
Wang, Chen; Niu, Jiao; Li, Jun; Ma, Xiaoxun
2017-05-01
Three copper complexes constructed with sulfur-containing dibutyldithiocarbamate ligand (DDTC), [(Et2NCS2)4Cu2] (1), [(Et2NCS2)(EtO)Cu]2 (2) and [(Et2NCS2)6Cu13I10]n (3) have been synthesized through the reaction of CuI with different mole ratios of DDTC under solution-diffusion conditions. The single crystal X-ray diffraction revealed that divalent Cu cations in complexes 1 and 2 imply that the reactant, Cu(I), was involved in the redox process. They formed binuclear complexes according to bridging S from DDTC ligands and O atoms from ethanol molecules respectively. The mixed valence Cu cations had two types of coordination environments in complex 3 and formed a two-dimensional layered coordination polymer by bridging the five-core Cu(I) clusters and Cu(II). The powder X-ray diffraction, luminescent, thermogravimetric analysis, etc. were also studied in this paper.
Iluc, Vlad M; Hillhouse, Gregory L
2010-09-01
Reaction of the dimeric Ni(I) chloride complex [(dtbpe)NiCl](2) (1) with dimesitylsilyl potassium affords the three-coordinate Ni(I) silyl complex (dtbpe)Ni(SiHMes(2)) (2). Alternatively, 2 can be prepared by an oxidative-addition reaction of Mes(2)Si(H)OTf (Tf = CF(3)SO(3)) with the nickel(0) complex [(dtbpe)Ni](2)(mu-C(6)H(6)) (3), with (dtbpe)Ni(OTf) (4) formed as an easily separable byproduct. The one-electron oxidation of 2 by ferrocenium affords diamagnetic [(dtbpe)Ni(mu-H)SiMes(2)][BAr(F)(4)] (5), a Ni(II) complex formed by partial 1,2-H migration from silicon to nickel and featuring an unusual 3-center, 2-electron bonding motif between Ni, Si, and the bridging H. Complex 5 was also obtained from Mes(2)SiH(2) activation by the neopentyl complex salt [(dtbpe)Ni(CH(2)CMe(3))][BAr(F)(4)] (6) with elimination of neopentane.
Amo-Ochoa, Pilar; Alexandre, Simone S; Hribesh, Samira; Galindo, Miguel A; Castillo, Oscar; Gómez-García, Carlos J; Pike, Andrew R; Soler, José M; Houlton, Andrew; Zamora, Félix; Harrington, Ross W; Clegg, William
2013-05-06
In this work we have synthetized and characterized by X-ray diffraction five cobalt complexes with 6-thioguanine (6-ThioGH), 6-thioguanosine (6-ThioGuoH), or 2'-deoxy-6-thioguanosine (2'-d-6-ThioGuoH) ligands. In all cases, these ligands coordinate to cobalt via N7 and S6 forming a chelate ring. However, independently of reagents ratio, 6-ThioGH provided monodimensional cobalt(II) coordination polymers, in which the 6-ThioG(-) acts as bridging ligand. However, for 2'-d-6-ThioGuoH and 6-ThioGuoH, the structure directing effect of the sugar residue gives rise to mononuclear cobalt complexes which form extensive H-bond interactions to generate 3D supramolecular networks. Furthermore, with 2'-d-6-ThioGuoH the cobalt ion remains in the divalent state, whereas with 6-ThioGuoH oxidation occurs and Co(III) is found. The electrical and magnetic properties of the coordination polymers isolated have been studied and the results discussed with the aid of DFT calculations, in the context of molecular wires.
Host-guest capability of a three-dimensional heterometallic macrocycle.
Fan, Qi-Jia; Lin, Yue-Jian; Hahn, F Ekkehardt; Jin, Guo-Xin
2018-02-13
A three-dimensional heterometallic coordination macrocycle is found to be capable of encapsulating planar pyrene (G1), coronene (G4) and non-planar corannulene (G2) guest molecules in high yields, giving rise to 1 : 1 host-guest complexes. The bowl-shaped guest corannulene is found to be significantly flattened upon inclusion within the cavity. However, macrocyclic compounds with larger cavity sizes, which form 1 : 1 stoichiometry assemblies with a naphthalene bisimide planar molecule (G3), are more inclined to form infinite sandwich structures. Furthermore, these heterometallic coordination macrocycles can be destroyed in the presence of a soft base to form hexanuclear triangular prism complexes. These structures are unambiguously revealed by single-crystal X-ray analysis.
Cuesta, Luciano; Sessler, Jonathan L
2009-09-01
The coordination chemistry of porphyrins and related tetrapyrrolic ligands has traditionally centered around the ability of these systems to form pyrrole N-ligated complexes via the formation of sigma bonds, either within the N(4) core or displaced above it. In fact, such sigma-complexes are known with almost every metal cation in the periodic table. However, a growing number of pi-complexes derived from tetrapyrrolic ligands have been reported in recent years. The underlying coordination mode, while still novel in the context of "porphyrin-like" chemistry, is already being recognized for the effects it can impart over the reactivity, as well as the spectroscopic, redox, electronic, and optical properties of various oligopyrrolic macrocycles. This critical review summarizes accomplishments made in this fast-emerging field (59 references).
NASA Astrophysics Data System (ADS)
Mykhalichko, B. M.; Temkin, Oleg N.; Mys'kiv, M. G.
2000-11-01
Characteristic features of the coordination chemistry of Cu(I) and mechanisms of catalytic conversions of alkynes in the CuCl-MCl-H2O-HC≡CR system (MCl is alkali metal or ammonium chloride or amine hydrochloride; R=H, CH2OH, CH=CH2, etc.) are analysed based on studies of the compositions and structures of copper(I) chloride (bromide) complexes, alkyne π-complexes and ethynyl organometallic polynuclear compounds formed in this system in solutions and in the crystalline state. The role of polynuclear complexes in various reactions of alkynes is discussed. The bibliography includes 149 references.
Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plapp, Bryce V.; Savarimuthu, Baskar Raj; Ferraro, Daniel J.
During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5'-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentatemore » chelators 2,2'-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme–NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ~1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water.« less
Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis
2017-01-01
During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5′-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentate chelators 2,2′-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme–NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ∼1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water. PMID:28640600
Mas-Marzá, Elena; Poyatos, Macarena; Sanaú, Mercedes; Peris, Eduardo
2004-03-22
Two tripodal trisimidazolium ligand precursors have been tested in the synthesis of new N-heterocyclic carbene rhodium and iridium complexes. [Tris(3-methylbenzimidazolium-1-yl)]methane sulfate gave products with coordination of the decomposed precursor. [1,1,1-Tris(3-butylimidazolium-1-yl)methyl]ethane trichloride (TIMEH(3)(Bu)) coordinated to the metal in a chelate and bridged-chelate form, depending on the reaction conditions. The crystal structures of two of the products are described. The compounds resulting from the coordination with TIME(Bu) were tested in the catalytic hydrosilylation of terminal alkynes.
The impact of ionic liquids on the coordination of anions with solvatochromic copper complexes.
Kuzmina, O; Hassan, N H; Patel, L; Ashworth, C; Bakis, E; White, A J P; Hunt, P A; Welton, T
2017-09-28
Solvatochromic transition metal (TM)-complexes with weakly associating counter-anions are often used to evaluate traditional neutral solvent and anion coordination ability. However, when employed in ionic liquids (IL) many of the common assumptions made are no longer reliable. This study investigates the coordinating ability of weakly coordinating IL anions in traditional solvents and within IL solvents employing a range of solvatochromic copper complexes. Complexes of the form [Cu(acac)(tmen)][X] (acac = acetylacetonate, tmen = tetramethylethylenediamine) where [X] - = [ClO 4 ] - , Cl - , [NO 3 ] - , [SCN] - , [OTf] - , [NTf 2 ] - and [PF 6 ] - have been synthesised and characterised both experimentally and computationally. ILs based on these anions and imidazolium and pyrrolidinium cations, some of which are functionalised with hydroxyl and nitrile groups, have been examined. IL-anion coordination has been investigated and compared to typical weakly coordinating anions. We have found there is potential for competition at the Cu-centre and cases of anions traditionally assigned as weakly associating that demonstrate a stronger than expected level of coordinating ability within ILs. [Cu(acac)(tmen)][PF 6 ] is shown to contain the least coordinating anion and is established as the most sensitive probe studied here. Using this probe, the donor numbers (DNs) of ILs have been determined. Relative donor ability is further confirmed based on the UV-Vis of a neutral complex, [Cu(sacsac) 2 ] (sacsac = dithioacetylacetone), and DNs evaluated via 23 Na NMR spectroscopy. We demonstrate that ILs can span a wide donor range, similar in breadth to conventional solvents.
NASA Astrophysics Data System (ADS)
Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Czerwonka, Grzegorz; Hodorowicz, Maciej; Stadnicka, Katarzyna
2016-02-01
The reaction of zinc salts with heterocyclic ether (1-ethoxymethyl-2-methylimidazole (1-ExMe-2-MeIm)), acid (pyridine-2,3-dicarboxylic acid (2,3-pydcH2)) and amide (3,5-dimethylpyrazole-1-carboxamide (3,5-DMePzCONH2)) yielded three new zinc complexes formulated as [Zn(1-ExMe-2-MeIm)2Cl2] 1, fac-[Zn(H2O)6][Zn(2,3-pydcH)3]22 and [Zn(3,5-DMePz)2(NCO)2] 3. Complexes of 1 and 3 are four-coordinated with a tetrahedron as coordination polyhedron. However, compound 2 forms an octahedral cation-anion complex. The complex 3 was prepared by eliminating of the carboxamide group from the ligand and then the 3,5-dimethylpyrazole (3,5-DMePz) and isocyanates formed were employed as new ligands. The IR and X-ray studies have confirmed a bidentate fashion of coordination of the 2,3-pydcH and monodentate fashion of coordination of the 1-ExMe-2-MeIm and 3,5-DMePz to the Zn(II) ions. The crystal packing of Zn(II) complexes are stabilized by intermolecular classical hydrogen bonds of O-H⋯O and N-H⋯O types. The most interesting feature of the supramolecular architecture of complexes is the existence of C-H⋯O, C-H⋯Cl and C-H⋯π interactions and π⋯π stacking, which also contributes to structural stabilisation. The correlation between crystal structure and thermal stability of zinc complexes is observed. In all compounds the fragments of ligands donor-atom containing go in the last steps. Additionally, antimicrobial activities of compounds were carried out against certain Gram-positive and Gram-negative bacteria and counts of CFU (colony forming units) were also determined. The achieved results confirmed a significant antibacterial activity of some tested zinc complexes. On the basis of the Δ log CFU values the antibacterial activity of zinc complexes follows the order: 3 > 2 > 1. Influence a number of N-donor atoms in zinc environment on antibacterial activity is also observed.
NASA Astrophysics Data System (ADS)
Hosny, Nasser Mohammed; Sherif, Yousery E.
2015-02-01
Three new metal complexes derived from Pd(II), Ru(III) and Zr(IV) with (E)-2-amino-N-(1-(2-aminophenyl)ethylidene)benzohydrazide (2-AAB) have been synthesized. The isolated complexes were characterized by elemental analyses, FT-IR, UV-Vis, ES-MS, 1H NMR, XRD, thermal analyses (TGA and DTA) and conductance. The morphology and the particle size were determined by transmittance electron microscope (TEM). The results showed that, the ligand coordinates to Pd(II) in the enol form, while it coordinates to Ru(III) and Zr(IV) in the keto form. A square planar geometry is suggested for Pd(II) complex and octahedral geometries are suggested for Ru(III) and Zr(IV) complexes. The optical band gaps of the isolated complexes were measured and indicated the semi-conductivity nature of the complexes. The anti-inflammatory and analgesic activities of the ligand and its complexes showed that, Ru(III) complex has higher effect than the well known drug "meloxicam".
NASA Astrophysics Data System (ADS)
Lalegani, Arash; Khaledi Sardashti, Mohammad; Salavati, Hossein; Asadi, Amin; Gajda, Roman; Woźniak, Krzysztof
2016-03-01
Mercury(II) coordination compounds [Hg(μ-bbd)(μ-SCN)4]n(1) and [Hg(bpp)(SCN)2] (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethypyrazol-1-yl)butane (bbd) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp), NCS- ligand and appropriate mercury(II) salts. Compound 1 forms a polymeric network with moieties which are connected by SCN groups and the mercury ions present as HgN3S2 trigonal bipyramides. The crystal structure of 2 is build of monomers and the mercury(II) ion adopts an HgN2S2 tetrahedral geometry. In the complex 1, each bbd acts as bridging ligand connecting Hg(μ-SCN)4 ions, while in the complex 2, the bpp ligand is coordinated to an mercury(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Moreover, in the tetrahedral structure of 2, the neutral molecules form a 1D chain structure through the C-H···N hydrogen bonds, whereas in 1 no hydrogen bonds are observed. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction.
NASA Astrophysics Data System (ADS)
Hosny, Nasser M.; Hassan, Nader Y.; Mahmoud, Heba M.; Abdel-Rhman, Mohamed H.
2018-03-01
The ligand 2-isonicotinoyl-N-phenylhydrazine-1-carboxamide (H3L) and its metal complexes with Co(II), Ni(II), Cu(II) and Zn(II) acetates have been synthesized. The isolated compounds have been characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR, ESR, mass, electronic spectra, electrical conductivity, effective magnetic moments and thermal analyses. The free organic ligand exists in the keto form, but in the metal complexes, it coordinates in the enol form. Four coordinated species were suggested for all the isolated metal complexes. The measured optical band gap values confirmed the presence of direct electronic transition and the semi-conductivity of the compounds. The ligand and its Zn(II) complex were examined as cytotoxic agent against HCT-116 and HePG-2. The ligand showed very strong cytotoxic effect against HePG-2, but moderate cytotoxicity against HCT-116. Zn(II) complex showed weak cytotoxicity against the two cell lines.
NASA Astrophysics Data System (ADS)
Oylumluoglu, Gorkem; Coban, Mustafa Burak; Kocak, Cagdas; Aygun, Muhittin; Kara, Hulya
2017-10-01
Two new lanthanide-based coordination complexes, [Dy(2-stp).2(H2O)]n (1) and {[Ho(2-stp).3(H2O)]·(H2O)}n (2) [2-stp = 2-sulfoterephthalic acid] were synthesized by hydrothermal reaction and characterized by elemental analysis, UV, IR, single crystal X-ray diffraction and solid state photoluminescence. DyIII and HoIII atoms are eight-coordinated and adopt a distorted square-antiprismatic geometry in complexes 1 and 2, respectively. In compound 1, Dy atoms are coordinated by four bridging 2-stp ligands forming two-dimensional (2D) layer, while Ho atoms by three bridging 2-stp ligands creating one dimensional (1D) double chains in 2. In addition, complexes 1 and 2 display in the solid state and at room temperature an intense yellow emission, respectively; this photoluminescence is achieved by an indirect process (antenna effect). The excellent luminescent performances make these complexes very good candidates for potential luminescence materials.
Calibrating the coordination chemistry tool chest: metrics of bi- and tridentate ligands.
Aguilà, David; Escribano, Esther; Speed, Saskia; Talancón, Daniel; Yermán, Luis; Alvarez, Santiago
2009-09-07
Bi- and multidentate ligands form part of the tools commonly used for designing coordination and supramolecular complexes with desired stereochemistries. Parameters and concepts usually employed include the normalized bite of bidentate ligands, their cis- or trans-coordinating ability, their rigidity or flexibility, or the duality of some ligands that can act in chelating or dinucleating modes. In this contribution we present a structural database study of over one hundred bi- and tridentate ligands that allows us to parametrize their coordinating properties and discuss the relevance of such parameters for the choice of coordination polyhedron or coordination sites.
Hull, Jonathan F.; Himeda, Yuichiro; Fujita, Etsuko; Muckeman, James T.
2015-08-04
The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted .pi.-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO.sub.2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H.sub.2 and CO.sub.2.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Tan, Gai-Xiu; Liu, Bao-Lin; Dai, Yu-Bei; Xu, Na; Wen, Wei-Fen; Cao, Chong; Xiao, Hong-Ping
2017-05-01
Five Ag(I) coordination complexes, namely, [Ag6(2-stp)2(3-methyl-2-apy)3·H2O]n (1), [Ag3(2-stp)(4-methyl-2-apy)3]n (2), [Na2Ag18(2-stp)4(2-Hstp)4(5-methyl-2-apy)16 (H2O)4·11H2O]n (3), Ag3(2-stp)(6-methy-2-apy)4·H2O (4), and [Ag6(2-stp)2(6-methyl-2-apy)8(H2O)2·H2O]n (5) (2-NaH2stp = 2-sulfoterephthalic acid monosodium salt, 3-methyl-2-apy = 3-methyl-2-aminopyridine, 4-methyl-2-apy = 4-methyl-2-aminopyridine, 5-methyl-2-apy = 5-methyl-2-aminopyridine, 6-methyl-2-apy = 6-methyl-2-aminopyridine), have been synthesized and structurally characterized. Complexes 1 and 2 show two-dimensional network. In complex 3, the adjacent Ag10 units are bridged by 5-methyl-2-apy ligands to form a 2D infinite undulated sheet. Adjacent 2D sheets are linked by coordinative bonds between carboxylic oxygen atoms and Na(I) ions to form a 3D coordination polymer. Complex 4 is a 0-D discrete trinuclear molecule, and the self-complementary the Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds incorporating hydrogen bond motifs extend these molecules into a 2D supramolecular framework. Compound 5 exhibits 1D-chain structure. However, complex 5 shows 3D supramolecular structure results from the linkage of neighboring layers through a rich hydrogen-bonding between uncoordinated sulfonates, amino groups and coordinated carboxylates. The thermogravimetric analyses and photoluminescence of the complexes were also investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng
2015-12-15
Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian Fangfang; Xiao Hailian; Liu Faqian
2006-12-15
Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg...Hg chain (M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN){sub 4}]{sup 2-} anion connects three [Ni(Im){sub 3}]{sup 2+} using three SCN ligands giving risemore » to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN){sub 4}]{sup 2-} and [Mn(Im){sub 2}]{sup 2+} to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu{sup 2+} ion lie on octahedral environment. -- Graphical abstract: Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by single-crystal X-ray. All coordination polymers possess 3-D structures, and consist of organic base neutral ligands (imidazole and N-methyl-imidazole) and SCN{sup -1} anions. Their structural difference is maicaused by the role of the organic base and metal ions. The complex 1 shows the irregular spin state structure.« less
Polyoxometalate coordination induced controllable release of quinolone in hybrid film
NASA Astrophysics Data System (ADS)
Yang, Fan; Li, Yang; Lv, Yu-Guang; Zhou, Shu-Jing; Li, Si; Gao, Guang-Gang; Liu, Hong
2018-05-01
Due to some side effects of quinolones in vivo, it is an urgent issue to extend their new applications in vitro. In this paper, structure-determined vanadium-quinolone functionalized polymolybdates of (NH4)2 [(γ-Mo8O26){VO(CF)2}2] (1) and (NH4)2 [(γ-Mo8O26){VO(NF)2}2] (2) (CF = ciprofloxacin; NF = norfloxacin) have been designed and synthesized. Complex 1 or 2 features a γ-type [Mo8O26]4- polyanion functionalized by two monocapped vanadium-quinolone complexes. Different H-bonds and π···π interactions allow 1 or 2 to form a 2D layered structure at solid state. When complex 1 or 2 is transferred into polyvinyl alcohol (PVA) film, its release rate in solution is lower than that of CF- or NF-PVA film and thus forming a novel quinolone delivery system. This is the first time that slow release effect of quinolone is achieved by polyoxometalate coordination effect. The slow release of 1 or 2 in PVA film is mainly ascribed to the coordination of quinolone with polyoxometalate anions.
NASA Astrophysics Data System (ADS)
Hu, Bo-Wen; Zheng, Xiang-Yu; Ding, Cheng
2015-12-01
Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L)2]n (1) and [Co3(L)4(N3)2·2MeOH]n (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (42.6)2(44.62.88.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co3] units. And the magnetic properties of 1 and 2 have been studied.
Nonparametric variational optimization of reaction coordinates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banushkina, Polina V.; Krivov, Sergei V., E-mail: s.krivov@leeds.ac.uk
State of the art realistic simulations of complex atomic processes commonly produce trajectories of large size, making the development of automated analysis tools very important. A popular approach aimed at extracting dynamical information consists of projecting these trajectories into optimally selected reaction coordinates or collective variables. For equilibrium dynamics between any two boundary states, the committor function also known as the folding probability in protein folding studies is often considered as the optimal coordinate. To determine it, one selects a functional form with many parameters and trains it on the trajectories using various criteria. A major problem with such anmore » approach is that a poor initial choice of the functional form may lead to sub-optimal results. Here, we describe an approach which allows one to optimize the reaction coordinate without selecting its functional form and thus avoiding this source of error.« less
NASA Astrophysics Data System (ADS)
Wang, Yige; Wang, Li; Li, Huanrong; Liu, Peng; Qin, Dashan; Liu, Binyuan; Zhang, Wenjun; Deng, Ruiping; Zhang, Hongjie
2008-03-01
Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data.
NASA Astrophysics Data System (ADS)
Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi
2015-05-01
Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1-3 contain four types of 21 helical chains. While the Nd(III) ions are bridged through μ2-HIDC2- and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.
Access to Formally Ni(I) States in a Heterobimetallic NiZn System
Uyeda, Christopher
2014-01-01
Heterobimetallic NiZn complexes featuring metal centers in distinct coordination environments have been synthesized using diimine-dioxime ligands as binucleating scaffolds. A tetramethylfuran-containing ligand derivative enables a stable one-electron-reduced S = 1/2 species to be accessed using Cp2Co as a chemical reductant. The resulting pseudo-square planar complex exhibits spectroscopic and crystallographic characteristics of a ligand-centered radical bound to a Ni(II) center. Upon coordination of a π-acidic ligand such as PPh3, however, a five-coordinate Ni(I) metalloradical is formed. The electronic structures of these reduced species provide insight into the subtle effects of ligand structure on the potential and reversibility of the NiII/I couple for complexes of redox-active tetraazamacrocycles. PMID:25614786
Ishida, Shintaro; Hirakawa, Fumiya; Shiota, Yoshihito; Yoshizawa, Kazunari; Kanegawa, Shinji; Sato, Osamu; Nagashima, Hideo
2016-01-01
Dinuclear iron carbonyl complex 2, which contains an elongated unsupported Fe–Fe bond, was synthesized by the reaction between Fe2(CO)9 and phosphinyl radical 1. Thermal Fe–Fe bond homolysis led to the generation of a four-coordinate carbonyl-based iron-centered radical, 3, which is stabilized by π-donation. Complex 3 exhibited high reactivity toward organic radicals to form diamagnetic five-coordinate Fe(ii) complexes. PMID:28758000
NASA Astrophysics Data System (ADS)
Muñoz Noval, Álvaro; Nishio, Daisuke; Kuruma, Takuya; Hayakawa, Shinjiro
2018-06-01
The determination of the structure of Ca(II)-acetate in aqueous solution has been addressed by combining Raman and X-ray absorption fine structure spectroscopies. The pH-dependent speciation of the acetate/Ca(II) system has been studied observing modifications in specific Raman bands of the carboxyl group. The current results evidence the Ca(II)-acetate above acetate pKa forms a bidentate complex and presents a coordination 6, in which the Ca-O shell radius decrease of about 0.1 Å with respect the hydrated Ca2+ with coordination 8. The experimental results show the OCO angle of the carboxyl in the complex is close to 124°, being the OCaO angle about 60°.
Ultrahigh-resolution crystal structures of Z-DNA in complex with Mn(2+) and Zn(2+) ions.
Drozdzal, Pawel; Gilski, Miroslaw; Kierzek, Ryszard; Lomozik, Lechoslaw; Jaskolski, Mariusz
2013-06-01
X-ray crystal structures of the spermine(4+) form of the Z-DNA duplex with the self-complementary d(CG)3 sequence in complexes with Mn(2+) and Zn(2+) cations have been determined at the ultrahigh resolutions of 0.75 and 0.85 Å, respectively. Stereochemical restraints were only used for the sperminium cation (in both structures) and for nucleotides with dual conformation in the Zn(2+) complex. The Mn(2+) and Zn(2+) cations at the major site, designated M(2+)(1), bind at the N7 position of G6 by direct coordination. The coordination geometry of this site was octahedral, with complete hydration shells. An additional Zn(2+)(2) cation was bis-coordinated in a tetrahedral fashion by the N7 atoms of G10 and G12 from a symmetry-related molecule. The coordination distances of Zn(2+)(1) and Zn(2+)(2) to the O6 atom of the guanine residues were 3.613 (6) and 3.258 (5) Å, respectively. Moreover, a chloride ion was also identified in the coordination sphere of Zn(2+)(2). Alternate conformations were observed in the Z-DNA-Zn(2+) structure not only at internucleotide linkages but also at the terminal C3'-OH group of G12. The conformation of the sperminium chain in the Z-DNA-Mn(2+) complex is similar to the spermine(4+) conformation in analogous Z-DNA-Mg(2+) structures. In the Z-DNA-Zn(2+) complex the sperminium cation is disordered and partially invisible in electron-density maps. In the Z-DNA-Zn(2+) complex the sperminium cation only interacts with the phosphate groups of the Z-DNA molecules, while in the Z-DNA-Mn(2+) structure it forms hydrogen bonds to both the phosphate groups and DNA bases.
Structure of thallium(III) chloride, bromide, and cyanide complexes in aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blixt, J.; Glaser, J.; Sandstroem, M.
1995-05-10
The structures of the hydrated thallium(III) halide and pseudohalide complexes, [TlX{sub n}(OH{sub 2}){sub m}]{sup (3-d)+}, X = Cl, Br, CN, in aqueous solution have been studied by a combination of X-ray absorption fine structure spectroscopy (XAFS), large-angle X-ray scattering (LAXS), and vibrational spectroscopic (Raman and IR) techniques including far-infrared studies of aqueous solutions and some solid phases with known structures. The vibrational Tl-X frequencies of all complexes are reported, force constants are calculated using normal coordinate analysis, and assignments are given. The structural results are consistent with octahedral six-coordination for the cationic complexes Tl(OH{sub 2}){sub 6}{sup 3$PLU}, TlX(OH{sub 2}){sub 5}{supmore » 2+}, and trans-TlX{sub 2}(OH{sub 2}){sub 4}{sup +}. The coordination geometry changes to trigonal bipyramidal for the neutral TlBr{sub 3}(OH{sub 2}){sub 2} complex and possibly also for TlCl{sub 3}(OH{sub 2}){sub 2}. The TlX{sub 4}{sup -} complexes are all tetrahedral. Higher chloride complexes, TlCl{sub 5}(OH{sub 2}){sup 2-} and TlCl{sub 6}{sup 3-}, are formed and have again octahedral coordination geometry. 65 refs., 7 figs., 5 tabs.« less
Girvan, Hazel M; Bradley, Justin M; Cheesman, Myles R; Kincaid, James R; Liu, Yilin; Czarnecki, Kazimierz; Fisher, Karl; Leys, David; Rigby, Stephen E J; Munro, Andrew W
2016-09-13
DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the "Microprocessor") is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet-visible (UV-vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys(-)) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys(-)/Cys(-)) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8's optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV-vis absorption spectra of the Fe(II) and Fe(II)-CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron-nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV-vis MCD and near-infrared MCD provide data consistent with this conclusion. UV-vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous-CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.
López-Torres, Elena; Mendiola, Ma Antonia; Pastor, César J; Pérez, Beatriz Souto
2004-08-23
Reactions of benzil bis(thiosemicarbazone), LH(6), with M(NO(3))(2).nH(2)O (M = Zn, Cd, and Ni), in the presence of LiOH.H(2)O, show the versatile behavior of this molecule. The structure of the ligand, with the thiosemicarbazone moieties on opposite sides of the carbon backbone, changes to form complexes by acting as a chelating molecule. Complexes of these metal ions with empirical formula [MLH(4)] were obtained, although they show different molecular structures depending on their coordinating preferences. The zinc complex is the first example of a crystalline coordination polymer in which a bis(thiosemicarbazone) acts as bridging ligand, through a nitrogen atom, giving a 1D polymeric structure. The coordination sphere is formed by the imine nitrogen and sulfur atoms, and the remaining position, in a square-based pyramid, is occupied by an amine group of another ligand. The cadmium derivative shows the same geometry around the metal ion but consists of a dinuclear structure with sulfur atoms acting as a bridge between the metal ions. However, in the nickel complex LH(6) acts as a N(2)S(2) ligand yielding a planar structure for the nickel atom. The ligand and its complexes have been characterized by X-ray crystallography, microanalysis, mass spectrometry, IR, (1)H, and (13)C NMR spectroscopies and for the cadmium complex by (113)Cd NMR in solution and in the solid state.
A general access to organogold(iii) complexes by oxidative addition of diazonium salts.
Huang, Long; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K
2016-05-11
At room temperature under mild photochemical conditions, namely irradiation with a simple blue light LED, gold(i) chloro complexes of both phosphane and carbene ligands in combination with aryldiazonium salts afford arylgold(iii) complexes. With chelating P,N-ligands cationic six- or five-membered chelate complexes were isolated in the form of salts with weakly coordinating counter anions that were brought in from the diazonium salt. With monodentate P ligands or N-heterocyclic carbene ligands and diazonium chlorides neutral arylgold(iii) dichloro complexes were obtained. The coordination geometry was determined by X-ray crystal structure analyses of representative compounds, a cis arrangement of the aryl and the phosphane ligand at the square planar gold(iii) center is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Hong-Yan; Lu, Huizhe; Le, Mao
2015-03-15
Three new cobalt(II) coordination polymers [Co{sub 2}(1,4-NDC){sub 2}(3-bpye)(H{sub 2}O)] (1), [Co(1,4-NDC)(3-bpfp)(H{sub 2}O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N′-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N′-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H{sub 2}NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1–3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology constructed from 3D [Co{sub 2}(1,4-NDC){sub 2}(H{sub 2}O)]{sub n} framework and bidentate 3-bpye ligands. Complex 2 shows 1D “cage+cage”-like chain formed by 1D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} ribbon chains and [Co{sub 2}(3-bpfp){submore » 2}] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology based on 2D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1–3 have been investigated. - Graphical abstract: Three multifunctional cobalt(II) complexes constructed from three bis-pyridyl-bis-amide and 1,4-naphthalenedicarboxylic acid have been hydrothermally synthesized and characterized. The fluorescent, electrochemical and magnetic properties of 1–3 have been investigated. - Highlights: • Three multifunctional cobalt(II) complexes based on various bis-pyridyl-bis-amide ligands. • Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology. • Complex 2 is a 1D “cage+cage”-like chain. • Complex 3 is a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology. • The fluorescent, electrochemical and magnetic properties of 1–3 were reported.« less
Freire, Ricardo O; Rocha, Gerd B; Simas, Alfredo M
2006-03-01
lanthanide coordination compounds efficiently and accurately is central for the design of new ligands capable of forming stable and highly luminescent complexes. Accordingly, we present in this paper a report on the capability of various ab initio effective core potential calculations in reproducing the coordination polyhedron geometries of lanthanide complexes. Starting with all combinations of HF, B3LYP and MP2(Full) with STO-3G, 3-21G, 6-31G, 6-31G* and 6-31+G basis sets for [Eu(H2O)9]3+ and closing with more manageable calculations for the larger complexes, we computed the fully predicted ab initio geometries for a total of 80 calculations on 52 complexes of Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III) and Tm(III), the largest containing 164 atoms. Our results indicate that RHF/STO-3G/ECP appears to be the most efficient model chemistry in terms of coordination polyhedron crystallographic geometry predictions from isolated lanthanide complex ion calculations. Moreover, both augmenting the basis set and/or including electron correlation generally enlarged the deviations and aggravated the quality of the predicted coordination polyhedron crystallographic geometry. Our results further indicate that Cosentino et al.'s suggestion of using RHF/3-21G/ECP geometries appears to be indeed a more robust, but not necessarily, more accurate recommendation to be adopted for the general lanthanide complex case. [Figure: see text].
A series of silver(I) coordination polymers with saccarinate and flexible aliphatic diamines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr; Karamahmut, Bingül; Semerci, Fatih
A series of Ag(I) complexes with aliphatic diamines having a different chain length (NH{sub 2}-(CH{sub 2}){sub n}-NH{sub 2}, n=4–9), with the formulas, [Ag(μ-sac)(μ-db){sub 0.5}]{sub n} (1), ([Ag{sub 4}(sac){sub 4}(μ-dp){sub 2}]·4H{sub 2}O){sub n} (2){sub ,} ([Ag{sub 2}(sac){sub 2}(μ-dz)]·2H{sub 2}O){sub n} (3), ([Ag{sub 2}(sac){sub 2}(μ-dh)]·H{sub 2}O){sub n} (4), ([Ag{sub 2}(sac){sub 2}(μ-do)]·H{sub 2}O){sub n} (5a), [Ag{sub 2}(sac){sub 2}(μ-do){sub 2}] (5b) and [Ag{sub 4}(sac){sub 4}(μ-dn){sub 2}]·2H{sub 2}O (6), where sac=saccharinate, db=1,4-diaminobutane, dp=1,5-diaminopentane, dz=1,6-diaminohexane, dh=1,7-diaminoheptane, do=1,8-diaminooctane and dn=1,9-diaminononane, were synthesized and characterized by elemental analysis, infrared spectra and single-crystal X-ray diffraction analysis. In 1, the sac ligand bridges adjacent Ag(I) ions through the nitrogen andmore » carbonyl oxygen atoms to form eight-membered bimetallic rings with the Ag···Ag distance being 3.897 Å, which are linked by db ligands to give a 1D zigzag chain. The complexes 2–5a consist of a one-dimensional (1D) linear cationic chains and discrete mononuclear anions. The discreet complex units are further connected by ligand unsupported argentophilic interactions. In 6, the dn ligands bridge adjacent silver centers to form 24-membered macrometallacyclic rings, which are further connected to the anionic [Ag(sac){sub 2}]{sup -} units by argentophilic Ag1···Ag2 interactions to form a tetranuclear structure. The adjacent dinuclear units are further linked together through ligand-unsupported argentophilic Ag···Ag (3.207(1) Å) interactions, generating a one-dimensional linear chain. The most striking feature of complexes is the presence of the rare intermolecular C-H···Ag interactions. In 5b, the do ligand bridges two Ag(I) ions to form a dinuclear with a 22-membered macrometallacyclic ring. Furthermore, biological activities, luminescence properties and thermal analysis (TG/DTA) of the complexes were investigated. - Graphical abstract: In this study, six new silver coordination compounds were synthesized by using saccharinate and flexible aliphatic diamine derivatives. All the compounds were characterized by elemental analysis, IR and single-crystal X-ray analysis. TG/DTA. Furthermore, biological activities, luminescence properties and thermal analysis (TG/DTA) of the complexes have been investigated. Complexes 1–5a and 6 were synthesized with the same reactant ratio and room temperature by using a mixture of AgNO{sub 3}, sac and different length diamine derivatives. The complex 5b is also synthesized was similar to that of 1 at 80 °C. In the complexes, the diamine derivatives ligands show bis(bridging) coordination mode. The sac ligand exhibits a µ-bridging coordination mode in 1 and N-donor monodentate coordination mode in 2–6. Complexes 1–5 exhibit 1D chain structure while complex 6 are tetranuclear structure. In the crystal packing of complexes, 3D supramolecular frameworks are formed via C-H···Ag, Ag···π and Ag···Ag interactions.« less
NASA Astrophysics Data System (ADS)
Syiemlieh, Ibanphylla; Kumar, Arvind; Kurbah, Sunshine D.; De, Arjune K.; Lal, Ram A.
2018-01-01
Low-spin manganese(II) complexes [MnII(H2slox)].H2O (1), [MnII(H2slox)(SL)] (where SL (secondary ligand) = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), and 4-picoline (4-pic, 5) and high-spin manganese(III) complex Na(H2O)4[MnIII(slox)(H2O)2].2.5H2O have been synthesized from disalicyaldehyde oxaloyldihydrazone in methanolic - water medium. The composition of complexes has been established by elemental analyses and thermoanalytical data. The structures of the complexes have been discussed on the basis of data obtained from molar conductance, UV visible, 1H NMR, infrared spectra, magnetic moment and electron paramagnetic resonance spectroscopic studies. Conductivity measurements in DMF suggest that the complexes (1-5) are non-electrolyte while the complex (6) is 1:1 electrolyte. The electronic spectral studies and magnetic moment data suggest five - coordinate square pyramidal structure for the complexes (2-5) and square planar geometry for manganese(II) in complex (1). In complex (6), both sodium and manganese(III) have six coordinate octahedral geometry. IR spectral studies reveal that the dihydrazone coordinates to the manganese centre in keto form in complexes (1-5) and in enol form in complex (6). In all complexes, the ligand is present in anti-cis configuration. Magnetic moment and EPR studies indicate manganese in +2 oxidation state in complexes (1-5), with low-spin square planar complex (1) and square pyramidal stereochemistries complexes (2-5) while in +3 oxidation state in high-spin distorted octahedral stereochemistry in complex (6). The complex (1) involves significant metal - metal interaction in the solid state. All of the complexes show only one metal centred electron transfer reaction in DMF solution in cyclic voltammetric studies. The complexes (1-5) involve MnII→MnI redox reaction while the complex (6) involves MnIII→MnII redox reaction, respectively.
NASA Astrophysics Data System (ADS)
Syaima, H.; Rahardjo, S. B.; Suciningrum, E.
2018-03-01
CuSO4·5H2O with diphenylamine formed a complex compound in 1:4 mole ratio of metal to the ligand in methanol. The forming of the complex was indicated by shifting of UV-Vis spectra of CuSO4·5H2O and the complex from 819 nm to 593 nm. The result of analysis Cu(II) in the complex showed the copper content in the complex was 6.43 % therefore the empirical formula of the complex was Cu(diphenylamine)4SO4(H2O)6. The electrical conductivity of complex showed the charge ratio of cation and anion = 1:1. Therefore, the proposed formula of the complex was [Cu(diphenylamine)4]SO4·6H2O. Based on infrared spectra, it was determined that the functional group of N-H of diphenylamine was coordinated to the center ion Cu2+. The electronic spectral study of the complex showed a transition peak on λ = 593 nm (υ = 16863 cm-1) corresponding to the 2B1g → 2A1g transition. The complex was paramagnetic with effective magnetic moment 1.72 B.M. It was indicated square planar geometry around Cu(II).
Metal-isonitrile adducts for preparing radionuclide complexes for labelling and imaging agents
Jones, Alun G.; Davison, Alan; Abrams, Michael J.
1987-01-01
A method for preparing a coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta is disclosed. The method comprises preparing a soluble metal adduct of said isonitrile ligand by admixing said ligand with a salt of a displaceable metal having a complete d-electron shell selected from the group consisting of Zn, Ga, Cd, In, Sn, Hg, Tl, Pb and Bi to form a soluble metal-isonitrile salt, and admixing said metal isonitrile salt with a salt comprising said radioactive metal in a suitable solvent to displace said displaceable metal with the radioactive metal thereby forming said coordination. The complex is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Daniel; Schoendorff, George E.; Van Stipdonk, Michael J.
2012-12-03
Combined collision-induced dissociation mass-spectrometry experiments and DFT calculations were employed to elucidate the molecular structure of "hypercoordinated" species and the energetics of water-elimination reactions of uranyl acetone complexes observed in earlier work (Rios, D.; Rutkowski, P. X.; Van Stipdonk, M. J.; Gibson, J. K. Inorg. Chem. 2011, 50, 4781). It is shown that the "hypercoordinated" species contain diacetone alcohol ligands bonded in either bidentate or monodentate fashion, which are indistinguishable from (acetone)2 in mass spectrometry. Calculations confirm that four diacetone ligands can form stable complexes, but that the effective number of atoms coordinating with uranium in the equatorial plane doesmore » not exceed five. Diacetone alcohol ligands are shown to form mesityl oxide ligands and alkoxide species through the elimination of water, providing an explanation for the observed water-elimination reactions.« less
Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides.
Tye, Jesse W; Weng, Zhiqiang; Johns, Adam M; Incarvito, Christopher D; Hartwig, John F
2008-07-30
Copper(I) imidate and amidate complexes of chelating N,N-donor ligands, which are proposed intermediates in copper-catalyzed amidations of aryl halides, have been synthesized and characterized by X-ray diffraction and detailed solution-phase methods. In some cases, the complexes adopt neutral, three-coordinate trigonal planar structures in the solid state, but in other cases they adopt an ionic form consisting of an L 2Cu (+) cation and a CuX 2 (-) anion. A tetraalkylammonium salt of the CuX 2 (-) anion in which X = phthalimidate was also isolated. Conductivity measurements and (1)H NMR spectra of mixtures of two complexes all indicate that the complexes exist predominantly in the ionic form in DMSO and DMF solutions. One complex was sufficiently soluble for conductance measurements in less polar solvents and was shown to adopt some degree of the ionic form in THF and predominantly the neutral form in benzene. The complexes containing dative nitrogen ligands reacted with iodoarenes and bromoarenes to form products from C-N coupling, but the ammonium salt of [Cu(phth) 2] (-) did not. Similar selectivities for stoichiometric and catalytic reactions with two different iodoarenes and faster rates for the stoichiometric reactions implied that the isolated amidate and imidate complexes are intermediates in the reactions of amides and imides with haloarenes catalyzed by copper complexes containing dative N,N ligands. These amidates and imidates reacted much more slowly with chloroarenes, including chloroarenes that possess more favorable reduction potentials than some bromoarenes and that are known to undergo fast dissociation of chloride from the chloroarene radical anion. The reaction of o-(allyloxy)iodobenzene with [(phen) 2Cu][Cu(pyrr) 2] results in formation of the C-N coupled product in high yield and no detectable amount of the 3-methyl-2,3-dihydrobenzofuran or 3-methylene-2,3-dihydrobenzofuran products that would be expected from a reaction that generated free radicals. These data and computed reaction barriers argue against mechanisms in which the haloarene reacts with a two-coordinate anionic copper species and mechanisms that start with electron transfer to generate a free iodoarene radical anion. Instead, these data are more consistent with mechanisms involving cleavage of the carbon-halogen bond within the coordination sphere of the metal.
NASA Astrophysics Data System (ADS)
Song, Ming; Mu, Bao; Huang, Ru-Dan
2017-02-01
Two new coordination polymers (CPs), namely, [Cu2(ttbz)(H2btc)2(OH)]n (1) and [Mn(ttbz)2(H2O)2]n (2) (Httbz =1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene, H3btc =1,3,5-benzenetricarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 exhibits a (3,5,5,5)-connected 2D layer with a Schläfli symbol of {3·42}{3·440.520.63}{320.440.520.62}{320.440.530.6}, in which the ttbz- ligand can be described as μ5-bridge, linking Cu(II) ions into a 2D layer and H2btc- ions play a supporting role in complex 1. The ttbz- ligand in complex 2 represents the bridging coordination mode, connecting two Mn(II) ions to form the infinite 1D zigzag chains, respectively, which are further connected by two different types of hydrogen bonds to form a 3D supramolecular. Furthermore, catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated at room temperature in aqueous solutions, indicating these complexes may be applicable to color removal in a textile wastewater stream and practical applications in areas of electrocatalytic reduction toward nitrite, respectively.
Zinc(II)-methimazole complexes: synthesis and reactivity.
Isaia, Francesco; Aragoni, Maria Carla; Arca, Massimiliano; Bettoschi, Alexandre; Caltagirone, Claudia; Castellano, Carlo; Demartin, Francesco; Lippolis, Vito; Pivetta, Tiziana; Valletta, Elisa
2015-06-07
The tetrahedral S-coordinated complex [Zn(MeImHS)4](ClO4)2, synthesised from the reaction of [Zn(ClO4)2] with methimazole (1-methyl-3H-imidazole-2-thione, MeImHS), reacts with triethylamine to yield the homoleptic complex [Zn(MeImS)2] (MeImS = anion methimazole). ESI-MS and MAS (13)C-NMR experiments supported MeImS acting as a (N,S)-chelating ligand. The DFT-optimised structure of [Zn(MeImS)2] is also reported and the main bond lengths compared to those of related Zn-methimazole complexes. The complex [Zn(MeImS)2] reacts under mild conditions with methyl iodide and separates the novel complex [Zn(MeImSMe)2I2] (MeImSMe = S-methylmethimazole). X-ray diffraction analysis of the complex shows a ZnI2N2 core, with the methyl thioethers uncoordinated to zinc. Conversely, the reaction of [Zn(MeImS)2] with hydroiodic acid led to the formation of the complex [Zn(MeImHS)2I2] having a ZnI2S2 core with the neutral methimazole units S-coordinating the metal centre. The Zn-coordinated methimazole can markedly modify the coordination environment when changing from its thione to thionate form and vice versa. The study of the interaction of the drug methimazole with the complex [Zn(MeIm)4](2+) (MeIm = 1-methylimidazole) - as a model for Zn-enzymes containing a N4 donor set from histidine residues - shows that methimazole displaces only one of the coordinated MeIm molecules; the formation constant of the mixed complex [Zn(MeIm)3(MeImHS)](2+) was determined.
Mechanism for chelated sulfate formation from SO2 and bis (triphenylphosphine) platinum
NASA Technical Reports Server (NTRS)
Mehandru, S. P.; Anderson, A. B.
1985-01-01
Structure and energy surface calculations using the atom superposition and electron delocalization molecular orbital theory show that the first step in the reaction between SO2 and the dioxygen complex (PPh3)2PtO2 is the coordination of SO2 with one oxygen atom of the complex, followed by metal-oxygen bond breaking and reorientation, leading to a five-membered cyclic structure. This then rearranges to form the bidentate coordinated sulfate. Alternative pathways are considered and are found to be less favorable.
Mahajan, Devinder
2005-07-26
The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.
Schiff bases in medicinal chemistry: a patent review (2010-2015).
Hameed, Abdul; Al-Rashida, Mariya; Uroos, Maliha; Abid Ali, Syed; Khan, Khalid Mohammed
2017-01-01
Schiff bases are synthetically accessible and structurally diverse compounds, typically obtained by facile condensation between an aldehyde, or a ketone with primary amines. Schiff bases contain an azomethine (-C = N-) linkage that stitches together two or more biologically active aromatic/heterocyclic scaffolds to form various molecular hybrids with interesting biological properties. Schiff bases are versatile metal complexing agents and have been known to coordinate all metals to form stable metal complexes with vast therapeutic applications. Areas covered: This review aims to provide a comprehensive overview of the various patented therapeutic applications of Schiff bases and their metal complexes from 2010 to 2015. Expert opinion: Schiff bases are a popular class of compounds with interesting biological properties. Schiff bases are also versatile metal complexing ligands and have been used to coordinate almost all d-block metals as well as lanthanides. Therapeutically, Schiff bases and their metal complexes have been reported to exhibit a wide range of biological activities such as antibacterial including antimycobacterial, antifungal, antiviral, antimalarial, antiinflammatory, antioxidant, pesticidal, cytotoxic, enzyme inhibitory, and anticancer including DNA damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Ming; Mu, Bao; Huang, Ru-Dan, E-mail: huangrd@bit.edu.cn
Two new coordination polymers (CPs), namely, [Cu{sub 2}(ttbz)(H{sub 2}btc){sub 2}(OH)]{sub n} (1) and [Mn(ttbz){sub 2}(H{sub 2}O){sub 2}]{sub n} (2) (Httbz =1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene, H{sub 3}btc =1,3,5-benzenetricarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 exhibits a (3,5,5,5)-connected 2D layer with a Schläfli symbol of (3·4{sup 2})(3·4{sup 4}0.5{sup 2}0.6{sup 3})(3{sup 2}0.4{sup 4}0.5{sup 2}0.6{sup 2})(3{sup 2}0.4{sup 4}0.5{sup 3}0.6), in which the ttbz{sup -} ligand can be described as μ{sub 5}-bridge, linking Cu(II) ions into a 2D layer and H{sub 2}btc{sup -} ions play a supporting role in complex 1. The ttbz{sup -} ligand in complex 2 represents the bridging coordination mode, connectingmore » two Mn(II) ions to form the infinite 1D zigzag chains, respectively, which are further connected by two different types of hydrogen bonds to form a 3D supramolecular. Furthermore, catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated at room temperature in aqueous solutions, indicating these complexes may be applicable to color removal in a textile wastewater stream and practical applications in areas of electrocatalytic reduction toward nitrite, respectively. - Graphical abstract: Two new coordination polymers based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated. - Highlights: • The organic ligand containing the tetrazolyl group and triazolyl group with some advantages has been used. • Two new coordination polymers with different structural characteristics has been discussed in detail. • Catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazari, Debdoot; Jana, Swapan Kumar; Fleck, Michel
2014-11-15
Two lead(II) compounds [Pb{sub 3}(idiac){sub 3}(phen){sub 2}(H{sub 2}O)]·2(H{sub 2}O) (1) and [Pb(ndc)]{sub n} (2), where H{sub 2}idiac=iminodiacetic acid, phen=1,10-phenanthroline and H{sub 2}ndc=naphthalene-2,6-dicarboxylic acid, have been synthesized and structurally characterized. Single crystal X-ray diffraction analysis showed that compound 1 is a discrete trinuclear complex (of two-fold symmetry) which evolves to a supramolecular 3D network via π–π interactions, while in compound 2 the naphthalene dicarboxylate anion act as a linker to form a three dimensional architecture, where the anion adopts a bis-(bidentate bridging) coordination mode connecting four Pb(II) centers. The photoluminescence property of the two complexes has been studied. - graphical abstract:more » Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by x-ray analysis. The luminescence and thermal properties have been studied. - Highlights: • 1 is a trinuclear complex of Pb(II) growing to 3D network via weak interactions. • In 1, layers of (4,4) rhomboidal topology are identified. • In 2, the ndc anion adopts interesting bis-(bidentate bridging) coordination. • In 2, network is reinforced by C–H…π-ring interactions between the ndc rings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek
Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less
Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek; ...
2017-11-01
Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less
Jeffery, John C; Rice, Craig R; Harding, Lindsay P; Baylies, Christian J; Riis-Johannessen, Thomas
2007-01-01
The ditopic ligand 6,6'-bis(4-methylthiazol-2-yl)-3,3'-([18]crown-6)-2,2'-bipyridine (L(1)) contains both a potentially tetradentate pyridyl-thiazole (py-tz) N-donor chain and an additional "external" crown ether binding site which spans the central 2,2'-bipyridine unit. In polar solvents (MeCN, MeNO(2)) this ligand forms complexes with Zn(II), Cd(II), Hg(II) and Cu(I) ions via coordination of the N donors to the metal ion. Reaction with both Hg(II) and Cu(I) ions results in the self-assembly of dinuclear double-stranded helicate complexes. The ligands are partitioned by rotation about the central py--py bond, such that each can coordinate to both metals as a bis-bidentate donor ligand. With Zn(II) ions a single-stranded mononuclear species is formed in which one ligand coordinates the metal ion in a planar tetradentate fashion. Reaction with Cd(II) ions gives rise to an equilibrium between both the dinuclear double-stranded helicate and the mononuclear species. These complexes can further coordinate s-block metal cations via the remote crown ether O-donor domains; a consequence of which are some remarkable changes in the binding modes of the N-donor domains. Reaction of the Hg(II)- or Cd(II)-containing helicate with either Ba(2+) or Sr(2+) ions effectively reprogrammes the ligand to form only the single-stranded heterobinuclear complexes [MM'(L(1))](4+) (M=Hg(II), Cd(II); M'=Ba(2+), Sr(2+)), where the transition and s-block cations reside in the N- and O-donor sites, respectively. In contrast, the same ions have only a minor structural impact on the Zn(II) species, which already exists as a single-stranded mononuclear complex. Similar reactions with the Cd(II) system result in a shift in equilibrium towards the single-stranded species, the extent of which depends on the size and charge of the s-block cation in question. Reaction of the dicopper(I) double-stranded helicate with Ba(2+) shows that the dinuclear structure still remains intact but the pitch length is significantly increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, Gregg J.; Sinkov, Sergey I.; Krause, Jeanette A.
2016-01-27
The complexes formed during the extraction of neodymium(III) into hydrophobic solvents containing acidic organophosphorus extractants were probed by single-crystal X-ray diffractometry, visible spectrophotometry, and Fourier-transform infrared spectroscopy. The crystal structure of the compound Nd(DMP)3 (1, DMP = dimethyl phosphate) revealed a polymeric arrangement in which each Nd(III) center is surrounded by six DMP oxygen atoms in a pseudo-octahedral environment. Adjacent Nd(III) ions are bridged by (MeO)2POO– anions, forming the polymeric network. The diffuse reflectance visible spectrum of 1 is nearly identical to that of the solid that is formed when an n-dodecane solution of di-(2-ethylhexyl)phosphoric acid (HA) is saturated withmore » Nd(III), indicating a similar coordination environment around the Nd center in the NdA3 solid. The visible spectrum of the HA solution fully loaded with Nd(III) is very similar to that of the NdA3 material, both displaying hypersensitive bands characteristic of an pseudo-octahedral coordination environment around Nd. These spectral characteristics persisted across a wide range of organic Nd concentrations, suggesting that the pseudo-octahedral coordination environment is maintained from dilute to saturated conditions.« less
Transition metal coordination chemistry ofN,N-bis(2-{pyrid-2-ylethyl})hydroxylamine.
Belock, Christopher W; Cetin, Anil; Barone, Natalie V; Ziegler, Christopher J
2008-08-18
Although directly relevant to metal mediated biological nitrification as well as the coordination chemistry of peroxide, the metal complexes of hydroxylamines and their functionalized variants remain largely unexplored. The chelating hydroxylamine ligand N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine can be readily generated via a solvent free reaction in high purity; however, the ligand is prone to decomposition which can hamper metal reaction. N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine forms stable complexes with chromium(III), manganese(II), nickel(II), and cadmium(II) ions, coordinating in a side-on mode in the case of chromium and via the nitrogen in the case of the latter three metal ions. The hydroxylamine ligand can also be reduced to form N,N-bis(2-{pyrid-2-ylethyl})amine upon exposure to a stoichiometric amount of the metal salts cobalt(II) nitrate, vanadium(III) chloride, and iron(II) chloride. In the reaction with cobalt nitrate, the reduced ligand then chelates to the metal to form [N,N-bis(2-{pyrid-2-ylethyl})amine]dinitrocobalt(II). Upon reaction with vanadium(III) chloride and iron(III) chloride, the reduced ligand is isolated as the protonated free base, resulting from a metal-mediated decomposition reaction.
Lumetta, Gregg J; Sinkov, Sergey I; Krause, Jeanette A; Sweet, Lucas E
2016-02-15
The complexes formed during the extraction of neodymium(III) into hydrophobic solvents containing acidic organophosphorus extractants were probed by single-crystal X-ray diffractometry, visible spectrophotometry, and Fourier-transform infrared spectroscopy. The crystal structure of the compound Nd(DMP)3 (1, DMP = dimethyl phosphate) revealed a polymeric arrangement in which each Nd(III) center is surrounded by six DMP oxygen atoms in a pseudo-octahedral environment. Adjacent Nd(III) ions are bridged by (MeO)2POO(-) anions, forming the polymeric network. The diffuse reflectance visible spectrum of 1 is nearly identical to that of the solid that is formed when an n-dodecane solution of di(2-ethylhexyl)phosphoric acid (HA) is saturated with Nd(III), indicating a similar coordination environment around the Nd center in the NdA3 solid. The visible spectrum of the HA solution fully loaded with Nd(III) is very similar to that of the NdA3 material, both displaying hypersensitive bands characteristic of an pseudo-octahedral coordination environment around Nd. These spectral characteristics persisted across a wide range of organic Nd concentrations, suggesting that the pseudo-octahedral coordination environment is maintained from dilute to saturated conditions.
Bean, Jonathan F.; Clarkson, Robert B.; Helm, Lothar; Moriggi, Loïck; Sherry, A. Dean
2009-01-01
Electron-spin relaxation is one of the determining factors in the efficacy of MRI contrast agents. Of all the parameters involved in determining relaxivity it remains the least well understood, particularly as it relates to the structure of the complex. One of the reasons for the poor understanding of electron-spin relaxation is that it is closely related to the ligand-field parameters of the Gd3+ ion that forms the basis of MRI contrast agents and these complexes generally exhibit a structural isomerism that inherently complicates the study of electron spin relaxation. We have recently shown that two DOTA-type ligands could be synthesised that, when coordinated to Gd3+, would adopt well defined coordination geometries and are not subject to the problems of intramolecular motion of other complexes. The EPR properties of these two chelates were studied and the results examined with theory to probe their electron-spin relaxation properties. PMID:18283704
Polarization-correlation optical microscopy of anisotropic biological layers
NASA Astrophysics Data System (ADS)
Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Y.; Balazyuk, V. N.; Khukhlina, O.; Viligorska, K.; Bykov, A.; Doronin, A.; Meglinski, I.
2016-09-01
The theoretical background of azimuthally stable method of Jones-matrix mapping of histological sections of biopsy of myocardium tissue on the basis of spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of myocardium tissue histological sections are found. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin fibrils of myocardium tissue of different necrotic states - dead due to coronary heart disease and acute coronary insufficiency are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of differentiation of cause of death are determined.
Steric hindrance and the enhanced stability of light rare-earth elements in hydrothermal fluids
Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
2009-01-01
A series of X-ray absorption spectroscopy (XAS) experiments were made to determine the structure and stability of aqueous REE (La, Nd, Gd, and Yb) chloride complexes to 500 ??C and 520 MPa. The REE3+ ions exhibit inner-sphere chloroaqua complexation with a steady increase of chloride coordination with increasing temperature in the 150 to 500 ??C range. Furthermore, the degree of chloride coordination of REE3+ inner-sphere chloroaqua complexes decreases significantly from light to heavy REE. These results indicate that steric hindrance drives the reduction of chloride coordination of REE3+ inner-sphere chloroaqua complexes from light to heavy REE. This results in greater stability and preferential transport of light REE3+ over heavy REE3+ ions in saline hydrothermal fluids. Accordingly, the preferential mobility of light REE directly influences the relative abundance of REE in rocks and minerals and thus needs to be considered in geochemical modeling of petrogenetic and ore-forming processes affected by chloride-bearing hydrothermal fluids.
Gold(I) Complexes of the Geminal Phosphinoborane tBu2PCH2BPh2.
Boom, Devin H A; Ehlers, Andreas W; Nieger, Martin; Devillard, Marc; Bouhadir, Ghenwa; Bourissou, Didier; Slootweg, J Chris
2018-04-30
In this work, we explored the coordination properties of the geminal phosphinoborane t Bu 2 PCH 2 BPh 2 ( 2 ) toward different gold(I) precursors. The reaction of 2 with an equimolar amount of the sulfur-based complex (Me 2 S)AuCl resulted in displacement of the SMe 2 ligand and formation of linear phosphine gold(I) chloride 3 . Using an excess of ligand 2 , bisligated complex 4 was formed and showed dynamic behavior at room temperature. Changing the gold(I) metal precursor to the phosphorus-based complex, (Ph 3 P)AuCl impacted the coordination behavior of ligand 2 . Namely, the reaction of ligand 2 with (Ph 3 P)AuCl led to the heterolytic cleavage of the gold-chloride bond, which is favored over PPh 3 ligand displacement. To the best of our knowledge, 2 is the first example of a P/B-ambiphilic ligand capable of cleaving the gold-chloride bond. The coordination chemistry of 2 was further analyzed by density functional theory calculations.
Modeling and simulation for fewer-axis grinding of complex surface
NASA Astrophysics Data System (ADS)
Li, Zhengjian; Peng, Xiaoqiang; Song, Ci
2017-10-01
As the basis of fewer-axis grinding of complex surface, the grinding mathematical model is of great importance. A mathematical model of the grinding wheel was established, and then coordinate and normal vector of the wheel profile could be calculated. Through normal vector matching at the cutter contact point and the coordinate system transformation, the grinding mathematical model was established to work out the coordinate of the cutter location point. Based on the model, interference analysis was simulated to find out the right position and posture of workpiece for grinding. Then positioning errors of the workpiece including the translation positioning error and the rotation positioning error were analyzed respectively, and the main locating datum was obtained. According to the analysis results, the grinding tool path was planned and generated to grind the complex surface, and good form accuracy was obtained. The grinding mathematical model is simple, feasible and can be widely applied.
Cheng, Yan; Chen, Rui; Feng, Haifeng; Hao, Weichang; Xu, Huaizhe; Wang, Yu; Li, Jiong
2014-03-14
Mn-doped ZnO-ZnS complex nanocrystals were fabricated through coating of dodecanethiol on Mn-doped ZnO nanocrystals. The relationship between the component of white light emission and the coordination environments of Mn-dopants were experimentally investigated. It was shown that Mn ions mainly formed Mn(3+)O6 octahedra in as prepared Mn-doped ZnO, while the Mn(3+) ions on the surface of ZnO transferred into Mn(2+) ions at the interface between ZnO and ZnS after dodecanethiol coating. The Mn(2+)S4 tetrahedron density and the orange emission intensity increased upon enhancing the dodecanethiol content. These results provide an alternative way to optimize the white emission spectrum from nanocrystals of Mn-doped ZnS-ZnO complex structures through modulation of the coordination environment of Mn ions.
Energetic lanthanide complexes: coordination chemistry and explosives applications
NASA Astrophysics Data System (ADS)
Manner, V. W.; Barker, B. J.; Sanders, V. E.; Laintz, K. E.; Scott, B. L.; Preston, D. N.; Sandstrom, M.; Reardon, B. L.
2014-05-01
Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.
Energetic Lanthanide Complexes: Coordination Chemistry and Explosives Applications
NASA Astrophysics Data System (ADS)
Manner, Virginia; Barker, Beau; Sanders, Eric; Laintz, Kenneth; Scott, Brian; Preston, Daniel; Sandstrom, Mary; Reardon, Bettina
2013-06-01
Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with ``tailor made'' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli
The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less
Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli; ...
2017-10-31
The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less
Tirler, Andreas O; Hofer, Thomas S
2015-07-09
Structure and dynamics of [MgEDTA](2-) and [CaEDTA](2-) complexes in aqueous solution have been investigated via quantum mechanical/molecular mechanical (QM/MM) simulations. While for the first a 6-fold octahedral complex has been observed, the presence of an additional coordinating water ligand has been observed in the latter case. Because of rapidly exchanging water molecules, this 7-fold coordination complex was found to form pentagonal bipyramidal as well as capped trigonal prismatic configurations along the simulation interchanging on the picosecond time scale. Also in the case of [MgEDTA](2-) a trigonal prismatic configuration has been observed for a very short time period of approximately 1 ps. This work reports for the first time the presence of trigonal prismatic structures observed in the coordination sphere of [MgEDTA](2-) and [CaEDTA](2-) complexes in aqueous solution. In addition to the detailed characterization of structure and dynamics of the systems, the prediction of the associated infrared spectra indicates that the ion-water vibrational mode found at approximately 250 cm(-1) provides a distinctive measure to experimentally detect the presence of the coordinating water molecule via low-frequency IR setups.
Homo- and Heterometallic Bis(Pentafluorobenzoyl)Methanide Complexes of Copper(II) and Cobalt(II)
NASA Astrophysics Data System (ADS)
Crowder, Janell M.
beta-Diketones are well known to form metal complexes with practically every known metal and metalloid. Metal complexes of fluorinated beta-diketones generally exhibit increased volatility and thermal stability compared to the non-fluorinated analogues, and thus are used extensively in various chemical vapor deposition (CVD) processes for the deposition of metal, simple or mixed metal oxides, and fluorine-doped metal oxide thin films. Furthermore, the electron-withdrawing nature of the fluorinated ligand enhances the Lewis acidity of a coordinatively unsaturated metal center which facilitates additional coordination reactions. The physical and structural properties of fluorinated beta-diketonate complexes are discussed in Chapter 1 and a few key application examples are given. The focus of this work is the synthesis and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated metal complexes of bis(pentafluorobenzoyl)- methanide (L, C6F5COCHCOC 6F5-). In Chapter 2, we present the preparation and isolation of the unsolvated complex [Cu(L)2] in pure crystalline form for the first time. We subsequently investigated the reaction of unsolvated [Cu(L)2] with sodium hexafluoroacetylacetonate [Na(hfac)] in a solvent-free environment. This reaction allowed the isolation of the first heterometallic Na-Cu diketonate [Na2Cu2(L) 4(hfac)2] structurally characterized by single crystal X-ray crystallography. Thermal decomposition of [Na2Cu2(L) 4(hfac)2] was investigated for its potential application in MOCVD processes. In the final chapter, we present the first exploration of the anhydrous synthesis of Co(II) complexed with bis(pentafluorobenzoyl)methanide in order to produce a complex without ligated water. Single crystal X-ray crystallographic investigations revealed the isolation of the ethanol adduct, [Co2(L)4(C2H5OH)2], and following the removal of ethanol, a 1,4-dioxane adduct, [{Co 2(L)4}2(C4H8O2)]. In this work, we have provided the first investigation of the synthesis, isolation and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated Cu(II) and Co(II) complexes of bis(pentafluorobenzoyl)methanide ligand. These studies demonstrate how the electrophilicity of a coordinatively unsaturated metal complexed to highly-fluorinated â-diketone ligands can be utilized for the formation of new adducts or new and interesting heterometallic complexes. This body of work provides a basis upon which future research into unsolvated and unligated bis(pentafluorobenzoyl)methanide metal complexes can expand.
Wikstrom, Jeffrey P; Filatov, Alexander S; Mikhalyova, Elena A; Shatruk, Michael; Foxman, Bruce M; Rybak-Akimova, Elena V
2010-03-14
The tridentate aminopyridine ligand bearing a bulky tert-butyl substituent at the amine nitrogen, tert-butyl-dipicolylamine (tBuDPA), occupies three coordination sites in six-coordinate complexes of nickel(ii), leaving the remaining three sites available for additional ligand binding and activation. New crystallographically characterized complexes include two mononuclear species with 1:1 metal:ligand complexation: a trihydrate solvate (1.3H(2)O) and a monohydrate biacetonitrile solvate (1.H(2)O.2CH(3)CN). Complexation in the presence of sodium hydroxide results in a bis(mu-hydroxo) complex (2), the bridging hydroxide anions of which are labile and become displaced by methoxide anions in methanol solvent, affording bis-methoxo-bridged (4). Nickel(II) centers in 2 are five-coordinate and antiferromagnetically coupled (with J = -31.4(5) cm(-1), H = -2JS(1)S(2), in agreement with Ni-O-Ni angle of 103.7 degrees). Bridging hydroxide or alkoxide anions in coordinatively unsaturated dinuclear nickel(II) complexes with tBuDPA react as active nucleophiles. 2 readily performs carbon dioxide fixation, resulting in the formation of a bis(mu-carbonato) tetrameric complex (3), which features a novel binding geometry in the form of an inverted butterfly-type nickel-carbonate core. Temperature-dependent magnetic measurements of tetranuclear carbonato-bridged revealed relatively weak antiferromagnetic coupling (J(1) = -3.1(2) cm(-1)) between the two nickel centers in the core of the cluster, as well as weak antiferromagnetic pairwise interactions (J(2) = J(3) = -4.54(5) cm(-1)) between central and terminal nickel ions.
Karthikeyan, Ammasai; Thomas Muthiah, Packianathan; Perdih, Franc
2016-05-01
The coordination chemistry of mixed-ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal-organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic-inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene-2-carboxylate (2-TPC) and 2-amino-4,6-dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X-ray diffraction studies, namely (2-amino-4,6-dimethoxypyrimidine-κN)aquachlorido(thiophene-2-carboxylato-κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena-poly[copper(II)-tetrakis(μ-thiophene-2-carboxylato-κ(2)O:O')-copper(II)-(μ-2-amino-4,6-dimethoxypyrimidine-κ(2)N(1):N(3))], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the Co(II) ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2-TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2-TPC ligand form an interligand N-H...O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R2(2)(8) motif] via a pair of N-H...N hydrogen bonds. These interactions, together with O-H...O and O-H...Cl hydrogen bonds and π-π stacking interactions, generate a three-dimensional supramolecular architecture. The one-dimensional coordination polymer (II) contains the classical paddle-wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2-TPC ligands bridges two square-pyramidally coordinated Cu(II) ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one-dimensional polymeric chains self-assemble via N-H...O, π-π and C-H...π interactions, generating a three-dimensional supramolecular architecture.
Groppo, E; Lamberti, C; Bordiga, S; Spoto, G; Damin, A; Zecchina, A
2005-08-11
This work reports the first complete FTIR characterization of H2, N2 and C2H4 molecular complexes formed on the Cr(II) sites in the Phillips catalyst. The use of a silica aerogel as support for Cr(II) sites, substituting the conventional aerosil material, allowed us to obtain a remarkable increase in the signal-to-noise ratio of the IR spectra of adsorbed species. The improvement is directly related to an increase of the surface area of the support (approximately 700 m2 g(-1)) and to an almost complete absence of scattering [Groppo et al., Chem. Mater. 2005, 17, 2019-2027]. The use of this support and the adoption of suitable experimental conditions results, for the first time, in the clear observation of H2 and N2 adducts formed on two different types of Cr(II) sites, thus yielding important information on the coordinative state of the Cr(II) ions, which well agrees with the evidences provided in the past by other probe molecules. Furthermore, we report the first complete characterization of the C2H4 pi-complexes formed on Cr(II) sites. These results are particularly important in the view of the understanding of the polymerization mechanism, since the C2H4 coordination and the formation of pi-bonded complexes are the first steps of the reaction.
Stoichiometric Control of Multiple Different Tectons in Coordination-Driven Self-assembly
Lee, Junseong; Ghosh, Koushik; Stang, Peter J.
2009-01-01
We present a general strategy for the synthesis of stable, multi-component fused polygon complexes where coordination-driven self-assembly allows for single supramolecular species can be formed from multi-component self-assembly and the shape of the obtained polygons can be controlled by simply changing the ratio of individual components. The compounds are characterized by Multinuclear NMR, ESI Mass spectrometry. PMID:19663439
Zhao, Yanying; Gong, Yu; Chen, Mohua; Ding, Chuanfan; Zhou, Mingfei
2005-12-29
The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.
NASA Technical Reports Server (NTRS)
Beck, M.
1979-01-01
In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.
NASA Astrophysics Data System (ADS)
Košická, Petra; Győryová, Katarína; Smolko, Lukáš; Gyepes, Róbert; Hudecová, Daniela
2018-03-01
Two new analogous zinc(II) complexes containing 5-iodo- and 5-bromosalicylate ligands, respectively, were prepared in single-crystal form and characterized by IR spectroscopy, thermal analysis and elemental analysis. The solid-state structures of prepared complexes were determined by single crystal X-ray crystallography. Both complexes are isostructural and their crystal structures composed of neutral molecules [Zn(5-Xsal)2(H2O)2] (where X = Br, I, sal = salicylato). Central Zn(II) atom is in both complexes coordinated by six oxygen atoms, four of which are from two chelate bonded 5-halosalicylates and remaining two from coordinated water molecules. The found chelate binding mode is in line with the Δ values calculated from IR spectral data. Antimicrobial activity of prepared complexes was studied against selected bacteria, yeast and filamentous fungi. Obtained results indicate that 5-iodosalicylate complex is more antimicrobially active than its 5-bromo substituted analogue.
Stranava, Martin; Man, Petr; Skálová, Tereza; Kolenko, Petr; Blaha, Jan; Fojtikova, Veronika; Martínek, Václav; Dohnálek, Jan; Lengalova, Alzbeta; Rosůlek, Michal; Shimizu, Toru; Martínková, Markéta
2017-12-22
The heme-based oxygen sensor histidine kinase Af GcHK is part of a two-component signal transduction system in bacteria. O 2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His 183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH - and -CN - complexes of Af GcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN - and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length Af GcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of Af GcHK. We conclude that Af GcHK functions as an ensemble of molecules sampling at least two conformational states. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Abhinandan; Jana, Swapan Kumar; Datta, Sayanti
The synthesis of two new lead(II) coordination polymers, [Pb{sub 2}(mpic){sub 4}(H{sub 2}O)]·0.5H{sub 2}O (1) and [Pb{sub 2}(phen){sub 2}(cit)(mes)]·2H{sub 2}O (2) has been reported, where mpic=3-methyl picolinate, phen=o-phenanthroline, H{sub 2}cit=citraconic acid, H{sub 2}mes mesaconic acid. X-ray single crystal diffraction analyses showed that the complexes comprise topologically different 1D polymeric chains stabilized by weak interactions and both containing tetranuclear Pb{sub 4} units connected by carboxylate groups. In compound 1 3-methylpicolinic acid is formed in situ from 3-methyl piconitrile, and mesaconate and citraconate anions were surprisingly formed from itaconic acid during the synthesis of 2. The photoluminescence and thermal properties of the complexesmore » have been studied. - Graphical abstract: Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by X-ray analysis. The luminescence and thermal properties have been studied. Display Omitted - Highlights: • Both the complexes, made up of different ligands, forms topologycally different 1D polymeric chains containing Pb{sub 4} clusters. • The final structures are stabilized by weak interactions (H-bond, π∙∙∙π stacking). • In complex 1, the 3-methylpicolinic acid is generated in situ from 3-methyl piconitrile. • Mesaconate and citraconate anions are surprisingly formed in situ from itaconic acid during the synthesis of complex 2, indicating an exceptional transformation.« less
Ube, Hitoshi; Yasuda, Yoshihiro; Sato, Hiroyasu; Shionoya, Mitsuhiko
2017-02-08
Metal ions can serve as a centre of molecular motions due to their coordination geometry, reversible bonding nature and external stimuli responsiveness. Such essential features of metal ions have been utilized for metal-mediated molecular machines with the ability to motion switch via metallation/demetallation or coordination number variation at the metal centre; however, motion switching based on the change in coordination geometry remain largely unexplored. Herein, we report a Pt II -centred molecular gear that demonstrates control of rotor engagement and disengagement based on photo- and thermally driven cis-trans isomerization at the Pt II centre. This molecular rotary motion transmitter has been constructed from two coordinating azaphosphatriptycene rotators and one Pt II ion as a stator. Isomerization between an engaged cis-form and a disengaged trans-form is reversibly driven by ultraviolet irradiation and heating. Such a photo- and thermally triggered motional interconversion between engaged/disengaged states on a metal ion would provide a selector switch for more complex interlocking systems.
NASA Astrophysics Data System (ADS)
Jafari-Moghaddam, Faezeh; Beyramabadi, S. Ali; Khashi, Maryam; Morsali, Ali
2018-02-01
Three oxovanadium(IV) complexes of the pyridoxal Schiff bases have been newly synthesized and characterized. The used Schiff bases were N,N‧-dipyridoxyl(ethylenediamine), N,N‧-dipyridoxyl(1,3-propanediamine) and N,N‧-dipyridoxyl(1,2-benzenediamine). Also, the optimized geometry, assignment of the IR bands and the Natural Bond Orbital (NBO) analysis of the complexes have been computed using the density functional theory (DFT) methods. Dianionic form of the Schiff bases (L2-) acts as a tetradentate N2O2 ligand. The coordinating atoms of the Schiff base are the phenolate oxygens and imine nitrogens, which occupy four base positions of the square-pyramidal geometry of the complexes. The oxo ligand occupies the apical position of the [VO(L)] complexes. In the optimized geometry of the complexes, the coordinated Schiff bases have more planar structure than their free form. Due to the high-energy gaps, all of the complexes are predicted to be stable. Good agreement between the experimental values and the DFT-computed results supports suitability of the optimized geometries for the complexes. The investigated complexes show high catalytic activities in synthesis of the tetrahydrobenzo[b]pyrans through a three-component cyclocondensation reaction of dimedone, malononitrile and some aromatic aldehydes. The complexes catalyzed the reaction in solvent free conditions and the catalysts were found to be reusable.
Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment
DOE R&D Accomplishments Database
Marcus, R. A.
1964-01-01
In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.
NASA Astrophysics Data System (ADS)
Kohler, Martin; Leary, Julie A.
1997-03-01
Doubly charged metal(II)-complexes of [alpha] 1-3, [alpha] 1-6 mannotriose and the conserved trimannosyl core pentasaccharide as well as doubly charged complexes of Co(II), Mn(II), Ca(II) and Sr(II) with acetonitrile generated by electrospray ionization were studied by low energy collision induced dissociation (CID). Two main fragmentation pathways were observed for the metal(II)-oligosaccharide complexes. Regardless of the coordinating metal, loss of a neutral dehydrohexose residue (162 Da) from the doubly charged precursor ion is observed, forming a doubly charged product ion. However, if the oligosaccharide is coordinated to Co(II) or Mn(II), loss of a dehydroxyhexose cation is also observed. Investigation of the low mass region of the mass spectra of the metal coordinated oligosaccharides revealed intense signals corresponding to [metal(II) + (CH3CN)n2+ (where n = 1-6) species which were being formed by the metal(II) ions and the acetonitrile present in the sample. Analysis of these metal(II)-acetonitrile complexes provided further insight into the processes occurring upon low energy CID of doubly charged metal complexes. The metal(II)-acetonitrile system showed neutral loss and ligand cleavage as observed with the oligosaccharide complexes, as well as a series of six different dissociation mechanisms, most notable among them reduction from [metal(II) + (CH3CN)n2+ to the bare [metal(I)]+ species by electron transfer. Depending on the metal and collision gas chosen, one observes electron transfer from the ligand to the metal, electron transfer from the collision gas to the metal, proton transfer between ligands, heterolytic cleavage of the ligands, reactive collisions and loss of neutral ligands.
Coordination Chemistry of Linear Oligopyrrolic Fragments Inspired by Heme Metabolites
NASA Astrophysics Data System (ADS)
Gautam, Ritika
Linear oligopyrroles are degradation products of heme, which is converted in the presence of heme oxygenase to bile pigments, such as biliverdin and bilirubin. These tetrapyrrolic oligopyrroles are ubiquitously present in biological systems and find applications in the fields of catalysis and sensing. These linear tetrapyrrolic scaffolds are further degraded into linear tripyrrolic and dipyrrolic fragments. Although these lower oligopyrroles are abundantly present, their coordination chemistry requires further characterization. This dissertation focuses mainly on two classes of bioinspired linear oligopyrroles, propentdyopent and tripyrrindione, and their transition metal complexes, which present a rich ligand-based redox chemistry. Chapter 1 offers an overview of heme degradation to different classes of linear oligopyrroles and properties of their transition metal complexes. Chapter 2 is focused on the tripyrrin-1,14-dione scaffold of the urinary pigment uroerythrin, which coordinates divalent transition metals palladium and copper with square planar geometry. Specifically, the tripyrrin-1, 14-dione ligand binds Cu(II) and Pd(II) as a dianionic organic radical under ambient conditions. The electrochemical study confirms the presence of ligand based redox chemistry, and one electron oxidation or reduction reactions do not alter the planar geometry around the metal center. The X-Ray analysis and the electron paramagnetic resonance (EPR) studies of the complexes in the solid and solution phase reveals intermolecular interactions between the ligand based unpaired electrons and therefore formation of neutral pi-pi dimers. In Chapter 3, the antioxidant activity and the fluorescence sensor properties of the tripyrrin-1,14-dione ligand in the presence of superoxide are described. We found that the tripyrrindione ligand undergoes one-electron reduction in the presence of the superoxide radical anion (O2•- ) to form highly fluorescent H3TD1•- radical anion, which emits at 635 nm. This reaction also explains the antioxidant properties of the linear tripyrrin-1,14-dione ligand, which acts as a scavenger of O2•-. In Chapter 4, the zinc binding properties of the tripyrrin-1,14-dione ligand are described. The tripyrrolic ligand coordinates as a dianionic ligand with the divalent Zn(II) ion in both organic and aqueous buffered conditions. The complex formed is highly fluorescent with a long wavelength emission band at 648 nm. The X-Ray crystallography analysis indicates the existence of dinuclear complex [Zn(TD1•)(H2O)]2, featuring a distorted square planar geometry around the Zn(II) center. In Chapter 5, the coordination chemistry of the dipyrrin-1,9-dione fragment of propentdyopent ligand is shown with a series of transition metals like (e.g., Co(II), Ni(II), Cu(II) and Zn(II)), which form homoleptic tetrahedral complexes. The spectroscopic and electrochemical characterization confirms that the complexes shows ligand-based redox chemistry and acts as reservoirs for unpaired electrons. Chapter 6 describes the formation of the fluorescent BODIPY complex of propentdyopent ligand. The dipyrrin-1,9-dione scaffold of heme metabolite propendyopent undergoes a one-pot reaction with borontrifluoride etherate in toluene to form a green fluorescent [(pdp)BF2] complex. Spectroscopic studies reveal that the meso-unsubstituted [(pdp)BF2] complex is stable in tetrahydrofuran and has a quantum yield of 0.13. Electrochemical studies confirm that the complex undergoes ligand-based reduction and acts as a host for an unpaired electron.
Hoshimoto, Yoichi; Ohashi, Masato; Ogoshi, Sensuke
2015-06-16
Chemists no longer doubt the importance of a methodology that could activate and utilize aldehydes in organic syntheses since many products prepared from them support our daily life. Tremendous effort has been devoted to the development of these methods using main-group elements and transition metals. Thus, many organic chemists have used an activator-(aldehyde oxygen) interaction, namely, η(1) coordination, whereby a Lewis or Brønsted acid activates an aldehyde. In the field of coordination chemistry, η(2) coordination of aldehydes to transition metals by coordination of a carbon-oxygen double bond has been well-studied; this activation mode, however, is rarely found in transition-metal catalysis. In view of the distinctive reactivity of an η(2)-aldehyde complex, unprecedented reactions via this intermediate are a distinct possibility. In this Account, we summarize our recent results dealing with nickel(0)-catalyzed transformations of aldehydes via η(2)-aldehyde nickel and oxanickelacycle intermediates. The combination of electron-rich nickel(0) and strong electron-donating N-heterocyclic carbene (NHC) ligands adequately form η(2)-aldehyde complexes in which the aldehyde is highly activated by back-bonding. With Ni(0)/NHC catalysts, processes involving intramolecular hydroacylation of alkenes and homo/cross-dimerization of aldehydes (the Tishchenko reaction) have been developed, and both proceed via the simultaneous η(2) coordination of aldehydes and other π components (alkenes or aldehydes). The results of the mechanistic studies are consistent with a reaction pathway that proceeds via an oxanickelacycle intermediate generated by the oxidative cyclization with a nickel(0) complex. In addition, we have used the η(2)-aldehyde nickel complex as an effective activator for an organosilane in order to generate a silicate reactant. These reactions show 100% atom efficiency, generate no wastes, and are conducted under mild conditions.
Metal-air cell with performance enhancing additive
Friesen, Cody A; Buttry, Daniel
2015-11-10
Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smithers, G.W.; Sammons, R.D.; Goodhart, P.J.
1989-02-21
The stereochemical configurations of the Mn(II) complexes with the resolved epimers of adenosine 5{prime}-O-(1-thiodiphosphate) (ADP{alpha}S), bound at the active site of creatine kinase, have been determined in order to assess the relative strengths of enzymic stereoselectivity versus Lewis acid/base preferences in metal-ligand binding. Electron paramagnetic resonance (EPR) data have been obtained for Mn(II) in anion-stabilized, dead-end (transition-state analogue) complexes, in ternary enzyme-Mn{sup II}ADP{alpha}S complexes, and in the central complexes of the equilibrium mixture. The modes of coordination of Mn(II) at P{sub alpha} in the nitrate-stabilized, dead-end complexes with each epimer of ADP{alpha}S were ascertained by EPR measurements with (R{sub p})-({alpha}-{supmore » 17}O)ADP{alpha}S and (S{sub p})-({alpha}-{sup 17}O)ADP{alpha}S. A reduction in the magnitude of the {sup 55}Mn hyperfine coupling constant in the spectrum for the complex containing (S{sub p})-ADP{alpha}S is indicative of Mn(II)-thio coordination at P{sub alpha}. The results indicate that a strict discrimination for a unique configuration of the metal-nucleotide substrate is expressed upon binding of all of the substrates to form the active complex (or an analogue thereof). This enzymic stereoselectivity provides sufficient binding energy to overcome an intrinsic preference for the hard Lewis acid Mn(II) to coordinate to the hard Lewis base oxygen.« less
Trithiocyanurate complexes of iron, manganese and nickel and their anticholinesterase activity.
Kopel, Pavel; Dolezal, Karel; Langer, Vratislav; Jun, Daniel; Adam, Vojtech; Kuca, Kamil; Kizek, Rene
2014-04-08
The complexes of Fe(II), Mn(II) and Ni(II) with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3) were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of composition [Fe(L1)](ttcH2)(ClO4)·EtOH·H2O (1), where L1 is Schiff base derived from tris(2-aminoethyl)amine and 2-pyridinecarboxaldehyde, were solved. It was found that the Schiff base is coordinated to the central iron atom by six nitrogens forming deformed octahedral arrangement, whereas trithiocyanurate(1-) anion, perchlorate and solvent molecules are not coordinated. The X-ray structure of the Schiff base sodium salt is also presented and compared with the iron complex. The anticholinesterase activity of the complexes was also studied.
Dey, Soumyajit; Rath, Sankar Prasad
2014-02-07
The syn-anti conformational switching has been demonstrated in the ethane-bridged dicobalt(II)bisporphyrin which is present in the syn-form only. The addition of either perylene or axial ligands to Co(II)(bisporphyrin) completely transforms the syn form into the anti because of strong π-π interaction and axial coordination, respectively. The complex undergoes four 1e-oxidations in CH2Cl2 which are indicative of strong through space interactions between the two cofacial Co-porphyrins at 295 K. The first oxidation is a metal centered one and occurs at a potential much lower than that of the monomeric analog. However, the second oxidation, which is again metal centered, was at a significantly higher potential. The large difference between the first two oxidations, as observed here, is due to much stronger inter-porphyrin interactions. The step-wise oxidations have been performed both chemically and electro-chemically while the progress of the reactions was monitored by UV-visible and (1)H NMR spectroscopy. After 1e-oxidation, a very broad (1)H NMR signal results with increased difference between two meso resonances, which indicates that the two macrocycles are in the syn-form with lesser interplanar separation as also observed by DFT. However, 2e-oxidation results in the stabilization of the anti form. The addition of axial ligands to Co(II)(bisporphyrin) also completely transforms the syn form into the anti form. While additions of THF and I2/I(-) both result in the formation of five-coordinate complexes, Co(II) is oxidized to Co(III) in the case of the latter. However, additions of 1-methylimidazole, pyridine and pyrazine as axial ligands result in the formation of a six-coordinate complex in which Co(II) is spontaneously oxidized to Co(III) in air.
Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju
2015-09-08
Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.
Mehio, Nada; Ivanov, Alexander S.; Ladshaw, Austin P.; ...
2015-11-22
Poly(acrylamidoxime) fibers are the current state of the art adsorbent for mining uranium from seawater. However, the competition between uranyl (UO 2 2+) and vanadium ions poses a challenge to mining on the industrial scale. In this work, we employ density functional theory (DFT) and coupled-cluster methods (CCSD(T)) in the restricted formalism to investigate potential binding motifs of the oxovanadium(IV) ion (VO 2+) with the formamidoximate ligand. Consistent with experimental EXAFS data, the hydrated six-coordinate complex is predicted to be preferred over the hydrated five-coordinate complex. Here, our investigation of formamidoximate-VO 2+ complexes universally identified the most stable binding motifmore » formed by chelating a tautomerically rearranged imino hydroxylamine via the imino nitrogen and hydroxylamine oxygen. The alternative binding motifs for amidoxime chelation via a non-rearranged tautomer and 2 coordination are found to be ~11 kcal/mol less stable. Ultimately, the difference in the most stable VO 2+ and UO 2 2+ binding conformation has important implications for the design of more selective UO 2 2+ ligands.« less
NASA Astrophysics Data System (ADS)
Golbedaghi, Reza; Moradi, Somaeyh; Salehzadeh, Sadegh; Blackman, Allan G.
2016-03-01
The symmetrical and asymmetrical potentially heptadentate (N4O3) tripodal Schiff base ligands (H3L1-H3L3) were synthesized from the condensation reaction of three tripodal tetraamine ligands tpt (trpn), tris (3-aminopropyl) amine; ppe (abap), (2-aminoethyl)bis(3-aminopropyl)amine, and tren, tris(2-aminoethyl)amine, with 5-methoxysalicylaldehyde. Then, the reaction of Ln(III) (Ln = Gd, La and Sm), Al(III), and Fe(III) metal ions with the above ligands was investigated. The resulting compounds were characterized by IR, mass spectrometry and elemental analysis in all cases and NMR spectroscopy in the case of the Schiff base ligands. The X-ray crystal structure of the Gd complex of H3L3 ligand showed that in addition to all donor atoms of the ligand one molecule of H2O is also coordinated to the metal ion and a neutral eight-coordinate complex is formed.
NASA Astrophysics Data System (ADS)
Novakovskaya, O. Yu.; Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Yu.; Soltys, I. V.; Zhytaryuk, V. H.; Olar, O. V.; Sidor, M.; Gorsky, M. P.
2016-12-01
The theoretical background of azimuthally stable method of Jones-matrix mapping of histological sections of biopsy of myocardium tissue on the basis of spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of myocardium tissue histological sections are found. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin fibrils of myocardium tissue of different necrotic states - dead due to coronary heart disease and acute coronary insufficiency are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of differentiation of cause of death are determined.
Gold(I) Complexes of the Geminal Phosphinoborane tBu2PCH2BPh2
2018-01-01
In this work, we explored the coordination properties of the geminal phosphinoborane tBu2PCH2BPh2 (2) toward different gold(I) precursors. The reaction of 2 with an equimolar amount of the sulfur-based complex (Me2S)AuCl resulted in displacement of the SMe2 ligand and formation of linear phosphine gold(I) chloride 3. Using an excess of ligand 2, bisligated complex 4 was formed and showed dynamic behavior at room temperature. Changing the gold(I) metal precursor to the phosphorus-based complex, (Ph3P)AuCl impacted the coordination behavior of ligand 2. Namely, the reaction of ligand 2 with (Ph3P)AuCl led to the heterolytic cleavage of the gold–chloride bond, which is favored over PPh3 ligand displacement. To the best of our knowledge, 2 is the first example of a P/B-ambiphilic ligand capable of cleaving the gold–chloride bond. The coordination chemistry of 2 was further analyzed by density functional theory calculations. PMID:29732451
NASA Astrophysics Data System (ADS)
Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet; Büyükgüngör, Orhan
2007-05-01
The (2-amino-4-methylpyrimidine)-(pyridine-2,6-dicarboxylato)copper(II) monohydrate complex was synthesized and characterized by spectroscopic (IR, UV/Vis, EPR), thermal (TG/DTA) and electrochemical methods. X-ray structural analysis of the title complex revealed that the copper ion can be considered to have two coordination spheres. In the first coordination sphere the copper ion forms distorted square-planar geometry with trans-N 2O 2 donor set, and also the metal ion is weakly bonded to the amino-nitrogen in the layer over and to the carboxylic oxygen in the layer underneath in the second coordination sphere. The second coordination environment on the copper ion is attributed to pseudo octahedron. The powder EPR spectra of Cu(II) complex at room and liquid nitrogen temperature were recorded. The calculated g and A parameters have indicated that the paramagnetic centre is axially symmetric. The molecular orbital bond coefficients of the Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centered electroactivity in the potential range -1.25 to 1.5 V versus Ag/AgCl reference electrode.
Nakagaki, Masayuki; Sakaki, Shigeyoshi
2014-02-20
Inverse sandwich-type complexes (ISTCs), (μ-N2)[M(AIP)]2 (AIPH = (Z)-1-amino-3-imino-prop-1-ene; M = Cr and Fe), were investigated with the CASPT2 method. In the ISTC of Cr, the ground state takes a singlet spin multiplicity. However, the singlet to nonet spin states are close in energy to each other. The thermal average of effective magnetic moments (μeff) of these spin multiplicities is close to the experimental value. The η(2)-side-on coordination structure of N2 is calculated to be more stable than the η(1)-end-on coordination one. This is because the d-orbital of Cr forms a strong dπ-π* bonding interaction with the π* orbital of N2 in molecular plane. In the ISTC of Fe, on the other hand, the ground state takes a septet spin multiplicity, which agrees well with the experimentally reported μeff value. The η(1)-end-on structure of N2 is more stable than the η(2)-side-on structure. In the η(1)-end-on structure, two doubly occupied d-orbitals of Fe can form two dπ-π* bonding interactions. The negative spin density is found on the bridging N2 ligand in the Fe complex but is not in the Cr complex. All these interesting differences between ISTCs of Cr and Fe are discussed on the basis of the electronic structure and bonding nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furmanova, N. G., E-mail: furm@ns.crys.ras.ru; Berdalieva, Zh. I., E-mail: kakin@inbox.ru; Chernaya, T. S.
2009-03-15
The pyridoxine complexes with zinc and cadmium sulfates are synthesized. The IR absorption spectra and thermal behavior of the synthesized compounds are described. Crystals of the [M(C{sub 8}H{sub 11}O{sub 3}N){sub 2}(H{sub 2}O){sub 2}]SO{sub 4} . 3H{sub 2}O (M = Zn, Cd) compounds are investigated using X-ray diffraction. In the structures of both compounds, the M atoms are coordinated by the oxygen atoms of the deprotonated OH group and the CH{sub 2}OH group retaining its own hydrogen atom, as well as by two H{sub 2}O molecules, and have an octahedral coordination. The nitrogen atom of the heterocycle is protonated, so thatmore » the heterocycle acquires a pyridinium character. The cationic complexes form layers separated by the anions and crystallization water molecules located in between. The structural units of the crystals are joined together by a complex system of hydrogen bonds.« less
Le Fur, Mariane; Molnár, Enikő; Beyler, Maryline; Kálmán, Ferenc K; Fougère, Olivier; Esteban-Gómez, David; Rousseaux, Olivier; Tripier, Raphaël; Tircsó, Gyula; Platas-Iglesias, Carlos
2018-03-02
The geometric features of two pyclen-based ligands possessing identical donor atoms but different site organization have a profound impact in their complexation properties toward lanthanide ions. The ligand containing two acetate groups and a picolinate arm arranged in a symmetrical fashion (L1) forms a Gd 3+ complex being two orders of magnitude less stable than its dissymmetric analogue GdL2. Besides, GdL1 experiences a much faster dissociation following the acid-catalyzed mechanism than GdL2. On the contrary, GdL1 exhibits a lower exchange rate of the coordinated water molecule compared to GdL2. These very different properties are related to different strengths of the Gd-ligand bonds associated to steric effects, which hinder the coordination of a water molecule in GdL2 and the binding of acetate groups in GdL1. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.
2010-01-01
Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468
Osowole, Aderoju Amoke
2012-01-01
The Schiff base, 3-hydroxy-4-{[4-(methylsulfanyl)phenyl]imino}-3,4-dihydronaphthalen-1(2H)-one, and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes have been synthesized and characterized by microanalysis, conductance, 1H NMR, infrared and electronic spectral measurements. The ligand exists in the ketoimine form in chloroform, and in the enolimine form in the solid state, as shown by 1H NMR and IR spectroscopies. The ligand coordinates to the metal ions in the ratio 1:1, using NO chromophores forming complexes of the type [MLNO3]H2O, with the exception of the Zn(II) and Pd(II) complexes. Electronic measurements are indicative of a four coordinate square-planar geometry for all the complexes, except for the Cu(II) and Zn(II) complexes which assume a tetrahedral geometry. None is an electrolyte in nitromethane. The ligand and the metal complexes are air-stable, but decomposed on heating at 120 °C and in the range 150-156 °C respectively. The antibacterial studies reveal that the Co(II) and the Cu(II) complexes exhibit broad-spectrum activity against Proteus mirabilis, Escherichia coli and Staphylococcus aureus with inhibitory zones range of 14.0-22.0 and 13.0-25.0 mm respectively. The antiproliferative studies show that the Zn(II) complex has the best in-vitro anticancer activity against both HT-29 (colon) carcinoma and MCF-7 (human breast) adenocarcinoma with IC50 values of 6.46 µm and 3.19 µm, which exceeds the activity of Cis-platin by 8 % and 63 % respectively. PMID:27350773
Lense, Sheri; Piro, Nicholas A; Kassel, Scott W; Wildish, Andrew; Jeffery, Brent
2016-08-01
The structures of two facially coordinated Group VII metal complexes, fac-[ReCl(C10H8N2O2)(CO)3]·C4H8O (I·THF) and fac-[MnBr(C10H8N2O2)(CO)3]·C4H8O (II·THF), are reported. In both complexes, the metal ion is coordinated by three carbonyl ligands, a halide ligand, and a 6,6'-dihy-droxy-2,2'-bi-pyridine ligand in a distorted octa-hedral geometry. Both complexes co-crystallize with a non-coordinating tetra-hydro-furan (THF) solvent mol-ecule and exhibit inter-molecular but not intra-molecular hydrogen bonding. In both crystal structures, chains of complexes are formed due to inter-molecular hydrogen bonding between a hy-droxy group from the 6,6'-dihy-droxy-2,2'-bi-pyridine ligand and the halide ligand from a neighboring complex. The THF mol-ecule is hydrogen bonded to the remaining hy-droxy group.
1H and 17O NMR relaxometric and computational study on macrocyclic Mn(II) complexes.
Rolla, Gabriele A; Platas-Iglesias, Carlos; Botta, Mauro; Tei, Lorenzo; Helm, Lothar
2013-03-18
Herein we report a detailed 1H and 17O relaxometric investigation of Mn(II) complexes with cyclen-based ligands such as 2-(1,4,7,10-tetraazacyclododecan-1-yl)acetic acid (DO1A), 2,2'-(1,4,7,10-tetraazacyclododecane-1,4-diyl)diacetic acid (1,4-DO2A), 2,2'-(1,4,7,10-tetraazacyclododecane-1,7-diyl)diacetic acid (1,7-DO2A), and 2,2',2"-(1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (DO3A). The Mn(II) complex with the heptadentate ligand DO3A does not have inner sphere water molecules (q = 0), and therefore, the metal ion is most likely seven-coordinate. The hexadentate DO2A ligand has two isomeric forms: 1,7-DO2A and 1,4-DO2A. The Mn(II) complex with 1,7-DO2A is predominantly six-coordinate (q = 0). In aqueous solutions of [Mn(1,4-DO2A)], a species with one coordinated water molecule (q = 1) prevails largely, whereas a q = 0 form represents only about 10% of the overall population. The Mn(II) complex of the pentadentate ligand DO1A also contains a coordinated water molecule. DFT calculations (B3LYP model) are used to obtain information about the structure of this family of closely related complexes in solution, as well as to determine theoretically the 17O and 1H hyperfine coupling constants responsible for the scalar contribution to 17O and 1H NMR relaxation rates and 17O NMR chemical shifts. These calculations provide 17O A/ħ values of ca. 40 × 10(6) rad s(-1), in good agreement with experimental data. The [Mn(1,4-DO2A)(H2O)] complex is endowed with a relatively fast water exchange rate (k(ex)298 = 11.3 × 10(8) s(-1)) in comparison to the [Mn(EDTA)(H2O)]2- analogue (k(ex)298 = 4.7 × 10(8) s(-1)), but about 5 times lower than that of the [Mn(DO1A)(H2O)]+ complex (k(ex)298 = 60 × 10(8) s(-1)). The water exchange rate measured for the latter complex represents the highest water exchange rate ever measured for a Mn(II) complex.
NASA Astrophysics Data System (ADS)
Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri
2014-08-01
Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.
Lee, Junseong; Ghosh, Koushik; Stang, Peter J
2009-09-02
We present a general strategy for the synthesis of stable, multicomponent fused polygon complexes in which coordination-driven self-assembly allows for single supramolecular species to be formed from multicomponent self-assembly and the shape of the obtained polygons can be controlled simply by changing the ratio of individual components. The compounds have been characterized by multinuclear NMR spectroscopy and electrospray ionization mass spectrometry.
The ligand effect on the hydrolytic reactivity of Zn(II) complexes toward phosphate diesters.
Bonfá, Lodovico; Gatos, Maddalena; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto
2003-06-16
The catalytic effects of the Zn(II) complexes of a series of poliaminic ligands in the hydrolysis of the activated phosphodiesters bis-p-nitrophenyl phosphate (BNP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) have been investigated. The reactions show first-order rate dependency on both substrate and metal ion complex and a pH dependence which is diagnostic of the acid dissociation of the reactive species. The mechanism of the metal catalyzed transesterification of HPNP has been assessed by solvent isotopic kinetic effect studies and involves the intramolecular nucleophilic attack of the substrate alcoholic group, activated by metal ion coordination. The intrinsic reactivity of the different complexes is controlled by the nature and structure of the ligand: complexes of tridentate ligands, particularly if characterized by a facial coordination mode, are more reactive than those of tetradentate ligands which can hardly allow binding sites for the substrate. In the case of tridentate ligands that form complexes with a facial coordination mode, a linear Brønsted correlation between the reaction rate (log k) and the pK(a) of the active nucleophile is obtained. The beta(nuc) values are 0.75 for the HPNP transesterification and 0.20 for the BNP hydrolysis. These values are indicated as the result of the combination of two opposite Lewis acid effects of the Zn(II) ion: the activation of the substrate and the efficiency of the metal coordinated nucleophile. The latter factor apparently prevails in determining the intrinsic reactivity of the Zn(II) complexes.
NASA Astrophysics Data System (ADS)
Jayakumar, K.; Sithambaresan, M.; Aiswarya, N.; Kurup, M. R. Prathapachandra
2015-03-01
Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N4-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ = 0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)sbnd I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g|| > g⊥ > 2.0023 and the g values in frozen DMF are consistent with the dx2-y2 ground state. The thermal stabilities of some of the complexes were also determined.
Polymer matrix electroluminescent materials and devices
Marrocco, III, Matthew L.; Motamedi, Farshad J [Claremont, CA; Abdelrazzaq, Feras Bashir [Covina, CA; Abdelrazzaq, legal representative, Bashir Twfiq
2012-06-26
Photoluminescent and electroluminescent compositions are provided which comprise a matrix comprising aromatic repeat units covalently coordinated to a phosphorescent or luminescent metal ion or metal ion complexes. Methods for producing such compositions, and the electroluminescent devices formed therefrom, are also disclosed.
Complexity matching in dyadic conversation.
Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T
2014-12-01
Recent studies of dyadic interaction have examined phenomena of synchronization, entrainment, alignment, and convergence. All these forms of behavioral matching have been hypothesized to play a supportive role in establishing coordination and common ground between interlocutors. In the present study, evidence is found for a new kind of coordination termed complexity matching. Temporal dynamics in conversational speech signals were analyzed through time series of acoustic onset events. Timing in periods of acoustic energy was found to exhibit behavioral matching that reflects complementary timing in turn-taking. In addition, acoustic onset times were found to exhibit power law clustering across a range of timescales, and these power law functions were found to exhibit complexity matching that is distinct from behavioral matching. Complexity matching is discussed in terms of interactive alignment and other theoretical principles that lead to new hypotheses about information exchange in dyadic conversation and interaction in general. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Lu, Yan; Guo, Jianyu
2006-04-10
A single-crystal of SmCl3.C5H10O5.5H2O was obtained from methanol-water solution and its structure determined by X-ray. Two forms of the complex as a pair of anomers and related conformers were found in the single-crystal in a disordered state. One ligand is alpha-D-ribopyranose in the 4C1 conformation and the other one is beta-D-ribopyranose. The anomeric ratio is 1:1. Both ligands provide three hydroxyl groups in ax-eq-ax orientation for coordination. The Sm3+ ion is nine-coordinated with five Sm-O bonds from water molecules, three Sm-O bonds from hydroxyl groups of the D-ribopyranose and one Sm-Cl bond. The hydroxyl groups, water molecules and chloride ions form an extensive hydrogen-bond network. The IR spectral C-C, O-H, C-O, and C-O-H vibrations were observed to be shifted in the complex and the IR results are in accord with those of X-ray diffraction.
NASA Astrophysics Data System (ADS)
Dumpala, Rama Mohana Rao; Rawat, Neetika; Boda, Anil; Ali, Sk. Musharaf; Tomar, B. S.
2018-02-01
The mononuclear complexes formed by Eu(III) with three isomeric pyridine monocarboxylate-N-oxides namely picolinic acid-N-oxide (PANO), nicotinic acid-N-oxide (NANO) and isonicotinic acid-N-oxide (IANO) in aqueous solutions were studied by potentiometry, luminescence spectroscopy and isothermal titration calorimetry (ITC) to determine the speciation, coordination, luminescence properties and thermodynamic parameters of the complexes formed during the course of the reaction. More stable six membered chelate complexes with stoichiometry (MLi, i = 1-4) are formed by Eu(III) with PANO while non chelating ML and ML2 complexes are formed by NANO and IANO. The stability of Eu(III) complexes follow the order PANO > IANO > NANO. The ITC studies inferred an endothermic and innersphere complex formation of Eu(III)-PANO and Eu(III)-IANO whereas an exothermic and outer-sphere complex formation for Eu(III)-NANO. The luminescence life time data further supported the ITC results. Density functional theoretical calculations were carried out to optimize geometries of the complexes and to estimate the energies, structural parameters (bond distances, bond angles) and charges on individual atoms of the same. Theoretical approximations are found to be in good agreement with the experimental observations.
The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters.
Goodwin, P J; Agar, J N; Roll, J T; Roberts, G P; Johnson, M K; Dean, D R
1998-07-21
The nifE and nifN gene products from Azotobacter vinelandii form an alpha2beta2 tetramer (NifEN complex) that is required for the biosynthesis of the nitrogenase FeMo cofactor. In the current model for NifEN complex organization and function, the complex is structurally analogous to the nitrogenase MoFe protein and provides an assembly site for a portion of FeMo cofactor biosynthesis. In this work, gene fusion and immobilized metal-affinity chromatography strategies were used to elevate the in vivo production of the NifEN complex and to facilitate its rapid and efficient purification. The NifEN complex produced and purified in this way exhibits an FeMo cofactor biosynthetic activity similar to that previously described for the NifEN complex purified by traditional chromatography methods. UV-visible, EPR, variable-temperature magnetic circular dichroism, and resonance Raman spectroscopies were used to show that the NifEN complex contains two identical [4Fe-4S]2+ clusters. These clusters have a predominantly S = 1/2 ground state in the reduced form, exhibit a reduction potential of -350 mV, and are likely to be coordinated entirely by cysteinyl residues on the basis of spectroscopic properties and sequence comparisons. A model is proposed where each NifEN complex [4Fe-4S] cluster is bridged between a NifE-NifN subunit interface at a position analogous to that occupied by the P clusters in the nitrogenase MoFe protein. In contrast to the MoFe protein P clusters, the NifEN complex [4Fe-4S] clusters are proposed to be asymmetrically coordinated to the NifEN complex where NifE cysteines-37, -62, and -124 and NifN cysteine-44 are the coordinating ligands. On the basis of a homology model of the three-dimensional structure of the NifEN complex, the [4Fe-4S] cluster sites are likely to be remote from the proposed FeMo cofactor assembly site and are unlikely to become incorporated into the FeMo cofactor during its assembly.
Facile synthesis of bis(dichalcogenophosphinate)s and a remarkable [Li8(OH)6]2+ polyhedron.
Davies, Robert P; Martinelli, M Giovanna; Patel, Laura; White, Andrew J P
2010-05-17
The synthesis and characterization of three lithium complexes of novel bis(dichalcogenophosphinate) ligands are reported: (PhP(S)(2)CH(2)CH(2)P(S)(2)Ph)Li(2)(THF)(4) (2), (PhP(Se)(2)CH(2)CH(2)P(Se)(2)Ph)Li(2)(THF)(4).(PhP(Se)(2)CH(2)CH(2)P(Se)(2)Ph)Li(2)(THF)(6) (3), and [PhP(Te)(2)CH(2)CH(2)P(Te)(2)Ph][Li(8)(OH)(6)(THF)(8)] (4). The synthetic route to these complexes proceeds via the insertion reaction of elemental chalcogens into the phosphorus-lithium bonds of 1,2-dilithio-1,2-di(phenylphosphine)ethylene (1). X-ray analysis of 2 revealed isobidentate coordination of the lithiums by the dithiophosphinate groups. In contrast, the diselenophosphinate groups in 3 coordinate the lithium centers in both isobidentate and monodentate modes, and the ditellurophosphinate groups in 4 form non-coordinate separate ion pairs. The countercation in 4 is shown to be a unique [Li(8)(OH)(6)](2+) rhombic dodecahedral polyhedron, putatively formed from the capping of a hexameric [Li(OH)](6) aggregate with lithium cations on its open faces.
A highly stable l-alanine-based mono(aquated) Mn(ii) complex as a T1-weighted MRI contrast agent.
Khannam, Mahmuda; Weyhermüller, Thomas; Goswami, Upashi; Mukherjee, Chandan
2017-08-08
The synthesized lithium (S)-6,6'-(1-carboxyethylazanediyl)bis(methylene)dipicolinate (Li 3 cbda) is a new chiral, alanine-based ligand bearing two picolinate functionalities. The trianionic form of the ligand [(cbda) 3- ] constitutes a seven-coordinate, water-soluble, pentagonal bipyramidal Mn(ii) complex (1). The structural analysis reveals the presence of a water coordinating site in the complex. The complex is thermodynamically very stable, and the stability is not affected by the presence of physiological anions (HCO 3 - , PO 4 3- , and F - ). The pH of the medium exerts a small effect on the stability of the complex. The r 1 relaxivity of 3.02 mM -1 s -1 is exhibited by the complex at 1.41 T, pH ∼7.4, and 25 °C. Phantom images obtained via a clinical MRI BRIVO MR355 system established concentration-dependent signal enhancement by the complex. The cytotoxicity test confirmed complex 1 as a biocompatible potential T 1 -weighted MRI contrast agent.
Cornu, Jean-Yves; Deinlein, Ulrich; Höreth, Stephan; Braun, Manuel; Schmidt, Holger; Weber, Michael; Persson, Daniel P; Husted, Søren; Schjoerring, Jan K; Clemens, Stephan
2015-04-01
Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Konarev, Dmitri V; Kuzmin, Alexey V; Khasanov, Salavat S; Fatalov, Alexey M; Yudanova, Evgenia I; Lyubovskaya, Rimma N
2018-04-14
Reduction methods for the preparation of coordination complexes of titanium(IV) and indium(III) phthalocyanines (Pc) with organic dyes such as indigo, thioindigo, and squarylium dye III (SQ) have been developed, which allow one to obtain crystalline {cryptand(K + )}{(cis-indigo-O,O) 2- Ti IV (Pc 2- )}(Cl - )⋅C 6 H 4 Cl 2 (1), {cryptand(K + )}{(cis-thioindigo-O,O) 2- In III (Pc 2- )} - ⋅C 6 H 4 Cl 2 (2), and {cryptand(K + )}{[(SQ) 2 -O,O] 2- In III (Pc 2- )} - ⋅3.5 C 6 H 4 Cl 2 (3) complexes. The formation of these complexes is accompanied by the reduction of the starting dyes to the anionic state. Transition of trans-indigo or trans-thioindigo to the cis conformation in 1 and 2 provides coordination of both carbonyl oxygen atoms of the dye to Ti IV Pc or In III Pc. SQ is reduced to the radical anion state and forms unusual diamagnetic singly bonded (SQ - ) 2 dimers in 3. These dimers have two closely positioned carbonyl oxygen atoms coordinated to In III Pc. Dianionic Pc 2- macrocycles have been found in 1-3. The complexes contain two chromophore molecules at one metal center. However, their optical spectra are defined mainly by absorption bands of the metal phthalocyanines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Syntheses, crystal structures, and properties of new metal--5-bromonicotinate coordination polymers
NASA Astrophysics Data System (ADS)
Li, Wenjie; Li, Guoting; Lv, Lulu; Zhao, Hong; Wu, Benlai
2015-05-01
Four metal-5-bromonicotinate (Brnic) coordination polymers [Fe(Brnic)2(H2O)2]n (1), [Ni(Brnic)2]n (2), [Ni(Brnic)(bpy)(H2O)2]n·n(Brnic)·4.5nH2O (3), and [Co2(Brnic)3(bpy)2(OH)]n·nH2O (4) have been synthesized and structurally characterized (bpy=4,4‧-bipyridine). Complex 1 has corrugated (4,4) sheets formed by μ-Brnic ligands and planar nodes Fe(II). As for 2-4, they all built up from Brnic-bridged dinuclear subunits, but have very different structure features. Complex 2 is a twin-like polymer with (4,4) layers formed by twin paddle-wheel [Ni2(Brnic)4] subunits. Through the bridge coordination of bpy ligands with dinuclear rings [Ni2(Brnic)2] and trigons [Co2(Brnic)3(OH)], 63-topological cationic layers with nanosized grids of 3 and chiral ladder-type double chains of 4 formed, respectively. Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules 1-4. The thermostabilities of all compounds have been discussed in detail. Moreover, the magnetic investigations of 2 and 4 indicate that there exist antiferromagnetic interactions in the paddle-wheel [Ni2(Brnic)4] and trigon [Co2(Brnic)3(OH)] cores, respectively.
Svanedal, Ida; Boija, Susanne; Norgren, Magnus; Edlund, Håkan
2014-06-10
The correlation between interaction parameters and ion flotation efficiency in mixtures of chelating surfactant metal complexes and different foaming agents was investigated. We have recently shown that chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) forms strong coordination complexes with divalent metal ions, and this can be utilized in ion flotation. Interaction parameters for mixed micelles and mixed monolayer formation for Mg(2+) and Ni(2+) complexes with the chelating surfactant 4-C12-DTPA and different foaming agents were calculated by Rubingh's regular solution theory. Parameters for the calculations were extracted from surface tension measurements and NMR diffusometry. The effects of metal ion coordination on the interactions between 4-C12-DTPA and the foaming agents could be linked to a previously established difference in coordination chemistry between the examined metal ions. As can be expected from mixtures of amphoteric surfactants, the interactions were strongly pH-dependent. Strong correlation was found between interaction parameter β(σ) for mixed monolayer formation and the phase-transfer efficiency of Ni(2+) complexes with 4-C12-DTPA during flotation in a customized flotation cell. In a mixture of Cu(2+) and Zn(2+), the significant difference in conditional stability constants (log K) between the metal complexes was utilized to selectively recover the metal complex with the highest log K (Cu(2+)) by ion flotation. Flotation experiments in an excess concentration of metal ions confirmed the coordination of more than one metal ion to the headgroup of 4-C12-DTPA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linko, R. V., E-mail: rlinko@mail.ru; Sokol, V. I.; Polyanskaya, N. A.
2013-05-15
The reaction of 10-(2-benzothiazolylazo)-9-phenanthrol (HL) with cobalt(II) acetate gives the coordination compound [CoL{sub 2}] {center_dot} CHCl{sub 3} (I). The molecular and crystal structure of I is determined by X-ray diffraction. The coordination polyhedron of the Co atom in complex I is an octahedron. The anion L acts as a tridentate chelating ligand and is coordinated to the Co atom through the phenanthrenequinone O1 atom and the benzothiazole N1 atom of the moieties L and the N3 atom of the azo group to form two five-membered metallocycles. The molecular and electronic structures of the compounds HL, L, and CoL{sub 2} aremore » studied at the density functional theory level. The results of the quantum-chemical calculations are in good agreement with the values determined by X-ray diffraction.« less
NASA Astrophysics Data System (ADS)
Wang, Chunguang; Xing, Yongheng; Li, Zhangpeng; Li, Jing; Zeng, Xiaoqing; Ge, Maofa; Niu, Shuyun
2009-08-01
A series of new lanthanide coordination polymers, with the formula [Ln(bipy)(glut)(NO 3)] (Ln = Eu ( 1), Tb ( 2), Sm ( 3), Pr ( 4); bipy = 2,2'-bipyridine; H 2glut = glutaric acid), have been synthesized under the hydrothermal condition and characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction, and single-crystal X-ray diffraction. Structural analyses reveal that all four complexes are isostructural and crystallized in monoclinic system, P2 1/ c space group. For these complexes, the Ln 3+ are all linked through glutaric acid ligands to form 1D chain-like polymeric structures, and bipy and NO3- are coordinated on two sides of the chains. The thermogravimetric analysis of 1 and photoluminescent properties of 1 and 2 are discussed in detail.
NASA Technical Reports Server (NTRS)
Setlik, R. F.; Meyer, D. J.; Shibata, M.; Roskwitalski, R.; Ornstein, R. L.; Rein, R.
1994-01-01
We present a full-coordinate model of residues 1-319 of the polymerase domain of HIV-I reverse transcriptase. This model was constructed from the x-ray crystallographic structure of Jacobo-Molina et al. (Jacobo-Molina et al., P.N.A.S. USA 90, 6320-6324 (1993)) which is currently available to the degree of C-coordinates. The backbone and side-chain atoms were constructed using the MAXSPROUT suite of programs (L. Holm and C. Sander, J. Mol. Biol. 218, 183-194 (1991)) and refined through molecular modeling. A seven base pair A-form dsDNA was positioned in the nucleic acid binding cleft to represent the template-primer complex. The orientation of the template-primer complex in the nucleic acid binding cleft was guided by the positions of phosphorus atoms in the crystal structure.
Foroutan-Nejad, Cina; Vicha, Jan; Marek, Radek
2014-09-01
A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state-of-the-art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride-ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid-fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent-carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four-coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Xiuting; Li, Qingnuan; Gong, Yu
2017-12-14
Tripositive Ln(TMTDA) 3 3+ complexes (Ln = La-Lu except Pm, TMTDA = tetramethyl 3-thio-diglycolamide) were observed in the gas phase by electrospray ionization of LnCl 3 and TMTDA mixtures. Collision-induced dissociation (CID) was employed to investigate their fragmentation chemistry, which revealed the influence of metal center as well as ligand on the ligated complexes. Ln(TMTDA) 2 (TMTDA-45) 3+ resulting from C carbonyl -N bond cleavage of TMTDA and hydrogen transfer was the major CID product for all Ln(TMTDA) 3 3+ except Eu(TMTDA) 3 3+ , which predominantly formed charge-reducing product Eu II (TMTDA) 2 2+ via electron transfer from TMTDA to Eu 3+ . Density functional theory calculations on the structure of La(TMTDA) 3 3+ and Lu(TMTDA) 3 3+ revealed that Ln 3+ was coordinated by six O carbonyl atoms from three neutral TMTDA ligands, and both complexes possessed C 3h symmetry. The S ether atom deviating from the ligand plane was not coordinated to the metal center. On the basis of the CID results of Ln(TMTDA) 3 3+ , Ln(TMGA) 3 3+ , and Ln(TMOGA) 3 3+ , the fragmentation chemistry associated with the ligand depends on the coordination mode, while the redox chemistry of these tripositive ions is related to the nature of both metal centers and diamide ligands.
Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheu, Roc; Ertem, Mehmed Z.; Benet-Buchholz, J.
We introduce a new family of complexes with the general formula [Ru n(tda)(py)2] m+ (n = 2, m = 0, 1; n = 3, m = 1, 2 +; n = 4, m = 2, 3 2+), with tda 2– being [2,2':6',2"-terpyridine]-6,6"-dicarboxylate, including complex [Ru IV(OH)(tda-κ-N 3O)(py) 2] +, 4H +, which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 3 2+ under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV–vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), includingmore » solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Ru center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H + can be generated potentiometrically, or voltammetrically, from 3 2+, and both coexist in solution. While complex 3 2+ is not catalytically active, the catalytic performance of complex 4H + is characterized by the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s –1 at pH 7.0 and 50,000 s –1 at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H +, manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O–O bond formation.« less
Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex
Matheu, Roc; Ertem, Mehmed Z.; Benet-Buchholz, J.; ...
2015-07-30
We introduce a new family of complexes with the general formula [Ru n(tda)(py)2] m+ (n = 2, m = 0, 1; n = 3, m = 1, 2 +; n = 4, m = 2, 3 2+), with tda 2– being [2,2':6',2"-terpyridine]-6,6"-dicarboxylate, including complex [Ru IV(OH)(tda-κ-N 3O)(py) 2] +, 4H +, which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 3 2+ under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV–vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), includingmore » solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Ru center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H + can be generated potentiometrically, or voltammetrically, from 3 2+, and both coexist in solution. While complex 3 2+ is not catalytically active, the catalytic performance of complex 4H + is characterized by the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s –1 at pH 7.0 and 50,000 s –1 at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H +, manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O–O bond formation.« less
NASA Astrophysics Data System (ADS)
Ushenko, Yu. O.; Dubolazov, O. V.; Olar, O. V.
2015-11-01
The theoretical background of azimuthally stable method Jones matrix mapping of histological sections of biopsy of uterine neck on the basis of spatial-frequency selection of the mechanisms of linear and circular birefringence is presented. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by polycristalline networks of blood plasma layers of donors (group 1) and patients with endometriosis (group 2). The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of diagnostics of the pathology and differentiation of its severity degree are determined.
NASA Astrophysics Data System (ADS)
Ushenko, O. G.; Koval, L. D.; Dubolazov, O. V.; Ushenko, Yu. O.; Savich, V. O.; Sidor, M. I.; Marchuk, Yu. F.
2015-09-01
The theoretical background of azimuthally stable method Jones matrix mapping of histological sections of biopsy of uterine neck on the basis of spatial-frequency selection of the mechanisms of linear and circular birefringence is presented. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by polycristalline networks of blood plasma layers of donors (group 1) and patients with endometriosis (group 2). The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of diagnostics of the pathology and differentiation of its severity degree are determined.
NASA Astrophysics Data System (ADS)
Huczyński, Adam; Janczak, Jan; Brzezinski, Bogumil
2012-12-01
A new crystalline complex formed between 1-naphthylmethyl ester of the naturally occurring antibiotic - monensin A (MON8) with sodium perchlorate has been obtained and studied using X-ray crystallography and FT-IR spectroscopy. The X-ray data of the complex show that MON8 forms a pseudo-cyclic structure stabilised by one weak intramolecular hydrogen bond and the sodium cation co-ordinated by two oxygen atoms of hydroxyl groups and four etheric oxygen atoms in the hydrophilic sphere. Within this structure the oxygen atoms of the ester groups are not involved in the coordination of sodium cation. In contrast to the solid state structure of the complex, in acetonitrile solution an equilibrium between two structures, in which the oxygen atom of the carbonyl ester group is either involved or not involved in the complexation of the sodium cation, is found. In acetonitrile this equilibrium is shifted towards the latter structure i.e. the structure existing in the solid state. The gas-phase structure of [MON8sbnd Na]+ cation as shown the ab initio MO calculations is comparable with the crystal one. Three-dimensional molecular electrostatic potential calculated for the neutral MON8 and [MON8sbnd Na]+ molecules is helpful for understanding the structural aspects of the sodium complex formation.
Sun, Xiaobo; Jin, Xiaozhe; Pan, Wei; Wang, Jinping
2014-11-26
In the present paper, La, Eu and Yb were selected to represent light, middle and heavy rare earths to form complexes with polysaccharides through chelating coordination of carboxyl groups, which were added into polysaccharide chains by means of carboxymethylation. Their antifungal activities against plant pathogenic fungi were evaluated using growth rate method. These rare earth complexes exhibited various antifungal activities against the tested fungi, depending on rare earth elements, polysaccharide types and fungal species. Among these three metal elements (i.e. La, Eu and Yb), Yb formed the complexes with the most effective antifungal properties. Furthermore, the results showed that ligands of carboxymethylated polysaccharides played a key role in promoting cytotoxicity of the rare earth complexes. Carboxymethylated Ganoderma applanatum polysaccharide (CGAP) was found to be the most effective ligand to form complexes with antifungal activities, followed by carboxymethylated lentinan (CLNT) and carboxymethylated Momordica charantia polysaccharide (CMCP). Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahmood, Rashid; Ahmad, Saeed; Fettouhi, Mohammed; Roisnel, Thierry; Gilani, Mazhar Amjad; Mehmood, Kashif; Murtaza, Ghulam; Isab, Anvarhusein A.
2018-03-01
The present study aims at preparing and carrying out the structural investigation of two polymeric cadmium(II) complexes of imidazolidine-2-thione (Imt) based on sulfate or azide ions, [Cd(Imt)(H2O)2(SO4)]n (1) and [Cd(Imt)2(N3)2]n (2). The structures of the complexes were determined by single crystal X-ray analysis. Both compounds, 1 and 2 crystallize in the form of 2D coordination polymers and the cadmium(II) ion is six-coordinate having a distorted octahedral geometry in each compound. In 1, the metal ion is bonded to one sulfur atom of Imt and five oxygen atoms with two from water and three of bridging sulfate ions. In 2, the cadmium coordination sphere is completed by two Imt molecules binding through the sulfur atoms and four nitrogen atoms of bridging azide ions. The crystal structures are stabilized by intra and intermolecular hydrogen bonding interactions. The complexes were also characterized by IR and NMR spectroscopy and the spectroscopic data is consistent with the binding of the ligands.
USDA-ARS?s Scientific Manuscript database
Asexual and sexual differentiation in Aspergillus nidulans involve complex control by a number of factors and is light-dependent. The velvet protein, VeA, in A. nidulans is a negative regulator of conidiation and a positive regulator of sexual development. It forms a complex with VelB and LaeA to co...
NASA Astrophysics Data System (ADS)
Amiri, Nesrine; Hajji, Melek; Taheur, Fadia Ben; Chevreux, Sylviane; Roisnel, Thierry; Lemercier, Gilles; Nasri, Habib
2018-02-01
Two novel magnesium(II) tetraphenylporphyrin-based six-coordinate complexes; bis(hexamethylenetetramine)(5,10,15,2O tetrakis[4(benzoyloxy)phenyl]porphinato) magnesuim(II) (1) and bis(1,4-diazabicyclo(2.2.2)octane) (5,10,15,2O-tetrakis[4- (benzoyloxy)phenyl]porphinato)magnesium(II) (2) have been synthesised and confirmed by proton nuclear magnetic resonance, mass spectrometry, elemental analysis and IR spectroscopy. Both crystal structures were determined and described by single crystal X-ray diffraction analysis and Hirshfeld surfaces computational method. All Mg(II) atoms are surrounded by four porphyrin nitrogen atoms and two axial ligands coordinated to the metal ion through one nitrogen atom, forming a regular octahedron. In both complexes, molecular structures and three-dimensional framework are stabilised by inter-and intramolecular C-H ⋯O and C-H ⋯N hydrogen bonds, and by weak C-H ⋯Cg π interactions. UV-visible and Fluorescence investigations, respectively, show that studied complexes have a strong absorption in red part and exhibit an emission in the blue region. The HOMO-LUMO energy gap values, modelled using the DFT approach, indicates that both studied compounds can be classified as semiconductors. The role of these complexes as novel antibacterial agents was also performed.
Frey, Avery G.; Palenchar, Daniel J.; Wildemann, Justin D.; Philpott, Caroline C.
2016-01-01
Cells contain hundreds of proteins that require iron cofactors for activity. Iron cofactors are synthesized in the cell, but the pathways involved in distributing heme, iron-sulfur clusters, and ferrous/ferric ions to apoproteins remain incompletely defined. In particular, cytosolic monothiol glutaredoxins and BolA-like proteins have been identified as [2Fe-2S]-coordinating complexes in vitro and iron-regulatory proteins in fungi, but it is not clear how these proteins function in mammalian systems or how this complex might affect Fe-S proteins or the cytosolic Fe-S assembly machinery. To explore these questions, we use quantitative immunoprecipitation and live cell proximity-dependent biotinylation to monitor interactions between Glrx3, BolA2, and components of the cytosolic iron-sulfur cluster assembly system. We characterize cytosolic Glrx3·BolA2 as a [2Fe-2S] chaperone complex in human cells. Unlike complexes formed by fungal orthologs, human Glrx3-BolA2 interaction required the coordination of Fe-S clusters, whereas Glrx3 homodimer formation did not. Cellular Glrx3·BolA2 complexes increased 6–8-fold in response to increasing iron, forming a rapidly expandable pool of Fe-S clusters. Fe-S coordination by Glrx3·BolA2 did not depend on Ciapin1 or Ciao1, proteins that bind Glrx3 and are involved in cytosolic Fe-S cluster assembly and distribution. Instead, Glrx3 and BolA2 bound and facilitated Fe-S incorporation into Ciapin1, a [2Fe-2S] protein functioning early in the cytosolic Fe-S assembly pathway. Thus, Glrx3·BolA is a [2Fe-2S] chaperone complex capable of transferring [2Fe-2S] clusters to apoproteins in human cells. PMID:27519415
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Xi-Shi, E-mail: taixs@wfu.edu.cn; Wang, Xin
2017-03-15
A new Ca(II) coordination polymer, ([CaL(H{sub 2}O){sub 4}] · (H{sub 2}O){sub 4}){sub n} (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.
Lau, Edmond Y.; Wong, Sergio E.; Baker, Sarah E.; Bearinger, Jane P.; Koziol, Lucas; Valdez, Carlos A.; Satcher, Joseph H.; Aines, Roger D.; Lightstone, Felice C.
2013-01-01
In nature, the zinc metalloenzyme carbonic anhydrase II (CAII) efficiently catalyzes the conversion of carbon dioxide (CO2) to bicarbonate under physiological conditions. Many research efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolyl)phosphine, and tris(2-benzimidazolylmethyl)amine, in their complexed form either with the Zn2+ or the Co2+ ion and studied their reaction coordinate for CO2 hydration. These calculations demonstrated that the ability of the complex to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Furthermore, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts. PMID:23840420
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Shashi B.; Shopov, Dimitar Y.; Sharninghausen, Liam S.
We describe facial and meridional isomers of [RhIII(pyalk)3], as well as meridional [RhIV(pyalk)3]+ {pyalk =2-(2-pyridyl)-2-propanoate}, the first coordination complex in an N,O-donor environment to show a clean, reversible RhIII/IV redox couple and to have a stable Rh(IV) form, which we characterize by EPR and UV–visible spectroscopy as well as X-ray crystallography. The unprecedented stability of the Rh(IV) species is ascribed to the exceptional donor strength of the ligands, their oxidation resistance, and the meridional coordination geometry.
Informatics tools to improve clinical research study implementation.
Brandt, Cynthia A; Argraves, Stephanie; Money, Roy; Ananth, Gowri; Trocky, Nina M; Nadkarni, Prakash M
2006-04-01
There are numerous potential sources of problems when performing complex clinical research trials. These issues are compounded when studies are multi-site and multiple personnel from different sites are responsible for varying actions from case report form design to primary data collection and data entry. We describe an approach that emphasizes the use of a variety of informatics tools that can facilitate study coordination, training, data checks and early identification and correction of faulty procedures and data problems. The paper focuses on informatics tools that can help in case report form design, procedures and training and data management. Informatics tools can be used to facilitate study coordination and implementation of clinical research trials.
Sayer, Alon Haim; Blum, Eliav; Major, Dan Thomas; Vardi-Kilshtain, Alexandra; Levi Hevroni, Bosmat; Fischer, Bilha
2015-04-28
Although involved in various physiological functions, nucleoside bis-phosphate analogues and their metal-ion complexes have been scarcely studied. Hence, here, we explored the solution conformation of 2′-deoxyadenosine- and 2′-deoxyguanosine-3′,5′-bisphosphates, 3 and 4, d(pNp), as well as their Zn(2+)/Mg(2+) binding sites and binding-modes (i.e. inner- vs. outer-sphere coordination), acidity constants, stability constants of their Zn(2+)/Mg(2+) complexes, and their species distribution. Analogues 3 and 4, in solution, adopted a predominant Southern ribose conformer (ca. 84%), gg conformation around C4'-C5' and C5'-O5' bonds, and glycosidic angle in the anti-region (213-270°). (1)H- and (31)P-NMR experiments indicated that Zn(2+)/Mg(2+) ions coordinated to P5' and P3' groups of 3 and 4 but not to N7 nitrogen atom. Analogues 3 and 4 formed ca. 100-fold more stable complexes with Zn(2+)vs. Mg(2+)-ions. Complexes of 3 and 4 with Mg(2+) at physiological pH were formed in minute amounts (11% and 8%, respectively) vs. Zn(2+) complexes (46% and 44%). Stability constants of Zn(2+)/Mg(2+) complexes of analogues 3 and 4 (log KML(M) = 4.65-4.75/2.63-2.79, respectively) were similar to those of the corresponding complexes of ADP and GDP (log KML(M) = 4.72-5.10/2.95-3.16, respectively). Based on the above findings, we hypothesized that the unexpectedly low log K values of Zn(2+)-d(pNp) as compared to Zn(2+)-NDP complexes, are possibly due to formation of outer-sphere coordination in the Zn(2+)-d(pNp) complex vs. inner-sphere in the NDP-Zn(2+) complex, in addition to loss of chelation to N7 nitrogen atom in Zn(2+)-d(pNp). Indeed, explicit solvent molecular dynamics simulations of 1 and 3 for 100 ns supported this hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumakov, Yu. M.; Paladi, L. G.; Antosyak, B. Ya.
2011-03-15
Nitrato-(2-hydroxy-5-nitrobenzaldehydo)(2,2 Prime -bipyridyl)copper (I) and nitrato-(2-hydroxybenzaldehydo)(2,2 Prime -bipyridyl)copper (II) were synthesized and characterized by X-ray diffraction. The coordination polyhedron of the central copper atom in complex I can be described as a distorted tetragonal pyramid whose base is formed by the phenol and carbonyl oxygen atoms of the monodeprotonated 2-hydroxy-5nitrobenzaldehyde molecule and the nitrogen atoms of the 2,2 Prime -bipyridyl ligand and whose apex is occupied by the oxygen atom of the nitrato group. In the crystal structure, complexes I are linked by the acido ligands and the NO{sub 2} groups of the aldehyde molecule into infinite chains. In complexmore » II, the central copper atom is coordinated by 2-hydroxybenzaldehyde, 2,2 Prime -bipyridyl, and the nitrato group, resulting in the formation of centrosymmetric dimers. The coordination polyhedron of the central copper atom can be described as a bipyramid (4 + 1 + 1) with the same base as in complex I. The axial vertices of the bipyramid are occupied by the oxygen atom of the nitrato group and the bridging phenol oxygen atom of the adjacent complex related to the initial complex by a center of symmetry. In the crystal structure, complexes II are hydrogen bonded into infinite chains.« less
Škoch, Karel; Uhlík, Filip; Císařová, Ivana; Štěpnička, Petr
2016-06-28
1'-(Diphenylphosphino)-1-cyanoferrocene () reacts with silver(i) halides at a 1 : 1 metal-to-ligand ratio to afford the heterocubane complexes [Ag(μ3-X)(-κP)]4, where X = Cl (), Br (), and I (). In addition, the reaction with AgCl with 2 equiv. of leads to chloride-bridged dimer [(μ-Cl)2{Ag(-κP)2}2] () and, presumably, also to [(μ(P,N)-){AgCl(-κP)}]2 (). While similar reactions with AgCN furnished only the insoluble coordination polymer [(-κP)2Ag(NC)Ag(CN)]n (), those with AgSCN afforded the heterocubane [Ag(-κP)(μ-SCN-S,S,N)]4 () and the thiocyanato-bridged disilver(i) complex [Ag(-κP)2(μ-SCN-S,N)]2 (), thereby resembling reactions in the AgCl- system. Attempted reactions with AgF led to ill-defined products, among which [Ag(-κP)2(μ-HF2)]2 () and [(μ-SiF6){Ag(-κP)2}2] () could be identified. The latter compound was prepared also from Ag2[SiF6] and . Reactions between and AgClO4 or Ag[BF4] afforded disilver complexes [(μ(P,N)-)Ag(ClO4-κO)]2 () and [(μ(P,N)-)Ag(BF4-κF)]2 () featuring pseudolinear Ag(i) centers that are weakly coordinated by the counter anions. A similar reaction with Ag[SbF6] followed by crystallization from ethyl acetate produced an analogous complex, albeit with coordinated solvent, [(μ(P,N)-)Ag(AcOEt-κO)]2[SbF6]2 (). Ultimately, a compound devoid of any additional ligands at the Ag(i) centers, [(μ(P,N)-)Ag]2[B(C6H3(CF3)2-3,5)4]2 (), was obtained from the reaction of with silver(i) tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. The reaction of Ag[BF4] with two equivalents of produced unique coordination polymer [Ag(-κP)(μ(P,N)-)]n[BF4]n (), the structure of which contained one of the phosphinoferrocene ligands coordinated as a P,N-chelate and the other forming a bridge to an adjacent Ag(i) center. All of these compounds were structurally characterized by single-crystal X-ray crystallography, revealing that the lengths of the bonds between silver and its anionic ligand(s) typically exceed the sum of the respective covalent radii, which is in line with the results of theoretical calculations at the density-functional theory (DFT) level, suggesting that standard covalent dative bonds are formed between silver and phosphorus (soft acid/soft base interactions) while the interactions between silver and the ligand's nitrile group (if coordinated) or the supporting anion are of predominantly electrostatic nature.
Jayakumar, K; Sithambaresan, M; Aiswarya, N; Kurup, M R Prathapachandra
2015-03-15
Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N(4)-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ=0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g||>g⊥>2.0023 and the g values in frozen DMF are consistent with the d(x2-y2) ground state. The thermal stabilities of some of the complexes were also determined. Copyright © 2014 Elsevier B.V. All rights reserved.
The coordination hub: Toward patient-centered and collaborative care processes.
Winge, Monica; Johannesson, Paul; Perjons, Erik; Wangler, Benkt
2015-12-01
The organization and processes of today's health and social care are becoming ever more complex as a consequence of societal trends, including an aging population and an increased reliance on care at home. One aspect of the increased complexity is that a single patient may receive care from several care providers, which easily results in situations with potentially incoherent, uncoordinated, and interfering care processes. In order to describe and analyze such situations, the article introduces the notion of a process conglomeration. This is defined as a set of patient-care processes that all concern the same patient, that are overlapping in time, and that all are sharing the overall goal of improving or maintaining the health and social well-being of the patient. Problems and challenges of process conglomerations are investigated using coordination theory and models for continuous process improvement. In order to address the challenges, a solution is proposed in the form of a Coordination Hub, being an integrated software service that offers a number of information services for coordinating the activities of the processes in a process conglomeration. © The Author(s) 2014.
Syntheses, crystal structures, and properties of new metal-5-bromonicotinate coordination polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenjie; Li, Guoting; Lv, Lulu
2015-05-15
Four metal–5-bromonicotinate (Brnic) coordination polymers [Fe(Brnic){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Ni(Brnic){sub 2}]{sub n} (2), [Ni(Brnic)(bpy)(H{sub 2}O){sub 2}]{sub n}·n(Brnic)·4.5nH{sub 2}O (3), and [Co{sub 2}(Brnic){sub 3}(bpy){sub 2}(OH)]{sub n}·nH{sub 2}O (4) have been synthesized and structurally characterized (bpy=4,4′-bipyridine). Complex 1 has corrugated (4,4) sheets formed by μ-Brnic ligands and planar nodes Fe(II). As for 2–4, they all built up from Brnic-bridged dinuclear subunits, but have very different structure features. Complex 2 is a twin-like polymer with (4,4) layers formed by twin paddle-wheel [Ni{sub 2}(Brnic){sub 4}] subunits. Through the bridge coordination of bpy ligands with dinuclear rings [Ni{sub 2}(Brnic){sub 2}] and trigons [Co{submore » 2}(Brnic){sub 3}(OH)], 6{sup 3}-topological cationic layers with nanosized grids of 3 and chiral ladder-type double chains of 4 formed, respectively. Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules 1–4. The thermostabilities of all compounds have been discussed in detail. Moreover, the magnetic investigations of 2 and 4 indicate that there exist antiferromagnetic interactions in the paddle-wheel [Ni{sub 2}(Brnic){sub 4}] and trigon [Co{sub 2}(Brnic){sub 3}(OH)] cores, respectively. - Highlights: • Four novel metal–5-bromonicotinate coordination polymers have been synthesized. • Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules. • Antiferromagnetic interactions in nickel(II) paddle-wheel and cobalt(II) trigon cores were observed.« less
NASA Astrophysics Data System (ADS)
Morozov, I. V.; Fedorova, A. A.; Albov, D. V.; Kuznetsova, N. R.; Romanov, I. A.; Rybakov, V. B.; Troyanov, S. I.
2008-03-01
The cobalt(II) and nickel(II) nitrate complexes with an island structure (Na2[Co(NO3)4] ( I) and K2[Co(NO3)4] ( II)] and a chain structure [Ag[Co(NO3)3] ( III) and K2[Ni(NO3)4] ( IV)] are synthesized and investigated using X-ray diffraction. In the anionic complex [Co(NO3)4]2- of the crystal structure of compound I, the Co coordination polyhedron is a twisted tetragonal prism formed by the O atoms of four asymmetric bidentate nitrate groups. In the anion [Co(NO3)4]2- of the crystal structure of compound II, one of the four NO3 groups is monodentate and the other NO3 groups are bidentate (the coordination number of the cobalt atom is equal to seven, and the cobalt coordination polyhedron is a monocapped trigonal prism). The crystal structures of compounds III and IV contain infinite chains of the compositions [Co(NO3)2(NO3)2/2]- and [Ni(NO3)3(NO3)2/2]2-, respectively. In the crystal structure of compound III, seven oxygen atoms of one monodentate and three bidentate nitrate groups form a dodecahedron with an unoccupied vertex of the A type around the Co atom. In the crystal structure of compound IV, the octahedral polyhedron of the Ni atom is formed by five nitrate groups, one of which is terminal bidentate. The data on the structure of Co(II) coordination polyhedra in the known nitratocobaltates are generalized.
Hydration of copper(II): new insights from density functional theory and the COSMO solvation model.
Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A
2008-09-25
The hydrated structure of the Cu(II) ion has been a subject of ongoing debate in the literature. In this article, we use density functional theory (B3LYP) and the COSMO continuum solvent model to characterize the structure and stability of [Cu(H2O)n](2+) clusters as a function of coordination number (4, 5, and 6) and cluster size (n = 4-18). We find that the most thermodynamically favored Cu(II) complexes in the gas phase have a very open four-coordinate structure. They are formed from a stable square-planar [Cu(H2O)8](2+) core stabilized by an unpaired electron in the Cu(II) ion d(x(2)-y(2)) orbital. This is consistent with cluster geometries suggested by recent mass-spectrometric experiments. In the aqueous phase, we find that the more compact five-coordinate square-pyramidal geometry is more stable than either the four-coordinate or six-coordinate clusters in agreement with recent combined EXAFS and XANES studies of aqueous solutions of Cu(II). However, a small energetic difference (approximately 1.4 kcal/mol) between the five- and six-coordinate models with two full hydration shells around the metal ion suggests that both forms may coexist in solution.
NASA Astrophysics Data System (ADS)
Song, Jun-Ling; Mao, Jiang-Gao; Sun, Yan-Qiong; Zeng, Hui-Yi; Kremer, Reinhard K.; Clearfield, Abraham
2004-03-01
Hydrothermal reactions of N, N-bis(phosphonomethyl)aminoacetic acid (HO 2CCH 2N(CH 2PO 3H 2) 2) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2[O 2CCH 2N(CH 2PO 3)(CH 2PO 3H)]·H 2O ( 1) and {NH 3CH 2CH 2NH 3}{Ni[O 2CCH 2N(CH 2PO 3H) 2](H 2O) 2} 2 ( 2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a <002> double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2CCH 2N(CH 2PO 3H) 2][H 2O] 2} - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a <800> hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected.
MODAS Validation in Littoral Areas Using GRASP
2002-09-30
result (4 hr) is guiding new work on calculation efficiency. Figure 4. Near-optimal coordinated passive search plan against a complex transitor ... Transitor tracks form a river of roughly parallel potential paths. The two searcher tracks criss- cross this river like shoe lacings over much of
Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro
2016-09-19
The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cai, M.; Huang, Y.; Caffrey, M.; Zheng, R.; Craigie, R.; Clore, G. M.; Gronenborn, A. M.
1998-01-01
The solution structure of His12 --> Cys mutant of the N-terminal zinc binding domain (residues 1-55; IN(1-55)) of HIV-1 integrase complexed to cadmium has been solved by multidimensional heteronuclear NMR spectroscopy. The overall structure is very similar to that of the wild-type N-terminal domain complexed to zinc. In contrast to the wild-type domain, however, which exists in two interconverting conformational states arising from different modes of coordination of the two histidine side chains to the metal, the cadmium complex of the His12 --> Cys mutant exists in only a single form at low pH. The conformation of the polypeptide chain encompassing residues 10-18 is intermediate between the two forms of the wild-type complex. PMID:9865962
Light-triggered self-assembly of triarylamine-based nanospheres
NASA Astrophysics Data System (ADS)
Moulin, Emilie; Niess, Frédéric; Fuks, Gad; Jouault, Nicolas; Buhler, Eric; Giuseppone, Nicolas
2012-10-01
Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm.Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm. Electronic supplementary information (ESI) available: Synthetic procedures and products' characterization (2-4 and 6-9). 1H NMR titration of compound 6 by Zn(OTf)2 to form complex 7. Kinetic measurements by UV-Vis-NIR spectroscopy. Transmission electron microscopy imaging for complexes 8 and 9. UV-Vis-NIR for an Fe2+ analogue of complex 7. Dynamic light scattering and time autocorrelation function for self-assembly of complexes 7-9. Copies of 1H and 13C NMR spectra for compounds 2-4 and 6. See DOI: 10.1039/c2nr32168h
NASA Astrophysics Data System (ADS)
David, Laurent; Amara, Patricia; Field, Martin J.; Major, François
2002-08-01
Although techniques for the simulation of biomolecules, such as proteins and RNAs, have greatly advanced in the last decade, modeling complexes of biomolecules with metal ions remains problematic. Precise calculations can be done with quantum mechanical methods but these are prohibitive for systems the size of macromolecules. More qualitative modeling can be done with molecular mechanical potentials but the parametrization of force fields for metals is often difficult, particularly if the bonding between the metal and the groups in its coordination shell has significant covalent character. In this paper we present a method for deriving bond and bond-angle parameters for metal complexes from experimental bond and bond-angle distributions obtained from the Cambridge Structural Database. In conjunction with this method, we also introduce a non-standard energy term of gaussian form that allows us to obtain a stable description of the coordination about a metal center during a simulation. The method was evaluated on Fe(II)-porphyrin complexes, on simple Cu(II) ion complexes and a number of complexes of the Pb(II) ion.
Rusanova, Julia A; Semenaka, Valentina V; Dyakonenko, Viktoriya V; Shishkin, Oleg V
2015-09-01
The title compound, [CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)] or [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O], (where mdeaH2 is N-methylethanolamine, C5H13NO2) is formed as a neutral heterometal Cu(II)/Cr(III) complex. The mol-ecular structure of the complex is based on a binuclear {CuCr(μ-O)2} core. The coordination environment of each metal atom involves the N,O,O atoms of the tridentate ligand, one bridging O atom of the ligand and the N atom of the thio-cyanato ligands. The Cu(II) ion adopts a distorted square-pyramidal coordination while the Cr(III) ion has a distorted octa-hedral coordination geometry completed by the aqua ligand. In the crystal, the binuclear complexes are linked via two pairs of O-H⋯O hydrogen bonds to form inversion dimers, which are arranged in columns parallel to the a axis. In the μ-mdea ligand two -CH2 groups and the methyl group were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1).
The role of chlorophyll b in photosynthesis: Hypothesis
Eggink, Laura L; Park, Hyoungshin; Hoober, J Kenneth
2001-01-01
Background The physico-chemical properties of chlorophylls b and c have been known for decades. Yet the mechanisms by which these secondary chlorophylls support assembly and accumulation of light-harvesting complexes in vivo have not been resolved. Presentation Biosynthetic modifications that introduce electronegative groups on the periphery of the chlorophyll molecule withdraw electrons from the pyrrole nitrogens and thus reduce their basicity. Consequently, the tendency of the central Mg to form coordination bonds with electron pairs in exogenous ligands, a reflection of its Lewis acid properties, is increased. Our hypothesis states that the stronger coordination bonds between the Mg atom in chlorophyll b and chlorophyll c and amino acid sidechain ligands in chlorophyll a/b- and a/c-binding apoproteins, respectively, enhance their import into the chloroplast and assembly of light-harvesting complexes. Testing Several apoproteins of light-harvesting complexes, in particular, the major protein Lhcb1, are not detectable in leaves of chlorophyll b-less plants. A direct test of the hypothesis – with positive selection – is expression, in mutant plants that synthesize only chlorophyll a, of forms of Lhcb1 in which weak ligands are replaced with stronger Lewis bases. Implications The mechanistic explanation for the effects of deficiencies in chlorophyll b or c points to the need for further research on manipulation of coordination bonds between these chlorophylls and chlorophyll-binding proteins. Understanding these interactions will possibly lead to engineering plants to expand their light-harvesting antenna and ultimately their productivity. PMID:11710960
NASA Astrophysics Data System (ADS)
Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer
2015-09-01
Four new one dimensional (1D) cyanide complexes, namely {[Cu(NH3)4(μ-na)][M‧(CN)4]}n and {[Cu(NH3)2(ina)2M‧(μ-CN)2(CN)2]}n (M‧(II) = Pd (1 and 3) or Pt (2 and 4), na:nicotinamide and ina:isonicotinamide) have been synthesized and characterized by elemental, spectral (FT-IR and Raman), and thermal (TG, DTG and DTA) analyses. The crystal structures of complexes 1-3 have been determined by single crystal X-ray diffraction technique. In complexes 1 and 2, na ligand is coordinated to the adjacent Cu(II) ions as a bridging ligand, giving rise to 1D linear cationic chain and the [M‧(CN)4]2- anionic complex acts as a counter ion. Complexes 3 and 4 are also 1D linear chain in which two cyanide ligands bridged neighboring M‧(II) and Cu(II) ions, while ina ligand is coordinated Cu(II) ion through nitrogen atom of pyridine ring. In the complexes, the Cu(II) ions adopt distorted octahedral geometries, while M‧(II) ions are four coordinated with four carbon atoms from cyanide ligands in square-planar geometries. The adjacent chains are further stacked through intermolecular hydrogen bond, Nsbnd Hṡṡṡπ, Csbnd H⋯M‧ and M‧⋯π interactions to form 3D supramolecular networks. Vibration assignments are given for all the observed bands. In addition, thermal stabilities of the compounds are also discussed.
The physiology of rodent beta-cells in pancreas slices.
Rupnik, M
2009-01-01
Beta-cells in pancreatic islets form complex syncytia. Sufficient cell-to-cell electrical coupling seems to ensure coordinated depolarization pattern and insulin release that can be further modulated by rich innervation. The complex structure and coordinated action develop after birth during fast proliferation of the endocrine tissue. These emergent properties can be lost due to various reasons later in life and can lead to glucose intolerance and diabetes mellitus. Pancreas slice is a novel method of choice to study the physiology of beta-cells still embedded in their normal cellulo-social context. I present major advantages, list drawbacks and provide an overview on recent advances in our understanding of the physiology of beta-cells using the pancreas slice approach.
Gaillard, C; Chaumont, A; Billard, I; Hennig, C; Ouadi, A; Wipff, G
2007-06-11
The first coordination sphere of the uranyl cation in room-temperature ionic liquids (ILs) results from the competition between its initially bound counterions, the IL anions, and other anions (e.g., present as impurities or added to the solution). We present a joined spectroscopic (UV-visible and extended X-ray absorption fine structure)-simulation study of the coordination of uranyl initially introduced either as UO2X2 salts (X-=nitrate NO3-, triflate TfO-, perchlorate ClO4-) or as UO2(SO4) in a series of imidazolium-based ILs (C4mimA, A-=PF6-, Tf2N-, BF4- and C4mim=1-methyl-3-butyl-imidazolium) as well as in the Me3NBuTf2N IL. The solubility and dissociation of the uranyl salts are found to depend on the nature of X- and A-. The addition of Cl- anions promotes the solubilization of the nitrate and triflate salts in the C4mimPF6 and the C4mimBF4 ILs via the formation of chloro complexes, also formed with other salts. The first coordination sphere of uranyl is further investigated by molecular dynamics (MD) simulations on associated versus dissociated forms of UO2X2 salts in C4mimA ILs as a function of A- and X- anions. Furthermore, the comparison of UO2Cl(4)2-, 2 X- complexes with dissociated X- anions, to the UO2X2, 4 Cl- complexes with dissociated chlorides, shows that the former is more stable. The case of fluoro complexes is also considered, as a possible result of fluorinated IL anion's degradation, showing that UO2F42- should be most stable in solution. In all cases, uranyl is found to be solvated as formally anionic UO2XnAmClp2-n-m-p complexes, embedded in a cage of stabilizing IL imidazolium or ammonium cations.
Siemeling, Ulrich; Klemann, Thorsten; Bruhn, Clemens; Schulz, Jiří; Štěpnička, Petr
2011-05-07
The reaction of Group 12 metal dihalides MX(2) with the P,N-ligands [Fe(C(5)H(4)-PPh(2))(C(5)H(4)-2-py)] (1) (2-py = pyrid-2-yl), [Fe(C(5)H(4)-PPh(2))(C(5)H(4)-CH(2)-2-py)] (2) and [Fe(C(5)H(4)-PPh(2))(C(5)H(4)-3-py)] (3) (3-py = pyrid-3-yl) was investigated. For a 1 : 1 molar ratio of MX(2) and the respective ligand, three structure types were found in the solid state, viz. chelate, cyclic dimer and chain-like coordination polymer. The M(II) coordination environment is distorted pseudo-tetrahedral in each case. The P-M-N angle is much larger in the chelates (≥119°) than in the ligand-bridged structures (≤109°). 1 prefers the formation of chelates [MX(2)(1-κ(2)N,P)]. 3 forms coordination polymers [MX(2)(μ-3)](n). With the more flexible 2 all three structure types can occur. Dynamic coordination equilibria were observed in solution for the molecular complexes obtained with 1 and 2. NMR data indicate that the N- and P-donor sites interact most strongly with Zn(II) and Hg(II), respectively. While the formation of bis(phosphine)mercury complexes (soft-soft) was easily achieved, no bis(pyridine)zinc complex (borderline-borderline) could be obtained, which is surprising in view of the HSAB principle.
NASA Astrophysics Data System (ADS)
Bharty, M. K.; Paswan, S.; Dani, R. K.; Singh, N. K.; Sharma, V. K.; Kharwar, R. N.; Butcher, R. J.
2017-02-01
Syntheses of a polymeric Cd(II) complex, [Cd(mptt)2]n (1), a trinuclear Ni(II) complex, [Ni3(μ-mptt)4(μ-H2O)2(H2O)2(ttfa)2]·3H2O (2) and a mononuclear Ni(II) complex [Ni(mptt)2(en)2] (3) have been performed using the ligand 5-methyl-4-phenyl-1,2,4-triazole-3-thione (Hmptt) and nickel(II)/cadmium(II) salts {ttfa = thenoyltrifluroacetonate). The ligand and the complexes have been characterized by various physicochemical methods in addition to their single crystal X-ray structure. The Cd centre in complex 1 adopts a distorted tetrahedral geometry with one sulfur atom and two mptt ligands provide three nitrogen atoms from three triazole units. The sulfur atom of the ligand binds covalently and overall the ligand acts as uninigative N,S/N,N bidentate moiety. The polymeric structure of complex 1 results from the N atoms of the neighboring triazole units coordinating with the Cd(II) centre. The three Ni(II) centres in the trinuclear Ni(II) complex 2 form a linear arrangement and all have six coordinated arrangements. The middle Ni(II) binds with four deprotonated triazole ring nitrogens and two water molecules form two bridges. The terminal Ni(II) centres bind through two thenoyl oxygens, two triazole nitrogens and water molecules that formed bridges with the middle Ni centre. In complex 3, the nickel(II) centre is covalently bonded through two deprotonated triazole ring nitrogens from two ligand moieties and other four sites are occupied by four nitrogens from two bidentate en ligands. Thermogravimetric analyses (TGA) of the complexes indicated for NiO as the final residue. The bioefficacy of the ligand and complexes 2 and 3 have been examined against the growth of bacteria to evaluate their anti-microbial potential. Complex 2 showed high antibacterial activity as compared to the ligand and complex 3. Complexes 1, 2 and 3 are fluorescent materials with maximum emissions at 425, 421 and 396 nm at an excitation wavelength of 323, 348 and 322 nm, respectively.
Paramagnetic Gd IIIFe III heterobimetallic complexes of DTPA-bis-salicylamide
NASA Astrophysics Data System (ADS)
Aime, S.; Botta, M.; Fasano, M.; Terreno, E.
1993-08-01
The reaction between DTPA (diethylenetriaminepenta-acetic acid)-anhydride and p-aminosalicylic acid (PAS) affords a novel ligand, [DTPA(PAS) 2], able to form stable heterobimetallic complexes with Gd 3+ and Fe 3+ ions. The lanthanide ion occupies an internal coordination cage formed by three nitrogen atoms, two carboxylate and two carboxoamido groups of the ligand, whereas the outer salicylic moieties form stable chelate rings with Fe III ions. The stoichiometry of the resulting heterobimetallic complexes, established by measurements of water proton relaxation enhancement, is [(H 2O)-Gd-DTPA(PAS) 2] 2-Fe(H 2O) 2 or [(H 2O)-Gd-DTPA(PAS) 2] 3-Fe depending on the pH of the aqueous solution. The individual contributions to the observed relaxation enhancement from Gd 3+ and Fe 3+ paramagnetic ions have been clearly distinguished and analysed.
Crystal structure of substrate free form of glycerol dehydratase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Der-Ing; Dotson, Garry; Turner, Jr., Ivan
2010-03-08
Glycerol dehydratase (GDH) and diol dehydratase (DDH) are highly homologous isofunctional enzymes that catalyze the elimination of water from glycerol and 1,2-propanediol (1,2-PD) to the corresponding aldehyde via a coenzyme B{sub 12}-dependent radical mechanism. The crystal structure of substrate free form of GDH in complex with cobalamin and K{sup +} has been determined at 2.5 {angstrom} resolution. Its overall fold and the subunit assembly closely resemble those of DDH. Comparison of this structure and the DDH structure, available only in substrate bound form, shows the expected change of the coordination of the essential K{sup +} from hexacoordinate to heptacoordinate withmore » the displacement of a single coordinated water by the substrate diol. In addition, there appears to be an increase in the rigidity of the K{sup +} coordination (as measured by lower B values) upon the binding of the substrate. Structural analysis of the locations of conserved residues among various GDH and DDH sequences has aided in identification of residues potentially important for substrate preference or specificity of protein-protein interactions.« less
Gaballa, Akmal S; Asker, Mohsen S; Barakat, Atiat S; Teleb, Said M
2007-05-01
Four platinum(II) complexes of Schiff bases derived from salicylaldehyde and 2-furaldehyde with o- and p-phenylenediamine were reported and characterized based on their elemental analyses, IR and UV-vis spectroscopy and thermal analyses (TGA). The complexes were found to have the general formula [Pt(L)(H(2)O)(2)]Cl(2) x nH(2)O (where n=0 for complexes 1, 3, 4; n=1 for complex 2. The data obtained show that Schiff bases were interacted with Pt(II) ions in the neutral form as a bidentate ligand and the oxygens rather than the nitrogens are the most probable coordination sites. Square planar geometrical structure with two coordinated water molecules were proposed for all complexes The free ligands, and their metal complexes were screened for their antimicrobial activities against the following bacterial species: E. coli, B. subtilis, P. aereuguinosa, S. aureus; fungus A. niger, A. fluves; and the yeasts C. albican, S. cervisiea. The activity data show that the platinum(II) complexes are more potent antimicrobials than the parent Schiff base ligands against one or more microorganisms.
Large-deformation modal coordinates for nonrigid vehicle dynamics
NASA Technical Reports Server (NTRS)
Likins, P. W.; Fleischer, G. E.
1972-01-01
The derivation of minimum-dimension sets of discrete-coordinate and hybrid-coordinate equations of motion of a system consisting of an arbitrary number of hinge-connected rigid bodies assembled in tree topology is presented. These equations are useful for the simulation of dynamical systems that can be idealized as tree-like arrangements of substructures, with each substructure consisting of either a rigid body or a collection of elastically interconnected rigid bodies restricted to small relative rotations at each connection. Thus, some of the substructures represent elastic bodies subjected to small strains or local deformations, but possibly large gross deformations, in the hybrid formulation, distributed coordinates referred to herein as large-deformation modal coordinates, are used for the deformations of these substructures. The equations are in a form suitable for incorporation into one or more computer programs to be used as multipurpose tools in the simulation of spacecraft and other complex electromechanical systems.
The LGI1–ADAM22 protein complex directs synapse maturation through regulation of PSD-95 function
Lovero, Kathryn L.; Fukata, Yuko; Granger, Adam J.; Fukata, Masaki; Nicoll, Roger A.
2015-01-01
Synapse development is coordinated by a number of transmembrane and secreted proteins that come together to form synaptic organizing complexes. Whereas a variety of synaptogenic proteins have been characterized, much less is understood about the molecular networks that support the maintenance and functional maturation of nascent synapses. Here, we demonstrate that leucine-rich, glioma-inactivated protein 1 (LGI1), a secreted protein previously shown to modulate synaptic AMPA receptors, is a paracrine signal released from pre- and postsynaptic neurons that acts specifically through a disintegrin and metalloproteinase protein 22 (ADAM22) to set postsynaptic strength. We go on to describe a novel role for ADAM22 in maintaining excitatory synapses through PSD-95/Dlg1/zo-1 (PDZ) domain interactions. Finally, we show that in the absence of LGI1, the mature synapse scaffolding protein PSD-95, but not the immature synapse scaffolding protein SAP102, is unable to modulate synaptic transmission. These results indicate that LGI1 and ADAM22 form an essential synaptic organizing complex that coordinates the maturation of excitatory synapses by regulating the functional incorporation of PSD-95. PMID:26178195
THE ASSOCIATION BETWEEN SERUM FERRITIN AND URIC ACID IN HUMANS
OBJECTIVE: Urate forms a coordination complex with Fe(3+) which does not support electron transport. The only enzymatic source of urate is xanthine oxidoreductase. If a major purpose of xanthine oxidoreductase is the production of urate to function as an iron chelator and antioxi...
Medical Transport of Children with Complex Chronic Conditions
Lerner, Carlos F.; Kelly, Robert B.; Hamilton, Leslie J.; Klitzner, Thomas S.
2012-01-01
One of the most notable trends in child health has been the increase in the number of children with special health care needs, including those with complex chronic conditions. Care of these children accounts for a growing fraction of health care resources. We examine recent developments in health care, especially with regard to medical transport and prehospital care, that have emerged to adapt to this remarkable demographic trend. One such development is the focus on care coordination, including the dissemination of the patient-centered medical home concept. In the prehospital setting, the need for greater coordination has catalyzed the development of the emergency information form. Training programs for prehospital providers now incorporate specific modules for children with complex conditions. Another notable trend is the shift to a family-centered model of care. We explore efforts toward regionalization of care, including the development of specialized pediatric transport teams, and conclude with recommendations for a research agenda. PMID:22315689
Crown Ether Complexes of Alkali-Metal Chlorides from SO2.
Reuter, Kirsten; Rudel, Stefan S; Buchner, Magnus R; Kraus, Florian; von Hänisch, Carsten
2017-07-18
The structures of alkali-metal chloride SO 2 solvates (Li-Cs) in conjunction with 12-crown-4 or 1,2-disila-12-crown-4 show strong discrepancies, despite the structural similarity of the ligands. Both types of crown ethers form 1:1 complexes with LiCl to give [Li(1,2-disila-12-crown-4)(SO 2 Cl)] (1) and [Li(12-crown-4)Cl]⋅4 SO 2 (2). However, 1,2-disila-12-crown-4 proved unable to coordinate cations too large for the cavity diameter, for example, by the formation of sandwich-type complexes. As a result, 12-crown-4 reacts exclusively with the heavier alkali-metal chlorides NaCl, KCl and RbCl. Compounds [Na(12-crown-4) 2 ]Cl⋅4 SO 2 (3) and [M(12-crown-4) 2 (SO 2 )]Cl⋅4 SO 2 (4: M=K; 5: M=Rb) all showed S-coordination to the chloride ions through four SO 2 molecules. Compounds 4 and 5 additionally exhibit the first crystallographically confirmed non-bridging O,O'-coordination mode of SO 2 . Unexpectedly, the disila-crown ether supports the dissolution of RbCl and CsCl in the solvent and gives the homoleptic SO 2 -solvated alkali-metal chlorides [MCl⋅3 SO 2 ] (6: M=Rb; 7: M=Cs), which incorporate bridging μ-O,O'-coordinating moieties and the unprecedented side-on O,O'-coordination mode. All compounds were characterised by single-crystal X-ray diffraction. The crown ether complexes were additionally studied by using NMR spectroscopy, and the presence of SO 2 at ambient temperature was revealed by IR spectroscopy of the neat compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xue-Qin, E-mail: songxq@mail.lzjtu.cn; Lei, Yao-Kun; Wang, Xiao-Run
2014-10-15
The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversitiesmore » indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.« less
Complexation of carboxylate on smectite surfaces.
Liu, Xiandong; Lu, Xiancai; Zhang, Yingchun; Zhang, Chi; Wang, Rucheng
2017-07-19
We report a first principles molecular dynamics (FPMD) study of carboxylate complexation on clay surfaces. By taking acetate as a model carboxylate, we investigate its inner-sphere complexes adsorbed on clay edges (including (010) and (110) surfaces) and in interlayer space. Simulations show that acetate forms stable monodentate complexes on edge surfaces and a bidentate complex with Ca 2+ in the interlayer region. The free energy calculations indicate that the complexation on edge surfaces is slightly more stable than in interlayer space. By integrating pK a s and desorption free energies of Al coordinated water calculated previously (X. Liu, X. Lu, E. J. Meijer, R. Wang and H. Zhou, Geochim. Cosmochim. Acta, 2012, 81, 56-68; X. Liu, J. Cheng, M. Sprik, X. Lu and R. Wang, Geochim. Cosmochim. Acta, 2014, 140, 410-417), the pH dependence of acetate complexation has been revealed. It shows that acetate forms inner-sphere complexes on (110) in a very limited mildly acidic pH range while it can complex on (010) in the whole common pH range. The results presented in this study form a physical basis for understanding the geochemical processes involving clay-organics interactions.
Crystal structure of cis-tetra-aqua-dichlorido-cobalt(II) sulfolane disolvate.
Boudraa, Mhamed; Bouacida, Sofiane; Bouchareb, Hasna; Merazig, Hocine; Chtoun, El Hossain
2015-02-01
In the title compound, [CoCl2(H2O)4]·2C4H8SO2, the Co(II) cation is located on the twofold rotation axis and is coordinated by four water mol-ecules and two adjacent chloride ligands in a slightly distorted octa-hedral coordination environment. The cisoid angles are in the range 83.27 (5)-99.66 (2)°. The three transoid angles deviate significantly from the ideal linear angle. The crystal packing can be described as a linear arrangement of complex units along c formed by bifurcated O-H⋯Cl hydrogen bonds between two water mol-ecules from one complex unit towards one chloride ligand of the neighbouring complex. Two solvent mol-ecules per complex are attached to this infinite chain via O-H⋯O hydrogen bonds in which water mol-ecules act as the hydrogen-bond donor and sulfolane O atoms as the hydrogen-bond acceptor sites.
Böttinger, Lena; Mårtensson, Christoph U.; Song, Jiyao; Zufall, Nicole; Wiedemann, Nils; Becker, Thomas
2018-01-01
Mitochondria are the powerhouses of eukaryotic cells. The activity of the respiratory chain complexes generates a proton gradient across the inner membrane, which is used by the F1FO-ATP synthase to produce ATP for cellular metabolism. In baker’s yeast, Saccharomyces cerevisiae, the cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) associate in respiratory chain supercomplexes. Iron–sulfur clusters (ISC) form reactive centers of respiratory chain complexes. The assembly of ISC occurs in the mitochondrial matrix and is essential for cell viability. The cysteine desulfurase Nfs1 provides sulfur for ISC assembly and forms with partner proteins the ISC-biogenesis desulfurase complex (ISD complex). Here, we report an unexpected interaction of the active ISD complex with the cytochrome bc1 complex and cytochrome c oxidase. The individual deletion of complex III or complex IV blocks the association of the ISD complex with respiratory chain components. We conclude that the ISD complex binds selectively to respiratory chain supercomplexes. We propose that this molecular link contributes to coordination of iron–sulfur cluster formation with respiratory activity. PMID:29386296
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakova, I. N.; Poznyak, A. L.; Sergienko, V. S.
2006-07-15
The synthesis and X-ray diffraction study of three Ca[Co(Nta)X] . nH{sub 2}O complexes [X{sup -} = Cl, n = 2.3 (I); X{sup -} = Br, n = 2 (II); and X{sup -} = NCS, n = 2 (III)] are performed. The main structural units of crystals I-III are the [CoX(Nta)]{sup 2-} anionic complexes and hydrated Ca{sup 2+} cations. The anionic complexes have similar structures. The coordination of the Co{sup 2+} atom in the shape of a trigonal bipyramid is formed by N + 3O atoms of the Nta{sup 3-} ligand and the X{sup -} anion in the trans position withmore » respect to N. In structures I-III, the Co-O and Co-N bond lengths lie in the ranges 1.998-2.032 and 2.186-2.201 A, respectively. The Co-X bond lengths are 2.294 (I), 2.436 and 2.445 (II), and 1.982 A (III). The environments of the Ca{sup 2+} cations include oxygen atoms of one or two water molecules and six or seven O(Nta) atoms with the coordination number of 9 in I or 8 in II and III. The Ca-O(Nta) bonds form a three-dimensional framework in I or layers in II and III. Water molecules are involved in the hydrogen bonds O(w)-H...O(Nta), O(w)-H...X, and O(w)-H...O(w). Structural data for crystals I-III are deposited with the Cambridge Structural Database (CCDC nos. 287 814-287 816)« less
Paul, Shiv Shankar; Selim, Md; Saha, Abhijit; Mukherjea, Kalyan K
2014-02-21
The synthesis and structural characterization of two novel dioxomolybdenum(VI) (1) and dioxotungsten(VI) (2) complexes with 2-phenylacetylhydroxamic acid (PAHH) [M(O)2(PAH)2] [M = Mo, W] have been accomplished. The dioxomolybdenum(VI) and dioxotungsten(VI) moiety is coordinated by the hydroxamate group (-CONHO(-)) of the 2-phenylacetylhydroxamate (PAH) ligand in a bi-dentate fashion. In both the complexes the PAHH ligand is coordinated through oxygen atoms forming a five membered chelate. The hydrogen atom of N-H of the hydroxamate group is engaged in intermolecular H-bonding with the carbonyl oxygen of another coordinated hydroxamate ligand, thereby forming an extended 1D chain. The ligand as well as both the complexes exhibit the ability to protect from radiation induced damage both in CTDNA as well as in pUC19 plasmid DNA. As the damage to DNA is caused by the radicals generated during radiolysis, its scavenging imparts protection from the damage to DNA. To understand the mechanism of protection, binding affinities of the ligand and the complex with DNA were determined using absorption and emission spectral studies and viscosity measurements, whereby the results indicate that both the complexes and the hydroxamate ligand interact with calf thymus DNA in the minor groove. The intrinsic binding constants, obtained from UV-vis studies, are 7.2 × 10(3) M(-1), 5.2 × 10(4) M(-1) and 1.2 × 10(4) M(-1) for the ligand and complexes 1 and 2 respectively. The Stern-Volmer quenching constants obtained from a luminescence study for both the complexes are 5.6 × 10(4) M(-1) and 1.6 × 10(4) M(-1) respectively. The dioxomolybdenum(VI) complex is found to be a more potent radioprotector compared to the dioxotungsten(VI) complex and the ligand. Radical scavenging chemical studies suggest that the complexes have a greater ability to scavenge both the hydroxyl as well as the superoxide radicals compared to the ligand. The free radical scavenging ability of the ligand and the complexes was further established by EPR spectroscopy using a stable free radical, the DPPH, as a probe. The experimental results of DNA binding are further supported by molecular docking studies.
Courcot, B; Firley, D; Fraisse, B; Becker, P; Gillet, J-M; Pattison, P; Chernyshov, D; Sghaier, M; Zouhiri, F; Desmaële, D; d'Angelo, J; Bonhomme, F; Geiger, S; Ghermani, N E
2007-05-31
A new target in AIDS therapy development is HIV-1 integrase (IN). It was proven that HIV-1 IN required divalent metal cations to achieve phosphodiester bond cleavage of DNA. Accordingly, all newly investigated potent IN inhibitors contain chemical fragments possessing a high ability to chelate metal cations. One of the promising leads in the polyhydroxylated styrylquinolines (SQLs) series is (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinoline carboxylic acid (1). The present study focuses on the quinoline-based progenitor (2), which is actually the most probable chelating part of SQLs. Conventional and synchrotron low-temperature X-ray crystallographic studies were used to investigate the chelating power of progenitor 2. Mg2+ and Cu2+ cations were selected for this purpose, and three types of metal complexes of 2 were obtained: Mg(II) complex (4), Cu(II) complex (5) and mixed Mg(II)-Cu(II) complexes (6 and 7). The analysis of the crystal structure of complex 4 indicates that two tridentate ligands coordinate two Mg2+ cations, both in octahedral geometry. The Mg-Mg distance was found equal to 3.221(1) A, in agreement with the metal-metal distance of 3.9 A encountered in the crystal structure of Escherichia coli DNA polymerase I. In 5, the complex is formed by two bidentate ligands coordinating one copper ion in tetrahedral geometry. Both mixed Mg(II)-Cu(II) complexes, 6 and 7 exhibit an original arrangement of four ligands linked to a central heterometallic cluster consisting of three octahedrally coordinated magnesium ions and one tetrahedrally coordinated copper ion. Quantum mechanics calculations were also carried out in order to display the electrostatic potential generated by the dianionic ligand 2 and complex 4 and to quantify the binding energy (BE) during the formation of the magnesium complex of progenitor 2. A comparison of the binding energies of two hypothetical monometallic Mg(II) complexes with that found in the bimetallic magnesium complex 4 was made.
NASA Astrophysics Data System (ADS)
El-Metwaly, Nashwa M.; Refat, Moamen S.
2011-01-01
This work represents the elaborated investigation for the ligational behavior of the albendazole ligand through its coordination with, Cu(II), Mn(II), Ni(II), Co(II) and Cr(III) ions. Elemental analysis, molar conductance, magnetic moment, spectral studies (IR, UV-Vis and ESR) and thermogravimetric analysis (TG and DTG) have been used to characterize the isolated complexes. A deliberate comparison for the IR spectra reveals that the ligand coordinated with all mentioned metal ions by the same manner as a neutral bidentate through carbonyl of ester moiety and NH groups. The proposed chelation form for such complexes is expected through out the preparation conditions in a relatively acidic medium. The powder XRD study reflects the amorphous nature for the investigated complexes except Mn(II). The conductivity measurements reflect the non-electrolytic feature for all complexes. In comparing with the constants for the magnetic measurements as well as the electronic spectral data, the octahedral structure was proposed strongly for Cr(III) and Ni(II), the tetrahedral for Co(II) and Mn(II) complexes but the square-pyramidal for the Cu(II) one. The thermogravimetric analysis confirms the presence or absence of water molecules by any type of attachments. Also, the kinetic parameters are estimated from DTG and TG curves. ESR spectrum data for Cu(II) solid complex confirms the square-pyramidal state is the most fitted one for the coordinated structure. The albendazole ligand and its complexes are biologically investigated against two bacteria as well as their effective effect on degradation of calf thymus DNA.
NASA Astrophysics Data System (ADS)
Zhang, Meili; Ren, Yixia; Ma, Zhenzhen; Qiao, Lei
2017-06-01
Two coordination polymers, [Zn(pda)(bib)]n (1) and [Cd(pda)0.5(bib)Cl]n (2)]. (H2pda = 1,4-phenylenediacetic acid, bib = 1,2-bis(imidazol-1-ylmethyl)benzene), have been synthesized by using Zn(II)/Cd(II) salts with two flexible ligands pda and bib under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Due to the coordination geometry around the metal ions and the diverse coordination modes of the flexible ligands, the obtained complex show diverse structures. In the structure of 1, a pair of bib ligands connect two Zn(II) atoms give rise a 22-membered ring, which is further extended by pda ligands in bidentate coordination mode leading a ring-containing 2D layer. In 2, bib ligands join [Cd2Cl2]2+ dimmers generate 1D polymeric ribbon, the pda ligands further extend such ribbon forming a 2D layer network containing rectangular windows, which discovers the effect of the central metal ions on the formation of metal-organic frameworks. In additional, luminescent properties of two complexes have also been studied, they could be potential fluorescence materials.
NASA Astrophysics Data System (ADS)
Puszyńska-Tuszkanow, Mariola; Zierkiewicz, Wiktor; Grabowski, Tomasz; Daszkiewicz, Marek; Maciejewska, Gabriela; Adach, Anna; Kucharska-Ziembicka, Katarzyna; Wietrzyk, Joanna; Filip-Psurska, Beata; Cieślak-Golonka, Maria
2017-04-01
The composition and structure of the magnesium complex with cinnamic acid, [Mg(cinn)2(H2O)2]n(1), were determined using single crystal X-ray diffraction data, IR, NMR spectroscopies, thermal and mass spectrometry analysis. Magnesium cinnamate complex, like the isostructural cobalt(II) species reported in the literature, appears to belong to the group of coordination polymers forming layered solids with pseudooctahedral coordination around the metal centre and Osbnd Csbnd O bridging units. The vibrational assignments of the experimental spectra of the complex (1) were performed on the basis of the DFT results obtained for the [Mg(cinn)4(H2O)2]2- ion, serving as a model. The complex was found to exhibit a very low cytotoxicity against neoplastic: A549 (lung), MCF-7 (breast), P388 (murine leukemia) and normal BALB3T3 (mouse fibroblasts) cell lines. In silico pharmacokinetical parameter calculations for (1) and seven known magnesium complexes with carboxylic acids: lactic, malic, glutamic, hydroaspartic and aspartic allowed for comparison of their potential bioavailability. Magnesium cinnamate complex appeared to exhibit a superior lipophilic property that suggests an optimal pharmacokinetics profile.
McCracken, John; Cappillino, Patrick J; McNally, Joshua S; Krzyaniak, Matthew D; Howart, Michael; Tarves, Paul C; Caradonna, John P
2015-07-06
Electron paramagnetic resonance (EPR) experiments were done on a series of S = (3)/2 ferrous nitrosyl model complexes prepared with chelating ligands that mimic the 2-His-1-carboxylate facial triad iron binding motif of the mononuclear nonheme iron oxidases. These complexes formed a comparative family, {FeNO}(7)(N2Ox)(H2O)3-x with x = 1-3, where the labile coordination sites for the binding of NO and solvent water were fac for x = 1 and cis for x = 2. The continuous-wave EPR spectra of these three complexes were typical of high-spin S = (3)/2 transition-metal ions with resonances near g = 4 and 2. Orientation-selective hyperfine sublevel correlation (HYSCORE) spectra revealed cross peaks arising from the protons of coordinated water in a clean spectral window from g = 3.0 to 2.3. These cross peaks were absent for the {FeNO}(7)(N2O3) complex. HYSCORE spectra were analyzed using a straightforward model for defining the spin Hamiltonian parameters of bound water and showed that, for the {FeNO}(7)(N2O2)(H2O) complex, a single water conformer with an isotropic hyperfine coupling, Aiso = 0.0 ± 0.3 MHz, and a dipolar coupling of T = 4.8 ± 0.2 MHz could account for the data. For the {FeNO}(7)(N2O)(H2O)2 complex, the HYSCORE cross peaks assigned to coordinated water showed more frequency dispersion and were analyzed with discrete orientations and hyperfine couplings for the two water molecules that accounted for the observed orientation-selective contour shapes. The use of three-pulse electron spin echo envelope modulation (ESEEM) data to quantify the number of water ligands coordinated to the {FeNO}(7) centers was explored. For this aspect of the study, HYSCORE spectra were important for defining a spectral window where empirical integration of ESEEM spectra would be the most accurate.
Thorp-Greenwood, Flora L.; Ronson, Tanya K.
2015-01-01
The cyclotriveratrylene-type ligands (±)-tris(iso-nicotinoyl)cyclotriguaiacylene L1 (±)-tris(4-pyridylmethyl)cyclotriguaiacylene L2 and (±)-tris{4-(4-pyridyl)benzyl}cyclotriguaiacylene L3 all feature 4-pyridyl donor groups and all form coordination polymers with CuI and/or CuII cations that show a remarkable range of framework topologies and structures. Complex [CuI 4CuII 1.5(L1)3(CN)6]·CN·n(DMF) 1 features a novel 3,4-connected framework of cyano-linked hexagonal metallo-cages. In complexes [Cu3(L2)4(H2O)3]·6(OTf)·n(DMSO) 2 and [Cu2(L3)2Br2(H2O)(DMSO)]·2Br·n(DMSO) 3 capsule-like metallo-cryptophane motifs are formed which linked through their metal vertices into a hexagonal 2D network of (43.123)(42.122) topology or a coordination chain. Complex [Cu2(L1)2(OTf)2(NMP)2(H2O)2]·2(OTf)·2NMP 4 has an interpenetrating 2D 3,4-connected framework of (4.62.8)(62.8)(4.62.82) topology with tubular channels. Complex [Cu(L1)(NCMe)]·BF4·2(CH3CN)·H2O 5 features a 2D network of 63 topology while the CuII analogue [Cu2(L1)2(NMP)(H2O)]·4BF4·12NMP·1.5H2O 6 has an interpenetrating (10,3)-b type structure and complex [Cu2(L2)2Br3(DMSO)]·Br·n(DMSO) 7 has a 2D network of 4.82 topology. Strategies for formation of coordination polymers with hierarchical spaces emerge in this work and complex 2 is shown to absorb fullerene-C60 through soaking the crystals in a toluene solution. PMID:28791086
Yu, Hai-Zhu; Jiang, Yuan-Ye; Fu, Yao; Liu, Lei
2010-12-29
The ligand-dependent selectivities in Ullmann-type reactions of amino alcohols with iodobenzene by β-diketone- and 1,10-phenanthroline-ligated Cu(I) complexes were recently explained by the single-electron transfer and iodine atom transfer mechanisms (Jones, G. O., Liu, P., Houk, K. N., and Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205.). The present study shows that an alternative, oxidative addition/reductive elimination mechanism may also explain the selectivities. Calculations indicate that a Cu(I) complex with a negatively charged β-diketone ligand is electronically neutral, so that oxidative addition of ArI to a β-diketone-ligated Cu(I) prefers to occur (and occur readily) in the absence of the amino alcohol. Thus, coordination of the amino alcohol in its neutral form can only occur at the Cu(III) stage where N-coordination is favored over O-coordination. The coordination step is the rate-limiting step and the outcome is that N-arylation is favored with the β-diketone ligand. On the other hand, a Cu(I) complex with a neutral 1,10-phenanthroline ligand is positively charged, so that oxidative addition of ArI to a 1,10-phenanthroline-ligated Cu(I) has to get assistance from a deprotonated amino alcohol substrate. This causes oxidative addition to become the rate-limiting step in the 1,10-phenanthroline-mediated reaction. The immediate product of the oxidative addition step is found to undergo facile reductive elimination to provide the arylation product. Because O-coordination of a deprotonated amino alcohol is favored over N-coordination in the oxidative addition transition state, O-arylation is favored with the 1,10-phenanthroline ligand.
NASA Astrophysics Data System (ADS)
Kurbah, Sunshine D.; Syiemlieh, Ibanphylla; Lal, Ram A.
2018-03-01
Dioxido-vanadium(V) complex has been synthesized in good yield, the complex was characterized by IR, UV-visible and 1H NMR spectroscopy. Single crystal X-ray crystallography techniques were used to assign the structure of the complex. Complex crystallized with monoclinic P21/c space group with cell parameters a (Å) = 39.516(5), b (Å) = 6.2571(11), c (Å) = 17.424(2), α (°) = 90, β (°) = 102.668(12) and γ (°) = 90. The hydrazone ligand is coordinate to metal ion in tridentate fashion through -ONO- donor atoms forming a distorted square pyramidal geometry around the metal ion.
NASA Astrophysics Data System (ADS)
Durango-García, Clara J.; Rufino-Felipe, Ernesto; López-Cardoso, Marcela; Muñoz-Hernández, Miguel-Ángel; Montiel-Palma, Virginia
2018-07-01
Reactions of methylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol) (1) with one or two equivalents of bulk Li, Na or K metals in THF or DMSO render mono or dialkali metal complexes depending on the stoichiometric ratio of the reactants. The metal-methylamino-N-(2-methylene-4,6-tert-butylphenol)sbnd N-(2-methylene-4,6-tert-butylphenolate) complexes, 2Li, 2Na and 2K, are generated upon the substitution of a single phenol hydrogen of 1. In the solid state, complex 2Na is a dimer due to the establishment of two symmetric hydrogen bonds between two adjacent molecules. The Na center also engages into the formation of a ten-membered metallacycle ring with a butterfly-like structure. Due to dimerization, an intermolecular six-membered core is formed involving two sodium and four oxygen atoms. The weakly coordinated nitrogen atom from the ligand is nearly perpendicular to the hexagonal core. The dimetal-methylamino-N,N‧-bis(2-methylene-4,6-di-tert-butylphenolate) complexes, 3Li, 3Na and 3K result from metal substitution of the two phenol hydrogens from ligand 1. The SC-XRD structures of 3Li and 3Na are discreet, each incorporating two metal atoms in different coordination environments. Ten-membered rings with boat-boat conformations are also observed as are rhombic central M2O2 cores. The molecular structure of 3K in DMSO shows a higher degree of aggregation. It effectively comprises four K atoms, two ligand backbones and seven solvent molecules forming a central four-membered K2O2 ring perpendicular to an eight-membered structure formed also by K and O atoms spanning over the two ligand moieties.
Cowie, Bradley E; Emslie, David J H
2014-12-15
A bis(phosphine)borane ambiphilic ligand, [Fe(η(5) -C5 H4 PPh2 )(η(5) -C5 H4 PtBu{C6 H4 (BPh2 )-ortho})] (FcPPB), in which the borane occupies a terminal position, was prepared. Reaction of FcPPB with tris(norbornene)platinum(0) provided [Pt(FcPPB)] (1) in which the arylborane is η(3) BCC-coordinated. Subsequent reaction with CO and CNXyl (Xyl=2,6-dimethylphenyl) afforded [PtL(FcPPB)] {L=CO (2) and CNXyl (3)} featuring η(2) BC- and η(1) B-arylborane coordination modes, respectively. Reaction of 1 or 2 with H2 yielded [PtH(μ-H)(FcPPB)] in which the borane is bound to a hydride ligand on platinum. Addition of PhC2 H to [Pt(FcPPB)] afforded [Pt(C2 Ph)(μ-H)(FcPPB)] (5), which rapidly converted to [Pt(FcPPB')] (6; FcPPB'=[Fe(η(5) -C5 H4 PPh2 )(η(5) -C5 H4 PtBu{C6 H4 (BPh-CPh=CHPh-Z)-ortho}]) in which the newly formed vinylborane is η(3) BCC-coordinated. Unlike arylborane complex 1, vinylborane complex 6 does not react with CO, CNXyl, H2 or HC2 Ph at room temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergman, Roberg G.; Gribble, Jr., Michael W.; Ellman, Jonathan A.
2008-01-30
The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.
Zhou, Jinqiu; Qian, Tao; Wang, Mengfan; Xu, Na; Zhang, Qi; Li, Qun; Yan, Chenglin
2016-03-02
In situ core-shell coating was used to improve the electrochemical performance of Si-based anodes with polypyrrole-Fe coordination complex. The vast functional groups in the organometallic coordination complex easily formed hydrogen bonds when in situ modifying commercial Si nanoparticles. The incorporation of polypyrrole-Fe resulted in the conformal conductive coating surrounding each Si nanoparticle, not only providing good electrical connection to the particles but also promoting the formation of a stable solid-electrolyte-interface layer on the Si electrode surface, enhancing the cycling properties. As an anode material for Li-ion batteries, modified silicon powders exhibited high reversible capacity (3567 mAh/g at 0.3 A/g), good rate property (549.12 mAh/g at 12 A/g), and excellent cycling performance (reversible capacity of 1500 mAh/g after 800 cycles at 1.2 A/g). The constructed novel concept of core-shell coating Si particles presented a promising route for facile and large-scale production of Si-based anodes for extremely durable Li-ion batteries, which provided a wide range of applications in the field of energy storage of the renewable energy derived from the solar energy, hydropower, tidal energy, and geothermal heat.
Amarante, Tatiana R; Almeida Paz, Filipe A; Gago, Sandra; Gonçalves, Isabel S; Pillinger, Martyn; Rodrigues, Alírio E; Abrantes, Marta
2009-09-16
The oxodiperoxo complex MoO(O2)(2)(tbbpy) (tbbpy = 4,4'-di-tert-butyl-2,2'- bipyridine) was isolated from the reaction of MoO2Cl(2)(tbbpy) in water under microwaveassisted heating at 120 masculineC for 4 h. The structure of the oxodiperoxo complex was determined by single crystal X-ray diffraction. The Mo(VI) centre is seven-coordinated with a geometry which strongly resembles a highly distorted bipyramid. Individual MoO(O2)(2)(tbbpy) complexes are interdigitated along the [010] direction to form a column. The crystal structure is formed by the close packing of the columnar-stacked complexes. Interactions between neighbouring columns are essentially of van der Waals type mediated by the need to effectively fill the available space.
Structure of a group II intron in complex with its reverse transcriptase.
Qu, Guosheng; Kaushal, Prem Singh; Wang, Jia; Shigematsu, Hideki; Piazza, Carol Lyn; Agrawal, Rajendra Kumar; Belfort, Marlene; Wang, Hong-Wei
2016-06-01
Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.
Macias, Freddy J; Deo, Krishant M; Pages, Benjamin J; Wormell, Paul; Clegg, Jack K; Zhang, Yingjie; Li, Feng; Zheng, Gang; Sakoff, Jennette; Gilbert, Jayne; Aldrich-Wright, Janice R
2015-11-16
We have developed six dihydroxidoplatinum(IV) compounds with cytotoxic potential. Each derived from active platinum(II) species, these complexes consist of a heterocyclic ligand (HL) and ancillary ligand (AL) in the form [Pt(HL)(AL)(OH)2](2+), where HL is a methyl-functionalised variant of 1,10-phenanthroline and AL is the S,S or R,R isomer of 1,2-diaminocyclohexane. NMR characterisation and X-ray diffraction studies clearly confirmed the coordination geometry of the octahedral platinum(IV) complexes. The self-stacking of these complexes was determined using pulsed gradient stimulated echo nuclear magnetic resonance. The self-association behaviour of square planar platinum(II) complexes is largely dependent on concentration, whereas platinum(IV) complexes do not aggregate under the same conditions, possibly due to the presence of axial ligands. The cytotoxicity of the most active complex, exhibited in several cell lines, has been retained in the platinum(IV) form. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Ye; Jin, Cheng-Wei; He, Shu-Mei; Ren, Ning; Zhang, Jian-Jun
2016-12-01
Five novel lanthanide complexes [Ln2(2-ClQL)6(phen)2(H2O)2]·2H2O (Ln = Pr(1), Sm(2), Eu(3), Ho(4), Er(5)); 2-ClQL: 2-chloroquinoline-4-carboxylate; phen: 1,10-phenanthroline; were synthesized by conventional solution method at room temperature and characterized via elemental analysis, powder x-ray diffraction, Infrared spectroscopy and Raman spectrometry. The results indicate that complexes 1-5 are isostructural, and each Ln3+ ion is eight-coordinated adopting a distorted square antiprismatic molecular geometry. Binuclear complex 1 are stitched together via hydrogen bonding interactions to form 1D chains, and further to form 2D sheets by the π-π interactions. Luminescence investigation reveals that complex 3 displays strong red emission. TG/DTG-FTIR, reveal the thermal decomposition processes and products of title complexes. The bacteriostatic activities of the complexes were evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus.
Borghi, Elena; Casella, Luigi
2010-02-21
In this study copper(ii) complexes with the tridentate nitrogen ligand bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-BB) are considered as model compounds for the Cu-tris(imidazole) array found in several copper proteins. 2-BB chelates copper(ii) forming two six-membered rings and the complexes contain methanol, nitrite, azide and water as ancillary ligands; both the coordination numbers and stereochemistries differ in these complexes. Their key structural features were investigated by using full multiple-scattering theoretical analysis of the copper K-edge X-ray absorption spectrum with the MXAN code. We showed that using cluster sizes large enough to include all atoms of the ligand, the analysis of the XANES region can give both a structural model of the metal centre and map the structure of the 2-BB complexes. Complex [Cu(2-BB)(N(3))](+) provided a critical test through the comparison of the XANES simulation results with crystallographic data, thus permitting the extension of the method to the complex [Cu(2-BB)(H(2)O)(n)](+) (n = 1 or 2), for which crystallographic data are not available but is expected to bear a five-coordinated Cu(3N)(2O) core (n = 2). The structural data of [Cu(2-BB)(MeOH)(ClO(4))](+) and [Cu(2-BB)(NO(2))](+), both with a Cu(3N)(2O) core but with a different stereochemistry, were used as the starting parameters for two independent simulations of the XANES region of the [Cu(2-BB)(H(2)O)(2)](+) cation. The two structural models generated by simulation converge towards a structure for the aqua-cation with a lower coordination number. New calculations, where four-coordinated Cu(3N)(O) cores were considered as the starting structures, validated that the structure of the aqua-complex in the powder state has a copper(ii) centre with a four-coordinated Cu(3N)(O) core and a molecular formula [Cu(2-BB)(H(2)O)](ClO(4)).(H(2)O). A water solvation molecule, presumed to be disordered from the simulations with the two Cu(3N)(2O) cores, is present. The successful treatment of this Cu-2-BB complex system allows the extension of the method to other biomimetic compounds when a structural characterization is lacking.
Salassa, Giovanni; Coenen, Michiel J J; Wezenberg, Sander J; Hendriksen, Bas L M; Speller, Sylvia; Elemans, Johannes A A W; Kleij, Arjan W
2012-04-25
A bis-Zn(salphen) structure shows extremely strong self-assembly both in solution as well as at the solid-liquid interface as evidenced by scanning tunneling microscopy, competitive UV-vis and fluorescence titrations, dynamic light scattering, and transmission electron microscopy. Density functional theory analysis on the Zn(2) complex rationalizes the very high stability of the self-assembled structures provoked by unusual oligomeric (Zn-O)(n) coordination motifs within the assembly. This coordination mode is strikingly different when compared with mononuclear Zn(salphen) analogues that form dimeric structures having a typical Zn(2)O(2) central unit. The high stability of the multinuclear structure therefore holds great promise for the development of stable self-assembled monolayers with potential for new opto-electronic materials.
López-Torres, Elena; Mendiola, M Antonia
2009-10-07
The coordination behaviour of the Schiff-base, benzil bis(benzoylhydrazone), LH(2) towards divalent nickel, lead, cadmium, zinc and copper ions has been investigated. The complexes have been fully characterized by techniques including (113)Cd and (207)Pb NMR, as well as (13)C and (113)Cd CP/MAS NMR and by single crystal X-ray diffraction. All the complexes have the general formula [ML](n) (n = 1-3 depending on the metal ion), with the ligand doubly deprotonated. The nickel complex [NiL] is a monomeric compound, the lead complex [PbL](2) shows a binuclear structure, whereas zinc [ZnL](3) and copper [CuL](3) complexes are trinuclear helicates. The cadmium complex seems to be a dimer with a structure similar to that of . In the nickel and lead derivatives, the ligand behaves as a tetradentate N(2)O(2) chelate and in complex also as a bridge through one of the O atoms. In the crystal structures of Zn and Cu complexes [ML](3) each metal is in a pentadentate N(3)O(2) environment formed by two different ligands, one tridentate chelate and the other bidentate chelate, giving rise to trinuclear helicates. These results point out the versatility of benzil bis(benzoylhydrazone) on its coordination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallejos, Javier; Brito, Iván, E-mail: ivanbritob@yahoo.com; Cárdenas, Alejandro
2015-03-15
The reaction of the flexible ligand, ethane-1,2-diyl-bis-(pyridyl-3-carboxylate), (L) with HgI{sub 2} and HgBr{sub 2} salts under the same experimental conditions leads to the formation of two coordination polymers with different motifs: ([Hg(L)(Br{sub 2})]){sub n}(1) and ([Hg(L)(I{sub 2})]){sub n}(2). In both compounds, the ligand, (L) acts in a μ2-N:N′-bidentate fashion to link HgBr{sub 2} and HgI{sub 2} units to form a linear and helical chain motif, along [1 0 0] for (1) and [0 0 1] for (2). The ethylene moiety of (L) has gauche and trans conformation in compounds (1) and (2), respectively. The flexible conformation of L produces differencesmore » in the optical and crystal properties of the two compounds. - Graphical abstract: This work demonstrates how the HgX{sub 2} units are coordinates by bi-dentate ligand forming polymeric coordination complexes by self-assembly of both chemical units.- Highlights: • News 1-D d{sup 10} transition metal coordination polymers. • The photoluminescent properties have been measured. • The thermal properties have been measured.« less
Nielsen, Anne; McKenzie, Christine J.; Bond, Andrew D.
2009-01-01
The title compound, [FeCl3(C12H18N4)]·0.5CH3OH, contains an FeIII ion in a distorted octahedral coordination environment. The neutral N,N′,N′′-tridentate ligand adopts a fac coordination mode, and chloride ligands lie trans to each of the three coordinated N atoms. In the crystal, the complexes form columns extending parallel to the approximate local threefold axes of the FeN3Cl3 octahedra, and the columns are arranged so that the uncoordinated nitrile groups align in an antiparallel manner and the pyridyl rings form offset face-to-face arrangements [interplanar separations = 2.95 (1) and 3.11 (1) Å; centroid–centroid distances = 5.31 (1) and 4.92 (1) Å]. The methanol solvent molecule is disordered about a twofold rotation axis. PMID:21578169
Esteruelas, Miguel A; García-Yebra, Cristina; Martín, Jaime; Oñate, Enrique
2017-01-03
Nonclassical and classical osmium polyhydrides containing the diphosphine 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene (xant(P i Pr 2 ) 2 ), coordinated in κ 3 -mer, κ 3 -fac, and κ 2 -P,P fashions, have been isolated during the cyclic formation of H 2 by means of the sequential addition of H + and H - or H - and H + to the classical trihydride OsH 3 Cl{xant(P i Pr 2 ) 2 } (1). This complex adds H + to form the compressed dihydride dihydrogen complex [OsCl(H···H)(η 2 -H 2 ){xant(P i Pr 2 ) 2 }] + (2). Under argon, cation 2 loses H 2 and the resulting unsaturated fragment dimerizes to give [(Os(H···H){xant(P i Pr 2 ) 2 }) 2 (μ-Cl) 2 ] 2+ (3). During the transformation the phosphine changes its coordination mode from mer to fac. The benzofuran counterpart of 1, OsH 3 Cl{dbf(P i Pr 2 ) 2 } (4; dbf(P i Pr 2 ) 2 = 4,6-bis(diisopropylphosphino)dibenzofuran), also adds H + to afford the benzofuran counterpart of 2, [OsCl(H···H)(η 2 -H 2 ){xant(P i Pr 2 ) 2 }] + (5), which in contrast to the latter is stable and does not dimerize. Acetonitrile breaks the chloride bridge of 3 to form the dihydrogen [OsCl(η 2 -H 2 )(CH 3 CN){xant(P i Pr 2 ) 2 }] + (6), regenerating the mer coordination of the diphosphine. The hydride ion also breaks the chloride bridge of 3. The addition of KH to 3 leads to 1, closing a cycle for the formation of H 2 . Complex 1 reacts with a second hydride ion to give OsH 4 {xant(P i Pr 2 ) 2 } (7) as consequence of the displacement of the chloride. Similarly to the latter, the oxygen atom of the mer-coordinated diphosphine of 7 has a tendency to be displaced by the hydride ion. Thus, the addition of KH to 7 yields [OsH 5 {xant(P i Pr 2 ) 2 }] - (8), containing a κ 2 -P,P-diphosphine. Complex 8 is easily protonated to afford OsH 6 {xant(P i Pr 2 ) 2 } (9), which releases H 2 to regenerate 7, closing a second cycle for the formation of molecular hydrogen.
Da Costa, Carla P; Krajewska, Danuta; Okruszek, Andrzej; Stec, Wojciech J; Sigel, Helmut
2002-04-01
The acidity constants of twofold protonated methyl thiophosphate (MeOPS(2-)) and of monoprotonated uridine 5'- O-thiomonophosphate (UMPS(2-)) have been determined in aqueous solution (25 degrees C; I= 0.1 M, NaNO(3)) by potentiometric pH titration. The stability constants of their 1:1 complexes formed with Pb(2+), i.e. Pb(MeOPS) and Pb(UMPS), have also been measured. The results show that replacement of a phosphate oxygen by a sulfur atom increases the acidity by about 1.4 p K units. On the basis of recently established log versus plots ( = simple phosphate or phosphonate ligands where R is a non-coordinating residue), it is shown that the stability of the Pb(thiophosphate) complexes is by log Delta= 2.43+/-0.09 larger than expected for a Pb(2+)-phosphate interaction. The identity of the stability increase (log Delta) observed for Pb(MeOPS) and Pb(UMPS) shows that the nucleobase residue in the Pb(UMPS) complex has no influence on complex formation. To be able to carry out the mentioned comparisons, we have also determined the stability constant of the complex formed between Pb(2+) and methyl phosphate; the corresponding data for Pb(UMP) were already known from our earlier studies. The present results allow an evaluation of other Pb(2+) complexes formed with thiophosphate derivatives and they are applied now to the Pb(2+) complexes of adenosine 5'- O-thiomonophosphate (AMPS(2-)). The stability constants of the Pb(H;AMPS)(+) and Pb(AMPS) complexes were measured and it is shown that, within the error limits, the stability of the Pb(AMPS) complex is determined by the basicity of the thiophosphate group of AMPS(2-); in other words, no hint for macrochelate formation involving N7 was observed. More important, with the aid of micro-stability-constant considerations it is concluded that the structure of the dominating isomer of the Pb(H;AMPS)(+) species is the one where the proton is located at the N1 site of the adenine residue and Pb(2+) is coordinated to the deprotonated thiophosphate group. The insights gained from this study with regard to thiophosphate-altered single-stranded nucleic acids and their affinity towards Pb(2+) are discussed.
Uznanski, Pawel; Zakrzewska, Joanna; Favier, Frederic; Kazmierski, Slawomir; Bryszewska, Ewa
2017-01-01
A comparative study of amine and silver carboxylate adducts [R 1 COOAg-2(R 2 NH 2 )] (R 1 = 1, 7, 11; R 2 = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, 13 C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ( 1 H and 13 C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism. Graphical abstractThe synthesis of a series (bis)alkylamine silver(I) carboxylate complexes in nonpolar solvents were carried out and fully characterized both in the solid and solution. Carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination. The complexes form layered structures which thermally decompose forming nanoparticles stabilized only by aliphatic carboxylates.
Kekilli, Demet; Petersen, Christine A; Pixton, David A; Ghafoor, Dlzar D; Abdullah, Gaylany H; Dworkowski, Florian S N; Wilson, Michael T; Heyes, Derren J; Hardman, Samantha J O; Murphy, Loretta M; Strange, Richard W; Scrutton, Nigel S; Andrew, Colin R; Hough, Michael A
2017-03-01
Proximal vs. distal heme-NO coordination is a novel strategy for selective gas response in heme-based NO-sensors. In the case of Alcaligenes xylosoxidans cytochrome c' (AXCP), formation of a transient distal 6cNO complex is followed by scission of the trans Fe-His bond and conversion to a proximal 5cNO product via a putative dinitrosyl species. Here we show that replacement of the AXCP distal Leu16 residue with smaller or similar sized residues (Ala, Val or Ile) traps the distal 6cNO complex, whereas Leu or Phe residues lead to a proximal 5cNO product with a transient or non-detectable distal 6cNO precursor. Crystallographic, spectroscopic, and kinetic measurements of 6cNO AXCP complexes show that increased distal steric hindrance leads to distortion of the Fe-N-O angle and flipping of the heme 7-propionate. However, it is the kinetic parameters of the distal NO ligand that determine whether 6cNO or proximal 5cNO end products are formed. Our data support a 'balance of affinities' mechanism in which proximal 5cNO coordination depends on relatively rapid release of the distal NO from the dinitrosyl precursor. This mechanism, which is applicable to other proteins that form transient dinitrosyls, represents a novel strategy for 5cNO formation that does not rely on an inherently weak Fe-His bond. Our data suggest a general means of engineering selective gas response into biologically-derived gas sensors in synthetic biology.
Rusanova, Julia A.; Semenaka, Valentina V.; Dyakonenko, Viktoriya V.; Shishkin, Oleg V.
2015-01-01
The title compound, [CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)] or [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O], (where mdeaH2 is N-methylethanolamine, C5H13NO2) is formed as a neutral heterometal CuII/CrIII complex. The molecular structure of the complex is based on a binuclear {CuCr(μ-O)2} core. The coordination environment of each metal atom involves the N,O,O atoms of the tridentate ligand, one bridging O atom of the ligand and the N atom of the thiocyanato ligands. The CuII ion adopts a distorted square-pyramidal coordination while the CrIII ion has a distorted octahedral coordination geometry completed by the aqua ligand. In the crystal, the binuclear complexes are linked via two pairs of O—H⋯O hydrogen bonds to form inversion dimers, which are arranged in columns parallel to the a axis. In the μ-mdea ligand two –CH2 groups and the methyl group were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1). PMID:26396853
Structural study of complexes formed by acidic and neutral organophosphorus reagents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braatz, Alexander D.; Antonio, Mark R.; Nilsson, Mikael
The coordination of the trivalent 4f ions, Ln = La 3+, Dy 3+, and Lu 3+, with neutral and acidic organophosphorus reagents, both individually and combined, was studied by use of X-ray absorption spectroscopy. These studies provide metrical information about the interatomic interactions between these cations and the ligands tri- n-butyl phosphate (TBP) and di- n-butyl phosphoric acid (HDBP), whose behavior are of practical importance to chemical separation processes that are currently used on an industrial scale. Previous studies have suggested the existence of complexes involving a mixture of ligands, accounting for extraction synergy. Through systematic variation of the aqueousmore » phase acidity and extractant concentration and combination, we have found that complexes with Ln and TBP : HDBP at any mixture and HDBP alone involve direct Ln–O interactions involving 6 oxygen atoms and distant Ln–P interactions involving on average 3–5 phosphorus atoms per Ln ion. It was also found that Ln complexes formed by TBP alone seem to favor eight oxygen coordination, though we were unable to obtain metrical results regarding the distant Ln–P interactions due to the low signal attributed to a lower concentration of Ln ions in the organic phases. Our study does not support the existence of mixed Ln–TBP–HDBP complexes but, rather, indicates that the lanthanides are extracted as either Ln–HDBP complexes or Ln–TBP complexes and that these complexes exist in different ratios depending on the conditions of the extraction system. Furthermore, this fundamental structural information offers insight into the solvent extraction processes that are taking place and are of particular importance to issues arising from the separation and disposal of radioactive materials from used nuclear fuel.« less
Structural study of complexes formed by acidic and neutral organophosphorus reagents
Braatz, Alexander D.; Antonio, Mark R.; Nilsson, Mikael
2016-12-23
The coordination of the trivalent 4f ions, Ln = La 3+, Dy 3+, and Lu 3+, with neutral and acidic organophosphorus reagents, both individually and combined, was studied by use of X-ray absorption spectroscopy. These studies provide metrical information about the interatomic interactions between these cations and the ligands tri- n-butyl phosphate (TBP) and di- n-butyl phosphoric acid (HDBP), whose behavior are of practical importance to chemical separation processes that are currently used on an industrial scale. Previous studies have suggested the existence of complexes involving a mixture of ligands, accounting for extraction synergy. Through systematic variation of the aqueousmore » phase acidity and extractant concentration and combination, we have found that complexes with Ln and TBP : HDBP at any mixture and HDBP alone involve direct Ln–O interactions involving 6 oxygen atoms and distant Ln–P interactions involving on average 3–5 phosphorus atoms per Ln ion. It was also found that Ln complexes formed by TBP alone seem to favor eight oxygen coordination, though we were unable to obtain metrical results regarding the distant Ln–P interactions due to the low signal attributed to a lower concentration of Ln ions in the organic phases. Our study does not support the existence of mixed Ln–TBP–HDBP complexes but, rather, indicates that the lanthanides are extracted as either Ln–HDBP complexes or Ln–TBP complexes and that these complexes exist in different ratios depending on the conditions of the extraction system. Furthermore, this fundamental structural information offers insight into the solvent extraction processes that are taking place and are of particular importance to issues arising from the separation and disposal of radioactive materials from used nuclear fuel.« less
Doing Duo - a case study of entrainment in William Forsythe's choreography "Duo".
Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E
2014-01-01
Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe's choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models.
Waychunas, G.A.; Fuller, C.C.; Davis, J.A.
2002-01-01
"Two-line" ferrihydrite samples precipitated and then exposed to a range of aqueous Zn solutions (10-5 to 10-3 M), and also coprecipitated in similar Zn solutions (pH 6.5), have been examined by Zn and Fe K-edge X-ray absorption spectroscopy. Typical Zn complexes on the surface have Zn-O distances of 1.97(0.2) A?? and coordination numbers of about 4.0(0.5), consistent with tetrahedral oxygen coordination. This contrasts with Zn-O distances of 2.11(.02) A?? and coordination numbers of 6 to 7 in the aqueous Zn solutions used in sample preparation. X-ray absorption extended fine structure spectroscopy (EXAFS) fits to the second shell of cation neighbors indicate as many as 4 Zn-Fe neighbors at 3.44(.04) A?? in coprecipitated samples, and about two Zn-Fe neighbors at the same distance in adsorption samples. In both sets of samples, the fitted coordination number of second shell cations decreases as sorption density increases, indicating changes in the number and type of available complexing sites or the onset of competitive precipitation processes. Comparison of our results with the possible geometries for surface complexes and precipitates suggests that the Zn sorption complexes are inner sphere and at lowest adsorption densities are bidentate, sharing apical oxygens with adjacent edge-sharing Fe(O,OH)6 octahedra. Coprecipitation samples have complexes with similar geometry, but these are polydentate, sharing apices with more than two adjacent edge-sharing Fe(O,OH)6 polyhedra. The results are inconsistent with Zn entering the ferrihydrite structure (i.e., solid solution formation) or formation of other Zn-Fe precipitates. The fitted Zn-Fe coordination numbers drop with increasing Zn density with a minimum of about 0.8(.2) at Zn/(Zn + Fe) of 0.08 or more. This change appears to be attributable to the onset of precipitation of zinc hydroxide polymers with mainly tetrahedral Zn coordination. At the highest loadings studied, the nature of the complexes changes further, and a second type of precipitate forms. This has a structure based on a brucite layer topology, with mainly octahedral Zn coordination. Amorphous zinc hydroxide samples prepared for comparison had a closely similar local structure. Analysis of the Fe K-edge EXAFS is consistent with surface complexation reactions and surface precipitation at high Zn loadings with little or no Fe-Zn solid solution formation. The formation of Zn-containing precipitates at solution conditions two or more orders of magnitude below their solubility limit is compared with other sorption and spectroscopic studies that describe similar behavior. Copyright ?? 2002 Elsevier Science Ltd.
Lawrence, Mark A. W.; Celestine, Michael J.; Artis, Edward T.; Joseph, Lorne S.; Esquivel, Deisy L.; Ledbetter, Abram J.; Cropek, Donald M.; Jarrett, William L.; Bayse, Craig A.; Brewer, Matthew I.; Holder, Alvin A.
2018-01-01
[Co(dmgBF2)2(H2O)2] 1 (where dmgBF2 = difluoroboryldimethylglyoximato) was used to synthesize [Co(dmgBF2)2(H2O)(py)]·0.5(CH3)2CO 2 (where py = pyridine) in acetone. The formulation of complex 2 was confirmed by elemental analysis, high resolution MS, and various spectroscopic techniques. The complex [Co(dmgBF2)2(solv)(py)] (where solv = solvent) was readily formed in situ upon the addition of pyridine to complex 1. A spectrophotometric titration involving complex 1 and pyridine proved the formation of such a species, with formation constants, log K = 5.5, 5.1, 5.0, 4.4, and 3.1 in 2-butanone, dichloromethane, acetone, 1,2-difluorobenzene/acetone (4 : 1, v/v), and acetonitrile, respectively, at 20 °C. In strongly coordinating solvents, such as acetonitrile, the lower magnitude of K along with cyclic voltammetry, NMR, and UV-visible spectroscopic measurements indicated extensive dissociation of the axial pyridine. In strongly coordinating solvents, [Co(dmgBF2)2(solv)(py)] can only be distinguished from [Co(dmgBF2)2(solv)2] upon addition of an excess of pyridine, however, in weakly coordinating solvents the distinctions were apparent without the need for excess pyridine. The coordination of pyridine to the cobalt(II) centre diminished the peak current at the Epc value of the CoI/0 redox couple, which was indicative of the relative position of the reaction equilibrium. Herein we report the first experimental and theoretical 59Co NMR spectroscopic data for the formation of Co(I) species of reduced cobaloximes in the presence and absence of py (and its derivatives) in CD3CN. From spectroelectrochemical studies, it was found that pyridine coordination to a cobalt(I) metal centre is more favourable than coordination to a cobalt(II) metal centre as evident by the larger formation constant, log K = 4.6 versus 3.1, respectively, in acetonitrile at 20 °C. The electrosynthesis of hydrogen by complexes 1 and 2 in various solvents demonstrated the dramatic effects of the axial ligand and the solvent on the turnover number of the respective catalyst. PMID:27244471
Self-assembly of discrete metal complexes in aqueous solution via block copolypeptide amphiphiles.
Kuroiwa, Keita; Masaki, Yoshitaka; Koga, Yuko; Deming, Timothy J
2013-01-21
The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN)(2)]-, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K(183)L(19) to [Au(CN)(2)]- solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM) showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals). This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water.
Benny, Paul D; Fugate, Glenn A; Barden, Adam O; Morley, Jennifer E; Silva-Lopez, Elsa; Twamley, Brendan
2008-04-07
Reaction of [NEt4]2[ReBr3(CO)3] with 2,4-pentanedione (acac) yields a complex of the type fac-Re(acac)(OH2)(CO)3 (1) under aqueous conditions. 1 was further reacted with a monodentate ligand (pyridine) to yield a fac-Re(acac)(pyridine)(CO)3 complex (2). Complex 1 was found to react with primary amines to generate a Schiff base (imine) in aqueous solutions. When a mixed-nitrogen donor bidentate ligand, 2-(2-aminoethyl)pyridine, that has different coordination affinities for fac-Re(acac)(OH2)(CO)3 was utilized, a unique tridentate ligand was formed in situ utilizing a metal-assisted Schiff base formation to yield a complex fac-Re(CO)3(3[(2-phenylethyl)imino]-2-pentanone) (3). Tridentate ligand formation was found to occur only with the Re-coordinated acac ligand. Reactions of acac with fac-Re(CO)3Br(2-(2-aminoethyl)pyridine) (4) or a mixture of [NEt4]2[ReBr3(CO)3], acac, and 2-(2-aminoethyl)pyridine did not yield the formation of complex 3 in water.
Liu, Chengwei; Qian, Qinqin; Nie, Kun; Wang, Yaorong; Shen, Qi; Yuan, Dan; Yao, Yingming
2014-06-14
Lanthanide anilido complexes stabilized by the 2,6-diisopropylanilido ligand have been synthesized and characterized, and their catalytic activity for hydrophosphonylation reaction was explored. A reaction of anhydrous LnCl3 with 5 equivalents of LiNHPh-(I)Pr2-2,6 in THF generated the heterobimetallic lanthanide-lithium anilido complexes (2,6-(I)Pr2PhNH)5LnLi2(THF)2 [Ln = Sm(1), Nd(2), Y(3)] in good isolated yields. These complexes are well characterized by elemental analysis, IR, NMR (for complex ) and single-crystal structure determination. Complexes 1 - 3 are isostructural. In these complexes, the lanthanide metal ion is five-coordinated by five nitrogen atoms from five 2,6-diisopropylanilido ligands to form a distorted trigonal bipyramidal geometry. The lithium ion is coordinated by two nitrogen atoms from two 2,6-diisopropylanilido ligands, and one oxygen atom from a THF molecule. It was found that these simple lanthanide anilido complexes are highly efficient for catalyzing hydrophosphonylation reactions of various aldehydes and unactivated ketones to generate α-hydroxyphosphonates in good to excellent yields (up to 99%) within a short time (5 min for aldehydes, 20 min for ketones). Furthermore, the mechanism of hydrophosphonylation reactions has also been elucidated via(1)H NMR monitoring of reaction.
New digital anti-copy/scan and verification technologies
NASA Astrophysics Data System (ADS)
Phillips, George K.
2004-06-01
This white paper reviews the method for making bearer printed information indistinguishable on a non-copyable substrate when a copied attempt is made on either an analog or digital electrostatic photocopier device. In 1995 we received patent number 5,704,651 for a non-copyable technology trademarked MetallicSafe. In this patent the abstract describes the usage of a reflective layer, formed on a complex pattern region and having graphic or font size shapes and type coordinating to particular patterns in the complex pattern region. The technology used in this patent has now been improved and evolved to new methods of creating a non-copyable substrate trademarked CopySafe+. CopySafe+ is formed of a metallic specular light reflector, a white camouflaged diffused light reflector, and the content information 'light absorption' layer. The synthesizing of these layers on a substrate creates dynamic camouflaged interference patterns and the phenomena of image chaos on a copy. In short, the orientation of a plurality of spectral and diffused light reflection camouflaged layers, mixed and coordinated with light absorption printed information, inhibits the copying device from reproducing the printed content.
Findlay, James A; McAdam, C John; Sutton, Joshua J; Preston, Dan; Gordon, Keith C; Crowley, James D
2018-04-02
The self-assembly of ligands of different geometries with metal ions gives rise to metallosupramolecular architectures of differing structural types. The rotational flexibility of ferrocene allows for conformational diversity, and, as such, self-assembly processes with 1,1'-disubstituted ferrocene ligands could lead to a variety of interesting architectures. Herein, we report a small family of three bis-bidentate 1,1'-disubstituted ferrocene ligands, functionalized with either 2,2'-bipyridine or 2-pyridyl-1,2,3-triazole chelating units. The self-assembly of these ligands with the (usually) four-coordinate, diamagnetic metal ions Cu(I), Ag(I), and Pd(II) was examined using a range of techniques including 1 H and DOSY NMR spectroscopies, high-resolution electrospray ionization mass spectrometry, X-ray crystallography, and density functional theory calculations. Additionally, the electrochemical properties of these redox-active metallosupramolecular assemblies were examined using cyclic voltammetry and differential pulse voltammetry. The copper(I) complexes of the 1,1'-disubstituted ferrocene ligands were found to be coordination polymers, while the silver(I) and palladium(II) complexes formed discrete [1 + 1] or [2 + 2] metallomacrocyclic architectures.
Substituent Effects on the Coordination Chemistry of Metal-Binding Pharmacophores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Whitney R.; Baker, Tessa W.; Marts, Amy R.
2017-09-12
A combination of XAS, UV–vis, NMR, and EPR was used to examine the binding of a series of α-hydroxythiones to CoCA. All three appear to bind preferentially in their neutral, protonated forms. Two of the three clearly bind in a monodentate fashion, through the thione sulfur alone. Thiomaltol (TM) appears to show some orientational preference, on the basis of the NMR, while it appears that thiopyromeconic acid (TPMA) retains rotational freedom. In contrast, allothiomaltol (ATM), after initially binding in its neutral form, presumably through the thione sulfur, forms a final complex that is five-coordinate via bidentate coordination of ATM. Onmore » the basis of optical titrations, we speculate that this may be due to the lower initial pKa of ATM (8.3) relative to those of TM (9.0) and TPMA (9.5). Binding through the thione is shown to reduce the hydroxyl pKa by ~0.7 pH unit on metal binding, bringing only ATM’s pKa close to the pH of the experiment, facilitating deprotonation and subsequent coordination of the hydroxyl. The data predict the presence of a solvent-exchangeable proton on TM and TPMA, and Q-band 2-pulse ESEEM experiments on CoCA + TM suggest that the proton is present. ESE-detected EPR also showed a surprising frequency dependence, giving only a subset of the expected resonances at X-band.« less
de Villiers, Katherine A; Marques, Helder M; Egan, Timothy J
2008-08-01
The crystal structure of the complex formed between the antimalarial drug halofantrine and ferriprotoporphyrin IX (Fe(III)PPIX) has been determined by single crystal X-ray diffraction. The structure shows that halofantrine coordinates to the Fe(III) center through its alcohol functionality in addition to pi-stacking of the phenanthrene ring over the porphyrin. The length of the Fe(III)-O bond is consistent with an alkoxide and not an alcohol coordinating group. The iron porphyrin is five coordinate and monomeric. Changes in the electronic spectrum of Fe(III)PPIX upon addition of halofantrine base in acetonitrile solution are almost identical to those observed upon addition of quinidine free base in the same solvent. This suggests homologous binding. Molecular mechanics modeling of Fe(III)PPIX complexes of quinidine, quinine, 9-epiquinine and 9-epiquinidine based on this homology suggests that the antimalarially active quinidine and quinine can readily adopt conformations that permit formation of an intramolecular salt bridge between the protonated quinuclidine tertiary amino group and unprotonated heme propionate group, while the inactive epimers 9-epiquinidine and 9-epiquinine have to adopt high energy conformations in order to accommodate such salt bridge formation. We propose that salt bridge formation may interrupt formation of the hemozoin precursor dimer formed during the heme detoxification pathway and so account for the strong activity of the two active isomers.
Tetraammine(carbonato-κ(2) O,O')cobalt(III) perchlorate.
Mohan, Singaravelu Chandra; Jenniefer, Samson Jegan; Muthiah, Packianathan Thomas; Jothivenkatachalam, Kandasamy
2013-01-01
In the title complex, [Co(CO3)(NH3)4]ClO4, both the cation and anion lie on a mirror plane. The Co(III) ion is coordinated by two NH3 ligands and a chelating carbonato ligand in the equatorial sites and by two NH3 groups in the axial sites, forming a distorted octa-hedral geometry. In the crystal, N-H⋯O hydrogen bonds connect the anions and cations, forming a three-dimensional network.
Tell, Johanna; Olander, Ewy; Anderberg, Peter; Berglund, Johan Sanmartin
2018-02-01
The aim of this study was to investigate child health-care coordinators' experiences of being a facilitator for the implementation of a new national child health-care programme in the form of a web-based national guide. The study was based on eight remote, online focus groups, using Skype for Business. A qualitative content analysis was performed. The analysis generated three categories: adapt to a local context, transition challenges and led by strong incentives. There were eight subcategories. In the latent analysis, the theme 'Being a facilitator: a complex role' was formed to express the child health-care coordinators' experiences. Facilitating a national guideline or decision support in a local context is a complex task that requires an advocating and mediating role. For successful implementation, guidelines and decision support, such as a web-based guide and the new child health-care programme, must match professional consensus and needs and be seen as relevant by all. Participation in the development and a strong bottom-up approach was important, making the web-based guide and the programme relevant to whom it is intended to serve, and for successful implementation. The study contributes valuable knowledge when planning to implement a national web-based decision support and policy programme in a local health-care context.
NASA Astrophysics Data System (ADS)
Huang, Fuxin; Wu, Yiqun; Gu, Donghong; Gan, Fuxi
2005-10-01
Two new azo dyes of α-isoxazolylazo-β-diketones and their Ni(II) and Cu(II) complexes with blue-violet light wavelength were synthesized using a coupling component, different diazo components and metal (II) ions (Ni 2+ and Cu 2+). Based on the elemental analysis, MS spectra and FT-IR spectral analyses, azo dyes were unequivocally shown to exist as hydrazoketo and azoenol forms which were respectively obtained from the solution forms and from the solid forms. The action of sodium methoxide (NaOMe) on azo dyes in solutions converts hydrazoketo form into azoenol form, so azo dyes are coordinated with metal (II) ions as co-ligands in the azoenol forms. The solubility of all the compounds in common organic solvents such as 2,2,3,3-tetrafluoro-1-propanol (TFP) or chloroform (CHCl 3) and absorption properties of spin-coating thin films were measured. The difference of absorption maxima from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. It is found that these new metal (II) complexes had potential application for high-density digital versatile disc-recordable (HD-DVD-R) system due to their good solubility in organic solvents, reasonable and controllable absorption spectra in blue-violet light region and high thermal stability.
Matrix management in hospitals: testing theories of matrix structure and development.
Burns, L R
1989-09-01
A study of 315 hospitals with matrix management programs was used to test several hypotheses concerning matrix management advanced by earlier theorists. The study verifies that matrix management involves several distinctive elements that can be scaled to form increasingly complex types of lateral coordinative devices. The scalability of these elements is evident only cross-sectionally. The results show that matrix complexity is not an outcome of program age, nor does matrix complexity at the time of implementation appear to influence program survival. Matrix complexity, finally, is not determined by the organization's task diversity and uncertainty. The results suggest several modifications in prevailing theories of matrix organization.
NASA Astrophysics Data System (ADS)
Yousef, T. A.; Abu El-Reash, G. M.; El Morshedy, R. M.
2013-08-01
The paper presents a combined experimental and computational study of novel Cr(III), Fe(III), Co(II), Hg(II) and U(VI) complexes of (E)-2-((3-hydroxynaphthalen-2-yl)methylene)-N-(pyridin-2-yl)hydrazinecarbothioamide (H2L). The ligand and its complexes have been characterized by elemental analyses, spectral (IR, UV-vis, 1H NMR and 13C NMR), magnetic and thermal studies. IR spectra show that H2L is coordinated to the metal ions in a mononegative bi or tri manner. The structures are suggested to be octahedral for all complexes except Hg(II) complex is tetrahedral. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, MM, Zindo/1, MM+ and PM3, methods. Satisfactory theoretical-experimental agreements were achieved by MM method for the ligand and PM3 for its complexes. DOS calculations carried out by MM (ADF) method for ligand Hg complex from which we concluded that the thiol form of the ligand is more active than thione form and this explains that the most complexation take place in that form. The calculated IR vibrations of the metal complexes, using the PM3 method was the nearest method for the experimental data, and it could be used for all complexes. Also, valuable information are obtained from calculation of molecular parameters for all compounds carried out by the previous methods of calculation (electronegativity of the coordination sites, net dipole moment of the metal complexes, values of heat of formation and binding energy) which approved that the complexes are more stable than ligand. The low value of ΔE could be expected to indicate H2L molecule has high inclination to bind with the metal ions. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Finally, the biochemical studies showed that, complex 2, 4 have powerful and complete degradation effect on DNA. For the foremost majority of cases the activity of the ligand is greatly enhanced by the presence of a metal ion. Thus presented results may be useful in design new more active or specific structures.
Mallik, Saurav; Kundu, Sudip
2017-07-01
Is the order in which biomolecular subunits self-assemble into functional macromolecular complexes imprinted in their sequence-space? Here, we demonstrate that the temporal order of macromolecular complex self-assembly can be efficiently captured using the landscape of residue-level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high-affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183-1189. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Drawing from Memory: Hand-Eye Coordination at Multiple Scales
Spivey, Michael J.
2013-01-01
Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well. PMID:23554894
NASA Astrophysics Data System (ADS)
Mitewa, Mariana; Enchev, Venelin; Bakalova, Tatyana
2002-05-01
The structure and coordination mode of the newly synthesized dimeric paramagnetic Pd(II,III) complex are studied using magneto-chemical, EPR and IR spectroscopic methods. In order to perform reliable assignment of the IR bands, the structure and IR spectrum of the free creatine were calculated using ab initio method. For calculation of the configuration of its deprotonated and doubly deprotonated forms the semiempirical AM1 method was used.
NASA Astrophysics Data System (ADS)
Belov, Aleksandr S.; Khokhlov, Daniil V.; Glebov, Ilya O.; Poddubnyy, Vladimir V.; Eremin, Vadim V.
2017-06-01
Single-molecule spectroscopic experiments on several light-harvesting complexes revealed the existence of a set of metastable conformational states with different spectroscopic properties and lifetimes spanning from milliseconds to tens of seconds. In the absence of explicit structural data, a number of probable structural changes underlying the observed spectroscopic shifts were proposed. We examine the donor-acceptor interaction between the magnesium atom and the acetyl group of the adjacent bacteriochlorophylls a as a possible origin of metastable conformational states in the LH2 light-harvesting complex of Rbl. acidophilus bacteria. The results of QM/MM and molecular dynamics simulations show that such ligation can occur at room temperature and leads to one metastable coordination bond per pair of bacteriochlorophylls in the B850 ring. According to the results of Poisson-TrESP modeling, such coordination lowers the energies of the excited states of the complex by up to 163 cm-1 which causes red spectral shift of the B850 band.
Consolato, Francesco; Maltecca, Francesca; Tulli, Susanna; Sambri, Irene; Casari, Giorgio
2018-04-09
The proteolytic processing of dynamin-like GTPase OPA1, mediated by the activity of both YME1L1 [intermembrane (i)-AAA protease complex] and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 [matrix (m) - AAA complex] as the major protease mediating this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the 40 kDa pro-OMA1 form by severing the N-terminal portion without recognizing a specific consensus sequence. Therefore, m - AAA and i - AAA complexes coordinately regulate OMA1 processing and turnover, and consequently control which OPA1 isoforms are present, thus adding new information on the molecular mechanisms of mitochondrial dynamics and neurodegenerative diseases affected by these phenomena.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Xin, Ling-Yun; Liu, Guang-Zhen; Wang, Li-Ya
2011-06-01
The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H 2PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H 2O)] n(1), [Zn(PHDA)(BPP)] n(2), and [Cu 2(PHDA) 2(BPP)] n(3) (H 2PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D→2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4 86 68 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state.
Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.
2015-11-02
In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh 3 or P(OPh) 3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy) 2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh 3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ±more » 0.5 μs decay time is measured. For L = P(OPh) 3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.« less
A structural and functional model for the 1-aminocyclopropane-1-carboxylic acid oxidase.
Sallmann, Madleen; Oldenburg, Fabio; Braun, Beatrice; Réglier, Marius; Simaan, A Jalila; Limberg, Christian
2015-10-12
The hitherto most realistic low-molecular-weight analogue for the 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) is reported. The ACCOs 2-His-1-carboxylate iron(II) active site was mimicked by a TpFe moiety, to which the natural substrate ACC could be bound. The resulting complex [Tp(Me,Ph) FeACC] (1), according to X-ray diffraction analysis performed for the nickel analogue, represents an excellent structural model, featuring ACC coordinated in a bidentate fashion-as proposed for the enzymatic substrate complex-as well as a vacant coordination site that forms the basis for the first successful replication also of the ACCO function: 1 is the first known ACC complex that reacts with O2 to produce ethylene. As a FeOOH species had been suggested as intermediate in the catalytic cycle, H2 O2 was tested as the oxidant, too, and indeed evolution of ethylene proceeded even more rapidly to give 65 % yield. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Aycan, Tuǧba; Paşaoǧlu, Hümeyra
2018-02-01
Compounds based on the [Zn(hydet-en)2].(tpht).(H2O) (1) (tpht=dianion of terephthalic acid, hydet-en=N-(2-hydroxyethyl)ethylenediamine) has been synthesized which is characterized by single crystal X-ray determination, IR and thermal analysis. In 1, the Zinc(II) ion is six-coordinated that sandwiched by two hydet-en ligands which lies each hydeten ligand adopts a tripodal conformation and acts as tridentate ligand, carboxylate is uncoordinated. The coordination monomer is connected by C(13) chains and linear chains are connected by O-H...O H-bonds formed by DA:AD type 4 organization of aqua ligands and tpa2- ions resulting in R44(12 ) synthons to 3D structure. The FT-IR investigation of the complex were performed within the mid-IR region, mainly focusing on the characteristic vibrations of its free state and ligand behaviour in the case of complex formation. Thermal behaviours of 1 were followed using TG, DTA and DTG techniques.
NASA Astrophysics Data System (ADS)
Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.
2018-04-01
A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.
NASA Astrophysics Data System (ADS)
Shahid, M.; Anjuli; Tasneem, Sana; Mantasha, I.; Ahamad, M. Naqi; Sama, Farasha; Fatma, Kehkeshan; Siddiqi, Zafar A.
2017-10-01
The ternary complexes with stoichiometry [M(imda)(bipy)]·6H2O (M = Cu) and [M(imda)(bipy)(H2O)]·4H2O (M = Ni, Co and Mn) where H2imda = iminodiacetic acid and bipy = 2,2‧-bipyridine, are prepared and characterized to exploit as novel antimicrobial agents and SOD mimics. The chemical structures were elucidated by IR, FAB-Mass, 1H, 13C NMR, EPR and spectral techniques. Single crystal X-ray and spectral studies of the complexes (1) and (2) have confirmed a square pyramidal geometry around Cu(II) ion while a saturated six coordinate (distorted octahedral) geometry around the Ni(II), Co(II) and Mn(II) ions due to the additional coordination from water. A supramolecular network is formed by extensive H-bonding in complex (1). The supramolecular assembly in complex (1) is additionally consolidated via the existence of unusual cyclic hexameric water clusters. The antimicrobial activities for the present complexes have been examined against Escherichia coli (K-12), Bacillus subtilis (MTC-121), Staphylococcus aureus (IOASA-22), Salmonella typhymurium (MTCC-98), Candida albicans, Aspergillus fumigatus and Penicillium marneffei. The superoxide dismutase (SOD) activity of the Cu(II) complex (1) is also assessed employing nitrobluetetrazolium (NBT) assay.
Cantat, Thibault; Scott, Brian L; Morris, David E; Kiplinger, Jaqueline L
2009-03-02
The coordination behavior of the bis[2-(diisopropylphosphino)-4-methylphenyl]amido ligand (PNP) toward UI3(THF)4 and UCl4 has been investigated to access new uranium(III) and uranium(IV) halide complexes supported by one and two PNP ligands. The reaction between (PNP)K (6) and 1 equiv of UI3(THF)4 afforded the trivalent halide complex (PNP)UI2(4-tBu-pyridine)2 (7) in the presence of 4-tert-butylpyridine. The same reaction carried out with UCl4 and no donor ligand gave [(PNP)UCl3]2 (8), in which the uranium coordination sphere in the (PNP)UCl3 unit is completed by a bridging chloride ligand. When UCl4 is reacted with 1 equiv (PNP)K (6) in the presence of THF, trimethylphosphine oxide (TMPO), or triphenylphosphineoxide (TPPO), the tetravalent halide complexes (PNP)UCl3(THF) (9), (PNP)UCl3(TMPO)2 (10), and (PNP)UCl3(TPPO) (11), respectively, are formed in excellent yields. The bis(PNP) complexes of uranium(III), (PNP)2UI (12), and uranium(IV), (PNP)2UCl2 (13), were easily isolated from the analogous reactions between 2 equiv of 6 and UI3(THF)4 or UCl4, respectively. Complexes 12 and 13 represent the first examples of complexes featuring two PNP ligands coordinated to a single metal center. Complexes 7-13 have been characterized by single-crystal X-ray diffraction and 1H and 31P NMR spectroscopy. The X-ray structures demonstrate the ability of the PNP ligand to adopt new coordination modes upon coordination to uranium. The PNP ligand can adopt both pseudo-meridional and pseudo-facial geometries when it is kappa3-(P,N,P) coordinated, depending on the steric demand at the uranium metal center. Additionally, its hemilabile character was demonstrated with an unusual kappa2-(P,N) coordination mode that is maintained in both the solid-state and in solution. Comparison of the structures of the mono(PNP) and bis(PNP) complexes 7, 9, 11-13 with their respective C5Me5 analogues 1-4 undoubtedly show that a more sterically congested environment is provided by the PNP ligand. The electronic influence of replacing the C5Me5 ligands with PNP was investigated using electronic absorption spectroscopy and electrochemistry. For 12 and 13, a chemically reversible wave corresponding to the UIV/UIII redox transformation comparable to that for 3 and 4 was observed. However, a 350 mV shift of this couple to more negative potentials was observed on substitution of the bis(C5Me5) by the bis(PNP) framework, therefore pointing to a greater electronic density at the metal center in the PNP complexes. The UV-visible region of the electronic spectra for the mono(PNP) and bis(PNP) complexes appear to be dominated by PNP ligand-based transitions that are shifted to higher energy in the uranium complexes than in the simple ligand anion (6) spectrum, for both the UVI and UIII oxidation states. The near IR region in complexes 1-4 and 7, 9, 11-13 is dominated by f-f transitions derived from the 5f3 and 5f2 valence electronic configuration of the metal center. Though complexes of both ligand sets exhibit similar intensities in their f-f bands, a somewhat larger ligand-field splitting was observed for the PNP system, consistent with its higher electron donating ability.
Coordination Polymer of M(II)-Pyrazinamide (M = Co, Cd) with Double End-to-End Thiocyanate Bridge
NASA Astrophysics Data System (ADS)
Ponco Prananto, Yuniar
2018-01-01
Pyrazinamide (pza, C4N2H3-CONH2) is a good ligand for coordination polymer. Their transition metal complexes are known to have antibacterial activities, magnetic properties, etc. Coordination polymers of M(II)-pyrazinamide with thiocyanate (M = Co (a), Cd (b)), prepared using bench-top layering technique with M(II):pza:SCN ratio of 1:2:2, is successfully crystallised at room temperature. Single crystal XRD was used to determine the crystal structure. Infrared and melting point determination were also performed. Crystal structure of both complexes, solved in Triclinic P-1, show that each octahedral metal centre is connected to two adjacent metal centres by double end-to-end thiocyanate bridge forming a 1D polymeric structure with M···M distances of 5.524 Å (in a) and 5.887 Å (in b). Two monodentate pyrazinamide ligands occupy the rest of the coordination sites on the metal centre in a trans relationship. Only in complex a, one lattice pyrazinamide molecule is involved in the asymmetric unit. Crystal packing of both a and b are also displaying non-covalent networks as a result of hydrogen-bonding involving the pyrazine ring, amide and carbonyl groups between adjacent chains and π···π interactions (only occurred in a). In addition, the observed melting points of both a and b are relatively close to each other (around 180°C), and ATR-IR spectra support the presence of the bridging thiocyanate and terminal pyrazinamide.
Structural analysis of the coordination of dinitrogen to transition metal complexes.
Peigné, Benjamin; Aullón, Gabriel
2015-06-01
Transition-metal complexes show a wide variety of coordination modes for the nitrogen molecule. A structural database study has been undertaken for dinitrogen complexes, and geometrical parameters around the L(n)M-N2 unit are retrieved from the Cambridge Structural Database. These data were classified in families of compounds, according to metal properties, to determine the degree of lengthening for the dinitrogen bonding. The importance of the nature of the metal center, such as coordination number and electronic configuration, is reported. Our study reveals poor activation by coordination of dinitrogen in mononuclear complexes, always having end-on coordination. However, partial weakening of nitrogen-nitrogen bonding is found for end-on binuclear complexes, whereas side-on complexes can be completely activated.
Vezzu, Dileep A. k.; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan
2014-01-01
A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the NʌCʌN-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the CʌNʌN-coordinated platinum complex based on 6-phenyl-2,2′-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by NʌCʌN- and CʌNʌN-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the NʌCʌN-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis was studied by western blot analysis and the activation of PARP via caspase 7 was observed. PMID:24531534
Bregier-Jarzebowska, R; Gasowska, A; Hoffmann, S K; Lomozik, L
2016-09-01
Interactions were studied in the systems ATP/tn and ATP/Put (tn=1,3-diaminopropane, Put=putrescine) whereas the complexation reactions in ternary systems Cu(II)/ATP/tn and Cu(II)/ATP/Put. Results of the potentiometric and spectroscopic studies evidenced the formation of adducts of the type (ATP)H x (PA), where PA=diamine. The thermodynamic stability of the complexes and the mode of interactions were determined. On the basis of analysis of changes in the positions of NMR signals, in the pH range of (ATP)H 3 (Put) formation, the preferred centres of the interaction between ATP and Put are the endocyclic nitrogen atoms from the nucleotide. On the other hand, the shorter diamine tn in the entire pH range reacts with the phosphate groups from ATP. The positive centres of noncovalent interactions are the protonated NH x + groups from amines. In both complexes Cu(ATP)H 2 (tn) and Cu(ATP)H 3 (Put) formed in ternary systems at pH<6.5, the amines are in the outer sphere of coordination with the noncovalent interaction with anchoring Cu(ATP). Only the phosphate groups from the nucleotide take part in metalation. At higher pH in the range of Cu(ATP)(PA) complex formation, significant differences in the reactions of the two amines appear. The shorter one (tn) binds Cu(II) ions with two nitrogen atoms, while putrescine coordinates in the monofunctional mode, which is undoubtedly related to the differences in lengths of methylene chain. This explains the considerable differences in the stability of Cu(ATP)(tn) and Cu(ATP)(Put). In both complexes the nucleotide is coordinated through phosphate groups. As a result of noncovalent interactions ATP forms molecular complexes with 1,3-diaminopropane and 1,4-diaminobutane (putrescine). Significant differences in the mode of interactions between the two diamines were observed in ATP/diamine binary systems and in ternary systems Cu(II)/ATP/diamine, at high pH. Copyright © 2016 Elsevier Inc. All rights reserved.
Haldón, Estela; Delgado-Rebollo, Manuela; Prieto, Auxiliadora; Alvarez, Eleuterio; Maya, Celia; Nicasio, M Carmen; Pérez, Pedro J
2014-04-21
Novel tris(pyrazolylmethyl)amine ligands Tpa(Me3), Tpa*(,Br), and Tpa(Br3) have been synthesized and structurally characterized. The coordination chemistries of these three new tetradentate tripodal ligands and the already known Tpa and Tpa* have been explored using different copper(I) salts as starting materials. Cationic copper(I) complexes [Tpa(x)Cu]PF6 (1-4) have been isolated from the reaction of [Cu(NCMe)4]PF6 and 1 equiv of the ligand. Complexes 2 (Tpa(x) = Tpa*) and 3 (Tpa(x) = Tpa(Me3)) have been characterized by X-ray studies. The former is a 1D helical coordination polymer, and the latter is a tetranuclear helicate. In both structures, the Tpa(x) ligand adopts a μ(2):κ(2):κ(1)-coordination mode. However, in solution, all of the four complexes form fluxional species. When CuI is used as the copper(I) source, neutral compounds 5-8 have been obtained. Complexes 6-8 exhibit a 1:1 metal-to-ligand ratio, whereas 5 presents 2:1 stoichiometry. Its solid-state structure has been determined by X-ray diffraction, revealing its 3D polymeric nature. The polymer is composed by the assembly of [Tpa2Cu4I4] units, in which Cu4I4 presents a step-stair structure. The Tpa ligands bridge the Cu4I4 clusters, adopting also a μ(2):κ(2):κ(1)-coordination mode. As observed for the cationic derivatives, the NMR spectra of 5-8 show the equivalence of the three pyrazolyl arms of the ligands in these complexes. The reactivities of cationic copper(I) derivatives 1-4 with PPh3 and CO have been explored. In all cases, 1:1 adducts [Tpa(x)CuL]PF6 [L = PPh3 (9-11), CO (12-15)] have been isolated. The crystal structure of [Tpa*Cu(PPh3)]PF6 (9) has been obtained, showing that the coordination geometry around copper(I) is trigonal-pyramidal with the apical position occupied by the tertiary amine N atom. The Tpa* ligand binds the Cu center to three of its four N atoms, with one pyrazolyl arm remaining uncoordinated. In solution, the carbonyl adducts 13-15 exist as a mixture of two isomers; the four- and five-coordinate species can be distinguished by means of their IR νCO stretching bands. Finally, the catalytic activities of complexes 1-4 have been demonstrated in carbene- and nitrene-transfer reactions.
Soe, Cho Zin; Telfer, Thomas J; Levina, Aviva; Lay, Peter A; Codd, Rachel
2016-09-01
Cultures of Shewanella putrefaciens grown in medium containing 10mM 1,4-diamino-2-butanone (DBO) as an inhibitor of ornithine decarboxylase and 10mM 1,5-diaminopentane (cadaverine) showed the simultaneous biosynthesis of the macrocyclic dihydroxamic acids: putrebactin (pbH 2 ), avaroferrin (avH 2 ) and bisucaberin (bsH 2 ). The level of DBO did not completely repress the production of endogenous 1,4-diaminobutane (putrescine) as the native diamine substrate of pbH 2 . The relative concentration of pbH 2 :avH 2 :bsH 2 was 1:2:1, which correlated with the substrate selection of putrescine:cadaverine in a ratio of 1:1. The macrocycles were characterised using LC-MS as free ligands and as 1:1 complexes with Fe(III) of the form [Fe(pb)] + , [Fe(av)] + or [Fe(bs)] + , with labile ancillary ligands in six-coordinate complexes displaced during ESI-MS acquisition; or with Mo(VI) of the form [Mo(O) 2 (pb)], [Mo(O) 2 (av)] or [Mo(O) 2 (bs)]. Chromium(V) complexes of the form [CrO(pb)] + were detected from solutions of Cr(VI) and pbH 2 in DMF using X-band EPR spectroscopy. Supplementation of S. putrefaciens medium with DBO and 1,3-diaminopropane, 1,6-diaminohexane or 1,4-diamino-2(Z)-butene (Z-DBE) resulted only in the biosynthesis of pbH 2 . The work has identified a native system for the simultaneous biosynthesis of a suite of three macrocyclic dihydroxamic acid siderophores and highlights both the utility of precursor-directed biosynthesis for expanding the structural diversity of siderophores, and the breadth of their coordination chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.
Findlater, Michael; Cartwright-Sykes, Alison; White, Peter S; Schauer, Cynthia K; Brookhart, Maurice
2011-08-10
Syntheses of the olefin hydride complexes [(POCOP)M(H)(olefin)][BAr(f)(4)] (6a-M, M = Ir or Rh, olefin = C(2)H(4); 6b-M, M = Ir or Rh, olefin = C(3)H(6); POCOP = 2,6-bis(di-tert-butylphosphinito)benzene; BAr(f) = tetrakis(3,5-trifluoromethylphenyl)borate) are reported. A single-crystal X-ray structure determination of 6b-Ir shows a square-pyramidal coordination geometry for Ir, with the hydride ligand occupying the apical position. Dynamic NMR techniques were used to characterize these complexes. The rates of site exchange between the hydride and the olefinic hydrogens yielded ΔG(++) = 15.6 (6a-Ir), 16.8 (6b-Ir), 12.0 (6a-Rh), and 13.7 (6b-Rh) kcal/mol. The NMR exchange data also established that hydride migration in the propylene complexes yields exclusively the primary alkyl intermediate arising from 1,2-insertion. Unexpectedly, no averaging of the top and bottom faces of the square-pyramidal complexes is observed in the NMR spectra at high temperatures, indicating that the barrier for facial equilibration is >20 kcal/mol for both the Ir and Rh complexes. A DFT computational study was used to characterize the free energy surface for the hydride migration reactions. The classical terminal hydride complexes, [M(POCOP)(olefin)H](+), are calculated to be the global minima for both Rh and Ir, in accord with experimental results. In both the Rh ethylene and propylene complexes, the transition state for hydride migration (TS1) to form the agostic species is higher on the energy surface than the transition state for in-place rotation of the coordinated C-H bond (TS2), while for Ir, TS2 is the high point on the energy surface. Therefore, only for the case of the Rh complexes is the NMR exchange rate a direct measure of the hydride migration barrier. The trends in the experimental barriers as a function of M and olefin are in good agreement with the trends in the calculated exchange barriers. The calculated barriers for the hydride migration reaction in the Rh complexes are ∼2 kcal/mol higher than for the Ir complexes, despite the fact that the energy difference between the olefin hydride ground state and the agostic alkyl structure is ∼4 kcal/mol larger for Ir than for Rh. This feature, together with the high barrier for interchange of the top and bottom faces of the complexes, is proposed to arise from the unique coordination geometry of the agostic complexes and the strong preference for a cis-divacant octahedral geometry in four-coordinate intermediates. © 2011 American Chemical Society
Lau, E. Y.; Wong, S. E.; Baker, S. E.; ...
2013-06-20
In nature, the zinc metalloenzyme carbonic anhydrase II (CAII) efficiently catalyzes the conversion of carbon dioxide (CO 2) to bicarbonate under physiological conditions. Efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolyl)phosphine, and tris(2-benzimidazolylmethyl)amine, in their complexed form either with the Zn 2+ or the Co 2+ ion and studied their reaction coordinate for CO 2 hydration. These calculations demonstrated that the ability of the complexmore » to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Moreover, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts.« less
Borges, Anabela; Simões, Manuel; Todorović, Tamara R; Filipović, Nenad R; García-Sosa, Alfonso T
2018-06-08
Pseudomonas aeruginosa is one of the most dreaded human pathogens, because of its intrinsic resistance to a number of commonly used antibiotics and ability to form sessile communities (biofilms). Innovative treatment strategies are required and that can rely on the attenuation of the pathogenicity and virulence traits. The interruption of the mechanisms of intercellular communication in bacteria (quorum sensing) is one of such promising strategies. A cobalt coordination compound (Co( HL )₂) synthesized from ( E )-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-4-(p-tolyl)thiazole ( HL ) is reported herein for the first time to inhibit P. aeruginosa 3-oxo-C12-HSL-dependent QS system (LasI/LasR system) and underling phenotypes (biofilm formation and virulence factors). Its interactions with a possible target, the transcriptional activator protein complex LasR-3-oxo-C12-HSL, was studied by molecular modeling with the coordination compound ligand having stronger predicted interactions than those of co-crystallized ligand 3-oxo-C12-HSL, as well as known-binder furvina. Transition metal group 9 coordination compounds may be explored in antipathogenic/antibacterial drug design.
Macrocyclic metal complexes for metalloenzyme mimicry and sensor development.
Joshi, Tanmaya; Graham, Bim; Spiccia, Leone
2015-08-18
Examples of proteins that incorporate one or more metal ions within their structure are found within a broad range of classes, including oxidases, oxidoreductases, reductases, proteases, proton transport proteins, electron transfer/transport proteins, storage proteins, lyases, rusticyanins, metallochaperones, sporulation proteins, hydrolases, endopeptidases, luminescent proteins, iron transport proteins, oxygen storage/transport proteins, calcium binding proteins, and monooxygenases. The metal coordination environment therein is often generated from residues inherent to the protein, small exogenous molecules (e.g., aqua ligands) and/or macrocyclic porphyrin units found, for example, in hemoglobin, myoglobin, cytochrome C, cytochrome C oxidase, and vitamin B12. Thus, there continues to be considerable interest in employing macrocyclic metal complexes to construct low-molecular weight models for metallobiosites that mirror essential features of the coordination environment of a bound metal ion without inclusion of the surrounding protein framework. Herein, we review and appraise our research exploring the application of the metal complexes formed by two macrocyclic ligands, 1,4,7-triazacyclononane (tacn) and 1,4,7,10-tetraazacyclododecane (cyclen), and their derivatives in biological inorganic chemistry. Taking advantage of the kinetic inertness and thermodynamic stability of their metal complexes, these macrocyclic scaffolds have been employed in the development of models that aid the understanding of metal ion-binding natural systems, and complexes with potential applications in biomolecule sensing, diagnosis, and therapy. In particular, the focus has been on "coordinatively unsaturated" metal complexes that incorporate a kinetically inert and stable metal-ligand moiety, but which also contain one or more weakly bound ligands, allowing for the reversible binding of guest molecules via the formation and dissociation of coordinate bonds. With regards to mimicking metallobiosites, examples are presented from our work on tacn-based complexes developed as simplified structural models for multimetallic enzyme sites. In particular, structural comparisons are made between multinuclear copper(II) complexes formed by such ligands and multicopper enzymes featuring type-2 and type-3 copper centers, such as ascorbate oxidase (AO) and laccase (Lc). Likewise, with the aid of relevant examples, we highlight the importance of cooperativity between either multiple metal centers or a metal center and a proximal auxiliary unit appended to the macrocyclic ligand in achieving efficient phosphate ester cleavage. Finally, the critical importance of the Zn(II)-imido and Zn(II)-phosphate interactions in Zn-cyclen-based systems for delivering highly sensitive electrochemical and fluorescent chemosensors is also showcased. The Account additionally highlights some of the factors that limit the performance of these synthetic nucleases and the practical application of the biosensors, and then identifies some avenues for the development of more effective macrocyclic constructs in the future.
Tetraammine(carbonato-κ2 O,O′)cobalt(III) perchlorate
Mohan, Singaravelu Chandra; Jenniefer, Samson Jegan; Muthiah, Packianathan Thomas; Jothivenkatachalam, Kandasamy
2013-01-01
In the title complex, [Co(CO3)(NH3)4]ClO4, both the cation and anion lie on a mirror plane. The CoIII ion is coordinated by two NH3 ligands and a chelating carbonato ligand in the equatorial sites and by two NH3 groups in the axial sites, forming a distorted octahedral geometry. In the crystal, N—H⋯O hydrogen bonds connect the anions and cations, forming a three-dimensional network. PMID:24109252
Granifo, Juan; Suarez, Sebastián; Baggio, Ricardo
2015-01-01
The centrosymmetric dinuclear complex bis(μ-3-carboxy-6-methylpyridine-2-carboxylato)-κ3 N,O 2:O 2;κ3 O 2:N,O 2-bis[(2,2′-bipyridine-κ2 N,N′)(nitrato-κO)cadmium] methanol monosolvate, [Cd2(C8H6NO4)2(NO3)2(C10H8N2)2]·CH3OH, was isolated as colourless crystals from the reaction of Cd(NO3)2·4H2O, 6-methylpyridine-2,3-dicarboxylic acid (mepydcH2) and 2,2′-bipyridine in methanol. The asymmetric unit consists of a CdII cation bound to a μ-κ3 N,O 2:O 2-mepydcH− anion, an N,N′-bidentate 2,2′-bipyridine group and an O-monodentate nitrate anion, and is completed with a methanol solvent molecule at half-occupancy. The Cd complex unit is linked to its centrosymmetric image through a bridging mepydcH− carboxylate O atom to complete the dinuclear complex molecule. Despite a significant variation in the coordination angles, indicating a considerable departure from octahedral coordination geometry about the CdII atom, the Cd—O and Cd—N distances in this complex are surprisingly similar. The crystal structure consists of O—H⋯O hydrogen-bonded chains parallel to a, further bound by C—H⋯O contacts along b to form planar two-dimensional arrays parallel to (001). The juxtaposed planes form interstitial columnar voids that are filled by the methanol solvent molecules. These in turn interact with the complex molecules to further stabilize the structure. A search in the literature showed that complexes with the mepydcH− ligand are rare and complexes reported previously with this ligand do not adopt the μ-κ3 coordination mode found in the title compound. PMID:26396748
Metallosupramolecular Architectures Obtained from Poly-N-heterocyclic Carbene Ligands.
Sinha, Narayan; Hahn, F Ekkehardt
2017-09-19
Over the past two decades, self-assembly of supramolecular architectures has become a field of intensive research due to the wide range of applications for the resulting assemblies in various fields such as molecular encapsulation, supramolecular catalysis, drug delivery, metallopharmaceuticals, chemical and photochemical sensing, and light-emitting materials. For these purposes, a large number of coordination-driven metallacycles and metallacages featuring different sizes and shapes have been prepared and investigated. Almost all of these are Werner-type coordination compounds where metal centers are coordinated by nitrogen and/or oxygen donors of polydentate ligands. With the evolving interest in the coordination chemistry of N-heterocyclic carbenes (NHCs), discrete supramolecular complexes held together by M-C NHC bonds have recently become of interest. The construction of such metallosupramolecular assemblies requires the synthesis of suitable poly-NHC ligands where the NHC donors form labile bonds with metal centers thus enabling the formation of the thermodynamically most stable reaction product. In organometallic chemistry, these conditions are uniquely met by the combination of poly-NHCs and silver(I) ions where the resulting assemblies also offer the possibility to generate new structures by transmetalation of the poly-NHC ligands to additional metal centers forming more stable C NHC -M bonds. Stable metallosupramolecular assemblies obtained from poly-NHC ligands feature special properties such as good solubility in many less polar organic solvents and the presence of the often catalyticlly active {M(NHC) n } moiety as building block. In this Account, we review recent developments in organometallic supramolecular architectures derived from poly-NHC ligands. We describe dinuclear (M = Ag I , Au I , Cu I ) tetracarbene complexes obtained from bis-NHC ligands with an internal olefin or two external coumarin pendants and their postsynthetic modification via a photochemically induced single or double [2 + 2] cycloaddition to form dinuclear tetracarbene complexes featuring cyclobutane units. Even three-dimensional cage-like structures can be prepared by this postsynthetic strategy. Cylinder-like trinuclear, tetranuclear, and hexanuclear (M = Ag I , Au I , Cu I , Hg II , Pd II ) complexes have been obtained from benzene-bridged tris-, tetrakis-, or hexakis-NHC ligands. These complexes resemble polynuclear assemblies obtained from related polydentate Werner-type ligands. Contrary to the Werner-type complexes, cylinder-like assemblies with three, four, or six silver(I) ions sandwiched in between two tris-, tetrakis-, or hexakis-NHC ligands undergo a facile transmetalation reaction to give the complexes featuring more stable M-C NHC bonds, normally with retention of the metallosupramolecular structure. This unique behavior of NHC-Ag + complexes allows the prepration of assemblies containing various metals from the poly-NHC silver(I) assemblies. Narcissistic self-sorting phenomena have also been observed for mixtures of selected poly-NHC ligands and silver(I) ions. Even a very early type of metallosupramolecular assembly, the tetranuclear molecular square, can be prepared from four bridging dicarbene ligands and four transition metal ions either by a stepwise assembly or by a single-step protocol. At this point, it appears that procedures for the synthesis of metallosupramolecular assemblies using polydentate Werner-type ligands and metal ions can be transferred to organometallic chemistry by using suitable poly-NHC ligands. The resulting structures feature stable M-C NHC bonds (with the exception of the labile C NHC -Ag + bond) when compared to M-N/M-O bonds in classical Werner-type complexes. The generally good solubility of the compounds and the presence of the often catalytically active {M(NHC) n } moiety make organometallic supramolecular complexes a promising new class of molecular hosts for catalytic transformations and encapsulation of selected substrates.
NASA Astrophysics Data System (ADS)
Tian, Laijin; Yao, Yanze; Wang, Yuhua; Liu, Jin
2018-03-01
Six new diorganotin N-[(5-chloro-2-oxyphenyl)methylene]valinates, R2SnL (R = Me, 1; Et, 2; L = 5-Cl-2-OC6H3CH = NCH(i-Pr)COO: (S)-, a; (R)-, b; (RS)-, c), have been synthesized from the reaction of R2SnCl2 with the chiral ligand KHL (potassium salt of HL) in different solvents and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) spectra. In benzene, the configuration of the chiral ligand was retained. (S)-Enantiomers (1a and 2a) and (R)-enantiomers (1b and 2b) display discrete molecular structures with distorted trigonal bipyramidal geometries in which two C atoms of organic groups (R) and the imino N atom occupy the equatorial positions and a phenoxide O and an unidentate carboxylate group O atom are in the axial orientation. In the methanol, the chiral ligand was racemized. 1cṡMeOH is a centrosymmetric dimers formed by (R)- and (S)- enantiomers through two Snsbnd OṡṡṡSn bridges. The coordination geometry of the Sn atom can be described as a distorted pentagonal bipyramid with two methyl groups in axial positions. The crystal of 2c is composed of two threefold symmetric trimers, a [Et2SnL-(R)]3 and a [Et2SnL-(S)]3, with a macrocyclic 12-membered ring structure formed by the bidenate bridging coordination of carboxylate group to tin atoms. Each tin atom is six-coordinated in distorted [SnC2NO3] octahedron geometry. The fluorescence properties of ligand KHL and complexes 1 (1a-1c) and 2 (2a-2c) have been measured. The results show the complexes may be explored for potential luminescent materials.
Zorina-Tikhonova, Ekaterina N; Chistyakov, Aleksandr S; Kiskin, Mikhail A; Sidorov, Aleksei A; Dorovatovskii, Pavel V; Zubavichus, Yan V; Voronova, Eugenia D; Godovikov, Ivan A; Korlyukov, Alexander A; Eremenko, Igor L; Vologzhanina, Anna V
2018-05-01
Photoinitiated solid-state reactions are known to affect the physical properties of coordination polymers, such as fluorescence and sorption behaviour, and also afford extraordinary architectures ( e.g. three-periodic structures with polyorganic ligands). However, the construction of novel photo-sensitive coordination polymers requires an understanding of the factors which govern the mutual disposition of reactive fragments. A series of zinc(II) malonate complexes with 1,2-bis(pyridin-4-yl)ethylene and its photo-insensitive analogues has been synthesized for the purpose of systematic analysis of their underlying nets and mutual disposition of N -donor ligands. The application of a big data-set analysis for the prediction of a variety of possible complex compositions, coordination environments and networks for a four-component system has been demonstrated for the first time. Seven of the nine compounds possess one of the highly probable topologies for their underlying nets; in addition, two novel closely related four-coordinated networks were obtained. Complexes containing 1,2-bis(pyridin-4-yl)ethylene and 1,2-bis(pyridin-4-yl)ethane form isoreticular compounds more readily than those with 4,4'-bipyridine and 1,2-bis(pyridin-4-yl)ethylene. The effects of the precursor, either zinc(II) nitrate or zinc(II) acetate, on the composition and dimensionality of the resulting architecture are discussed. For three of the four novel complexes containing 1,2-bis(pyridin-4-yl)ethylene, the single-crystal-to-single-crystal [2 + 2] cycloaddition reactions were carried out. UV irradiation of these crystals afforded either the 0D→1D or the 3D→3D transformations, with and without network changes. One of the two 3D→3D transformations was accompanied by solvent (H 2 O) cleavage.
NASA Astrophysics Data System (ADS)
Jameson, Donald L.; Grzybowski, Joseph J.; Hammels, Deb E.; Castellano, Ronald K.; Hoke, Molly E.; Freed, Kimberly; Basquill, Sean; Mendel, Angela; Shoemaker, William J.
1998-04-01
This article describes a four-reaction sequence for the synthesis of two organometallic "cobaloxime" derivatives. The concept of "Umpolung" or reversal of reactivity is demonstrated in the preparation of complexes. The complex Co(dmgH)2(4-t-BuPy)Et is formed by the reaction of a cobalt (I) intermediate (cobalt in the role of nucleophile) with ethyl iodide. The complex Co(dmgH)2(4-t-BuPy)Ph is formed by the reaction of PhMgBr with a cobalt (III) intermediate (cobalt in the role of electrophile). All the products contain cobalt in the diamagnetic +3 oxidation state and are readily characterized by proton and carbon NMR. The four reaction sequence may be completed in two 4-hour lab periods. Cobaloximes are well known as model complexes for Vitamin B-12 and the experiment exposes students to aspects of classical coordination chemistry, organometallic chemistry and bioinorganic chemistry. The experiment also illustrates an important reactivity parallel between organic and organometallic chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Chunlin; Xiao, Hanxi; Cai, Qing
Two new 3D network organic-inorganic hybrid supramolecular complexes ([Na{sub 6}(CoEDTA){sub 2}(H{sub 2}O){sub 13}]·(H{sub 2}SiW{sub 12}O{sub 40})·xH{sub 2}O)n (1) and [CoH{sub 4}EDTA(H{sub 2}O)]{sub 2}(SiW{sub 12}O{sub 40})·15H{sub 2}O (2) (H{sub 4}EDTA=Ethylenediamine tetraacetic acid) have been successfully synthesized by solution method, and characterized by infrared spectrum (IR), thermogravimetric-differential thermal analysis (TG-DTA), cyclic voltammetry (CV) and single{sup −}crystal X-ray diffraction (XRD). Both of the complexes are the supramolecules, but with different liking mode, they are two representative models of supramolecule. complex (1) is a 3D infinite network supramolecular coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through coordinate-covalent bonds.more » While complex (2) is normal supramolecule, which linked by non-covalent interactions, such as H-bonding interaction, electrostatic interaction and van der waals force. Both of complex (1) and (2) exhibit good catalytic activities for catalytic oxidation of methanol, when the initial concentration of methanol is 3.0 g m{sup −3}, flow rate is 10 mL min{sup −1}, and the quality of catalyst is 0.2 g, for complex (1) and complex (2) the maximum elimination rates of methanol are 85% (150 °C) and 92% (120 °C), respectively. - Graphical abstract: Two new organic-inorganic hybrid supramolecular complexes based on Co-EDTA, and Keggin polyanions have been successfully synthesized with different pH value by solution method. They are attributed to two representative models of supramolecule. Complex(1) is an infinite coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through covalent bonds. Complex (2) is a normal supramolecule, which linked by non-covalent interactions of H-bonding interaction, electrostatic interaction and van der waals force. - Highlights: • Two supramolecules are linked by covalent or non-covalent interactions. • They are attributed to two representative models of supramolecule. • A rare multi-metal infinite supramolecular coordination polymer was formed. • They exhibit good catalytic activities for catalytic oxidation of methanol.« less
Doing Duo – a case study of entrainment in William Forsythe’s choreography “Duo”
Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E.
2014-01-01
Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe’s choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models. PMID:25374522
Coordination properties of the oxime analogue of glycine to Cu(II).
Georgieva, I; Trendafilova, N; Rodríguez-Santiago, L; Sodupe, M
2005-06-30
The coordination of Cu2+ by glyoxilic acid oxime (gao)--the oxime analogue of glycine amino acid--and its deprotonated (gao- and gao2-) species has been studied with different density functional methods. Single-point calculations have also been carried out at the single- and double- (triple) excitation coupled-cluster (CCSD(T)) level of theory. The isomers studied involve coordination of Cu2+ to electron-rich sites (O,N) of neutral, anionic, and dianionic gao species in different conformations. In contrast to Cu2+-glycine, for which the ground-state structure is bidentate with the CO2(-) terminus of zwitterionic glycine, for Cu2+-gao the most stable isomer shows monodentate binding of Cu2+ with the carbonylic oxygen of the neutral form. The most stable complexes of Cu2+ interacting with deprotonated gao species (gao- and gao2-) also take place through the carboxylic oxygens but in a bidentate manner. The results with different functionals show that, for these open shell (Cu2+-L) systems, the relative stability of complexes with different coordination environments (and so, different spin distribution) can be quite sensitive to the amount of "Hartree-Fock" exchange included in the functional. Among all the functionals tested in this work, the BHandHLYP is the one that better compares to CCSD(T) results.
Hydrogenation of coal liquid utilizing a metal carbonyl catalyst
Feder, Harold M.; Rathke, Jerome W.
1979-01-01
Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.
NASA Astrophysics Data System (ADS)
Kertmen, Seda Nur; Gonul, Ilyas; Kose, Muhammet
2018-01-01
New Cu(II) and Ni(II) complexes derived from dicyandiamide were synthesized and characterised by spectroscopic and analytical methods. Molecular structures of the complexes were determined by single crystal X-ray diffraction studies. In the complexes, the Cu(II) or Ni(II) ions are four-coordinate with a slight distorted square planar geometry. The ligands (L-nPen and L-iPen) derived from dicyandiamide formed via nucleophilic addition of alcohol solvent molecule in the presence Cu(II) or Ni(II) ions. Complexes were stabilised by intricate array of hydrogen bonding interactions. Antioxidant activity of the complexes was evaluated by DPPH radical scavenging and CUPRAC methods. The complexes exhibit antioxidant activity, however, their activities were much lower than standard antioxidants (Vitamin C and trolox).
Tjioe, Linda; Joshi, Tanmaya; Brugger, Joël; Graham, Bim; Spiccia, Leone
2011-01-17
Two new ligands, L(1) and L(2), have been prepared via N-functionalization of 1,4,7-triazacyclononane (tacn) with pairs of ethyl- or propyl-guanidine pendants, respectively. The X-ray crystal structure of [CuL(1)](ClO4)2 (C1) isolated from basic solution (pH 9) indicates that a secondary amine nitrogen from each guanidine pendants coordinates to the copper(II) center in addition to the nitrogen atoms in the tacn macrocycle, resulting in a five-coordinate complex with intermediate square-pyramidal/trigonal bipyramidal geometry. The guanidines adopt an unusual coordination mode in that their amine nitrogen nearest to the tacn macrocycle binds to the copper(II) center, forming very stable five-membered chelate rings. A spectrophotometric pH titration established the pK(app) for the deprotonation and coordination of each guanidine group to be 3.98 and 5.72, and revealed that [CuL(1)](2+) is the only detectable species present in solution above pH ∼ 8. The solution speciation of the CuL(2) complex (C2) is more complex, with at least 5 deprotonation steps over the pH range 4-12.5, and mononuclear and binuclear complexes coexisting. Analysis of the spectrophotometric data provided apparent deprotonation constants, and suggests that solutions at pH ∼ 7.5 contain the maximum proportion of polynuclear complexes. Complex C1 exhibits virtually no cleavage activity toward the model phosphate diesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP), while C2 exhibits moderate activity. For C2, the respective kobs values measured at pH 7.0 (7.24 (± 0.08) × 10(-5) s(-1) (BNPP at 50 °C) and 3.2 (± 0.3) × 10(-5) s(-1) (HPNPP at 25 °C)) are 40- and 10-times faster than [Cu(tacn)(OH2)2](2+) complex. Both complexes cleave supercoiled pBR 322 plasmid DNA, indicating that the guanidine pendants of [CuL(1)](2+) may have been displaced from the copper coordination sphere to allow for DNA binding and subsequent cleavage. The rate of DNA cleavage by C2 is twice that measured for [Cu(tacn)(OH2)2](2+), suggesting some degree of cooperativity between the copper center and guanidinium pendants in the hydrolysis of the phosphate ester linkages of DNA. A predominantly hydrolytic cleavage mechanism was confirmed through experiments performed either in the presence of various radical scavengers or under anaerobic conditions.
NASA Astrophysics Data System (ADS)
Gaur, A.; Klysubun, W.; Soni, Balram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-10-01
X-ray absorption spectroscopy (XAS) is very useful in revealing the information about geometric and electronic structure of a transition-metal absorber and thus commonly used for determination of metal-ligand coordination. But XAFS analysis becomes difficult if differently coordinated metal centers are present in a system. In the present investigation, existence of distinct coordination geometries around metal centres have been studied by XAFS in a series of trimesic acid Cu(II) complexes. The complexes studied are: Cu3(tma)2(im)6 8H2O (1), Cu3(tma)2(mim)6 17H2O (2), Cu3(tma)2(tmen)3 8.5H2O (3), Cu3(tma) (pmd)3 6H2O (ClO4)3 (4) and Cu3(tma)2 3H2O (5). These complexes have not only Cu metal centres with different coordination but in complexes 1-3, there are multiple coordination geometries present around Cu centres. Using XANES spectra, different coordination geometries present in these complexes have been identified. The variation observed in the pre-edge features and edge features have been correlated with the distortion of the specific coordination environment around Cu centres in the complexes. XANES spectra have been calculated for the distinct metal centres present in the complexes by employing ab-initio calculations. These individual spectra have been used to resolve the spectral contribution of the Cu centres to the particular XANES features exhibited by the experimental spectra of the multinuclear complexes. Also, the variation in the 4p density of states have been calculated for the different Cu centres and then correlated with the features originated from corresponding coordination of Cu. Thus, these spectral features have been successfully utilized to detect the presence of the discrete metal centres in a system. The inferences about the coordination geometry have been supported by EXAFS analysis which has been used to determine the structural parameters for these complexes.
Kálmán, Ferenc K.; Woods, Mark; Caravan, Peter; Jurek, Paul; Spiller, Marga; Tircsó, Gyula; Király, Róbert; Brücher, Ernő; Sherry, A. Dean
2008-01-01
The pH sensitive contrast agent, GdDOTA-4AmP (Gd1) has been successfully used to map tissue pH by MRI. Further studies now demonstrate that two distinct chemical forms of the complex can be prepared depending upon the pH at which Gd3+ is mixed with ligand 1. The desired pH sensitive form of this complex, referred to here as a Type II complex, is obtained as the exclusive product only when the complexation reaction is performed above pH 8. At lower pH values, a second complex is formed that, by analogy with an intermediate formed during preparation of GdDOTA, we tentatively assign this to a Type I complex where the Gd3+ is coordinated only by the appended side-chain arms of 1. The proportion of Type I complex formed is largely determined by the pH of the complexation reaction. The magnitude of pH dependent change in relaxivity of Gd1 was found to be less than earlier reported (S. Zhang, K. Wu, and A. D. Sherry, Angew. Chem., Int. Ed., 1999, 38, 3192), likely due to contamination of the earlier sample by an unknown amount of Type I complex. Examination of the NMRD and relaxivity temperature profiles, coupled with information from potentiometric titrations, shows that the amphoteric character of the phosphonate side-chains enables rapid prototropic exchange between the single bound water of the complex with those of the bulk water thereby giving Gd1 a unique pH dependent relaxivity that is quite useful for pH mapping of tissues by MRI. PMID:17539632
2-Acylpyrroles as mono-anionic O,N-chelating ligands in silicon coordination chemistry.
Kämpfe, Alexander; Brendler, Erica; Kroke, Edwin; Wagler, Jörg
2014-07-21
Kryptopyrrole (2,4-dimethyl-3-ethylpyrrole) was acylated with, for example, benzoyl chloride to afford 2-benzoyl-3,5-dimethyl-4-ethylpyrrole (L(1)H). With SiCl4 this ligand reacts under liberation of HCl and formation of the complex L(1)2SiCl2. In related reactions with HSiCl3 or H2SiCl2, the same chlorosilicon complex is formed under liberation of HCl and H2 or liberation of H2, respectively. The chlorine atoms of L(1)2SiCl2 can be replaced by fluoride and triflate using ZnF2 and Me3Si-OTf, respectively. The use of a supporting base (triethylamine) is required for the complexation of phenyltrichlorosilane and diphenyldichlorosilane. The complexes L(1)2SiCl2, L(1)2SiF2, L(1)2Si(OTf)2, L(1)2SiPhCl, and L(1)2SiPh2 exhibit various configurations of the octahedral silicon coordination spheres (i.e. cis or trans configuration of the monodentate substituents, different orientations of the bidentate chelating ligands relative to each other). Furthermore, cationic silicon complexes L(1)3Si(+) and L(1) SiPh(+) were synthesized by chloride abstraction with GaCl3. In contrast, reaction of L(1)2SiCl2 with a third equivalent of L(1)H in the presence of excess triethylamine produced a charge-neutral hexacoordinate Si complex with a new tetradentate chelating ligand which formed by Si-templated C-C coupling of two ligands L(1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vezzu, Dileep A K; Lu, Qun; Chen, Yan-Hua; Huo, Shouquan
2014-05-01
A series of cyclometalated platinum complexes with diverse coordination patterns and geometries were screened for their anticancer activity. It was discovered that the N^C^N-coordinated platinum complex based on 1,3-di(pyridyl)benzene displayed much higher cytotoxicity against human lung cancer cells NCI-H522, HCC827, and NCI-H1299, and human prostate cancer cell RV1 than cisplatin. In a sharp contrast, the C^N^N-coordinated platinum complex based on 6-phenyl-2,2'-bipyridine was ineffective on these cancer cells. This remarkable difference in cytotoxicity displayed by N^C^N- and C^N^N-coordinated platinum complexes was related to the trans effect of the carbon donor in the cyclometalated platinum complexes, which played a crucial role in facilitating the dissociation of the chloride ligand to create an active binding site. The DNA binding was studied for the N^C^N-coordinated platinum complex using electrophoresis and emission titration. The cellular uptake observed by fluorescent microscope showed that the complex is largely concentrated in the cytoplasm. The possible pathways for the cell apoptosis were studied by western blot analysis and the activation of PARP via caspase 7 was observed. Copyright © 2014 Elsevier Inc. All rights reserved.
Hysong, Sylvia J; Thomas, Candice L; Spitzmüller, Christiane; Amspoker, Amber B; Woodard, LeChauncy; Modi, Varsha; Naik, Aanand D
2016-01-15
Team coordination within clinical care settings is a critical component of effective patient care. Less is known about the extent, effectiveness, and impact of coordination activities among professionals within VA Patient-Aligned Care Teams (PACTs). This study will address these gaps by describing the specific, fundamental tasks and practices involved in PACT coordination, their impact on performance measures, and the role of coordination task complexity. First, we will use a web-based survey of coordination practices among 1600 PACTs in the national VHA. Survey findings will characterize PACT coordination practices and assess their association with clinical performance measures. Functional job analysis, using 6-8 subject matter experts who are 3rd and 4th year residents in VA Primary Care rotations, will be utilized to identify the tasks involved in completing clinical performance measures to standard. From this, expert ratings of coordination complexity will be used to determine the level of coordinative complexity required for each of the clinical performance measures drawn from the VA External Peer Review Program (EPRP). For objective 3, data collected from the first two methods will evaluate the effect of clinical complexity on the relationships between measures of PACT coordination and their ratings on the clinical performance measures. Results from this study will support successful implementation of coordinated team-based work in clinical settings by providing knowledge regarding which aspects of care require the most complex levels of coordination and how specific coordination practices impact clinical performance.
Wade, Kristin R; Hotze, Eileen M; Kuiper, Michael J; Morton, Craig J; Parker, Michael W; Tweten, Rodney K
2015-02-17
β-Barrel pore-forming toxins (βPFTs) form an obligatory oligomeric prepore intermediate before the formation of the β-barrel pore. The molecular components that control the critical prepore-to-pore transition remain unknown for βPFTs. Using the archetype βPFT perfringolysin O, we show that E183 of each monomer within the prepore complex forms an intermolecular electrostatic interaction with K336 of the adjacent monomer on completion of the prepore complex. The signal generated throughout the prepore complex by this interaction irrevocably commits it to the formation of the membrane-inserted giant β-barrel pore. This interaction supplies the free energy to overcome the energy barrier (determined here to be ∼ 19 kcal/mol) to the prepore-to-pore transition by the coordinated disruption of a critical interface within each monomer. These studies provide the first insight to our knowledge into the molecular mechanism that controls the prepore-to-pore transition for a βPFT.
Wade, Kristin R.; Hotze, Eileen M.; Kuiper, Michael J.; Morton, Craig J.; Parker, Michael W.; Tweten, Rodney K.
2015-01-01
β-Barrel pore-forming toxins (βPFTs) form an obligatory oligomeric prepore intermediate before the formation of the β-barrel pore. The molecular components that control the critical prepore-to-pore transition remain unknown for βPFTs. Using the archetype βPFT perfringolysin O, we show that E183 of each monomer within the prepore complex forms an intermolecular electrostatic interaction with K336 of the adjacent monomer on completion of the prepore complex. The signal generated throughout the prepore complex by this interaction irrevocably commits it to the formation of the membrane-inserted giant β-barrel pore. This interaction supplies the free energy to overcome the energy barrier (determined here to be ∼19 kcal/mol) to the prepore-to-pore transition by the coordinated disruption of a critical interface within each monomer. These studies provide the first insight to our knowledge into the molecular mechanism that controls the prepore-to-pore transition for a βPFT. PMID:25646411
Mercury(II) Complex Formation With Glutathione in Alkaline Aqueous Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mah, V.; Jalilehvand, F.
2009-05-19
The structure and speciation of the complexes formed between mercury(II) ions and glutathione (GSH = L-glutamyl-L-cysteinyl-glycine) have been studied for a series of alkaline aqueous solutions (C{sub Hg{sup 2+}} {approx} 18 mmol dm{sup -3} and C{sub GSH} = 40-200 mmol dm{sup -3} at pH {approx} 10.5) by means of extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy at ambient temperature. The dominant complexes are [Hg(GS){sub 2}]{sup 4-} and [Hg(GS){sub 3}]{sup 7-}, with mean Hg-S bond distances of 2.32(1) and 2.42(2) {angstrom} observed in digonal and trigonal Hg-S coordination, respectively. The proportions of the Hg{sup 2+}-glutathione complexes weremore » evaluated by fitting linear combinations of model EXAFS oscillations representing each species to the experimental EXAFS spectra. The [Hg(GS){sub 4}]{sup 10-} complex, with four sulfur atoms coordinated at a mean Hg-S bond distance of 2.52(2) {angstrom}, is present in minor amounts (<30%) in solutions containing a large excess of glutathione (C{sub GSH} {ge} 160 mmol dm{sup -3}). Comparable alkaline mercury(II) cysteine (H{sub 2}Cys) solutions were also investigated and a reduced tendency to form higher complexes was observed, because the deprotonated amino group of Cys{sup 2-} allows the stable [Hg(S,N-Cys){sub 2}]{sup 2-} chelate to form. The effect of temperature on the distribution of the Hg{sup 2+}-glutathione complexes was studied by comparing the EXAFS spectra at ambient temperature and at 25 K of a series of glycerol/water (33/67, v/v) frozen glasses with and C{sub Hg{sup 2+}} {approx} 7 mmol dm{sup -3} and C{sub GSH} = 16-81 mmol dm{sup -3}. Complexes with high Hg-S coordination numbers, [Hg(GS){sub 3}]{sup 7-} and [Hg(GS){sub 4}]{sup 10-}, became strongly favored when just a moderate excess of glutathione (C{sub GSH} {ge} 28 mmol dm{sup -3}) was used in the glassy samples, as expected for a stepwise exothermic bond formation. Addition of glycerol had no effect on the Hg(II)-glutathione speciation, as shown by the similarity of the EXAFS spectra obtained at room temperature for two parallel series of Hg(II)-glutathione solutions with C{sub Hg{sup 2+}} {approx} 7 mmol dm{sup -3}, with and without 33% glycerol. Also, the {sup 199}Hg NMR chemical shifts of a series of {approx} 18 mmol dm{sup -3} mercury(II) glutathione solutions with 33% glycerol were not significantly different from those of the corresponding series in aqueous solution.« less
Gouy phase for relativistic quantum particles
NASA Astrophysics Data System (ADS)
Ducharme, R.; da Paz, I. G.
2015-08-01
Exact Hermite-Gaussian solutions to the Klein-Gordon equation for particle beams are obtained here that depend on the 4-position of the beam waist. These are Bateman-Hillion solutions that are shown to include Gouy phase and preserve their forms under Lorentz transformations. As the wave function contains two time coordinates, the particle current must be interpreted in a constraint space to reduce the number of independent coordinates. The form of the constraint space is not certain except in the nonrelativistic limit, but a trial form is proposed, enabling the observable properties of the beam to be calculated for future comparison to experiment. These results can be relevant in the theoretical development of singular electron optics since it was shown that the Gouy phase is crucial in this field as well as to investigate a possible Gouy phase effect in Zitterbewegung phenomenon of spin-zero particles. Additionally, the traditional argument that beam solutions belong to a complex shifted spacetime is shown to necessitate a corresponding Born reciprocal shift in 4-momentum space.
NASA Astrophysics Data System (ADS)
Chernov'yants, Margarita S.; Burykin, Igor V.; Starikova, Zoya A.; Tereznikov, Alexander Yu.; Kolesnikova, Tatiana S.
2013-09-01
Synthesis, spectroscopic and structural characterization of novel interaction product of pyrrolidine-2-thione with molecular iodine is reported. The ability of pyrrolidine-2-thione to form the outer-sphere charge-transfer complex C4H7NS·I2 with iodine molecule in dilute chloroform solution has been studied by UV/vis spectroscopy. Oxidative desulfurization promotes ring fusion of two pyrrolidine-2-thione molecules. The product of iodine induced oxidative desulfurization has been studied by X-ray diffraction method. The crystal structure of the reaction product is formed by 5-(2-thioxopyrrolidine-1-yl)-3,4-dihydro-2H-pyrrolium (C8H13N2S+) cations and pentaiodide anions I5-, which are linked by the intermolecular I⋯Hsbnd C and I⋯C close contacts. The angular pentaiodide anions can be considered as structures formed by coordination of two iodine molecules to the iodide ion (type 1) or by the coordination of iodine molecule to the triiodide ion (type 2).
NASA Astrophysics Data System (ADS)
Gupta, Shraddha Rani; Mourya, Punita; Singh, M. M.; Singh, Vinod P.
2017-06-01
A Schiff base, (E)-N‧-((1H-indol-3-yl)methylene)-2-aminobenzohydrazide (Iabh) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. These compounds have been characterized by different physico-chemical and spectroscopic tools (UV-Vis, IR, NMR and ESI-Mass). The molecular structure of Iabh is determined by single crystal X-ray diffraction technique. The ligand Iabh displays E-configuration about the >Cdbnd N- bond. The structure of ligand is stabilized by intra-molecular H-bonding. In all the metal complexes the ligand coordinates through azomethine-N and carbonyl-O resulting a distorted octahedral geometry for Mn(II), Co(II) and Cu(II) complexes in which chloride ions occupy axial positions. Ni(II) and Zn(II) complexes, however, form 4-coordinate distorted square planer and tetrahedral geometry around metal ion, respectively. The structures of the complexes have been satisfactorily modeled by calculations based on density functional theory (DFT) and time dependent-DFT (TD-DFT). The corrosion inhibition study of the compounds have been performed against mild steel in 0.5 M H2SO4 solution at 298 K by using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). They show appreciable corrosion inhibition property.
NASA Astrophysics Data System (ADS)
Emara, Adel A. A.
2010-09-01
The binuclear Schiff base, H 2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H 2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO 2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N 3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria ( Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and ( Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi ( Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.
Gu, Shaojin; Xu, Daichao; Chen, Wanzhi
2011-02-21
Mono- and polynuclear complexes containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L), [NiL(2)](PF(6))(2) (2), [CoL(2)](PF(6))(3) (3), [PtLCl](PF(6)) (4), [PdAgL(2)](PF(6))(3) (5), [PdCuL(2)](PF(6))(3) (6), [Pd(2)L(2)Cl(2)](PF(6))(2) (7), and [Pd(3)L(2)Cl(4)](PF(6))(2) (8) have been prepared and fully characterized by NMR, ESI-MS spectroscopy, and X-ray crystallography. In complexes 2-4, the ligand binds to metals in a pincer NNC fashion with the pyridine group uncoordinated. Complexes 5 and 6 are isostructural to each other in which the palladium ions are surrounded by two pyridines and two imidazolylidenes and Ag(I) or Cu(I) is coordinated by two 1,10-phenanthroline moieties. In the trinuclear palladium complex 8, one palladium ion has an identical coordination mode as in 5 and 6, and the other two palladium ions are bonded to the 1,10-phenanthroline. Complex 6 exhibits excellent catalytic activity for the tandem click/Sonogashira reaction of 1-(bromomethyl)-4-iodobenzene, NaN(3), and ethynylbenzene in which three C-N bonds and one C-C bond are formed in a single flask.
NASA Astrophysics Data System (ADS)
Wang, Xin-Fang; Du, Ceng-Ceng; Zhou, Sheng-Bin; Wang, Duo-Zhi
2017-01-01
Herein we reported six new Ni(II)/Cu(II)/Zn(II) complexes, namely, [Ni(L1)4(OH)2] (1), [Cu(L1)4(OH)2] (2), [Cu(L1)2(SiF6)]n (3), {[Cu(L2)(HCOO)2]·H2O·CH3OH}n (4), [Ni(L2)2(NO3)2]n (5) and {[Zn(L2)Cl2]·DMF}n (6) (L1 = 3,6-bis(imidazole-1-yl)pyridazine, L2 = 3,6-bis(benzimidazole-1-yl)pyridazine), which were characterized by single-crystal X-ray diffraction, elemental analysis, IR, PXRD. These complexes have been successfully constructed under interface diffusion process, heating reflux or hydrothermal conditions. The structures of 1 and 2 are mononuclear complexes. Complex 3 exhibits a 6-connected 3D topology network with the Schläfli symbol of (412·63). In complex 4, two Cu(II) were connected through two HCOO- anions to form dinuclear structure unit, which is arranged into a 1D ladder-like structure by μ2-L2 ligands. Complexes 5 and 6 are 1D zigzag chains connected by L2 ligands, but the Ni(II) ion is six-coordinated in 5 and the Zn(II) ion is four-coordinated in 6. Moreover, the solid-state luminescence property and UV-vis diffuse reflection spectrum of complex 6 have been investigated and discussed.
Metherell, Alexander J; Cullen, William; Stephenson, Andrew; Hunter, Christopher A; Ward, Michael D
2014-01-07
We have prepared a series of mononuclear fac and mer isomers of Ru(II) complexes containing chelating pyrazolyl-pyridine ligands, to examine their differing ability to act as hydrogen-bond donors in MeCN. This was prompted by our earlier observation that octanuclear cube-like coordination cages that contain these types of metal vertex can bind guests such as isoquinoline-N-oxide (K = 2100 M(-1) in MeCN), with a significant contribution to binding being a hydrogen-bonding interaction between the electron-rich atom of the guest and a hydrogen-bond donor site on the internal surface of the cage formed by a convergent set of CH2 protons close to a 2+ metal centre. Starting with [Ru(L(H))3](2+) [L(H) = 3-(2-pyridyl)-1H-pyrazole] the geometric isomers were separated by virtue of the fact that the fac isomer forms a Cu(I) adduct which the mer isomer does not. Alkylation of the pyrazolyl NH group with methyl iodide or benzyl bromide afforded [Ru(L(Me))3](2+) and [Ru(L(bz))3](2+) respectively, each as their fac and mer isomers; all were structurally characterised. In the fac isomers the convergent group of pendant -CH2R or -CH3 protons defines a hydrogen-bond donor pocket; in the mer isomer these protons do not converge and any hydrogen-bonding involving these protons is expected to be weaker. For both [Ru(L(Me))3](2+) and [Ru(L(bz))3](2+), NMR titrations with isoquinoline-N-oxide in MeCN revealed weak 1 : 1 binding (K ≈ 1 M(-1)) between the guest and the fac isomer of the complex that was absent with the mer isomer, confirming a difference in the hydrogen-bond donor capabilities of these complexes associated with their differing geometries. The weak binding compared to the cage however occurs because of competition from the anions, which are free to form ion-pairs with the mononuclear complex cations in a way that does not happen in the cage complexes. We conclude that (i) the presence of fac tris-chelate sites in the cage to act as hydrogen-bond donors, and (ii) exclusion of counter-ions from the central cavity leaving these hydrogen-bonding sites free to interact with guests, are both important design criteria for future coordination cage hosts.
A Rapid Method to Achieve Aero-Engine Blade Form Detection
Sun, Bin; Li, Bing
2015-01-01
This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 μm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces. PMID:26039420
A rapid method to achieve aero-engine blade form detection.
Sun, Bin; Li, Bing
2015-06-01
This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 μm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces.
NASA Astrophysics Data System (ADS)
Muche, Simon; Hołyńska, Małgorzata
2017-08-01
Structure and properties of a rare metal complex of the chiral Schiff base ligand derived from ortho-vanillin and L-tyrosine are presented. This study is a continuation of research on ligands containing biologically compatible moieties. The ligand is also fully characterized in form of a sodium salt, in particular in solution, for the first time. The metal complex contains a unique bowl-shaped [Ni4] core. Its structure is investigated both in solution (ESI-MS, NMR) and in solid state (X-ray diffraction studies). Under certain conditions the complex can be isolated as crystalline DMF solvate which is studied in solid state.
Control of complex physically simulated robot groups
NASA Astrophysics Data System (ADS)
Brogan, David C.
2001-10-01
Actuated systems such as robots take many forms and sizes but each requires solving the difficult task of utilizing available control inputs to accomplish desired system performance. Coordinated groups of robots provide the opportunity to accomplish more complex tasks, to adapt to changing environmental conditions, and to survive individual failures. Similarly, groups of simulated robots, represented as graphical characters, can test the design of experimental scenarios and provide autonomous interactive counterparts for video games. The complexity of writing control algorithms for these groups currently hinders their use. A combination of biologically inspired heuristics, search strategies, and optimization techniques serve to reduce the complexity of controlling these real and simulated characters and to provide computationally feasible solutions.
Mukherjee, Arindam; Dhar, Shanta; Nethaji, Munirathinam; Chakravarty, Akhil R
2005-01-21
The ternary iron(II) complex [Fe(L')(L")](PF6)3(1) as a synthetic model for the bleomycins, where L' and L" are formed from metal-mediated cyclizations of N,N'-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)(L), is synthesized and structurally characterized by X-ray crystallography. In the six-coordinate iron(ii) complex, ligands L' and L" show tetradentate and bidentate chelating modes of bonding. Ligand L' is formed from an intramolecular attack of the alcoholic OH group of L to one imine moiety leading to the formation of a stereochemically constrained five-membered ring. Ligand L" which is formed from an intermolecular reaction involving one imine moiety of L and pyridine-2-carbaldehyde has an emissive cationic imidazopyridine pendant arm. The complex binds to double-stranded DNA in the minor groove giving a Kapp value of 4.1 x 10(5) M(-1) and displays oxidative cleavage of supercoiled DNA in the presence of H2O2 following a hydroxyl radical pathway. The complex also shows photo-induced DNA cleavage activity on UV light exposure involving formation of singlet oxygen as the reactive species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm –1 for Pb(II) and ca. 1580 cm –1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; ...
2016-09-07
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
Electronic structure and reactivity of three-coordinate iron complexes.
Holland, Patrick L
2008-08-01
[Reaction: see text]. The identity and oxidation state of the metal in a coordination compound are typically thought to be the most important determinants of its reactivity. However, the coordination number (the number of bonds to the metal) can be equally influential. This Account describes iron complexes with a coordination number of only three, which differ greatly from iron complexes with octahedral (six-coordinate) geometries with respect to their magnetism, electronic structure, preference for ligands, and reactivity. Three-coordinate complexes with a trigonal-planar geometry are accessible using bulky, anionic, bidentate ligands (beta-diketiminates) that steer a monodentate ligand into the plane of their two nitrogen donors. This strategy has led to a variety of three-coordinate iron complexes in which iron is in the +1, +2, and +3 oxidation states. Systematic studies on the electronic structures of these complexes have been useful in interpreting their properties. The iron ions are generally high spin, with singly occupied orbitals available for pi interactions with ligands. Trends in sigma-bonding show that iron(II) complexes favor electronegative ligands (O, N donors) over electropositive ligands (hydride). The combination of electrostatic sigma-bonding and the availability of pi-interactions stabilizes iron(II) fluoride and oxo complexes. The same factors destabilize iron(II) hydride complexes, which are reactive enough to add the hydrogen atom to unsaturated organic molecules and to take part in radical reactions. Iron(I) complexes use strong pi-backbonding to transfer charge from iron into coordinated alkynes and N 2, whereas iron(III) accepts charge from a pi-donating imido ligand. Though the imidoiron(III) complex is stabilized by pi-bonding in the trigonal-planar geometry, addition of pyridine as a fourth donor weakens the pi-bonding, which enables abstraction of H atoms from hydrocarbons. The unusual bonding and reactivity patterns of three-coordinate iron compounds may lead to new catalysts for oxidation and reduction reactions and may be used by nature in transient intermediates of nitrogenase enzymes.
Solving the three-body Coulomb breakup problem using exterior complex scaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.
2004-05-17
Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish themore » formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanner, Robert D.; Cherepy, Nerine J.; Young, Jr., Victor G.
In this study, we describe the synthesis and crystal structures of four iridium compounds containing the 2-(4,6-difluorophenyl)pyridyl ligand. Cleavage of dichloro-bridged iridium(III) dimers with phosphorus ligands leads to (46dfppy)2Ir(L)(Cl) where L = PPh 3 or P(OPh) 3. Treatment of the chloro compounds with cyanide forms the cyano complexes (46dfppy) 2Ir(L)(CN). All complexes exhibit a trans effect in their molecular structures due to the phosphorus ligands, with the phosphite having a greater effect than the phosphine. With L = PPh 3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.24), quantum yield of 0.66 ± 0.15 and 4.5 ±more » 0.5 μs decay time is measured. For L = P(OPh) 3, blue photoluminescence with CIE coordinates (x = 0.16, y = 0.21), quantum yield of 0.65 ± 0.15 and 2.9 ± 0.3 μs decay time is measured.« less
Photoactive energetic materials
Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield
2018-02-27
Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.
Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance.
Shao, Yuyan; Liu, Tianbiao; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark; Xiao, Jie; Lv, Dongping; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun
2013-11-04
Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a study in understanding coordination chemistry of Mg(BH₄)₂ in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new electrolyte is developed based on Mg(BH₄)₂, diglyme and LiBH₄. The preliminary electrochemical test results show that the new electrolyte demonstrates a close to 100% coulombic efficiency, no dendrite formation, and stable cycling performance for Mg plating/stripping and Mg insertion/de-insertion in a model cathode material Mo₆S₈ Chevrel phase.
Novel Route to Transition Metal Isothiocyanate Complexes Using Metal Powders and Thiourea
NASA Technical Reports Server (NTRS)
Harris, Jerry D.; Eckles, William E.; Hepp, Aloysius F.; Duraj, Stan A.; Hehemann, David G.; Fanwick, Phillip E.; Richardson, John
2003-01-01
A new synthetic route to isothiocyanate-containing materials is presented. Eight isothiocyanate- 4-methylpyridine (y-picoline) compounds were prepared by refluxing metal powders (Mn, Fe, Co, Ni, and Cu) with thiourea in y-picoline. With the exception of compound 5,prepared with Co, the isothiocyanate ligand was generated in situ by the isomerization of thiourea to NH4+SCN- at reflux temperatures. The complexes were characterized by x-ray crystallography. Compounds 1,2, and 8 are the first isothiocyanate- 4-methylpyridine anionic compounds ever prepared and structurally characterized. Compounds 1 and 2 are isostructural with four equatorially bound isothiocyanate ligands and two axially bound y-picoline molecules. Compound 8 is a five-coordinate copper(II) molecule with a distorted square-pyramidal geometry. Coordinated picoline and two isothiocyanates form the basal plane and the remaining isothiocyanate is bound at the apex. Structural data are presented for all compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ushenko, Yu A; Gorskii, M P; Dubolazov, A V
2012-08-31
Theory of polarisation-correlation analysis of laser images of histological sections of biopsy material from cervix tissue based on spatial frequency selection of linear and circular birefringence mechanisms is formulated. Comparative results of measuring the coordinate distributions of the complex degree of mutual anisotropy (CDMA), produced by fibrillar networks formed by myosin and collagen fibres of cervix tissue in different pathological conditions, namely, pre-cancer (dysplasia) and cancer (adenocarcinoma), are presented. The values and variation ranges of statistical (moments of the first - fourth order), correlation (excess-autocorrelation functions), and fractal (slopes of approximating curves and dispersion of extrema of logarithmic dependences ofmore » power spectra) parameters of the CDMA coordinate distributions are studied. Objective criteria for pathology diagnostics and differentiation of its severity degree are determined. (image processing)« less
Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway
Saxton, Robert A.; Knockenhauer, Kevin E.; Wolfson, Rachel L.; ...
2015-11-19
Eukaryotic cells coordinate growth with the availability of nutrients through mTOR complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag GTPases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. We present the 2.7-Å crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucinemore » leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. Lastly, these results provide a structural mechanism of amino acid sensing by the mTORC1 pathway.« less
Pannwitz, Andrea; Poirier, Stéphanie; Bélanger-Desmarais, Nicolas; Prescimone, Alessandro; Wenger, Oliver S; Reber, Christian
2018-06-04
Two luminescent heteroleptic Ru II complexes with a 2,2'-biimidazole (biimH 2 ) ligand form doubly hydrogen-bonded salt bridges to 4-sulfobenzoate anions in single crystals. The structure of one of these cation-anion adducts shows that the biimH 2 ligand is deprotonated. Its 3 MLCT luminescence band does not shift significantly under the influence of an external hydrostatic pressure, a behavior typical for these electronic transitions. In contrast, hydrostatic pressure on the other crystalline cation-anion adduct induces a shift of proton density from the peripheral N-H groups of biimH 2 towards benzoate, leading to a pronounced redshift of the 3 MLCT luminescence band. Such a significant and pressure-tunable influence from an interaction in the second coordination sphere is unprecedented in artificial small-molecule-based systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway
Saxton, Robert A.; Knockenhauer, Kevin E.; Wolfson, Rachel L.; Chantranupong, Lynne; Pacold, Michael E.; Wang, Tim; Schwartz, Thomas U.; Sabatini, David M.
2015-01-01
Eukaryotic cells coordinate growth with the availability of nutrients through mTOR complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag GTPases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. We present the 2.7-Å crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway. PMID:26586190
NASA Astrophysics Data System (ADS)
Ushenko, Yu A.; Gorskii, M. P.; Dubolazov, A. V.; Motrich, A. V.; Ushenko, V. A.; Sidor, M. I.
2012-08-01
Theory of polarisation-correlation analysis of laser images of histological sections of biopsy material from cervix tissue based on spatial frequency selection of linear and circular birefringence mechanisms is formulated. Comparative results of measuring the coordinate distributions of the complex degree of mutual anisotropy (CDMA), produced by fibrillar networks formed by myosin and collagen fibres of cervix tissue in different pathological conditions, namely, pre-cancer (dysplasia) and cancer (adenocarcinoma), are presented. The values and variation ranges of statistical (moments of the first — fourth order), correlation (excess-autocorrelation functions), and fractal (slopes of approximating curves and dispersion of extrema of logarithmic dependences of power spectra) parameters of the CDMA coordinate distributions are studied. Objective criteria for pathology diagnostics and differentiation of its severity degree are determined.
Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance
Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; ...
2013-11-04
Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH 4) 2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimizedmore » LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.« less
A discrete control model of PLANT
NASA Technical Reports Server (NTRS)
Mitchell, C. M.
1985-01-01
A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.
Lowest-energy structures of (C60)nX (X=Li+,Na+,K+,Cl-) and (C60)nYCl (Y=Li,Na,K) clusters for n=13.
Hernández-Rojas, J; Bretón, J; Gomez Llorente, J M; Wales, D J
2004-12-22
Basin-hopping global optimization is used to find likely candidates for the lowest minima on the potential energy surface of (C(60))(n)X (X=Li(+),Na(+),K(+),Cl(-)) and (C(60))(n)YCl (Y=Li,Na,K) clusters with n=13. The energy is evaluated using the Girifalco form for the C(60) intermolecular potential along with a polarization potential, which depends on the first few nonvanishing C(60) multipole polarizabilities. We find that the ions occupy interstitial sites of a (C(60))(n) cluster, the coordination shell being triangular for Li(+), tetrahedral for Na(+) and K(+), and octahedral for Cl(-). When the required coordination site does not exist in the corresponding (C(60))(n) global minimum, the lowest minimum of the doped system may be based on an alternative geometry. This situation is particularly common in the Cl(-) complexes, where the (C(60))(n) global minima with icosahedral packing change into decahedral or closed-packed forms for the ions. In all the ions we find a significant binding energy for the doped cluster. In the alkali chloride complexes the preferred coordination for the diatomic moiety is octahedral and is basically determined by the Cl(-) ion. However, the smaller polarization energies in this case mean that a change in structure from the (C(60))(n) global minimum does not necessarily occur if there is no octahedral site. (c) 2004 American Institute of Physics.
Integrated primary care in Germany: the road ahead.
Schlette, Sophia; Lisac, Melanie; Blum, Kerstin
2009-04-20
Health care delivery in Germany is highly fragmented, resulting in poor vertical and horizontal integration and a system that is focused on curing acute illness or single diseases instead of managing patients with more complex or chronic conditions, or managing the health of determined populations. While it is now widely accepted that a strong primary care system can help improve coordination and responsiveness in health care, primary care has so far not played this role in the German system. Primary care physicians traditionally do not have a gatekeeper function; patients can freely choose and directly access both primary and secondary care providers, making coordination and cooperation within and across sectors difficult. Since 2000, driven by the political leadership and initiative of the Federal Ministry of Health, the German Bundestag has passed several laws enabling new forms of care aimed to improve care coordination and to strengthen primary care as a key function in the German health care system. These include on the contractual side integrated care contracts, and on the delivery side disease management programmes, medical care centres, gatekeeping and 'community medicine nurses'. Recent policy reforms improved framework conditions for new forms of care. There is a clear commitment by the government and the introduction of selective contracting and financial incentives for stronger cooperation constitute major drivers for change. First evaluations, especially of disease management programmes, indicate that the new forms of care improve coordination and outcomes. Yet the process of strengthening primary care as a lever for better care coordination has only just begun. Future reforms need to address other structural barriers for change such as fragmented funding streams, inadequate payment systems, the lack of standardized IT systems and trans-sectoral education and training of providers.
Integrated primary care in Germany: the road ahead
Schlette, Sophia; Lisac, Melanie; Blum, Kerstin
2009-01-01
Problem statement Health care delivery in Germany is highly fragmented, resulting in poor vertical and horizontal integration and a system that is focused on curing acute illness or single diseases instead of managing patients with more complex or chronic conditions, or managing the health of determined populations. While it is now widely accepted that a strong primary care system can help improve coordination and responsiveness in health care, primary care has so far not played this role in the German system. Primary care physicians traditionally do not have a gatekeeper function; patients can freely choose and directly access both primary and secondary care providers, making coordination and cooperation within and across sectors difficult. Description of policy development Since 2000, driven by the political leadership and initiative of the Federal Ministry of Health, the German Bundestag has passed several laws enabling new forms of care aimed to improve care coordination and to strengthen primary care as a key function in the German health care system. These include on the contractual side integrated care contracts, and on the delivery side disease management programmes, medical care centres, gatekeeping and ‘community medicine nurses’. Conclusion and discussion Recent policy reforms improved framework conditions for new forms of care. There is a clear commitment by the government and the introduction of selective contracting and financial incentives for stronger cooperation constitute major drivers for change. First evaluations, especially of disease management programmes, indicate that the new forms of care improve coordination and outcomes. Yet the process of strengthening primary care as a lever for better care coordination has only just begun. Future reforms need to address other structural barriers for change such as fragmented funding streams, inadequate payment systems, the lack of standardized IT systems and trans-sectoral education and training of providers. PMID:19513180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meux, Susan C.
2008-05-12
The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe{sup III}(Ent)]{sup 3-}. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an anti-bacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidicmore » endosomes and [Fe{sup III}(Ent)]{sup 3-} is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe{sup III}(Ent)]{sup 3-} and Scn-Y106F:[Fe{sup III}(Ent)]{sup 3-} complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe{sup III}(Ent)]{sup 3-}. Fluorescence, UV-Vis and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogs of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abergel, R.J.; Clifton, M.C.; Pizarro, J.C.
2009-05-12
The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe{sup III}(Ent)]{sup 3-}. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an antibacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidicmore » endosomes and [Fe{sup III}(Ent)]{sup 3-} is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe{sup III}(Ent)]{sup 3-} and Scn-Y106F:[Fe{sup III}(Ent)]{sup 3-} complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe{sup III}(Ent)]{sup 3-}. Fluorescence, UV-vis, and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogues of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.« less
Strautmann, Julia B H; George, Serena DeBeer; Bothe, Eberhard; Bill, Eckhard; Weyhermüller, Thomas; Stammler, Anja; Bögge, Hartmut; Glaser, Thorsten
2008-08-04
The ligand L (2-) (H 2L = N, N'-dimethyl- N, N'-bis(3,5-di- t-butyl-2-hydroxybenzyl)-1,2-diaminoethane) has been employed for the synthesis of two mononuclear Fe (III) complexes, namely, [LFe(eta (2)-NO 3)] and [LFeCl]. L (2-) is comprised of four strongly electron-donating groups (two tert-amines and two phenolates) that increase the electron density at the coordinated ferric ions. This property should facilitate oxidation of the complexes, that is, stabilization of the oxidized species. The molecular structures in the solid state have been established by X-ray diffraction studies. [LFeCl] is five-coordinate in a square-pyramidal coordination environment with the ligand adopting a trans-conformation, while [LFe(eta (2)-NO 3)] is six-coordinate in a distorted octahedral environment with the ligand in a beta-cis conformation. The electronic structures have been studied using magnetization, EPR, Mossbauer (with and without applied field), UV-vis-NIR, and X-ray absorption spectroscopies, which demonstrate highly anisotropic covalency from the strong sigma- and pi-donating phenolates. This analysis is supported by DFT calculations on [LFeCl]. The variations of the well-understood spectroscopic data in the solid state to the spectroscopic data in solution have been used to obtain insight in the molecular structure of the two complexes in solution. While the molecular structures of the solid states are retained in solutions of nonpolar aprotic solvents, there is, however, one common molecular structure in all protic polar solvents. The analysis of the LMCT transitions and the rhombicity E/ D clearly establish that both compounds exhibit a beta-cis conformation in these protic polar solvents. These two open coordination sites, cis to each other, allow access for two potential ligands in close proximity. Electrochemical analysis establishes two reversible oxidation waves for [LFeCl] at +0.55 V and +0.93 V vs Fc (+)/Fc and one reversible oxidation wave at +0.59 V with an irreversible oxidation at +1.07 V vs Fc (+)/Fc for [LFe(eta (2)-NO 3)]. The one- and the two-electron oxidations of [LFeCl] by chronoamperometry have been followed spectroscopically. The increase of a strong band centered at 420 nm indicates the formulation of [LFeCl] (+) as a Fe (III) monophenoxyl radical complex and of [LFeCl] (2+) as a Fe (III) bisphenoxyl radical complex. These studies imply that the ligand L (2-) is capable of providing a flexible coordination geometry with two binding sites for substrates and the allocation of two oxidation equivalents on the ligand.
Acquisition of Internal Models of Motor Tasks in Children with Autism
ERIC Educational Resources Information Center
Gidley Larson, Jennifer C.; Bastian, Amy J.; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H.
2008-01-01
Children with autism exhibit a host of motor disorders including poor coordination, poor tool use and delayed learning of complex motor skills like riding a tricycle. Theory suggests that one of the crucial steps in motor learning is the ability to form internal models: to predict the sensory consequences of motor commands and learn from errors to…
Integrating international responses to complex emergencies, unconventional war, and terrorism.
Burkle, Frederick M
2005-01-01
The world is experiencing unprecedented violence and threats of violence, taking the form of complex internal nation-state conflicts, unconventional or guerrilla warfare against established governments, and stateless threats of terrorism by potential biologic, chemical, and nuclear weapons. What happens locally has immediate ramifications internationally. Real and potential health consequences of these events have evoked global concerns and realization that capacities and capabilities to respond to such events require unparalleled integration, coordination, and cooperation of the international community. However, politics and the institutions singular governments form are inherently limited in their objectives and capability to effectively respond. Public health, broadly defined, must be recognized as a security and strategic requirement, one that serves to build a foundation for an international integrated response capacity.
Ghaemi, Akbar; Rayati, Saeed; Fayyazi, Kazem; Ng, Seik Weng; Tiekink, Edward R T
2012-08-01
Two distinct coordination geometries are found in the binuclear title complex, [Ni(2)(C(13)H(19)N(2)O(2))(2)(N(3))(2)(CH(3)OH)], as one Schiff base ligand is penta-dentate, coordinating via the anti-cipated oxide O, imine N and amine N atoms (as for the second, tridentate, ligand) but the oxide O is bridging and coordination also occurs through the meth-oxy O atom. The Ni(II) atoms are linked by a μ(2)-oxide atom and one end of a μ(2)-azide ligand, forming an Ni(2)ON core. The coordination geometry for the Ni(II) atom coordinated by the tridentate ligand is completed by the meth-oxy O atom derived from the penta-dentate ligand, with the resulting N(3)O(3) donor set defining a fac octa-hedron. The second Ni(II) atom has its cis-octa-hedral N(4)O(2) coordination geometry completed by the imine N and amine N atoms of the penta-dentate Schiff base ligand, a terminally coordinated azide N and a methanol O atom. The arrangement is stabilized by an intra-molecular hydrogen bond between the methanol H and the oxide O atom. Linear supra-molecular chains along the a axis are formed in the crystal packing whereby two amine H atoms from different amine atoms hydrogen bond to the terminal N atom of the monodentate azide ligand.
Dano, Meisa; Elmeranta, Marjukka; Hodgson, David R W; Jaakkola, Juho; Korhonen, Heidi; Mikkola, Satu
2015-12-01
Cleavage of five different nucleoside diphosphosugars has been studied in the presence of Cu(2+) and Zn(2+) complexes. The results show that metal ion catalysts promote the cleavage via intramolecular transesterification whenever a neighbouring HO group can adopt a cis-orientation with respect to the phosphate. The HO group attacks the phosphate and two monophosphate products are formed. If such a nucleophile is not available, Cu(2+) complexes are able to promote a nucleophilic attack of an external nucleophile, e.g. a water molecule or metal ion coordinated HO ligand, on phosphate. With the Zn(2+) complex, this was not observed.
Gonzalez, Paulina; Vileno, Bertrand; Bossak, Karolina; El Khoury, Youssef; Hellwig, Petra; Bal, Wojciech; Hureau, Christelle; Faller, Peter
2017-12-18
Peptides and proteins with the N-terminal motifs NH 2 -Xxx-His and NH 2 -Xxx-Zzz-His form well-established Cu(II) complexes. The canonical peptides are Gly-His-Lys and Asp-Ala-His-Lys (from the wound healing factor and human serum albumin, respectively). Cu(II) is bound to NH 2 -Xxx-His via three nitrogens from the peptide and an external ligand in the equatorial plane (called 3N form here). In contrast, Cu(II) is bound to NH 2 -Xxx-Zzz-His via four nitrogens from the peptide in the equatorial plane (called 4N form here). These two motifs are not mutually exclusive, as the peptides with the sequence NH 2 -Xxx-His-His contain both of them. However, this chimera has never been fully explored. In this work, we use a multispectroscopic approach to analyze the Cu(II) binding to the chimeric peptide Ala-His-His (AHH). AHH is capable of forming the 3N- and 4N-type complexes in a pH dependent manner. The 3N form predominates at pH ∼ 4-6.5 and the 4N form at ∼ pH 6.5-10. NMR experiments showed that at pH 8.5, where Cu(II) is almost exclusively bound in the 4N form, the Cu(II)-exchange between AHH or the amidated AHH-NH 2 is fast, in comparison to the nonchimeric 4N form (AAH). Together, the results show that the chimeric AHH can access both Cu(II) coordination types, that minor changes in the second (or further) coordination sphere can impact considerably the equilibrium between the forms, and that Cu kinetic exchange is fast even when Cu-AHH is mainly in the 4N form.
Bruzzaniti, Angela; Neff, Lynn; Sanjay, Archana; Horne, William C.; De Camilli, Pietro; Baron, Roland
2005-01-01
Podosomes are highly dynamic actin-containing adhesion structures found in osteoclasts, macrophages, and Rous sarcoma virus (RSV)-transformed fibroblasts. After integrin engagement, Pyk2 recruits Src and the adaptor protein Cbl, forming a molecular signaling complex that is critical for cell migration, and deletion of any molecule in this complex disrupts podosome ring formation and/or decreases osteoclast migration. Dynamin, a GTPase essential for endocytosis, is also involved in actin cytoskeleton remodeling and is localized to podosomes where it has a role in actin turnover. We found that dynamin colocalizes with Cbl in the actin-rich podosome belt of osteoclasts and that dynamin forms a complex with Cbl in osteoclasts and when overexpressed in 293VnR or SYF cells. The association of dynamin with Cbl in osteoclasts was decreased by Src tyrosine kinase activity and we found that destabilization of the dynamin-Cbl complex involves the recruitment of Src through the proline-rich domain of Cbl. Overexpression of dynamin increased osteoclast bone resorbing activity and migration, whereas overexpression of dynK44A decreased osteoclast resorption and migration. These studies suggest that dynamin, Cbl, and Src coordinately participate in signaling complexes that are important in the assembly and remodeling of the actin cytoskeleton, leading to changes in osteoclast adhesion, migration, and resorption. PMID:15872089
True and masked three-coordinate T-shaped platinum(II) intermediates.
Ortuño, Manuel A; Conejero, Salvador; Lledós, Agustí
2013-01-01
Although four-coordinate square-planar geometries, with a formally 16-electron counting, are absolutely dominant in isolated Pt(II) complexes, three-coordinate, 14-electron Pt(II) complexes are believed to be key intermediates in a number of platinum-mediated organometallic transformations. Although very few authenticated three-coordinate Pt(II) complexes have been characterized, a much larger number of complexes can be described as operationally three-coordinate in a kinetic sense. In these compounds, which we have called masked T-shaped complexes, the fourth position is occupied by a very weak ligand (agostic bond, solvent molecule or counteranion), which can be easily displaced. This review summarizes the structural features of the true and masked T-shaped Pt(II) complexes reported so far and describes synthetic strategies employed for their formation. Moreover, recent experimental and theoretical reports are analyzed, which suggest the involvement of such intermediates in reaction mechanisms, particularly C-H bond-activation processes.
NASA Astrophysics Data System (ADS)
Ahmad, Tayyaba; Mahmood, Rashid; Georgieva, Ivelina; Zahariev, Tsvetan; Tahir, Muhammad Nawaz; Shaheen, Muhammad Ashraf; Gilani, Mazhar Amjad; Ahmad, Saeed
2018-02-01
A novel dinuclear copper(I) complex, {[Cu2(Mnt)2(PPh3)2Cl2].2H2O.CH3CN}2 (1) (Mnt = Mercaptonicotinic acid, PPh3 = triphenylphosphine) was prepared and its structure was determined by X-ray crystallography. The complex 1 consists of two dinuclear molecules and in each molecule, the two copper atoms are bridged by S atoms of N-protonated mercaptonicotinic acid forming a four-membered ring. The planar Cu2S2 core is characterized by significant cuprophilic interactions (Cusbnd Cu distance = 2.7671(8), 2.8471(8) Å). Each copper atom in 1 is coordinated by two sulfur atoms of Mnt, one phosphorus atom of PPh3 and a chloride ion adopting a tetrahedral geometry. The calculated Gibbs energies for reaction in CH3CN supported the experimental structure and predicted more favorable formation of dinuclear Cu(I) complex as compared to the mononuclear Cu(I) complex. The dinuclear complex is stabilized by 65.98 kJ mol-1 by coupling of two mononuclear Cu(I) complexes. The IR spectra of 1 and Mnt ligand were reliably interpreted and the Mnt vibrations, which are sensitive to the ligand coordination to Cu(I) ion in 1 were selected with the help of DFT/ωB97XD calculations.
Md Yusof, Enis Nadia; Ravoof, Thahira Begum S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhimanyu; Crouse, Karen Anne; Mohamed Tahir, Mohamed Ibrahim; Ahmad, Haslina
2015-01-01
Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity. PMID:25988384
Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T
2015-02-01
The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.
Haas, Isabelle; Dietel, Thomas; Press, Konstantin; Kol, Moshe; Kempe, Rhett
2013-10-11
Based on two well-established ligand systems, the aminopyridinato (Ap) and the phenoxyimine (FI) ligand systems, new Ap-FI hybrid ligands were developed. Four different Ap-FI hybrid ligands were synthesized through a simple condensation reaction and fully characterized. The reaction of hafnium tetrabenzyl with all four Ap-FI hybrid ligands exclusively led to mono(Ap-FI) complexes of the type [(Ap-FI)HfBn2 ]. The ligands acted as tetradentate dianionic chelates. Upon activation with tris(pentafluorophenyl)borane, the hafnium-dibenzyl complexes led to highly active catalysts for the polymerization of 1-hexene. Ultrahigh molecular weights and extremely narrow polydispersities support the living nature of this polymerization process. A possible deactivation product of the hafnium catalysts was characterized by single-crystal X-ray analysis and is discussed. The coordination modes of these new ligands were studied with the help of model titanium complexes. The reaction of titanium(IV) isopropoxide with ligand 1 led to a mono(Ap-FI) complex, which showed the desired fac-mer coordination mode. Titanium (IV) isopropoxide reacted with ligand 4 to give a complex of the type [(ApH-FI)2 Ti(OiPr)2 ], which featured the ligand in its monoanionic form. The two titanium complexes were characterized by X-ray crystal-structure analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiang-Hsu; Taam, Ronald E.; Yen, David C. C., E-mail: yen@math.fju.edu.tw
Investigating the evolution of disk galaxies and the dynamics of proto-stellar disks can involve the use of both a hydrodynamical and a Poisson solver. These systems are usually approximated as infinitesimally thin disks using two-dimensional Cartesian or polar coordinates. In Cartesian coordinates, the calculations of the hydrodynamics and self-gravitational forces are relatively straightforward for attaining second-order accuracy. However, in polar coordinates, a second-order calculation of self-gravitational forces is required for matching the second-order accuracy of hydrodynamical schemes. We present a direct algorithm for calculating self-gravitational forces with second-order accuracy without artificial boundary conditions. The Poisson integral in polar coordinates ismore » expressed in a convolution form and the corresponding numerical complexity is nearly linear using a fast Fourier transform. Examples with analytic solutions are used to verify that the truncated error of this algorithm is of second order. The kernel integral around the singularity is applied to modify the particle method. The use of a softening length is avoided and the accuracy of the particle method is significantly improved.« less
Cai, Irene C.; Lipschutz, Michael I.
2014-01-01
The amido ligand –N(SiiPr3)DIPP (DIPP = 2,6-diisopropylphenyl) has been used to prepare two-coordinate complexes of CrI, CrII, and CrIII. The two-coordinate CrII complex has also been used to prepare a three-coordinate CrIII iodide complex, which can be used to access a stable CrIII methyl species. PMID:25222516
El-Sherif, Ahmed A; Shoukry, Mohamed M
2007-03-01
The formation equilibria of copper(II) complexes and the ternary complexes Cu(PDC)L (PDC=2,6-bis-(hydroxymethyl)-pyridine, HL=amino acid, amides or DNA constituents) have been investigated. Ternary complexes are formed by a simultaneous mechanism. The results showed the formation of Cu(PDC)L, Cu(PDC, H(-1))(L) and Cu(PDC, H(-2))(L) complexes. The concentration distribution of the complexes in solution is evaluated as a function of pH. The effect of dioxane as a solvent on the protonation constant of PDC and the formation constants of Cu(II) complexes are discussed. The thermodynamic parameters DeltaH degrees and DeltaS degrees calculated from the temperature dependence of the equilibrium constants are investigated.
Singh, D P; Kumar, Ramesh; Singh, Jitender
2009-06-01
A new series of complexes is synthesized by template condensation of oxalyldihydrazide and glyoxal in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type: [M(C(8)H(8)N(8)O(4))X]X(2) where M = Cr(III), Mn(III), Fe(III) and X = Cl(-1), NO(-1)(3), CH(3)COO(-1). The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry for these complexes has been proposed. The biological activities of the metal complexes were tested in vitro against a number of pathogenic bacteria and some of the complexes exhibited remarkable antibacterial activities.
Inducing Axial Chirality in a Supramolecular Catalyst.
Wenz, Katharina Marie; Leonhardt-Lutterbeck, Günter; Breit, Bernhard
2018-03-06
A new type of ligand, which is able to form axially chiral, supramolecular complexes was designed using DFT calculations. Two chiral monomers, each featuring a covalently bound chiral auxiliary, form a bidentate phosphine ligand with a twisted, hydrogen-bonded backbone upon coordination to a transition metal center which results in two diastereomeric, tropos complexes. The ratio of the diastereomers in solution is very temperature- and solvent-dependent. Rhodium and platinum complexes were analyzed through a combination of NMR studies, ESI-MS measurements, as well as UV-VIS and circular dichroism spectroscopy. The chiral self-organized ligands were evaluated in the rhodium-catalyzed asymmetric hydrogenation of α-dehydrogenated amino acids and resulted in good conversion and high enantioselectivity. This research opens the way for new ligand designs based on stereocontrol of supramolecular assemblies through stereodirecting chiral centers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.
2018-04-01
The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.
Itoh, Sumitaka; Kishikawa, Nobuyuki; Suzuki, Takayoshi; Takagi, Hideo D
2005-03-21
[Cu(2,9-dimethyl-1,10-phenanthroline)(2)](2+) and [Cu(6,6'-dimethyl-2,2'-bipyridine)(2)](2+/+) complexes with no coordinated solvent molecule were synthesized and the crystal structures were analyzed: the coordination geometry around the Cu(i) center was in the D(2d) symmetry while a D(2) structure was observed for the four-coordinate Cu(ii) complexes. Coordination of a water or an acetonitrile molecule was found in the trigonal plane of the five-coordinate Cu(ii) complex in the Tbp(trigonal bipyramidal) structure. Spectrophotometric analyses revealed that the D(2) structure of the Cu(ii) complex was retained in nitromethane, although a five-coordinate Tbp species (green in color), was readily formed upon dissolution of the solid (reddish brown) in acetonitrile. The electron self-exchange reaction between D(2d)-Cu(I) and D(2)-Cu(II), observed by the NMR method, was very rapid with k(ex)=(1.1 +/- 0.2) x 10(5) kg mol(-1) s(-1) at 25 degrees C (DeltaH*= 15.6 +/- 1.3 kJ mol(-1) and DeltaS*=-96 +/- 4 J mol(-1) K(-1)), which was more than 10 times larger than that reported for the self-exchange reaction between D(2d)-Cu(I) and Tbp-Cu(II) in acetonitrile. The cross reduction reactions of D(2)-Cu(ii) by ferrocene and decamethylferrocene in nitromethane exhibited a completely gated behavior, while the oxidation reaction of D(2d)-Cu(i) by [Ni(1,4,7-triazacyclononane)(2)](3+) in nitromethane estimated an identically large self-exchange rate constant to that directly obtained by the NMR method. The electron self-exchange rate constant estimated from the oxidation cross reaction in 50% v/v acetonitrile-nitromethane mixture was 10 times smaller than that observed in pure nitromethane. On the basis of the Principle of the Least Motion (PLM) and the Symmetry Rules, it was concluded that gated behaviors observed for the reduction reactions of the five-coordinate Cu(ii)-polypyridine complexes are related to the high-energy C(2v)--> D(2d) conformational change around Cu(ii), and that the electron self-exchange reactions of the Cu(ii)/(i) couples are always adiabatic through the C(2v) structures for both Cu(ii) and Cu(i) since the conformational changes between D(2d), D(2) and C(2v) structures for Cu(i) as well as the conformational change between Tbp and C(2v) structures for Cu(ii) are symmetry-allowed. The completely gated behavior observed for the reduction reactions of D(2)-Cu(ii) species in nitromethane was attributed to the very slow conformational change from the ground-state D(2) to the entatic D(2d) structure that is symmetry-forbidden for d(9) metal complexes: the very slow back reaction, the forbidden conformational change from entatic D(2d) to the ground-state D(2) structure, ensures that the rate of the reduction reaction is independent of the concentration of the reducing reagent.
Huh, Daniel N; Darago, Lucy E; Ziller, Joseph W; Evans, William J
2018-02-19
The utility of lithium compared to other alkali metals in generating Ln 2+ rare-earth metal complexes via reduction of Ln 3+ precursors in reactions abbreviated as LnA 3 /M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp' 3 Ln (Cp' = C 5 H 4 SiMe 3 ; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln 2+ complexes of these metals, [Li(crypt)][Cp' 3 Ln]. In each complex, lithium is found in an N 2 O 4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4f n 5d 1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 μ B , respectively. Lithium reduction of Cp' 3 Y under N 2 at -35 °C forms the Y 2+ complex (Cp' 3 Y) 1- , which reduces dinitrogen upon warming to room temperature to generate the (N 2 ) 2- complex [Cp' 2 Y(THF)] 2 (μ-η 2 :η 2 -N 2 ). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.
Sun, Song; Nie, Kun; Tan, Yufang; Zhao, Bei; Zhang, Yong; Shen, Qi; Yao, Yingming
2013-02-28
A series of neutral bimetallic lanthanide amido complexes supported by rigid phenylene bridged bis(β-diketiminate) ligands were synthesized, and their catalytic behavior for the polymerization of L-lactide and rac-lactide was explored. The amine elimination reaction of Ln[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with PARA-H(2), [PARA-H(2) = 2[2,6-(i)Pr(2)C(6)H(3)NHC(Me)C(H)C(Me)N]-(para-phenylene)] in a 2:1 molar ratio in THF at 25 °C afforded the corresponding bimetallic lanthanide amido complexes PARA-{Ln[N(SiMe(3))(2)](2)}(2) [Ln = Nd(1), Sm(2), Y(3)] in high isolated yields. Similar reaction of Nd[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with META-H(2), [META-H(2) = 2[2,6-(i)Pr(2)C(6)H(3)NHC(Me)C(H)C(Me)N]-(meta-phenylene)] at 90 °C in toluene for about 48 h gave META-{Nd[N(SiMe(3))(2)](2)}(2) (4). Complexes 1-4 were well characterized by elemental analysis, IR spectroscopy, and their definitive structures were confirmed by an X-ray crystal structure analysis. The coordination environment and coordination geometry around the metal atoms are similar in these complexes. Each of the metal atoms is four-coordinated with two nitrogen atoms from the N,N-chelating β-diketiminate unit, and two nitrogen atoms from two (Me(3)Si)(2)N- groups to form a distorted tetrahedron. These complexes can serve as highly active initiators for L-lactide polymerization in toluene. In addition, they also showed high activity towards rac-lactide polymerization in THF at room temperature, giving heterotactic-enriched polymers (P(r) ≈ 0.70), and complex 4 displays obviously higher activity in comparison with complex 1.
NASA Astrophysics Data System (ADS)
Kendur, Umashri; Chimmalagi, Geeta H.; Patil, Sunil M.; Gudasi, Kalagouda B.; Frampton, Christopher S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.
2018-02-01
Air and moisture stable coordination compounds of late first row transition metal ions, viz., Co(II), Ni(II), Cu(II) and Zn(II) with a newly designed ligand, (E)-2-amino-N'-(1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl)ethylidene)benzohydrazide (H2L) were prepared and extensively characterized using various spectro-analytical techniques. The ligand acts both in mono as well as doubly deprotonated manner. The ligand to metal stoichiometry was found to be 1:2 in case of complexes using chloride salts, whereas 1:1 in case of copper (II) complex using its acetate salt. The molecular structures of H2L, nickel and copper complexes were unambiguously determined by single-crystal X-ray diffraction studies reveal that H2L exists in a zwitterionic form while copper complex has copper centre in a distorted square planar environment. On the other hand, cobalt, nickel and zinc complexes display distorted octahedral coordination around the metal ion. In case of [Ni(HL)2].H2O, intramolecular Csbnd H⋯π stacking interaction were observed between the centroid of five membered chelate ring and phenyl proton C5sbnd H5 and intermolecular Csbnd H⋯π stacking interaction between the centroid of phenyl ring, dehydroacetic acid (DHA) ring and phenyl protons. The [Cu(L)DMF] complex is stabilized by intramolecular hydrogen bonding N1H⋯N2 and by intermolecular hydrogen bonding N1H⋯O4. Intermolecular interactions were investigated by Hirshfeld surfaces. Further, H2L and its metal complexes were screened for their in vivo and in vitro anti-inflammatory activities. The activity of the ligand has enhanced on coordination with transition metals. The tested compounds have shown excellent activity, which is almost equipotent to the standard used in the study.
Daniels, Ruth E; Culham, Stacey; Hunter, Michael; Durrant, Marcus C; Probert, Michael R; Clegg, William; Williams, J A Gareth; Kozhevnikov, Valery N
2016-04-28
A new family of eight dinuclear iridium(iii) complexes has been prepared, featuring 4,6-diarylpyrimidines L(y) as bis-N^C-coordinating bridging ligands. The metal ions are also coordinated by a terminal N^C^N-cyclometallating ligand L(X) based on 1,3-di(2-pyridyl)benzene, and by a monodentate chloride or cyanide. The general formula of the compounds is {IrL(X)Z}2L(y) (Z = Cl or CN). The family comprises examples with three different L(X) ligands and five different diarylpyrimidines L(y), of which four are diphenylpyrimidines and one is a dithienylpyrimidine. The requisite proligands have been synthesised via standard cross-coupling methodology. The synthesis of the complexes involves a two-step procedure, in which L(X)H is reacted with IrCl3·3H2O to form dinuclear complexes of the form [IrL(X)Cl(μ-Cl)]2, followed by treatment with the diarylpyrimidine L(y)H2. Crucially, each complex is formed as a single compound only: the strong trans influence of the metallated rings dictates the relative disposition of the ligands, whilst the use of symmetrically substituted tridentate ligands eliminates the possibility of Λ and Δ enantiomers that are obtained when bis-bidentate units are linked through bridging ligands. The crystal structure of one member of the family has been obtained using a synchrotron X-ray source. All of the complexes are very brightly luminescent, with emission maxima in solution varying over the range 517-572 nm, according to the identity of the ligands. The highest-energy emitter is the cyanide derivative whilst the lowest is the complex with the dithienylpyrimidine. The trends in both the absorption and emission energies as a function of ligand substituent have been rationalised accurately with the aid of TD-DFT calculations. The lowest-excited singlet and triplet levels correlate with the trend in the HOMO-LUMO gap. All the complexes have quantum yields that are close to unity and phosphorescence lifetimes - of the order of 500 ns - that are unusually short for complexes of such brightness. These impressive properties stem from an unusually high rate of radiative decay, possibly due to spin-orbit coupling pathways being facilitated by the second metal ion, and to low non-radiative decay rates that may be related to the rigidity of the dinuclear scaffold.
NASA Astrophysics Data System (ADS)
Bulut, İclal; Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet
2007-05-01
Crystal structure of [Cu(hsm) 2(sac) 2] (hsm is histamine and sac is saccharinate) complex has been determined by X-ray diffraction analyses and its magnetic environment has been identified by electron paramagnetic resonance (EPR) technique. The title complex crystallizes in the monoclinic system, space group P 21/ c with a = 7.4282(4), b = 22.5034(16), c = 8.3300(5) Å, β = 106.227(4)°, V = 1336.98(14) Å 3, and Z = 2. The structure consist of discrete [Cu(hsm) 2(sac) 2] molecules in which the copper ion is centrosymmetrically coordinated by two histamine ligands forming an equatorial plane [Cu-N hsm = 2.024(2) and Cu-N hsm = 2.0338(18) Å]. Two N atoms from the saccharinate ligands coordinate on the elongated axial positions with Cu-N sac being 2.609(5) Å. The complex is also characterized by spectroscopic (IR, UV/Vis) and thermal (TG, and TDA) methods. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centred electroactivity in the potential range - 1.25-1.5 V versus Ag/AgCl reference electrode. The molecular orbital bond coefficients of Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters.
Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.
Huang, Xiaopeng; Hou, Xiaojing; Song, Fahui; Zhao, Jincai; Zhang, Lizhi
2016-02-16
In this study, the adsorption process of Cr(VI) on the hematite facets was systematically investigated with synchrotron-based Cr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, density-functional theory calculation, and surface complexation models. Structural model fitting of EXAFS spectroscopy suggested that the interatomic distances of Cr-Fe were, respectively, 3.61 Å for the chromate coordinated hematite nanoplates with exposed {001} facets, 3.60 and 3.30 Å for the chromate coordinated hematite nanorods with exposed {001} and {110} facets, which were characteristic of inner-sphere complexation. In situ ATR-FTIR spectroscopy analysis confirmed the presence of two inner-sphere surface complexes with C3ν and C2ν symmetry, while the C3ν and C2ν species were assigned to monodentate and bidentate inner-sphere surface complexes with average Cr-Fe interatomic distances of 3.60 and 3.30 Å, respectively. On the basis of these experimental and theoretical results, we concluded that HCrO4(-) as dominated Cr(VI) species was adsorbed on {001} and {110} facets in inner-sphere monodentate mononuclear and bidentate binuclear configurations, respectively. Moreover, the Cr(VI) adsorption performance of hematite facets was strongly dependent on the chromate complexes formed on the hematite facets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esclapez, Julia; Britton, K. Linda; Baker, Patrick J.
2005-08-01
Single crystals of binary and ternary complexes of wild-type and D38C mutant H. mediterranei glucose dehydrogenase have been obtained by the hanging-drop vapour-diffusion method. Haloferax mediterranei glucose dehydrogenase (EC 1.1.1.47) belongs to the medium-chain alcohol dehydrogenase superfamily and requires zinc for catalysis. In the majority of these family members, the catalytic zinc is tetrahedrally coordinated by the side chains of a cysteine, a histidine, a cysteine or glutamate and a water molecule. In H. mediterranei glucose dehydrogenase, sequence analysis indicates that the zinc coordination is different, with the invariant cysteine replaced by an aspartate residue. In order to analyse themore » significance of this replacement and to contribute to an understanding of the role of the metal ion in catalysis, a range of binary and ternary complexes of the wild-type and a D38C mutant protein have been crystallized. For most of the complexes, crystals belonging to space group I222 were obtained using sodium/potassium citrate as a precipitant. However, for the binary and non-productive ternary complexes with NADPH/Zn, it was necessary to replace the citrate with 2-methyl-2,4-pentanediol. Despite the radical change in conditions, the crystals thus formed were isomorphous.« less
Mück, Felix M; Baus, Johannes A; Nutz, Marco; Burschka, Christian; Poater, Jordi; Bickelhaupt, F Matthias; Tacke, Reinhold
2015-11-09
Activation of CO2 by the bis(amidinato)silylene 1 and the analogous bis(guanidinato)silylene 2 leads to the structurally analogous six-coordinate silicon(IV) complexes 4 (previous work) and 8, respectively, the first silicon compounds with a chelating carbonato ligand. Likewise, CS2 activation by silylene 1 affords the analogous six-coordinate silicon(IV) complex 10, the first silicon compound with a chelating trithiocarbonato ligand. CS2 activation by silylene 2, however, yields the five-coordinate silicon(IV) complex 13 with a carbon-bound CS2 (2-) ligand, which also represents an unprecedented coordination mode in silicon coordination chemistry. Treatment of the dinuclear silicon(IV) complexes 5 and 6 with CO2 also affords the six-coordinate carbonatosilicon(IV) complexes 4 and 8, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jabłońska-Wawrzycka, Agnieszka; Barszcz, Barbara; Zienkiewicz, Małgorzata; Hodorowicz, Maciej; Jezierska, Julia; Stadnicka, Katarzyna; Lechowicz, Łukasz; Kaca, Wiesław
2014-08-01
Crystal, molecular and electronic structure of new manganese(II) compounds: [Mn(2-CH2OHpy)2(NO3)2] (1), [Mn(4-CHO-5-MeIm)2(NO3)2] (2) and [Mn(4-CHO-5-MeIm)2Cl2] (3), where 2-hydroxymethylpyridine (2-CH2OHpy) and 5(4)-carbaldehyde-4(5)-methylimidazole (5(4)-CHO-4(5)-MeIm), have been characterised using X-ray, spectroscopic, magnetic and TG/DTG data. In compounds 1 and 2, the Mn(II) ion is eight-coordinated forming distorted pseudo-dodecahedron, that is rather unusual for the manganese(II) complexes, whereas in 3 the Mn(II) ion environment is a distorted octahedron. The high coordination number (CN = 8) of 1 and 2 results from bidentate character of the nitrate ligands. The X-band EPR spectra of compounds 2 and 3 exhibit fine structure signals resulting from zero-field splitting (ZFS) of the spin states for high spin d5 Mn(II), whereas for 1 the broad isotropic signals were observed. The estimation of ZFS for individual Mn(II) ions was carried out for all compounds using DFT calculations. The free ligands and their manganese(II) complexes have been tested in vitro against gram-positive and gram-negative bacteria in order to assess their antimicrobial properties.
Shamsudin, Norzianah; Tan, Ai Ling; Wimmer, Franz L; Young, David J; Tiekink, Edward R T
2015-09-01
The asymmetric unit of the title compound, 2[Zn(C32H16N8)(C7H9N)]·3C7H9N, comprises two independent complex mol-ecules and three benzyl-amine solvent mol-ecules. Each complex mol-ecule features a penta-coordinated Zn(2+) ion within a square-pyramidal geometry, whereby the N5 donor set is defined by four atoms of the phthalocyaninate dianion (PC) and an N-bound benzyl-amine mol-ecule; it is the relative orientations of the latter that differentiate between the independent complex mol-ecules. The uncoordinated benzyl-amine mol-ecules display different conformations in the structure, with syn-Car-Car-Cm-N (ar = aromatic, m = methyl-ene) torsion angles spanning the range -28.7 (10) to 35.1 (14)°. In the crystal, N-H⋯N and N-H⋯π inter-actions lead to supra-molecular layers in the ab plane. The layers have a zigzag topology, have the coordinating and non-coordinating benzyl-amine mol-ecules directed to the inside, and present the essentially flat PC resides to the outside. This arrangement enables adjacent layers to associate via π-π inter-actions [inter-centroid distance between pyrrolyl and fused-benzene rings = 3.593 (2) Å] so that a three-dimensional architecture is formed.
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Shah, Naseer Ali
2017-09-01
This paper reports the synthesis, X-ray crystal structure, DNA-binding, antibacterial and antifungal studies of a rare dihydroxo-bridged dinuclear copper(II) complex including 1,10-phenanthroline (Phen) ligands and phenylacetate (L) anions, [Cu2(Phen)2(OH)2(H2O)2].2L.6H2O. Structural data revealed distorted square-pyramidal geometry for each copper(II) atom with the basal plane formed by the two nitrogen atoms of the phenantroline ligand and the oxygen atoms of two bridging hydroxyl groups. The apical positions are filled by the oxygen atom from a water molecule. This forms a centrosymmetric cationic dimer where the uncoordinated phenylacetate ligands serve to balance the electrical charge. The dimers interact by means of hydrogen bonds aided by the coordinated as well as uncoordinated water molecules and phenyl-acetate moieties in the crystal lattice. The binding ability of the complex with salmon sperm DNA was determined using cyclic voltammetry and absorption spectroscopy yielding binding constants 2.426 × 104 M-1 and 1.399 × 104 M-1, respectively. The complex was screened against two Gram-positive (Micrococcus luteus and Bacillus subtilis) and one Gram-negative (Escherichia coli) bacterial strains exhibiting significant activity against all the three strains. The complex exhibited significant, moderate and no activity against fungal strains Mucor piriformis, Helminthosporium solani and Aspergillus Niger, respectively. These preliminary tests indicate the competence of the complex towards the development of a potent biological drug.
Complexation and phase evolution at dimethylformamide-Ag(111) interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Wentao; Leung, Kevin; Shao, Qian
The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF) 2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF) 2, through the saturation monolayer limit, in which these two chemicalmore » species phase separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF) 2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.« less
Complexation and phase evolution at dimethylformamide-Ag(111) interfaces
Song, Wentao; Leung, Kevin; Shao, Qian; ...
2016-09-15
The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF) 2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF) 2, through the saturation monolayer limit, in which these two chemicalmore » species phase separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF) 2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.« less
Martínez-Lillo, José; Cano, Joan; Wernsdorfer, Wolfgang; Brechin, Euan K
2015-01-01
The energy barrier to magnetisation relaxation in single-molecule magnets (SMMs) proffers potential technological applications in high-density information storage and quantum computation. Leading candidates amongst complexes of 3d metals ions are the hexametallic family of complexes of formula [Mn6O2(R-sao)6(X)2(solvent)y] (saoH2=salicylaldoxime; X=mono-anion; y=4–6; R=H, Me, Et, and Ph). The recent synthesis of cationic [Mn6][ClO4]2 family members, in which the coordinating X ions were replaced with non-coordinating anions, opened the gateway to constructing families of novel [Mn6] salts in which the identity and nature of the charge balancing anions could be employed to alter the physical properties of the complex. Herein we demonstrate initial experiments to show that this is indeed possible. By replacing the diamagnetic ClO4− anions with the highly anisotropic ReIV ion in the form of [ReIVCl6]2−, the energy barrier to magnetisation relaxation is increased by up to 30 %. PMID:25951415
Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin.
Liu, Zhichang; Frasconi, Marco; Lei, Juying; Brown, Zachary J; Zhu, Zhixue; Cao, Dennis; Iehl, Julien; Liu, Guoliang; Fahrenbach, Albert C; Botros, Youssry Y; Farha, Omar K; Hupp, Joseph T; Mirkin, Chad A; Fraser Stoddart, J
2013-01-01
Gold recovery using environmentally benign chemistry is imperative from an environmental perspective. Here we report the spontaneous assembly of a one-dimensional supramolecular complex with an extended {[K(OH₂)₆][AuBr₄](α-cyclodextrin)₂}n chain superstructure formed during the rapid co-precipitation of α-cyclodextrin and KAuBr₄ in water. This phase change is selective for this gold salt, even in the presence of other square-planar palladium and platinum complexes. From single-crystal X-ray analyses of six inclusion complexes between α-, β- and γ-cyclodextrins with KAuBr₄ and KAuCl₄, we hypothesize that a perfect match in molecular recognition between α-cyclodextrin and [AuBr₄](-) leads to a near-axial orientation of the ion with respect to the α-cyclodextrin channel, which facilitates a highly specific second-sphere coordination involving [AuBr₄](-) and [K(OH₂)₆](+) and drives the co-precipitation of the 1:2 adduct. This discovery heralds a green host-guest procedure for gold recovery from gold-bearing raw materials making use of α-cyclodextrin-an inexpensive and environmentally benign carbohydrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arıcı, Mürsel, E-mail: marici@ogu.edu.tr; Zafer Yeşilel, Okan; Büyükgüngör, Orhan
Four coordination polymers including, [Co(µ-Htbip){sub 2}(µ-dib)]{sub n} (1), [Co(µ-tbip)(µ-dmib){sub 0.5}]{sub n} (2), [Zn{sub 2}(µ-tbip)(µ{sub 3}-tbip)(µ-dmib){sub 1.5}]{sub n} (3) and [Cd(µ{sub 3}-tbip)(µ-dib){sub 0.5} (H{sub 2}O)]{sub n} (4) (tbip: 5-tert-butylisophthalate, dib: 1,4-bis(imidazol-1yl)benzene, dmib: 1,4-bis(imidazol-1yl)-2,5-dimethylbenzene), were hydrothermally synthesized and characterized by elemental analysis, IR spectra, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). The structural diversity is observed depending on ligands and coordination number of metal centers in the synthesized complexes. The tbip ligand displayed five different coordination modes in its complexes. In 1 and 2, complex 1 is 3D framework with the dia topology while complex 2 has 2D structuremore » with the sql topology depending on coordination geometries of Co ions. Complex 3 is 3D framework with the fsh 4,6-conn topology and complex 4 has 2D 4-connected sql topology. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Graphical abstract: Four coordination polymers were hydrothermally synthesized and characterized by various techniques. The complexes showed the structural diversity depending on ligands and coordination number of metal centers. The tbip ligand displayed four different coordination modes in its complexes. In 1 and 2, complexes 1 and 2 are 3D and 2D structures with the dia and sql topologies depending on coordination geometries of Co ions, respectively. Complexes 3 and 4 are 3D and 2D structures with the fsh 4,6-conn and sql topology, respectively. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Highlights: • Four new 2D and 3D coordination polymers with 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers. • The structural diversity depending on ligands and coordination number of metal centers. • Fluorescent sensor for the detection of acetone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Chunying; Lu, Jialin; Han, Jingyu
Polymeric lanthanide complexes with thiostannate and polyamine mixed ligands, [Ln(peha)(μ–SnS{sub 4}H)]{sub n} [Ln=La (1a), Nd (1b)] and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}nH{sub 2}O [Ln=Nd (2a), Sm (2b), Gd (2c), Dy (2d)] (peha=pentaethylenehexamine, tepa=tetraethylenepentamine) were respectively prepared in peha and tepa coordinative solvents by the solvothermal methods. In 1a and 1b, the Ln{sup 3+} ions are coordinated by a hexadentate peha ligand forming [Ln(peha)]{sup 3+} units. The [SnS{sub 4}H]{sup 3−} anion chelates a [Ln(peha)]{sup 3+} unit via two S atoms and coordinates to another [Ln(peha)]{sup 3+} unit via the third S atom. As a result, the [Ln(peha)]{sup 3+} units are connectedmore » into coordination polymers [Ln(peha)(μ–SnS{sub 4}H)]{sub n} by an unprecedented tridentate μ–η{sup 1},η{sup 2}–SnS{sub 4}H bridging ligands. In 2a–2d, the Ln{sup 3+} ions are coordinated by a pentadentate tepa ligand, and two [Ln(tepa)]{sup 3+} units are joined by two μ–OH bridges to form a binuclear [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} unit. Behaving as a bidentate μ–η{sup 1}, η{sup 1}–Sn{sub 2}S{sub 6} bridging ligand, the Sn{sub 2}S{sub 6} unit connects [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} units into a neutral coordination polymer [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n} via the trans S atoms. The Ln{sup 3+} ions are in distorted monocapped square antiprismatic and bicapped trigonal prismatic environments in [(Ln(peha)(μ–SnS{sub 4}H)]{sub n} and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}, respectively. The denticities of ethylene polyamine play an important role on the formation and complexation of the thiostannate in the presence of lanthanide ions. Compounds 1a–2d show well-defined absorption edges with band gaps between 2.81 and 3.15 eV. - Graphical abstract: Lanthanide coordination polymers concerning thiostannate ligands were prepared by the solvothermal methods, and μ{sub 3}–SnS{sub 4}H and μ–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. - Highlights: • Lanthanide coordination polymers were prepared in polyamines with higher denticity. • The μ–η{sup 1},η{sup 2}–SnS{sub 4}H and μ–η{sup 1},η{sup 1}–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. • Effect of amine on the complexation of Ln(III) with thiostannate is observed.« less
NASA Astrophysics Data System (ADS)
El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.
2003-02-01
The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [( 11)+( 12)] in the paper and in mononuclear polymer complexes ( 1)-( 5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX 2 and KPtCl 4 in the presence of N-heterocyclic base consisting of polymer complexes ( 9)+( 10), and in monouclear compounds ( 6)-( 8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds ( 13)+( 14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.
El-Sonbati, A Z; El-Bindary, A A; Diab, M A
2003-02-01
The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [(11)+(12)] in the paper and in mononuclear polymer complexes (1)-(5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX2 and KPtCl4 in the presence of N-heterocyclic base consisting of polymer complexes (9)+(10), and in monouclear compounds (6)-(8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds (13)+(14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.
Photophysics of self-assembled zinc porphyrin-bidentate diamine ligand complexes.
Danger, Brook R; Bedient, Krysta; Maiti, Manisankar; Burgess, Ian J; Steer, Ronald P
2010-10-21
The effects of complexation--by bidentate nitrogen-containing ligands such as pyrazine and 4,4'-bipyridine commonly used for porphyrin self-assembly--on the photophysics of the model metalloporphyrin, ZnTPP, are reported. Ligation to form the 5-coordinate species introduces an intramolecular charge transfer (ITC) state that, depending on the oxidation and reduction potentials of the electron donor and acceptor, can become involved in the excited state relaxation processes. For ZnTPP, ligation with pyridine has little effect on excited state relaxation following either Q-band or Soret band excitation. However, coordination of ZnTPP with pyrazine and bipyridine causes the S(2) (Soret) state of the ligated species to decay almost exclusively via an S(2)-ICT-S(1) pathway, while affecting the S(1) decay route only slightly. In these 5-coordinate species the S(2)-ICT-S(1) decay route is ultrafast and nearly quantitative. Literature redox data for other bidentate ligands such as DABCO and multidentate ligands commonly used for pophyrin assembly suggest that the ITC states introduced by them could also modify the excited state relaxation dynamics of a wide variety of multiporphyrin arrays.
One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties
NASA Astrophysics Data System (ADS)
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur
2016-11-01
Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.
Antipas, Georgios S E; Germenis, Anastasios E
2015-06-01
The quantum state of functional avidity of the synapse formed between a peptide-Major Histocompatibility Complex (pMHC) and a T cell receptor (TCR) is a subject not previously touched upon. Here we present atomic pair correlation meta-data based on crystalized tertiary structures of the Tax (HTLV-1) peptide along with three artificially altered variants, all of which were presented by the (Class I) HLA-A201 protein in complexation with the human (CD8(+)) A6TCR. The meta-data reveal the existence of a direct relationship between pMHC-TCR functional avidity (agonist/antagonist) and peptide pair distribution function (PDF). In this context, antagonist peptides are consistently under-coordinated in respect to Tax. Moreover, Density Functional Theory (DFT) datasets in the BLYP/TZ2P level of theory resulting from relaxation of the H species on peptide tertiary structures reveal that the coordination requirement of agonist peptides is also expressed as a physical observable of the protonation state of their N termini: agonistic peptides are always found to retain a stable ammonium (NH3 (+)) terminal group while antagonist peptides are not.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadikov, G. G., E-mail: sadgg@igic.ras.ru; Antsyshkina, A. S.; Koksharova, T. V.
2007-09-15
The [Co{sub 2}L{sub 4}(C{sub 4}H{sub 9}COO){sub 4}(H{sub 2}O)] coordination compound of cobalt(II) valerate with nicotinamide (L) is synthesized and studied by IR spectroscopy. The crystal structure of the synthesized compound is determined. The crystals are triclinic, and the unit cell parameters are as follows: a = 10.2759(10) A, b = 16.3858(10) A, c = 16.4262(10) A, {alpha} = 100.538(10) deg., {beta} = 101.199(10) deg., {gamma} = 90.813 (10) deg., Z = 2, and space group P1-bar. The structural units of the crystal are dimeric molecular complexes in which pairs of cobalt atoms are linked by triple bridges formed by oxygenmore » atoms of two bidentately coordinated valerate anions and a water molecule. The octahedral coordination of each cobalt atom is complemented by the pyridine nitrogen atoms of two nicotinamide ligands and the oxygen atom of the monodentate valerate group. The hydrocarbon chains of the valerate anions are disordered over two or three positions each.« less
Oxidative Addition of Disulfides, Alkyl Sulfides, and Diphosphides to an Aluminum(I) Center.
Chu, Terry; Boyko, Yaroslav; Korobkov, Ilia; Kuzmina, Lyudmila G; Howard, Judith A K; Nikonov, Georgii I
2016-09-06
The aluminum(I) compound NacNacAl (1) reacts with diphenyl disulfide and diethyl sulfide to form the respective four-coordinate bis(phenyl sulfide) complex NacNacAl(SPh)2 (2) and alkyl thiolate aluminum complex NacNacAlEt(SEt) (3). As well, reaction of 1 with tetraphenyl diphosphine furnishes the bis(diphenyl phosphido) complex NacNacAl(PPh2)2 (4). Production of 3 and 4 are the first examples of C(sp(3))-S and R2P-PR2 activation by a main-group element complex. All three complexes were characterized by multinuclear NMR spectroscopy and X-ray crystal structure analysis. Furthermore, a variable-temperature NMR spectroscopic study was undertaken on 4 to study its dynamic behavior in solution.
NASA Astrophysics Data System (ADS)
Somov, N. V.; Chausov, F. F.; Zakirov, R. M.
2017-07-01
3D coordination polymers cesium nitrilotris(methylenephosphonate) and dicesium nitrilotris( methylenephosphonate) are synthesized and their crystal structure is determined. In the crystal of [Cs-μ6-NH(CH2PO3)3H4] (space group P, Z = 2), cesium atoms occupy two crystallographically inequivalent positions with c.n. = 10 and c.n. = 14. The phosphonate ligand plays the bridging function; its denticity is nine. The crystal packing consists of alternating layers of Cs atoms in different environments with layers of ligand molecules between them. A ligand is bound to three Cs atoms of one layer and three Cs atoms of another layer. In the crystal of [Cs2-μ10-NH(CH2PO3H)3] · H2O (space group P, Z = 2), the complex has a dimeric structure: the bridging phosphonate ligand coordinates Cs to form a three-dimensional Cs4O6 cluster. The denticity of the ligand is equal to nine; the coordination numbers of cesium atoms are seven and nine. Two-dimensional corrugated layers of Cs4O6 clusters lie in the (002) plane, and layers of ligand molecules are located between them. Each ligand molecule coordinates eight Cs atoms of one layer and two Cs atoms of the neighboring layer.
Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene
Xu, Songchen; Boschen, Jeffery S.; Biswas, Abhranil; ...
2015-08-17
An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ³-N,Si,C-PhB(Ox Me²)(Ox Me²SiHPh)Im Mes}Rh(H)CO][HB(C₆F₅)₃] (2, Ox Me² = 4,4-dimethyl-2-oxazoline; Im Mes = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(Ox Me²)₂Im Mes}RhH(SiH 2Ph)CO (1) and B(C 6F 5) 3. The unusual oxazoline-coordinated silylene structure in 2 is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(Ox Me²)₂Im Mes}RhH(SiHPh)CO][HB(C₆F₅)₃] generated by H abstraction. Complex 2 catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced bymore » the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenation of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C₆F₅)₃ catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH₃ as the reducing agent.« less
Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Songchen; Boschen, Jeffery S.; Biswas, Abhranil
An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ³-N,Si,C-PhB(Ox Me²)(Ox Me²SiHPh)Im Mes}Rh(H)CO][HB(C₆F₅)₃] (2, Ox Me² = 4,4-dimethyl-2-oxazoline; Im Mes = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(Ox Me²)₂Im Mes}RhH(SiH 2Ph)CO (1) and B(C 6F 5) 3. The unusual oxazoline-coordinated silylene structure in 2 is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(Ox Me²)₂Im Mes}RhH(SiHPh)CO][HB(C₆F₅)₃] generated by H abstraction. Complex 2 catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced bymore » the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenation of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C₆F₅)₃ catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH₃ as the reducing agent.« less
NASA Astrophysics Data System (ADS)
Watanabe, Shinta; Sato, Toshikazu; Yoshida, Tomoko; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Inaba, Yusuke; Takeshita, Kenji; Onoe, Jun
2018-04-01
We have investigated the chemical forms of palladium (Pd) ion in nitric acid solution, using XAFS/UV-vis spectroscopic and first-principles methods in order to develop the disposal of high-level radioactive nuclear liquid wastes (HLLW: radioactive metal ions in 2 M nitric acid solution). The results of theoretical calculations and XAFS/UV-vis spectroscopy indicate that Pd is a divalent ion and forms a square-planar complex structure coordinated with four nitrate ions, [Pd(NO3)4]2-, in nitric acid solution. This complex structure is also thermodynamically predicted to be most stable among complexes [Pd(H2O)x(NO3)4-x]x-2 (x = 0-4). Since the overall feature of UV-vis spectra of the Pd complex was independent of nitric acid concentration in the range 1-6 M, the structure of the Pd complex remains unchanged in this range. Furthermore, we examined the influence of γ-ray radiation on the [Pd(NO3)4]2- complex, using UV-vis spectroscopy, and found that UV-vis spectra seemed not to be changed even after 1.0 MGy irradiation. This implies that the Pd complex structure will be still stable in actual HLLW. These findings obtained above are useful information to develop the vitrification processes for disposal of HLLW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boros, Eszter; Srinivas, Raja; Kim, Hee -Kyung
Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity. Molecular modeling was used to design a series of four Gd complexes capable of forming an intramolecular H-bond to the coordinated water ligand, and these complexes had anomalously high relaxivities compared to similar complexes lacking a H-bond acceptor. Molecular dynamics simulations supported the formation of a stable intramolecular H-bond, while alternative hypotheses that could explain the higher relaxivitymore » were systematically ruled out. Finally, intramolecular H-bonding represents a useful strategy to limit internal water rotational motion and increase relaxivity of Gd complexes.« less
Han, Ahreum; Fu, Allan; Cobley, Stephen; Sanders, Ross H
2018-01-01
Childhood obesity is negatively associated with fundamental movement skill and motor coordination, which in turn constrains physical activity participation and adherence thereby forming a 'vicious cycle'. However, developing motor skill and coordination in childhood could help to break the vicious cycle to reduce childhood obesity. The objective of this systematic review was to determine the effectiveness of exercise and physical activity interventions on improving fundamental movement skill and motor coordination in overweight/obese children and adolescents. A systematic review with quality assessment. A comprehensive systematic search was conducted from MEDLINE, SPORTDiscus, CINAHL, Scopus, Web of Science, EMBASE without date restriction for randomized control trials, interventions or longitudinal studies of movement skill/motor skill/motor coordination in overweight/obese participants between 0-18 years of age. A total of 3944 publications were screened, and 17 published studies were included. Altogether 38 tests for locomotor, object-control, balance and complex task tests were examined in selected studies, with 33 reporting increases after interventions, while only five tests indicated no change. The evidence strongly suggests that exercise/physical activity interventions were effective in improving locomotor skill, object-control skill and complex tasks in overweight/obese peers. However, the results for balance were equivocal. Results from existing studies suggest overweight/obese peers have lower levels of fundamental movement skill than their healthy weight peers. However, exercise/physical activity interventions are effective in improving their skills. To maximize skill improvement, we recommend focused fundamental movement skill and motor coordination activities for skill development. These progressions in interventions may help break the vicious cycle of childhood obesity. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
The Role of Metaphors in Fostering Macrocognitive Processes in Distributed Teams
2012-07-30
temporal dynamics, and storytelling towards the goal of improving team coordination and performance in distributed decision making teams. Specifically...better reflect the context of organizational and military teams and 3) to investigate how storytelling (complex form of metaphor) can be used as a...Information Sharing, Situation Awareness, Storytelling , Metaphors, Reflexivity.Team Simulation, NeoCITIES 16. SECURITY CLASSIFICATION OF: a. REPORT b
Assembly and Properties of Heterobimetallic CoII/III/CaII Complexes with Aquo and Hydroxo Ligands
Lacy, David C.; Park, Young Jun; Ziller, Joseph W.; Yano, Junko; Borovik, A. S.
2012-01-01
The use of water as a reagent in redox-driven reactions is advantageous because it is abundant and environmentally compatible. The conversion of water to dioxygen in photosynthesis illustrates one example, in which a redox-inactive CaII ion and four manganese ions are required for function. In this report we describe the stepwise formation of two new heterobimetallic complexes containing CoII/III and CaII ions, and either hydroxo or aquo ligands. The preparation of a 4-coordinate CoII synthon was achieved with the tripodal ligand, N,N′,N″-[2,2′,2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido, [MST]3−. Water binds to [CoIIMST]− to form the 5-coordinate [CoIIMST(OH2)]− complex that was used to prepare the CoII/CaII complex [CoIIMST(μ-OH2)CaII⊂15-crown-5(OH2)]+ ([CoII(μ-OH2)CaIIOH2]+). [CoII(μ-OH2)CaOH2]+ contained two aquo ligands, one bonded to the CaII ion and one bridging between the two metal ions and thus represents an unusual example of a heterobimetallic complex containing 2 aquo ligands spanning different metal ions. Both aquo ligands formed intramolecular hydrogen bonds with the [MST]3− ligand. [CoIIMST(OH2)]− was oxidized to form [CoIIIMST(OH2)] that was further converted to [CoIIIMST(μ-OH)CaII⊂15-crown-5]+ ([CoIII(μ-OH)CaII]+) in the presence of base and CaIIOTf2/15-crown-5. [CoIII(μ-OH)CaII]+ was also synthesized from the oxidation of [CoIIMST]− with PhIO in the presence of CaIIOTf2/15-crown-5. Allowing [CoIII(μ-OH)CaII]+ to react with diphenylhydrazine afforded [CoII(μ-OH2)CaIIOH2]+ and azobenzene. Additionally, the characterization of [CoIII(μ-OH)CaII]+ provides another formulation for the previously reported CoIV–oxo complex, [(TMG3tren)CoIV(μ-O)ScIII(OTf)3]2+ to one that instead could contain a CoIII–OH unit. PMID:22998407
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimura, Takashi; Hou, Z.; Wakatsuki, Yasua
1995-11-01
Reaction of the ytterbium-benzophenone dianion complex (1), which was formed by reaction of Yb metal with benzophenone in THF/HMPA, with 2,6-di-tert-butyl-4-methylphenol, yielded the ytterbium(II) aryloxide complex Yb(OAr){sub 2}(HMPA){sub 2} (2, Ar= C{sub 6}H{sub 2} -{sup t}Bu{sub 2}-2,6-Me-4) as a major product (80%) and the ytterbium(III) enolate complex (3) as a minor one (ca. 5% yield). The mechanisms of these reactions are discussed. X-ray crystallographic studies reveal that 3, 4a, and 7b are isostructural, and so are 5a and 6. The central metal ions in these complexes are all five-coordinated in a trigonal bipyramid form (highly distorted in the case ofmore » 5a and 6) with two HMPA ligands at the apical and three anionic oxygen ligands at the equatorial positions. 25 refs., 7 figs., 7 tabs.« less
Features of proteolytic properties of tetraphenylporphyrin complex with lanthanide group metals
NASA Astrophysics Data System (ADS)
Tobolkina, Elena A.; Skripnikova, Tatiana A.; Starikova, Anna A.; Shumilova, Galina I.; Pendin, Andrey A.
2018-01-01
Demetallation of metalloporphyrin molecules is one of the essential degradation reactions in photosynthesis. The effect of metalloporphyrin nature on removal of central metals from tetraphenylporphyrin complexes based on lanthanide group metals (Dy, Er, Lu, Ho) has been studied. pH values, at which the metal ions leave the metalloporphyrin complex were established using two-phase spectrophotometric titration with potentiometric pH-control. The pH values decrease with the increase of atomic numbers of lanthanide groups, as well as with increase of 4f-electrons. The reaction of an extra ligand exchange for the hydroxide ion was studied. For Dy-, Er- and Ho-tetraphenylporphyrin complexes one particle of extra ligand coordinates with one porphyrin complex. A complex with dimeric particles can be formed for the system of Lu-tetraphenylporphyrin. Constants of the ion exchange reactions were calculated.
Dissecting the molecular assembly of the Toxoplasma gondii MyoA motility complex.
Powell, Cameron J; Jenkins, Meredith L; Parker, Michelle L; Ramaswamy, Raghavendran; Kelsen, Anne; Warshaw, David M; Ward, Gary E; Burke, John E; Boulanger, Martin J
2017-11-24
Apicomplexan parasites such as Toxoplasma gondii rely on a unique form of locomotion known as gliding motility. Generating the mechanical forces to support motility are divergent class XIV myosins (MyoA) coordinated by accessory proteins known as light chains. Although the importance of the MyoA-light chain complex is well-established, the detailed mechanisms governing its assembly and regulation are relatively unknown. To establish a molecular blueprint of this dynamic complex, we first mapped the adjacent binding sites of light chains MLC1 and ELC1 on the MyoA neck (residues 775-818) using a combination of hydrogen-deuterium exchange mass spectrometry and isothermal titration calorimetry. We then determined the 1.85 Å resolution crystal structure of MLC1 in complex with its cognate MyoA peptide. Structural analysis revealed a bilobed architecture with MLC1 clamping tightly around the helical MyoA peptide, consistent with the stable 10 nm K d measured by isothermal titration calorimetry. We next showed that coordination of calcium by an EF-hand in ELC1 and prebinding of MLC1 to the MyoA neck enhanced the affinity of ELC1 for the MyoA neck 7- and 8-fold, respectively. When combined, these factors enhanced ELC1 binding 49-fold (to a K d of 12 nm). Using the full-length MyoA motor (residues 1-831), we then showed that, in addition to coordinating the neck region, ELC1 appears to engage the MyoA converter subdomain, which couples the motor domain to the neck. These data support an assembly model where staged binding events cooperate to yield high-affinity complexes that are able to maximize force transduction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Cai-Xia; Zhang, Jian-Guo, E-mail: zjgbit@bit.edu.cn; Yin, Xin
2015-03-15
A series of zero- to two-dimensional Cd(II) coordination compounds have been synthesized by the reaction of Cd(II) salts and 3-hydrazino-4-amino-1,2,4-triazole di-hydrochloride (HATr·2HCl). [CdCl{sub 2}(HATr){sub 2}] (1) and [Cd{sub 2}Cl{sub 4}(HATr){sub 2}(H{sub 2}O){sub 2}] (2) have discrete mononuclear and binuclear structures, respectively. [Cd(HATr){sub 2}(ClO{sub 4}){sub 2}]{sub n} (3) presents polymeric 1-D chain and [Cd{sub 2}(NO{sub 3}){sub 2}Cl{sub 2}(HATr){sub 2}]{sub n} (4) shows 2-D frameworks. All Cd(II) ions exhibit distorted octahedral configurations in 1–3, whilst both hexa and heptacoordinated Cd(II) are formed in 4. The HATr ligands adopt chelating coordinated mode in 1, while tri-dentate bridging–chelating mode in 2–4. The chloride ionmore » is a mono-coordinated ligand in 1 and 2, but it bridges two adjacent metal ions in 4. Furthermore, thermal behaviors have been investigated and the results reveal that all complexes have good thermal stability. The impact sensitivity test indicates that complex 3 is sensitive to impact stimuli. - Graphical abstract: Four Cd(II) complexes based on 3-hydrazino-4-amino-1,2,4-triazole ligands exhibit diverse structures from mononuclear to 2D networks. - Highlights: • Cd(II) complexes containing 3-hydrazino-4-amino-1,2,4-triazole ligands. • Mononuclear, binuclear, 1-D and 2-D structures. • Good thermal stability. • Thermal decomposition kinetics.« less
The Topographical Mapping in Drosophila Central Complex Network and Its Signal Routing
Chang, Po-Yen; Su, Ta-Shun; Shih, Chi-Tin; Lo, Chung-Chuan
2017-01-01
Neural networks regulate brain functions by routing signals. Therefore, investigating the detailed organization of a neural circuit at the cellular levels is a crucial step toward understanding the neural mechanisms of brain functions. To study how a complicated neural circuit is organized, we analyzed recently published data on the neural circuit of the Drosophila central complex, a brain structure associated with a variety of functions including sensory integration and coordination of locomotion. We discovered that, except for a small number of “atypical” neuron types, the network structure formed by the identified 194 neuron types can be described by only a few simple mathematical rules. Specifically, the topological mapping formed by these neurons can be reconstructed by applying a generation matrix on a small set of initial neurons. By analyzing how information flows propagate with or without the atypical neurons, we found that while the general pattern of signal propagation in the central complex follows the simple topological mapping formed by the “typical” neurons, some atypical neurons can substantially re-route the signal pathways, implying specific roles of these neurons in sensory signal integration. The present study provides insights into the organization principle and signal integration in the central complex. PMID:28443014
Zulkefeli, Mohd; Suzuki, Asami; Shiro, Motoo; Hisamatsu, Yosuke; Kimura, Eiichi; Aoki, Shin
2011-10-17
In Nature, organized nanoscale structures such as proteins and enzymes are formed in aqueous media via intermolecular interactions between multicomponents. Supramolecular and self-assembling strategies provide versatile methods for the construction of artificial chemical architectures for controlling reaction rates and the specificities of chemical reactions, but most are designed in hydrophobic environments. The preparation of artificial catalysts that have potential in aqueous media mimicking natural enzymes such as hydrolases remains a great challenge in the fields of supramolecular chemistry. Herein, we describe that a dimeric Zn(2+) complex having a 2,2'-bipyridyl linker, cyanuric acid, and a Cu(2+) ion automatically assembles in an aqueous solution to form a 4:4:4 complex, which is stabilized by metal-ligand coordination bonds, π-π-stacking interactions, and hydrogen bonding and contains μ-Cu(2)(OH)(2) cores analogous to the catalytic centers of phosphatase, a dinuclear metalloenzyme. The 4:4:4 complex selectively accelerates the hydrolysis of a phosphate monoester, mono(4-nitrophenyl)phosphate, at neutral pH.
NASA Astrophysics Data System (ADS)
Babahan, Ilknur; Emirdağ-Öztürk, Safiye; Poyrazoğlu-Çoban, Esin
2015-04-01
A novel ligand, vicinal dioxime ligand (egonol-hydrazone glyoxime) (LH2) was synthesized and characterized using 1H NMR, 13C NMR, MS, AAS, infrared spectroscopy, and magnetic susceptibility measurements. Mononuclear nickel (II), copper (II) and cobalt (II) complexes with a metal:ligand ratio of 1:2 for LH2 were also synthesized. Zn(II) forms complex [Zn(LH)Cl2] with a metal to ligand ratio of 1:1. IR spectrum shows that the ligand act in a bidentate manner and coordinates N4 donor groups of the ligands to NiII, CuII, CoII and ZnII ions. The detection of H-bonding (Osbnd H⋯O) in the [M(LH)2] metal complexes by IR spectra supported the square-planar MN4 coordination of Ni(II), Cu(II) and Co(II) complexes. The antimicrobial activities of compounds LH2 and their Ni(II), Cu(II), Co(II) and Zn(II) complexes were evaluated using the disc diffusion method against 16 bacteria and 5 yeasts. The minimal inhibitory concentrations (MICs) against all the bacteria and yeasts were also determined. Among the attempted test compounds, it is showed that all the compounds (L, LH2, [Ni(LH)2], [Cu(LH)2], [Co(LH)2(H2O)2], [Zn(LH)Cl2]) were effective against used test microorganisms.
Reversible five-coordinate ⇄ six-coordinate transformation in cobalt(II) complexes
NASA Astrophysics Data System (ADS)
Xiao, Linda; Bhadbhade, Mohan; Baker, Anthony T.
2018-04-01
The heterocyclic ligands 2,6-bis(pyrazol-1-yl)pyridine (L1) and 2,6-bis(benzimidazol-2-yl)pyridine (L2) and their cobalt(II) complexes were synthesized. The blue five-coordinate complex [Co(L1)Cl2] isolated initially from the reaction mixture rapidly absorbed water vapour from the atmosphere to yield the pink six-coordinate complex [Co(L1)(H2O)3]Cl2. This change is reversible upon desiccation or transferring [Co(L1)(H2O)3]Cl2 into acetonitrile. The five coordinate complex [Co(L2)Cl2], however, remains stable under similar conditions. The structures of the complexes [Co(L1)Cl2], [Co(L1)(H2O)3]Cl2 and [Co(L2)Cl2] have been determined by x-ray crystallography. The magnetic susceptibilities and the electronic spectra for [Co(L1)Cl2], [Co(L2)Cl2] and [Co(L1)(H2O)3]Cl2 are presented.
Phosphine and diphosphine complexes of silicon(IV) halides.
Levason, William; Pugh, David; Reid, Gillian
2013-05-06
The reaction of SiX4 (X = Cl or Br) with PMe3 in anhydrous CH2Cl2 forms trans-[SiX4(PMe3)2], while the diphosphines, Me2P(CH2)2PMe2, Et2P(CH2)2PEt2, and o-C6H4(PMe2)2 form cis-[SiX4(diphosphine)], all containing six-coordinate silicon centers. With Me2PCH2PMe2 the product was trans-[SiCl4(κ(1)-Me2PCH2PMe2)2]. The complexes have been characterized by X-ray crystallography, microanalysis, IR, and multinuclear ((1)H, (13)C{(1)H}, and (31)P{(1)H}) NMR spectroscopies. The complexes are stable solids and not significantly dissociated in nondonor solvents, although they are very moisture and oxygen sensitive. This stability conflicts with the predictions of recent density functional theory (DFT) calculations (Wilson et al. Inorg. Chem. 2012, 51, 7657-7668) which suggested six-coordinate silicon phosphines would be unstable, and also contrasts with the failure to isolate complexes with SiF4 (George et al. Dalton Trans. 2011, 40, 1584-1593). No reaction occurred between phosphines and SiI4, or with SiX4 and arsine ligands including AsMe3 and o-C6H4(AsMe2)2. Attempts to make five-coordinate [SiX4(PR3)] using the sterically bulky phosphines, P(t)Bu3, P(i)Pr3, or PCy3 failed, with no apparent reaction occurring, consistent with predictions (Wilson et al. Inorg. Chem. 2012, 51, 7657-7668) that such compounds would be very endothermic, while the large cone angles of the phosphines presumably preclude formation of six-coordination at the small silicon center. The reaction of Si2Cl6 with PMe3 or the diphosphines in CH2Cl2 results in instant disproportionation to the SiCl4 adducts and polychlorosilanes, but from hexane solution very unstable white [Si2Cl6(PMe3)2] and [Si2Cl6(diphosphine)] (diphosphine = Me2P(CH2)2PMe2 or o-C6H4(PMe2)2) precipitate. The reactions of SiHCl3 with PMe3 and Me2P(CH2)2PMe2 also produce the SiCl4 adducts, but using Et2P(CH2)2PEt2, colorless [SiHCl3{Et2P(CH2)2PEt2}] was isolated, which was characterized by an X-ray structure which showed a pseudo-octahedral complex with the Si-H trans to P. Attempts to reduce the silicon(IV) phosphine complexes to silicon(II) were unsuccessful, contrasting with the isolation of stable N-heterocyclic carbene adducts of Si(II).
Poly[[diaquahemi-μ4-oxalato-μ2-oxalato-praseodymium(III)] monohydrate
Yang, Ting-Hai; Chen, Qiang; Zhuang, Wei; Wang, Zhe; Yue, Bang-Yi
2009-01-01
In the title complex, {[Pr(C2O4)1.5(H2O)2]·H2O}n, the PrIII ion, which lies on a crystallographic inversion centre, is coordinated by seven O atoms from four oxalate ligands and two O atoms from two water ligands; further Pr—O coordination from tetradentate oxalate ligands forms a three-dimensional structure. The compound crystallized as a monohydrate, the water molecule occupying space in small voids and being secured by O—H⋯O hydrogen bonding as an acceptor from ligand water H atoms and as a donor to oxalate O-acceptor sites. PMID:21577485
NASA Astrophysics Data System (ADS)
Batool, Syeda Shahzadi; Gilani, Syeda Rubina; Tahir, Muhammad Nawaz; Rüffer, Tobias
2017-11-01
Two ternary copper(II) complexes of N,N,N‧,N'-tetramethylethylenediamine (tmen = C6H16N2) with benzoic acid and p-aminobenzoic acid, having the formula [Cu(tmen)(BA)2(H2O)2] (1), and [Cu(tmen)(pABA)2]. 1/2 CH3OH (2) {(Where BA1- = benzoate1- (C6H5CO21-), pABA1- = p-aminobenzoate1- (p-H2NC6H5CO21-)} have been prepared and characterized by elemental combustion analysis, Uv-Visible spectroscopy, FT-IR spectroscopy, thermal, and single crystal X-ray diffraction analyses. The complex 1 is a monomer with distorted octahedral geometry. In its CuN2O4 chromophore, the Cu(II) centre is coordinated by two N atoms of a symmetrically chelating tmen ligand, by two carboxylate-O atoms from two monodentate benzoate1- anions, and by two apical aqua-O atoms, which define the distorted octahedral structure. The complex 2 is a monomer with a distorted square planar coordination geometry. In CuN2O2 chromophore, tmen is coordinated to Cu(II) ion in a chelating bidentate fashion, while the two p-aminobenzoate1- anions coordinate to Cu(II) centre through their carboxylate-O atoms in a monodentate manner, forming a square planar structure. The observed difference between asymmetric ѵas(OCO) and symmetric ѵs(OCO) stretching IR vibrations of the carboxylate moieties for 1 and 2 is 220 cm-1 and 232 cm-1, respectively, which suggests monodentate coordination mode (Δν OCO>200) of the carboxylate groups to Cu(II) ion. Thermogravimetric studies of 1 indicates removal of two water molecules at 171 °C, elimination of a tmen upto 529 °C and of two benzoate groups upto 931 °C. In tga curve of 2, methanol is lost upto 212 °C, while tmen is lost from 212 to 993 °C. The antibacterial activities of these new compounds against various bacterial strains were also investigated.
Gasowska, A
2005-08-01
The interactions between pyrimidine nucleotides: cytidine-5'-diphosphate (CDP) and cytidine-5'-triphosphate (CTP) and Cu(II) ions, spermine (Spm) and 1,11-diamino-4,8-diazaundecane (3,3,3-tet) have been studied. The composition and stability constants of the complexes formed have been determined by means of the potentiometric method, while the centres of interactions in the ligands have been identified by the spectral methods (UV-Vis, Ultraviolet and Visible spectroscopy; EPR, electron spin resonance; NMR). In the systems without metal, formation of the molecular complexes nucleotide-polyamine with the interaction centres at the endocyclic nitrogen atom of purine ring N3, the oxygen atoms of the phosphate group from the nucleotide and protonated nitrogen atoms of the polyamine have been detected. Significant differences have been found in the metallation between the systems with Spm and with 3,3,3-tet. In the systems with spermine, mainly protonated species are formed with the phosphate group of the nucleotide and deprotonated nitrogen atoms of the polyamine making the coordination centres, while the donor nitrogen atom of the nucleotide N3 is involved in the intramolecular interligand interactions, additionally stabilising the complex. In the systems with 3,3,3-tet, the MLL' type species are formed in which the oxygen atoms of the phosphate group and nitrogen atoms of the polyamine are involved in metallation, whereas the N3 atom from the pyrimidine ring of the nucleotide is located outside the inner coordination sphere of copper ion. The main centre of Cu(II) interaction in the nucleotide, both in the system with Spm and 3,3,3-tet is the phosphate group of the nucleotide.
Portes, Juliana de A; Azeredo, Nathália F B; Siqueira, Pedro G T; de Souza, Tatiana Guinancio; Fernandes, Christiane; Horn, Adolfo; Candela, Dalber R S; de Souza, Wanderley; DaMatta, Renato A; Seabra, Sérgio H
2018-06-22
We have previously shown that metallocomplexes can control the growth of Toxoplasma gondii, the agent that causes toxoplasmosis. In order to develop new metallodrugs to treat this disease, we investigated the influence of the coordination of sulfadiazine (SDZ), a drug used to treat toxoplasmosis, on the biological activity of the iron(III) complex [Fe(HBPClNOL)Cl 2 ]·H 2 O, 1, (H 2 BPClNOL=N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)(3-chloro)(2-hydroxy)-propylamine). The new complex [(Cl)(SDZ)Fe(III)(μ-BPClNOL) 2 Fe(III)(SDZ)(Cl)]·2H 2 O, 2, which was obtained by the reaction between complex 1 and SDZ, was characterized using a range of physico-chemical techniques. The cytotoxic effect of the complexes and the ability of T. gondii to infect LLC-MK2 cells were assessed. It was found that both complexes reduced the growth of T. gondii while also causing low cytotoxicity in the host cells. After 48 h of treatment, complex 2 reduced the parasite's ability to proliferate by about 50% with an IC 50 of 1.66 μmol/L. Meanwhile, complex 1 or SDZ alone caused a 40% reduction in proliferation, and SDZ displayed an IC 50 of 5.3 μmol/L. In addition, complex 2 treatment induced distinct morphological and ultrastructural changes in the parasites and triggered the formation of cyst-like forms. These results show that the coordination of SDZ to the iron(III) complex is a good strategy for increasing the anti-toxoplasma activity of these compounds.
Cd(II) and Pb(II) complexes of the polyether ionophorous antibiotic salinomycin
2011-01-01
Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II) ions in in vivo experiments, despite so far no Pb(II)-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II) and lead(II). Results New metal(II) complexes of the polyether ionophorous antibiotic salinomycin with Cd(II) and Pb(II) ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa) undergoes a reaction with heavy metal(II) ions to form [Cd(Sal)2(H2O)2] (1) and [Pb(Sal)(NO3)] (2), respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II) ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II) center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II) cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II) complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock farming. PMID:21906282
Lipowska, Malgorzata; Hayes, Brittany L.; Hansen, Lory; Taylor, Andrew; Marzilli, Luigi G.
1996-07-03
The compounds RNHC(=S)NH(CH(2))(n)()NHC(=S)NHR were prepared in a search for new, relatively small N(2)S(2) ligands. These dithiourea (DTU) ligands are the first chelates containing two potentially bidentate thiourea moieties. A one-step reaction of 1,3-diaminopropane (1) with aryl or alkyl isothiocyanates or of 1,2-diaminoethane (2) with phenyl isothiocyanate afforded the target ligands in excellent yields (95-98%). The Re(V)=O complexes of RNHC(=S)NH(CH(2))(3)NHC(=S)NHR ligands were obtained through ligand exchange reactions with Re(V) precursors. The chemistry required neither protection of the sulfur atoms for ligand synthesis nor deprotection prior to metal complexation. The structure of (1-phenyl-3-(3-phenylthioureido)propyl]thioureato)oxorhenium(V) (7a), determined by X-ray diffraction methods, revealed the expected pseudo-square-pyramidal geometry with an N(2)S(2) basal and an apical oxo donor set. Both coordinated N's (N(c)) were deprotonated. One uncoordinated N (N(u)) was deprotonated, producing a neutral complex containing an unexpected new type of dianionic, four-membered N,S chelate. In the crystal, the N(u) atoms, N(3)H and N(4), of one complex each formed an H-bond with N(4) and N(3)H, respectively, of a symmetry-related complex. The N(c)-C-S bond angles (106.1(6) and 101.5(6) degrees ) were severely distorted from the 120 degrees expected for an sp(2)-hybridized C. However, these small bite angles and the large N-Re-N bond angle (86.1(3) degrees ) allowed for the formation of two four-membered chelate rings with normal Re-N and Re-S bond distances. Attempts to prepare complexes with the PhNHC(=S)NH(CH(2))(2)NHC(=S)NHPh ligand were unsuccessful. These results suggest that a central five-membered chelate ring is too small to accommodate bidentate coordination of both thiourea moieties. NMR studies in methanol established that the neutral complex with one uncoordinated N deprotonated was the favored form in neutral and basic solutions. However, under acidic conditions, a cationic form with both uncoordinated N's protonated was favored.
Pseudosymmetric fac-di-aqua-trichlorido[(di-methyl-phosphor-yl)methanaminium-κO]manganese(II).
Reiss, Guido J
2013-05-01
In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the Mn(II) metal center has a distorted o-cta-hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol-ecules and the O-coordinated dpmaH cation [dpmaH = (di-methyl-phosphor-yl)methanaminium] complete the coordination sphere. Each complex mol-ecule is connected to its neighbours by O-H⋯Cl and N-H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)].
The molecular mechanism of Mo isotope fractionation during adsorption to birnessite
Wasylenki, L.E.; Weeks, C.L.; Bargar, J.R.; Spiro, T.G.; Hein, J.R.; Anbar, A.D.
2011-01-01
Fractionation of Mo isotopes during adsorption to manganese oxides is a primary control on the global ocean Mo isotope budget. Previous attempts to explain what drives the surprisingly large isotope effect ??97/95Modissolved-??97/95Moadsorbed=1.8??? have not successfully resolved the fractionation mechanism. New evidence from extended X-ray absorption fine structure analysis and density functional theory suggests that Mo forms a polymolybdate complex on the surfaces of experimental and natural samples. Mo in this polynuclear structure is in distorted octahedral coordination, while Mo remaining in solution is predominantly in tetrahedral coordination as MoO42- Our results indicate that the difference in coordination environment between dissolved Mo and adsorbed Mo is the cause of isotope fractionation. The molecular mechanism of metal isotope fractionation in this system should enable us to explain and possibly predict metal isotope effects in other systems where transition metals adsorb to mineral surfaces. ?? 2011 Elsevier Ltd.
Singh, D P; Kumar, Ramesh; Singh, Jitender
2009-04-01
A new series of complexes have been synthesized by template condensation of oxalyldihydrazide and benzil in methanolic medium in the presence of trivalent chromium, manganese and iron salts forming complexes of the type [M(C(32)H(24)N(8)O(4))X]X(2) where M = Cr(III), Mn(III), Fe(III) and X = Cl(-1), NO(3)(-1), CH(3)COO(-1). The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic susceptibility measurements, electronic, NMR, infrared and far infrared spectral studies. On the basis of these studies, a five coordinate square pyramidal geometry has been proposed for all these complexes. The biological activities of the metal complexes have been tested in vitro against a number of pathogenic bacteria to assess their inhibiting potential. Some of these complexes have been found to exhibit remarkable antibacterial activities.
NASA Astrophysics Data System (ADS)
Bibi, Sherino; Mohammad, Sharifah; Manan, Ninie Suhana Abdul; Ahmad, Jimmy; Kamboh, Muhammad Afzal; Khor, Sook Mei; Yamin, Bohari M.; Abdul Halim, Siti Nadiah
2017-08-01
Two new mononuclear coordination complexes [Cu(bim)4Cl2]ṡ2H2O (1) and [Zn(bim)2Cl2] (2) containing the 1-benzylimidazole (bim) ligand were successfully synthesized. Both complexes were characterized by IR, UV-vis, and fluorescence spectroscopies, single crystal and powder X-ray diffraction measurements, and thermogravimetric analysis. Self-assembly during the recrystallization process resulted in the formation of octahedral and tetrahedral Cu(II) and Zn(II) complexes, respectively. The single crystals obtained are representative of the bulk material, as shown by the powder X-ray diffraction patterns. Cyclic voltammetry measurements showed that complex 1 undergoes a quasi-reversible redox reaction, while complex 2 undergoes reduction alone, and no oxidation peak was observed; this is due to the stability of the reduced form of complex 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalano, V.; Moore, A; Shearer, J
2009-01-01
The coordination chemistry of copper(I) halides to the homoleptic, N-heterocyclic carbene Au(I) complexes [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} and [Au(CH{sub 3}imCH{sub 2}py){sub 2}]BF{sub 4} was explored. The reaction of CuX (X = Cl, Br, I) with either [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} or [Au(CH{sub 3}imCH{sub 2}py){sub 2}]BF{sub 4} produces trimetallic complexes containing Cu{sub 2}X{sub 2}-butterfly copper clusters coordinated to the two imine moieties. The triangular arrangement of the metals places the gold(I) center in close proximity ({approx}2.5-2.6 {angstrom}) to the centroid of the Cu-Cu vector. The Cu-Cu separations vary as a function of bridging halide with the shortest Cu-Cu separationsmore » of {approx}2.5 {angstrom} found in the iodo-complexes and the longest separations of 2.9 {angstrom} found in the bridging chloride complexes. In all six complexes the Au-Cu separations range from {approx}2.8 to 3.0 {angstrom}. In the absence of halides, the dimetallic complex [AuCu(CH{sub 3}imCH{sub 2}py){sub 2}(NCCH{sub 3}){sub 2}](BF{sub 4}){sub 2}, containing a long Au-Cu distance of {approx}4.72 {angstrom} is formed. Additionally, as the byproduct of the reaction of CuBr with [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} the deep-red, dimetallic compound, AuCuBr{sub 2}(CH{sub 3}imCH{sub 2}quin){sub 2}, was isolated in very low yield. All of these complexes were studied by NMR spectroscopy, mass spectrometry, and the copper containing species were additionally characterized by X-ray crystallography. In solution the copper centers dissociate from the gold complexes, but as shown by XANES and EXAFS spectroscopy, at low temperature the Cu-Cu linkage is broken, and the individual copper(I) halides reposition themselves to opposite sides of the gold complex while remaining coordinated to one imine moiety. In the solid state all of the complexes are photoluminescent, though the nature of the excited state was not determined.« less
Bergmann, Larissa; Braun, Carolin; Nieger, Martin; Bräse, Stefan
2018-01-02
The prediction of coordination modes is of high importance when structure-property relationships are discussed. Herein, the coordination chemistry of copper(i) with pyridine-amines with a varying number of coordinating N-atoms, namely pyridine-benzimidazole, -triazole and -tetrazole, or their deprotonated analogues, and different phosphines was systematically studied and the photoluminescence properties of all synthesized complexes examined and related to DFT data. Each complex was characterized by single-crystal X-ray analysis and elemental analysis, and a set of prediction rules derived for the coordination chemistry of copper(i) with these ligands. A mononuclear cationic coordination motif was found for PPh 3 or DPEPhos with all N^N ligands, which exhibits blue to green luminescence of MLCT character d(Cu) → π*(pyridine-amine ligand) with quantum yields up to 46%. With the deprotonated N^N ligands, mononuclear neutral complexes were only expected with DPEPhos. The emission's nature of this complex type is strongly dependent on the electronic effects of the N^N ligand and was characterized as (ML + IL)CT transition. In contrast to the high quantum yields up to 78% for the tetrazolate complexes (as reported before), the triazolate and imidazolate based complexes show much lower emission efficiencies below 10%. Besides the mononuclear copper(i) complexes, cluster-type complexes were obtained, which show moderate luminescence in the blue to green region of the visible spectrum (469-505 nm).
Hureau, Christelle; Charlet, Laurent; Dorlet, Pierre; Gonnet, Florence; Spadini, Lorenzo; Anxolabéhère-Mallart, Elodie; Girerd, Jean-Jacques
2006-09-01
The GGGTH sequence has been proposed to be the minimal sequence involved in the binding of a fifth Cu(II) ion in addition to the octarepeat region of the prion protein (PrP) which binds four Cu(II) ions. Coordination of Cu(II) by the N- and C-protected Ac-GGGTH-NH(2) pentapeptide (P(5)) was investigated by using potentiometric titration, electrospray ionization mass spectrometry, UV-vis spectroscopy, electron paramagnetic resonance (EPR) spectroscopy and cyclic voltammetry experiments. Four different Cu(II) complexes were identified and characterized as a function of pH. The Cu(II) binding mode switches from NO(3) to N(4) for pH values ranging from 6.0 to 10.0. Quasi-reversible reduction of the [Cu(II)(P(5))H(-2)] complex formed at pH 6.7 occurs at E (1/2)=0.04 V versus Ag/AgCl, whereas reversible oxidation of the [Cu(II)(P(5))H(-3)](-) complex formed at pH 10.0 occurs at E (1/2)=0.66 V versus Ag/AgCl. Comparison of our EPR data with those of the rSHaPrP(90-231) (Burns et al. in Biochemistry 42:6794-6803, 2003) strongly suggests an N(3)O binding mode at physiological pH for the fifth Cu(II) site in the protein.
Chartier, François J M; Couture, Manon
2004-09-01
We have used resonance Raman spectroscopy to probe the heme environment of a recently discovered NOS from the pathogenic bacterium Staphylococcus aureus, named SANOS. We detect two forms of the CO complex in the absence of L-arginine, with nu(Fe-CO) at 482 and 497 cm(-1) and nu(C-O) at 1949 and 1930 cm(-1), respectively. Similarly to mammalian NOS, the binding of L-arginine to SANOS caused the formation of a single CO complex with nu(Fe-CO) and nu(C-O) frequencies at 504 and 1,917 cm(-1), respectively, indicating that L-arginine induced an electrostatic/steric effect on the CO molecule. The addition of pterins to CO-bound SANOS modified the resonance Raman spectra only when they were added in combination with L-arginine. We found that (6R) 5,6,7,8 tetra-hydro-L-biopterin and tetrahydrofolate were not required for the stability of the reduced protein, which is 5-coordinate, and of the CO complex, which does not change with time to a form with a Soret band at 420 nm that is indicative of a change of the heme proximal coordination. Since SANOS is stable in the absence of added pterin, it suggests that the role of the pterin cofactor in the bacterial NOS may be limited to electron/proton transfer required for catalysis and may not involve maintaining the structural integrity of the protein as is the case for mammalian NOS.
Mohandes, Fatemeh; Salavati-Niasari, Masoud
2014-07-01
In this work, hydroxyapatite (HAP), Ca10(PO4)6(OH)2, nanostructures including nanorods, nanobundles and nanoparticles have been prepared via a simple precipitation method. In the present method, Ca(NO3)2·4H2O and (NH4)2HPO4 were used as calcium and phosphorus precursors, respectively. Besides, the Schiff bases derived from 2-hydroxyacetophenone and different diamines were used as complexing agents for the in situ formation of Ca(2+) complexes. The formation mechanism of 0-D and 1-D nanostructures of HAP was also considered. When the complexing agents could coordinate to the Ca(2+) ions through N and O atoms to form the [CaN2O2](2+) complexes, HAP nanoparticles were generated. On the other hand, nanorods and nanobundles of HAP were obtained by forming the [CaN2](2+) as well as [CaO2](2+) complexes in the reaction solution. This work is the first successful synthesis of pure HAP nanostructures in the presence of Schiff bases instead of using the common surfactants. Copyright © 2014 Elsevier B.V. All rights reserved.
A Bridge to Coordination Isomer Selection in Lanthanide(III) DOTA-tetraamide Complexes
Vipond, Jeff; Woods, Mark; Zhao, Piyu; Tircso, Gyula; Ren, Jimin; Bott, Simon G.; Ogrin, Doug; Kiefer, Garry E.; Kovacs, Zoltan; Sherry, A.Dean
2008-01-01
Interest in macrocyclic lanthanide complexes such as DOTA is driven largely through interest in their use as contrast agents for MRI. The lanthanide tetraamide derivatives of DOTA have shown considerable promise as PARACEST agents, taking advantage of the slow water exchange kinetics of this class of complex. We postulated that water exchange in these tetraamide complexes could be slowed even further by introducing a group to sterically encumber the space above the water coordination site, thereby hindering the departure and approach of water molecules to the complex. The ligand 8O2-bridged-DOTAM was synthesized in a 34% yield from cyclen. It was found that the lanthanide complexes of this ligand did not possess a water molecule in the inner coordination sphere of the bound lanthanide. The crystal structure of the ytterbium complex revealed that distortions to the coordination sphere were induced by the steric constraints imposed on the complex by the bridging unit. The extent of the distortion was found to increase with increasing ionic radius of the lanthanide ion, eventually resulting in a complete loss of symmetry in the complex. Because this ligand system is bicyclic, the conformation of each ring in the system is constrained by that of the other, in consequence inclusion of the bridging unit in the complexes means only a twisted square antiprismatic coordination geometry is observed for complexes of 8O2-bridged-DOTAM. PMID:17295475
Systems for the Storage of Molecular Oxygen - A Study.
1980-11-25
form adducts with certain chemical compounds . This process, which will be called chemical absorption, generally uses a transition metal coordination... compound as the absorber. The study of oxygen binding to metal complexes has become of great interest over the past three decades (21), and some...for iron, most notably cobalt (33-35) manganese (36,37) and ruthenium (38), usually to serve as model compounds for biologically important heme
Yu, Xian-Yong; Deng, Lin; Zheng, Baishu; Zeng, Bi-Rong; Yi, Pinggui; Xu, Xin
2014-01-28
In order to understand the substitution effects of pyrazolylpyridine (pzpy) on the coordination reaction equilibria, the interactions between a series of pzpy-like ligands and biperoxidovanadate ([OV(O2)2(D2O)](-)/[OV(O2)2(HOD)](-), abbrv. bpV) have been explored using a combination of multinuclear ((1)H, (13)C, and (51)V) magnetic resonance, heteronuclear single quantum coherence (HSQC), and variable temperature NMR in a 0.15 mol L(-1) NaCl D2O solution that mimics the physiological conditions. Both the direct NMR data and the equilibrium constants are reported for the first time. A series of new hepta-coordinated peroxidovanadate species [OV(O2)2L](-) (L = pzpy-like chelating ligands) are formed due to several competitive coordination interactions. According to the equilibrium constants for products between bpV and the pzpy-like ligands, the relative affinity of the ligands is found to be pzpy > 2-Ester-pzpy ≈ 2-Me-pzpy ≈ 2-Amide-pzpy > 2-Et-pzpy. In the interaction system between bpV and pzpy, a pair of isomers (Isomers A and B) are observed in aqueous solution, which are attributed to different types of coordination modes between the metal center and the ligands, while the crystal structure of NH4[OV(O2)2(pzpy)]·6H2O (CCDC 898554) has the same coordination structure as Isomer A (the main product for pzpy). For the N-substituted ligands, however, Isomer A or B type complexes can also be observed in solution but the molar ratios of the isomer are reversed (i.e., Isomer B type is the main product). These results demonstrate that when the N atom in the pyrazole ring has a substitution group, hydrogen bonding (from the H atom in the pyrazole ring), the steric effect (from alkyl) and the solvation effect (from the ester or amide group) can jointly affect the coordination reaction equilibrium.
Robinson, Sophia G; Burns, Philip T; Miceli, Amanda M; Grice, Kyle A; Karver, Caitlin E; Jin, Lihua
2016-07-19
The binding of drugs to metalloenzymes is an intricate process that involves several interactions, including binding of the drug to the enzyme active site metal, as well as multiple interactions between the drug and the enzyme residues. In order to determine the free energy contribution of Zn(2+) binding by known metalloenzyme inhibitors without the other interactions, valid active site zinc structural mimetics must be formed and binding studies need to be performed in biologically relevant conditions. The potential of each of five ligands to form a structural mimetic with Zn(2+) was investigated in buffer using Isothermal Titration Calorimetry (ITC). All five ligands formed strong 1 : 1 (ligand : Zn(2+)) binary complexes. The complexes were used in further ITC experiments to study their interaction with 8-hydroxyquinoline (8-HQ) and/or acetohydroxamic acid (AHA), two bidentate anionic zinc-chelating enzyme inhibitors. It was found that tetradentate ligands were not suitable for creating zinc structural mimetics for inhibitor binding in solution due to insufficient coordination sites remaining on Zn(2+). A stable binary complex, [Zn(BPA)](2+), which was formed by a tridentate ligand, bis(2-pyridylmethyl)amine (BPA), was found to bind one AHA in buffer or a methanol : buffer mixture (60 : 40 by volume) at pH 7.25 or one 8-HQ in the methanol : buffer mixture at pH 6.80, making it an effective structural mimetic for the active site of zinc metalloenzymes. These results are consistent with the observation that metalloenzyme active site zinc ions have three residues coordinated to them, leaving one or two sites open for inhibitors to bind. Our findings indicate that Zn(BPA)X2 can be used as an active site structural mimetic for zinc metalloenzymes for estimating the free energy contribution of zinc binding to the overall inhibitor active site interactions. Such use will help aid in the rational design of inhibitors to a variety of zinc metalloenzymes.
Fitzgibbon, Jessica; Beck, Martina; Zhou, Ji; Faulkner, Christine; Robatzek, Silke; Oparka, Karl
2013-01-01
Plasmodesmata (PD) form tubular connections that function as intercellular communication channels. They are essential for transporting nutrients and for coordinating development. During cytokinesis, simple PDs are inserted into the developing cell plate, while during wall extension, more complex (branched) forms of PD are laid down. We show that complex PDs are derived from existing simple PDs in a pattern that is accelerated when leaves undergo the sink–source transition. Complex PDs are inserted initially at the three-way junctions between epidermal cells but develop most rapidly in the anisocytic complexes around stomata. For a quantitative analysis of complex PD formation, we established a high-throughput imaging platform and constructed PDQUANT, a custom algorithm that detected cell boundaries and PD numbers in different wall faces. For anticlinal walls, the number of complex PDs increased with increasing cell size, while for periclinal walls, the number of PDs decreased. Complex PD insertion was accelerated by up to threefold in response to salicylic acid treatment and challenges with mannitol. In a single 30-min run, we could derive data for up to 11k PDs from 3k epidermal cells. This facile approach opens the door to a large-scale analysis of the endogenous and exogenous factors that influence PD formation. PMID:23371949
2015-01-01
Cysteine dioxygenase (CDO) is a mononuclear, non-heme iron-dependent enzyme that converts exogenous cysteine (Cys) to cysteine sulfinic acid using molecular oxygen. Although the complete catalytic mechanism is not yet known, several recent reports presented evidence for an Fe(III)-superoxo reaction intermediate. In this work, we have utilized spectroscopic and computational methods to investigate the as-isolated forms of CDO, as well as Cys-bound Fe(III)CDO, both in the absence and presence of azide (a mimic of superoxide). An analysis of our electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance data of the azide-treated as-isolated forms of CDO within the framework of density functional theory (DFT) computations reveals that azide coordinates directly to the Fe(III), but not the Fe(II) center. An analogous analysis carried out for Cys-Fe(III)CDO provides compelling evidence that at physiological pH, the iron center is six coordinate, with hydroxide occupying the sixth coordination site. Upon incubation of this species with azide, the majority of the active sites retain hydroxide at the iron center. Nonetheless, a modest perturbation of the electronic structure of the Fe(III) center is observed, indicating that azide ions bind near the active site. Additionally, for a small fraction of active sites, azide displaces hydroxide and coordinates directly to the Cys-bound Fe(III) center to generate a low-spin (S = 1/2) Fe(III) complex. In the DFT-optimized structure of this complex, the central nitrogen atom of the azide moiety lies within 3.12 Å of the cysteine sulfur. A similar orientation of the superoxide ligand in the putative Fe(III)-superoxo reaction intermediate would promote the attack of the distal oxygen atom on the sulfur of substrate Cys. PMID:25093959
Poly[tetraaqua(μ6-9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylato)dimanganese(II)
Xu, Rui; Liu, Jian-Lan
2012-01-01
The title complex, [Mn2(C18H4O10)(H2O)4]n, was synthesized from manganese(II) chloride tetrahydrate and 9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylic acid (H4AQTC) in water. The anthraquinone unit is located about a crystallographic center of inversion. Each asymmetric unit therefore contains one MnII atom, two water ligands and one half AQTC4− anion. The MnII atom is coordinated in a distorted octahedral geometry by four O atoms from three AQTC4− ligands and two water O atoms. Two of the carboxylate groups coordinate one MnII atom in a chelating mode, whereas the others each coordinate two MnII atoms. Each AQTC4− tetra-anion therefore coordinates six different MnII ions and, as a result, a three-dimensional coordination polymer is formed. O—H⋯O hydrogen bonds, some of them bifurcated, between water ligands and neighboring water or anthraquinone ligands are observed in the crystal structure. PMID:22807779
Rancan, Marzio; Dolmella, Alessandro; Seraglia, Roberta; Orlandi, Simonetta; Quici, Silvio; Sorace, Lorenzo; Gatteschi, Dante; Armelao, Lidia
2012-05-07
Highly versatile coordinating ligands are designed and synthesized with two β-diketonate groups linked at the carbon 3 through a phenyl ring. The rigid aromatic spacer is introduced in the molecules to orient the two acetylacetone units along different angles and coordination vectors. The resulting para, meta, and ortho bis-(3-acetylacetonate)benzene ligands show efficient chelating properties toward Cu(II) ions. In the presence of 2,2'-bipyridine, they promptly react and yield three dimers, 1, 2, and 3, with the bis-acetylacetonate unit in bridging position between two metal centers. X-ray single crystal diffraction shows that the compounds form supramolecular chains in the solid state because of intermolecular interactions. Each of the dinuclear complexes shows a magnetic behavior which is determined by the combination of structural parameters and spin polarization effects. Notably, the para derivative (1) displays a moderate antiferromagnetic coupling (J = -3.3 cm(-1)) along a remarkably long Cu···Cu distance (12.30 Å).
A highly stretchable autonomous self-healing elastomer
NASA Astrophysics Data System (ADS)
Li, Cheng-Hui; Wang, Chao; Keplinger, Christoph; Zuo, Jing-Lin; Jin, Lihua; Sun, Yang; Zheng, Peng; Cao, Yi; Lissel, Franziska; Linder, Christian; You, Xiao-Zeng; Bao, Zhenan
2016-06-01
It is a challenge to synthesize materials that possess the properties of biological muscles—strong, elastic and capable of self-healing. Herein we report a network of poly(dimethylsiloxane) polymer chains crosslinked by coordination complexes that combines high stretchability, high dielectric strength, autonomous self-healing and mechanical actuation. The healing process can take place at a temperature as low as -20 °C and is not significantly affected by surface ageing and moisture. The crosslinking complexes used consist of 2,6-pyridinedicarboxamide ligands that coordinate to Fe(III) centres through three different interactions: a strong pyridyl-iron one, and two weaker carboxamido-iron ones through both the nitrogen and oxygen atoms of the carboxamide groups. As a result, the iron-ligand bonds can readily break and re-form while the iron centres still remain attached to the ligands through the stronger interaction with the pyridyl ring, which enables reversible unfolding and refolding of the chains. We hypothesize that this behaviour supports the high stretchability and self-healing capability of the material.
Ateş, Bürke Meltem; Ercan, Filiz; Svoboda, Ingrid; Fuess, Hartmut; Atakol, Orhan
2008-01-01
The title linear trinuclear copper(II) complex, [Cu3(C17H20N2O2)2Cl2], was obtained from N,N′-bis(2-hydroxybenzyl)-1,3-propanediamine and CuCl2. The overall charge of the three Cu2+ ions is balanced by four deprotonated phenol groups and two Cl− ligands. The complex is centrosymmetric with the central Cu2+ occupying a special position (). This Cu2+ ion is coordinated by the four phenolate O atoms in a square-planar fashion. The second Cu2+ occupies a general position in a square-pyramidal fashion. Two phenolate O atoms and two amine N form the basal plane, with Cl− ligands occupying the fifth coordination site. PMID:21201868
A Nonequilibrium Rate Formula for Collective Motions of Complex Molecular Systems
NASA Astrophysics Data System (ADS)
Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.
2010-09-01
We propose a compact reaction rate formula that accounts for a non-equilibrium distribution of residence times of complex molecules, based on a detailed study of the coarse-grained phase space of a reaction coordinate. We take the structural transition dynamics of a six-atom Morse cluster between two isomers as a prototype of multi-dimensional molecular reactions. Residence time distribution of one of the isomers shows an exponential decay, while that of the other isomer deviates largely from the exponential form and has multiple peaks. Our rate formula explains such equilibrium and non-equilibrium distributions of residence times in terms of the rates of diffusions of energy and the phase of the oscillations of the reaction coordinate. Rapid diffusions of energy and the phase generally give rise to the exponential decay of residence time distribution, while slow diffusions give rise to a non-exponential decay with multiple peaks. We finally make a conjecture about a general relationship between the rates of the diffusions and the symmetry of molecular mass distributions.
Dereven'kov, Ilia A; Salnikov, Denis S; Makarov, Sergei V; Boss, Gerry R; Koifman, Oskar I
2013-11-21
We studied the kinetics of reactions of cob(I)alamin and cob(I)inamide with thiosulfate, sulfite, and dithionite by UV-Visible (UV-Vis) and stopped-flow spectroscopy. We found that the two Co(I) species were oxidized by these sulfur-containing compounds to Co(II) forms: oxidation by excess thiosulfate leads to penta-coordinate complexes and oxidation by excess sulfite or dithionite leads to hexa-coordinate Co(II)-SO2(-) complexes. The net scheme involves transfer of three electrons in the case of oxidation by thiosulfate and one electron for oxidation by sulfite and dithionite. On the basis of kinetic data, the nature of the reactive oxidants was suggested, i.e., HS2O3(-) (for oxidation by thiosulfate), S2O5(2-), HSO3(-), and aquated SO2 (for oxidation by sulfite), and S2O4(2-) and SO2(-) (for oxidation by dithionite). No difference was observed in kinetics with cob(i)alamin or cob(i)inamide as reductants.
Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway.
Saxton, Robert A; Knockenhauer, Kevin E; Wolfson, Rachel L; Chantranupong, Lynne; Pacold, Michael E; Wang, Tim; Schwartz, Thomas U; Sabatini, David M
2016-01-01
Eukaryotic cells coordinate growth with the availability of nutrients through the mechanistic target of rapamycin complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag guanosine triphosphatases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. Here we present the 2.7 angstrom crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway. Copyright © 2016, American Association for the Advancement of Science.
Nagata, Maika K C T; Brauchle, Paul S; Wang, Sen; Briggs, Sarah K; Hong, Young Soo; Laorenza, Daniel W; Lee, Andrea G; Westmoreland, T David
2016-08-16
Three new DOTAM (1,4,7,10-tetrakis(acetamido)-1,4,7,10-tetraazacyclododecane) complexes have been synthesized and characterized by X-ray crystallography: [Co(DOTAM)]Cl 2 •3H 2 O, [Ni(DOTAM)]Cl 2 •4H 2 O, and [Cu(DOTAM)](ClO 4 ) 2 •H 2 O. Solid state and solution IR spectroscopic features for a series of [M(DOTAM)] 2+ complexes (M=Mn, Co, Cu, Ni, Ca, Zn) correlate with solid state and solution coordination numbers. [Co(DOTAM)] 2+ , [Ni(DOTAM)] 2+ , and [Zn(DOTAM)] 2+ are demonstrated to be six-coordinate in both the solid state and in solution, while [Mn(DOTAM)] 2+ and [Ca(DOTAM)] 2+ are eight-coordinate in the solid state and remain so in solution. [Cu(DOTAM)] 2+ , which is five-coordinate by X-ray crystallography, is shown to increase its coordination number in solution to six-coordinate.
Femtomolar Ln(III) affinity in peptide-based ligands containing unnatural chelating amino acids.
Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Delangle, Pascale
2012-05-07
The incorporation of unnatural chelating amino acids in short peptide sequences leads to lanthanide-binding peptides with a higher stability than sequences built exclusively from natural residues. In particular, the hexadentate peptide P(22), which incorporates two unnatural amino acids Ada(2) with aminodiacetate chelating arms, showed picomolar affinity for Tb(3+). To design peptides with higher denticity, expected to show higher affinity for Ln(3+), we synthesized the novel unnatural amino acid Ed3a(2) which carries an ethylenediamine triacetate side-chain and affords a pentadentate coordination site. The synthesis of the derivative Fmoc-Ed3a(2)(tBu)(3)-OH, with appropriate protecting groups for direct use in the solid phase peptide synthesis (Fmoc strategy), is described. The two high denticity peptides P(HD2) (Ac-Trp-Ed3a(2)-Pro-Gly-Ada(2)-Gly-NH(2)) and P(HD5) (Ac-Trp-Ada(2)-Pro-Gly-Ed3a(2)-Gly-NH(2)) led to octadentate Tb(3+) complexes with femtomolar stability in water. The position of the high denticity amino acid Ed3a(2) in the hexapeptide sequence appears to be critical for the control of the metal complex speciation. Whereas P(HD5) promotes the formation of polymetallic species in excess of Ln(3+), P(HD2) forms exclusively the mononuclear complex. The octadentate coordination of Tb(3+) by both P(HD) leads to total dehydration of the metal ion in the mononuclear complexes with long luminescence lifetimes (>2 ms). Hence, we demonstrated that unnatural amino acids carrying polyaminocarboxylate side-chains are interesting building blocks to design high affinity Ln-binding peptides. In particular the novel peptide P(HD2) forms a unique octadentate Tb(3+) complex with femtomolar stability in water and an improvement of the luminescence properties with respect to the trisaquo TbP(22) complex by a factor of 4.
Mikutta, Christian; Langner, Peggy; Bargar, John R; Kretzschmar, Ruben
2016-10-04
Peatlands frequently serve as efficient biogeochemical traps for U. Mechanisms of U immobilization in these organic matter-dominated environments may encompass the precipitation of U-bearing mineral(oid)s and the complexation of U by a vast range of (in)organic surfaces. The objective of this work was to investigate the spatial distribution and molecular binding mechanisms of U in soils of an alpine minerotrophic peatland (pH 4.7-6.6, E h = -127 to 463 mV) using microfocused X-ray fluorescence spectrometry and bulk and microfocused U L 3 -edge X-ray absorption spectroscopy. The soils contained 2.3-47.4 wt % organic C, 4.1-58.6 g/kg Fe, and up to 335 mg/kg geogenic U. Uranium was found to be heterogeneously distributed at the micrometer scale and enriched as both U(IV) and U(VI) on fibrous and woody plant debris (48 ± 10% U(IV), x̅ ± σ, n = 22). Bulk U X-ray absorption near edge structure (XANES) spectroscopy revealed that in all samples U(IV) comprised 35-68% of total U (x̅ = 50%, n = 15). Shell-fit analyses of bulk U L 3 -edge extended X-ray absorption fine structure (EXAFS) spectra showed that U was coordinated to 1.3 ± 0.2 C atoms at a distance of 2.91 ± 0.01 Å (x̅ ± σ), which implies the formation of bidentate-mononuclear U(IV/VI) complexes with carboxyl groups. We neither found evidence for U shells at ∼3.9 Å, indicative of mineral-associated U or multinuclear U(IV) species, nor for a substantial P/Fe coordination of U. Our data indicates that U(IV/VI) complexation by natural organic matter prevents the precipitation of U minerals as well as U complexation by Fe/Mn phases at our field site, and suggests that organically complexed U(IV) is formed via reduction of organic matter-bound U(VI).
D'Souza, Francis; El-Khouly, Mohamed E; Gadde, Suresh; McCarty, Amy L; Karr, Paul A; Zandler, Melvin E; Araki, Yasuyaki; Ito, Osamu
2005-05-26
Spectroscopic, redox, and electron transfer reactions of a self-assembled donor-acceptor dyad formed by axial coordination of magnesium meso-tetraphenylporphyrin (MgTPP) and fulleropyrrolidine appended with an imidazole coordinating ligand (C(60)Im) were investigated. Spectroscopic studies revealed the formation of a 1:1 C(60)Im:MgTPP supramolecular complex, and the anticipated 1:2 complex could not be observed because of the needed large amounts of the axial coordinating ligand. The formation constant, K(1), for the 1:1 complex was found to be (1.5 +/- 0.3) x 10(4) M(-1), suggesting fairly stable complex formation. The geometric and electronic structures of the dyads were probed by ab initio B3LYP/3-21G() methods. The majority of the highest occupied frontier molecular orbital (HOMO) was found to be located on the MgTPP entity, while the lowest unoccupied molecular orbital (LUMO) was on the fullerene entity, suggesting that the charge-separated state of the supramolecular complex is C(60)Im(*-):MgTPP(*+). Redox titrations involving MgTPP and C(60)Im allowed accurate determination of the oxidation and reduction potentials of the donor and acceptor entities in the supramolecular complex. These studies revealed more difficult oxidation, by about 100 mV, for MgTPP in the pentacoordinated C(60)Im:MgTPP compared to pristine MgTPP in o-dichlorobenzene. A total of six one-electron redox processes corresponding to the oxidation and reduction of the zinc porphyrin ring and the reduction of fullerene entities was observed within the accessible potential window of the solvent. The excited state events were monitored by both steady state and time-resolved emission as well as transient absorption techniques. In o-dichlorobenzene, upon coordination of C(60)Im to MgTPP, the main quenching pathway involved electron transfer from the singlet excited MgTPP to the C(60)Im moiety. The rate of forward electron transfer, k(CS), calculated from the picosecond time-resolved emission studies was found to be 1.1 x 10(10) s(-1) with a quantum yield, Phi(CS), of 0.99, indicating fast and efficient charge separation. The rate of charge recombination, k(CR), evaluated from nanosecond transient absorption studies, was found to be 8.3 x 10(7) s(-1). A comparison between k(CS) and k(CR) suggested an excellent opportunity to utilize the charge-separated state for further electron-mediating processes.
Identifying and Coordinating Care for Complex Patients
Rudin, Robert S.; Gidengil, Courtney A.; Predmore, Zachary; Schneider, Eric C.; Sorace, James; Hornstein, Rachel
2017-01-01
Abstract In the United States, a relatively small proportion of complex patients---defined as having multiple comorbidities, high risk for poor outcomes, and high cost---incur most of the nation's health care costs. Improved care coordination and management of complex patients could reduce costs while increasing quality of care. However, care coordination efforts face multiple challenges, such as segmenting populations of complex patients to better match their needs with the design of specific interventions, understanding how to reduce spending, and integrating care coordination programs into providers' care delivery processes. Innovative uses of analytics and health information technology (HIT) may address these challenges. Rudin and colleagues at RAND completed a literature review and held discussions with subject matter experts, reaching the conclusion that analytics and HIT are being used in innovative ways to coordinate care for complex patients but that the capabilities are limited, evidence of their effectiveness is lacking, and challenges are substantial, and important foundational work is still needed. PMID:28845354
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumakov, Yu. M.; Tsapkov, V. I., E-mail: vtsapkov@gmail.com; Antosyak, B. Ya.
Nitrato-4-bromo-2-[(2-hydroxyethylimino)methyl]phenolatoimidazolecopper and nitrato-4-chloro-2-[(2-hydroxyethylimino)methyl]phenolatoimidazolecopper were synthesized and studied by X-ray diffraction. The crystals are isostructural. The coordination polyhedron of the copper atom can be described as a distorted square pyramid whose basal plane is formed by the phenolic and alcoholic oxygen atoms and the nitrogen atom of the monodeprotonated tridentate azomethine molecule and the imidazole nitrogen atom. The apex of the copper polyhedron is occupied by the oxygen atom of the nitrato group. The complexes are linked together by hydrogen bonds with the participation of the nitrato groups to form a three-dimensional framework.
Robinson-Trautman solutions to Einstein's equations
NASA Astrophysics Data System (ADS)
Davidson, William
2017-02-01
Solutions to Einstein's equations in the form of a Robinson-Trautman metric are presented. In particular, we derive a pure radiation solution which is non-stationary and involves a mass m, The resulting spacetime is of Petrov Type II A special selection of parametric values throws up the feature of the particle `rocket', a Type D metric. A suitable transformation of the complex coordinates allows the metrics to be expressed in real form. A modification, by setting m to zero, of the Type II metric thereby converting it to Type III, is then shown to admit a null Einstein-Maxwell electromagnetic field.
Vibrational investigation on the copper(II) binding mode of carcinine and its pH dependence
NASA Astrophysics Data System (ADS)
Torreggiani, Armida; Reggiani, Matteo; Manco, Immacolata; Tinti, Anna
2007-05-01
A comparative FT-Raman and FT-IR study of Carcinine (Carc), a natural imidazole dipeptide, and its complexes with Cu(II) ions was performed at different pH's. Both Raman and IR spectra present marker bands useful for the identification of the predominant complexes; in particular, Raman spectroscopy appears useful for identifying the metal-coordination site of the imidazole ring (N π or N τ atoms) of Carc. Free Carc shows a strong network of H-bonds and tautomer I (N τ-H) is the preferred form of the imidazolic ring (bands at 1578, 1292 and 988 cm -1). The presence of Cu(II) does not affect the tautomeric equilibrium at pH 7, whereas the deprotonation of both N-imidazolic nitrogens is strongly induced at higher pH. Under neutral and alkaline conditions the primary amino group takes part to the Cu(II) chelation, whereas all the peptidic moieties are involved in coordination only at pH 7. Thus, Carc acts as a tri-dentate ligand at neutral pH, mainly giving a monomeric complex, [CuLH -1], containing tautomer I, whereas an oligonuclear complex, probably [Cu 4L 4H -8], where metal-imidazolate ions connect different ligand molecules, predominates at alkaline pH.
METHOD AND MEANS FOR RECOGNIZING COMPLEX PATTERNS
Hough, P.V.C.
1962-12-18
This patent relates to a method and means for recognizing a complex pattern in a picture. The picture is divided into framelets, each framelet being sized so that any segment of the complex pattern therewithin is essentially a straight line. Each framelet is scanned to produce an electrical pulse for each point scanned on the segment therewithin. Each of the electrical pulses of each segment is then transformed into a separate strnight line to form a plane transform in a pictorial display. Each line in the plane transform of a segment is positioned laterally so that a point on the line midway between the top and the bottom of the pictorial display occurs at a distance from the left edge of the pictorial display equal to the distance of the generating point in the segment from the left edge of the framelet. Each line in the plane transform of a segment is inclined in the pictorial display at an angle to the vertical whose tangent is proportional to the vertical displacement of the generating point in the segment from the center of the framelet. The coordinate position of the point of intersection of the lines in the pictorial display for each segment is determined and recorded. The sum total of said recorded coordinate positions being representative of the complex pattern. (AEC)
New water soluble heterometallic complex showing unpredicted coordination modes of EDTA
NASA Astrophysics Data System (ADS)
Mudsainiyan, R. K.; Jassal, A. K.; Chawla, S. K.
2015-10-01
A mesoporous 3D polymeric complex (I) having formula {[Zr(IV)O-μ3-(EDTA)Fe(III)OH]·H2O}n has been crystallized and characterized by various techniques. Single-crystal X-ray diffraction analysis revealed that complex (I) crystallized in chiral monoclinic space group Cc (space group no. 9) with unexpected coordination modes of EDTA and mixture of two transition metal ions. In this complex, the coordination number of Zr(IV) ion is seven where four carboxylate oxygen atoms, two nitrogen atoms, one oxide atom are coordinating with Zr(IV). Fe(III) is four coordinated and its coordination environment is composed of three different carboxylic oxygen atoms from three different EDTA and one oxygen atom of -OH group. The structure consists of 4-c and 16-c (2-nodal) net with new topology and point symbol for net is (336·454·530)·(36). TGA study and XRPD pattern showed that the coordination polymer is quite stable even after losing water molecule and -OH ion. Quenching behavior in fluorescence of ligand is observed by complexation with transition metal ions is due to n-π* transition. The SEM micrograph shows the morphology of complex (I) exhibits spherical shape with size ranging from 50 to 280 nm. The minimum N2 (SBET=8.7693 m2/g) and a maximum amount of H2 (high surface area=1044.86 m2/g (STP)) could be adsorbed at 77 K. From DLS study, zeta potential is calculated i.e. -7.94 shows the negative charges on the surface of complex. Hirshfeld surface analysis and fingerprint plots revealed influence of weak or non bonding interactions in crystal packing of complex.
Wang, Dan; Li, Shu-Mu; Zheng, Jian-Quan; Kong, Duan-Yang; Zheng, Xiang-Jun; Fang, De-Cai; Jin, Lin-Pei
2017-01-17
2-(Trityliminomethyl)-quinolin-8-ol (HL) and its Zn(II) complex were synthesized and characterized by single-crystal X-ray diffraction. HL is an unsymmetrical molecule and coordinated with Zn(II) ion to form ZnL 2 in the antiparallel-mode arrangement via Zn-O (hydroxyl group) and Zn-N (quinoline ring) of HL. A high degree of ZnL 2 molecules ordering stacking is formed by the coordination bonds and intermolecular π-π interactions, in which head-to-tail arrangement (J-mode stacking) for L - is found. HL is nonfluorescent and ZnL 2 is weakly fluorescent in THF. The fluorescence emission of ZnL 2 enhances in THF/H 2 O as H 2 O% (volume %) is above 60% and aggregates particles with several hundred nanometers are formed, which is confirmed by DLS data and TEM images. The J-aggregates stacking for L - in ZnL 2 results in aggregation-induced emission enhancement (AIEE) for ZnL 2 in THF/H 2 O. Theoretical computations based on B3LYP/6-31G(d, p) and TD-B3LYP/6-31G(d, p) methods were carried out. ESIPT is the supposed mechanism for fluorescent silence of HL, and fluorescence emission of ZnL 2 is attributed to the restriction of ESIPT process. The oscillator strength of ZnL 2 increases from 0.017 for monomer to 0.032 for trimer. It indicates that a high degree of ZnL 2 molecules ordering stacking in THF/H 2 O is of benefit to fluorescence enhancement. HL is an ESIPT-coupled AIEE chemosensor for Zn(II) with high selectivity and sensitivity in aqueous medium. HL can efficiently detect intracellular Zn(II) ions because of ESIPT-coupled AIEE property of ZnL 2 in mixed solvent.
Chatterjee, Sudip K; Roy, Suprakash; Barman, Suman Kumar; Maji, Ram Chandra; Olmstead, Marilyn M; Patra, Apurba K
2012-07-16
Seven bis-Ni(II) complexes of a N(2)S donor set ligand have been synthesized and examined for their ability to stabilize Ni(0), Ni(I), Ni(II) and Ni(III) oxidation states. Compounds 1-5 consist of modifications of the pyridine ring of the tridentate Schiff base ligand, 2-pyridyl-N-(2'-methylthiophenyl)methyleneimine ((X)L1), where X = 6-H, 6-Me, 6-p-ClPh, 6-Br, 5-Br; compound 6 is the reduced amine form (L2); compound 7 is the amide analog (L3). The compounds are perchlorate salts except for 7, which is neutral. Complexes 1 and 3-7 have been structurally characterized. Their coordination geometry is distorted octahedral. In the case of 6, the tridentate ligand coordinates in a facial manner, whereas the remaining complexes display meridional coordination. Due to substitution of the pyridine ring of (X)L1, the Ni-N(py) distances for 1~5 < 3 < 4 increase and UV-vis λ(max) values corresponding to the (3)A(2g)(F)→(3)T(2g)(F) transition show an increasing trend 1~5 < 2 < 3 < 4. Cyclic voltammetry of 1-5 reveals two quasi-reversible reduction waves that correspond to Ni(II)→Ni(I) and Ni(I)→Ni(0) reduction. The E(1/2) for the Ni(II)/Ni(I) couple decreases as 1 > 2 > 3 > 4. Replacement of the central imine N donor in 1 by amine 6 or amide 7 N donors reveals that complex 6 in CH(3)CN exhibits an irreversible reductive response at E(pc) = -1.28 V, E(pa) = +0.25 V vs saturated calomel electrode (SCE). In contrast, complex 7 shows a reversible oxidation wave at E(1/2) = +0.84 V (ΔE(p) = 60 mV) that corresponds to Ni(II)→Ni(III). The electrochemically generated Ni(III) species, [(L3)(2)Ni(III)](+) is stable, showing a new UV-vis band at 470 nm. EPR measurements have also been carried out.
Hennig, Christoph; Ikeda-Ohno, Atsushi; Emmerling, Fanziska; Kraus, Werner; Bernhard, Gert
2010-04-21
The limiting U(IV) carbonate species in aqueous solution was investigated by comparing its structure parameters with those of the complex preserved in a crystal structure. The solution species prevails in aqueous solution of 0.05 M U(IV) and 1 M NaHCO(3) at pH 8.3. Single crystals of Na(6)[U(CO(3))(5)].12H(2)O were obtained directly from this mother solution. The U(IV) carbonate complex in the crystal structure was identified as a monomeric [U(CO(3))(5)](6-) anionic complex. The interatomic distances around the U(IV) coordination polyhedron show average distances of U-O = 2.461(8) A, U-C = 2.912(4) A and U-O(dist) = 4.164(6) A. U L(3)-edge EXAFS spectra were collected from the solid Na(6)[U(CO(3))(5)].12H(2)O and the corresponding solution. The first shell of the Fourier transforms (FTs) revealed, in both samples, a coordination of ten oxygen atoms at an average U-O distance of 2.45 +/- 0.02 A, the second shell originates from five carbon atoms with a U-C distance of 2.91 +/- 0.02 A, and the third shell was fit with single and multiple scattering paths of the distal oxygen at 4.17 +/- 0.02 A. These data indicate the identity of the [U(CO(3))(5)](6-) complex in solid and solution state. The high negative charge of the [U(CO(3))(5)](6-) anion is compensated by Na(+) cations. In solid state the Na(+) cations form a bridging network between the [U(CO(3))(5)](6-) units, while in liquid state the Na(+) cations seem to be located close to the anionic complex. The average metal-oxygen distances of the coordination polyhedron show a linear correlation to the radius contraction of the neighbouring actinide(IV) ions and indicate the equivalence of the [An(CO(3))(5)](6-) coordination within the series of thorium, uranium, neptunium and plutonium.
Lead(II) Complex Formation with L-cysteine in Aqueous Solution
Jalilehvand, Farideh; Sisombath, Natalie S.; Schell, Adam C.; Facey, Glenn A.
2015-01-01
The lead(II) complexes formed with the multidentate chelator L-cysteine (H2Cys) in alkaline aqueous solution were studied using 207Pb, 13C and 1H NMR, Pb LIII-edge X-ray absorption and UV-vis. spectroscopic techniques, complemented by electro-spray ion mass spectrometry (ESI-MS). The H2Cys/Pb(II) mole ratios were varied from 2.1 to 10.0 for two sets of solutions with CPb(II) = 0.01 and 0.1 M, respectively, prepared at pH values (9.1 – 10.4) for which precipitates of Pb(II)-cysteine dissolved. At low H2Cys/Pb(II) mole ratios (2.1 – 3.0) a mixture of the dithiolate [Pb(S,N-Cys)2]2− and [Pb(S,N,O-Cys)(S-HCys)]− complexes with the average Pb-(N/O) and Pb-S distances 2.42 ± 0.04 Å and 2.64 ± 0.04 Å, respectively, was found to dominate. At high concentration of free cysteinate (> 0.7 M) a significant amount converts to the trithiolate [Pb(S,N-Cys)(S-HCys)2]2−, including a minor amount of a PbS3 coordinated [Pb(S-HCys)3]− complex. The coordination mode was evaluated by fitting linear combinations of EXAFS oscillations to the experimental spectra, and by the 207Pb NMR signals in the chemical shift range δPb = 2006 – 2507 ppm, which became increasingly deshielded with increasing free cysteinate concentration. One-pulse magic angle spinning (MAS) 207Pb NMR spectra of crystalline Pb(aet)2 (Haet = 2-aminoethanethiol or cysteamine) with PbS2N2 coordination were measured for comparison (δiso = 2105 ppm). The UV-vis. spectra displayed absorption maxima at 298 – 300 nm (S− → PbII charge transfer) for the dithiolate PbS2N(N/O) species; with increasing ligand excess a shoulder appeared at ∼ 330 nm for the trithiolate PbS3N and PbS3 (minor) complexes. The results provide spectroscopic fingerprints for structural models for Pb(II) coordination modes to proteins and enzymes. PMID:25695880
Lead(II) complex formation with l-cysteine in aqueous solution
Jalilehvand, Farideh; Sisombath, Natalie S.; Schell, Adam C.; ...
2015-02-19
The lead(II) complexes formed with the multidentate chelator l-cysteine (H 2Cys) in an alkaline aqueous solution were studied using 207Pb, 13C, and 1H NMR, Pb L III-edge X-ray absorption, and UV–vis spectroscopic techniques, complemented by electrospray ion mass spectrometry (ESI-MS). The H 2Cys/Pb II mole ratios were varied from 2.1 to 10.0 for two sets of solutions with C PbII = 0.01 and 0.1 M, respectively, prepared at pH values (9.1–10.4) for which precipitates of lead(II) cysteine dissolved. At low H 2Cys/Pb II mole ratios (2.1–3.0), a mixture of the dithiolate [Pb(S,N-Cys) 2] 2– and [Pb(S,N,O-Cys)(S-HCys)] – complexes with averagemore » Pb–(N/O) and Pb–S distances of 2.42 ± 0.04 and 2.64 ± 0.04 Å, respectively, was found to dominate. At high concentration of free cysteinate (>0.7 M), a significant amount converts to the trithiolate [Pb(S,N-Cys)(S-HCys) 2] 2–, including a minor amount of a PbS 3-coordinated [Pb(S-HCys) 3] – complex. The coordination mode was evaluated by fitting linear combinations of EXAFS oscillations to the experimental spectra and by examining the 207Pb NMR signals in the chemical shift range δ Pb = 2006–2507 ppm, which became increasingly deshielded with increasing free cysteinate concentration. One-pulse magic-angle-spinning (MAS) 207Pb NMR spectra of crystalline Pb(aet) 2 (Haet = 2-aminoethanethiol or cysteamine) with PbS 2N 2 coordination were measured for comparison (δ iso = 2105 ppm). The UV–vis spectra displayed absorption maxima at 298–300 nm (S – → Pb II charge transfer) for the dithiolate PbS 2N(N/O) species; with increasing ligand excess, a shoulder appeared at ~330 nm for the trithiolate PbS 3N and PbS 3 (minor) complexes. Finally, the results provide spectroscopic fingerprints for structural models for lead(II) coordination modes to proteins and enzymes.« less
Avilés-Moreno, Juan Ramón; Berden, Giel; Oomens, Jos; Martínez-Haya, Bruno
2018-02-07
The recognition of arginine plays a central role in modern proteomics and genomics. Arginine is unique among natural amino acids due to the high basicity of its guanidinium side chain, which sustains specific interactions and proton exchange biochemical processes. The search for suitable macrocyclic ionophores constitutes a promising route towards the development of arginine receptors. This study evaluates the conformational features involved in the binding of free arginine by the polyether macrocycle (18-crown-6)-tetracarboxylic acid. Infrared action vibrational spectroscopy and quantum-chemical computations are combined to characterize the complexes with net charges +1 and +2. The spectrum of the +1 complex can be explained in terms of a configuration predominantly stabilized by a robust bidentate coordination of guanidinium with a carboxylate group formed from the deprotonation of one side group of the crown ether. The released proton is transferred to the amino terminus of arginine, which then coordinates with the crown ether ring. In an alternative type of conformation, partly consistent with experiment, the amino terminus is neutral and the guanidinium group inserts into the crown ether cavity. In the +2 complexes, arginine is always doubly protonated and the most stable conformations are characterized by a tripodal coordination of the ammonium -NH 3 + group of arginine with the oxygen atoms of the macrocycle ring, while the interactions of the amino acid with the side carboxylic acid groups of the crown ether acquire a remarkable lesser role.
Utko, Józef; Sobocińska, Maria; Dobrzyńska, Danuta; Lis, Tadeusz
2015-07-01
The dinuclear barium-zinc complex, μ-chlorido-1:2κ(2) Cl:Cl-chlorido-2κCl-bis-(2-meth-oxy-ethanol-1κO)bis-(2-meth-oxy-ethanol-1κ(2) O,O')bis-(μ-tri-phenyl-acetato-1:2κ(2) O:O')bariumzinc, [BaZn(C20H15O2)2Cl2(C3H8O2)4], has been synthesized by the reaction of barium tri-phenyl-acetate, anhydrous zinc chloride and 2-meth-oxy-ethanol in the presence of toluene. The barium and zinc metal cations in the dinuclear complex are linked via one chloride anion and carboxyl-ate O atoms of the tri-phenyl-acetate ligands, giving a Ba⋯Zn separation of 3.9335 (11) Å. The irregular nine-coordinate BaO8Cl coordination centres comprise eight O-atom donors, six of them from 2-meth-oxy-ethanol ligands (four from two bidentate O,O'-chelate inter-actions and two from monodentate inter-actions), two from bridging tri-phenyl-acetate ligands and one from a bridging Cl donor. The distorted tetra-hedral coordination sphere of zinc comprises two O-atom donors from the tri-phenyl-acetate ligands and two Cl donors (one bridging and one terminal). In the crystal, O-H⋯Cl, O-H⋯O and C-H⋯Cl inter-molecular inter-actions form a layered structure, lying parallel to (001).
Spectroscopic evidence for ternary surface complexes in the lead(II)-malonic acid-hematite system
Lenhart, J.J.; Bargar, J.R.; Davis, J.A.
2001-01-01
Using extended X-ray absorption fine structure (EXAFS) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements, we examined the sorption of Pb(II) to hematite in the presence of malonic acid. Pb LIII-edge EXAFS measurements performed in the presence of malonate indicate the presence of both Fe and C neighbors, suggesting that a major fraction of surface-bound malonate is bonded to adsorbed Pb(II). In the absence of Pb(II), ATR-FTIR measurements of sorbed malonate suggest the formation of more than one malonate surface complex. The dissimilarity of the IR spectrum of malonate sorbed on hematite to those for aqueous malonate suggest at least one of the sorbed malonate species is directly coordinated to surface Fe atoms in an inner-sphere mode. In the presence of Pb, little change is seen in the IR spectrum for sorbed malonate, indicating that geometry of malonate as it coordinates to sorbed Pb(II) adions is similar to the geometry of malonate as it coordinates to Fe in the hematite surface. Fits of the raw EXAFS spectra collected from pH 4 to pH 8 result in average Pb-C distances of 2.98 to 3.14 A??, suggesting the presence of both four- and six-membered Pb-malonate rings. The IR results are consistent with this interpretation. Thus, our results suggest that malonate binds to sorbed Pb(II) adions, forming ternary metal-bridging surface complexes. ?? 2001 Academic Press.
Spatial and kinematic structure of Monoceros star-forming region
NASA Astrophysics Data System (ADS)
Costado, M. T.; Alfaro, E. J.
2018-05-01
The principal aim of this work is to study the velocity field in the Monoceros star-forming region using the radial velocity data available in the literature, as well as astrometric data from the Gaia first release. This region is a large star-forming complex formed by two associations named Monoceros OB1 and OB2. We have collected radial velocity data for more than 400 stars in the area of 8 × 12 deg2 and distance for more than 200 objects. We apply a clustering analysis in the subspace of the phase space formed by angular coordinates and radial velocity or distance data using the Spectrum of Kinematic Grouping methodology. We found four and three spatial groupings in radial velocity and distance variables, respectively, corresponding to the Local arm, the central clusters forming the associations and the Perseus arm, respectively.
NASA Astrophysics Data System (ADS)
Zhang, Meili; Ren, Yixia; Chen, Xiaoli
2014-10-01
Two new Zn(II) complexes, [Zn2(L)(H2O)3]ṡH2O (1) and [Zn3(HL)2(bpp)2(Hbpp)2]ṡ10H2Oṡ2ClO4 (2) (H4L = cis,cis,cis,cis-1,2,3,4-cyclopentanetracarboxylic acid, bpp = 1,3-bis(4-pyridyl)propane), have been synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction techniques. The structure indicates that the complex 1 crystallizes in triclinic, space group Pī, in which, the four carboxylate groups of L ligand adopt μ2-η1:η0, μ2-η1:η1, μ1-η1:η1 coordination modes, respectively, bridging Zn(II) atoms to generate a (4,6)-connected 2D bilayer network. The structure indicates that the complex 2 crystallizes in monoclinic, space group C2/c, in which, three deprotonated carboxylate groups of L ligand adopt uniform μ1-η1:η0 coordination mode linking Zn(II) atoms to form a 1D polymeric ribbon, the bpp ligands further extend such ribbon giving rised to a (3,4)-connected 2D bilayer network. The most striking feature of 1 and 2 is that both of bilayer networks contain 1D solvent channel, where water molecules are located. In additional, luminescent properties of two complexes have also been studied.
Santos, Clelton A; Janissen, Richard; Toledo, Marcelo A S; Beloti, Lilian L; Azzoni, Adriano R; Cotta, Monica A; Souza, Anete P
2015-10-01
The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development. Copyright © 2015 Elsevier B.V. All rights reserved.
Hildebrand, Alexandra; Lönnecke, Peter; Silaghi-Dumitrescu, Luminita; Hey-Hawkins, Evamarie
2008-09-14
PhP(2-SHC6H4)2 (PS2H2) reacts with WCl6 with reduction of tungsten to give the air-sensitive tungsten(IV) complex [W{PhP(2-SC6H4)2-kappa(3)S,S',P}2] (1). 1 is oxidised in air to [WO{PhPO(2-SC6H4)2-kappa(3)S,S',O}{PhP(2-SC6H4)2-kappa(3)S,S',P}] (2). The attempted synthesis of 2 by reaction of 1 with iodosobenzene as oxidising agent was unsuccessful. [W{P(2-SC6H4)3-kappa(4)S,S',S",P}2] (3) was formed in the reaction of P(2-SHC6H4)3 (PS3H3) with WCl6. The W(VI) complex 3 contains two PS3(3-) ligands, each coordinated in a tetradentate fashion resulting in a tungsten coordination number of eight. The reaction of 3 with AgBF4 yields the dinuclear tungsten complex [W2{P(2-SC6H4)3-kappa(4)S,S',S",P}3]BF4 (4). Complexes 1-4 were characterised by spectral methods and X-ray structure determination.
Byrne, Brendan M; Oakley, Gregory G
2018-04-20
The eukaryotic ssDNA-binding protein, Replication protein A (RPA), was first discovered almost three decades ago. Since then, much progress has been made to elucidate the critical roles for RPA in DNA metabolic pathways that help promote genomic stability. The canonical RPA heterotrimer (RPA1-3) is an essential coordinator of DNA metabolism that interacts with ssDNA and numerous protein partners to coordinate its roles in DNA replication, repair, recombination and telomere maintenance. An alternative form of RPA, termed aRPA, is formed by a complex of RPA4 with RPA1 and RPA3. aRPA is expressed differentially in cells compared to canonical RPA and has been shown to inhibit canonical RPA function while allowing for regular maintenance of cell viability. Interestingly, while aRPA is defective in DNA replication and cell cycle progression, it was shown to play a supporting role in nucleotide excision repair and recombination. The binding domains of canonical RPA interact with a growing number of partners involved in numerous genome maintenance processes. The protein interactions of the RPA-ssDNA complex are not only governed by competition between the binding proteins but also by post-translation modifications such as phosphorylation. Phosphorylation of RPA2 is an important post-translational modification of the RPA complex, and is essential for directing context-specific functions of the RPA complex in the DNA damage response. Due to the importance of RPA in cellular metabolism, it was identified as an appealing target for chemotherapeutic drug development that could be used in future cancer treatment regimens. Copyright © 2018 Elsevier Ltd. All rights reserved.
Terminal NiII-OH/-OH2 complexes in trigonal bipyramidal geometries derived from H2O.
Lau, Nathanael; Sano, Yohei; Ziller, Joseph W; Borovik, A S
2017-03-29
The preparation and characterization of two Ni II complexes are described, a terminal Ni II -OH complex with the tripodal ligand tris[(N)-tertbutylureaylato)-N-ethyl)]aminato ([H 3 buea] 3- ) and a terminal Ni II -OH 2 complex with the tripodal ligand N , N ', N ″-[2,2',2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido) ([MST] 3- ). For both complexes, the source of the -OH and -OH 2 ligand is water. The salts K 2 [Ni II H 3 buea(OH)] and NMe 4 [Ni II MST(OH 2 )] were characterized using perpendicular-mode X-band electronic paramagnetic resonance, Fourier transform infrared, UV-visible spectroscopies, and its electrochemical properties were evaluated using cyclic voltammetry. The solid state structures of these complexes determined by X-ray diffraction methods reveal that they adopt a distorted trigonal bipyramidal geometry, an unusual structure for 5-coordinate Ni II complexes. Moreover, the Ni II -OH and Ni II -OH 2 units form intramolecular hydrogen bonding networks with the [H 3 buea] 3- and [MST] 3- ligands. The oxidation chemistry of these complexes was explored by treating the high-spin Ni II compounds with one-electron oxidants. Species were formed with S = 1/2 spin ground states that are consistent with formation of monomeric Ni III species. While the formation of Ni III -OH complexes cannot be ruled out, the lack of observable O-H vibrations from the putative Ni-OH units suggest the possibility that other high valent Ni species are formed.
NASA Astrophysics Data System (ADS)
Varney, Philip; Green, Itzhak
2014-11-01
Numerous methods are available to calculate rotordynamic whirl frequencies, including analytic methods, finite element analysis, and the transfer matrix method. The typical real-valued transfer matrix (RTM) suffers from several deficiencies, including lengthy computation times and the inability to distinguish forward and backward whirl. Though application of complex coordinates in rotordynamic analysis is not novel per se, specific advantages gained from using such coordinates in a transfer matrix analysis have yet to be elucidated. The present work employs a complex coordinate redefinition of the transfer matrix to obtain reduced forms of the elemental transfer matrices in inertial and rotating reference frames, including external stiffness and damping. Application of the complex-valued state variable redefinition results in a reduction of the 8×8 RTM to the 4×4 Complex Transfer Matrix (CTM). The CTM is advantageous in that it intrinsically separates forward and backward whirl, eases symbolic manipulation by halving the transfer matrices’ dimension, and provides significant improvement in computation time. A symbolic analysis is performed on a simple overhung rotor to demonstrate the mathematical motivation for whirl frequency separation. The CTM's utility is further shown by analyzing a rotordynamic system supported by viscoelastic elastomer rings. Viscoelastic elastomer ring supports can provide significant damping while reducing the cost and complexity associated with conventional components such as squeeze film dampers. The stiffness and damping of a viscoelastic damper ring are determined herein as a function of whirl frequency using the viscoelastic correspondence principle and a constitutive fractional calculus viscoelasticity model. The CTM is then employed to obtain the characteristic equation, where the whirl frequency dependent stiffness and damping of the elastomer supports are included. The Campbell diagram is shown, demonstrating the CTM's ability to intrinsically separate synchronous whirl direction for a non-trivial rotordynamic system. Good agreement is found between the CTM results and previously obtained analytic and experimental results for the elastomer ring supported rotordynamic system.
Vibrational spectroscopy of metal methanesulfonates: M = Na, Cs, Cu, Ag, Cd
NASA Astrophysics Data System (ADS)
Parker, Stewart F.; Zhong, Lisha
2018-04-01
In this work, we have used a combination of vibrational spectroscopy (infrared, Raman and inelastic neutron scattering) and periodic density functional theory to investigate six metal methanesulfonate compounds that exhibit four different modes of complexation of the methanesulfonate ion: ionic, monodentate, bidentate and pentadentate. We found that the transition energies of the modes associated with the methyl group (C-H stretches and deformations, methyl rock and torsion) are essentially independent of the mode of coordination. The SO3 modes in the Raman spectra also show little variation. In the infrared spectra, there is a clear distinction between ionic (i.e. not coordinated) and coordinated forms of the methanesulfonate ion. This is manifested as a splitting of the asymmetric S-O stretch modes of the SO3 moiety. Unfortunately, no further differentiation between the various modes of coordination: unidentate, bidentate etc … is possible with the compounds examined. While it is likely that such a distinction could be made, this will require a much larger dataset of compounds for which both structural and spectroscopic data are available than that available here.
Solvent extraction: the coordination chemistry behind extractive metallurgy.
Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B
2014-01-07
The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.
Guidolin, Leticia S.; Morrone Seijo, Susana M.; Guaimas, Francisco F.
2015-01-01
ABSTRACT Cyclic β-1,2-glucans (CβG) are periplasmic homopolysaccharides that play an important role in the virulence and interaction of Brucella with the host. Once synthesized in the cytoplasm by the CβG synthase (Cgs), CβG are transported to the periplasm by the CβG transporter (Cgt) and succinylated by the CβG modifier enzyme (Cgm). Here, we used a bacterial two-hybrid system and coimmunoprecipitation techniques to study the interaction network between these three integral inner membrane proteins. Our results indicate that Cgs, Cgt, and Cgm can form both homotypic and heterotypic interactions. Analyses carried out with Cgs mutants revealed that the N-terminal region of the protein (Cgs region 1 to 418) is required to sustain the interactions with Cgt and Cgm as well as with itself. We demonstrated by single-cell fluorescence analysis that in Brucella, Cgs and Cgt are focally distributed in the membrane, particularly at the cell poles, whereas Cgm is mostly distributed throughout the membrane with a slight accumulation at the poles colocalizing with the other partners. In summary, our results demonstrate that Cgs, Cgt, and Cgm form a membrane-associated biosynthetic complex. We propose that the formation of a membrane complex could serve as a mechanism to ensure the fidelity of CβG biosynthesis by coordinating their synthesis with the transport and modification. IMPORTANCE In this study, we analyzed the interaction and localization of the proteins involved in the synthesis, transport, and modification of Brucella abortus cyclic β-1,2-glucans (CβG), which play an important role in the virulence and interaction of Brucella with the host. We demonstrate that these proteins interact, forming a complex located mainly at the cell poles; this is the first experimental evidence of the existence of a multienzymatic complex involved in the metabolism of osmoregulated periplasmic glucans in bacteria and argues for another example of pole differentiation in Brucella. We propose that the formation of this membrane complex could serve as a mechanism to ensure the fidelity of CβG biosynthesis by coordinating synthesis with the transport and modification. PMID:25733613
NASA Astrophysics Data System (ADS)
Platt, Andrew W. G.; Singh, Kuldip
2016-05-01
The reactions between lanthanide nitrates, Ln(NO3)3 and scandium and lanthanide trifluoromethane sulfonates, Ln(Tf)3 with trimesitylphosphine oxide, Mes3PO show that coordination to the metal ions does not lead to crystalline complexes. Investigation of the reactions by 31-P NMR spectroscopy shows that weak complexes are formed in solution. The crystal structures of Mes3PO·0.5CH3CN (1) and [Mes3PO]3H3O·2CH3CN·Tf (2), formed in the reaction between ScTf3 and Mes3PO, are reported. Trimesitylphosphine, Mes3P, is protonated by scandium and lanthanide trifluoromethane sulfonates and lanthanide nitrates in CD3CN and the structure of [Mes3PH]Cl·HCl·2H2O (3) is reported.
SnoN Stabilizes the SMAD3/SMAD4 Protein Complex
Walldén, Karin; Nyman, Tomas; Hällberg, B. Martin
2017-01-01
TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling. PMID:28397834
SnoN Stabilizes the SMAD3/SMAD4 Protein Complex.
Walldén, Karin; Nyman, Tomas; Hällberg, B Martin
2017-04-11
TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling.
Coordination characteristics of uranyl BBP complexes: Insights from an electronic structure analysis
Pemmaraju, Chaitanya Das; Copping, Roy; Smiles, Danil E.; ...
2017-03-21
Here, organic ligand complexes of lanthanide/actinide ions have been studied extensively for applications in nuclear fuel storage and recycling. Several complexes of 2,6-bis(2-benzimidazyl)pyridine (H2BBP) featuring the uranyl moiety have been reported recently, and the present study investigates the coordination characteristics of these complexes using density functional theory-based electronic structure analysis. In particular, with the aid of several computational models, the nonplanar equatorial coordination about uranyl, observed in some of the compounds, is studied and its origin traced to steric effects.
Programmable Topology in New Families of Heterobimetallic Metal-Organic Frameworks.
Muldoon, Patrick F; Liu, Chong; Miller, Carson C; Koby, S Benjamin; Gamble Jarvi, Austin; Luo, Tian-Yi; Saxena, Sunil; O'Keeffe, Michael; Rosi, Nathaniel L
2018-05-09
Using diverse building blocks, such as different heterometallic clusters, in metal-organic framework (MOF) syntheses greatly increases MOF complexity and leads to emergent synergistic properties. However, applying reticular chemistry to syntheses involving more than two molecular building blocks is challenging and there is limited progress in this area. We are therefore motivated to develop a strategy for achieving systematic and differential control over the coordination of multiple metals in MOFs. Herein, we report the design and synthesis of a diverse series of heterobimetallic MOFs with different metal ions and clusters severally distributed throughout two or three inorganic secondary building units (SBUs). By taking advantage of the bifunctional isonicotinate linker and its derivatives, which can coordinatively distinguish between early and late transition metals, we control the assembly and topology of up to three different inorganic SBUs in one-pot solvothermal reactions. Specifically, M 6 (μ 3 -O) n (μ 3 -OH) 8- n (CO 2 ) 12 (M = Zr 4+ , Hf 4+ , Dy 3+ ) SBUs are formed along with metal-pyridyl complexes. By controlling the geometry of the metal-pyridyl complexes, we direct the overall topology to produce eight new MOFs with fcu, ftw, and previously unreported trinodal pfm crystallographic nets.
Wang, Yanlan; Monfredini, Anna; Deyris, Pierre-Alexandre; Blanchard, Florent; Derat, Etienne; Malacria, Max
2017-01-01
We present that cationic rings can act as donor ligands thanks to suitably delocalized metal–metal bonds. This could grant parent complexes with the peculiar properties of aromatic rings that are crafted with main group elements. We assembled Pd nuclei into equilateral mono-cationic triangles with unhindered faces. Like their main group element counterparts and despite their positive charge, these noble-metal rings form stable bonding interactions with other cations, such as positively charged silver atoms, to deliver the corresponding tetranuclear dicationic complexes. Through a mix of modeling and experimental techniques we propose that this bonding mode is an original coordination-like one rather than a 4-centre–2-electron bond, which have already been observed in three dimensional aromatics. The present results thus pave the way for the use of suitable metal rings as ligands. PMID:29163890
Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin
Liu, Zhichang; Frasconi, Marco; Lei, Juying; Brown, Zachary J.; Zhu, Zhixue; Cao, Dennis; Iehl, Julien; Liu, Guoliang; Fahrenbach, Albert C.; Botros, Youssry Y.; Farha, Omar K.; Hupp, Joseph T.; Mirkin, Chad A.; Fraser Stoddart, J.
2013-01-01
Gold recovery using environmentally benign chemistry is imperative from an environmental perspective. Here we report the spontaneous assembly of a one-dimensional supramolecular complex with an extended {[K(OH2)6][AuBr4](α-cyclodextrin)2}n chain superstructure formed during the rapid co-precipitation of α-cyclodextrin and KAuBr4 in water. This phase change is selective for this gold salt, even in the presence of other square-planar palladium and platinum complexes. From single-crystal X-ray analyses of six inclusion complexes between α-, β- and γ-cyclodextrins with KAuBr4 and KAuCl4, we hypothesize that a perfect match in molecular recognition between α-cyclodextrin and [AuBr4]− leads to a near-axial orientation of the ion with respect to the α-cyclodextrin channel, which facilitates a highly specific second-sphere coordination involving [AuBr4]− and [K(OH2)6]+ and drives the co-precipitation of the 1:2 adduct. This discovery heralds a green host–guest procedure for gold recovery from gold-bearing raw materials making use of α-cyclodextrin—an inexpensive and environmentally benign carbohydrate. PMID:23673640
Maerz, Sabine; Dettmann, Anne
2012-01-01
Nuclear Dbf2p-related (NDR) kinases and associated proteins are recognized as a conserved network that regulates eukaryotic cell polarity. NDR kinases require association with MOB adaptor proteins and phosphorylation of two conserved residues in the activation segment and hydrophobic motif for activity and function. We demonstrate that the Neurospora crassa NDR kinase COT1 forms inactive dimers via a conserved N-terminal extension, which is also required for the interaction of the kinase with MOB2 to generate heterocomplexes with basal activity. Basal kinase activity also requires autophosphorylation of the COT1-MOB2 complex in the activation segment, while hydrophobic motif phosphorylation of COT1 by the germinal center kinase POD6 fully activates COT1 through induction of a conformational change. Hydrophobic motif phosphorylation is also required for plasma membrane association of the COT1-MOB2 complex. MOB2 further restricts the membrane-associated kinase complex to the hyphal apex to promote polar cell growth. These data support an integrated mechanism of NDR kinase regulation in vivo, in which kinase activation and cellular localization of COT1 are coordinated by dual phosphorylation and interaction with MOB2. PMID:22451488
Boudalis, Athanassios K; Aston, Robyn E; Smith, Sarah J; Mirams, Ruth E; Riley, Mark J; Schenk, Gerhard; Blackman, Allan G; Hanton, Lyall R; Gahan, Lawrence R
2007-11-28
The ligand, 2-((2-hydroxy-5-methyl-3-((pyridin-2-ylmethylamino)methyl)benzyl)(2-hydroxybenzyl)amino)acetic acid (H(3)HPBA), which contains a donor atom set that mimics that of the active site of purple acid phosphatase is described. Reaction of H(3)HPBA with iron(III) or iron(II) salts results in formation of the tetranuclear complex, [Fe(4)(HPBA)(2)(OAc)(2)(mu-O)(mu-OH)(OH(2))(2)]ClO(4) x 5H(2)O. X-Ray structural analysis reveals the cation consists of four iron(III) ions, two HPBA(3-) ligands, two bridging acetate ligands, a bridging oxide ion and a bridging hydroxide ion. Each binucleating HPBA(3-) ligand coordinates two structurally distinct hexacoordinate iron(III) ions. The two metal ions coordinated to a HPBA(3-) ligand are linked to the two iron(III) metal ions of a second, similar binuclear unit by intramolecular oxide and hydroxide bridging moieties to form a tetramer. The complex has been further characterised by elemental analysis, mass spectrometry, UV-vis and MCD spectroscopy, X-ray crystallography, magnetic susceptibility measurements and variable-temperature Mössbauer spectroscopy.
NASA Astrophysics Data System (ADS)
Mahmoudi, Ghodrat; Chowdhury, Habibar; Ghosh, Barindra K.; Lofland, Samuel E.; Maniukiewicz, Waldemar
2018-05-01
One-pot reactions of pre-assigned molar ratios of appropriate metal (II) salts and HL1 (2-acetylpyridine nicotinoylhydrazone) or HL2 (2-acetylpyridine isonicotinoylhydrazone) in MeOH solutions at room temperature afford 1D coordination polymeric chain [Cu(μ-L1) (Cl)]n (1) and a mononuclear complex [Ni(L2)2] (2). The compounds (1) and (2) were characterized using elemental analyses, spectral and other physicochemical methods. Single crystal X-ray diffraction measurements for (1) and (2) have been made to define the molecular aggregates and crystalline architectures. In (1), each copper (II) center adopts a distorted square pyramidal geometry with a CuN3OCl chromophore linked through μ-L1 to form the 1D polymeric chain. While in (2) each Ni(II) cation is six-coordinate with octahedral structure having NiN4O2 chromophore containing two L2 units each functioning as a classical tridentate (N,N,O) chelator. Different weak non-covalent interactions promote dimensionalities in the compounds. A Hirshfeld surface analysis was employed to gain additional insight into interactions responsible for packing of (1) and (2). Magnetic susceptibility measurement of (1) in the 4-300 K range reveals simple paramagnetism.
Ndiaye, Mamadou; Samb, Abdoulaye; Diop, Libasse; Maris, Thierry
2016-01-01
In the structure of the title salt, {(C5H14N3)[CdCl3]}n, the CdII atom of the complex anion is five-coordinated by one terminal and four bridging Cl atoms. The corresponding coordination polyhedron is a distorted trigonal bipyramid, with Cd—Cl distances in the range 2.4829 (4)–2.6402 (4) Å. The bipyramids are condensed into a polyanionic zigzag chain extending parallel to [101]. The tetramethylguanidinium cations are situated between the polyanionic chains and are linked to them through N—H⋯Cl hydrogen bonds, forming a layered network parallel to (010). PMID:26870572
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Sharma, Amit Kumar
2009-09-01
The coordination compounds of Cr III, Mn II and Co II metal ions derived from quinquedentate 2,6-diacetylpyridine derivative have been synthesized and characterized by using the various physicochemical studies like stoichiometric, molar conductivity and magnetic, and spectral techniques like IR, NMR, mass, UV and EPR. The general stoichiometries of the complexes are found to be [Cr(H 2L)X] and [M(HL)X], where M = Mn(II) and Co(II); H 2L = dideprotonated ligand, HL = monodeprotonated ligand and X = NO 3-, Cl - and OAc -. The studies reveal that the complexes possess monomeric compositions with six coordinated octahedral geometry (Cr III and Mn II complexes) and six coordinated tetragonal geometry (Co II complexes).
Thioether coordination to divalent selenium halide acceptors--synthesis, properties and structures.
Jolleys, Andrew; Levason, William; Reid, Gillian
2013-02-28
The tetravalent SeCl(4) and SeBr(4) are reduced in the presence of thioether ligands L (SMe(2), tht) or L-L (MeS(CH(2))(n)SMe (n = 2 or 3), o-C(6)H(4)(SMe)(2)) in MeCN solution at 0 °C, forming Se(II) thioether complexes, including the crystallographically characterised halo-bridged chain polymers [SeX(2)(SMe(2))] (X = Cl or Br), molecular trans-[SeX(2)(tht)(2)], cis-[SeBr(2){MeS(CH(2))(2)SMe}] and the thioether-bridged polymer [SeBr(2){MeS(CH(2))(3)SMe}], as the main products, together with halogenated ligand. The [SeX(2)(L)(2)] and [SeX(2)(L-L)] complexes are all based upon distorted square planar coordination, with two Se-based lone pairs assumed to occupy the (vacant) axial sites, and Se-S bond distances of ca. 2.4-2.6 Å. The 1:1 species [SeX(2)(SMe(2))] are T-shaped with trans X groups and weak intermolecular SeX contacts. The SeCl(2)-thioether complexes are less stable than the bromides, both in solution in CH(2)Cl(2) and as solids at ambient temperature. Reaction of SeBr(4) with o-C(6)H(4)(SMe(2))(2) leads to the red complex cis-[SeBr(2){κ(1)-o-C(6)H(4)(SMe)(2)}(2)] as the major product; together with a minor (yellow) product formed via bromination of the aromatic ring, [SeBr(2){4-Br-1,2-(SMe)(2)-C(6)H(3)}(2)]. The crystal structure confirms a V-shaped SeBr(2) unit with long (weak) κ(1)-interactions to one S donor (meta to the Br) from two brominated ligands--an extremely rare coordination mode for an o-phenylene dithioether. Similar reaction of o-C(6)H(4)(SMe(2))(2) with SeCl(4) leads to several species, including monosulfonium cation, [1](+) formed by coupling of one thioether group to the C4-position of the phenylene backbone in an adjacent molecule, confirmed crystallographically. Carbon-sulfur coupling is also evident in the reaction of SeX(4) with o-C(6)H(4)(CH(2)SMe)(2), leading to two related cyclic sulfonium species, [2](+) and [3](+), which were structurally characterised as [SeBr(4)](2-) and [Se(2)Cl(6)](2-) salts respectively. Reaction of SeX(4) with SeMe(2) leads to halogenation of the ligand to form Me(2)SeX(2) and reduction of the SeX(4) to elemental selenium.
NASA Astrophysics Data System (ADS)
Bala, Ritu; Kaur, Amrinder; Kashyap, Monika; Janzen, Daron E.
2014-04-01
New complexes of composition s-fac-[Co(dien)2]Cl2(Bz)·H2O (1), s-fac-[Co(dien)2]Cl(p-CBz)2·4.5H2O (2) and mer-[Co(dien)2](p-NBz)3·3H2O (3) were obtained by reacting aqueous solutions of bis(diethylenetriamine)cobalt(III) chloride and sodium salts of benzoates ((Bz = benzoate, CBz = p-chlorobenzoate, NBz = p-nitrobenzoate)) in 1:3 molar ratio. These complexes were characterized by TG analysis and spectroscopic studies (IR, NMR and UV-vis). IR and NMR studies were used for the isomeric identification of [Co(dien)2]3+ in new complexes. This cation, contains ligand diethylenetriamine (dien) bearing H-bond donors, capable of forming hydrogen bonds and its binding properties with benzoates have been studied using standard UV-vis spectroscopic titrations in aqueous medium (log k for Bz = 2.11, p-CBz = 3.64 and p-NBz = 3.66). Single crystal X-ray study of complex 2 and 3 reveals that both the structures are dominantly stabilized by second-sphere coordination through H-bonding interactions of type-NH (dien)⋯O (benzoates) and H (water)⋯O (benzoates) in addition to the electrostatic forces of attractions. Further, the NH (dien)⋯Cl- (counter ion) and NH (dien)⋯O (water) types of interactions are also playing a dominant role to stabilize the crystal lattice in complex 2 and 3 respectively.
Stambuli, James P; Incarvito, Christopher D; Bühl, Michael; Hartwig, John F
2004-02-04
A series of monomeric arylpalladium(II) complexes LPd(Ph)X (L = 1-AdPtBu2, PtBu3, or Ph5FcPtBu2 (Q-phos); X = Br, I, OTf) containing a single phosphine ligand have been prepared. Oxidative addition of aryl bromide or aryl iodide to bis-ligated palladium(0) complexes of bulky, trialkylphosphines or to Pd(dba)2 (dba = dibenzylidene acetone) in the presence of 1 equiv of phosphine produced the corresponding arylpalladium(II) complexes in good yields. In contrast, oxidative addition of phenyl chloride to the bis-ligated palladium(0) complexes did not produce arylpalladium(II) complexes. The oxidative addition of phenyl triflate to PdL2 (L = 1-AdPtBu2, PtBu3, or Q-phos) also did not form arylpalladium(II) complexes. The reaction of silver triflate with (1-AdPtBu2)Pd(Ph)Br furnished the corresponding arylpalladium(II) triflate in good yield. The oxidative addition of phenyl bromide and iodide to Pd(Q-phos)2 was faster than oxidative addition to Pd(1-AdPtBu2)2 or Pd(PtBu3)2. Several of the arylpalladium complexes were characterized by X-ray diffraction. All of the arylpalladium(II) complexes are T-shaped monomers. The phenyl ligand, which has the largest trans influence, is located trans to the open coordination site. The complexes appear to be stabilized by a weak agostic interaction of the metal with a ligand C-H bond positioned at the fourth-coordination site of the palladium center. The strength of the Pd.H bond, as assessed by tools of density functional theory, depended upon the donating properties of the ancillary ligands on palladium.
Mathematical model and coordination algorithms for ensuring complex security of an organization
NASA Astrophysics Data System (ADS)
Novoseltsev, V. I.; Orlova, D. E.; Dubrovin, A. S.; Irkhin, V. P.
2018-03-01
The mathematical model of coordination when ensuring complex security of the organization is considered. On the basis of use of a method of casual search three types of algorithms of effective coordination adequate to mismatch level concerning security are developed: a coordination algorithm at domination of instructions of the coordinator; a coordination algorithm at domination of decisions of performers; a coordination algorithm at parity of interests of the coordinator and performers. Assessment of convergence of the algorithms considered above it was made by carrying out a computing experiment. The described algorithms of coordination have property of convergence in the sense stated above. And, the following regularity is revealed: than more simply in the structural relation the algorithm, for the smaller number of iterations is provided to those its convergence.
Matusiak, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa
2014-09-01
Mono- and polynuclear copper(II) complexes of the alloferon 1 with point mutations (H1A) A(1)GVSGH(6)GQH(9)GVH(12)G (Allo1A) and (H9A) H(1)GVSGH(6)GQA(9)GVH(12)G (Allo9A) have been studied by potentiometric, UV-visible, CD, EPR spectroscopic and mass spectrometry (MS) methods. To obtain a complete complex speciation different metal-to-ligand molar ratios ranging from 1:1 to 4:1 for Allo1A and to 3:1 for Allo9A were studied. The presence of the His residue in first position of the peptide chain changes the coordination abilities of the Allo9A peptide in comparison to that of the Allo1A. Imidazole-N3 atom of N-terminal His residue of the Allo9A peptide forms stable 6-membered chelate with the terminal amino group. Furthermore, the presence of two additional histidine residues in the Allo9A peptide (H(6),H(12)) leads to the formation of the CuL complex with 4N {NH2,NIm-H(1),NIm-H(6),NIm-H(12)} binding site in wide pH range (5-8). For the Cu(II)-Allo1A system, the results demonstrated that at physiological pH7.4 the predominant complex the CuH-1L consists of the 3N {NH2,N(-),CO,NIm} coordination mode. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 were studied. The Allo1A, Allo1K peptides and their copper(II) complexes displayed the lowest hemocytotoxic activity while the most active was the Cu(II)-Allo9A complex formed at pH7.4. The results may suggest that the N-terminal-His(1) and His(6) residues may be more important for their proapoptotic properties in insects than those at positions 9 and 12 in the peptide chain. Copyright © 2014 Elsevier Inc. All rights reserved.
Conradie, Jeanet; Patra, Ashis K; Harrop, Todd C; Ghosh, Abhik
2015-02-16
Density functional theory (in the form of the PW91, BP86, OLYP, and B3LYP exchange-correlation functionals) has been used to map out the low-energy states of a series of eight-coordinate square-antiprismatic (D2d) first-row transition metal complexes, involving Mn(II), Fe(II), Co(II), Ni(II), and Cu(II), along with a pair of tetradentate N4 ligands. Of the five complexes, the Mn(II) and Fe(II) complexes have been synthesized and characterized structurally and spectroscopically, whereas the other three are as yet unknown. Each N4 ligand consists of a pair of terminal imidazole units linked by an o-phenylenediimine unit. The imidazole units are the strongest ligands in these complexes and dictate the spatial disposition of the metal three-dimensional orbitals. Thus, the dx(2)-y(2) orbital, whose lobes point directly at the coordinating imidazole nitrogens, has the highest orbital energy among the five d orbitals, whereas the dxy orbital has the lowest orbital energy. In general, the following orbital ordering (in order of increasing orbital energy) was found to be operative: dxy < dxz = dyz ≤ dz(2) < dx(2)-y(2). The square-antiprism geometry does not lead to large energy gaps between the d orbitals, which leads to an S = 2 ground state for the Fe(II) complex. Nevertheless, the dxy orbital has significantly lower energy relative to that of the dxz and dyz orbitals. Accordingly, the ground state of the Fe(II) complex corresponds unambiguously to a dxy(2)dxz(1)dyz(1)dz(2)(1)dx(2)-y(2)(1) electronic configuration. Unsurprisingly, the Mn(II) complex has an S = 5/2 ground state and no low-energy d-d excited states within 1.0 eV of the ground state. The Co(II) complex, on the other hand, has both a low-lying S = 1/2 state and multiple low-energy S = 3/2 states. Very long metal-nitrogen bonds are predicted for the Ni(II) and Cu(II) complexes; these bonds may be too fragile to survive in solution or in the solid state, and the complexes may therefore not be isolable. Overall, the different exchange-correlation functionals provided a qualitatively consistent and plausible picture of the low-energy d-d excited states of the complexes.
Bis(O-ethyl dithio-carbonato-κS,S')bis-(pyridine-3-carbonitrile-κN)nickel(II).
Kapoor, Sanjay; Kour, Ramandeep; Sachar, Renu; Kant, Rajni; Gupta, Vivek K; Kapoor, Kamini
2012-01-01
The Ni(2+) ion in the title complex, [Ni(C(3)H(5)OS(2))(2)(C(6)H(4)N(2))(2)], is in a strongly distorted octa-hedral coordination environment formed by an N(2)S(4) donor set, with the Ni(2+) ion located on a centre of inversion. In the crystal, weak C-H⋯S and C-H⋯N inter-actions are observed.
Two novel mixed-ligand complexes containing organosulfonate ligands.
Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun
2008-07-01
The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.
Tice, Daniel B; Pike, Robert D; Bebout, Deborah C
2016-08-09
An unbranched N3O2 ligand 2,6-bis[((2-pyridinylmethyl)oxy)methyl]pyridine (L1) was used to prepare new mononuclear heteroleptic Group 12 perchlorate complexes characterized by IR, (1)H NMR and X-ray crystallography. Racemic complexes with pentadentate L1 and one to four oxygens from either water or perchlorate bound to a metal ion were structurally characterized. Octahedral [Zn(L1)(OH2)](ClO4)2 (1) and pentagonal bipyramidal [Cd(L1)(OH2)(OClO3)]ClO4 (2) structures were found with lighter congeners. The polymorphic forms of [Hg(L1)(ClO4)2] characterized (3 in P1[combining macron] and 4 in P21/c) had a mix of monodentate, anisobidentate and bidentate perchlorates, providing the first examples of a tricapped trigonal prismatic Hg(ii) coordination geometry, as well as additional examples of a rare square antiprismatic Hg(ii) coordination geometry. Solution state (1)H NMR characterization of the Group 12 complexes in CD3CN indicated intramolecular reorganization remained rapid under conditions where intermolecular M-L1 exchange was slow on the chemical shift time scale for Zn(ii) and on the J(M(1)H) time scale for Cd(ii) and Hg(ii). Solution studies with more than one equivalent of ligand also suggested that a complex with a 1 : 2 ratio of M : L1 contributed significantly to solution equilibria with Hg(ii) but not the other metal ions. The behavior of related linear pentadentate ligands with Group 12 perchlorate salts is discussed.
Porphyrin coordination polymer nanospheres and nanorods
Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.
2012-12-04
A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.
Porphyrin coordination polymer nanospheres and nanorods
Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.
2013-09-10
A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.
Baranyai, Zsolt; Gianolio, Eliana; Ramalingam, Kondareddiar; Swenson, Rolf; Ranganathan, Ramachandran; Brücher, E; Aime, Silvio
2007-01-01
The binding interaction of metal chelates to biological macromolecules, though driven by properly devoted recognition synthons, may cause dramatic changes in some property associated with the coordination cage such as the thermodynamic stability or the exchange rate of the metal coordinated water. Such changes are due to electrostatic and H-bonding interactions involving atoms of the coordination cage and atoms of the biological molecule at the binding site. To mimic this type of H-bonding interactions, lanthanide(III) complexes with a DTPA-monophosphonate ligand bearing a propylamino moiety (H6NP-DTPA) were synthesized. Their thermodynamic stabilities and the exchange lifetime of the coordinated water molecule (for the Gd-complex) were compared with those of the analog complexes with DTPA and the parent DTPA-monophosphonate derivative (H6P-DTPA). It was found that the intramolecular H-bond between the epsilon-amino group and the phosphonate moiety in NP-DTPA complexes causes displacements of electric charges in their coordination cage that are markedly pH dependent. In turn, this affects the characteristic properties of the coordination cage. In particular it results in a marked elongation of the exchange lifetime of the coordinated water molecule. (c) 2007 John Wiley & Sons, Ltd.
Kyung, Daeseung; Lim, Hyung-Kyu; Kim, Hyungjun; Lee, Woojin
2015-01-20
In this study, we investigated experimentally and computationally the effect of organo-mineral complexes on the nucleation kinetics of CO2 hydrate. These complexes formed via adsorption of zwitter-ionic glycine (Gly-zw) onto the surface of sodium montmorillonite (Na-MMT). The electrostatic attraction between the −NH3(+) group of Gly-zw, and the negatively charged Na-MMT surface, provides the thermodynamic driving force for the organo-mineral complexation. We suggest that the complexation of Gly-zw on the Na-MMT surface accelerates CO2 hydrate nucleation kinetics by increasing the mineral–water interfacial area (thus increasing the number of effective hydrate-nucleation sites), and also by suppressing the thermal fluctuation of solvated Na(+) (a well-known hydrate formation inhibitor) in the vicinity of the mineral surface by coordinating with the −COO(–) groups of Gly-zw. We further confirmed that the local density of hydrate-forming molecules (i.e., reactants of CO2 and water) at the mineral surface (regardless of the presence of Gly-zw) becomes greater than that of bulk phase. This is expected to promote the hydrate nucleation kinetics at the surface. Our study sheds new light on CO2 hydrate nucleation kinetics in heterogeneous marine environments, and could provide knowledge fundamental to successful CO2 sequestration under seabed sediments.
Molecular mechanics approach for design and conformational studies of macrocyclic ligands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohini,; Akbar, Rifat; Kanungo, B. K., E-mail: b.kanungo@gmail.com
2015-08-28
Computational Chemistry has revolutionized way of viewing molecules at the quantum mechanical scale by allowing simulating various chemical scenarios that are not possible to study in a laboratory. The remarkable applications of computational chemistry have promoted to design and test of the effectiveness of various methods for searching the conformational space of highly flexible molecules. In this context, we conducted a series of optimization and conformational searches on macrocyclic based ligands, 9N3Me5Ox, (1,4,7-tris(5-methyl-8-hydroxyquinoline)-1,4,7-triazacyclononane) and 12N3Me5Ox, (1,5,9-tris(5-methyl-8-hydroxyquinoline)-1,5,9-triazacyclododecane) and studied their selectivity and coordination behavior with some lanthanide metal ions in molecular mechanics and semiempirical methods. The methods include both systematic andmore » random conformational searches for dihedral angles, torsion angles and Cartesian coordinates. Structural studies were carried out by using geometry optimization, coordination scans and electronic properties were evaluated. The results clearly show that chair-boat conformational isomer of 9N3Me5Ox ligand is more stable due to lower eclipsing ethane interaction and form stronger adduct complexes with lanthanide metal ion. This is because of the fact that, in a central unit of 9N3 of the ligand form six endo type bonds out of nine. The rest of bonds have trans conformation. In contrast, for the adduct of 12N3Me5Ox, two C-C bonds have on eclipsed conformation, and others have synclinal and antiperiplanar confirmations. The distortion of the two eclipsed conformations may affect the yields and the stability of the complexes.« less
NASA Astrophysics Data System (ADS)
Syaima, H.; Rahardjo, S. B.; Amanati, N.
2018-05-01
A complex of nickel (II) with isonicotinic acid (asint) was successfully obtained. The complex was synthesized in 1:2 mole ratio of metal to the ligand in methanol. The percentage of nickel was 6.91% determined by Atomic Absorption Spectroscopy (AAS). Therefore, the predicted formula was Ni(asint)5SO4(H2O)4. The molar conductivity of the complex was measured by conductivity meter corresponding to 1:1 electrolyte. The thermal analysis of the formed complex was determined by Differential Thermal Analysis (DTA) indicating that the complex contains four water molecules as ligand and hydrates. The magnetic susceptibility measurement showed that the complex was paramagnetic with μeff= 3.30 B.M. Electronic spectra of the formed complex appeared at two transition peaks on λ= 394 nm and 659 nm. The infrared spectra of the complex showed a shift of tertiary N-group absorption in 1234 and 1338 cm-1 compared to isonicotinic acid at 1149 and 1331 cm-1. In addition, the shift also appeared in the -OH group absorption which was to the lower wavenumber at 3371 cm-1 from 3425 cm-1 (isonicotinic acid). This fact indicated that the functional groups were coordinated to the central metal ion. The possibility formula of the complex was [Ni(asint)5(H2O)]SO4·3H2O with octahedral structure.
Mechanics of metal-catecholate complexes: The roles of coordination state and metal types
Xu, Zhiping
2013-01-01
There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799
Qin, Jian-Hua; Wang, Hua-Rui; Pan, Qi; Zang, Shuang-Quan; Hou, Hongwei; Fan, Yaoting
2015-10-28
Seven Mn(ii) coordination polymers, namely {[Mn2(ptptp)Cl2(H2O)3]·H2O}n (1), {[Mn(μ-ptptp)3]2[Mn3(μ3-Cl)]2}·2Cl·16H2O (2), {[Mn2(ptptp)(ip)2(H2O)3]·H2O}n (3), {[Mn2(ptptp)(5-CH3-ip)2(H2O)3]·H2O}n (4), {[Mn4(ptptp)(5-Br-ip)3(H2O)3]·4H2O}n (5), {[Mn2(ptptp)(Hbtc)(H2O)2]·2H2O}n (6) and {[Mn2(ptptp)(tdc)(H2O)2]·1.5H2O}n (7), have been prepared based on multidentate N-heterocyclic aromatic ligands and bridging carboxylate ligands (H2ptptp = 2-(5-{6-[5-(pyrazin-2-yl)-1H-1,2,4-triazol-3-yl]pyridin-2-yl}-1H-1,2,4-triazol-3-yl)pyrazine; R-isophthalic acids, H2ip-R: R = -H (3), -CH3 (4), -Br (5); H3btc = trimesic acid (6); H2tdc = thiophene-2,5-dicarboxylic acid (7)), in order to further probe the multiple roles of [RMI]Br ionic liquids in the hydro/solvothermal synthesis (RMI = 1-alkyl-3-methylimidazolium, R = ethyl, or propyl, or butyl). The successful syntheses of complexes 2-6 suggest that in hydro/solvothermal synthesis the addition of a small amount of [RMI]Br plays a crucial role. Complex 1 exhibits single right-handed helices constructed by ptptp ligands and Mn(ii) ions. Complex 2 possesses octanuclear helicate structures in which two propeller-shaped [Mn(μ-ptptp)3](4-) units embrace two [Mn3(μ3-Cl)](5+) cluster cores inside. Complexes 3 and 4 are isostructural and display a 1D double chain formed by two kinds of pseudo meso-helices: (Mn-ptptp)n and (Mn-5-R-ip)n. Complex 5 has a 2D structure containing 1D Mn(ii) ion chains formed through carboxylates and [ptptp](2-)-N,N bridges. Complex 6 shows a 2D structure formed by a meso-helix (Mn-ptptp)n and the partly deprotonated Hbtc ligands. Complex 7 features a heterochiral [2 + 2] coaxially nested double-helical column formed by using the outer double-helices (Mn-ptptp)n as a template to encapsulate the inner double-helices (Mn-tdc)n with opposite orientation. All complexes were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single-crystal X-ray crystallography and powder X-ray diffraction. The magnetic properties of 1-7 were also investigated.
Rivada-Wheelaghan, Orestes; Dauth, Alexander; Leitus, Gregory; Diskin-Posner, Yael; Milstein, David
2015-05-04
A novel pincer ligand based on the pyrazine backbone (PNzP) has been synthesized, (2,6-bis(di(tert-butyl)phosphinomethyl)pyrazine), tBu-PNzP. It reacts with FeBr2 to yield [Fe(Br)2(tBu-PNzP)], 1. Treatment of 1 with NaBH4 in MeCN/MeOH gives the hydride complex [Fe(H)(MeCN)2(tBu-PNzP)][X] (X = Br, BH4), 2·X. Counterion exchange and exposure to CO atmosphere yields the complex cis-[Fe(H)(CO)(MeCN)(tBu-PNzP)][BPh4] 4·BPh4, which upon addition of Bu4NCl forms [Fe(H)(Cl)(CO)(tBu-PNzP)] 5. Complex 5, under basic conditions, catalyzes the hydrogenation of CO2 to formate salts at low H2 pressure. Treatment of complex 5 with a base leads to aggregates, presumably of dearomatized species B, stabilized by bridging to another metal center by coordination of the nitrogen at the backbone of the pyrazine pincer ligand. Upon dissolution of compound B in EtOH the crystallographically characterized complex 7 is formed, comprised of six iron units forming a 6-membered ring. The dearomatized species can activate CO2 and H2 by metal-ligand cooperation (MLC), leading to complex 8, trans-[Fe(PNzPtBu-COO)(H)(CO)], and complex 9, trans-[Fe(H)2(CO)(tBu-PNzP)], respectively. Our results point at a very likely mechanism for CO2 hydrogenation involving MLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Na; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; Tianjin Key Laboratory of Structure and Performance for Functional Molecules
2016-11-15
Seven new 3d–4f heterometallic coordination polymers, [Ln(CuL){sub 2}(Hbtca)(btca)(H{sub 2}O)]·2H{sub 2}O (Ln = Tb{sup III}1, Pr{sup III}2, Sm{sup III}3, Eu{sup III}4, Yb{sup III}5), [Nd(NiL)(nip)(Rnip)]·0·25H{sub 2}O·0.25CH{sub 3}OH (R= 0.6CH{sub 3}, 0.4H) 6 and [Nd{sub 2}(NiL)(nip){sub 3}(H{sub 2}O)]·2H{sub 2}O 7(CuL or NiL, H{sub 2}L = 2, 3-dioxo-5, 6, 14, 15-dibenzo-1, 4, 8, 12-tetraazacyclo-pentadeca-7, 13-dien; H{sub 2}btca = benzotriazole-5-carboxylic acid; H{sub 2}nip = 5-nitroisophthalic acid) have been synthesized by a solvothermal method and characterized by single-crystal X-ray diffraction. Complexes 1–5 exhibit a double-strand meso-helical chain structures formed by [Ln{sup III}Cu{sup II}{sub 2}] units via the oxamide and benzotriazole-5-carboxylate bridges, while complex 6 exhibits amore » four-strand meso-helical chain formed by NdNi unit via the oxamide and 5-nitroisophthalate bridges. Complex 7 consists of a 2D layer framework formed by four-strand meso-helical chain via the nip{sup 2−} bridges. Moreover, the magnetic properties of them were investigated, and the best-fit analysis of χ{sub M}T versus T show that the anisotropic contribution of Ln(III) ions (arising from the spin-orbit coupling or the crystal field perturbation) dominates (weak exchange limit) in these complexes(for 3, λ = 214.6 cm{sup −1}, zj’ = −0.33 cm{sup −1}, g{sub av} = 1.94; for 5, Δ = 6.98 cm{sup −1}, zj’ = 1.53 cm{sup −1}, g{sub av} = 1.85). - Graphical-abstract: Seven novel oxamido-bridged 3d-4f heterometallic coordination polymers with benzotriazole-5-carboxylate or 5-nitroisophthalate co-ligands under solvothermal reaction conditions. Polymers 1–7 hold 1D or 2D framework structure, viz., double-strand meso-helical chain of 1–5, four-strand meso-helical chain of 6, and 2D net of 7 consisting of four-strand meso-helical chain. Moreover, the temperature dependences of magnetic susceptibilities of compounds 1–7 were also studied.« less
NASA Astrophysics Data System (ADS)
Mukherjee, Saptarshi; Rosell, Anders; Udpa, Lalita; Udpa, Satish; Tamburrino, Antonello
2017-02-01
The modeling of U-Bend segment in steam generator tubes for predicting eddy current probe signals from cracks, wear and pitting in this region poses challenges and is non-trivial. Meshing the geometry in the cartesian coordinate system might require a large number of elements to model the U-bend region. Also, since the lift-off distance between the probe and tube wall is usually very small, a very fine mesh is required near the probe region to accurately describe the eddy current field. This paper presents a U-bend model using differential geometry principles that exploit the result that Maxwell's equations are covariant with respect to changes of coordinates and independent of metrics. The equations remain unaltered in their form, regardless of the choice of the coordinates system, provided the field quantities are represented in the proper covariant and contravariant form. The complex shapes are mapped into simple straight sections, while small lift-off is mapped to larger values, thus reducing the intrinsic dimension of the mesh and stiffness matrix. In this contribution, the numerical implementation of the above approach will be discussed with regard to field and current distributions within the U-bend tube wall. For the sake of simplicity, a two dimensional test case will be considered. The approach is evaluated in terms of efficiency and accuracy by comparing the results with that obtained using a conventional FE model in cartesian coordinates.
Cady, Rhonda G; Kelly, Anne M; Finkelstein, Stanley M; Looman, Wendy S; Garwick, Ann W
2014-01-01
Care coordination is an essential component of the pediatric health care home. This study investigated the attributes of relationship-based advanced practice registered nurse care coordination for children with medical complexity enrolled in a tertiary hospital-based health care home. Retrospective review of 2,628 care coordination episodes conducted by telehealth over a consecutive 3-year time period for 27 children indicated that parents initiated the majority of episodes and the most frequent reason was acute and chronic condition management. During this period, care coordination episodes tripled, with a significant increase (p < .001) between years 1 and 2. The increased episodes could explain previously reported reductions in hospitalizations for this group of children. Descriptive analysis of a program-specific survey showed that parents valued having a single place to call and assistance in managing their child's complex needs. The advanced practice registered nurse care coordination model has potential for changing the health management processes for children with medical complexity. Copyright © 2014 National Association of Pediatric Nurse Practitioners. Published by Mosby, Inc. All rights reserved.
Palladino, Giuseppe; Szabó, Zoltán; Fischer, Andreas; Grenthe, Ingmar
2006-11-21
The structure, thermodynamics and kinetics of the binary and ternary uranium(VI)-ethylenediamine-N,N'-diacetate (in the following denoted EDDA) fluoride systems have been studied using potentiometry, 1H, 19F NMR spectroscopy and X-ray diffraction. The UO2(2+)-EDDA system could be studied up to -log[H3O+] = 3.4 where the formation of two binary complexes UO2(EDDA)(aq) and UO2(H3EDDA)3+ were identified, with equilibrium constants logbeta(UO2EDDA) = 11.63 +/- 0.02 and logbeta(UO2H3EDDA3+) = 1.77 +/- 0.04, respectively. In the ternary system the complexes UO2(EDDA)F-, UO2(EDDA)(OH)- and (UO2)2(mu-OH)2(HEDDA)2F2(aq) were identified; the latter through 19F NMR. 1H NMR spectra indicate that the EDDA ligand is chelate bonded in UO2(EDDA)(aq), UO2(EDDA)F- and UO2(EDDA)(OH)- while only one carboxylate group is coordinated in UO2(H3EDDA)3+. The rate and mechanism of the fluoride exchange between UO2(EDDA)F- and free fluoride was studied by 19F NMR spectroscopy. Three reactions contribute to the exchange; (i) site exchange between UO2(EDDA)F- and free fluoride without any net chemical exchange, (ii) replacement of the coordinated fluoride with OH- and (iii) the self dissociation of the coordinated fluoride forming UO2(EDDA)(aq); these reactions seem to follow associative mechanisms. (1)H NMR spectra show that the exchange between the free and chelate bonded EDDA is slow and consists of several steps, protonation/deprotonation and chelate ring opening/ring closure, the mechanism cannot be elucidated from the available data. The structure (UO2)2(EDDA)2(mu-H2EDDA) was determined by single crystal X-ray diffraction and contains two UO2(EDDA) units with tetracoordinated EDDA linked by H2EDDA in the "zwitterion" form, coordinated through a single carboxylate oxygen from each end to the two uranium atoms. The geometry of the complexes indicates that there is no geometric constraint for an associative ligand substitution mechanism.
NASA Astrophysics Data System (ADS)
Mahlooji, Niloofar; Behzad, Mahdi; Tarahhomi, Atekeh; Maroney, Michael; Rudbari, Hadi Amiri; Bruno, Giuseppe; Ghanbari, Bahram
2016-04-01
Two new heteronuclear Nickel(II)/Sodium(I) complexes of a side-off compartmental Schiff base ligand were synthesized and characterized by spectroscopic methods. Crystal structures of both of the complexes were also obtained. The Schiff base ligand was synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with 2-hydroxy-3-methoxybenzaldehyde. In both of the complexes the Ni(II) ion is coordinated to the inner N2O2 coordination sphere with square-planar geometry and the Na(I) ion is coordinated to the outer O2 O2‧ coordination sphere. In Complex (1) with general formula [Ni(L)Na(CH3OH)(ClO4)] the sodium ion is seven coordinated while in (2) with general formula [{Ni(L)Na(OH2)}2(μ-Ni(CN)4)] the sodium ion is six coordinated. Intermolecular interactions in two studied complexes were analyzed using 3D Hirshfeld surfaces and corresponding 2D fingerprint plots. This analysis showed that the H … H and C … H/H … C contacts for both structures (altogether 67.5% of total Hirshfeld surface area for (1) and 77.6% for (2)) and the O … H/H … O (24.2%) for (1) and the N … H/H … N (8.1%) contacts for (2) were the characteristic intermolecular contacts in the related crystal structures.
NASA Astrophysics Data System (ADS)
Drzewiecka-Antonik, Aleksandra; Ferenc, Wiesława; Wolska, Anna; Klepka, Marcin T.; Cristóvão, Beata; Sarzyński, Jan; Rejmak, Paweł; Osypiuk, Dariusz
2017-01-01
The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were synthesized and structurally characterized. The geometry of metal-ligand interaction was refined using XAFS and DFT studies. The Co(2,4-D)2·6H2O and Ni(2,4-D)2·4H2O complexes have octahedral geometry with two carboxylate groups of 2,4-D anions and four water molecules in the coordination sphere. The square planar geometry around metal cations formed by the carboxylate groups from two monodentate ligands and two water molecules, is observed for Cu(2,4-D)2·4H2O complex. In the recrystallized Ni(II) complex dinuclear 'Chinese lantern' structures with bridging carboxylate groups of 2,4-D were observed.
NASA Technical Reports Server (NTRS)
Schoenauer, W.; Daeubler, H. G.; Glotz, G.; Gruening, J.
1986-01-01
An implicit difference procedure for the solution of equations for a chemically reacting hypersonic boundary layer is described. Difference forms of arbitrary error order in the x and y coordinate plane were used to derive estimates for discretization error. Computational complexity and time were minimized by the use of this difference method and the iteration of the nonlinear boundary layer equations was regulated by discretization error. Velocity and temperature profiles are presented for Mach 20.14 and Mach 18.5; variables are velocity profiles, temperature profiles, mass flow factor, Stanton number, and friction drag coefficient; three figures include numeric data.
Do endothelial cells dream of eclectic shape?
Bentley, Katie; Philippides, Andrew; Ravasz Regan, Erzsébet
2014-04-28
Endothelial cells (ECs) exhibit dramatic plasticity of form at the single- and collective-cell level during new vessel growth, adult vascular homeostasis, and pathology. Understanding how, when, and why individual ECs coordinate decisions to change shape, in relation to the myriad of dynamic environmental signals, is key to understanding normal and pathological blood vessel behavior. However, this is a complex spatial and temporal problem. In this review we show that the multidisciplinary field of Adaptive Systems offers a refreshing perspective, common biological language, and straightforward toolkit that cell biologists can use to untangle the complexity of dynamic, morphogenetic systems. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffeditz, William L.; Katz, Michael J.; Deria, Pravas
Dye-sensitized solar cells (DSCs) are an established alternative photovoltaic technology that offers numerous potential advantages in solar energy applications. However, this technology has been limited by the availability of molecular redox couples that are both noncorrosive/nontoxic and do not diminish the performance of the device. In an effort to overcome these shortcomings, a copper-containing redox shuttle derived from 1,8-bis(2'-pyridyl)-3,6-dithiaoctane (PDTO) ligand and the common DSC additive 4-tert-butylpyridine (TBP) was investigated. Electrochemical measurements, single-crystal X-ray diffraction, and absorption and electron paramagnetic resonance spectroscopies reveal that, upon removal of one metal-centered electron, PDTO-enshrouded copper ions completely shed the tetradentate PDTO ligand andmore » replace it with four or more TBP ligands. Thus, the Cu(I) and Cu(II) forms of the electron shuttle have completely different coordination spheres and are characterized by widely differing Cu(II/I) formal potentials and reactivities for forward versus reverse electron transfer. Notably, the coordination-sphere replacement process is fully reversed upon converting Cu(II) back to Cu(I). In cells featuring an adsorbed organic dye and a nano- and mesoparticulate, TiO2-based, photoelectrode, the dual species redox shuttle system engenders performance superior to that obtained with shuttles based on the (II/I) forms of either of the coordination complexes in isolation.« less
Hökelek, Tuncer; Yavuz, Vijdan; Dal, Hakan; Necefoğlu, Hacali
2018-01-01
In the crystal of the title complex, [Cu(C 7 H 6 NO 4 S) 2 (C 6 H 6 N 2 O) 2 (H 2 O)], the Cu II cation and the O atom of the coordinated water mol-ecule reside on a twofold rotation axis. The Cu II ion is coordinated by two carboxyl-ate O atoms of the two symmetry-related 4-sulfamoylbenzoate (SB) anions and by two N atoms of the two symmetry-related nicotinamide (NA) mol-ecules at distances of 1.978 (2) and 2.025 (3) Å, respectively, forming a slightly distorted square-planar arrangement. The distorted square-pyramidal coordination environment is completed by the water O atom in the axial position at a distance of 2.147 (4) Å. In the crystal, the mol-ecules are linked via O-H⋯O and N-H⋯O hydrogen bonds with R 2 2 (8) and R 2 2 (18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (42.2%), H⋯H (25.7%) and H⋯C/C⋯H (20.0%) inter-actions.
NASA Astrophysics Data System (ADS)
Tripathi, Garima; Ramanathan, Gurunath
2018-03-01
The N, N‧-dicyclohexylurea-capped benzo-12-crown-4 (compound 1) has been synthesized. The coordination behaviour of this compound (1) has been studied by crystallizing it with KI (2) and Cu(ClO4)2 (3) salts. The crystallographic studies were performed with all three compounds. The presence of metal ions significantly affects the crystal packing of the compound 1. The crystal lattice of compound 1 was stabilized by Csbnd H⋯π and Cdbnd O⋯Hsbnd N hydrogen bonding. The presence of KI in compound 2 results in a dimer structure in which iodide anion behaves as a bridging ligand. The K+ forms a perching structure with the crown ring. In the compound 3, Cu2+ ion and ligand molecule (1) crystallized independently. They were connected through hydrogen bonding. Interestingly, Cu2+ adopts two different geometries with the coordination number 5 and 6. The centre Cu2+ (Cu1) adopted an octahedral geometry whereas the terminal Cu2+ (Cu2) acquired square pyramidal geometry. The coordination sphere of Cu2+ contains ClO4- anion and water molecules. Cu2+ ion forms a chain structure through ClO4- anion and water molecules involve in hydrogen bonding with the ligand molecule.
NASA Astrophysics Data System (ADS)
Wang, Hu; Zhang, Xia; Zhao, Yu; Zhang, Dongmei; Jin, Fan; Fan, Yuhua
2017-11-01
Three new N2O4-donor bis-Schiff base Co(II) complexes, Co(C36H34N2O8)·2CH3OH (1), Co(C28H34N2O8S2)·H2O (2) and Co(C40H36N4O8)·3CH3OH (3) with distorted octahedral six-coordinate Co(II) centers were synthesized and determined by single crystal X-ray analysis. The X-ray crystallography shows that the metal atoms of three complexes are all six-coordinate with two nitrogen atoms from Cdbnd N groups, two oxygen atoms from ether groups and two carboxylic oxygen atoms in the mono-ligand, forming a distorted octahedral geometry. Theoretical studies of the three complexes were carried out by density functional theory (DFT) Becke's three-parameter hybrid (B3LYP) method employing the 6-31G basis set. The DFT studies indicate that the calculation is in accordance with the experimental results. Moreover, inhibition of jack bean urease by Co(II) complexes 1-3 have also been investigated. At the same time, a docking analysis using a DOCK program was conducted to determine the probable binding mode by inserting the complexes into the active site of jack bean urease. The experimental values and docking simulation exhibited that the complex 3 showed strong inhibitory activity (IC50 = 16.43 ± 2.35 μM) and the structure-activity relationships were further discussed.
NASA Astrophysics Data System (ADS)
Manzano, Carlos M.; Bergamini, Fernando R. G.; Lustri, Wilton R.; Ruiz, Ana Lúcia T. G.; de Oliveira, Ellen C. S.; Ribeiro, Marcos A.; Formiga, André L. B.; Corbi, Pedro P.
2018-02-01
Palladium(II) and platinum(II) complexes with a hydrazide derivative of ibuprofen (named HIB) were synthesized and characterized by chemical and spectroscopic methods. Elemental and thermogravimetric analyses, as well as ESI-QTOF-MS studies for both complexes, confirmed a 1:2:2 metal/HIB/Cl- molar ratio. The crystal structure of the palladium(II) complex was solved by single crystal X-ray diffractometric analysis, which permitted identifying the coordination formula [PdCl2(HIB)2]. Crystallographic studies also indicate coordination of HIB to the metal by the NH2 group. Nuclear magnetic resonance and infrared spectroscopies reinforced the coordination observed in the crystal structure and suggested that the platinum(II) complex presents similar coordination modes and structure when compared with the Pd(II) complex. The complexes had their structures optimized with the aid of DFT methods. In vitro antiproliferative assays showed that the [PdCl2(HIB)2] complex is active over ovarian cancer cell line OVCAR-03, while biophysical studies indicated its capacity to interact with CT-DNA. The complexes were inactive over Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains.
NASA Astrophysics Data System (ADS)
Bronzato, Maddalena; Zoleo, Alfonso; Biondi, Barbara; Centeno, Silvia A.
2016-01-01
Fe- and Fe/Cu-based logwood inks were synthesized following recipes in nineteenth and early twentieth century manuals and were characterized by EPR, ESI-MS, FTIR, and Raman spectroscopies. This multi-technique approach allowed us to shed light on the structures of the complexes responsible for the inks' colors and to obtain vibrational signatures that can be used to identify the different inks in works of art and in historic documents. Information on the nature and chemical properties of the complexes formed between a dye and a mordant is important as these determine, at least in part, their lightfastness. EPR permitted to determine the coordination environment of the metallic ions. The results of the ESI-MS analysis demonstrated, for the first time, the breakdown of the hematein molecule during the ink preparation, and that the colorants are formed by the complexation of the metallic ions by hematein breakdown products, mainly catechol and/or bicyclic compounds. The FTIR spectra obtained were found to be dominated by bands due to the binding medium and sulfates used as reagents. The Raman analysis showed that the characteristic features for the different inks studied depend on the historic recipe used, attesting to the challenges that their identification and characterization in works of art present. In the Raman spectra of the inks applied on paper, broadening of bands in the 750-400 cm- 1 range are observed when compared to the spectra of the inks' powders, possibly due to the interaction of the compounds with the cellulose in the substrate.
New water soluble heterometallic complex showing unpredicted coordination modes of EDTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudsainiyan, R.K., E-mail: mudsainiyanrk@gmail.com; Jassal, A.K.; Chawla, S.K., E-mail: sukhvinder.k.chawla@gmail.com
2015-10-15
A mesoporous 3D polymeric complex (I) having formula ([Zr(IV)O-μ{sup 3}-(EDTA)Fe(III)OH]·H{sub 2}O){sub n} has been crystallized and characterized by various techniques. Single-crystal X-ray diffraction analysis revealed that complex (I) crystallized in chiral monoclinic space group Cc (space group no. 9) with unexpected coordination modes of EDTA and mixture of two transition metal ions. In this complex, the coordination number of Zr(IV) ion is seven where four carboxylate oxygen atoms, two nitrogen atoms, one oxide atom are coordinating with Zr(IV). Fe(III) is four coordinated and its coordination environment is composed of three different carboxylic oxygen atoms from three different EDTA and onemore » oxygen atom of –OH group. The structure consists of 4-c and 16-c (2-nodal) net with new topology and point symbol for net is (3{sup 36}·4{sup 54}·5{sup 30})·(3{sup 6}). TGA study and XRPD pattern showed that the coordination polymer is quite stable even after losing water molecule and –OH ion. Quenching behavior in fluorescence of ligand is observed by complexation with transition metal ions is due to n–π⁎ transition. The SEM micrograph shows the morphology of complex (I) exhibits spherical shape with size ranging from 50 to 280 nm. The minimum N{sub 2} (S{sub BET}=8.7693 m{sup 2}/g) and a maximum amount of H{sub 2} (high surface area=1044.86 m{sup 2}/g (STP)) could be adsorbed at 77 K. From DLS study, zeta potential is calculated i.e. −7.94 shows the negative charges on the surface of complex. Hirshfeld surface analysis and fingerprint plots revealed influence of weak or non bonding interactions in crystal packing of complex. - Graphical abstract: The complex (I) crystallized with unexpected coordination modes of EDTA having 4-c, 16-c net with new topology and point symbol is (3{sup 36}·4{sup 54}·5{sup 30})·(3{sup 6}). TGA study and XRPD pattern proved its stability with high preference of H{sub 2} uptake by complex. - Highlights: • 3D complex having unexpected coordination modes of EDTA with Zr(IV) and Fe(III). • The structure consists of 4-c and 16-c (2-nodal) net with new topology. • Reasonable S{sub BET} (8.7693 m{sup 2}/g) but high H{sub 2} uptake (1044.86 m{sup 2}/g) due to limited pore size. • Quenching behavior due to n–π⁎ transition by complexation with transition metal ions. • From DLS study, zeta potential value is −7.94.« less
Parent Perspective on Care Coordination Services for Their Child with Medical Complexity
Cady, Rhonda G.; Belew, John L.
2017-01-01
The overarching goal of care coordination is communication and co-management across settings. Children with medical complexity require care from multiple services and providers, and the many benefits of care coordination on health and patient experience outcomes have been documented. Despite these findings, parents still report their greatest challenge is communication gaps. When this occurs, parents assume responsibility for aggregating and sharing health information across providers and settings. A new primary-specialty care coordination partnership model for children with medical complexity works to address these challenges and bridge communication gaps. During the first year of the new partnership, parents participated in focus groups to better understand how they perceive communication and collaboration between the providers and services delivering care for their medically complex child. Our findings from these sessions reflect the current literature and highlight additional challenges of rural families, as seen from the perspective of the parents. We found that parents appreciate when professional care coordination is provided, but this is often the exception and not the norm. Additionally, parents feel that the local health system’s inability to care for their medically complex child results in unnecessary trips to urban-based specialty care. These gaps require a system-level approach to care coordination and, consequently, new paradigms for delivery are urgently needed. PMID:28587274
Parent Perspective on Care Coordination Services for Their Child with Medical Complexity.
Cady, Rhonda G; Belew, John L
2017-06-06
The overarching goal of care coordination is communication and co-management across settings. Children with medical complexity require care from multiple services and providers, and the many benefits of care coordination on health and patient experience outcomes have been documented. Despite these findings, parents still report their greatest challenge is communication gaps. When this occurs, parents assume responsibility for aggregating and sharing health information across providers and settings. A new primary-specialty care coordination partnership model for children with medical complexity works to address these challenges and bridge communication gaps. During the first year of the new partnership, parents participated in focus groups to better understand how they perceive communication and collaboration between the providers and services delivering care for their medically complex child. Our findings from these sessions reflect the current literature and highlight additional challenges of rural families, as seen from the perspective of the parents. We found that parents appreciate when professional care coordination is provided, but this is often the exception and not the norm. Additionally, parents feel that the local health system's inability to care for their medically complex child results in unnecessary trips to urban-based specialty care. These gaps require a system-level approach to care coordination and, consequently, new paradigms for delivery are urgently needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia Dingxian; Zhu Aimei; Jin Qinyan
Two types of lanthanide selenidoantimonates [Ln(en){sub 4}(SbSe{sub 4})] (Ln=Ce(1a), Pr(1b)) and [Ln(en){sub 4}]SbSe{sub 4}.0.5en (Ln=Eu(2a), Gd(2b), Er(2c), Tm(2d), Yb(2e); en=ethylenediamine) were solvothermally synthesized by reactions of LnCl{sub 3}, Sb and Se with the stoichiometric ratio in en solvent at 140 deg. C. The four-en coordinated lanthanide complex cation [Ln(en){sub 4}]{sup 3+} formed in situ balances the charge of SbSe{sub 4}{sup 3-} anion. In compounds 1a and 1b, the SbSe{sub 4}{sup 3-} anion act as a monodentate ligand to coordinate complex [Ln(en){sub 4}]{sup 3+} and the neutral compound [Ln(en){sub 4}(SbSe{sub 4})] is formed. The Ln{sup 3+} ion has a nine-coordinated environmentmore » involving eight N atoms and one Se atom forming a distorted monocapped square antiprism. In 2a-2e the lanthanide(III) ion exists as isolated complex [Ln(en){sub 4}]{sup 3+}, in which the Ln{sup 3+} ion is in a bicapped trigonal prism geometry. A systematic investigation of the crystal structures reveals that two types of structural features of these lanthanide selenidoantimonates are related with lanthanides contraction across the lanthanide series. TG curves show that compounds 1a-1b and 2a-2e remove their organic components in one and two steps, respectively. - Graphical abstract: Two types of lanthanide selenidoantimonates [Ln(en){sub 4}(SbSe{sub 4})] (Ln=Ce, Pr) and [Ln(en){sub 4}]SbSe{sub 4}.0.5en (Ln=Eu, Gd, Er, Tm, Yb; en=ethylenediamine) have been synthesized under the mild solvothermal conditions, and a systematic investigation of the crystal structures reveals that two types of structural features of these lanthanide selenidoantimonates are related with lanthanides contraction across the lanthanide series.« less
Worasith, N; Goodman, B A
2013-10-01
This paper addresses the question of the coordination environment of copper (II) in hair. The research is based on electron paramagnetic resonance (EPR), a spectroscopic technique that detects specifically paramagnetic molecules. Samples were investigated from various male and female subjects of different ages and races. The Cu(II) EPR signals seemed to be a combination of two components in widely differing relative proportions, although both have the relationship g(// )> g(⊥) > 2.0 expected for the unpaired electron in a d(x2-y2) orbital and are thus consistent with square planar or tetragonal symmetry for the Cu(II) ion. With a very few samples, the EPR spectra consisted of a single component, and high quality spectra from these samples are presented for use as standard reference results. In one type of complex, (14) N superhyperfine structure (shfs) was resolved and the spectrum corresponds to Cu coordination to mixed O- and N-containing functional groups, although the number of N atoms cannot be determined with certainty. No (14) N shfs was seen in the spectrum from the other type of complex, and its narrow linewidth excluded the possibility of any. Furthermore, the spectral parameters are inconsistent with coordination of the Cu to four O atoms, but consistent with some S coordinated to the Cu. Large variations between the relative proportions of the two Cu(II) forms were observed with a single healthy subject over a 5-year period, thus suggesting that they are determined by 'environmental' factors, possibly hair treatment processes, rather than being markers for the health of the subject. EPR spectroscopy is a convenient non-destructive method for determining the Cu coordination environment in hair, and could be used to monitor its response to various types of hair treatment. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Astrophysics Data System (ADS)
Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar
2013-03-01
In this study, diacetylmonoximebenzoylhydrazone (L1H2) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L2H2) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L1H2 ligand, and 1:1 for L2H2 ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, 1H- and 13C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L1H2 ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N4O2 donor environment, while the L2H2 ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N2O2 donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L1H)2], and binuclear polymeric metal (II) complexes [{M2(L2)}n]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co2+, Ni2+, Cu2+, Zn2+ and Pb2+] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L1H2) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L2H2) ligand shows strong binding ability toward nickel(II) and zinc(II) ions.
Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar
2013-03-15
In this study, diacetylmonoximebenzoylhydrazone (L(1)H(2)) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L(2)H(2)) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L(1)H(2) ligand, and 1:1 for L(2)H(2) ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, (1)H- and (13)C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L(1)H(2) ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N(4)O(2) donor environment, while the L(2)H(2) ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N(2)O(2) donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L(1)H)(2)], and binuclear polymeric metal (II) complexes [{M(2)(L(2))}(n)]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co(2+), Ni(2+), Cu(2+), Zn(2+) and Pb(2+)] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L(1)H(2)) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L(2)H(2)) ligand shows strong binding ability toward nickel(II) and zinc(II) ions. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, John S.; Chen, Jeffrey; Benezeth, Pascale
Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and post-reaction samples were examined by ex situ techniques, including SEM, XPS, FIB-TEM,more » TGA-MS, and MAS-NMR. Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m2. Above this concentration and up to 76 µmol/m2, monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m2, crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, the implication of these results is that mineral trapping in scCO2 dominated fluids will be insignificant and limited to surface complexation unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, John S.; Chen, Jeffrey; Benezeth Ep Gisquet, Pascale
Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and post-reaction samples were examined by ex situ techniques, including SEM, XPS, FIB-TEM,more » TGA-MS, and MAS-NMR. Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m2. Above this concentration and up to 76 µmol/m2, monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m2, crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.« less
NASA Astrophysics Data System (ADS)
Chen, Xiudan; Wang, Huili; Li, Jing; Hu, Wenqin; Li, Mei-Jin
2017-02-01
Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy = 2-phenylpyridine, ppz = 4,7-phenanthrolino-5,6:5,6-pyrazine, bppz = 2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2 +, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission ;turn-on; bifunctional detection for CN-, especially for complex 1-Cu2 + showed a high sensitivity toward CN- with a limit of diction is 97 nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.
NASA Technical Reports Server (NTRS)
Gupta, A.; Loew, G. H.; Lawless, J.
1983-01-01
A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.
Weidmann, Alyson G.; Barton, Jacqueline K.
2015-01-01
We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh—O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA non-classically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors. PMID:26397309
Weidmann, Alyson G; Barton, Jacqueline K
2015-10-05
We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh-O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA nonclassically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and it triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors.
Pt-Mechanistic Study of the β-Hydrogen Elimination from Organoplatinum(II) Enolate Complexes
Alexanian, Erik J.; Hartwig, John F.
2010-01-01
A detailed mechanistic investigation of the thermal reactions of a series of bisphosphine alkylplatinum(II) enolate complexes is reported. The reactions of methylplatinum enolate complexes in the presence of added phosphine form methane and either free or coordinated enone, depending on the steric properties of the enone. Kinetic studies were conducted to determine the relationship between the rates and mechanism of β-hydrogen elimination from enolate complexes and the rates and mechanism of β-hydrogen elimination from alkyl complexes. The rates of reactions of the enolates were inversely dependent on the concentration of added phosphine, indicating that β-hydrogen elimination from the enolate complexes occurs after reversible dissociation of a phosphine. A normal, primary kinetic isotope effect was measured, and this effect was consistent with rate-limiting β-hydrogen elimination or C-H bond-forming reductive elimination to form methane. Reactions of substituted enolate complexes were also studied to determine the effect of the steric and electronic properties of the enolate complexes on the rates of β-hydrogen elimination. These studies showed that reactions of the alkylplatinum enolate complexes were retarded by electron-withdrawing substituents on the enolate and that reactions of enolate complexes possessing alkyl substituents at the β-position occurred at rates that were similar to those of complexes lacking alkyl substituents at this position. Despite the trend in electronic effects on the rates of reactions of enolate complexes and the substantial electronic differences between an enolate and an alkyl ligand, the rates of decomposition of the enolate complexes were similar to those of the analogous alkyl complexes. To the extent that the rates of reaction of the two types of complex are different, those involving β-hydrogen elimination from the enolate ligand were faster. A difference between the identity of the rate-determining step for decomposition of the two classes of complexes and an effect of stereochemistry on the selectivity for β-hydrogen elimination are possible origins of the observed phenomena. PMID:18954048
Pseudosymmetric fac-diaquatrichlorido[(dimethylphosphoryl)methanaminium-κO]manganese(II)
Reiss, Guido J.
2013-01-01
In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the MnII metal center has a distorted octahedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water molecules and the O-coordinated dpmaH cation [dpmaH = (dimethylphosphoryl)methanaminium] complete the coordination sphere. Each complex molecule is connected to its neighbours by O—H⋯Cl and N—H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)]. PMID:23723764
Byrne, Joseph P; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur
2014-08-07
Ligands containing the btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] motif have appeared with increasing regularity over the last decade. This class of ligands, formed in a one pot ‘click’ reaction, has been studied for various purposes, such as for generating d and f metal coordination complexes and supramolecular self-assemblies, and in the formation of dendritic and polymeric networks, etc. This review article introduces btp as a novel and highly versatile terdentate building block with huge potential in inorganic supramolecular chemistry. We will focus on the coordination chemistry of btp ligands with a wide range of metals, and how it compares with other classical pyridyl and polypyridyl based ligands, and then present a selection of applications including use in catalysis, enzyme inhibition, photochemistry, molecular logic and materials, e.g. polymers, dendrimers and gels. The photovoltaic potential of triazolium derivatives of btp and its interactions with anions will also be discussed.
Molecular Designs for Controlling the Local Environments around Metal Ions
Cook, Sarah A.; Borovik, A.S.
2015-01-01
CONSPECTUS The functions of metal complexes are directly linked to the local environment in which they are housed; modifications to the local environment (or secondary coordination sphere) are known to produce changes in key properties of the metal centers that can affect reactivity. Non-covalent interactions are the most common and influential forces that regulate the properties of secondary coordination spheres, which leads to complexities in structure that are often difficult to achieve in synthetic systems. Using key architectural features from the active sites of metalloproteins as inspiration, we have developed molecular systems that enforce intramolecular hydrogen bonds (H-bonds) around a metal center via incorporation of H-bond donors and acceptors into rigid ligand scaffolds. We have utilized these molecular species to probe mechanistic aspects of biological dioxygen activation and water oxidation. This Account describes the stabilization and characterization of unusual M–oxo and heterobimetallic complexes. These types of species have been implicated in a range of oxidative processes in biology but are often difficult to study because of their inherent reactivity. Our H-bonding ligand systems allowed us to prepare an FeIII–oxo species directly from the activation of O2 that was subsequently oxidized to form a monomeric FeIV–oxo species with an S = 2 spin state, similar to those species proposed as key intermediates in non-heme monooxygenases. We also demonstrated that a single MnIII–oxo center that was prepared from water could be converted to a high spin MnV–oxo species via stepwise oxidation—a process that mimics the oxidative charging of the oxygen-evolving complex (OEC) of photosystem II. Current mechanisms for photosynthetic O–O bond formation invoke a MnIV–oxyl species rather than the isoelectronic MnV–oxo system as the key oxidant based on computational studies. However, there is no experimental information to support the existence of an Mn–oxyl radical. We therefore probed the amount of spin density on the oxido ligand of our complexes using EPR spectroscopy in conjunction with oxygen-17 labeling. Our findings showed that there is a significant amount of spin on the oxido ligand, yet the M–oxo bonds are best described as highly covalent and there is no indication that an oxyl radical is formed. These results offer the intriguing possibility that high spin M–oxo complexes are involved in O–O bond formation in biology. Ligand redesign to incorporate H-bond accepting units (sulfonamido groups) simultaneously provided a metal ion binding pocket, adjacent H-bond acceptors, and an auxiliary binding site for a second metal ion. These properties allowed us to isolate a series of heterobimetallic complexes of FeIII and MnIII in which a group II metal ion was coordinated within the secondary coordination sphere. Examination of the influence of the second metal ion on the electron transfer properties of the primary metal center revealed unexpected similarities between CaII and SrII ions—a result with relevance to the OEC. In addition, the presence of a second metal ion was found to prevent intramolecular oxidation of the ligand with an O-atom transfer reagent. PMID:26181849
Dynamic expression patterns of ECM molecules in the developing mouse olfactory pathway
Shay, Elaine L.; Greer, Charles A.; Treloar, Helen B.
2009-01-01
Olfactory sensory neuron (OSN) axons follow stereotypic spatio-temporal paths in the establishment of the olfactory pathway. Extracellular matrix (ECM) molecules are expressed early in the developing pathway and are proposed to have a role in its initial establishment. During later embryonic development, OSNs sort out and target specific glomeruli to form precise, complex topographic projections. We hypothesized that ECM cues may help to establish this complex topography. The aim of this study was to characterize expression of ECM molecules during the period of glomerulogenesis, when synaptic contacts are forming. We examined expression of laminin-1, perlecan, tenascin-C and CSPGs and found a coordinated pattern of expression of these cues in the pathway. These appear to restrict axons to the pathway while promoting axon outgrowth within. Thus, ECM molecules are present in dynamic spatio-temporal positions to affect OSN axons as they navigate to the olfactory bulb and establish synapses. PMID:18570250
NASA Astrophysics Data System (ADS)
Saheli, Sania; Rezvani, Alireza
2017-01-01
A new metal-organic framework (MOF) formulated as [Ni(H2btc)(OH)(H2O)2] (1) (H3btc = 1,3,5-benzenetricarboxylic acid) was synthesized using the hydrothermal technique. The complex 1 was characterized by elemental analysis, infrared spectroscopy, and powder X-ray diffraction in addition to single crystal X-ray diffraction. X-ray crystal structural analysis displayed that the compound belonged to the monoclinic space group P21/n with cell parameters a = 6.8658(14) Å, b = 18.849(4) Å, c = 8.5608(17) Å. In the title complex, ligand is linked to metal centers through two μ-oxo bridges and forming a 2D layer which is led to form an interesting geometry. The thermal stability and fluorescence property of 1 have also been investigated.
Organization and hierarchy of the human functional brain network lead to a chain-like core.
Mastrandrea, Rossana; Gabrielli, Andrea; Piras, Fabrizio; Spalletta, Gianfranco; Caldarelli, Guido; Gili, Tommaso
2017-07-07
The brain is a paradigmatic example of a complex system: its functionality emerges as a global property of local mesoscopic and microscopic interactions. Complex network theory allows to elicit the functional architecture of the brain in terms of links (correlations) between nodes (grey matter regions) and to extract information out of the noise. Here we present the analysis of functional magnetic resonance imaging data from forty healthy humans at rest for the investigation of the basal scaffold of the functional brain network organization. We show how brain regions tend to coordinate by forming a highly hierarchical chain-like structure of homogeneously clustered anatomical areas. A maximum spanning tree approach revealed the centrality of the occipital cortex and the peculiar aggregation of cerebellar regions to form a closed core. We also report the hierarchy of network segregation and the level of clusters integration as a function of the connectivity strength between brain regions.
NASA Astrophysics Data System (ADS)
Ilie, Ioana M.; den Otter, Wouter K.; Briels, Wim J.
2016-02-01
Particles in simulations are traditionally endowed with fixed interactions. While this is appropriate for particles representing atoms or molecules, objects with significant internal dynamics—like sequences of amino acids or even an entire protein—are poorly modelled by invariable particles. We develop a highly coarse grained polymorph patchy particle with the ultimate aim of simulating proteins as chains of particles at the secondary structure level. Conformational changes, e.g., a transition between disordered and β-sheet states, are accommodated by internal coordinates that determine the shape and interaction characteristics of the particles. The internal coordinates, as well as the particle positions and orientations, are propagated by Brownian Dynamics in response to their local environment. As an example of the potential offered by polymorph particles, we model the amyloidogenic intrinsically disordered protein α-synuclein, involved in Parkinson's disease, as a single particle with two internal states. The simulations yield oligomers of particles in the disordered state and fibrils of particles in the "misfolded" cross-β-sheet state. The aggregation dynamics is complex, as aggregates can form by a direct nucleation-and-growth mechanism and by two-step-nucleation through conversions between the two cluster types. The aggregation dynamics is complex, with fibrils formed by direct nucleation-and-growth, by two-step-nucleation through the conversion of an oligomer and by auto-catalysis of this conversion.
Hess, Corinna R; Weyhermüller, Thomas; Bill, Eckhard; Wieghardt, Karl
2010-06-21
The redox properties of Fe and Zn complexes coordinated by an alpha-diimine based N(4)-macrocyclic ligand (TIM) have been examined using spectroscopic methods and density functional theory (DFT) computational analysis. DFT results on the redox series of [Zn(TIM*)](n) and [Fe(TIM*)](n) molecules indicate the preferential reduction of the alpha-diimine ligand moiety. In addition to the previously reported [Fe(TIM*)](2) dimer, we have now synthesized and characterized a further series of monomeric and dimeric complexes coordinated by the TIM ligand. This includes the five-coordinate monomeric [Fe(TIM*)I], the neutral and cationic forms of a monomeric phosphite adduct, [Fe(TIM*)(P(OPh)(3))] and [Fe(TIM*)(P(OPh)(3))](PF(6)), as well as a binuclear hydroxy-bridged complex, [{Fe(TIM*)}(2)(mu-OH)](PF(6)). Experimental and computational data for these synthetic compounds denote the presence of ferrous and ferric species, suggesting that the alpha-diimine based macrocycles do not readily support the formation of formally low-valent (M(0) or M(I)) metal complexes as previously speculated. Magnetochemical, Mossbauer, electron paramagnetic resonance (EPR), and electronic spectral data have been employed to experimentally determine the oxidation state of the central metal ion and of the macrocyclic ligand (TIM*) in each compound. The series of compounds is described as follows: [Fe(II)(TIM(0))(CH(3)CN(2))](2+), S(Fe) = S(T) = 0; [Fe(2.5)(TIM(2.5-))](2), S(T) = 1; [{Fe(III)(TIM(2-))}(2)(mu-OH)](+), S(Fe) = 3/2, S(T) = 0; [Fe(III)(TIM(2-))I], S(Fe) = 3/2, S(T) = 1/2; [Fe(II)(TIM(2-))(P(OPh(3)))], S(Fe) = S(T) = 0; and [Fe(II)(TIM(1-))(P(OPh(3)))](1+)/[Fe(I)(TIM(0))(P(OPh(3)))](1+), S(T) = 1/2. The results have been corroborated by DFT calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro Nevada Environmental Services
In Appendix 0, Use Restriction (UR) Form, the drawing of the use restricted area shows the incorrect coordinates for the use restricted area, the coordinates on the drawing do not match the approved UR Form. The coordinates have been verified and this Errata Sheet replaces the drawing of the use restricted area with an aerial photo showing the use restricted area and the correct coordinates that match the approved UR Form.
NASA Astrophysics Data System (ADS)
Lee, Victor R.; Leary, Heather M.; Sellers, Linda; Recker, Mimi
2014-06-01
When introducing and implementing a new technology for science teachers within a school district, we must consider not only the end users but also the roles and influence district personnel have on the eventual appropriation of that technology. School districts are, by their nature, complex systems with multiple individuals at different levels in the organization who are involved in supporting and providing instruction. Varying levels of support for new technologies between district coordinators and teachers can sometimes lead to counterintuitive outcomes. In this article, we examine the role of the district science coordinator in five school districts that participated in the implementation of an online resource discovery and sharing tool for Earth science teachers. Using a qualitative approach, we conducted and coded interviews with district coordinators and teachers to examine the varied responsibilities associated with the district coordinator and to infer the relationships that were developed and perceived by teachers. We then examine and discuss two cases that illustrate how those relationships could have influenced how the tool was adopted and used to differing degrees in the two districts. Specifically, the district that had high support for online resource use from its coordinator appeared to have the lowest level of tool use, and the district with much less visible support from its coordinator had the highest level of tool use. We explain this difference in terms of how the coordinator's promotion of teacher autonomy took distinctly different forms at those two districts.
Rheb may complex with RASSF1A to coordinate Hippo and TOR signaling.
Nelson, Nicholas; Clark, Geoffrey J
2016-06-07
The TOR pathway is a vital component of cellular homeostasis that controls the synthesis of proteins, nucleic acids and lipids. Its core is the TOR kinase. Activation of the TOR pathway suppresses autophagy, which plays a vital but complex role in tumorigenesis. The TOR pathway is regulated by activation of the Ras-related protein Rheb, which can bind mTOR. The Hippo pathway is a major growth control module that regulates cell growth, differentiation and apoptosis. Its core consists of an MST/LATS kinase cascade that can be activated by the RASSF1A tumor suppressor. The TOR and Hippo pathways may be coordinately regulated to promote cellular homeostasis. However, the links between the pathways remain only partially understood. We now demonstrate that in addition to mTOR regulation, Rheb also impacts the Hippo pathway by forming a complex with RASSF1A. Using stable clones of two human lung tumor cell lines (NCI-H1792 and NCI-H1299) with shRNA-mediated silencing or ectopic overexpression of RASSF1A, we show that activated Rheb stimulates the Hippo pathway, but is suppressed in its ability to stimulate the TOR pathway. Moreover, by selectively labeling autophagic vacuoles we show that RASSF1A inhibits the ability of Rheb to suppress autophagy and enhance cell growth. Thus, we identify a new connection that impacts coordination of Hippo and TOR signaling. As RASSF1A expression is frequently lost in human tumors, the RASSF1A status of a tumor may impact not just its Hippo pathway status, but also its TOR pathway status.
Akinkunmi, Ezekiel; Ojo, Isaac; Adebajo, Clement; Isabirye, David
2017-01-01
Enantiomerically enriched coordination compounds of aspartic acid and racemic mixtures of coordination compounds of glycine metal-ligand ratio 1 : 3 were synthesized and characterized using infrared and UV-Vis spectrophotometric techniques and magnetic susceptibility measurements. Five of the complexes were resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) chloride, (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride, and (+)-tris(1,10-phenanthroline)nickel(II) chloride as resolving agents. The antimicrobial and cytotoxic activities of these complexes were then determined. The results obtained indicated that aspartic acid and glycine coordinated in a bidentate fashion. The enantiomeric purity of the compounds was in the range of 22.10–32.10%, with (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex as the more efficient resolving agent. The resolved complexes exhibited better activity in some cases compared to the parent complexes for both biological activities. It was therefore inferred that although the increase in the lipophilicity of the complexes may assist in the permeability of the complexes through the cell membrane of the pathogens, the enantiomeric purity of the complexes is also of importance in their activity as antimicrobial and cytotoxic agents. PMID:28293149
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, J.; Kostic, N.M.
1988-07-27
This study introduces binuclear transition-metal complexes as reagents for selective covalent cross-linking of proteins. Incubation of horse cytochrome c (designated cyt) with Rh{sub 2}(OAc){sub 4} under mild conditions yields the diprotein complex, Rh{sub 2}(OAc){sub 4}(cyt){sub 2}, whose composition is established by size-exclusion chromatography, uv-vis spectroscopy, and {sup 1}H NMR spectroscopy. The protein molecules are coordinated to the Rh atoms via the imidazole (Im) rings of their His 33 residues, as shown by uv difference and {sup 1}H NMR spectroscopy, by the pH effect on the complex formation, and by the control experiments with tuna cytochrome c. The diprotein complex ismore » stable under ordinary conditions, and yet it can be cleaved, and the native protein recovered, by treatment with a suitable strong nucleophile. Spectroscopic and electrochemical measurements show that the structural and redox properties of cytochrome c are not perturbed significantly by cross-linking. Comparison between Rh{sub 2}(OAc){sub 4}(Im){sub 2} and Rh{sub 2}(OAc){sub 4}(cyt){sub 2} shows that the complex containing small ligands is not an entirely realistic model of the complex containing proteins. In particular, the enhanced stability of the latter toward hydrolysis may be due to steric bulk of the protein ligands and to hydrogen bonds that amino acid side chains may form with the inorganic link. Some of the findings of this study may pertain to the mechanism of antitumor action of the Rh{sub 2}(RCOO){sub 4} complexes. 86 refs., 2 tabs.« less
Leonzio, Marco; Melchior, Andrea; Faura, Georgina; Tolazzi, Marilena; Zinna, Francesco; Di Bari, Lorenzo; Piccinelli, Fabio
2017-04-17
Water-soluble Eu(III) and Tb(III) complexes with N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N'-diacetic acid (H 2 bpcd) have been synthesized and characterized in their racemic and enantiopure forms. The ligand has been designed to bind Ln(III) ions, providing a dissymmetric environment able to solicit strong chiroptical features while at the same time leaving a few coordination sites available for engaging further ancillary ligands. Potentiometric studies show that Ln(III) complexes have a relatively good stability and that at pH 7 the [Ln(bpcd)] + species is largely dominant. DFT calculations carried out on the (S,S)-[Y(bpcd)(H 2 O) 5 ] + complexes (the closed-shell equivalents of [Eu(bpcd)(H 2 O) 5 ] + and [Tb(bpcd)(H 2 O) 5 ] + ) indicate that the two trans-O,O and trans-N py ,N py configurations are equally stable in solution and present two coordinated water molecules. This is in agreement with the hydration number ∼2.6 determined by luminescence lifetime measurements on Tb(III) and Eu(III) complexes. A detailed optical and chiroptical spectroscopic characterization has been carried out and reveals that the complexes display an efficient luminescence in the visible spectral range accompanied by a strong CPL activity. A value for g lum (around 0.1 on the top of the 546 nm band) for the Tb-based complex has been found. This is one of the highest g lum values measured up to now for chiral Tb complexes. These results suggest that in principle Tb(bpcd)Cl is suitable to be employed as a CPL bioprobe for relevant analytes in aqueous media.
Boles, Georgia C; Hightower, Randy L; Coates, Rebecca A; McNary, Christopher P; Berden, Giel; Oomens, Jos; Armentrout, P B
2018-04-12
Complexes of aspartic acid (Asp) cationized with Zn 2+ : Zn(Asp-H) + , Zn(Asp-H) + (ACN) where ACN = acetonitrile, and Zn(Asp-H) + (Asp); as well as with Cd 2+ , CdCl + (Asp), were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy using light generated from a free electron laser. A series of low-energy conformers for each complex was found using quantum chemical calculations to identify the structures formed experimentally. The main binding motif observed for the heavy-metal complex, CdCl + (Asp)[N,CO,CO s ], is a charge-solvated, tridentate structure, where the metal center binds to the backbone amino group and carbonyl oxygens of the backbone and side-chain carboxylic acids. Likewise, the deprotonated Zn(Asp-H) + (ACN) and Zn(Asp-H) + (Asp) complexes show comparable [N,CO - ,CO s ](ACN) and [N,CO - ,CO s ][N,CO,CO s ] coordinations, respectively. Interestingly, there was only minor spectral evidence for the analogous Zn(Asp-H) + [N,CO - ,CO s ] binding motif, even though this species is predicted to be the lowest-energy conformer. Instead, rearrangement and partial dissociation of the amino acid are observed, as spectral features most consistent with the experimental spectrum are exhibited by a four-coordinate Zn(Asp-NH 4 ) + [CO 2 - ,CO s ](NH 3 ) complex. Analysis of the mechanistic pathway leading from the predicted lowest-energy conformer to the isobaric deaminated complex is explored theoretically. Further, comparison of the current work to that of Zn 2+ and Cd 2+ complexes of asparagine (Asn) allows additional conclusions regarding populated conformers and effects of carboxamide versus carboxylic acid binding to be drawn.