Twitter Chats: Connect, Foster, and Engage Internal Extension Networks
ERIC Educational Resources Information Center
Seger, Jamie; Hill, Paul; Stafne, Eric; Swadley, Emy
2017-01-01
The eXtension Educational Technology Learning Network (EdTechLN) has found Twitter to be an effective form of informal communication for routinely engaging network members. Twitter chats provide Extension professionals an opportunity to reach and engage one other. As the EdTechLN's experimentation with Twitter chats has demonstrated, the use of…
NASA Astrophysics Data System (ADS)
Nowak, Christian; Escobedo, Fernando A.
2017-08-01
Molecular simulations are used to study the effect of synthesis conditions on the tensile response of liquid-crystalline elastomers formed by block copolymer chains. Remarkably, it is found that despite the significant presence of trapped entanglements, these networks can exhibit the sawtooth tensile response previously predicted for ideal unentangled networks. It is also found that the monomer concentration during crosslinking can be tuned to limit the extent of entanglements and inhomogeneities while also maximizing network extensibility. It is predicted that networks synthesized at a "critical" concentration will have the greatest toughness.
Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs
NASA Astrophysics Data System (ADS)
Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J. B.
2010-10-01
The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.
Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs.
Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J B
2010-10-01
The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.
77 FR 55837 - Information Collection Being Reviewed by the Federal Communications Commission
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
..., Satellite Network Stations and Space Stations. Form No.: FCC Form 312; Schedule S. Type of Review: Extension... determine the technical and legal qualifications of applicants or licensees to operate a station, transfer...
Takashima, Atsuko; Bakker, Iske; van Hell, Janet G; Janzen, Gabriele; McQueen, James M
2014-01-01
The complementary learning systems account of declarative memory suggests two distinct memory networks, a fast-mapping, episodic system involving the hippocampus, and a slower semantic memory system distributed across the neocortex in which new information is gradually integrated with existing representations. In this study, we investigated the extent to which these two networks are involved in the integration of novel words into the lexicon after extensive learning, and how the involvement of these networks changes after 24h. In particular, we explored whether having richer information at encoding influences the lexicalization trajectory. We trained participants with two sets of novel words, one where exposure was only to the words' phonological forms (the form-only condition), and one where pictures of unfamiliar objects were associated with the words' phonological forms (the picture-associated condition). A behavioral measure of lexical competition (indexing lexicalization) indicated stronger competition effects for the form-only words. Imaging (fMRI) results revealed greater involvement of phonological lexical processing areas immediately after training in the form-only condition, suggesting that tight connections were formed between novel words and existing lexical entries already at encoding. Retrieval of picture-associated novel words involved the episodic/hippocampal memory system more extensively. Although lexicalization was weaker in the picture-associated condition, overall memory strength was greater when tested after a 24hour delay, probably due to the availability of both episodic and lexical memory networks to aid retrieval. It appears that, during lexicalization of a novel word, the relative involvement of different memory networks differs according to the richness of the information about that word available at encoding. © 2013.
Extending the accuracy of the SNAP interatomic potential form
NASA Astrophysics Data System (ADS)
Wood, Mitchell A.; Thompson, Aidan P.
2018-06-01
The Spectral Neighbor Analysis Potential (SNAP) is a classical interatomic potential that expresses the energy of each atom as a linear function of selected bispectrum components of the neighbor atoms. An extension of the SNAP form is proposed that includes quadratic terms in the bispectrum components. The extension is shown to provide a large increase in accuracy relative to the linear form, while incurring only a modest increase in computational cost. The mathematical structure of the quadratic SNAP form is similar to the embedded atom method (EAM), with the SNAP bispectrum components serving as counterparts to the two-body density functions in EAM. The effectiveness of the new form is demonstrated using an extensive set of training data for tantalum structures. Similar to artificial neural network potentials, the quadratic SNAP form requires substantially more training data in order to prevent overfitting. The quality of this new potential form is measured through a robust cross-validation analysis.
Bellman Ford algorithm - in Routing Information Protocol (RIP)
NASA Astrophysics Data System (ADS)
Krianto Sulaiman, Oris; Mahmud Siregar, Amir; Nasution, Khairuddin; Haramaini, Tasliyah
2018-04-01
In a large scale network need a routing that can handle a lot number of users, one of the solutions to cope with large scale network is by using a routing protocol, There are 2 types of routing protocol that is static and dynamic, Static routing is manually route input based on network admin, while dynamic routing is automatically route input formed based on existing network. Dynamic routing is efficient used to network extensively because of the input of route automatic formed, Routing Information Protocol (RIP) is one of dynamic routing that uses the bellman-ford algorithm where this algorithm will search for the best path that traversed the network by leveraging the value of each link, so with the bellman-ford algorithm owned by RIP can optimize existing networks.
Henske, John K.; Gilmore, Sean P.; Knop, Doriv; ...
2017-12-20
Anaerobic gut fungi are the primary colonizers of plant material in the rumen microbiome, but are poorly studied due to a lack of characterized isolates. While most genera of gut fungi form extensive rhizoidal networks, which likely participate in mechanical disruption of plant cell walls, fungi within the Caecomyces genus do not possess these rhizoids. Here, we describe a novel fungal isolate, Caecomyces churrovis, which forms spherical sporangia with a limited rhizoidal network yet secretes a diverse set of carbohydrate active enzymes (CAZymes) for plant cell wall hydrolysis. Despite lacking an extensive rhizoidal system, C. churrovis is capable of growthmore » on fibrous substrates like switchgrass, reed canary grass, and corn stover, although faster growth is observed on soluble sugars. Gut fungi have been shown to use enzyme complexes (fungal cellulosomes) in which CAZymes bind to non-catalytic scaffoldins to improve biomass degradation efficiency. However, transcriptomic analysis and enzyme activity assays reveal that C. churrovis relies more on free enzymes compared to other gut fungal isolates. Only 15% of CAZyme transcripts contain non-catalytic dockerin domains in C. churrovis, compared to 30% in rhizoid-forming fungi. Furthermore, C. churrovis is enriched in GH43 enzymes that provide complementary hemicellulose degrading activities, suggesting that a wider variety of these activities are required to degrade plant biomass in the absence of an extensive fungal rhizoid network. In conclusion, molecular characterization of a non-rhizoid-forming anaerobic fungus fills a gap in understanding the roles of CAZyme abundance and associated degradation mechanisms during lignocellulose breakdown within the rumen microbiome.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henske, John K.; Gilmore, Sean P.; Knop, Doriv
Anaerobic gut fungi are the primary colonizers of plant material in the rumen microbiome, but are poorly studied due to a lack of characterized isolates. While most genera of gut fungi form extensive rhizoidal networks, which likely participate in mechanical disruption of plant cell walls, fungi within the Caecomyces genus do not possess these rhizoids. Here, we describe a novel fungal isolate, Caecomyces churrovis, which forms spherical sporangia with a limited rhizoidal network yet secretes a diverse set of carbohydrate active enzymes (CAZymes) for plant cell wall hydrolysis. Despite lacking an extensive rhizoidal system, C. churrovis is capable of growthmore » on fibrous substrates like switchgrass, reed canary grass, and corn stover, although faster growth is observed on soluble sugars. Gut fungi have been shown to use enzyme complexes (fungal cellulosomes) in which CAZymes bind to non-catalytic scaffoldins to improve biomass degradation efficiency. However, transcriptomic analysis and enzyme activity assays reveal that C. churrovis relies more on free enzymes compared to other gut fungal isolates. Only 15% of CAZyme transcripts contain non-catalytic dockerin domains in C. churrovis, compared to 30% in rhizoid-forming fungi. Furthermore, C. churrovis is enriched in GH43 enzymes that provide complementary hemicellulose degrading activities, suggesting that a wider variety of these activities are required to degrade plant biomass in the absence of an extensive fungal rhizoid network. In conclusion, molecular characterization of a non-rhizoid-forming anaerobic fungus fills a gap in understanding the roles of CAZyme abundance and associated degradation mechanisms during lignocellulose breakdown within the rumen microbiome.« less
Henske, John K; Gilmore, Sean P; Knop, Doriv; Cunningham, Francis J; Sexton, Jessica A; Smallwood, Chuck R; Shutthanandan, Vaithiyalingam; Evans, James E; Theodorou, Michael K; O'Malley, Michelle A
2017-01-01
Anaerobic gut fungi are the primary colonizers of plant material in the rumen microbiome, but are poorly studied due to a lack of characterized isolates. While most genera of gut fungi form extensive rhizoidal networks, which likely participate in mechanical disruption of plant cell walls, fungi within the Caecomyces genus do not possess these rhizoids. Here, we describe a novel fungal isolate, Caecomyces churrovis , which forms spherical sporangia with a limited rhizoidal network yet secretes a diverse set of carbohydrate active enzymes (CAZymes) for plant cell wall hydrolysis. Despite lacking an extensive rhizoidal system, C. churrovis is capable of growth on fibrous substrates like switchgrass, reed canary grass, and corn stover, although faster growth is observed on soluble sugars. Gut fungi have been shown to use enzyme complexes (fungal cellulosomes) in which CAZymes bind to non-catalytic scaffoldins to improve biomass degradation efficiency. However, transcriptomic analysis and enzyme activity assays reveal that C. churrovis relies more on free enzymes compared to other gut fungal isolates. Only 15% of CAZyme transcripts contain non-catalytic dockerin domains in C. churrovis , compared to 30% in rhizoid-forming fungi. Furthermore, C. churrovis is enriched in GH43 enzymes that provide complementary hemicellulose degrading activities, suggesting that a wider variety of these activities are required to degrade plant biomass in the absence of an extensive fungal rhizoid network. Overall, molecular characterization of a non-rhizoid-forming anaerobic fungus fills a gap in understanding the roles of CAZyme abundance and associated degradation mechanisms during lignocellulose breakdown within the rumen microbiome.
Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome
NASA Astrophysics Data System (ADS)
Poirot, Olivier; Timsit, Youri
2016-05-01
From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.
Ahnert, S E; Fink, T M A
2016-07-01
Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. © 2016 The Authors.
Lundberg, Jonas; Törnqvist, Eva K; Nadjm-Tehrani, Simin
2014-10-01
In presenting examples from the most extensive and demanding fire in modern Swedish history, this paper describes challenges facing hastily formed networks in exceptional situations. Two concepts that have been used in the analysis of the socio-technical systems that make up a response are conversation space and sensemaking. This paper argues that a framework designed to promote understanding of the sensemaking process must take into consideration the time and the location at which an individual is engaged in an event. In hastily formed networks, location is partly mediated through physical systems that form conversation spaces of players and their interaction practices. This paper identifies and discusses four challenges to the formation of shared conversation spaces. It is based on the case study of the 2006 Bodträskfors forest fire in Sweden and draws on the experiences of organised volunteers and firefighters who participated in a hastily formed network created to combat the fire. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.
Extending the accuracy of the SNAP interatomic potential form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Mitchell A.; Thompson, Aidan P.
The Spectral Neighbor Analysis Potential (SNAP) is a classical interatomic potential that expresses the energy of each atom as a linear function of selected bispectrum components of the neighbor atoms. An extension of the SNAP form is proposed that includes quadratic terms in the bispectrum components. The extension is shown to provide a large increase in accuracy relative to the linear form, while incurring only a modest increase in computational cost. The mathematical structure of the quadratic SNAP form is similar to the embedded atom method (EAM), with the SNAP bispectrum components serving as counterparts to the two-body density functionsmore » in EAM. It is also argued that the quadratic SNAP form is a special case of an artificial neural network (ANN). The effectiveness of the new form is demonstrated using an extensive set of training data for tantalum structures. Similarly to ANN potentials, the quadratic SNAP form requires substantially more training data in order to prevent overfitting, as measured by cross-validation analysis.« less
Extending the accuracy of the SNAP interatomic potential form
Wood, Mitchell A.; Thompson, Aidan P.
2018-03-28
The Spectral Neighbor Analysis Potential (SNAP) is a classical interatomic potential that expresses the energy of each atom as a linear function of selected bispectrum components of the neighbor atoms. An extension of the SNAP form is proposed that includes quadratic terms in the bispectrum components. The extension is shown to provide a large increase in accuracy relative to the linear form, while incurring only a modest increase in computational cost. The mathematical structure of the quadratic SNAP form is similar to the embedded atom method (EAM), with the SNAP bispectrum components serving as counterparts to the two-body density functionsmore » in EAM. It is also argued that the quadratic SNAP form is a special case of an artificial neural network (ANN). The effectiveness of the new form is demonstrated using an extensive set of training data for tantalum structures. Similarly to ANN potentials, the quadratic SNAP form requires substantially more training data in order to prevent overfitting, as measured by cross-validation analysis.« less
Cluster Size Optimization in Sensor Networks with Decentralized Cluster-Based Protocols
Amini, Navid; Vahdatpour, Alireza; Xu, Wenyao; Gerla, Mario; Sarrafzadeh, Majid
2011-01-01
Network lifetime and energy-efficiency are viewed as the dominating considerations in designing cluster-based communication protocols for wireless sensor networks. This paper analytically provides the optimal cluster size that minimizes the total energy expenditure in such networks, where all sensors communicate data through their elected cluster heads to the base station in a decentralized fashion. LEACH, LEACH-Coverage, and DBS comprise three cluster-based protocols investigated in this paper that do not require any centralized support from a certain node. The analytical outcomes are given in the form of closed-form expressions for various widely-used network configurations. Extensive simulations on different networks are used to confirm the expectations based on the analytical results. To obtain a thorough understanding of the results, cluster number variability problem is identified and inspected from the energy consumption point of view. PMID:22267882
Reconstructing paleo-discharge from geometries of fluvial sinuous ridges on Earth and Mars
NASA Astrophysics Data System (ADS)
Hayden, A.; Lamb, M. P.; Mohrig, D. C.; Williams, R. M. E.; Myrow, P.; Ewing, R. C.; Cardenas, B. T.; Findlay, C. P., III
2017-12-01
Sinuous, branching networks of topographic ridges resembling river networks are common across Mars, and show promise for quantifying ancient martian surface hydrology. There are two leading formation mechanisms for ridges with a fluvial origin. Inverted channels are ridges that represent casts (e.g., due to lava fill) of relict river channel topography, whereas exhumed channel deposits are eroded remnants of a more extensive fluvial deposit, such as a channel belt. The inverted channel model is often assumed on Mars; however, we currently lack the ability to distinguish these ridge formation mechanisms, motivating the need for Earth-analog study. To address this issue, we studied the extensive networks of sinuous ridges in the Ebro basin of northeast Spain. The Ebro ridges stand 3-15 meters above the surrounding plains and are capped by a cliff-forming sandstone unit 3-10 meters thick and 20-50 meters in breadth. The caprock sandstone bodies contain bar-scale cross stratification, point-bar deposits, levee deposits, and lenses of mudstone, indicating that these are channel-belt deposits, rather than casts of channels formed from lateral channel migration, avulsion and reoccupation. In plan view, ridges form segments branching outward to the north resembling a distributary network; however, crosscutting relationships indicate that ridges cross at different stratigraphic levels. Thus, the apparent network in planview reflects non-uniform exhumation of channel-belt deposits from multiple stratigraphic positions, rather than an inverted coeval river network. As compared to the inverted channel model, exhumed fluvial deposits indicate persistent fluvial activity over geologic timescales, indicating the potential for long-lived surface water on ancient Mars.
Design principles of electrical synaptic plasticity.
O'Brien, John
2017-09-08
Essentially all animals with nervous systems utilize electrical synapses as a core element of communication. Electrical synapses, formed by gap junctions between neurons, provide rapid, bidirectional communication that accomplishes tasks distinct from and complementary to chemical synapses. These include coordination of neuron activity, suppression of voltage noise, establishment of electrical pathways that define circuits, and modulation of high order network behavior. In keeping with the omnipresent demand to alter neural network function in order to respond to environmental cues and perform tasks, electrical synapses exhibit extensive plasticity. In some networks, this plasticity can have dramatic effects that completely remodel circuits or remove the influence of certain cell types from networks. Electrical synaptic plasticity occurs on three distinct time scales, ranging from milliseconds to days, with different mechanisms accounting for each. This essay highlights principles that dictate the properties of electrical coupling within networks and the plasticity of the electrical synapses, drawing examples extensively from retinal networks. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.
Nodal network generator for CAVE3
NASA Technical Reports Server (NTRS)
Palmieri, J. V.; Rathjen, K. A.
1982-01-01
A new extension of CAVE3 code was developed that automates the creation of a finite difference math model in digital form ready for input to the CAVE3 code. The new software, Nodal Network Generator, is broken into two segments. One segment generates the model geometry using a Tektronix Tablet Digitizer and the other generates the actual finite difference model and allows for graphic verification using Tektronix 4014 Graphic Scope. Use of the Nodal Network Generator is described.
NASA Technical Reports Server (NTRS)
Abramson, N.
1974-01-01
The Aloha system was studied and developed and extended to advanced forms of computer communications networks. Theoretical and simulation studies of Aloha type radio channels for use in packet switched communications networks were performed. Improved versions of the Aloha communications techniques and their extensions were tested experimentally. A packet radio repeater suitable for use with the Aloha system operational network was developed. General studies of the organization of multiprocessor systems centered on the development of the BCC 500 computer were concluded.
Distinct cytoskeleton populations and extensive crosstalk control Ciona notochord tubulogenesis.
Dong, Bo; Deng, Wei; Jiang, Di
2011-04-01
Cell elongation is a fundamental process that allows cells and tissues to adopt new shapes and functions. During notochord tubulogenesis in the ascidian Ciona intestinalis, a dramatic elongation of individual cells takes place that lengthens the notochord and, consequently, the entire embryo. We find a novel dynamic actin- and non-muscle myosin II-containing constriction midway along the anteroposterior aspect of each notochord cell during this process. Both actin polymerization and myosin II activity are required for the constriction and cell elongation. Discontinuous localization of myosin II in the constriction indicates that the actomyosin network produces local contractions along the circumference. This reveals basal constriction by the actomyosin network as a novel mechanism for cell elongation. Following elongation, the notochord cells undergo a mesenchymal-epithelial transition and form two apical domains at opposite ends. Extracellular lumens then form at the apical surfaces. We show that cortical actin and Ciona ezrin/radixin/moesin (ERM) are essential for lumen formation and that a polarized network of microtubules, which contributes to lumen development, forms in an actin-dependent manner at the apical cortex. Later in notochord tubulogenesis, when notochord cells initiate a bi-directional crawling movement on the notochordal sheath, the microtubule network rotates 90° and becomes organized as parallel bundles extending towards the leading edges of tractive lamellipodia. This process is required for the correct organization of actin-based protrusions and subsequent lumen coalescence. In summary, we establish the contribution of the actomyosin and microtubule networks to notochord tubulogenesis and reveal extensive crosstalk and regulation between these two cytoskeleton components.
Noh, Hyun Ji; Ponting, Chris P; Boulding, Hannah C; Meader, Stephen; Betancur, Catalina; Buxbaum, Joseph D; Pinto, Dalila; Marshall, Christian R; Lionel, Anath C; Scherer, Stephen W; Webber, Caleb
2013-06-01
Autism Spectrum Disorders (ASD) are highly heritable and characterised by impairments in social interaction and communication, and restricted and repetitive behaviours. Considering four sets of de novo copy number variants (CNVs) identified in 181 individuals with autism and exploiting mouse functional genomics and known protein-protein interactions, we identified a large and significantly interconnected interaction network. This network contains 187 genes affected by CNVs drawn from 45% of the patients we considered and 22 genes previously implicated in ASD, of which 192 form a single interconnected cluster. On average, those patients with copy number changed genes from this network possess changes in 3 network genes, suggesting that epistasis mediated through the network is extensive. Correspondingly, genes that are highly connected within the network, and thus whose copy number change is predicted by the network to be more phenotypically consequential, are significantly enriched among patients that possess only a single ASD-associated network copy number changed gene (p = 0.002). Strikingly, deleted or disrupted genes from the network are significantly enriched in GO-annotated positive regulators (2.3-fold enrichment, corrected p = 2×10(-5)), whereas duplicated genes are significantly enriched in GO-annotated negative regulators (2.2-fold enrichment, corrected p = 0.005). The direction of copy change is highly informative in the context of the network, providing the means through which perturbations arising from distinct deletions or duplications can yield a common outcome. These findings reveal an extensive ASD-associated molecular network, whose topology indicates ASD-relevant mutational deleteriousness and that mechanistically details how convergent aetiologies can result extensively from CNVs affecting pathways causally implicated in ASD.
Growing Actin Networks Form Lamellipodium and Lamellum by Self-Assembly
Huber, Florian; Käs, Josef; Stuhrmann, Björn
2008-01-01
Many different cell types are able to migrate by formation of a thin actin-based cytoskeletal extension. Recently, it became evident that this extension consists of two distinct substructures, designated lamellipodium and lamellum, which differ significantly in their kinetic and kinematic properties as well as their biochemical composition. We developed a stochastic two-dimensional computer simulation that includes chemical reaction kinetics, G-actin diffusion, and filament transport to investigate the formation of growing actin networks in migrating cells. Model parameters were chosen based on experimental data or theoretical considerations. In this work, we demonstrate the system's ability to form two distinct networks by self-organization. We found a characteristic transition in mean filament length as well as a distinct maximum in depolymerization flux, both within the first 1–2 μm. The separation into two distinct substructures was found to be extremely robust with respect to initial conditions and variation of model parameters. We quantitatively investigated the complex interplay between ADF/cofilin and tropomyosin and propose a plausible mechanism that leads to spatial separation of, respectively, ADF/cofilin- or tropomyosin-dominated compartments. Tropomyosin was found to play an important role in stabilizing the lamellar actin network. Furthermore, the influence of filament severing and annealing on the network properties is explored, and simulation data are compared to existing experimental data. PMID:18708450
A framework for visualization of battlefield network behavior
NASA Astrophysics Data System (ADS)
Perzov, Yury; Yurcik, William
2006-05-01
An extensible network simulation application was developed to study wireless battlefield communications. The application monitors node mobility and depicts broadcast and unicast traffic as expanding rings and directed links. The network simulation was specially designed to support fault injection to show the impact of air strikes on disabling nodes. The application takes standard ns-2 trace files as an input and provides for performance data output in different graphical forms (histograms and x/y plots). Network visualization via animation of simulation output can be saved in AVI format that may serve as a basis for a real-time battlefield awareness system.
Functional characterization of two distinct xyoglucanases from rumenal microbes
USDA-ARS?s Scientific Manuscript database
Xyloglucans are known to function by binding to cellulose microfibrils, crosslinking adjacent fibers forming cellulose-XG networks important for modulation of rigidity and extensibility of the primary cell wall of plants. Enzymatic hydrolysis and modification of xyloglucans has received considerabl...
Scaling of F-actin network rheology to probe single filament elasticity and dynamics.
Gardel, M L; Shin, J H; MacKintosh, F C; Mahadevan, L; Matsudaira, P A; Weitz, D A
2004-10-29
The linear and nonlinear viscoelastic response of networks of cross-linked and bundled cytoskeletal filaments demonstrates remarkable scaling with both frequency and applied prestress, which helps elucidate the origins of the viscoelasticity. The frequency dependence of the shear modulus reflects the underlying single-filament relaxation dynamics for 0.1-10 rad/sec. Moreover, the nonlinear strain stiffening of such networks exhibits a universal form as a function of prestress; this is quantitatively explained by the full force-extension relation of single semiflexible filaments.
Agricultural science in the wild: a social network analysis of farmer knowledge exchange.
Wood, Brennon A; Blair, Hugh T; Gray, David I; Kemp, Peter D; Kenyon, Paul R; Morris, Steve T; Sewell, Alison M
2014-01-01
Responding to demands for transformed farming practices requires new forms of knowledge. Given their scale and complexity, agricultural problems can no longer be solved by linear transfers in which technology developed by specialists passes to farmers by way of extension intermediaries. Recent research on alternative approaches has focused on the innovation systems formed by interactions between heterogeneous actors. Rather than linear transfer, systems theory highlights network facilitation as a specialized function. This paper contributes to our understanding of such facilitation by investigating the networks in which farmers discuss science. We report findings based on the study of a pastoral farming experiment collaboratively undertaken by a group of 17 farmers and five scientists. Analysis of prior contact and alter sharing between the group's members indicates strongly tied and decentralized networks. Farmer knowledge exchanges about the experiment have been investigated using a mix of quantitative and qualitative methods. Network surveys identified who the farmers contacted for knowledge before the study began and who they had talked to about the experiment by 18 months later. Open-ended interviews collected farmer statements about their most valuable contacts and these statements have been thematically analysed. The network analysis shows that farmers talked about the experiment with 192 people, most of whom were fellow farmers. Farmers with densely tied and occupationally homogeneous contacts grew their networks more than did farmers with contacts that are loosely tied and diverse. Thematic analysis reveals three general principles: farmers value knowledge delivered by persons rather than roles, privilege farming experience, and develop knowledge with empiricist rather than rationalist techniques. Taken together, these findings suggest that farmers deliberate about science in intensive and durable networks that have significant implications for theorizing agricultural innovation. The paper thus concludes by considering the findings' significance for current efforts to rethink agricultural extension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondrej Linda; Todd Vollmer; Jim Alves-Foss
2011-08-01
Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL providesmore » a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.« less
NASA Technical Reports Server (NTRS)
Goldsack, Stephen J.; Holzbach-Valero, A. A.; Waldrop, Raymond S.; Volz, Richard A.
1991-01-01
This paper describes how the main features of the proposed Ada language extensions intended to support distribution, and offered as possible solutions for Ada9X can be implemented by transformation into standard Ada83. We start by summarizing the features proposed in a paper (Gargaro et al, 1990) which constitutes the definition of the extensions. For convenience we have called the language in its modified form AdaPT which might be interpreted as Ada with partitions. These features were carefully chosen to provide support for the construction of executable modules for execution in nodes of a network of loosely coupled computers, but flexibly configurable for different network architectures and for recovery following failure, or adapting to mode changes. The intention in their design was to provide extensions which would not impact adversely on the normal use of Ada, and would fit well in style and feel with the existing standard. We begin by summarizing the features introduced in AdaPT.
"FORCE" learning in recurrent neural networks as data assimilation
NASA Astrophysics Data System (ADS)
Duane, Gregory S.
2017-12-01
It is shown that the "FORCE" algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.
NASA Astrophysics Data System (ADS)
Tewksbury, Barbara J.; Tarabees, Elhamy A.; Mehrtens, Charlotte J.
2017-12-01
Satellite images of the Western Desert of Egypt display conspicuous sinuous color patterning that previous workers have interpreted as erosional flutes formed by catastrophic flooding. Our work with high resolution satellite imagery shows that the patterning is not erosional but, rather, the result of a network of thousands of narrow synclines in the Eocene bedrock capping the Limestone Plateau. Synclines form as isolated, 200-400 meter-wide downwarps in otherwise flat-lying strata. Limb dips are shallow, and doubly plunging hinges form multiple basin closures along syncline lengths. Anticlines form ;accidentally; in inter-syncline areas where two adjacent synclines lie close together. Synclines have two dominant orientations, WNW-ESE and NNW-SSE, parallel to two prominent joint and fault sets, and synclines branch, merge, and change orientation along their lengths. Synclines are all at the same scale with neither larger structures nor parasitic structures and are best described as non-tectonic sag synclines. An Egypt-wide inventory reveals that these synclines are both confined to Eocene limestones and developed, albeit it sporadically, over nearly 100,000 km2. The syncline network predates plateau gravels of the Katkut Formation, which have been interpreted as Oligocene or early Miocene in age, and the network is cut by faults related to Western Desert extension associated with Red Sea rifting. The mechanism that caused sag of overlying layers is not clear. Modern karst collapse, subsurface dissolution of evaporites, and collapse of paleokarst are all unlikely mechanisms given the timing of formation and the underlying stratigraphy. Silica diagenesis and downslope mobilization of underlying shales are possibilities, although uncertainty about the origin of silica in the limestones, plus the consistency of syncline orientations over large areas, make these models problematic. Hypogene karst, perhaps related to aggressive fluids associated with basaltic intrusions, may be the model most consistent with the admittedly limited data we currently have for the network.
Bifurcations of large networks of two-dimensional integrate and fire neurons.
Nicola, Wilten; Campbell, Sue Ann
2013-08-01
Recently, a class of two-dimensional integrate and fire models has been used to faithfully model spiking neurons. This class includes the Izhikevich model, the adaptive exponential integrate and fire model, and the quartic integrate and fire model. The bifurcation types for the individual neurons have been thoroughly analyzed by Touboul (SIAM J Appl Math 68(4):1045-1079, 2008). However, when the models are coupled together to form networks, the networks can display bifurcations that an uncoupled oscillator cannot. For example, the networks can transition from firing with a constant rate to burst firing. This paper introduces a technique to reduce a full network of this class of neurons to a mean field model, in the form of a system of switching ordinary differential equations. The reduction uses population density methods and a quasi-steady state approximation to arrive at the mean field system. Reduced models are derived for networks with different topologies and different model neurons with biologically derived parameters. The mean field equations are able to qualitatively and quantitatively describe the bifurcations that the full networks display. Extensions and higher order approximations are discussed.
Wen, Dingqiao; Yu, Yun; Hahn, Matthew W.; Nakhleh, Luay
2016-01-01
The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of ‘network thinking’ and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence. PMID:26808290
Bücking, Heike; Mensah, Jerry A; Fellbaum, Carl R
2016-01-01
Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect with their network multiple host plants. These common mycorrhizal networks (CMNs) play a critical role in the long-distance transport of nutrients through soil ecosystems and allow the exchange of signals between the interconnected plants. CMNs affect the survival, fitness, and competitiveness of the fungal and plant species that interact via these networks, but how the resource transport within these CMNs is controlled is largely unknown. We discuss the significance of CMNs for plant communities and for the bargaining power of the fungal partner in the AM symbiosis.
An Open, Snow-based Hydrologic System on Noachian Mars
NASA Technical Reports Server (NTRS)
Zent, A. P.
1999-01-01
Properties of Noachian valley networks on Mars suggest that the conditions under which they formed were marginal for liquid water formation. The networks are sparsely scattered, poorly dissected, and tend to be small; a majority occupy areas only a few hundred kilometers in extent. Models in which networks formed by mass wasting are contra-indicated by the discovery of channels within the valleys. Greenhouse hypotheses for the stability of liquid water have foundered on familiar problems: first, a very substantial CO2 atmosphere would be required to bring global average conditions to 273 K; the CO2 should still be present in extensive carbonate deposits that have not been detected. Explanations that call upon groundwater sapping are hampered by the need for a hydrologic system to recharge the groundwater system, which effectively reinstates the need for a heavy CO2 atmosphere. Based upon field experience and geomorphic similarities between drainage developed in the periglacial terrain in and around the Haughton impact structure, Devon Island, Nuunavuut, Canada, we have suggested that some of the channel networks may have formed either subglacially, or as ice marginal structures.
Characterizing networks formed by P. polycephalum
NASA Astrophysics Data System (ADS)
Dirnberger, M.; Mehlhorn, K.
2017-06-01
We present a systematic study of the characteristic vein networks formed by the slime mold P. polycephalum. Our study is based on an extensive set of graph representations of slime mold networks. We analyze a total of 1998 graphs capturing growth and network formation of P. polycephalum as observed in 36 independent, identical, wet-lab experiments. Relying on concepts from graph theory such as face cycles and cuts as well as ideas from percolation theory, we establish a broad collection of individual observables taking into account various complementary aspects of P. polycephalum networks. As a whole, the collection is intended to serve as a specialized knowledge-base providing a comprehensive characterization of P. polycephalum networks. To this end, it contains individual as well as cumulative results for all investigated observables across all available data series, down to the level of single P. polycephalum graphs. Furthermore we include the raw numerical data as well as various plotting and analysis tools to ensure reproducibility and increase the usefulness of the collection. All our results are publicly available in an organized fashion in the slime mold graph repository (Smgr).
75 FR 63187 - Agency Information Collection Activities: Proposed Collection: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
.... Information is needed to match donor organs with recipients, to monitor compliance of member organizations... techniques or other forms of information technology. Proposed Project: Data System for Organ Procurement and Transplantation Network (42 CFR Part 121, OMB No. 0915-0184): Extension The operation of the Organ Procurement and...
Consistent visualizations of changing knowledge
Tipney, Hannah J.; Schuyler, Ronald P.; Hunter, Lawrence
2009-01-01
Networks are increasingly used in biology to represent complex data in uncomplicated symbolic form. However, as biological knowledge is continually evolving, so must those networks representing this knowledge. Capturing and presenting this type of knowledge change over time is particularly challenging due to the intimate manner in which researchers customize those networks they come into contact with. The effective visualization of this knowledge is important as it creates insight into complex systems and stimulates hypothesis generation and biological discovery. Here we highlight how the retention of user customizations, and the collection and visualization of knowledge associated provenance supports effective and productive network exploration. We also present an extension of the Hanalyzer system, ReOrient, which supports network exploration and analysis in the presence of knowledge change. PMID:21347184
The Dynamics of Networks of Identical Theta Neurons.
Laing, Carlo R
2018-02-05
We consider finite and infinite all-to-all coupled networks of identical theta neurons. Two types of synaptic interactions are investigated: instantaneous and delayed (via first-order synaptic processing). Extensive use is made of the Watanabe/Strogatz (WS) ansatz for reducing the dimension of networks of identical sinusoidally-coupled oscillators. As well as the degeneracy associated with the constants of motion of the WS ansatz, we also find continuous families of solutions for instantaneously coupled neurons, resulting from the reversibility of the reduced model and the form of the synaptic input. We also investigate a number of similar related models. We conclude that the dynamics of networks of all-to-all coupled identical neurons can be surprisingly complicated.
Glassman, Matthew J; Avery, Reginald K; Khademhosseini, Ali; Olsen, Bradley D
2016-02-08
Formulation of tissue engineering or regenerative scaffolds from simple bioactive polymers with tunable structure and mechanics is crucial for the regeneration of complex tissues, and hydrogels from recombinant proteins, such as elastin-like polypeptides (ELPs), are promising platforms to support these applications. The arrested phase separation of ELPs has been shown to yield remarkably stiff, biocontinuous, nanostructured networks, but these gels are limited in applications by their relatively brittle nature. Here, a gel-forming ELP is chain-extended by telechelic oxidative coupling, forming extensible, tough hydrogels. Small angle scattering indicates that the chain-extended polypeptides form a fractal network of nanoscale aggregates over a broad concentration range, accessing moduli ranging from 5 kPa to over 1 MPa over a concentration range of 5-30 wt %. These networks exhibited excellent erosion resistance and allowed for the diffusion and release of encapsulated particles consistent with a bicontinuous, porous structure with a broad distribution of pore sizes. Biofunctionalized, toughened networks were found to maintain the viability of human mesenchymal stem cells (hMSCs) in 2D, demonstrating signs of osteogenesis even in cell media without osteogenic molecules. Furthermore, chondrocytes could be readily mixed into these gels via thermoresponsive assembly and remained viable in extended culture. These studies demonstrate the ability to engineer ELP-based arrested physical networks on the molecular level to form reinforced, cytocompatible hydrogel matrices, supporting the promise of these new materials as candidates for the engineering and regeneration of stiff tissues.
Agricultural Science in the Wild: A Social Network Analysis of Farmer Knowledge Exchange
Wood, Brennon A.; Blair, Hugh T.; Gray, David I.; Kemp, Peter D.; Kenyon, Paul R.; Morris, Steve T.; Sewell, Alison M.
2014-01-01
Responding to demands for transformed farming practices requires new forms of knowledge. Given their scale and complexity, agricultural problems can no longer be solved by linear transfers in which technology developed by specialists passes to farmers by way of extension intermediaries. Recent research on alternative approaches has focused on the innovation systems formed by interactions between heterogeneous actors. Rather than linear transfer, systems theory highlights network facilitation as a specialized function. This paper contributes to our understanding of such facilitation by investigating the networks in which farmers discuss science. We report findings based on the study of a pastoral farming experiment collaboratively undertaken by a group of 17 farmers and five scientists. Analysis of prior contact and alter sharing between the group’s members indicates strongly tied and decentralized networks. Farmer knowledge exchanges about the experiment have been investigated using a mix of quantitative and qualitative methods. Network surveys identified who the farmers contacted for knowledge before the study began and who they had talked to about the experiment by 18 months later. Open-ended interviews collected farmer statements about their most valuable contacts and these statements have been thematically analysed. The network analysis shows that farmers talked about the experiment with 192 people, most of whom were fellow farmers. Farmers with densely tied and occupationally homogeneous contacts grew their networks more than did farmers with contacts that are loosely tied and diverse. Thematic analysis reveals three general principles: farmers value knowledge delivered by persons rather than roles, privilege farming experience, and develop knowledge with empiricist rather than rationalist techniques. Taken together, these findings suggest that farmers deliberate about science in intensive and durable networks that have significant implications for theorizing agricultural innovation. The paper thus concludes by considering the findings’ significance for current efforts to rethink agricultural extension. PMID:25121487
Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells.
Klingner, Christoph; Cherian, Anoop V; Fels, Johannes; Diesinger, Philipp M; Aufschnaiter, Roland; Maghelli, Nicola; Keil, Thomas; Beck, Gisela; Tolić-Nørrelykke, Iva M; Bathe, Mark; Wedlich-Soldner, Roland
2014-10-13
Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin-Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization. © 2014 Klingner et al.
Remis, Jonathan P; Wei, Dongguang; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H Ewa; Costerton, J William; Berleman, James E; Auer, Manfred
2014-02-01
The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviours, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of outer membrane vesicle chains and membrane tubes that interconnect cells. We observed peritrichous display of vesicles and vesicle chains, and increased abundance in biofilms compared with planktonic cultures. By applying a range of imaging techniques, including three-dimensional (3D) focused ion beam scanning electron microscopy, we determined these structures to range between 30 and 60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine and N-acetylgalactoseamine carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl outer membrane proteins known to be transferable between cells in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and therefore could provide a mechanism for the coordination of social activities. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks.
Bode, Franziska; da Silva, Marcelo Alves; Drake, Alex F; Ross-Murphy, Simon B; Dreiss, Cécile A
2011-10-10
This Article investigates different types of networks formed from tilapia fish gelatin (10% w/w) in the presence and absence of the enzymatic cross-linker microbial transglutaminase. The influence of the temperature protocol and cross-linker concentration (0-55 U mTGase/g gelatin) was examined in physical, chemical, and hybrid gels, where physical gels arise from the formation of triple helices that act as junction points when the gels are cooled below the gelation point. A combination of rheology and optical rotation was used to study the evolution of the storage modulus (G') over time and the number of triple helices formed for each type of gel. We attempted to separate the final storage modulus of the gels into its chemical and physical contributions to examine the existence or otherwise of synergism between the two types of networks. Our experiments show that the gel characteristics vary widely with the thermal protocol. The final storage modulus in chemical gels increased with enzyme concentration, possibly due to the preferential formation of closed loops at low cross-linker amount. In chemical-physical gels, where the physical network (helices) was formed consecutively to the covalent one, we found that below a critical enzyme concentration the more extensive the chemical network is (as measured by G'), the weaker the final gel is. The storage modulus attributed to the physical network decreased exponentially as a function of G' from the chemical network, but both networks were found to be purely additive. Helices were not thermally stabilized. The simultaneous formation of physical and chemical networks (physical-co-chemical) resulted in G' values higher than the individual networks formed under the same conditions. Two regimes were distinguished: at low enzyme concentration (10-20 U mTGase/g gelatin), the networks were formed in series, but the storage modulus from the chemical network was higher in the presence of helices (compared to pure chemical gels); at higher enzyme concentration (30-40 U mTGase/g gelatin), strong synergistic effects were found as a large part of the covalent network became ineffective upon melting of the helices.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0008] Submission for Review; Information... Homeland Security (DHS) invites the general public to comment on the data collection form for the DHS... select authorized non-first responder users to facilitate networking and formation of online communities...
ERIC Educational Resources Information Center
Richardson, Don
A Virtual Research and Extension Communication Network (VRECN) is a set of networked electronic tools facilitating improvement in communication processes and information sharing among stakeholders involved in agricultural development. In developing countries, research and extension personnel within a ministry of agriculture, in consultation and…
Does Human Migration Affect International Trade? A Complex-Network Perspective
Fagiolo, Giorgio; Mastrorillo, Marina
2014-01-01
This paper explores the relationships between international human migration and merchandise trade using a complex-network approach. We firstly compare the topological structure of worldwide networks of human migration and bilateral trade over the period 1960–2000. Next, we ask whether pairs of countries that are more central in the migration network trade more. We show that: (i) the networks of international migration and trade are strongly correlated, and such correlation can be mostly explained by country economic/demographic size and geographical distance; (ii) centrality in the international-migration network boosts bilateral trade; (iii) intensive forms of country centrality are more trade enhancing than their extensive counterparts. Our findings suggest that bilateral trade between any two countries is not only affected by the presence of migrants from either countries, but also by their relative embeddedness in the complex web of corridors making up the network of international human migration. PMID:24828376
Visual analysis and exploration of complex corporate shareholder networks
NASA Astrophysics Data System (ADS)
Tekušová, Tatiana; Kohlhammer, Jörn
2008-01-01
The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.
IAU Public Astronomical Organisations Network
NASA Astrophysics Data System (ADS)
Canas, Lina; Cheung, Sze Leung
2015-08-01
The Office for Astronomy Outreach has devoted intensive means to create and support a global network of public astronomical organisations around the world. Focused on bringing established and newly formed amateur astronomy organizations together, providing communications channels and platforms for disseminating news to the global community and the sharing of best practices and resources among these associations around the world. In establishing the importance that these organizations have for the dissemination of activities globally and acting as key participants in IAU various campaigns social media has played a key role in keeping this network engaged and connected. Here we discuss the implementation process of maintaining this extensive network, the processing and gathering of information and the interactions between local active members at a national and international level.
Structure and formation of ant transportation networks
Latty, Tanya; Ramsch, Kai; Ito, Kentaro; Nakagaki, Toshiyuki; Sumpter, David J. T.; Middendorf, Martin; Beekman, Madeleine
2011-01-01
Many biological systems use extensive networks for the transport of resources and information. Ants are no exception. How do biological systems achieve efficient transportation networks in the absence of centralized control and without global knowledge of the environment? Here, we address this question by studying the formation and properties of inter-nest transportation networks in the Argentine ant (Linepithema humile). We find that the formation of inter-nest networks depends on the number of ants involved in the construction process. When the number of ants is sufficient and networks do form, they tend to have short total length but a low level of robustness. These networks are topologically similar to either minimum spanning trees or Steiner networks. The process of network formation involves an initial construction of multiple links followed by a pruning process that reduces the number of trails. Our study thus illuminates the conditions under and the process by which minimal biological transport networks can be constructed. PMID:21288958
Psychodynamic Factors Behind Online Social Networking and its Excessive Use.
Li, Thomas Cheuk Wing
2016-03-01
This article discusses the psychodynamic factors behind the popularity of one form of Internet activity, online social networking (SN). It views online SN as an extension of the social self, organized in a way that is more controllable than real life relating. The SN platforms reward its users with reassuring surfaces and novel self-object experiences while at the same time induces much anxiety. The addictive quality of online SN is understood in the context of collapse of dialectical space and the defensive use of this technology.
Extension algorithm for generic low-voltage networks
NASA Astrophysics Data System (ADS)
Marwitz, S.; Olk, C.
2018-02-01
Distributed energy resources (DERs) are increasingly penetrating the energy system which is driven by climate and sustainability goals. These technologies are mostly connected to low- voltage electrical networks and change the demand and supply situation in these networks. This can cause critical network states. Network topologies vary significantly and depend on several conditions including geography, historical development, network design or number of network connections. In the past, only some of these aspects were taken into account when estimating the network investment needs for Germany on the low-voltage level. Typically, fixed network topologies are examined or a Monte Carlo approach is used to quantify the investment needs at this voltage level. Recent research has revealed that DERs differ substantially between rural, suburban and urban regions. The low-voltage network topologies have different design concepts in these regions, so that different network topologies have to be considered when assessing the need for network extensions and investments due to DERs. An extension algorithm is needed to calculate network extensions and investment needs for the different typologies of generic low-voltage networks. We therefore present a new algorithm, which is capable of calculating the extension for generic low-voltage networks of any given topology based on voltage range deviations and thermal overloads. The algorithm requires information about line and cable lengths, their topology and the network state only. We test the algorithm on a radial, a loop, and a heavily meshed network. Here we show that the algorithm functions for electrical networks with these topologies. We found that the algorithm is able to extend different networks efficiently by placing cables between network nodes. The main value of the algorithm is that it does not require any information about routes for additional cables or positions for additional substations when it comes to estimating network extension needs.
Scaling and percolation in the small-world network model
NASA Astrophysics Data System (ADS)
Newman, M. E. J.; Watts, D. J.
1999-12-01
In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Padé approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model.
Percolation of localized attack on isolated and interdependent random networks
NASA Astrophysics Data System (ADS)
Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo
2014-03-01
Percolation properties of isolated and interdependent random networks have been investigated extensively. The focus of these studies has been on random attacks where each node in network is attacked with the same probability or targeted attack where each node is attacked with a probability being a function of its centrality, such as degree. Here we discuss a new type of realistic attacks which we call a localized attack where a group of neighboring nodes in the networks are attacked. We attack a randomly chosen node, its neighbors, and its neighbor of neighbors and so on, until removing a fraction (1 - p) of the network. This type of attack reflects damages due to localized disasters, such as earthquakes, floods and war zones in real-world networks. We study, both analytically and by simulations the impact of localized attack on percolation properties of random networks with arbitrary degree distributions and discuss in detail random regular (RR) networks, Erdős-Rényi (ER) networks and scale-free (SF) networks. We extend and generalize our theoretical and simulation results of single isolated networks to networks formed of interdependent networks.
Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity
NASA Astrophysics Data System (ADS)
Zhou, Tao; Liu, Jian-Guo; Bai, Wen-Jie; Chen, Guanrong; Wang, Bing-Hong
2006-11-01
In this paper, we propose a susceptible-infected model with identical infectivity, in which, at every time step, each node can only contact a constant number of neighbors. We implemented this model on scale-free networks, and found that the infected population grows in an exponential form with the time scale proportional to the spreading rate. Furthermore, by numerical simulation, we demonstrated that the targeted immunization of the present model is much less efficient than that of the standard susceptible-infected model. Finally, we investigate a fast spreading strategy when only local information is available. Different from the extensively studied path-finding strategy, the strategy preferring small-degree nodes is more efficient than that preferring large-degree nodes. Our results indicate the existence of an essential relationship between network traffic and network epidemic on scale-free networks.
Mapping Extension's Networks: Using Social Network Analysis to Explore Extension's Outreach
ERIC Educational Resources Information Center
Bartholomay, Tom; Chazdon, Scott; Marczak, Mary S.; Walker, Kathrin C.
2011-01-01
The University of Minnesota Extension conducted a social network analysis (SNA) to examine its outreach to organizations external to the University of Minnesota. The study found that its outreach network was both broad in its reach and strong in its connections. The study found that SNA offers a unique method for describing and measuring Extension…
Spontaneous scale-free structure in adaptive networks with synchronously dynamical linking
NASA Astrophysics Data System (ADS)
Yuan, Wu-Jie; Zhou, Jian-Fang; Li, Qun; Chen, De-Bao; Wang, Zhen
2013-08-01
Inspired by the anti-Hebbian learning rule in neural systems, we study how the feedback from dynamical synchronization shapes network structure by adding new links. Through extensive numerical simulations, we find that an adaptive network spontaneously forms scale-free structure, as confirmed in many real systems. Moreover, the adaptive process produces two nontrivial power-law behaviors of deviation strength from mean activity of the network and negative degree correlation, which exists widely in technological and biological networks. Importantly, these scalings are robust to variation of the adaptive network parameters, which may have meaningful implications in the scale-free formation and manipulation of dynamical networks. Our study thus suggests an alternative adaptive mechanism for the formation of scale-free structure with negative degree correlation, which means that nodes of high degree tend to connect, on average, with others of low degree and vice versa. The relevance of the results to structure formation and dynamical property in neural networks is briefly discussed as well.
Landoll, Ryan R; La Greca, Annette M; Lai, Betty S
2013-12-01
Cyber victimization is an important research area; yet, little is known about aversive peer experiences on social networking sites (SNSs), which are used extensively by youth and host complex social exchanges. Across samples of adolescents ( n =216) and young adults ( n =214), we developed the Social Networking-Peer Experiences Questionnaire ( SN-PEQ ), and examined its psychometric properties, distinctiveness from traditional peer victimization, and associations with internalized distress. The SN-PEQ demonstrated strong factorial invariance and a single factor structure that was distinct from other forms of peer victimization. Negative SNS experiences were associated with youths' symptoms of social anxiety and depression, even when controlling for traditional peer victimization. Findings highlight the importance of examining the effects of aversive peer experiences that occur via social media.
Real-Time Dynamics of Emerging Actin Networks in Cell-Mimicking Compartments
Deshpande, Siddharth; Pfohl, Thomas
2015-01-01
Understanding the cytoskeletal functionality and its relation to other cellular components and properties is a prominent question in biophysics. The dynamics of actin cytoskeleton and its polymorphic nature are indispensable for the proper functioning of living cells. Actin bundles are involved in cell motility, environmental exploration, intracellular transport and mechanical stability. Though the viscoelastic properties of actin-based structures have been extensively probed, the underlying microstructure dynamics, especially their disassembly, is not fully understood. In this article, we explore the rich dynamics and emergent properties exhibited by actin bundles within flow-free confinements using a microfluidic set-up and epifluorescence microscopy. After forming entangled actin filaments within cell-sized quasi two-dimensional confinements, we induce their bundling using three different fundamental mechanisms: counterion condensation, depletion interactions and specific protein-protein interactions. Intriguingly, long actin filaments form emerging networks of actin bundles via percolation leading to remarkable properties such as stress generation and spindle-like intermediate structures. Simultaneous sharing of filaments in different links of the network is an important parameter, as short filaments do not form networks but segregated clusters of bundles instead. We encounter a hierarchical process of bundling and its subsequent disassembly. Additionally, our study suggests that such percolated networks are likely to exist within living cells in a dynamic fashion. These observations render a perspective about differential cytoskeletal responses towards numerous stimuli. PMID:25785606
Bonding by Hydroxide-Catalyzed Hydration and Dehydration
NASA Technical Reports Server (NTRS)
Gwo, Dz-Hung
2008-01-01
A simple, inexpensive method for bonding solid objects exploits hydroxide-catalyzed hydration and dehydration to form silicate-like networks in thin surface and interfacial layers between the objects. The method can be practiced at room temperature or over a wide range of temperatures. The method was developed especially to enable the formation of precise, reliable bonds between precise optical components. The bonds thus formed exhibit the precision and transparency of bonds formed by the conventional optical-contact method and the strength and reliability of high-temperature frit bonds. The method also lends itself to numerous non-optical applications in which there are requirements for precise bonds and/or requirements for bonds, whether precise or imprecise, that can reliably withstand severe environmental conditions. Categories of such non-optical applications include forming composite materials, coating substrates, forming laminate structures, and preparing objects of defined geometry and composition. The method is applicable to materials that either (1) can form silicate-like networks in the sense that they have silicate-like molecular structures that are extensible into silicate-like networks or (2) can be chemically linked to silicate-like networks by means of hydroxide-catalyzed hydration and dehydration. When hydrated, a material of either type features surface hydroxyl (-OH) groups. In this method, a silicate-like network that bonds two substrates can be formed either by a bonding material alone or by the bonding material together with material from either or both of the substrates. Typically, an aqueous hydroxide bonding solution is dispensed and allowed to flow between the mating surfaces by capillary action. If the surface figures of the substrates do not match precisely, bonding could be improved by including a filling material in the bonding solution. Preferably, the filling material should include at least one ingredient that can be hydrated to have exposed hydroxyl groups and that can be chemically linked, by hydroxide catalysis, to a silicate-like network. The silicate-like network could be generated in situ from the filling material and/or substrate material, or could be originally present in the bonding material.
Sukhinich, K K; Kosykh, A V; Aleksandrova, M A
2015-11-01
We studied the behavior and cell-cell interactions of embryonic brain cell from GFP-reporter mice after their transplantation into the intact adult brain. Fragments or cell suspensions of fetal neocortical cells at different stages of development were transplanted into the neocortex and striatum of adult recipients. Even in intact brain, the processes of transplanted neurons formed extensive networks in the striatum and neocortical layers I and V-VI. Processes of transplanted cells at different stages of development attained the rostral areas of the frontal cortex and some of them reached the internal capsule. However, the cells transplanted in suspension had lower process growth potency than cells from tissue fragments. Tyrosine hydroxylase fibers penetrated from the recipient brain into grafts at both early and late stages of development. Our experiments demonstrated the formation of extensive reciprocal networks between the transplanted fetal neural cells and recipient brain neurons even in intact brain.
A unified data representation theory for network visualization, ordering and coarse-graining
Kovács, István A.; Mizsei, Réka; Csermely, Péter
2015-01-01
Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form. PMID:26348923
Networked Learning for Agricultural Extension: A Framework for Analysis and Two Cases
ERIC Educational Resources Information Center
Kelly, Nick; Bennett, John McLean; Starasts, Ann
2017-01-01
Purpose: This paper presents economic and pedagogical motivations for adopting information and communications technology (ICT)- mediated learning networks in agricultural education and extension. It proposes a framework for networked learning in agricultural extension and contributes a theoretical and case-based rationale for adopting the…
Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.
Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J
2017-07-25
Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.
Elements of an algorithm for optimizing a parameter-structural neural network
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2016-06-01
The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.
Houser, John R; Hudson, Nathan E; Ping, Lifang; O'Brien, E Timothy; Superfine, Richard; Lord, Susan T; Falvo, Michael R
2010-11-03
Fibrin fibers form the structural scaffold of blood clots and perform the mechanical task of stemming blood flow. Several decades of investigation of fibrin fiber networks using macroscopic techniques have revealed remarkable mechanical properties. More recently, the microscopic origins of fibrin's mechanics have been probed through direct measurements on single fibrin fibers and individual fibrinogen molecules. Using a nanomanipulation system, we investigated the mechanical properties of individual fibrin fibers. The fibers were stretched with the atomic force microscope, and stress-versus-strain data was collected for fibers formed with and without ligation by the activated transglutaminase factor XIII (FXIIIa). We observed that ligation with FXIIIa nearly doubled the stiffness of the fibers. The stress-versus-strain behavior indicates that fibrin fibers exhibit properties similar to other elastomeric biopolymers. We propose a mechanical model that fits our observed force extension data, is consistent with the results of the ligation data, and suggests that the large observed extensibility in fibrin fibers is mediated by the natively unfolded regions of the molecule. Although some models attribute fibrin's force-versus-extension behavior to unfolding of structured regions within the monomer, our analysis argues that these models are inconsistent with the measured extensibility and elastic modulus. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
2007-10-16
ABSTRACT c. THIS PAGE ABSTRACT OF Francis Otuonye P U UU24 19b. TELEPHONE NUMBER (Include area code ) 24 931-372-3374 Standard Form 298 (Rev. 8/98...modulation pulse wavefom--sotware defined or cognitive. From a information-theoretical viewpoint, the two parts as a whole form so-called "pre- coding ". I...The time domain system Fig. 2.3(b) is based on digital sampling oscilloscope (DSO), Textronix TDS 7000E3. The time domain sounder has the capability
Computational Tools for Metabolic Engineering
Copeland, Wilbert B.; Bartley, Bryan A.; Chandran, Deepak; Galdzicki, Michal; Kim, Kyung H.; Sleight, Sean C.; Maranas, Costas D.; Sauro, Herbert M.
2012-01-01
A great variety of software applications are now employed in the metabolic engineering field. These applications have been created to support a wide range of experimental and analysis techniques. Computational tools are utilized throughout the metabolic engineering workflow to extract and interpret relevant information from large data sets, to present complex models in a more manageable form, and to propose efficient network design strategies. In this review, we present a number of tools that can assist in modifying and understanding cellular metabolic networks. The review covers seven areas of relevance to metabolic engineers. These include metabolic reconstruction efforts, network visualization, nucleic acid and protein engineering, metabolic flux analysis, pathway prospecting, post-structural network analysis and culture optimization. The list of available tools is extensive and we can only highlight a small, representative portion of the tools from each area. PMID:22629572
Landoll, Ryan R.; La Greca, Annette M.; Lai, Betty S.
2012-01-01
Cyber victimization is an important research area; yet, little is known about aversive peer experiences on social networking sites (SNSs), which are used extensively by youth and host complex social exchanges. Across samples of adolescents (n=216) and young adults (n=214), we developed the Social Networking-Peer Experiences Questionnaire (SN-PEQ), and examined its psychometric properties, distinctiveness from traditional peer victimization, and associations with internalized distress. The SN-PEQ demonstrated strong factorial invariance and a single factor structure that was distinct from other forms of peer victimization. Negative SNS experiences were associated with youths’ symptoms of social anxiety and depression, even when controlling for traditional peer victimization. Findings highlight the importance of examining the effects of aversive peer experiences that occur via social media. PMID:24288449
Liu, Nianbo; Liu, Ming; Zhu, Jinqi; Gong, Haigang
2009-01-01
The basic operation of a Delay Tolerant Sensor Network (DTSN) is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short) paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.
Blinov, Michael L.; Moraru, Ion I.
2011-01-01
Multi-state molecules and multi-component complexes are commonly involved in cellular signaling. Accounting for molecules that have multiple potential states, such as a protein that may be phosphorylated on multiple residues, and molecules that combine to form heterogeneous complexes located among multiple compartments, generates an effect of combinatorial complexity. Models involving relatively few signaling molecules can include thousands of distinct chemical species. Several software tools (StochSim, BioNetGen) are already available to deal with combinatorial complexity. Such tools need information standards if models are to be shared, jointly evaluated and developed. Here we discuss XML conventions that can be adopted for modeling biochemical reaction networks described by user-specified reaction rules. These could form a basis for possible future extensions of the Systems Biology Markup Language (SBML). PMID:21464833
NASA Astrophysics Data System (ADS)
Ji, Shenggong; Lü, Linyuan; Yeung, Chi Ho; Hu, Yanqing
2017-07-01
Social networks constitute a new platform for information propagation, but its success is crucially dependent on the choice of spreaders who initiate the spreading of information. In this paper, we remove edges in a network at random and the network segments into isolated clusters. The most important nodes in each cluster then form a set of influential spreaders, such that news propagating from them would lead to extensive coverage and minimal redundancy. The method utilizes the similarities between the segmented networks before percolation and the coverage of information propagation in each social cluster to obtain a set of distributed and coordinated spreaders. Our tests of implementing the susceptible-infected-recovered model on Facebook and Enron email networks show that this method outperforms conventional centrality-based methods in terms of spreadability and coverage redundancy. The suggested way of identifying influential spreaders thus sheds light on a new paradigm of information propagation in social networks.
Szczepanski, Caroline R.; Pfeifer, Carmem S.; Stansbury, Jeffrey W.
2012-01-01
Non-reactive, thermoplastic prepolymers (poly- methyl, ethyl and butyl methacrylate) were added to a model homopolymer matrix composed of triethylene glycol dimethacrylate (TEGDMA) to form heterogeneous networks via polymerization induced phase separation (PIPS). PIPS creates networks with distinct phase structure that can partially compensate for volumetric shrinkage during polymerization through localized internal volume expansion. This investigation utilizes purely photo-initiated, free-radical systems, broadening the scope of applications for PIPS since these processing conditions have not been studied previously. The introduction of prepolymer into TEGDMA monomer resulted in stable, homogeneous monomer formulations, most of which underwent PIPS upon photo-irradiation, creating heterogeneous networks. During polymerization the presence of prepolymer enhanced autoacceleration, allowing for a more extensive ambient cure of the material. Phase separation, as characterized by dynamic changes in sample turbidity, was monitored simultaneously with monomer conversion and either preceded or was coincident with network gelation. Dynamic mechanical analysis shows a broadening of the tan delta peak and secondary peak formation, characteristic of phase-separated materials, indicating one phase rich in prepolymer and another depleted form upon phase separation. In certain cases, PIPS leads to an enhanced physical reduction of volumetric shrinkage, which is attractive for many applications including dental composite materials. PMID:23109733
NASA Astrophysics Data System (ADS)
Tian, Chunlei; Yin, Yawei; Wu, Jian; Lin, Jintong
2008-11-01
The interworking network of Generalized Multi-Protocol Label Switching (GMPLS) and Optical Burst Switching (OBS) is attractive network architecture for the future IP/DWDM network nowadays. In this paper, OSPF-TE extensions for multi-domain Optical Burst Switching networks connected by GMPLS controlled WDM network are proposed, the corresponding experimental results such as the advertising latency are also presented by using an OBS network testbed. The experimental results show that it works effectively on the OBS/GMPLS networks.
Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.
Kral, Zachary; Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.
Rock, Amelia; Barrington, Clare; Abdoulayi, Sara; Tsoka, Maxton; Mvula, Peter; Handa, Sudhanshu
2017-01-01
Extensive research documents that social network characteristics affect health, but knowledge of peer networks of youth in Malawi and sub-Saharan Africa is limited. We examine the networks and social participation of youth living in extreme poverty in rural Malawi, using in-depth interviews with 32 youth and caregivers. We describe youth’s peer networks and assess how gender and the context of extreme poverty influence their networks and participation, and how their networks influence health. In-school youth had larger, more interactive, and more supportive networks than out-of-school youth, and girls described less social participation and more isolation than boys. Youth exchanged social support and influence within their networks that helped cope with poverty-induced stress and sadness, and encouraged protective sexual health practices. However, poverty hampered their involvement in school, religious schools, and community organizations, directly through lack of required material means, and indirectly by reducing time and emotional resources and creating shame and stigma. Poverty alleviation policy holds promise for improving youth’s social wellbeing and mental and physical health by increasing their opportunities to form networks, receive social support, and experience positive influence. PMID:27760393
Rock, Amelia; Barrington, Clare; Abdoulayi, Sara; Tsoka, Maxton; Mvula, Peter; Handa, Sudhanshu
2016-12-01
Extensive research documents that social network characteristics affect health, but knowledge of peer networks of youth in Malawi and sub-Saharan Africa is limited. We examine the networks and social participation of youth living in extreme poverty in rural Malawi, using in-depth interviews with 32 youth and caregivers. We describe youth's peer networks and assess how gender and the context of extreme poverty influence their networks and participation, and how their networks influence health. In-school youth had larger, more interactive, and more supportive networks than out-of-school youth, and girls described less social participation and more isolation than boys. Youth exchanged social support and influence within their networks that helped cope with poverty-induced stress and sadness, and encouraged protective sexual health practices. However, poverty hampered their involvement in school, religious schools, and community organizations, directly by denying them required material means, and indirectly by reducing time and emotional resources and creating shame and stigma. Poverty alleviation policy holds promise for improving youth's social wellbeing and mental and physical health by increasing their opportunities to form networks, receive social support, and experience positive influence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Deep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection
Vesperini, Fabio; Schuller, Björn
2017-01-01
In the emerging field of acoustic novelty detection, most research efforts are devoted to probabilistic approaches such as mixture models or state-space models. Only recent studies introduced (pseudo-)generative models for acoustic novelty detection with recurrent neural networks in the form of an autoencoder. In these approaches, auditory spectral features of the next short term frame are predicted from the previous frames by means of Long-Short Term Memory recurrent denoising autoencoders. The reconstruction error between the input and the output of the autoencoder is used as activation signal to detect novel events. There is no evidence of studies focused on comparing previous efforts to automatically recognize novel events from audio signals and giving a broad and in depth evaluation of recurrent neural network-based autoencoders. The present contribution aims to consistently evaluate our recent novel approaches to fill this white spot in the literature and provide insight by extensive evaluations carried out on three databases: A3Novelty, PASCAL CHiME, and PROMETHEUS. Besides providing an extensive analysis of novel and state-of-the-art methods, the article shows how RNN-based autoencoders outperform statistical approaches up to an absolute improvement of 16.4% average F-measure over the three databases. PMID:28182121
Duong, D V; Reilly, K D
1995-10-01
This sociological simulation uses the ideas of semiotics and symbolic interactionism to demonstrate how an appropriately developed associative memory in the minds of individuals on the microlevel can self-organize into macrolevel dissipative structures of societies such as racial cultural/economic classes, status symbols and fads. The associative memory used is based on an extension of the IAC neural network (the Interactive Activation and Competition network). Several IAC networks act together to form a society by virtue of their human-like properties of intuition and creativity. These properties give them the ability to create and understand signs, which lead to the macrolevel structures of society. This system is implemented in hierarchical object oriented container classes which facilitate change in deep structure. Graphs of general trends and an historical account of a simulation run of this dynamical system are presented.
Periz, Javier; Whitelaw, Jamie; Harding, Clare; Gras, Simon; Del Rosario Minina, Mario Igor; Latorre-Barragan, Fernanda; Lemgruber, Leandro; Reimer, Madita Alice; Insall, Robert; Heaslip, Aoife; Meissner, Markus
2017-01-01
Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.24119.001 PMID:28322189
Periz, Javier; Whitelaw, Jamie; Harding, Clare; Gras, Simon; Del Rosario Minina, Mario Igor; Latorre-Barragan, Fernanda; Lemgruber, Leandro; Reimer, Madita Alice; Insall, Robert; Heaslip, Aoife; Meissner, Markus
2017-03-21
Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics.
An Intelligent Pinger Network for Solid Glacier Environments
NASA Astrophysics Data System (ADS)
Schönitz, S.; Reuter, S.; Henke, C.; Jeschke, S.; Ewert, D.; Eliseev, D.; Heinen, D.; Linder, P.; Scholz, F.; Weinstock, L.; Wickmann, S.; Wiebusch, C.; Zierke, S.
2016-12-01
This talk presents a novel approach for an intelligent, agent-based pinger network in an extraterrestrial glacier environment. Because of recent findings of the Cassini spacecraft, a mission to Saturn's moon Enceladus is planned in order search for extraterrestrial life within the ocean beneath Enceladus' ice crust. Therefore, a maneuverable melting probe, the EnEx probe, was developed to melt into Enceladus' ice and take liquid samples from water-filled crevasses. Hence, the probe collecting the samples has to be able to navigate in ice which is a hard problem, because neither visual nor gravitational methods can be used. To enhance the navigability of the probe, a network of autonomous pinger units (APU) is in development that is able to extract a map of the ice environment via ultrasonic soundwaves. A network of these APUs will be deployed on the surface of Enceladus, melt into the ice and form a network to help guide the probe safely to its destination. The APU network is able to form itself fully autonomously and to compensate system failures of individual APUs. The agents controlling the single APU are realized by rule-based expert systems implemented in CLIPS. The rule-based expert system evaluates available information of the environment, decides for actions to take to achieve the desired goal (e.g. a specific network topology), and executes and monitors such actions. In general, it encodes certain situations that are evaluated whenever an APU is currently idle, and then decides for a next action to take. It bases this decision on its internal world model that is shared with the other APUs. The optimal network topology that defines each agents position is iteratively determined by mixed-integer nonlinear programming. Extensive simulations studies show that the proposed agent design enables the APUs to form a robust network topology that is suited to create a reliable 3D map of the ice environment.
Single- and dual-carrier microwave noise abatement in the deep space network. [microwave antennas
NASA Technical Reports Server (NTRS)
Bathker, D. A.; Brown, D. W.; Petty, S. M.
1975-01-01
The NASA/JPL Deep Space Network (DSN) microwave ground antenna systems are presented which simultaneously uplink very high power S-band signals while receiving very low level S- and X-band downlinks. Tertiary mechanisms associated with elements give rise to self-interference in the forms of broadband noise burst and coherent intermodulation products. A long-term program to reduce or eliminate both forms of interference is described in detail. Two DSN antennas were subjected to extensive interference testing and practical cleanup program; the initial performance, modification details, and final performance achieved at several planned stages are discussed. Test equipment and field procedures found useful in locating interference sources are discussed. Practices deemed necessary for interference-free operations in the DSN are described. Much of the specific information given is expected to be easily generalized for application in a variety of similar installations. Recommendations for future investigations and individual element design are given.
Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins
Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J
2017-01-01
Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function. DOI: http://dx.doi.org/10.7554/eLife.23882.001 PMID:28742022
Network perturbation by recurrent regulatory variants in cancer
Cho, Ara; Lee, Insuk; Choi, Jung Kyoon
2017-01-01
Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes. PMID:28333928
Neo-Darwinism, the Modern Synthesis and selfish genes: are they of use in physiology?
Noble, Denis
2011-01-01
This article argues that the gene-centric interpretations of evolution, and more particularly the selfish gene expression of those interpretations, form barriers to the integration of physiological science with evolutionary theory. A gene-centred approach analyses the relationships between genotypes and phenotypes in terms of differences (change the genotype and observe changes in phenotype). We now know that, most frequently, this does not correctly reveal the relationships because of extensive buffering by robust networks of interactions. By contrast, understanding biological function through physiological analysis requires an integrative approach in which the activity of the proteins and RNAs formed from each DNA template is analysed in networks of interactions. These networks also include components that are not specified by nuclear DNA. Inheritance is not through DNA sequences alone. The selfish gene idea is not useful in the physiological sciences, since selfishness cannot be defined as an intrinsic property of nucleotide sequences independently of gene frequency, i.e. the ‘success’ in the gene pool that is supposed to be attributable to the ‘selfish’ property. It is not a physiologically testable hypothesis. PMID:21135048
Neo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology?
Noble, Denis
2011-03-01
This article argues that the gene-centric interpretations of evolution, and more particularly the selfish gene expression of those interpretations, form barriers to the integration of physiological science with evolutionary theory. A gene-centred approach analyses the relationships between genotypes and phenotypes in terms of differences (change the genotype and observe changes in phenotype). We now know that, most frequently, this does not correctly reveal the relationships because of extensive buffering by robust networks of interactions. By contrast, understanding biological function through physiological analysis requires an integrative approach in which the activity of the proteins and RNAs formed from each DNA template is analysed in networks of interactions. These networks also include components that are not specified by nuclear DNA. Inheritance is not through DNA sequences alone. The selfish gene idea is not useful in the physiological sciences, since selfishness cannot be defined as an intrinsic property of nucleotide sequences independently of gene frequency, i.e. the 'success' in the gene pool that is supposed to be attributable to the 'selfish' property. It is not a physiologically testable hypothesis.
Regulation of Mitochondrial Structure and Dynamics by the Cytoskeleton and Mechanical Factors.
Bartolák-Suki, Erzsébet; Imsirovic, Jasmin; Nishibori, Yuichiro; Krishnan, Ramaswamy; Suki, Béla
2017-08-21
Mitochondria supply cells with energy in the form of ATP, guide apoptosis, and contribute to calcium buffering and reactive oxygen species production. To support these diverse functions, mitochondria form an extensive network with smaller clusters that are able to move along microtubules aided by motor proteins. Mitochondria are also associated with the actin network, which is involved in cellular responses to various mechanical factors. In this review, we discuss mitochondrial structure and function in relation to the cytoskeleton and various mechanical factors influencing cell functions. We first summarize the morphological features of mitochondria with an emphasis on fission and fusion as well as how network properties govern function. We then review the relationship between the mitochondria and the cytoskeletal structures, including mechanical interactions. We also discuss how stretch and its dynamic pattern affect mitochondrial structure and function. Finally, we present preliminary data on how extracellular matrix stiffness influences mitochondrial morphology and ATP generation. We conclude by discussing the more general role that mitochondria may play in mechanobiology and how the mechanosensitivity of mitochondria may contribute to the development of several diseases and aging.
Regulation of Mitochondrial Structure and Dynamics by the Cytoskeleton and Mechanical Factors
Bartolák-Suki, Erzsébet; Imsirovic, Jasmin; Nishibori, Yuichiro; Krishnan, Ramaswamy; Suki, Béla
2017-01-01
Mitochondria supply cells with energy in the form of ATP, guide apoptosis, and contribute to calcium buffering and reactive oxygen species production. To support these diverse functions, mitochondria form an extensive network with smaller clusters that are able to move along microtubules aided by motor proteins. Mitochondria are also associated with the actin network, which is involved in cellular responses to various mechanical factors. In this review, we discuss mitochondrial structure and function in relation to the cytoskeleton and various mechanical factors influencing cell functions. We first summarize the morphological features of mitochondria with an emphasis on fission and fusion as well as how network properties govern function. We then review the relationship between the mitochondria and the cytoskeletal structures, including mechanical interactions. We also discuss how stretch and its dynamic pattern affect mitochondrial structure and function. Finally, we present preliminary data on how extracellular matrix stiffness influences mitochondrial morphology and ATP generation. We conclude by discussing the more general role that mitochondria may play in mechanobiology and how the mechanosensitivity of mitochondria may contribute to the development of several diseases and aging. PMID:28825689
Wound Tissue Can Utilize a Polymeric Template to Synthesize a Functional Extension of Skin
NASA Astrophysics Data System (ADS)
Yannas, I. V.; Burke, J. F.; Orgill, D. P.; Skrabut, E. M.
1982-01-01
Prompt and long-term closure of full-thickness skin wounds in guinea pigs and humans is achieved by applying a bilayer polymeric membrane. The membrane comprises a top layer of a silicone elastomer and a bottom layer of a porous cross-linked network of collagen and glycosaminoglycan. The bottom layer can be seeded with a small number of autologous basal cells before grafting. No immunosuppression is used and infection, exudation, and rejection are absent. Host tissue utilizes the sterile membrane as a culture medium to synthesize neoepidermal and neodermal tissue. A functional extension of skin over the entire wound area is formed in about 4 weeks.
Prokaryotic ancestry of eukaryotic protein networks mediating innate immunity and apoptosis.
Dunin-Horkawicz, Stanislaw; Kopec, Klaus O; Lupas, Andrei N
2014-04-03
Protein domains characteristic of eukaryotic innate immunity and apoptosis have many prokaryotic counterparts of unknown function. By reconstructing interactomes computationally, we found that bacterial proteins containing these domains are part of a network that also includes other domains not hitherto associated with immunity. This network is connected to the network of prokaryotic signal transduction proteins, such as histidine kinases and chemoreceptors. The network varies considerably in domain composition and degree of paralogy, even between strains of the same species, and its repetitive domains are often amplified recently, with individual repeats sharing up to 100% sequence identity. Both phenomena are evidence of considerable evolutionary pressure and thus compatible with a role in the "arms race" between host and pathogen. In order to investigate the relationship of this network to its eukaryotic counterparts, we performed a cluster analysis of organisms based on a census of its constituent domains across all fully sequenced genomes. We obtained a large central cluster of mainly unicellular organisms, from which multicellular organisms radiate out in two main directions. One is taken by multicellular bacteria, primarily cyanobacteria and actinomycetes, and plants form an extension of this direction, connected via the basal, unicellular cyanobacteria. The second main direction is taken by animals and fungi, which form separate branches with a common root in the α-proteobacteria of the central cluster. This analysis supports the notion that the innate immunity networks of eukaryotes originated from their endosymbionts and that increases in the complexity of these networks accompanied the emergence of multicellularity. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Complex network view of evolving manifolds
NASA Astrophysics Data System (ADS)
da Silva, Diamantino C.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.
2018-03-01
We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of growing and equilibrium complex networks generated by these transformations and their local structural properties. This characterization includes the Hausdorff and spectral dimensions of the resulting networks, their degree distributions, and various structural correlations. Our results reveal a rich zoo of architectures and geometries of these networks, some of which appear to be small worlds while others are finite dimensional with Hausdorff dimension equal or higher than the original dimensionality of their simplices. The range of spectral dimensions of the evolving triangulations turns out to be from about 1.4 to infinity. Our models include simplicial complexes representing manifolds with evolving topologies, for example, an h -holed torus with a progressively growing number of holes. This evolving graph demonstrates features of a small-world network and has a particularly heavy-tailed degree distribution.
Robustness surfaces of complex networks
NASA Astrophysics Data System (ADS)
Manzano, Marc; Sahneh, Faryad; Scoglio, Caterina; Calle, Eusebi; Marzo, Jose Luis
2014-09-01
Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a unifying framework able to embrace all the proposed metrics. In the literature there are two open issues related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the R*-value and introducing the concept of robustness surface (Ω). The rationale of our proposal is to make use of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly, we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process for several percentage of failures and different realizations of the failure process. Lastly, we join these values to form the robustness surface, which allows the visual assessment of network robustness variability. Results show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure scenario and the set of metrics. In addition, the robustness surface allows the robustness of different networks to be compared.
Robustness surfaces of complex networks.
Manzano, Marc; Sahneh, Faryad; Scoglio, Caterina; Calle, Eusebi; Marzo, Jose Luis
2014-09-02
Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a unifying framework able to embrace all the proposed metrics. In the literature there are two open issues related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the R*-value and introducing the concept of robustness surface (Ω). The rationale of our proposal is to make use of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly, we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process for several percentage of failures and different realizations of the failure process. Lastly, we join these values to form the robustness surface, which allows the visual assessment of network robustness variability. Results show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure scenario and the set of metrics. In addition, the robustness surface allows the robustness of different networks to be compared.
Functional Genomics Assistant (FUGA): a toolbox for the analysis of complex biological networks
2011-01-01
Background Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology. Representation and analysis of cellular constituents through network principles is a promising and popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context. Findings We present Functional Genomics Assistant (FUGA) - an extensible and portable MATLAB toolbox for the inference of biological relationships, graph topology analysis, random network simulation, network clustering, and functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes, FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative molecular targets using concepts of systems biology. Conclusion FUGA offers a simple and customizable framework for network analysis in a variety of systems biology applications. It is freely available for individual or academic use at http://code.google.com/p/fuga. PMID:22035155
Global dynamics for switching systems and their extensions by linear differential equations
NASA Astrophysics Data System (ADS)
Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin
2018-03-01
Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.
Global dynamics for switching systems and their extensions by linear differential equations.
Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin
2018-03-15
Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.
Investigating end-to-end security in the fifth generation wireless capabilities and IoT extensions
NASA Astrophysics Data System (ADS)
Uher, J.; Harper, J.; Mennecke, R. G.; Patton, P.; Farroha, B.
2016-05-01
The emerging 5th generation wireless network will be architected and specified to meet the vision of allowing the billions of devices and millions of human users to share spectrum to communicate and deliver services. The expansion of wireless networks from its current role to serve these diverse communities of interest introduces new paradigms that require multi-tiered approaches. The introduction of inherently low security components, like IoT devices, necessitates that critical data be better secured to protect the networks and users. Moreover high-speed communications that are meant to enable the autonomous vehicles require ultra reliable and low latency paths. This research explores security within the proposed new architectures and the cross interconnection of the highly protected assets with low cost/low security components forming the overarching 5th generation wireless infrastructure.
Evolution of the global water cycle on Mars: The geological evidence
NASA Technical Reports Server (NTRS)
Baker, V. R.; Gulick, V. C.
1993-01-01
The geological evidence for active water cycling early in the history of Mars (Noachian geological system or heavy bombardment) consists almost exclusively of fluvial valley networks in the heavily cratered uplands of the planet. It is commonly assumed that these landforms required explanation by atmospheric processes operating above the freezing point of water and at high pressure to allow rainfall and liquid surface runoff. However, it has also been documented that nearly all valley networks probably formed by subsurface outflow and sapping erosion involving groundwater outflow prior to surface-water flow. The prolonged ground-water flow also requires extensive water cycling to maintain hydraulic gradients, but is this done via rainfall recharge, as in terrestrial environments?
Driving profile modeling and recognition based on soft computing approach.
Wahab, Abdul; Quek, Chai; Tan, Chin Keong; Takeda, Kazuya
2009-04-01
Advancements in biometrics-based authentication have led to its increasing prominence and are being incorporated into everyday tasks. Existing vehicle security systems rely only on alarms or smart card as forms of protection. A biometric driver recognition system utilizing driving behaviors is a highly novel and personalized approach and could be incorporated into existing vehicle security system to form a multimodal identification system and offer a greater degree of multilevel protection. In this paper, detailed studies have been conducted to model individual driving behavior in order to identify features that may be efficiently and effectively used to profile each driver. Feature extraction techniques based on Gaussian mixture models (GMMs) are proposed and implemented. Features extracted from the accelerator and brake pedal pressure were then used as inputs to a fuzzy neural network (FNN) system to ascertain the identity of the driver. Two fuzzy neural networks, namely, the evolving fuzzy neural network (EFuNN) and the adaptive network-based fuzzy inference system (ANFIS), are used to demonstrate the viability of the two proposed feature extraction techniques. The performances were compared against an artificial neural network (NN) implementation using the multilayer perceptron (MLP) network and a statistical method based on the GMM. Extensive testing was conducted and the results show great potential in the use of the FNN for real-time driver identification and verification. In addition, the profiling of driver behaviors has numerous other potential applications for use by law enforcement and companies dealing with buses and truck drivers.
CSMA/RN: A universal protocol for gigabit networks
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Maly, Kurt J.; Overstreet, C. Michael; Khanna, S.; Paterra, Frank
1990-01-01
Networks must provide intelligent access for nodes to share the communications resources. In the range of 100 Mbps to 1 Gbps, the demand access class of protocols were studied extensively. Many use some form of slot or reservation system and many the concept of attempt and defer to determine the presence or absence of incoming information. The random access class of protocols like shared channel systems (Ethernet), also use the concept of attempt and defer in the form of carrier sensing to alleviate the damaging effects of collisions. In CSMA/CD, the sensing of interference is on a global basis. All systems discussed above have one aspect in common, they examine activity on the network either locally or globally and react in an attempt and whatever mechanism. Of the attempt + mechanisms discussed, one is obviously missing; that is attempt and truncate. Attempt and truncate was studied in a ring configuration called the Carrier Sensed Multiple Access Ring Network (CSMA/RN). The system features of CSMA/RN are described including a discussion of the node operations for inserting and removing messages and for handling integrated traffic. The performance and operational features based on analytical and simulation studies which indicate that CSMA/RN is a useful and adaptable protocol over a wide range of network conditions are discussed. Finally, the research and development activities necessary to demonstrate and realize the potential of CSMA/RN as a universal, gigabit network protocol is outlined.
Kuo, Kuan-Chih; Lin, Ruei-Zeng; Tien, Han-Wen; Wu, Pei-Yun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh
2015-11-01
Tissue engineering promises to restore or replace diseased or damaged tissue by creating functional and transplantable artificial tissues. The development of artificial tissues with large dimensions that exceed the diffusion limitation will require nutrients and oxygen to be delivered via perfusion instead of diffusion alone over a short time period. One approach to perfusion is to vascularize engineered tissues, creating a de novo three-dimensional (3D) microvascular network within the tissue construct. This significantly shortens the time of in vivo anastomosis, perfusion and graft integration with the host. In this study, we aimed to develop injectable allogeneic collagen-phenolic hydroxyl (collagen-Ph) hydrogels that are capable of controlling a wide range of physicochemical properties, including stiffness, water absorption and degradability. We tested whether collagen-Ph hydrogels could support the formation of vascularized engineered tissue graft by human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSC) in vivo. First, we studied the growth of adherent ECFCs and MSCs on or in the hydrogels. To examine the potential formation of functional vascular networks in vivo, a liquid pre-polymer solution of collagen-Ph containing human ECFCs and MSCs, horseradish peroxidase and hydrogen peroxide was injected into the subcutaneous space or abdominal muscle defect of an immunodeficient mouse before gelation, to form a 3D cell-laden polymerized construct. These results showed that extensive human ECFC-lined vascular networks can be generated within 7 days, the engineered vascular density inside collagen-Ph hydrogel constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with the existing vasculature to further support the survival of host muscle tissues. Finally, optimized conditions of the cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse after 1 month of implantation. We reported a method for preparing autologous extracellular matrix scaffolds, murine collagen-Ph hydrogels, and demonstrated its suitability for use in supporting human progenitor cell-based formation of 3D vascular networks in vitro and in vivo. Results showed extensive human vascular networks can be generated within 7 days, engineered vascular density inside collagen-Ph constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with existing vasculature to further support the survival of host muscle tissues. Moreover, optimized conditions of cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems
Kral, Zachary; Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less
Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems
Horn, Walter; Steck, James
2013-01-01
Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536
Fasoli, Diego; Cattani, Anna; Panzeri, Stefano
2018-05-01
Despite their biological plausibility, neural network models with asymmetric weights are rarely solved analytically, and closed-form solutions are available only in some limiting cases or in some mean-field approximations. We found exact analytical solutions of an asymmetric spin model of neural networks with arbitrary size without resorting to any approximation, and we comprehensively studied its dynamical and statistical properties. The network had discrete time evolution equations and binary firing rates, and it could be driven by noise with any distribution. We found analytical expressions of the conditional and stationary joint probability distributions of the membrane potentials and the firing rates. By manipulating the conditional probability distribution of the firing rates, we extend to stochastic networks the associating learning rule previously introduced by Personnaz and coworkers. The new learning rule allowed the safe storage, under the presence of noise, of point and cyclic attractors, with useful implications for content-addressable memories. Furthermore, we studied the bifurcation structure of the network dynamics in the zero-noise limit. We analytically derived examples of the codimension 1 and codimension 2 bifurcation diagrams of the network, which describe how the neuronal dynamics changes with the external stimuli. This showed that the network may undergo transitions among multistable regimes, oscillatory behavior elicited by asymmetric synaptic connections, and various forms of spontaneous symmetry breaking. We also calculated analytically groupwise correlations of neural activity in the network in the stationary regime. This revealed neuronal regimes where, statistically, the membrane potentials and the firing rates are either synchronous or asynchronous. Our results are valid for networks with any number of neurons, although our equations can be realistically solved only for small networks. For completeness, we also derived the network equations in the thermodynamic limit of infinite network size and we analytically studied their local bifurcations. All the analytical results were extensively validated by numerical simulations.
Organogel formation rationalized by Hansen solubility parameters: influence of gelator structure.
Bonnet, Julien; Suissa, Gad; Raynal, Matthieu; Bouteiller, Laurent
2015-03-21
Some organic compounds form gels in liquids by forming a network of anisotropic fibres. Based on extensive solubility tests of four gelators of similar structures, and on Hansen solubility parameter formalism, we have probed the quantitative effect of a structural variation of the gelator structure on its gel formation ability. Increasing the length of an alkyl group of the gelator obviously reduces its polarity, which leads to a gradual shift of its solubility sphere towards lower δp and δh values. At the same time, its gelation sphere is shifted - to a much stronger extent - towards larger δp and δh values.
Integration of colloids into a semi-flexible network of fibrin.
Bharadwaj, N Ashwin K; Kang, Jin Gu; Hatzell, Marta C; Schweizer, Kenneth S; Braun, Paul V; Ewoldt, Randy H
2017-02-15
Typical colloid-polymer composites have particle diameters much larger than the polymer mesh size, but successful integration of smaller colloids into a large-mesh network could allow for the realization of new colloidal states of spatial organization and faster colloid motion which can allow the possibility of switchable re-configuration of colloids or more dramatic stimuli-responsive property changes. Experimental realization of such composites requires solving non-trivial materials selection and fabrication challenges; key questions include composition regime maps of successful composites, the resulting structure and colloidal contact network, and the mechanical properties, in particular the ability to form a network and retain strain stiffening in the presence of colloids. Here, we study these fundamental questions by formulating composites with fluorescent (though not stimuli-responsive) carboxylate modified polystyrene/latex (CML) colloidal particles (diameters 200 nm and 1000 nm) in bovine fibrin networks (a semi-flexible biopolymer network with mesh size 1-5 μm). We describe and characterize two methods of composite preparation: adding colloids before fibrinogen polymerization (Method I), and electrophoretically driving colloids into a network already formed by fibrinogen polymerization (Method II). We directly image the morphology of colloidal and fibrous components with two-color fluorescent confocal microscopy under wet conditions and SEM of fixed dry samples. Mechanical properties are studied with shear and extensional rheology. Both fabrication methods are successful, though with trade-offs. Method I retains the nonlinear strain-stiffening and extensibility of the native fibrin network, but some colloid clustering is observed and fibrin network integrity is lost above a critical colloid concentration that depends on fibrinogen and thrombin concentration. Larger colloids can be included at higher volume fractions before massive aggregation occurs, indicating surface interactions as a limiting factor. Method II results in a loss of measurable strain-stiffening, but colloids are well dispersed and template along the fibrous scaffold. The results here, with insight into both structure and rheology, form a foundational understanding for the integration of other colloids, e.g. with stimuli-responsive functionalities, into semi-flexible networks.
How citation distortions create unfounded authority: analysis of a citation network
2009-01-01
Objective To understand belief in a specific scientific claim by studying the pattern of citations among papers stating it. Design A complete citation network was constructed from all PubMed indexed English literature papers addressing the belief that β amyloid, a protein accumulated in the brain in Alzheimer’s disease, is produced by and injures skeletal muscle of patients with inclusion body myositis. Social network theory and graph theory were used to analyse this network. Main outcome measures Citation bias, amplification, and invention, and their effects on determining authority. Results The network contained 242 papers and 675 citations addressing the belief, with 220 553 citation paths supporting it. Unfounded authority was established by citation bias against papers that refuted or weakened the belief; amplification, the marked expansion of the belief system by papers presenting no data addressing it; and forms of invention such as the conversion of hypothesis into fact through citation alone. Extension of this network into text within grants funded by the National Institutes of Health and obtained through the Freedom of Information Act showed the same phenomena present and sometimes used to justify requests for funding. Conclusion Citation is both an impartial scholarly method and a powerful form of social communication. Through distortions in its social use that include bias, amplification, and invention, citation can be used to generate information cascades resulting in unfounded authority of claims. Construction and analysis of a claim specific citation network may clarify the nature of a published belief system and expose distorted methods of social citation. PMID:19622839
Mechanical response of transient telechelic networks with many-part stickers
NASA Astrophysics Data System (ADS)
Sing, Michelle K.; Ramírez, Jorge; Olsen, Bradley D.
2017-11-01
A central question in soft matter is understanding how several individual, weak bonds act together to produce collective interactions. Here, gel-forming telechelic polymers with multiple stickers at each chain end are studied through Brownian dynamics simulations to understand how collective interaction of the bonds affects mechanical response of the gels. These polymers are modeled as finitely extensible dumbbells using an explicit tau-leap algorithm and the binding energy of these associations was kept constant regardless of the number of stickers. The addition of multiple bonds to the associating ends of telechelic polymers increases or decreases the network relaxation time depending on the relative kinetics of association but increases both shear stress and extensional viscosity. The relationship between the rate of association and the Rouse time of dangling chains results in two different regimes for the equilibrium stress relaxation of associating physical networks. In case I, a dissociated dangling chain is able to fully relax before re-associating to the network, resulting in two characteristic relaxation times and a non-monotonic terminal relaxation time with increasing number of bonds per polymer endgroup. In case II, the dissociated dangling chain is only able to relax a fraction of the way before it re-attaches to the network, and increasing the number of bonds per endgroup monotonically increases the terminal relaxation time. In flow, increasing the number of stickers increases the steady-state shear and extensional viscosities even though the overall bond kinetics and equilibrium constant remain unchanged. Increased dissipation in the simulations is primarily due to higher average chain extension with increasing bond number. These results indicate that toughness and dissipation in physically associating networks can both be increased by breaking single, strong bonds into smaller components.
Oil and Hazardous Material Cleanup Liability: A Study of Legal and Administrative Efficiency.
1980-01-01
sec. 1161 (1972). 6 extensive network of support equipment and the support people who contract, audit invoices, train, and manage budgets and programs...tediously describing the intricate aspects of documentation, auditing , forms, Ś The most notable "Superfund" type bill in the 96th Congress is H.R. 85. 10...Workshop on Reducing Tankbarge Pollution, 15 and 16 April 1980. (Typewritten). 21 the primary source of oil polution .16 Second, vessel source pollution
Extending Topological Approaches to Microseismic-Derived 3D Fracture Networks
NASA Astrophysics Data System (ADS)
Urbancic, T.; Bosman, K.; Baig, A.; Ardakani, E. P.
2017-12-01
Fracture topology is important for determining the fluid-flow characteristics of a fracture network. In most unconventional petroleum applications, flow through subsurface fracture networks is the primary source of production, as matrix permeability is often in the nanodarcy range. Typical models of reservoir discrete fracture networks (DFNs) are constructed using fracture orientation and average spacing, without consideration of how the connectivity of the fracture network aids the percolation of hydrocarbons back to the wellbore. Topological approaches to DFN characterization have been developed and extensively used in analysis of outcrop data and aerial photography. Such study of the surface expression of fracture networks is straight-forward, and the physical form of the observed fractures is directly reflected in the parameters used to describe the topology. However, this analysis largely ignores the three-dimensional nature of natural fracture networks, which is difficult to define accurately in geological studies. SMTI analysis of microseismic event distributions can produce DFNs, where each event is represented by a penny-shaped crack with radius and orientation determined from the frequency content of the waveforms and assessment of the slip instability of the potential fracture planes, respectively. Analysis of the geometric relationships between a set of fractures can provide details of intersections between fractures, and thus the topological characteristics of the fracture network. Extension of existing 2D topology approaches to 3D fracture networks is non-trivial. In the 2D case, a fracture intersection is a single point (node), and branches connect adjacent nodes along fractures. For the 3D case, intersection "nodes" become lines, and connecting nodes to find branches becomes more complicated. There are several parameters defined in 2D topology to quantify the connectivity of the fracture network. Equivalent quantities must be defined and calibrated for the 3D case to provide a meaningful measurement of fracture network connectivity. We have developed an approach to analyze the topology of 3D fracture networks derived from microseismic moment tensors. We illustrate the utility of the approach with applications to example datasets from hydraulic fracturing completions.
Self-Assembly of Polysaccharides Gives Rise to Distinct Mechanical Signatures in Marine Gels
Pletikapić, G.; Lannon, H.; Murvai, Ü.; Kellermayer, M.S.Z.; Svetličić, V.; Brujic, J.
2014-01-01
Marine-gel biopolymers were recently visualized at the molecular level using atomic force microscopy (AFM) to reveal fine fibril-forming networks with low to high degrees of cross-linking. In this work, we use force spectroscopy to quantify the intra- and intermolecular forces within the marine-gel network. Combining force measurements, AFM imaging, and the known chemical composition of marine gels allows us to identify the microscopic origins of distinct mechanical responses. At the single-fibril level, we uncover force-extension curves that resemble those of individual polysaccharide fibrils. They exhibit entropic elasticity followed by extensions associated with chair-to-boat transitions specific to the type of polysaccharide at high forces. Surprisingly, a low degree of cross-linking leads to sawtooth patterns that we attribute to the unraveling of polysaccharide entanglements. At a high degree of cross-linking, we observe force plateaus that arise from unzipping, as well as unwinding, of helical bundles. Finally, the complex 3D network structure gives rise to force staircases of increasing height that correspond to the hierarchical peeling of fibrils away from the junction zones. In addition, we show that these diverse mechanical responses also arise in reconstituted polysaccharide gels, which highlights their dominant role in the mechanical architecture of marine gels. PMID:25028877
Extension Disaster Education Network (EDEN): Preparing Families for Disaster
ERIC Educational Resources Information Center
Washburn, Carolyn; Saunders, Kristine
2010-01-01
According to the American Red Cross (n.d.), less than half of Americans have an emergency preparedness plan in place. Therefore, it is critical that the Cooperative Extension System takes a role in encouraging the development of family preparedness plans. The Extension Disaster Education Network (EDEN) has developed a family and consumer sciences…
Crofoot, Margaret C; Rubenstein, Daniel I; Maiya, Arun S; Berger-Wolf, Tanya Y
2011-08-01
The form of animal social systems depends on the nature of agonistic and affiliative interactions. Social network theory provides tools for characterizing social structure that go beyond simple dyadic interactions and consider the group as a whole. We show three groups of capuchin monkeys from Barro Colorado Island, Panama, where there are strong connections between key aspects of aggression, grooming, and proximity networks, and, at least among females, those who incur risk to defend their group have particular "social personalities." Although there is no significant correlation for any of the network measures between giving and receiving aggression, suggesting that dominance relationships do not follow a simple hierarchy, strong correlations emerge for many measures between the aggression and grooming networks. At the local, but not global, scale, receiving aggression and giving grooming are strongly linked in all groups. Proximity shows no correlation with aggression at either the local or the global scale, suggesting that individuals neither seek out nor avoid aggressors. Yet, grooming has a global but not local connection to proximity. Extensive groomers who tend to direct their efforts at other extensive groomers also spend time in close proximity to many other individuals. These results indicate the important role that prosociality plays in shaping female social relationships. We also show that females who receive the least aggression, and thus pay low costs for group living, are most likely to participate in group defense. No consistent "social personality" traits characterize the males who invest in group defense. © 2011 Wiley-Liss, Inc.
Discrete particle swarm optimization for identifying community structures in signed social networks.
Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng
2014-10-01
Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks.
Hagen, Espen; Dahmen, David; Stavrinou, Maria L; Lindén, Henrik; Tetzlaff, Tom; van Albada, Sacha J; Grün, Sonja; Diesmann, Markus; Einevoll, Gaute T
2016-12-01
With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a ∼1 mm 2 patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-neuron network models, as well as extensions of the current application with additional biological detail. © The Author 2016. Published by Oxford University Press.
Gneiting, Uwe
2016-04-01
Global policy attention to tobacco control has increased significantly since the 1990 s and culminated in the first international treaty negotiated under the auspices of the World Health Organization--the Framework Convention on Tobacco Control (FCTC). Although the political process that led to the creation of the FCTC has been extensively researched, the FCTC's progression from an aspirational treaty towards a global health governance framework with tangible policy effects within FCTC member countries has not been well-understood to date. This article analyses the role of the global health network of tobacco control advocates and scientists, which formed during the FCTC negotiations during the late 1990 s, in translating countries' commitment to the FCTC into domestic policy change. By comparing the network's influence around two central tobacco control interventions (smoke-free environments and taxation), the study identifies several scope conditions, which have shaped the network's effectiveness around the FCTC's implementation: the complexity of the policy issue and the relative importance of non-health expertise, the required scope of domestic political buy-in, the role of the general public as network allies, and the strength of policy opposition. These political factors had a greater influence on the network's success than the evidence base for the effectiveness of tobacco control interventions. The network's variable success points to a trade-off faced by global health networks between their need to maintain internal cohesion and their ability to form alliances with actors in their social environment. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2015; all rights reserved.
Riquelme, Meritxell; Aguirre, Jesús; Bartnicki-García, Salomon; Braus, Gerhard H; Feldbrügge, Michael; Fleig, Ursula; Hansberg, Wilhelm; Herrera-Estrella, Alfredo; Kämper, Jörg; Kück, Ulrich; Mouriño-Pérez, Rosa R; Takeshita, Norio; Fischer, Reinhard
2018-06-01
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established. Copyright © 2018 American Society for Microbiology.
FTP Extensions for Variable Protocol Specification
NASA Technical Reports Server (NTRS)
Allman, Mark; Ostermann, Shawn
2000-01-01
The specification for the File Transfer Protocol (FTP) assumes that the underlying network protocols use a 32-bit network address and a 16-bit transport address (specifically IP version 4 and TCP). With the deployment of version 6 of the Internet Protocol, network addresses will no longer be 32-bits. This paper species extensions to FTP that will allow the protocol to work over a variety of network and transport protocols.
Classification of arrhythmia using hybrid networks.
Haseena, Hassan H; Joseph, Paul K; Mathew, Abraham T
2011-12-01
Reliable detection of arrhythmias based on digital processing of Electrocardiogram (ECG) signals is vital in providing suitable and timely treatment to a cardiac patient. Due to corruption of ECG signals with multiple frequency noise and presence of multiple arrhythmic events in a cardiac rhythm, computerized interpretation of abnormal ECG rhythms is a challenging task. This paper focuses a Fuzzy C- Mean (FCM) clustered Probabilistic Neural Network (PNN) and Multi Layered Feed Forward Network (MLFFN) for the discrimination of eight types of ECG beats. Parameters such as fourth order Auto Regressive (AR) coefficients along with Spectral Entropy (SE) are extracted from each ECG beat and feature reduction has been carried out using FCM clustering. The cluster centers form the input of neural network classifiers. The extensive analysis of Massachusetts Institute of Technology- Beth Israel Hospital (MIT-BIH) arrhythmia database shows that FCM clustered PNNs is superior in cardiac arrhythmia classification than FCM clustered MLFFN with an overall accuracy of 99.05%, 97.14%, respectively.
Water management in Angkor: human impacts on hydrology and sediment transportation.
Kummu, Matti
2009-03-01
The city of Angkor, capital of the Khmer empire from the 9th to 15th century CE, is well known for its impressive temples, but recent research has uncovered an extensive channel network stretching across over 1000 km2. The channel network with large reservoirs (termed baray) formed the structure of the city and was the basis for its water management. The annual long dry season associated with the monsoon climate has challenged water management for centuries, and the extensive water management system must have played an important role in the mitigation of such marked seasonality. However, by changing the natural water courses with off-take channels the original catchments were also reshaped. Moreover, severe problems of erosion and sedimentation in human built channels evolved and impacted on the whole water management system. This paper describes the present hydrology of the area and discusses the impacts of water management on hydrology during the Angkor era. The paper, moreover, attempts to summarise lessons that could be learnt from Angkorian water management that might apply to present challenges within the field.
Two-dimensional shape classification using generalized Fourier representation and neural networks
NASA Astrophysics Data System (ADS)
Chodorowski, Artur; Gustavsson, Tomas; Mattsson, Ulf
2000-04-01
A shape-based classification method is developed based upon the Generalized Fourier Representation (GFR). GFR can be regarded as an extension of traditional polar Fourier descriptors, suitable for description of closed objects, both convex and concave, with or without holes. Explicit relations of GFR coefficients to regular moments, moment invariants and affine moment invariants are given in the paper. The dual linear relation between GFR coefficients and regular moments was used to compare shape features derive from GFR descriptors and Hu's moment invariants. the GFR was then applied to a clinical problem within oral medicine and used to represent the contours of the lesions in the oral cavity. The lesions studied were leukoplakia and different forms of lichenoid reactions. Shape features were extracted from GFR coefficients in order to classify potentially cancerous oral lesions. Alternative classifiers were investigated based on a multilayer perceptron with different architectures and extensions. The overall classification accuracy for recognition of potentially cancerous oral lesions when using neural network classifier was 85%, while the classification between leukoplakia and reticular lichenoid reactions gave 96% (5-fold cross-validated) recognition rate.
Voltage collapse in complex power grids
Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco
2016-01-01
A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284
A secure file manager for UNIX
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVries, R.G.
1990-12-31
The development of a secure file management system for a UNIX-based computer facility with supercomputers and workstations is described. Specifically, UNIX in its usual form does not address: (1) Operation which would satisfy rigorous security requirements. (2) Online space management in an environment where total data demands would be many times the actual online capacity. (3) Making the file management system part of a computer network in which users of any computer in the local network could retrieve data generated on any other computer in the network. The characteristics of UNIX can be exploited to develop a portable, secure filemore » manager which would operate on computer systems ranging from workstations to supercomputers. Implementation considerations making unusual use of UNIX features, rather than requiring extensive internal system changes, are described, and implementation using the Cray Research Inc. UNICOS operating system is outlined.« less
Carnacina, Iacopo; Larrarte, Frédérique; Leonardi, Nicoletta
2017-04-01
The performance of sewer networks has important consequences from an environmental and social point of view. Poor functioning can result in flood risk and pollution at a large scale. Sediment deposits forming in sewer trunks might severely compromise the sewer line by affecting the flow field, reducing cross-sectional areas, and increasing roughness coefficients. In spite of numerous efforts, the morphological features of these depositional environments remain poorly understood. The interface between water and sediment remains inefficiently identified and the estimation of the stock of deposit is frequently inaccurate. In part, this is due to technical issues connected to difficulties in collecting accurate field measurements without disrupting existing morphologies. In this paper, results from an extensive field campaign are presented; during the campaign a new survey methodology based on acoustic techniques has been tested. Furthermore, a new algorithm for the detection of the soil-water interface, and therefore for the correct esteem of sediment stocks is proposed. Finally, results in regard to bed topography, and morphological features at two different field sites are presented and reveal that a large variability in bed forms is present along sewer networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vespignani, A.
2004-09-01
Networks have been recently recognized as playing a central role in understanding a wide range of systems spanning diverse scientific domains such as physics and biology, economics, computer science and information technology. Specific examples run from the structure of the Internet and the World Wide Web to the interconnections of finance agents and ecological food webs. These networked systems are generally made by many components whose microscopic interactions give rise to global structures characterized by emergent collective behaviour and complex topological properties. In this context the statistical physics approach finds a natural application since it attempts to explain the various large-scale statistical properties of networks in terms of local interactions governing the dynamical evolution of the constituent elements of the system. It is not by chance then that many of the seminal papers in the field have been published in the physics literature, and have nevertheless made a considerable impact on other disciplines. Indeed, a truly interdisciplinary approach is required in order to understand each specific system of interest, leading to a very interesting cross-fertilization between different scientific areas defining the emergence of a new research field sometimes called network science. The book of Dorogovtsev and Mendes is the first comprehensive monograph on this new scientific field. It provides a thorough presentation of the forefront research activities in the area of complex networks, with an extensive sampling of the disciplines involved and the kinds of problems that form the subject of inquiry. The book starts with a short introduction to graphs and network theory that introduces the tools and mathematical background needed for the rest of the book. The following part is devoted to an extensive presentation of the empirical analysis of real-world networks. While for obvious reasons of space the authors cannot analyse in every detail all the various examples, they provide the reader with a general vista that makes clear the relevance of network science to a wide range of natural and man-made systems. Two chapters are then committed to the detailed exposition of the statistical physics approach to equilibrium and non-equilibrium networks. The authors are two leading players in the area of network theory and offer a very careful and complete presentation of the statistical physics theory of evolving networks. Finally, in the last two chapters, the authors focus on various consequences of network topology for dynamical and physical phenomena occurring in these kinds of structures. The book is completed by a very extensive bibliography and some useful appendices containing some technical points arising in the mathematical discussion and data analysis. The book's mathematical level is fairly advanced and allows a coherent and unified framework for the study of networked structure. The book is targeted at mathematicians, physicists and social scientists alike. It will be appreciated by everybody working in the network area, and especially by any researcher or student entering the field that would like to have a reference text on the latest developments in network science.
JAX Colony Management System (JCMS): an extensible colony and phenotype data management system.
Donnelly, Chuck J; McFarland, Mike; Ames, Abigail; Sundberg, Beth; Springer, Dave; Blauth, Peter; Bult, Carol J
2010-04-01
The Jackson Laboratory Colony Management System (JCMS) is a software application for managing data and information related to research mouse colonies, associated biospecimens, and experimental protocols. JCMS runs directly on computers that run one of the PC Windows operating systems, but can be accessed via web browser interfaces from any computer running a Windows, Macintosh, or Linux operating system. JCMS can be configured for a single user or multiple users in small- to medium-size work groups. The target audience for JCMS includes laboratory technicians, animal colony managers, and principal investigators. The application provides operational support for colony management and experimental workflows, sample and data tracking through transaction-based data entry forms, and date-driven work reports. Flexible query forms allow researchers to retrieve database records based on user-defined criteria. Recent advances in handheld computers with integrated barcode readers, middleware technologies, web browsers, and wireless networks add to the utility of JCMS by allowing real-time access to the database from any networked computer.
Red cell membrane skeleton: structure-function relationships.
Palek, J; Liu, S C
1980-01-01
This papaer reviews our present understanding of ultrastructure, organization, and functional characteristics of the erythrocyte membrane cytoskeleton. This two-dimensional fibrillar network of submembrane proteins can be visualized after extraction of lipids and integral membrane proteins by Triton X-100. Current data suggest that the major structural components of the cytoskeleton are heterodimers of double-stranded spectrin that form tetramers by head-to-head associations. The tetramers may be connected into a fibrillar meshwork by oligomers of actin. The control of membrane integrity by this network is illustrated by examples of two hemolyotic anemias characterized by marked membrane instability and vesiculation: 1) hereditary spherocytic anemia of the house mouse associated with spectrin deficiency and 2) hereditary pyropoikilocytosis, a hemolytic anemia in man characterized by thermal instability of the membrane and the presence of abnormal spectrin, which exhibits an increased propensity to thermal denaturation. Stabilization of the cytoskeletal network by covalent cross-links between the nearest cytoskeletal and integral membrane proteins results in a decrease of membrane deformability and a fixation of erythrocytes in their abnormal shape. Such cross-linkings include: 1) transamidative cross-links produced by introduction of Ca2+ (>0.5 mM) into fresh erythrocytes, and 2) intermolecular disulfide couplings, which are formed after extensive oxidation of fresh erythrocytes or after mild oxidation of ATP-depleted, but not fresh, erythrocytes. The significance of these cross-links in stabilization of shape of abnormal erythrocytes such as schistocytes remains to be determined. We conclude that spectrin and actin form a fibrillar submembrane network that plays an important role in control of membrane integrity, erythrocyte deformability, and stabilization of cells in abnormal shapes.
Results from using a new dyadic-dependence model to analyze sociocentric physician networks.
Paul, Sudeshna; Keating, Nancy L; Landon, Bruce E; O'Malley, A James
2014-09-01
Professional physician networks can potentially influence clinical practices and quality of care. With the current focus on coordinated care, discerning influences of naturally occurring clusters and other forms of dependence among physicians' relationships based on their attributes and care patterns is an important area of research. In this paper, two directed physician networks: a physician influential conversation network (N = 33) and a physician network obtained from patient visit data (N = 135) are analyzed using a new model that accounts for effect modification of the within-dyad effect of reciprocity and inter-dyad effects involving three (or more) actors. The results from this model include more nuanced effects involving reciprocity and triadic dependence than under incumbent models and more flexible control for these effects in the extraction of other network phenomena, including the relationship between similarity of individuals' attributes (e.g., same-gender, same residency location) and tie-status. In both cases we find extensive evidence of clustering and triadic dependence that if not accounted for confounds the effect of reciprocity and attribute homophily. Findings from our analysis suggest alternative conclusions to those from incumbent models. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Medical Library Association Benchmarking Network: development and implementation.
Dudden, Rosalind Farnam; Corcoran, Kate; Kaplan, Janice; Magouirk, Jeff; Rand, Debra C; Smith, Bernie Todd
2006-04-01
This article explores the development and implementation of the Medical Library Association (MLA) Benchmarking Network from the initial idea and test survey, to the implementation of a national survey in 2002, to the establishment of a continuing program in 2004. Started as a program for hospital libraries, it has expanded to include other nonacademic health sciences libraries. The activities and timelines of MLA's Benchmarking Network task forces and editorial board from 1998 to 2004 are described. The Benchmarking Network task forces successfully developed an extensive questionnaire with parameters of size and measures of library activity and published a report of the data collected by September 2002. The data were available to all MLA members in the form of aggregate tables. Utilization of Web-based technologies proved feasible for data intake and interactive display. A companion article analyzes and presents some of the data. MLA has continued to develop the Benchmarking Network with the completion of a second survey in 2004. The Benchmarking Network has provided many small libraries with comparative data to present to their administrators. It is a challenge for the future to convince all MLA members to participate in this valuable program.
The Medical Library Association Benchmarking Network: development and implementation*
Dudden, Rosalind Farnam; Corcoran, Kate; Kaplan, Janice; Magouirk, Jeff; Rand, Debra C.; Smith, Bernie Todd
2006-01-01
Objective: This article explores the development and implementation of the Medical Library Association (MLA) Benchmarking Network from the initial idea and test survey, to the implementation of a national survey in 2002, to the establishment of a continuing program in 2004. Started as a program for hospital libraries, it has expanded to include other nonacademic health sciences libraries. Methods: The activities and timelines of MLA's Benchmarking Network task forces and editorial board from 1998 to 2004 are described. Results: The Benchmarking Network task forces successfully developed an extensive questionnaire with parameters of size and measures of library activity and published a report of the data collected by September 2002. The data were available to all MLA members in the form of aggregate tables. Utilization of Web-based technologies proved feasible for data intake and interactive display. A companion article analyzes and presents some of the data. MLA has continued to develop the Benchmarking Network with the completion of a second survey in 2004. Conclusions: The Benchmarking Network has provided many small libraries with comparative data to present to their administrators. It is a challenge for the future to convince all MLA members to participate in this valuable program. PMID:16636702
Robustness surfaces of complex networks
Manzano, Marc; Sahneh, Faryad; Scoglio, Caterina; Calle, Eusebi; Marzo, Jose Luis
2014-01-01
Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a unifying framework able to embrace all the proposed metrics. In the literature there are two open issues related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the R*-value and introducing the concept of robustness surface (Ω). The rationale of our proposal is to make use of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly, we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process for several percentage of failures and different realizations of the failure process. Lastly, we join these values to form the robustness surface, which allows the visual assessment of network robustness variability. Results show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure scenario and the set of metrics. In addition, the robustness surface allows the robustness of different networks to be compared. PMID:25178402
Maximum Interconnectedness and Availability for Directional Airborne Range Extension Networks
2016-08-29
2 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS I. INTRODUCTION Tactical military networks both on land and at sea often have restricted transmission ...ranges due to limits on terminal transmission power , geographic features that block line-of-sight, and poor over-the-horizon signal propagation...IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 1 Maximum Interconnectedness and Availability for Directional Airborne Range Extension Networks Thomas
OpenFlow Extensions for Programmable Quantum Networks
2017-06-19
Extensions for Programmable Quantum Networks by Venkat Dasari, Nikolai Snow, and Billy Geerhart Computational and Information Sciences Directorate...distribution is unlimited. 1 1. Introduction Quantum networks and quantum computing have been receiving a surge of interest recently.1–3 However, there has...communicate using entangled particles and perform calculations using quantum logic gates. Additionally, quantum computing uses a quantum bit (qubit
Cutting the Wires: Modularization of Cellular Networks for Experimental Design
Lang, Moritz; Summers, Sean; Stelling, Jörg
2014-01-01
Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. PMID:24411264
Unifying neural-network quantum states and correlator product states via tensor networks
NASA Astrophysics Data System (ADS)
Clark, Stephen R.
2018-04-01
Correlator product states (CPS) are a powerful and very broad class of states for quantum lattice systems whose (unnormalised) amplitudes in a fixed basis can be sampled exactly and efficiently. They work by gluing together states of overlapping clusters of sites on the lattice, called correlators. Recently Carleo and Troyer (2017 Science 355 602) introduced a new type sampleable ansatz called neural-network quantum states (NQS) that are inspired by the restricted Boltzmann model used in machine learning. By employing the formalism of tensor networks we show that NQS are a special form of CPS with novel properties. Diagramatically a number of simple observations become transparent. Namely, that NQS are CPS built from extensively sized GHZ-form correlators making them uniquely unbiased geometrically. The appearance of GHZ correlators also relates NQS to canonical polyadic decompositions of tensors. Another immediate implication of the NQS equivalence to CPS is that we are able to formulate exact NQS representations for a wide range of paradigmatic states, including superpositions of weighed-graph states, the Laughlin state, toric code states, and the resonating valence bond state. These examples reveal the potential of using higher dimensional hidden units and a second hidden layer in NQS. The major outlook of this study is the elevation of NQS to correlator operators allowing them to enhance conventional well-established variational Monte Carlo approaches for strongly correlated fermions.
Differential Coloring Reveals That Plastids Do Not Form Networks for Exchanging Macromolecules[C][W
Schattat, Martin H.; Griffiths, Sarah; Mathur, Neeta; Barton, Kiah; Wozny, Michael R.; Dunn, Natalie; Greenwood, John S.; Mathur, Jaideep
2012-01-01
Stroma-filled tubules named stromules are sporadic extensions of plastids. Earlier, photobleaching was used to demonstrate fluorescent protein diffusion between already interconnected plastids and formed the basis for suggesting that all plastids are able to form networks for exchanging macromolecules. However, a critical appraisal of literature shows that this conjecture is not supported by unequivocal experimental evidence. Here, using photoconvertible mEosFP, we created color differences between similar organelles that enabled us to distinguish clearly between organelle fusion and nonfusion events. Individual plastids, despite conveying a strong impression of interactivity and fusion, maintained well-defined boundaries and did not exchange fluorescent proteins. Moreover, the high pleomorphy of etioplasts from dark-grown seedlings, leucoplasts from roots, and assorted plastids in the accumulation and replication of chloroplasts5 (arc5), arc6, and phosphoglucomutase1 mutants of Arabidopsis thaliana suggested that a single plastid unit might be easily mistaken for interconnected plastids. Our observations provide succinct evidence to refute the long-standing dogma of interplastid connectivity. The ability to create and maintain a large number of unique biochemical factories in the form of singular plastids might be a key feature underlying the versatility of green plants as it provides increased internal diversity for them to combat a wide range of environmental fluctuations and stresses. PMID:22474180
Differential coloring reveals that plastids do not form networks for exchanging macromolecules.
Schattat, Martin H; Griffiths, Sarah; Mathur, Neeta; Barton, Kiah; Wozny, Michael R; Dunn, Natalie; Greenwood, John S; Mathur, Jaideep
2012-04-01
Stroma-filled tubules named stromules are sporadic extensions of plastids. Earlier, photobleaching was used to demonstrate fluorescent protein diffusion between already interconnected plastids and formed the basis for suggesting that all plastids are able to form networks for exchanging macromolecules. However, a critical appraisal of literature shows that this conjecture is not supported by unequivocal experimental evidence. Here, using photoconvertible mEosFP, we created color differences between similar organelles that enabled us to distinguish clearly between organelle fusion and nonfusion events. Individual plastids, despite conveying a strong impression of interactivity and fusion, maintained well-defined boundaries and did not exchange fluorescent proteins. Moreover, the high pleomorphy of etioplasts from dark-grown seedlings, leucoplasts from roots, and assorted plastids in the accumulation and replication of chloroplasts5 (arc5), arc6, and phosphoglucomutase1 mutants of Arabidopsis thaliana suggested that a single plastid unit might be easily mistaken for interconnected plastids. Our observations provide succinct evidence to refute the long-standing dogma of interplastid connectivity. The ability to create and maintain a large number of unique biochemical factories in the form of singular plastids might be a key feature underlying the versatility of green plants as it provides increased internal diversity for them to combat a wide range of environmental fluctuations and stresses.
2015-05-01
HNW line-of-sight network is mounted on a 10-meter telescoping mast located just aft of the TCN’s cab. The flat plate Range Throughput Extension Kit... TAC – Tactical Command Post ATH – At-the-Halt PoP – Point of Presence SNE – Soldier Network Extension NOSC – Network Operations & Security...Survivability/Lethality Analysis Directorate (ARL/SLAD) conducted a Cooperative Vulnerability and Penetration Assessment on WIN-T Increment 2. The Army
A Programmable Cellular-Automata Polarized Dirac Vacuum
NASA Astrophysics Data System (ADS)
Osoroma, Drahcir S.
2013-09-01
We explore properties of a `Least Cosmological Unit' (LCU) as an inherent spacetime raster tiling or tessellating the unique backcloth of Holographic Anthropic Multiverse (HAM) cosmology as an array of programmable cellular automata. The HAM vacuum is a scale-invariant HD extension of a covariant polarized Dirac vacuum with `bumps' and `holes' typically described by extended electromagnetic theory corresponding to an Einstein energy-dependent spacetime metric admitting a periodic photon mass. The new cosmology incorporates a unique form of M-Theoretic Calabi-Yau-Poincaré Dodecadedral-AdS5-DS5space (PDS) with mirror symmetry best described by an HD extension of Cramer's Transactional Interpretation when integrated also with an HD extension of the de Broglie-Bohm-Vigier causal interpretation of quantum theory. We incorporate a unique form of large-scale additional dimensionality (LSXD) bearing some similarity to that conceived by Randall and Sundrum; and extend the fundamental basis of our model to the Unified Field, UF. A Sagnac Effect rf-pulsed incursive resonance hierarchy is utilized to manipulate and ballistically program the geometric-topological properties of this putative LSXD space-spacetime network. The model is empirically testable; and it is proposed that a variety of new technologies will arise from ballistic programming of tessellated LCU vacuum cellular automata.
A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution
Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe
2015-01-01
The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth. PMID:25569615
Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels.
Pletikapić, G; Lannon, H; Murvai, Ü; Kellermayer, M S Z; Svetličić, V; Brujic, J
2014-07-15
Marine-gel biopolymers were recently visualized at the molecular level using atomic force microscopy (AFM) to reveal fine fibril-forming networks with low to high degrees of cross-linking. In this work, we use force spectroscopy to quantify the intra- and intermolecular forces within the marine-gel network. Combining force measurements, AFM imaging, and the known chemical composition of marine gels allows us to identify the microscopic origins of distinct mechanical responses. At the single-fibril level, we uncover force-extension curves that resemble those of individual polysaccharide fibrils. They exhibit entropic elasticity followed by extensions associated with chair-to-boat transitions specific to the type of polysaccharide at high forces. Surprisingly, a low degree of cross-linking leads to sawtooth patterns that we attribute to the unraveling of polysaccharide entanglements. At a high degree of cross-linking, we observe force plateaus that arise from unzipping, as well as unwinding, of helical bundles. Finally, the complex 3D network structure gives rise to force staircases of increasing height that correspond to the hierarchical peeling of fibrils away from the junction zones. In addition, we show that these diverse mechanical responses also arise in reconstituted polysaccharide gels, which highlights their dominant role in the mechanical architecture of marine gels. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Revalidation of the Score for Neonatal Acute Physiology in the Vermont Oxford Network.
Zupancic, John A F; Richardson, Douglas K; Horbar, Jeffrey D; Carpenter, Joseph H; Lee, Shoo K; Escobar, Gabriel J
2007-01-01
Our specific objectives were (1) to document the performance of the revised Score for Neonatal Acute Physiology and the revised Score for Neonatal Acute Physiology Perinatal Extension in predicting death in the Vermont Oxford Network, compared with published normative values; (2) to determine whether this performance could be improved through recalibration of the weights for individual score items; (3) to determine the impact of including congenital anomalies in the predictive model; and (4) to compare performance against that of the Vermont Oxford Network risk adjustment, separately and in combination. Fifty-eight Vermont Oxford Network centers collected data prospectively for the revised Score for Neonatal Acute Physiology in the first 12 hours after admission of infants in 2002. Data were collected for 10,469 infants, and analyses were undertaken for 9897 who met inclusion criteria. The median revised Score for Neonatal Acute Physiology was 5, and the mean birth weight was 1951 g. Recalibration of the revised Score for Neonatal Acute Physiology and revised Score for Neonatal Acute Physiology Perinatal Extension resulted in minimal changes in their discriminatory abilities. The Vermont Oxford Network risk adjustment performed similarly, compared with the revised Score for Neonatal Acute Physiology Perinatal Extension. Current score performance was similar to that observed previously, which suggests that the revised Score for Neonatal Acute Physiology and revised Score for Neonatal Acute Physiology Perinatal Extension have not decalibrated over the 7 years since the first cohort was assembled, despite advances in neonatal care during that period. Addition of congenital anomalies to the revised Score for Neonatal Acute Physiology Perinatal Extension improved discrimination significantly, particularly for infants with birth weights of >1500 g. The Vermont Oxford Network risk adjustment performed similarly, compared with the revised Score for Neonatal Acute Physiology Perinatal Extension.
Estimation procedure of the efficiency of the heat network segment
NASA Astrophysics Data System (ADS)
Polivoda, F. A.; Sokolovskii, R. I.; Vladimirov, M. A.; Shcherbakov, V. P.; Shatrov, L. A.
2017-07-01
An extensive city heat network contains many segments, and each segment operates with different efficiency of heat energy transfer. This work proposes an original technical approach; it involves the evaluation of the energy efficiency function of the heat network segment and interpreting of two hyperbolic functions in the form of the transcendental equation. In point of fact, the problem of the efficiency change of the heat network depending on the ambient temperature was studied. Criteria dependences used for evaluation of the set segment efficiency of the heat network and finding of the parameters for the most optimal control of the heat supply process of the remote users were inferred with the help of the functional analysis methods. Generally, the efficiency function of the heat network segment is interpreted by the multidimensional surface, which allows illustrating it graphically. It was shown that the solution of the inverse problem is possible as well. Required consumption of the heating agent and its temperature may be found by the set segment efficient and ambient temperature; requirements to heat insulation and pipe diameters may be formulated as well. Calculation results were received in a strict analytical form, which allows investigating the found functional dependences for availability of the extremums (maximums) under the set external parameters. A conclusion was made that it is expedient to apply this calculation procedure in two practically important cases: for the already made (built) network, when the change of the heat agent consumption and temperatures in the pipe is only possible, and for the projecting (under construction) network, when introduction of changes into the material parameters of the network is possible. This procedure allows clarifying diameter and length of the pipes, types of insulation, etc. Length of the pipes may be considered as the independent parameter for calculations; optimization of this parameter is made in accordance with other, economical, criteria for the specific project.
The Need and Keys for a New Generation Network Adjustment Software
NASA Astrophysics Data System (ADS)
Colomina, I.; Blázquez, M.; Navarro, J. A.; Sastre, J.
2012-07-01
Orientation and calibration of photogrammetric and remote sensing instruments is a fundamental capacity of current mapping systems and a fundamental research topic. Neither digital remote sensing acquisition systems nor direct orientation gear, like INS and GNSS technologies, made block adjustment obsolete. On the contrary, the continuous flow of new primary data acquisition systems has challenged the capacity of the legacy block adjustment systems - in general network adjustment systems - in many aspects: extensibility, genericity, portability, large data sets capacity, metadata support and many others. In this article, we concentrate on the extensibility and genericity challenges that current and future network systems shall face. For this purpose we propose a number of software design strategies with emphasis on rigorous abstract modeling that help in achieving simplicity, genericity and extensibility together with the protection of intellectual proper rights in a flexible manner. We illustrate our suggestions with the general design approach of GENA, the generic extensible network adjustment system of GeoNumerics.
Cutting the wires: modularization of cellular networks for experimental design.
Lang, Moritz; Summers, Sean; Stelling, Jörg
2014-01-07
Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data.
Huynh-Thu, Vân Anh; Geurts, Pierre
2018-02-21
The elucidation of gene regulatory networks is one of the major challenges of systems biology. Measurements about genes that are exploited by network inference methods are typically available either in the form of steady-state expression vectors or time series expression data. In our previous work, we proposed the GENIE3 method that exploits variable importance scores derived from Random forests to identify the regulators of each target gene. This method provided state-of-the-art performance on several benchmark datasets, but it could however not specifically be applied to time series expression data. We propose here an adaptation of the GENIE3 method, called dynamical GENIE3 (dynGENIE3), for handling both time series and steady-state expression data. The proposed method is evaluated extensively on the artificial DREAM4 benchmarks and on three real time series expression datasets. Although dynGENIE3 does not systematically yield the best performance on each and every network, it is competitive with diverse methods from the literature, while preserving the main advantages of GENIE3 in terms of scalability.
Actors and networks in resource conflict resolution under climate change in rural Kenya
NASA Astrophysics Data System (ADS)
Ngaruiya, Grace W.; Scheffran, Jürgen
2016-05-01
The change from consensual decision-making arrangements into centralized hierarchical chieftaincy schemes through colonization disrupted many rural conflict resolution mechanisms in Africa. In addition, climate change impacts on land use have introduced additional socio-ecological factors that complicate rural conflict dynamics. Despite the current urgent need for conflict-sensitive adaptation, resolution efficiency of these fused rural institutions has hardly been documented. In this context, we analyse the Loitoktok network for implemented resource conflict resolution structures and identify potential actors to guide conflict-sensitive adaptation. This is based on social network data and processes that are collected using the saturation sampling technique to analyse mechanisms of brokerage. We find that there are three different forms of fused conflict resolution arrangements that integrate traditional institutions and private investors in the community. To effectively implement conflict-sensitive adaptation, we recommend the extension officers, the council of elders, local chiefs and private investors as potential conduits of knowledge in rural areas. In conclusion, efficiency of these fused conflict resolution institutions is aided by the presence of holistic resource management policies and diversification in conflict resolution actors and networks.
Maximal qubit violation of n-locality inequalities in a star-shaped quantum network
NASA Astrophysics Data System (ADS)
Andreoli, Francesco; Carvacho, Gonzalo; Santodonato, Luca; Chaves, Rafael; Sciarrino, Fabio
2017-11-01
Bell's theorem was a cornerstone for our understanding of quantum theory and the establishment of Bell non-locality played a crucial role in the development of quantum information. Recently, its extension to complex networks has been attracting growing attention, but a deep characterization of quantum behavior is still missing for this novel context. In this work we analyze quantum correlations arising in the bilocality scenario, that is a tripartite quantum network where the correlations between the parties are mediated by two independent sources of states. First, we prove that non-bilocal correlations witnessed through a Bell-state measurement in the central node of the network form a subset of those obtainable by means of a local projective measurement. This leads us to derive the maximal violation of the bilocality inequality that can be achieved by arbitrary two-qubit quantum states and arbitrary local projective measurements. We then analyze in details the relation between the violation of the bilocality inequality and the CHSH inequality. Finally, we show how our method can be extended to the n-locality scenario consisting of n two-qubit quantum states distributed among n+1 nodes of a star-shaped network.
Maximizing Information Diffusion in the Cyber-physical Integrated Network †
Lu, Hongliang; Lv, Shaohe; Jiao, Xianlong; Wang, Xiaodong; Liu, Juan
2015-01-01
Nowadays, our living environment has been embedded with smart objects, such as smart sensors, smart watches and smart phones. They make cyberspace and physical space integrated by their abundant abilities of sensing, communication and computation, forming a cyber-physical integrated network. In order to maximize information diffusion in such a network, a group of objects are selected as the forwarding points. To optimize the selection, a minimum connected dominating set (CDS) strategy is adopted. However, existing approaches focus on minimizing the size of the CDS, neglecting an important factor: the weight of links. In this paper, we propose a distributed maximizing the probability of information diffusion (DMPID) algorithm in the cyber-physical integrated network. Unlike previous approaches that only consider the size of CDS selection, DMPID also considers the information spread probability that depends on the weight of links. To weaken the effects of excessively-weighted links, we also present an optimization strategy that can properly balance the two factors. The results of extensive simulation show that DMPID can nearly double the information diffusion probability, while keeping a reasonable size of selection with low overhead in different distributed networks. PMID:26569254
Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.
Grandjean, Bernard; Maier, Marc A
2017-02-01
Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.
Henry, Teague; Gesell, Sabina B.; Ip, Edward H.
2016-01-01
Background Social networks influence children and adolescents’ physical activity. The focus of this paper is to examine the differences in the effects of physical activity on friendship selection, with eye to the implications on physical activity interventions for young children. Network interventions to increase physical activity are warranted but have not been conducted. Prior to implementing a network intervention in the field, it is important to understand potential heterogeneities in the effects that activity level have on network structure. In this study, the associations between activity level and cross sectional network structure, and activity level and change in network structure are assessed. Methods We studied a real-world friendship network among 81 children (average age 7.96 years) who lived in low SES neighborhoods, attended public schools, and attended one of two structured aftercare programs, of which one has existed and the other was new. We used the exponential random graph model (ERGMs) and its longitudinal extension to evaluate the association between activity level and various demographic factors in having, forming, and dissolving friendship. Due to heterogeneity between the friendship networks within the aftercare programs, separate analyses were conducted for each network. Results There was heterogeneity in the effect of physical activity on both cross sectional network structure and the formation and dissolution processes, both across time and between networks. Conclusions Network analysis could be used to assess the unique structure and dynamics of a social network before an intervention is implemented, so as to optimize the effects of the network intervention for increasing childhood physical activity. Additionally, if peer selection processes are changing within a network, a static network intervention strategy for childhood physical activity could become inefficient as the network evolves. PMID:27867518
Hutton, Brian; Salanti, Georgia; Caldwell, Deborah M; Chaimani, Anna; Schmid, Christopher H; Cameron, Chris; Ioannidis, John P A; Straus, Sharon; Thorlund, Kristian; Jansen, Jeroen P; Mulrow, Cynthia; Catalá-López, Ferrán; Gøtzsche, Peter C; Dickersin, Kay; Boutron, Isabelle; Altman, Douglas G; Moher, David
2015-06-02
The PRISMA statement is a reporting guideline designed to improve the completeness of reporting of systematic reviews and meta-analyses. Authors have used this guideline worldwide to prepare their reviews for publication. In the past, these reports typically compared 2 treatment alternatives. With the evolution of systematic reviews that compare multiple treatments, some of them only indirectly, authors face novel challenges for conducting and reporting their reviews. This extension of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) statement was developed specifically to improve the reporting of systematic reviews incorporating network meta-analyses. A group of experts participated in a systematic review, Delphi survey, and face-to-face discussion and consensus meeting to establish new checklist items for this extension statement. Current PRISMA items were also clarified. A modified, 32-item PRISMA extension checklist was developed to address what the group considered to be immediately relevant to the reporting of network meta-analyses. This document presents the extension and provides examples of good reporting, as well as elaborations regarding the rationale for new checklist items and the modification of previously existing items from the PRISMA statement. It also highlights educational information related to key considerations in the practice of network meta-analysis. The target audience includes authors and readers of network meta-analyses, as well as journal editors and peer reviewers.
Microstructures and rheology of a calcite-shale thrust fault
NASA Astrophysics Data System (ADS)
Wells, Rachel K.; Newman, Julie; Wojtal, Steven
2014-08-01
A thin (˜2 cm) layer of extensively sheared fault rock decorates the ˜15 km displacement Copper Creek thrust at an exposure near Knoxville, TN (USA). In these ultrafine-grained (<0.3 μm) fault rocks, interpenetrating calcite grains form an interconnected network around shale clasts. One cm below the fault rock layer, sedimentary laminations in non-penetratively deformed footwall shale are cut by calcite veins, small faults, and stylolites. A 350 μm thick calcite vein separates the fault rocks and footwall shale. The vein is composed of layers of (1) coarse calcite grains (>5 μm) that exhibit a lattice preferred orientation (LPO) with pores at twin-twin and twin-grain boundary intersections, and (2) ultrafine-grained (0.3 μm) calcite that exhibits interpenetrating grain boundaries, four-grain junctions and lacks a LPO. Coarse calcite layers crosscut ultrafine-grained layers indicating intermittent vein formation during shearing. Calcite in the fault rock layer is derived from vein calcite and grain-size reduction of calcite took place by plasticity-induced fracture. The ultrafine-grained calcite deformed primarily by diffusion-accommodated grain boundary sliding and formed an interconnected network around shale clasts within the shear zone. The interconnected network of ultrafine-grained calcite indicates that calcite, not shale, was the weak phase in this fault zone.
Modular architectures for quantum networks
NASA Astrophysics Data System (ADS)
Pirker, A.; Wallnöfer, J.; Dür, W.
2018-05-01
We consider the problem of generating multipartite entangled states in a quantum network upon request. We follow a top-down approach, where the required entanglement is initially present in the network in form of network states shared between network devices, and then manipulated in such a way that the desired target state is generated. This minimizes generation times, and allows for network structures that are in principle independent of physical links. We present a modular and flexible architecture, where a multi-layer network consists of devices of varying complexity, including quantum network routers, switches and clients, that share certain resource states. We concentrate on the generation of graph states among clients, which are resources for numerous distributed quantum tasks. We assume minimal functionality for clients, i.e. they do not participate in the complex and distributed generation process of the target state. We present architectures based on shared multipartite entangled Greenberger–Horne–Zeilinger states of different size, and fully connected decorated graph states, respectively. We compare the features of these architectures to an approach that is based on bipartite entanglement, and identify advantages of the multipartite approach in terms of memory requirements and complexity of state manipulation. The architectures can handle parallel requests, and are designed in such a way that the network state can be dynamically extended if new clients or devices join the network. For generation or dynamical extension of the network states, we propose a quantum network configuration protocol, where entanglement purification is used to establish high fidelity states. The latter also allows one to show that the entanglement generated among clients is private, i.e. the network is secure.
NASA Astrophysics Data System (ADS)
Brooker, L. M.; Balme, M. R.; Conway, S. J.; Hagermann, A.; Barrett, A. M.; Collins, G. S.; Soare, R. J.
2018-03-01
Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (>100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, the extent of which is linked to ejecta from Lyot crater.
Ryu-Takayanagi formula for symmetric random tensor networks
NASA Astrophysics Data System (ADS)
Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi
2018-06-01
We consider the special case of random tensor networks (RTNs) endowed with gauge symmetry constraints on each tensor. We compute the Rényi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large-bond regime. The result provides first of all an interesting new extension of the existing derivations of the RT formula for RTNs. Moreover, this extension of the RTN formalism brings it in direct relation with (tensorial) group field theories (and spin networks), and thus provides new tools for realizing the tensor network/geometry duality in the context of background-independent quantum gravity, and for importing quantum gravity tools into tensor network research.
Artificial Neural Networks in Policy Research: A Current Assessment.
ERIC Educational Resources Information Center
Woelfel, Joseph
1993-01-01
Suggests that artificial neural networks (ANNs) exhibit properties that promise usefulness for policy researchers. Notes that ANNs have found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis and are developing an extensive community of advocates for processing text…
The Possibilities of Network Sociality
NASA Astrophysics Data System (ADS)
Willson, Michele
Technologically networked social forms are broad, extensive and in demand. The rapid development and growth of web 2.0, or the social web, is evidence of the need and indeed hunger for social connectivity: people are searching for many and varied ways of enacting being-together. However, the ways in which we think of, research and write about network(ed) sociality are relatively recent and arguably restricted, warranting further critique and development. This article attempts to do several things: it raises questions about the types of sociality enacted in contemporary techno-society; critically explores the notion of the networked individual and the focus on the individual evident in much of the technology and sociality literature and asks questions about the place of the social in these discussions. It argues for a more well-balanced and multilevelled approach to questions of sociality in networked societies. The article starts from the position that possibilities enabled/afforded by the technologies we have in place have an effect upon the ways in which we understand being in the world together and our possible actions and futures. These possibilities are more than simply supplementary; in many ways they are transformative. The ways in which we grapple with these questions reveals as much about our understandings of sociality as it does about the technologies themselves.
Opinion diversity and community formation in adaptive networks
NASA Astrophysics Data System (ADS)
Yu, Y.; Xiao, G.; Li, G.; Tay, W. P.; Teoh, H. F.
2017-10-01
It is interesting and of significant importance to investigate how network structures co-evolve with opinions. In this article, we show that, a simple model integrating consensus formation, link rewiring, and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities are connected by a non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at the steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity.
Modelling microtubules in the brain as n-qudit quantum Hopfield network and beyond
NASA Astrophysics Data System (ADS)
Pyari Srivastava, Dayal; Sahni, Vishal; Saran Satsangi, Prem
2016-01-01
The scientific approach to understand the nature of consciousness revolves around the study of the human brain. Neurobiological studies that compare the nervous system of different species have accorded the highest place to humans on account of various factors that include a highly developed cortical area comprising of approximately 100 billion neurons, that are intrinsically connected to form a highly complex network. Quantum theories of consciousness are based on mathematical abstraction and the Penrose-Hameroff Orch-OR theory is one of the most promising ones. Inspired by the Penrose-Hameroff Orch-OR theory, Behrman et al. have simulated a quantum Hopfield neural network with the structure of a microtubule. They have used an extremely simplified model of the tubulin dimers with each dimer represented simply as a qubit, a single quantum two-state system. The extension of this model to n-dimensional quantum states or n-qudits presented in this work holds considerable promise for even higher mathematical abstraction in modelling consciousness systems.
NASA Astrophysics Data System (ADS)
Gil, Antonio J.; Galindo-Zaldívar, Jesús; Sanz de Galdeano, Carlos; Borque, Maria Jesús; Sánchez-Alzola, Alberto; Martinez-Martos, Manuel; Alfaro, Pedro
2017-08-01
The Padul Fault is located in the Central Betic Cordillera, formed in the framework of the NW-SE Eurasian-African plate convergence. In the Internal Zone, large E-W to NE-SW folds of western Sierra Nevada accommodated the greatest NW-SE shortening and uplift of the cordillera. However, GPS networks reveal a present-day dominant E-W to NE-SW extensional setting at surface. The Padul Fault is the most relevant and best exposed active normal fault that accommodates most of the NE-SW extension of the Central Betics. This WSW-wards dipping fault, formed by several segments of up to 7 km maximum length, favored the uplift of the Sierra Nevada footwall away from the Padul graben hanging wall. A non-permanent GPS network installed in 1999 constrains an average horizontal extensional rate of 0.5 mm/yr in N66°E direction. The fault length suggests that a (maximum) 6 magnitude earthquake may be expected, but the absence of instrumental or historical seismic events would indicate that fault activity occurs at least partially by creep. Striae on fault surfaces evidence normal-sinistral kinematics, suggesting that the Padul Fault may have been a main transfer fault of the westernmost end of the Sierra Nevada antiform. Nevertheless, GPS results evidence: (1) shortening in the Sierra Nevada antiform is in its latest stages, and (2) the present-day fault shows normal with minor oblique dextral displacements. The recent change in Padul fault kinematics will be related to the present-day dominance of the ENE-WSW regional extension versus NNW-SSE shortening that produced the uplift and northwestwards displacement of Sierra Nevada antiform. This region illustrates the importance of heterogeneous brittle extensional tectonics in the latest uplift stages of compressional orogens, as well as the interaction of folding during the development of faults at shallow crustal levels.
Extraction of tidal channel networks from airborne scanning laser altimetry
NASA Astrophysics Data System (ADS)
Mason, David C.; Scott, Tania R.; Wang, Hai-Jing
Tidal channel networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. This paper describes a semi-automatic technique developed to extract networks from high-resolution LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low-level algorithms first extract channel fragments based mainly on image properties then a high-level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism. The algorithm may be extended to extract networks from aerial photographs as well as LiDAR data. Its performance is illustrated using LiDAR data of two study sites, the River Ems, Germany and the Venice Lagoon. For the River Ems data, the error of omission for the automatic channel extractor is 26%, partly because numerous small channels are lost because they fall below the edge threshold, though these are less than 10 cm deep and unlikely to be hydraulically significant. The error of commission is lower, at 11%. For the Venice Lagoon data, the error of omission is 14%, but the error of commission is 42%, due partly to the difficulty of interpreting channels in these natural scenes. As a benchmark, previous work has shown that this type of algorithm specifically designed for extracting tidal networks from LiDAR data is able to achieve substantially improved results compared with those obtained using standard algorithms for drainage network extraction from Digital Terrain Models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, Keith P.; Laine, Jennifer M.; Deveau, Laura M.
Hepatitis C NS3/4A protease is a prime therapeutic target that is responsible for cleaving the viral polyprotein at junctions 3-4A, 4A4B, 4B5A, and 5A5B and two host cell adaptor proteins of the innate immune response, TRIF and MAVS. In this study, NS3/4A crystal structures of both host cell cleavage sites were determined and compared to the crystal structures of viral substrates. Two distinct protease conformations were observed and correlated with substrate specificity: (i) 3-4A, 4A4B, 5A5B, and MAVS, which are processed more efficiently by the protease, form extensive electrostatic networks when in complex with the protease, and (ii) TRIF andmore » 4B5A, which contain polyproline motifs in their full-length sequences, do not form electrostatic networks in their crystal complexes. These findings provide mechanistic insights into NS3/4A substrate recognition, which may assist in a more rational approach to inhibitor design in the face of the rapid acquisition of resistance.« less
Ranjbar, Zahra; Moradian, Siamak; Rastegar, Saeed
2003-08-15
The electrodeposition behavior of blends of primary dispersions of a lower and a higher molecular weight epoxy-amine adduct has been investigated. The throwing power of the above-mentioned blends showed a voltage-dependent critical composition at which the throwing power dropped to a much lower value. This was assigned to the formation of an infinite conducting cluster, the extension of which is dependent on the rate of the electrocoagulation process at the cathode boundary. The random resistor network approach of Stauffer (RRNS) and the random resistor network approach of Miller and Abrahams (RRNMA) were applied to the experimental data with high correlations (r2=0.9314 and 0.9699). The percolating cluster formed within the film, however, gave a critical exponent of conductivity equal to 1.1028, much less than expected from a classical three-dimensional lattice (i.e., 1.5-2.0). This discrepancy was explained in terms of the changed behavior of the film resulting from the bubbles formed near the cathode and its effect on the infinite conducting cluster.
New insights into the inversion history of the West Natuna Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginger, D.C.; Pothecary, J.; Hedley, R.J.
1994-07-01
Late Eocene to mid-Oligocene transtensional rifting created a complex network of graben in the West Natuna and Malay basins. From the earliest Miocene, the grabens were inverted to form folds and wrench zones as a result of a right-lateral stress regime. The nature of the inversion is strongly controlled by the orientation of underlying rift faults with respect to the principal stress, [sigma][sub 1]. Rift basins with a strike oriented at a high angle to the principal stress form folds through reactivation of graben-bounding faults. In these rifts the synrift graben fill is inverted over the graben footwall, often alongmore » a fault with a convex upward geometry. The magnitude of inversion is closely correlated to the heave of the initial extensional faults; large extensional faults often have large inversion folds associated with them and vice versa. Within any one graben, inversion appears to commence at younger ages away from these large faults. The mechanisms of inversion fold development have been investigated using detailed interpretations of modern seismic data and a section balancing and restoration computer software package. Results of this work are presented in support of the conclusions documented in this paper. The original grabens were formed through extension of basement equivalent to [beta] = 1.05 to 1.30. In most grabens, at least some of the extension was removed by the subsequent inversion. Amounts of shortening range from 2 to 18%, equivalent to removal of between 40 and 100% of the original graben extension.« less
Zaqoot, Hossam Adel; Ansari, Abdul Khalique; Unar, Mukhtiar Ali; Khan, Shaukat Hyat
2009-01-01
Artificial Neural Networks (ANNs) are flexible tools which are being used increasingly to predict and forecast water resources variables. The human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. The presence of dissolved oxygen is essential for the survival of most organisms in the water bodies. This paper is concerned with the use of ANNs - Multilayer Perceptron (MLP) and Radial Basis Function neural networks for predicting the next fortnight's dissolved oxygen concentrations in the Mediterranean Sea water along Gaza. MLP and Radial Basis Function (RBF) neural networks are trained and developed with reference to five important oceanographic variables including water temperature, wind velocity, turbidity, pH and conductivity. These variables are considered as inputs of the network. The data sets used in this study consist of four years and collected from nine locations along Gaza coast. The network performance has been tested with different data sets and the results show satisfactory performance. Prediction results prove that neural network approach has good adaptability and extensive applicability for modelling the dissolved oxygen in the Mediterranean Sea along Gaza. We hope that the established model will help in assisting the local authorities in developing plans and policies to reduce the pollution along Gaza coastal waters to acceptable levels.
Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.
Maguire, Jack B; Boyken, Scott E; Baker, David; Kuhlman, Brian
2018-05-08
Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.
Early social networks predict survival in wild bottlenose dolphins.
Stanton, Margaret A; Mann, Janet
2012-01-01
A fundamental question concerning group-living species is what factors influence the evolution of sociality. Although several studies link adult social bonds to fitness, social patterns and relationships are often formed early in life and are also likely to have fitness consequences, particularly in species with lengthy developmental periods, extensive social learning, and early social bond-formation. In a longitudinal study of bottlenose dolphins (Tursiops sp.), calf social network structure, specifically the metric eigenvector centrality, predicted juvenile survival in males. Additionally, male calves that died post-weaning had stronger ties to juvenile males than surviving male calves, suggesting that juvenile males impose fitness costs on their younger counterparts. Our study indicates that selection is acting on social traits early in life and highlights the need to examine the costs and benefits of social bonds during formative life history stages.
Security Services Discovery by ATM Endsystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sholander, Peter; Tarman, Thomas
This contribution proposes strawman techniques for Security Service Discovery by ATM endsystems in ATM networks. Candidate techniques include ILMI extensions, ANS extensions and new ATM anycast addresses. Another option is a new protocol based on an IETF service discovery protocol, such as Service Location Protocol (SLP). Finally, this contribution provides strawman requirements for Security-Based Routing in ATM networks.
Cholinergic neurons and fibres in the rat visual cortex.
Parnavelas, J G; Kelly, W; Franke, E; Eckenstein, F
1986-06-01
Choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, was localized immunocytochemically in neurons and fibres in the rat visual cortex using a monoclonal antibody. ChAT-labelled cells were non-pyramidal neurons, primarily of the bipolar form, distributed in layers II through VI but concentrated in layers II & III. Their perikarya contained a large nucleus and a small amount of perinuclear cytoplasm. The somata and dendrites of all labelled cells received Gray's type I and type II synapses. ChAT-stained axons formed a dense and diffuse network throughout the visual cortex and particularly in layer V. Electron microscopy revealed that the great majority formed type II synaptic contacts with dendrites of various sizes, unlabelled non-pyramidal somata and, on a few occasions, with ChAT-labelled cells. However, a very small number of terminals appeared to form type I synaptic contacts. This study describes the morphological organization of the cholinergic system in the visual cortex, the function of which has been under extensive investigation.
Combining Multiple Forms Of Visual Information To Specify Contact Relations In Spatial Layout
NASA Astrophysics Data System (ADS)
Sedgwick, Hal A.
1990-03-01
An expert system, called Layout2, has been described, which models a subset of available visual information for spatial layout. The system is used to examine detailed interactions between multiple, partially redundant forms of information in an environment-centered geometrical model of an environment obeying certain rather general constraints. This paper discusses the extension of Layout2 to include generalized contact relations between surfaces. In an environment-centered model, the representation of viewer-centered distance is replaced by the representation of environmental location. This location information is propagated through the representation of the environment by a network of contact relations between contiguous surfaces. Perspective information interacts with other forms of information to specify these contact relations. The experimental study of human perception of contact relations in extended spatial layouts is also discussed. Differences between human results and Layout2 results reveal limitations in the human ability to register available information; they also point to the existence of certain forms of information not yet formalized in Layout2.
Constitutive Models for the Force-Extension Behavior of Biological Filaments
NASA Astrophysics Data System (ADS)
Palmer, J. S.; Castro, C. E.; Arslan, M.; Boyce, M. C.
Biopolymer filaments form the molecular backbone of biological structures throughout the body. The biomechanical response of single filaments yields insight into their individual behavior at the molecular level as well as their concerted networked behavior at the cellular and tissue scales. This paper focuses on modeling approaches for axial force vs. extension behavior of single biopolymer filaments within three stiffness regimes: flexible, semiflexible, and stiff. The end-to-end force-extension behaviors of flexible and semiflexible filaments arise as a result of a reduction in configurational space as the filament is straightened and are captured with entropic models including the freely jointed chain model and the worm-like chain model. As the filament is straightened and the end-to-end distance approaches the filament contour length, the contour length is directly axially extended and an internal energy contribution governs the force-extension behavior in this limiting extension regime. On the other hand, for stiff filaments in originally crimped or kinked configurations, the end-to-end force vs. extension behavior results from the unbending (straightening) of the crimped configuration as governed by an internal energy based elastica approximation which is also complemented by an axial stretching contribution once the end-to-end distance approaches the contour length of the filament. Simplified, analytical force-extension relationships are developed for the worm-like chain model for semiflexible filaments, and for the Euler elastica model for stiffer, wavy fibers. For the case of flexible molecules containing modular folded domains, the influence of force-induced unfolding on the force-extension behavior of single molecules and assemblies of multiple molecules is also presented.
Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.
Weis, P; Driesner, T; Heinrich, C A
2012-12-21
Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.
Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes
NASA Astrophysics Data System (ADS)
Weis, P.; Driesner, T.; Heinrich, C. A.
2012-12-01
Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.
Cascading failures with local load redistribution in interdependent Watts-Strogatz networks
NASA Astrophysics Data System (ADS)
Hong, Chen; Zhang, Jun; Du, Wen-Bo; Sallan, Jose Maria; Lordan, Oriol
2016-05-01
Cascading failures of loads in isolated networks have been studied extensively over the last decade. Since 2010, such research has extended to interdependent networks. In this paper, we study cascading failures with local load redistribution in interdependent Watts-Strogatz (WS) networks. The effects of rewiring probability and coupling strength on the resilience of interdependent WS networks have been extensively investigated. It has been found that, for small values of the tolerance parameter, interdependent networks are more vulnerable as rewiring probability increases. For larger values of the tolerance parameter, the robustness of interdependent networks firstly decreases and then increases as rewiring probability increases. Coupling strength has a different impact on robustness. For low values of coupling strength, the resilience of interdependent networks decreases with the increment of the coupling strength until it reaches a certain threshold value. For values of coupling strength above this threshold, the opposite effect is observed. Our results are helpful to understand and design resilient interdependent networks.
Obiekezie, A; Schmahl, G
1993-02-19
The ultrastructure of the host-parasite interface was studied in Henneguya laterocapsulata, parasitizing the skin of hybrid catfishes (Clarias gariepinus × Heterobranchus bidorsalis) in Nigeria. The plasmodia were located between malpighian cells, which are the main elements of the multilayered fish epidermis, and were bordered by a single cell membrane. The desmosomal junctions between the malpighian cells were forced apart by finger-like protrusions of the Plasmodium. These plasmodial protrusions finally ran into the host cell without disrupting of the host cell membrane and formed network-like extensions. At the margin of the plasmodium an extensive vacuolization occurred, leading to a wavy surface. Infections with H. laterocapsulata may be an adverse factor in the large-scale production of hybrid catfish fingerlings used for aquaculture in Africa. Copyright © 1993 Gustav Fischer Verlag · Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.
Torp, Steffen; Bing-Jonsson, Pia C; Hanson, Elizabeth
2013-09-01
This multi-municipal intervention study explored whether informal carers of frail older people and disabled children living at home made use of information and communication technology (ICT) to gain knowledge about caring and to form informal support networks, thereby improving their health. Seventy-nine informal carers accessed web-based information about caring and an e-based discussion forum via their personal computers. They were able to maintain contact with each other using a web camera and via normal group meetings. After the first 12 months, 17 informal carers participated in focus group interviews and completed a short questionnaire. Four staff members were also interviewed. Participant carers who had prior experiences with a similar ICT-based support network reported greater satisfaction and more extensive use of the network than did participants with no such prior experience. It seems that infrequent usage of the service may be explained by too few other carers to identify with and inappropriate recruitment procedures. Nevertheless, carers of disabled children reported that the intervention had resulted in improved services across the participant municipalities. To achieve optimal effects of an ICT-based support network due attention must be given to recruitment processes and social environment building for which care practitioners require training and support.
Phage-bacteria infection networks: From nestedness to modularity
NASA Astrophysics Data System (ADS)
Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.
2013-03-01
Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation
Centuries of artificial recharge on the southern edge of the Sierra Nevada (Granada, Spain)
NASA Astrophysics Data System (ADS)
Pulido-Bosch, A.; Sbih, Y. Ben
1995-07-01
In the Alpujarra (southern Spain), every year between the March and June, an ancestral practice continues in the form of diverting water from the rivers by way of an extensive network of irrigation channels ( acequias) to well-defined, highly permeable areas. This practice, known as careos, constitutes an ancient example of artificial recharge. The objective is to guarantee a supply of drinking water during the dry months, as well as improve the physicochemical characteristics of the water. In addition, this system helps maintain moisture in the immediate environment, and thus has a positive effect on local vegetation.
The narrow gap between norms and cooperative behaviour in a reindeer herding community
2018-01-01
Cooperation evolves on social networks and is shaped, in part, by norms: beliefs and expectations about the behaviour of others or of oneself. Networks of cooperative social partners and associated norms are vital for pastoralists, such as Saami reindeer herders in northern Norway. However, little is known quantitatively about how norms structure pastoralists' social networks or shape cooperation. Saami herders reported their social networks and participated in field experiments, allowing us to gauge the overlap between reported and emergent cooperation. We show that individuals' perceptions of reciprocal cooperation within their social networks exceeded actual reciprocity, although both occurred frequently and were concentrated within herding groups. Herders with more extensive cooperation networks received more rewards in an economic game. Although herders overestimated reciprocal helping, cooperation in this community was still extensive, suggesting that perceived norms potentially allow network structures promoting cooperation to emerge and be maintained. PMID:29515842
Recent research in network problems with applications
NASA Technical Reports Server (NTRS)
Thompson, G. L.
1980-01-01
The capabilities of network codes and their extensions are surveyed in regard to specially structured integer programming problems which are solved by using the solutions of a series of ordinary network problems.
Topology Design for Directional Range Extension Networks with Antenna Blockage
2017-03-19
introduced by pod-based antenna blockages. Using certain modeling approximations, the paper presents a quantitative analysis showing design trade-offs...parameters. Sec- tion IV develops quantitative relationships among key design elements and performance metrics. Section V considers some implications of the...Topology Design for Directional Range Extension Networks with Antenna Blockage Thomas Shake MIT Lincoln Laboratory shake@ll.mit.edu Abstract
Bonnell, B S; Larabell, C; Chandler, D E
1993-06-01
The egg jelly (EJ) coat which surrounds the unfertilized sea urchin egg undergoes extensive swelling upon contact with sea water, forming a three-dimensional network of interconnected fibers extending nearly 50 microns from the egg surface. Owing to its solubility, this coat has been difficult to visualize by light and electron microscopy. However, Lytechinus pictus EJ coats remain intact, if the fixation medium is maintained at pH 9. The addition of alcian blue during the final dehydration step of sample preparation stains the EJ for visualization of resin embedded eggs by both light and electron microscopy. Stereo pairs taken of thick sections prepared for intermediate voltage electron microscopy (IVEM) produce a three-dimensional image of the EJ network, consisting of interconnected fibers decorated along their length by globular jelly components. Using scanning electron microscopy (SEM), we have shown that before swelling, EJ exists in a tightly bound network of jelly fibers, 50-60 nm in diameter. In contrast, swollen EJ consists of a greatly extended network whose fibrous components measure 10 to 30 nm in diameter. High resolution stereo images of hydrated jelly produced by the quick-freeze/deep-etch/rotary-shadowing technique (QF/DE/RS) show nearly identical EJ networks, suggesting that dehydration does not markedly alter the structure of this extracellular matrix.
Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks
Li, Ming; Chen, Pengpeng; Gao, Shouwan
2016-01-01
Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes. PMID:27649170
Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks.
Li, Ming; Chen, Pengpeng; Gao, Shouwan
2016-09-13
Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes.
Advances in Artificial Neural Networks - Methodological Development and Application
USDA-ARS?s Scientific Manuscript database
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
2016 All Bugs Good and Bad Webinar Series - eXtension
Urban Agriculture, Texas A&M AgriLife Extension and Clemson Cooperative Extension. Series / NIFA This work is supported by the USDA National Institute of Food and Agriculture, New Technologies Internationalizing Extension Network Literacy Program Evaluation Volunteer Administration Women in Agriculture
The space physics analysis network
NASA Astrophysics Data System (ADS)
Green, James L.
1988-04-01
The Space Physics Analysis Network, or SPAN, is emerging as a viable method for solving an immediate communication problem for space and Earth scientists and has been operational for nearly 7 years. SPAN and its extension into Europe, utilizes computer-to-computer communications allowing mail, binary and text file transfer, and remote logon capability to over 1000 space science computer systems. The network has been used to successfully transfer real-time data to remote researchers for rapid data analysis but its primary function is for non-real-time applications. One of the major advantages for using SPAN is its spacecraft mission independence. Space science researchers using SPAN are located in universities, industries and government institutions all across the United States and Europe. These researchers are in such fields as magnetospheric physics, astrophysics, ionosperic physics, atmospheric physics, climatology, meteorology, oceanography, planetary physics and solar physics. SPAN users have access to space and Earth science data bases, mission planning and information systems, and computational facilities for the purposes of facilitating correlative space data exchange, data analysis and space research. For example, the National Space Science Data Center (NSSDC), which manages the network, is providing facilities on SPAN such as the Network Information Center (SPAN NIC). SPAN has interconnections with several national and international networks such as HEPNET and TEXNET forming a transparent DECnet network. The combined total number of computers now reachable over these combined networks is about 2000. In addition, SPAN supports full function capabilities over the international public packet switched networks (e.g. TELENET) and has mail gateways to ARPANET, BITNET and JANET.
Gneiting, Uwe
2016-01-01
Global policy attention to tobacco control has increased significantly since the 1990s and culminated in the first international treaty negotiated under the auspices of the World Health Organization—the Framework Convention on Tobacco Control (FCTC). Although the political process that led to the creation of the FCTC has been extensively researched, the FCTC’s progression from an aspirational treaty towards a global health governance framework with tangible policy effects within FCTC member countries has not been well-understood to date. This article analyses the role of the global health network of tobacco control advocates and scientists, which formed during the FCTC negotiations during the late 1990s, in translating countries’ commitment to the FCTC into domestic policy change. By comparing the network’s influence around two central tobacco control interventions (smoke-free environments and taxation), the study identifies several scope conditions, which have shaped the network’s effectiveness around the FCTC’s implementation: the complexity of the policy issue and the relative importance of non-health expertise, the required scope of domestic political buy-in, the role of the general public as network allies, and the strength of policy opposition. These political factors had a greater influence on the network’s success than the evidence base for the effectiveness of tobacco control interventions. The network’s variable success points to a trade-off faced by global health networks between their need to maintain internal cohesion and their ability to form alliances with actors in their social environment. PMID:26253698
Neural-Network Quantum States, String-Bond States, and Chiral Topological States
NASA Astrophysics Data System (ADS)
Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio
2018-01-01
Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.
How Are Television Networks Involved in Distance Learning?
ERIC Educational Resources Information Center
Bucher, Katherine
1996-01-01
Reviews the involvement of various television networks in distance learning, including public broadcasting stations, Cable in the Classroom, Arts and Entertainment Network, Black Entertainment Television, C-SPAN, CNN (Cable News Network), The Discovery Channel, The Learning Channel, Mind Extension University, The Weather Channel, National Teacher…
Basavappa, R.; Syed, R.; Flore, O.; Icenogle, J. P.; Filman, D. J.; Hogle, J. M.
1994-01-01
The crystal structure of the P1/Mahoney poliovirus empty capsid has been determined at 2.9 A resolution. The empty capsids differ from mature virions in that they lack the viral RNA and have yet to undergo a stabilizing maturation cleavage of VP0 to yield the mature capsid proteins VP4 and VP2. The outer surface and the bulk of the protein shell are very similar to those of the mature virion. The major differences between the 2 structures are focused in a network formed by the N-terminal extensions of the capsid proteins on the inner surface of the shell. In the empty capsids, the entire N-terminal extension of VP1, as well as portions corresponding to VP4 and the N-terminal extension of VP2, are disordered, and many stabilizing interactions that are present in the mature virion are missing. In the empty capsid, the VP0 scissile bond is located some 20 A away from the positions in the mature virion of the termini generated by VP0 cleavage. The scissile bond is located on the rim of a trefoil-shaped depression in the inner surface of the shell that is highly reminiscent of an RNA binding site in bean pod mottle virus. The structure suggests plausible (and ultimately testable) models for the initiation of encapsidation, for the RNA-dependent autocatalytic cleavage of VP0, and for the role of the cleavage in establishing the ordered N-terminal network and in generating stable virions. PMID:7849583
Origin of Magnetic Lineations on Mars
NASA Technical Reports Server (NTRS)
Grimm, Robert E.
2002-01-01
The magnetic lineations discovered by MGS (Mars Global Surveyor) have been considered to be evidence of early plate tectonics on Mars. However, the lineations approximately follow lines of latitude, i.e., small circles. This presents significant geometrical problems for plate-like spreading, particularly at high latitudes. However, the sublatitudinal orientation of the lineations is consistent with meridianal extension and perhaps limited crustal spreading due to a stress event centered near the geographic pole. We hypothesize that this event was the early formation of the crustal dichotomy through mantle-convective processes. This could have taken the form of a southern megaplume that formed the thick highlands crust or as subduction or downwelling in the north. Both would result in tensional stresses in the south that would form extensional fractures perpendicular to the CM-CF (center-of-mass/center-of-gravity) offset. The observed magnitude and distribution of magnetization indicates that crustal intrusion associated with this major mantle-convective event resulted in approximately 1000 km of extension in the Southern highlands. Subsequent spin-axis reorientation due to loss of crust in the north or gain of crust in the south brought the CM-CF offset into its present N-S alignment. A portion of the ancient valley networks observed in the southern highlands are spatially associated with crustal magnetism and are quantitatively shown to be consistent with hydrothermal discharge over crustal intrusions.
Masic, Izet; Milinovic, Katarina
2012-01-01
Most of medical journals now has it’s electronic version, available over public networks. Although there are parallel printed and electronic versions, and one other form need not to be simultaneously published. Electronic version of a journal can be published a few weeks before the printed form and must not has identical content. Electronic form of a journals may have an extension that does not contain a printed form, such as animation, 3D display, etc., or may have available fulltext, mostly in PDF or XML format, or just the contents or a summary. Access to a full text is usually not free and can be achieved only if the institution (library or host) enters into an agreement on access. Many medical journals, however, provide free access for some articles, or after a certain time (after 6 months or a year) to complete content. The search for such journals provide the network archive as High Wire Press, Free Medical Journals.com. It is necessary to allocate PubMed and PubMed Central, the first public digital archives unlimited collect journals of available medical literature, which operates in the system of the National Library of Medicine in Bethesda (USA). There are so called on- line medical journals published only in electronic form. It could be searched over on-line databases. In this paper authors shortly described about 30 data bases and short instructions how to make access and search the published papers in indexed medical journals. PMID:23322957
ERIC Educational Resources Information Center
Darr, Dietrich; Pretzsch, Jurgen
2008-01-01
Purpose: The objective of this paper is to assess the effectiveness of innovation diffusion under group-oriented and individual-oriented extension. Current theoretical notions of innovation diffusion in social networks shall be briefly reviewed, and the concepts of "search" and "innovation" vis-a-vis "transfer" and…
Low-complexity nonlinear adaptive filter based on a pipelined bilinear recurrent neural network.
Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou
2011-09-01
To reduce the computational complexity of the bilinear recurrent neural network (BLRNN), a novel low-complexity nonlinear adaptive filter with a pipelined bilinear recurrent neural network (PBLRNN) is presented in this paper. The PBLRNN, inheriting the modular architectures of the pipelined RNN proposed by Haykin and Li, comprises a number of BLRNN modules that are cascaded in a chained form. Each module is implemented by a small-scale BLRNN with internal dynamics. Since those modules of the PBLRNN can be performed simultaneously in a pipelined parallelism fashion, it would result in a significant improvement of computational efficiency. Moreover, due to nesting module, the performance of the PBLRNN can be further improved. To suit for the modular architectures, a modified adaptive amplitude real-time recurrent learning algorithm is derived on the gradient descent approach. Extensive simulations are carried out to evaluate the performance of the PBLRNN on nonlinear system identification, nonlinear channel equalization, and chaotic time series prediction. Experimental results show that the PBLRNN provides considerably better performance compared to the single BLRNN and RNN models.
Detecting communities using asymptotical surprise
NASA Astrophysics Data System (ADS)
Traag, V. A.; Aldecoa, R.; Delvenne, J.-C.
2015-08-01
Nodes in real-world networks are repeatedly observed to form dense clusters, often referred to as communities. Methods to detect these groups of nodes usually maximize an objective function, which implicitly contains the definition of a community. We here analyze a recently proposed measure called surprise, which assesses the quality of the partition of a network into communities. In its current form, the formulation of surprise is rather difficult to analyze. We here therefore develop an accurate asymptotic approximation. This allows for the development of an efficient algorithm for optimizing surprise. Incidentally, this leads to a straightforward extension of surprise to weighted graphs. Additionally, the approximation makes it possible to analyze surprise more closely and compare it to other methods, especially modularity. We show that surprise is (nearly) unaffected by the well-known resolution limit, a particular problem for modularity. However, surprise may tend to overestimate the number of communities, whereas they may be underestimated by modularity. In short, surprise works well in the limit of many small communities, whereas modularity works better in the limit of few large communities. In this sense, surprise is more discriminative than modularity and may find communities where modularity fails to discern any structure.
General and craniofacial development are complex adaptive processes influenced by diversity.
Brook, A H; O'Donnell, M Brook; Hone, A; Hart, E; Hughes, T E; Smith, R N; Townsend, G C
2014-06-01
Complex systems are present in such diverse areas as social systems, economies, ecosystems and biology and, therefore, are highly relevant to dental research, education and practice. A Complex Adaptive System in biological development is a dynamic process in which, from interacting components at a lower level, higher level phenomena and structures emerge. Diversity makes substantial contributions to the performance of complex adaptive systems. It enhances the robustness of the process, allowing multiple responses to external stimuli as well as internal changes. From diversity comes variation in outcome and the possibility of major change; outliers in the distribution enhance the tipping points. The development of the dentition is a valuable, accessible model with extensive and reliable databases for investigating the role of complex adaptive systems in craniofacial and general development. The general characteristics of such systems are seen during tooth development: self-organization; bottom-up emergence; multitasking; self-adaptation; variation; tipping points; critical phases; and robustness. Dental findings are compatible with the Random Network Model, the Threshold Model and also with the Scale Free Network Model which has a Power Law distribution. In addition, dental development shows the characteristics of Modularity and Clustering to form Hierarchical Networks. The interactions between the genes (nodes) demonstrate Small World phenomena, Subgraph Motifs and Gene Regulatory Networks. Genetic mechanisms are involved in the creation and evolution of variation during development. The genetic factors interact with epigenetic and environmental factors at the molecular level and form complex networks within the cells. From these interactions emerge the higher level tissues, tooth germs and mineralized teeth. Approaching development in this way allows investigation of why there can be variations in phenotypes from identical genotypes; the phenotype is the outcome of perturbations in the cellular systems and networks, as well as of the genotype. Understanding and applying complexity theory will bring about substantial advances not only in dental research and education but also in the organization and delivery of oral health care. © 2014 Australian Dental Association.
Real-time distributed scheduling algorithm for supporting QoS over WDM networks
NASA Astrophysics Data System (ADS)
Kam, Anthony C.; Siu, Kai-Yeung
1998-10-01
Most existing or proposed WDM networks employ circuit switching, typically with one session having exclusive use of one entire wavelength. Consequently they are not suitable for data applications involving bursty traffic patterns. The MIT AON Consortium has developed an all-optical LAN/MAN testbed which provides time-slotted WDM service and employs fast-tunable transceivers in each optical terminal. In this paper, we explore extensions of this service to achieve fine-grained statistical multiplexing with different virtual circuits time-sharing the wavelengths in a fair manner. In particular, we develop a real-time distributed protocol for best-effort traffic over this time-slotted WDM service with near-optical fairness and throughput characteristics. As an additional design feature, our protocol supports the allocation of guaranteed bandwidths to selected connections. This feature acts as a first step towards supporting integrated services and quality-of-service guarantees over WDM networks. To achieve high throughput, our approach is based on scheduling transmissions, as opposed to collision- based schemes. Our distributed protocol involves one MAN scheduler and several LAN schedulers (one per LAN) in a master-slave arrangement. Because of propagation delays and limits on control channel capacities, all schedulers are designed to work with partial, delayed traffic information. Our distributed protocol is of the `greedy' type to ensure fast execution in real-time in response to dynamic traffic changes. It employs a hybrid form of rate and credit control for resource allocation. We have performed extensive simulations, which show that our protocol allocates resources (transmitters, receivers, wavelengths) fairly with high throughput, and supports bandwidth guarantees.
Histamine-immunoreactive local neurons in the antennal lobes of the Hymenoptera
Dacks, Andrew M.; Reisenman, Carolina E.; Paulk, Angelique C.; Nighorn, Alan J.
2010-01-01
Neural networks receive input which is transformed before being sent as output to higher centers of processing. These transformations are often mediated by local interneurons (LNs) that influence output based on activity across the network. In primary olfactory centers, the LNs that mediate these lateral interactions are extremely diverse. For instance, the antennal lobes (ALs) of bumble bees possess both GABA and histamine-immunoreactive (HA-ir) LNs, and both are neurotransmitters associated with fast forms of inhibition. Although the GABAergic network of the AL has been extensively studied, we sought to examine the anatomical features of the HA-ir LNs in relation to the other cellular elements of the bumble bee AL. As a population, HA-ir LNs densely innervate the glomerular core while sparsely arborizing in the outer glomerular rind, overlapping with the terminals of olfactory receptor neurons. Individual fills of HA-ir LNs revealed heavy arborization of the outer ring of a single “principal” glomerulus and sparse arborization in the core of other glomeruli. In contrast, projection neurons, and GABA-immunoreactive LNs project throughout the glomerular volume. To provide insight as to the selective pressures that resulted in the evolution of HA-ir LNs, we determined the phylogenetic distribution of HA-ir LNs in the AL. HA-ir LNs were present in all but the most basal hymenopteran examined, although there were significant morphological differences between major groups within the Hymenoptera. The ALs of other insect taxa examined lacked HA-ir LNs, suggesting that this population of LNs arose within the Hymenoptera and underwent extensive morphological modification. PMID:20533353
FGF /FGFR Signal Induces Trachea Extension in the Drosophila Visual System
Chu, Wei-Chen; Lee, Yuan-Ming; Henry Sun, Yi
2013-01-01
The Drosophila compound eye is a large sensory organ that places a high demand on oxygen supplied by the tracheal system. Although the development and function of the Drosophila visual system has been extensively studied, the development and contribution of its tracheal system has not been systematically examined. To address this issue, we studied the tracheal patterns and developmental process in the Drosophila visual system. We found that the retinal tracheae are derived from air sacs in the head, and the ingrowth of retinal trachea begin at mid-pupal stage. The tracheal development has three stages. First, the air sacs form near the optic lobe in 42-47% of pupal development (pd). Second, in 47-52% pd, air sacs extend branches along the base of the retina following a posterior-to-anterior direction and further form the tracheal network under the fenestrated membrane (TNUFM). Third, the TNUFM extend fine branches into the retina following a proximal-to-distal direction after 60% pd. Furthermore, we found that the trachea extension in both retina and TNUFM are dependent on the FGF(Bnl)/FGFR(Btl) signaling. Our results also provided strong evidence that the photoreceptors are the source of the Bnl ligand to guide the trachea ingrowth. Our work is the first systematic study of the tracheal development in the visual system, and also the first study demonstrating the interactions of two well-studied systems: the eye and trachea. PMID:23991208
A framework on the emergence and effectiveness of global health networks
Shiffman, Jeremy; Quissell, Kathryn; Schmitz, Hans Peter; Pelletier, David L; Smith, Stephanie L; Berlan, David; Gneiting, Uwe; Van Slyke, David; Mergel, Ines; Rodriguez, Mariela; Walt, Gill
2016-01-01
Since 1990 mortality and morbidity decline has been more extensive for some conditions prevalent in low- and middle-income countries than for others. One reason may be differences in the effectiveness of global health networks, which have proliferated in recent years. Some may be more capable than others in attracting attention to a condition, in generating funding, in developing interventions and in convincing national governments to adopt policies. This article introduces a supplement on the emergence and effectiveness of global health networks. The supplement examines networks concerned with six global health problems: tuberculosis (TB), pneumonia, tobacco use, alcohol harm, maternal mortality and newborn deaths. This article presents a conceptual framework delineating factors that may shape why networks crystallize more easily surrounding some issues than others, and once formed, why some are better able than others to shape policy and public health outcomes. All supplement papers draw on this framework. The framework consists of 10 factors in three categories: (1) features of the networks and actors that comprise them, including leadership, governance arrangements, network composition and framing strategies; (2) conditions in the global policy environment, including potential allies and opponents, funding availability and global expectations concerning which issues should be prioritized; (3) and characteristics of the issue, including severity, tractability and affected groups. The article also explains the design of the project, which is grounded in comparison of networks surrounding three matched issues: TB and pneumonia, tobacco use and alcohol harm, and maternal and newborn survival. Despite similar burden and issue characteristics, there has been considerably greater policy traction for the first in each pair. The supplement articles aim to explain the role of networks in shaping these differences, and collectively represent the first comparative effort to understand the emergence and effectiveness of global health networks. PMID:26318679
What Presidents Need To Know about the Impact of Networking.
ERIC Educational Resources Information Center
Leadership Abstracts, 1993
1993-01-01
Many colleges and universities are undergoing cultural changes as a result of extensive voice, data, and video networking. Local area networks link large portions of most campuses, and national networks have evolved from specialized services for researchers in computer-related disciplines to general utilities on many campuses. Campuswide systems…
The Roland Maze Project school-based extensive air shower network
NASA Astrophysics Data System (ADS)
Feder, J.; Jȩdrzejczak, K.; Karczmarczyk, J.; Lewandowski, R.; Swarzyński, J.; Szabelska, B.; Szabelski, J.; Wibig, T.
2006-01-01
We plan to construct the large area network of extensive air shower detectors placed on the roofs of high school buildings in the city of Łódź. Detection points will be connected by INTERNET to the central server and their work will be synchronized by GPS. The main scientific goal of the project are studies of ultra high energy cosmic rays. Using existing town infrastructure (INTERNET, power supply, etc.) will significantly reduce the cost of the experiment. Engaging high school students in the research program should significantly increase their knowledge of science and modern technologies, and can be a very efficient way of science popularisation. We performed simulations of the projected network capabilities of registering Extensive Air Showers and reconstructing energies of primary particles. Results of the simulations and the current status of project realisation will be presented.
System crash as dynamics of complex networks.
Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim
2016-10-18
Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.
Ancient jades map 3,000 years of prehistoric exchange in Southeast Asia
Hung, Hsiao-Chun; Iizuka, Yoshiyuki; Bellwood, Peter; Nguyen, Kim Dung; Bellina, Bérénice; Silapanth, Praon; Dizon, Eusebio; Santiago, Rey; Datan, Ipoi; Manton, Jonathan H.
2007-01-01
We have used electron probe microanalysis to examine Southeast Asian nephrite (jade) artifacts, many archeologically excavated, dating from 3000 B.C. through the first millennium A.D. The research has revealed the existence of one of the most extensive sea-based trade networks of a single geological material in the prehistoric world. Green nephrite from a source in eastern Taiwan was used to make two very specific forms of ear pendant that were distributed, between 500 B.C. and 500 A.D., through the Philippines, East Malaysia, southern Vietnam, and peninsular Thailand, forming a 3,000-km-diameter halo around the southern and eastern coastlines of the South China Sea. Other Taiwan nephrite artifacts, especially beads and bracelets, were distributed earlier during Neolithic times throughout Taiwan and from Taiwan into the Philippines. PMID:18048347
Ancient jades map 3,000 years of prehistoric exchange in Southeast Asia.
Hung, Hsiao-Chun; Iizuka, Yoshiyuki; Bellwood, Peter; Nguyen, Kim Dung; Bellina, Bérénice; Silapanth, Praon; Dizon, Eusebio; Santiago, Rey; Datan, Ipoi; Manton, Jonathan H
2007-12-11
We have used electron probe microanalysis to examine Southeast Asian nephrite (jade) artifacts, many archeologically excavated, dating from 3000 B.C. through the first millennium A.D. The research has revealed the existence of one of the most extensive sea-based trade networks of a single geological material in the prehistoric world. Green nephrite from a source in eastern Taiwan was used to make two very specific forms of ear pendant that were distributed, between 500 B.C. and 500 A.D., through the Philippines, East Malaysia, southern Vietnam, and peninsular Thailand, forming a 3,000-km-diameter halo around the southern and eastern coastlines of the South China Sea. Other Taiwan nephrite artifacts, especially beads and bracelets, were distributed earlier during Neolithic times throughout Taiwan and from Taiwan into the Philippines.
NASA Technical Reports Server (NTRS)
Gibson, Jim; Jordan, Joe; Grant, Terry
1990-01-01
Local Area Network Extensible Simulator (LANES) computer program provides method for simulating performance of high-speed local-area-network (LAN) technology. Developed as design and analysis software tool for networking computers on board proposed Space Station. Load, network, link, and physical layers of layered network architecture all modeled. Mathematically models according to different lower-layer protocols: Fiber Distributed Data Interface (FDDI) and Star*Bus. Written in FORTRAN 77.
NASA Astrophysics Data System (ADS)
Fojtíková, Lucia; Kristeková, Miriam; Málek, Jiří; Sokos, Efthimios; Csicsay, Kristián; Zahradník, Jiří
2016-01-01
Extension of permanent seismic networks is usually governed by a number of technical, economic, logistic, and other factors. Planned upgrade of the network can be justified by theoretical assessment of the network capability in terms of reliable estimation of the key earthquake parameters (e.g., location and focal mechanisms). It could be useful not only for scientific purposes but also as a concrete proof during the process of acquisition of the funding needed for upgrade and operation of the network. Moreover, the theoretical assessment can also identify the configuration where no improvement can be achieved with additional stations, establishing a tradeoff between the improvement and additional expenses. This paper presents suggestion of a combination of suitable methods and their application to the Little Carpathians local seismic network (Slovakia, Central Europe) monitoring epicentral zone important from the point of seismic hazard. Three configurations of the network are considered: 13 stations existing before 2011, 3 stations already added in 2011, and 7 new planned stations. Theoretical errors of the relative location are estimated by a new method, specifically developed in this paper. The resolvability of focal mechanisms determined by waveform inversion is analyzed by a recent approach based on 6D moment-tensor error ellipsoids. We consider potential seismic events situated anywhere in the studied region, thus enabling "mapping" of the expected errors. Results clearly demonstrate that the network extension remarkably decreases the errors, mainly in the planned 23-station configuration. The already made three-station extension of the network in 2011 allowed for a few real data examples. Free software made available by the authors enables similar application in any other existing or planned networks.
A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks
Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin
2016-01-01
Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay. PMID:27618044
Value Encounters - Modeling and Analyzing Co-creation of Value
NASA Astrophysics Data System (ADS)
Weigand, Hans
Recent marketing and management literature has introduced the concept of co-creation of value. Current value modeling approaches such as e3-value focus on the exchange of value rather than co-creation. In this paper, an extension to e3-value is proposed in the form of a “value encounter”. Value encounters are defined as interaction spaces where a group of actors meet and derive value by each one bringing in some of its own resources. They can be analyzed from multiple strategic perspectives, including knowledge management, social network management and operational management. Value encounter modeling can be instrumental in the context of service analysis and design.
Aging Aircraft Transparencies: AN Italian Air Force Fleet Case History
NASA Astrophysics Data System (ADS)
Caucci, D.; Aiello, L.; Bagnoli, F.; Bernabei, M.
2008-08-01
Aircraft acrylic transparencies are structural components that must withstand flight and ground loads. Crazing occurrence, known as Environmental Stress Cracking (ESC), causes their substitution during aircraft maintenance operations. This form of aging is mainly a physical phenomenon due to the interaction of transparencies base material with an active liquid and leads craze formation at lower stress that would be required in air. In this paper, an extensive phenomenon of network ESC occurred on transparencies of many aircrafts operating in the same fleet was investigated. Cover application while parking was found to be the critical aspect in crazing appearance, thus acting as physical shield for condensed water and heat transferring.
Cullen, D Kacy; R Patel, Ankur; Doorish, John F; Smith, Douglas H; Pfister, Bryan J
2008-12-01
Neural-electrical interface platforms are being developed to extracellularly monitor neuronal population activity. Polyaniline-based electrically conducting polymer fibers are attractive substrates for sustained functional interfaces with neurons due to their flexibility, tailored geometry and controlled electro-conductive properties. In this study, we addressed the neurobiological considerations of utilizing small diameter (<400 microm) fibers consisting of a blend of electrically conductive polyaniline and polypropylene (PA-PP) as the backbone of encapsulated tissue-engineered neural-electrical relays. We devised new approaches to promote survival, adhesion and neurite outgrowth of primary dorsal root ganglion neurons on PA-PP fibers. We attained a greater than ten-fold increase in the density of viable neurons on fiber surfaces to approximately 700 neurons mm(-2) by manipulating surrounding surface charges to bias settling neuronal suspensions toward fibers coated with cell-adhesive ligands. This stark increase in neuronal density resulted in robust neuritic extension and network formation directly along the fibers. Additionally, we encapsulated these neuronal networks on PA-PP fibers using agarose to form a protective barrier while potentially facilitating network stability. Following encapsulation, the neuronal networks maintained integrity, high viability (>85%) and intimate adhesion to PA-PP fibers. These efforts accomplished key prerequisites for the establishment of functional electrical interfaces with neuronal populations using small diameter PA-PP fibers-specifically, improved neurocompatibility, high-density neuronal adhesion and neuritic network development directly on fiber surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordetsky, A; Dougan, A D; Nekoogar, F
The paper addresses technological and operational challenges of developing a global plug-and-play Maritime Domain Security testbed for the Global War on Terrorism mission. This joint NPS-LLNL project is based on the NPS Tactical Network Topology (TNT) composed of long-haul OFDM networks combined with self-forming wireless mesh links to air, surface, ground, and underwater unmanned vehicles. This long-haul network is combined with ultra-wideband (UWB) communications systems for wireless communications in harsh radio propagation channels. LLNL's UWB communication prototypes are designed to overcome shortcomings of the present narrowband communications systems in heavy metallic and constricted corridors inside ships. In the center ofmore » our discussion are networking solutions for the Maritime Interdiction Operation (MIO) Experiments in which geographically distributed command centers and subject matter experts collaborate with the Boarding Party in real time to facilitate situational understanding and course of action selection. The most recent experiment conducted via the testbed extension to the Alameda Island exercised several key technologies aimed at improving MIO. These technologies included UWB communications from within the ship to Boarding Party leader sending data files and pictures, advanced radiation detection equipment for search and identification, biometric equipment to record and send fingerprint files to facilitate rapid positive identification of crew members, and the latest updates of the NPS Tactical Network Topology facilitating reachback to LLNL, Biometric Fusion Center, USCG, and DTRA experts.« less
Toward a formalized account of attitudes: The Causal Attitude Network (CAN) model.
Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van den Berg, Helma; Conner, Mark; van der Maas, Han L J
2016-01-01
This article introduces the Causal Attitude Network (CAN) model, which conceptualizes attitudes as networks consisting of evaluative reactions and interactions between these reactions. Relevant evaluative reactions include beliefs, feelings, and behaviors toward the attitude object. Interactions between these reactions arise through direct causal influences (e.g., the belief that snakes are dangerous causes fear of snakes) and mechanisms that support evaluative consistency between related contents of evaluative reactions (e.g., people tend to align their belief that snakes are useful with their belief that snakes help maintain ecological balance). In the CAN model, the structure of attitude networks conforms to a small-world structure: evaluative reactions that are similar to each other form tight clusters, which are connected by a sparser set of "shortcuts" between them. We argue that the CAN model provides a realistic formalized measurement model of attitudes and therefore fills a crucial gap in the attitude literature. Furthermore, the CAN model provides testable predictions for the structure of attitudes and how they develop, remain stable, and change over time. Attitude strength is conceptualized in terms of the connectivity of attitude networks and we show that this provides a parsimonious account of the differences between strong and weak attitudes. We discuss the CAN model in relation to possible extensions, implication for the assessment of attitudes, and possibilities for further study. (c) 2015 APA, all rights reserved).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-16
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Chapter I [PS Docket No. 10-92; DA 10-1357] Effects on Broadband Communications Networks of Damage to or Failure of Network Equipment or Severe Overload AGENCY: Federal Communications Commission ACTION: Proposed rule; extension of reply comment date. SUMMARY: This...
NASA Technical Reports Server (NTRS)
Jordan, J.
1985-01-01
This document is intended for users of the Local Area Network Extensible Simulator, version I. This simulator models the performance of a Fiber Optic network under a variety of loading conditions and network characteristics. The options available to the user for defining the network conditions are described in this document. Computer hardware and software requirements are also defined.
Generalized Adaptive Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1993-01-01
Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.
González Montoro, Ayelén; Auffarth, Kathrin; Hönscher, Carina; Bohnert, Maria; Becker, Thomas; Warscheid, Bettina; Reggiori, Fulvio; van der Laan, Martin; Fröhlich, Florian; Ungermann, Christian
2018-06-04
The extensive subcellular network of membrane contact sites plays central roles in organelle biogenesis and communication, yet the precise contributions of the involved machineries remain largely enigmatic. The yeast vacuole forms a membrane contact site with mitochondria, called vacuolar and mitochondrial patch (vCLAMP). Formation of vCLAMPs involves the vacuolar Rab GTPase Ypt7 and the Ypt7-interacting Vps39 subunit of the HOPS tethering complex. Here, we uncover the general preprotein translocase of the outer membrane (TOM) subunit Tom40 as the direct binding partner of Vps39 on mitochondria. We identify Vps39 mutants defective in TOM binding, but functional for HOPS. Cells that cannot form vCLAMPs show reduced growth under stress conditions and impaired survival upon starvation. Unexpectedly, our mutant analysis revealed the existence of two functionally independent vacuole-mitochondria MCSs: one formed by the Ypt7-Vps39-Tom40 tether and a second one by Vps13-Mcp1, which is redundant with ER-mitochondrial contacts formed by ERMES. Copyright © 2018 Elsevier Inc. All rights reserved.
The mechanism of erythrocyte sedimentation. Part 1: Channeling in sedimenting blood.
Pribush, A; Meyerstein, D; Meyerstein, N
2010-01-01
Despite extensive efforts to elucidate the mechanism of erythrocyte sedimentation, the understanding of this mechanism still remains obscure. In attempt to clarify this issue, we studied the effect of hematocrit (Hct) on the complex admittance of quiescent blood measured at different axial positions of the 2 mm x 2 mm cross-section chambers. It was found that after the aggregation process is completed, the admittance reveals delayed changes caused by the formation of cell-free zones within the settling dispersed phase. The delay time (tau(d)) correlates positively with Hct and the distance between the axial position where measurements were performed and the bottom and is unaffected by the gravitational load. These findings and literature reports for colloidal gels suggest that erythrocytes in aggregating media form a network followed by the formation of plasma channels within it. The cell-free zones form initially near the bottom and then propagate toward the top until they reach the plasma/blood interface. These channels increase the permeability of a network and, as a result, accelerate the sedimentation velocity. The energy of the flow field in channels is sufficiently strong to erode their walls. The upward movement of network fragments in channels is manifested by erratic fluctuations of the conductivity. The main conclusion, which may be drawn from the results of this study, is that the phase separation of blood is associated with the formation of plasma channels within the sedimenting dispersed phase.
Horiguchi, Kotaro; Kouki, Tom; Fujiwara, Ken; Tsukada, Takehiro; Ly, Floren; Kikuchi, Motoshi; Yashiro, Takashi
2012-08-01
Folliculostellate (FS) cells in the anterior pituitary gland appear to have multifunctional properties. FS cells connect to each other at gap junctions and thereby form a histological and functional network. We have performed a series of studies on network formation in FS cells and recently reported that FS cells markedly prolong their cytoplasmic processes and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In this study, we investigated the mechanism of this extension of FS cell cytoplasmic processes under the influence of laminin and found that laminin promoted stress fiber formation within FS cells. Next, we noted that formation of stress fibers in FS cells was mediated by syndecan-4, a transmembrane proteoglycan that binds ECM and soluble factors via their extracellular glycosaminoglycan chain. We then observed that expressions of syndecan-4 and α-actinin (a microfilament bundling protein that cross-links actin stress fibers in FS cells) were upregulated by laminin. Using specific siRNA of syndecan-4, actin polymerization of FS cells was inhibited. Our findings suggest that FS cells received a signal from laminin-syndecan-4 interaction, which resulted in morphological changes, and that the formation of a morphological and functional network in FS cells was transduced by a syndecan-4-dependent mechanism in the presence of ECM.
van Dyk, Dewald; Pretorius, Isak S.; Bauer, Florian F.
2005-01-01
The invasive and filamentous growth forms of Saccharomyces cerevisiae are adaptations to specific environmental conditions, under particular conditions of limited nutrient availability. Both growth forms are dependent on the expression of the FLO11 gene, which encodes a cell-wall-associated glycoprotein involved in cellular adhesion. A complex regulatory network consisting of signaling pathways and transcription factors has been associated with the regulation of FLO11. Mss11p has been identified as a transcriptional activator of this gene, and here we present an extensive genetic analysis to identify functional relationships between Mss11p and other FLO11 regulators. The data show that Mss11p is absolutely required for the activation of FLO11 by most proteins that have previously been shown to affect FLO11 expression, including the signaling proteins Ras2p, Kss1p, and Tpk2p, the activators Tec1p, Flo8p, and Phd1p, and the repressors Nrg1p, Nrg2p, Sok2p, and Sfl1p. The genetic evidence furthermore suggests that Mss11p activity is not dependent on the presence of any of the above-mentioned factors and that the protein also regulates other genes involved in cellular adhesion phenotypes. Taken together, the data strongly suggest a central role for Mss11p in the regulatory network controlling FLO11 expression, invasive growth, and pseudohyphal differentiation. PMID:15466424
Extensive video-game experience alters cortical networks for complex visuomotor transformations.
Granek, Joshua A; Gorbet, Diana J; Sergio, Lauren E
2010-10-01
Using event-related functional magnetic resonance imaging (fMRI), we examined the effect of video-game experience on the neural control of increasingly complex visuomotor tasks. Previously, skilled individuals have demonstrated the use of a more efficient movement control brain network, including the prefrontal, premotor, primary sensorimotor and parietal cortices. Our results extend and generalize this finding by documenting additional prefrontal cortex activity in experienced video gamers planning for complex eye-hand coordination tasks that are distinct from actual video-game play. These changes in activation between non-gamers and extensive gamers are putatively related to the increased online control and spatial attention required for complex visually guided reaching. These data suggest that the basic cortical network for processing complex visually guided reaching is altered by extensive video-game play. Crown Copyright © 2009. Published by Elsevier Srl. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Kunhao
The discovery of the dramatic in vitro antimalarial activity of 2-iodo-L-histidine and 2-fluoro-L-histidine, as well as their in vivo limitations, has prompted a systematic search for novel 2-substituted imidazoles and bioimidazoles as agents against human malaria. Previous research has shown that the regioselective alkyl free radical substitution on imidazoles and bioimidazoles could serve as a simple and efficient route to a wide variety of 2-alkylimidazoles. In this research, this methodology was successfully extended to include alkyl radicals substituted with various functional groups such as amide or ester. While this novel methodology should be of some synthetic utility when tertiary radicals are used, poorer yields are usually encountered in the cases of primary radicals. In the second part of this dissertation, a series of novel ligands containing multiple ortho-bis(organothio) groups were synthesized and their coordination and network forming properties were studied in the context of crystalline organic-inorganic hybrid extended networks. For the syntheses of HRTTs [2,3,6,7,10,11-hexakis(alkylthio)triphenylenes], a simpler, safer and higher yielding one-pot process was developed. Quenching the hexa-anions (formed when sodium methylthiolate was refluxed with hexabromotriphenylene) with alkyl halides or acid chlorides afforded HRTTs. This newly developed process was also successfully expanded to the pyrene system. In the syntheses of unsymmetrically substituted triphenlyenes, it was shown for the first time that the oxidative cyclization process is applicable to thioether containing systems, pointing to a novel strategy for the preparation of this type of unsymmetrically substituted triphenlyenes. Treating these novel ligands with various metal salts [i.e. bismuth(III) chloride and bismuth(III) bromide] under carefully controlled conditions resulted in a series of air-stable semiconductive coordination networks. Their single crystal structures were determined by X-ray diffraction and properties such as semiconductivity and solution processability, as well as the structure-property relationship, were also studied. As a reasonable extension of this research, two phenylacetylene-based thioether containing ligands L1 and L2, were prepared. Similar to the triphenylene-based ligands, they also formed semiconductive extended networks with bismuth(III) bromide. The preparation of HArTTs [2,3,6,7,10,11-hexakis-(arylthio)triphenlyenes] and a series of crystalline extended networks based on the coordination of these ligands and various silver salts are reported in Chapter 5.
Genes uniquely expressed in human growth plate chondrocytes uncover a distinct regulatory network.
Li, Bing; Balasubramanian, Karthika; Krakow, Deborah; Cohn, Daniel H
2017-12-20
Chondrogenesis is the earliest stage of skeletal development and is a highly dynamic process, integrating the activities and functions of transcription factors, cell signaling molecules and extracellular matrix proteins. The molecular mechanisms underlying chondrogenesis have been extensively studied and multiple key regulators of this process have been identified. However, a genome-wide overview of the gene regulatory network in chondrogenesis has not been achieved. In this study, employing RNA sequencing, we identified 332 protein coding genes and 34 long non-coding RNA (lncRNA) genes that are highly selectively expressed in human fetal growth plate chondrocytes. Among the protein coding genes, 32 genes were associated with 62 distinct human skeletal disorders and 153 genes were associated with skeletal defects in knockout mice, confirming their essential roles in skeletal formation. These gene products formed a comprehensive physical interaction network and participated in multiple cellular processes regulating skeletal development. The data also revealed 34 transcription factors and 11,334 distal enhancers that were uniquely active in chondrocytes, functioning as transcriptional regulators for the cartilage-selective genes. Our findings revealed a complex gene regulatory network controlling skeletal development whereby transcription factors, enhancers and lncRNAs participate in chondrogenesis by transcriptional regulation of key genes. Additionally, the cartilage-selective genes represent candidate genes for unsolved human skeletal disorders.
Li, Peng; Huang, Chuanhe; Liu, Qin
2014-01-01
In vehicular ad hoc networks, roadside units (RSUs) placement has been proposed to improve the the overall network performance in many ITS applications. This paper addresses the budget constrained and delay-bounded placement problem (BCDP) for roadside units in vehicular ad hoc networks. There are two types of RSUs: cable connected RSU (c-RSU) and wireless RSU (w-RSU). c-RSUs are interconnected through wired lines, and they form the backbone of VANETs, while w-RSUs connect to other RSUs through wireless communication and serve as an economical extension of the coverage of c-RSUs. The delay-bounded coverage range and deployment cost of these two cases are totally different. We are given a budget constraint and a delay bound, the problem is how to find the optimal candidate sites with the maximal delay-bounded coverage to place RSUs such that a message from any c-RSU in the region can be disseminated to the more vehicles within the given budget constraint and delay bound. We first prove that the BCDP problem is NP-hard. Then we propose several algorithms to solve the BCDP problem. Simulation results show the heuristic algorithms can significantly improve the coverage range and reduce the total deployment cost, compared with other heuristic methods. PMID:25436656
Self-healing and thermoreversible rubber from supramolecular assembly.
Cordier, Philippe; Tournilhac, François; Soulié-Ziakovic, Corinne; Leibler, Ludwik
2008-02-21
Rubbers exhibit enormous extensibility up to several hundred per cent, compared with a few per cent for ordinary solids, and have the ability to recover their original shape and dimensions on release of stress. Rubber elasticity is a property of macromolecules that are either covalently cross-linked or connected in a network by physical associations such as small glassy or crystalline domains, ionic aggregates or multiple hydrogen bonds. Covalent cross-links or strong physical associations prevent flow and creep. Here we design and synthesize molecules that associate together to form both chains and cross-links via hydrogen bonds. The system shows recoverable extensibility up to several hundred per cent and little creep under load. In striking contrast to conventional cross-linked or thermoreversible rubbers made of macromolecules, these systems, when broken or cut, can be simply repaired by bringing together fractured surfaces to self-heal at room temperature. Repaired samples recuperate their enormous extensibility. The process of breaking and healing can be repeated many times. These materials can be easily processed, re-used and recycled. Their unique self-repairing properties, the simplicity of their synthesis, their availability from renewable resources and the low cost of raw ingredients (fatty acids and urea) bode well for future applications.
The collateral network concept: a reassessment of the anatomy of spinal cord perfusion.
Etz, Christian D; Kari, Fabian A; Mueller, Christoph S; Silovitz, Daniel; Brenner, Robert M; Lin, Hung-Mo; Griepp, Randall B
2011-04-01
Prevention of paraplegia after repair of thoracoabdominal aortic aneurysm requires understanding the anatomy and physiology of the spinal cord blood supply. Recent laboratory studies and clinical observations suggest that a robust collateral network must exist to explain preservation of spinal cord perfusion when segmental vessels are interrupted. An anatomic study was undertaken. Twelve juvenile Yorkshire pigs underwent aortic cannulation and infusion of a low-viscosity acrylic resin at physiologic pressures. After curing of the resin and digestion of all organic tissue, the anatomy of the blood supply to the spinal cord was studied grossly and with light and electron microscopy. All vascular structures at least 8 μm in diameter were preserved. Thoracic and lumbar segmental arteries give rise not only to the anterior spinal artery but to an extensive paraspinous network feeding the erector spinae, iliopsoas, and associated muscles. The anterior spinal artery, mean diameter 134 ± 20 μm, is connected at multiple points to repetitive circular epidural arteries with mean diameters of 150 ± 26 μm. The capacity of the paraspinous muscular network is 25-fold the capacity of the circular epidural arterial network and anterior spinal artery combined. Extensive arterial collateralization is apparent between the intraspinal and paraspinous networks, and within each network. Only 75% of all segmental arteries provide direct anterior spinal artery-supplying branches. The anterior spinal artery is only one component of an extensive paraspinous and intraspinal collateral vascular network. This network provides an anatomic explanation of the physiological resiliency of spinal cord perfusion when segmental arteries are sacrificed during thoracoabdominal aortic aneurysm repair. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Reconstructing the world trade multiplex: The role of intensive and extensive biases
NASA Astrophysics Data System (ADS)
Mastrandrea, Rossana; Squartini, Tiziano; Fagiolo, Giorgio; Garlaschelli, Diego
2014-12-01
In economic and financial networks, the strength of each node has always an important economic meaning, such as the size of supply and demand, import and export, or financial exposure. Constructing null models of networks matching the observed strengths of all nodes is crucial in order to either detect interesting deviations of an empirical network from economically meaningful benchmarks or reconstruct the most likely structure of an economic network when the latter is unknown. However, several studies have proved that real economic networks and multiplexes topologically differ from configurations inferred only from node strengths. Here we provide a detailed analysis of the world trade multiplex by comparing it to an enhanced null model that simultaneously reproduces the strength and the degree of each node. We study several temporal snapshots and almost 100 layers (commodity classes) of the multiplex and find that the observed properties are systematically well reproduced by our model. Our formalism allows us to introduce the (static) concept of extensive and intensive bias, defined as a measurable tendency of the network to prefer either the formation of extra links or the reinforcement of link weights, with respect to a reference case where only strengths are enforced. Our findings complement the existing economic literature on (dynamic) intensive and extensive trade margins. More generally, they show that real-world multiplexes can be strongly shaped by layer-specific local constraints.
The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing
Iranzo, Jaime
2016-01-01
ABSTRACT Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. PMID:27486193
Social Sensor Analytics: Making Sense of Network Models in Social Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowling, Chase P.; Harrison, Joshua J.; Sathanur, Arun V.
Social networks can be thought of as noisy sensor networks mapping real world information to the web. Owing to the extensive body of literature in sensor network analysis, this work sought to apply several novel and traditional methods in sensor network analysis for the purposes of efficiently interrogating social media data streams from raw data. We carefully revisit our definition of a social media signal from previous work both in terms of time-varying features within the data and the networked nature of the medium. Further, we detail our analysis of global patterns in Twitter over the months of November 2013more » and June 2014, detect and categorize events, and illustrate how these analyses can be used to inform graph-based models of Twitter, namely using a recent network influence model called PhySense: similar to PageRank but tuned to behavioral analysis by leveraging a sociologically inspired probabilistic model. We ultimately identify forms of information dissemination via analysis of time series and dynamic graph spectra and corroborate these findings through manual investigation of the data as a requisite step in modeling the diffusion process with PhySense. We hope to sufficiently characterize global behavior in a medium such as Twitter as a means of learning global model parameters one may use to predict or simulate behavior on a large scale. We have made our time series and dynamic graph analytical code available via a GitHub repository https://github.com/cpatdowling/salsa and our data are available upon request.« less
Crosstalk and the evolvability of intracellular communication.
Rowland, Michael A; Greenbaum, Joseph M; Deeds, Eric J
2017-07-10
Metazoan signalling networks are complex, with extensive crosstalk between pathways. It is unclear what pressures drove the evolution of this architecture. We explore the hypothesis that crosstalk allows different cell types, each expressing a specific subset of signalling proteins, to activate different outputs when faced with the same inputs, responding differently to the same environment. We find that the pressure to generate diversity leads to the evolution of networks with extensive crosstalk. Using available data, we find that human tissues exhibit higher levels of diversity between cell types than networks with random expression patterns or networks with no crosstalk. We also find that crosstalk and differential expression can influence drug activity: no protein has the same impact on two tissues when inhibited. In addition to providing a possible explanation for the evolution of crosstalk, our work indicates that consideration of cellular context will likely be crucial for targeting signalling networks.
Α Deformation study in Central Greece using 20 years of GPS data
NASA Astrophysics Data System (ADS)
Marinou, Aggeliki; Papazissi, Kaliopi; Mitsakaki, Christiana; Paradissis, Demitris; Papanikolaou, Xanthos; Anastasiou, Demitris
2015-04-01
Central Greece is a region recognized for its intense tectonic activity with the main characterics being the extension in the North-South direction. This extension is revealed mainly in the form of large parallel grabens. Among these rifts is the Corinth Gulf, which is the most active tectonically, the basin between Parnassos and Kallidromo Mt, the Locris basin and the graben of North Evoikos Gulf, while in the south lays the Thebes basin and the South Evoikos Gulf. Since the late eighties the Laboratory of Higher Geodesy and the Dionysos Satellite Observatory of the National Technical University of Athens, in cooperation with several National and International Universities and Institutions have established, in various Greek areas, of high seismic activity, geodetic networks in order to monitor tectonic displacements. These geodetic networks were observed periodically using Satellite Geodesy techniques and in recent years almost entirely GPS. In this study all the available GPS data, referring to the broader area of Evia, Attiki and Viotia, for the years 1989 to 2008, are analyzed. The displacement field and its temporal changes for the area between the two major geological features, the Corinth Gulf and the Evoikos Gulf, are investigated. Αll the kinematic models that were used do not confirm that the area of study is deforming homogeneously, while an indication of a discontinuity has been detected.
Stefanovic, Ryan; Ludwig, Michael; Webber, Grant B; Atkin, Rob; Page, Alister J
2017-01-25
Deep eutectic solvents (DESs) are a mixture of a salt and a molecular hydrogen bond donor, which form a eutectic liquid with a depressed melting point. Quantum mechanical molecular dynamics (QM/MD) simulations have been used to probe the 1 : 2 choline chloride-urea (ChCl : U), choline chloride-ethylene glycol (ChCl : EG) and choline chloride-glycerol (ChCl : Gly) DESs. DES nanostructure and interactions between the ions is used to rationalise differences in DES eutectic point temperatures and viscosity. Simulations show that the structure of the bulk hydrogen bond donor is largely preserved for hydroxyl based hydrogen bond donors (ChCl:Gly and ChCl:EG), resulting in a smaller melting point depression. By contrast, ChCl:U exhibits a well-established hydrogen bond network between the salt and hydrogen bond donor, leading to a larger melting point depression. This extensive hydrogen bond network in ChCl:U also leads to substantially higher viscosity, compared to ChCl:EG and ChCl:Gly. Of the two hydroxyl based DESs, ChCl:Gly also exhibits a higher viscosity than ChCl:EG. This is attributed to the over-saturation of hydrogen bond donor groups in the ChCl:Gly bulk, which leads to more extensive hydrogen bond donor self-interaction and hence higher cohesive forces within the bulk liquid.
Sensitivity of directed networks to the addition and pruning of edges and vertices
NASA Astrophysics Data System (ADS)
Goltsev, A. V.; Timár, G.; Mendes, J. F. F.
2017-08-01
Directed networks have various topologically different extensive components, in contrast to a single giant component in undirected networks. We study the sensitivity (response) of the sizes of these extensive components in directed complex networks to the addition and pruning of edges and vertices. We introduce the susceptibility, which quantifies this sensitivity. We show that topologically different parts of a directed network have different sensitivity to the addition and pruning of edges and vertices and, therefore, they are characterized by different susceptibilities. These susceptibilities diverge at the critical point of the directed percolation transition, signaling the appearance (or disappearance) of the giant strongly connected component in the infinite size limit. We demonstrate this behavior in randomly damaged real and synthetic directed complex networks, such as the World Wide Web, Twitter, the Caenorhabditis elegans neural network, directed Erdős-Rényi graphs, and others. We reveal a nonmonotonic dependence of the sensitivity to random pruning of edges or vertices in the case of C. elegans and Twitter that manifests specific structural peculiarities of these networks. We propose the measurements of the susceptibilities during the addition or pruning of edges and vertices as a new method for studying structural peculiarities of directed networks.
Effective Use of Facebook for Extension Professionals
ERIC Educational Resources Information Center
Mains, Mark; Jenkins-Howard, Brooke; Stephenson, Laura
2013-01-01
As the use of social media increases, Extension is challenged to stay relevant with cliental by using digital tools. This article illustrates how Facebook can be part of Extension's repertoire of methods for communication, program implementation, education, and marketing. This allows professionals to build social networking capacity with…
Wu, Shao-Min; Liu, Hsuan; Huang, Po-Jung; Chang, Ian Yi-Feng; Lee, Chi-Ching; Yang, Chia-Yu; Tsai, Wen-Sy; Tan, Bertrand Chin-Ming
2018-01-01
Despite their lack of protein-coding potential, long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have emerged as key determinants in gene regulation, acting to fine-tune transcriptional and signaling output. These noncoding RNA transcripts are known to affect expression of messenger RNAs (mRNAs) via epigenetic and post-transcriptional regulation. Given their widespread target spectrum, as well as extensive modes of action, a complete understanding of their biological relevance will depend on integrative analyses of systems data at various levels. While a handful of publicly available databases have been reported, existing tools do not fully capture, from a network perspective, the functional implications of lncRNAs or circRNAs of interest. Through an integrated and streamlined design, circlncRNAnet aims to broaden the understanding of ncRNA candidates by testing in silico several hypotheses of ncRNA-based functions, on the basis of large-scale RNA-seq data. This web server is implemented with several features that represent advances in the bioinformatics of ncRNAs: (1) a flexible framework that accepts and processes user-defined next-generation sequencing-based expression data; (2) multiple analytic modules that assign and productively assess the regulatory networks of user-selected ncRNAs by cross-referencing extensively curated databases; (3) an all-purpose, information-rich workflow design that is tailored to all types of ncRNAs. Outputs on expression profiles, co-expression networks and pathways, and molecular interactomes, are dynamically and interactively displayed according to user-defined criteria. In short, users may apply circlncRNAnet to obtain, in real time, multiple lines of functionally relevant information on circRNAs/lncRNAs of their interest. In summary, circlncRNAnet provides a "one-stop" resource for in-depth analyses of ncRNA biology. circlncRNAnet is freely available at http://app.cgu.edu.tw/circlnc/. © The Authors 2017. Published by Oxford University Press.
Cooperation-Induced Topological Complexity: A Promising Road to Fault Tolerance and Hebbian Learning
2012-03-16
topological complexity a way to compare the efficiency of a scale-free network to the random network of Erdos and Renyi . All this is extensively dis- cussed in...an excellent review paper byArenas et al. (2008) showing very interesting comparisons of Erdos– Renyi networks and scale- free networks as a function
ERIC Educational Resources Information Center
Chen, Ching-chih; Hernon, Peter
This two-part publication reports on a study of consumer information delivery by library and non-library networks, which involved an extensive literature review, a telephone survey of 620 library networks, the development of an assessment model for the effectiveness of network information delivery, the development of an in-depth guide for…
On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †
Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong
2016-01-01
The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379
Early life stress is associated with default system integrity and emotionality during infancy.
Graham, Alice M; Pfeifer, Jennifer H; Fisher, Philip A; Carpenter, Samuel; Fair, Damien A
2015-11-01
Extensive animal research has demonstrated the vulnerability of the brain to early life stress (ELS) with consequences for emotional development and mental health. However, the influence of moderate and common forms of stress on early human brain development is less well-understood and precisely characterized. To date, most work has focused on severe forms of stress, and/or on brain functioning years after stress exposure. In this report we focused on conflict between parents (interparental conflict), a common and relatively moderate form of ELS that is highly relevant for children's mental health outcomes. We used resting state functional connectivity MRI to examine the coordinated functioning of the infant brain (N = 23; 6-12-months-of-age) in the context of interparental conflict. We focused on the default mode network (DMN) due to its well-characterized developmental trajectory and implications for mental health. We further examined DMN strength as a mediator between conflict and infants' negative emotionality. Higher interparental conflict since birth was associated with infants showing stronger connectivity between two core DMN regions, the posterior cingulate cortex (PCC) and the anterior medial prefrontal cortex (aMPFC). PCC to amygdala connectivity was also increased. Stronger PCC-aMPFC connectivity mediated between higher conflict and higher negative infant emotionality. The developing DMN may be an important marker for effects of ELS with relevance for emotional development and subsequent mental health. Increasing understanding of the associations between common forms of family stress and emerging functional brain networks has potential to inform intervention efforts to improve mental health outcomes. © 2015 Association for Child and Adolescent Mental Health.
Early life stress is associated with default system integrity and emotionality during infancy
Graham, Alice M.; Pfeifer, Jennifer H.; Fisher, Philip A.; Carpenter, Samuel; Fair, Damien A.
2015-01-01
Background Extensive animal research has demonstrated the vulnerability of the brain to early life stress (ELS) with consequences for emotional development and mental health. However, the influence of moderate and common forms of stress on early human brain development is less well understood and precisely characterized. To date, most work has focused on severe forms of stress, and/or on brain functioning years after stress exposure. Methods In this report we focused on conflict between parents (interparental conflict), a common and relatively moderate form of ELS that is highly relevant for children's mental health outcomes. We used resting state functional connectivity MRI to examine the coordinated functioning of the infant brain (N=23; 6–12-months-of-age) in the context of interparental conflict. We focused on the default mode network (DMN) due to its well characterized developmental trajectory and implications for mental health. We further examined DMN strength as a mediator between conflict and infants’ negative emotionality. Results Higher interparental conflict since birth was associated with infants showing stronger connectivity between two core DMN regions, the posterior cingulate cortex (PCC) and the anterior medial prefrontal cortex (aMPFC). PCC to amygdala connectivity was also increased. Stronger PCC-aMPFC connectivity mediated between higher conflict and higher negative infant emotionality. Conclusions The developing DMN may be an important marker for effects of ELS with relevance for emotional development and subsequent mental health. Increasing understanding of the associations between common forms of family stress and emerging functional brain networks has potential to inform intervention efforts to improve mental health outcomes. PMID:25809052
Data Verification Tools for Minimizing Management Costs of Dense Air-Quality Monitoring Networks.
Miskell, Georgia; Salmond, Jennifer; Alavi-Shoshtari, Maryam; Bart, Mark; Ainslie, Bruce; Grange, Stuart; McKendry, Ian G; Henshaw, Geoff S; Williams, David E
2016-01-19
Aiming at minimizing the costs, both of capital expenditure and maintenance, of an extensive air-quality measurement network, we present simple statistical methods that do not require extensive training data sets for automated real-time verification of the reliability of data delivered by a spatially dense hybrid network of both low-cost and reference ozone measurement instruments. Ozone is a pollutant that has a relatively smooth spatial spread over a large scale although there can be significant small-scale variations. We take advantage of these characteristics and demonstrate detection of instrument calibration drift within a few days using a rolling 72 h comparison of hourly averaged data from the test instrument with that from suitably defined proxies. We define the required characteristics of the proxy measurements by working from a definition of the network purpose and specification, in this case reliable determination of the proportion of hourly averaged ozone measurements that are above a threshold in any given day, and detection of calibration drift of greater than ±30% in slope or ±5 parts-per-billion in offset. By analyzing results of a study of an extensive deployment of low-cost instruments in the Lower Fraser Valley, we demonstrate that proxies can be established using land-use criteria and that simple statistical comparisons can identify low-cost instruments that are not stable and therefore need replacing. We propose that a minimal set of compliant reference instruments can be used to verify the reliability of data from a much more extensive network of low-cost devices.
Resource Aware Intelligent Network Services (RAINS) Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, Tom; Yang, Xi
The Resource Aware Intelligent Network Services (RAINS) project conducted research and developed technologies in the area of cyber infrastructure resource modeling and computation. The goal of this work was to provide a foundation to enable intelligent, software defined services which spanned the network AND the resources which connect to the network. A Multi-Resource Service Plane (MRSP) was defined, which allows resource owners/managers to locate and place themselves from a topology and service availability perspective within the dynamic networked cyberinfrastructure ecosystem. The MRSP enables the presentation of integrated topology views and computation results which can include resources across the spectrum ofmore » compute, storage, and networks. The RAINS project developed MSRP includes the following key components: i) Multi-Resource Service (MRS) Ontology/Multi-Resource Markup Language (MRML), ii) Resource Computation Engine (RCE), iii) Modular Driver Framework (to allow integration of a variety of external resources). The MRS/MRML is a general and extensible modeling framework that allows for resource owners to model, or describe, a wide variety of resource types. All resources are described using three categories of elements: Resources, Services, and Relationships between the elements. This modeling framework defines a common method for the transformation of cyber infrastructure resources into data in the form of MRML models. In order to realize this infrastructure datification, the RAINS project developed a model based computation system, i.e. “RAINS Computation Engine (RCE)”. The RCE has the ability to ingest, process, integrate, and compute based on automatically generated MRML models. The RCE interacts with the resources thru system drivers which are specific to the type of external network or resource controller. The RAINS project developed a modular and pluggable driver system which facilities a variety of resource controllers to automatically generate, maintain, and distribute MRML based resource descriptions. Once all of the resource topologies are absorbed by the RCE, a connected graph of the full distributed system topology is constructed, which forms the basis for computation and workflow processing. The RCE includes a Modular Computation Element (MCE) framework which allows for tailoring of the computation process to the specific set of resources under control, and the services desired. The input and output of an MCE are both model data based on MRS/MRML ontology and schema. Some of the RAINS project accomplishments include: Development of general and extensible multi-resource modeling framework; Design of a Resource Computation Engine (RCE) system which includes the following key capabilities; Absorb a variety of multi-resource model types and build integrated models; Novel architecture which uses model based communications across the full stack for all Flexible provision of abstract or intent based user facing interfaces; Workflow processing based on model descriptions; Release of the RCE as an open source software; Deployment of RCE in the University of Maryland/Mid-Atlantic Crossroad ScienceDMZ in prototype mode with a plan under way to transition to production; Deployment at the Argonne National Laboratory DTN Facility in prototype mode; Selection of RCE by the DOE SENSE (SDN for End-to-end Networked Science at the Exascale) project as the basis for their orchestration service.« less
Gerits, Lien R; Pareyt, Bram; Masure, Hanne G; Delcour, Jan A
2015-04-01
Lipopan F and Lecitase Ultra lipases were used in straight dough bread making to study how wheat lipids affect bread loaf volume (LV) and crumb structure setting. Lipase effects on LV were dose and dough piece weight dependent. The bread quality improving mechanisms exerted by endogenous lipids were studied in terms of gluten network strengthening, which indirectly stabilizes gas cells, and in terms of direct interfacial gas cell stabilization. Unlike diacetyl tartaric esters of mono- and diacylglycerols (DATEM, used as control), lipase use did not impact dough extensibility. The effect on dough extensibility was therefore related to its lipid composition at the start of mixing. Both lipases and DATEM strongly increase the levels of polar lipids in dough liquor and their availability for and potential accumulation at gas cell interfaces. Lipases form lysolipids that emulsify other lipids. We speculate that DATEM competes with (endogenous) polar lipids for interacting with gluten proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.
Molecular regulation of plant cell wall extensibility
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1998-01-01
Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... DEPARTMENT OF JUSTICE Agency Information Collection Activities [OMB Number 1103-0093] Extension of a Currently Approved Collection; Comments Requested; COPS Extension Request Form ACTION: 30-Day Notice of Information Collection Under Review. The Department of Justice (DOJ) Office of Community...
Health consumer groups in the UK: a new social movement?
Allsop, Judith; Jones, Kathryn; Baggott, Rob
2004-09-01
This paper argues that a health consumer movement has developed in the United Kingdom over the last decade. Drawing on two empirical studies of groups that promote and/or represent the interests of patients, users and carers, it argues that groups formed by people with personal experience of a condition are now more widespread. Feelings of pain and loss can lead to the identification of others in a similar position, and to the formation of groups and action in the political sphere. Research shows that groups share a common discourse and follow similar participative practices, and there is extensive networking. Informal and formal alliances have formed to pursue joint action and indicate a wider health consumer movement. As governments have also increased the opportunities for participation, this has the potential for patients and carers to shape services in ways more responsive to their needs.
NASA Astrophysics Data System (ADS)
Zierholz, C.; Prosser, I. P.; Fogarty, P. J.; Rustomji, P.
2001-06-01
Evidence is presented here of recent and extensive infilling of the incised channel network of the Jugiong Creek catchment, SE Australia. The present channel network resulted from widespread stream and gully incision in the period between 1880 and 1920. Our survey shows that gully floors have been colonised extensively by emergent macrophyte vegetation since before 1944, forming continuous, dense, in-stream wetlands, which now cover 25% of the channel network in the 2175 km 2 catchment and have so far trapped almost 2,000,000 t of nutrient-enriched, fine sediments. This mass of sediments represents the equivalent of 4.7 years of annual sediment production across the catchment and in some tributaries, more than 20 years of annual yield is stored within in-stream wetlands. Previous work on the late Quaternary stratigraphy of the region has shown that there were repeated phases of channel incision in the past following which the channels quickly stabilised by natural means and then filled with fine-grained sediment to the point of channel extinction, creating unchannelled swampy valley floors. The current formation and spread of in-stream wetlands is interpreted to be the onset of the next infill phase but it is not known whether present conditions will allow complete channel filling and reformation of the pre-existing swampy valley floors. Nevertheless, further spread of in-stream wetlands is likely to increase the sediment trapping capacity and further reduce the discharge of sediments and nutrients into the Murrumbidgee River. The in-stream wetlands may provide a significant capacity to buffer erosion from gullied catchments of considerable size (up to 300 km 2) as an adjunct to current riparian management options. They may also assist the recovery of sediment-impacted channels downstream.
76 FR 255 - Amendments To Form ADV; Extension of Compliance Date
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
...-00] RIN 3235-AI17 Amendments To Form ADV; Extension of Compliance Date AGENCY: Securities and Exchange Commission. ACTION: Final rule; extension of compliance date. SUMMARY: The Securities and Exchange Commission is extending the compliance date for Part 2B of Form ADV, the brochure supplement, and for certain...
Confinement properties of 2D porous molecular networks on metal surfaces
NASA Astrophysics Data System (ADS)
Müller, Kathrin; Enache, Mihaela; Stöhr, Meike
2016-04-01
Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.
Confinement properties of 2D porous molecular networks on metal surfaces.
Müller, Kathrin; Enache, Mihaela; Stöhr, Meike
2016-04-20
Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.
Social Networks Use, Loneliness and Academic Performance among University Students
ERIC Educational Resources Information Center
Stankovska, Gordana; Angelkovska, Slagana; Grncarovska, Svetlana Pandiloska
2016-01-01
The world is extensively changed by Social Networks Sites (SNSs) on the Internet. A large number of children and adolescents in the world have access to the internet and are exposed to the internet at a very early age. Most of them use the Social Networks Sites with the purpose of exchanging academic activities and developing a social network all…
Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control
NASA Astrophysics Data System (ADS)
Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming
2015-05-01
With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.
The neural basis of visual word form processing: a multivariate investigation.
Nestor, Adrian; Behrmann, Marlene; Plaut, David C
2013-07-01
Current research on the neurobiological bases of reading points to the privileged role of a ventral cortical network in visual word processing. However, the properties of this network and, in particular, its selectivity for orthographic stimuli such as words and pseudowords remain topics of significant debate. Here, we approached this issue from a novel perspective by applying pattern-based analyses to functional magnetic resonance imaging data. Specifically, we examined whether, where and how, orthographic stimuli elicit distinct patterns of activation in the human cortex. First, at the category level, multivariate mapping found extensive sensitivity throughout the ventral cortex for words relative to false-font strings. Secondly, at the identity level, the multi-voxel pattern classification provided direct evidence that different pseudowords are encoded by distinct neural patterns. Thirdly, a comparison of pseudoword and face identification revealed that both stimulus types exploit common neural resources within the ventral cortical network. These results provide novel evidence regarding the involvement of the left ventral cortex in orthographic stimulus processing and shed light on its selectivity and discriminability profile. In particular, our findings support the existence of sublexical orthographic representations within the left ventral cortex while arguing for the continuity of reading with other visual recognition skills.
Theoretical predictions of a bucky-diamond SiC cluster.
Yu, Ming; Jayanthi, C S; Wu, S Y
2012-06-15
A study of structural relaxations of Si(n)C(m) clusters corresponding to different compositions, different relative arrangements of Si/C atoms, and different types of initial structure, reveals that the Si(n)C(m) bucky-diamond structure can be obtained for an initial network structure constructed from a truncated bulk 3C-SiC for a magic composition corresponding to n = 68 and m = 79. This study was performed using a semi-empirical Hamiltonian (SCED-LCAO) since it allowed an extensive search of different types of initial structures. However, the bucky-diamond structure predicted by this method was also confirmed by a more accurate density functional theory (DFT) based method. The bucky-diamond structure exhibited by a SiC-based system represents an interesting paradigm where a Si atom can form three-coordinated as well as four-coordinated networks with carbon atoms and vice versa and with both types of network co-existing in the same structure. Specifically, the bucky-diamond structure of the Si(68)C(79) cluster consists of a 35-atom diamond-like inner core (four-atom coordinations) suspended inside a 112-atom fullerene-like shell (three-atom coordinations).
Antiqueira, Lucas; Janga, Sarath Chandra; Costa, Luciano da Fontoura
2012-11-01
To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.
Improved Adjoint-Operator Learning For A Neural Network
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1995-01-01
Improved method of adjoint-operator learning reduces amount of computation and associated computational memory needed to make electronic neural network learn temporally varying pattern (e.g., to recognize moving object in image) in real time. Method extension of method described in "Adjoint-Operator Learning for a Neural Network" (NPO-18352).
The Zel'dovich approximation: key to understanding cosmic web complexity
NASA Astrophysics Data System (ADS)
Hidding, Johan; Shandarin, Sergei F.; van de Weygaert, Rien
2014-02-01
We describe how the dynamics of cosmic structure formation defines the intricate geometric structure of the spine of the cosmic web. The Zel'dovich approximation is used to model the backbone of the cosmic web in terms of its singularity structure. The description by Arnold et al. in terms of catastrophe theory forms the basis of our analysis. This two-dimensional analysis involves a profound assessment of the Lagrangian and Eulerian projections of the gravitationally evolving four-dimensional phase-space manifold. It involves the identification of the complete family of singularity classes, and the corresponding caustics that we see emerging as structure in Eulerian space evolves. In particular, as it is instrumental in outlining the spatial network of the cosmic web, we investigate the nature of spatial connections between these singularities. The major finding of our study is that all singularities are located on a set of lines in Lagrangian space. All dynamical processes related to the caustics are concentrated near these lines. We demonstrate and discuss extensively how all 2D singularities are to be found on these lines. When mapping this spatial pattern of lines to Eulerian space, we find a growing connectedness between initially disjoint lines, resulting in a percolating network. In other words, the lines form the blueprint for the global geometric evolution of the cosmic web.
Deep Restricted Kernel Machines Using Conjugate Feature Duality.
Suykens, Johan A K
2017-08-01
The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Huanxin; Liang Yunxiao; Jiang Xiao
A nonmetal pentaborate [C{sub 6}H{sub 13}N{sub 2}][B{sub 5}O{sub 6}(OH){sub 4}] (1) has been synthesized by 1,4-diazabicyclo[2.2.2] octane (DABCO) and boric acid, and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in the monoclinic system with space group Cc (no. 9), a=10.205(2) A, b=14.143(3) A, c=11.003(2) A, {beta}=113.97(3){sup o}, V=1451.1(5) A{sup 3}, Z=4. The anionic units, [B{sub 5}O{sub 6}(OH){sub 4}]{sup -}, are interlinked via hydrogen bonding to form a three-dimensional (3D) supramolecular network containing large channels, in which the protonated [C{sub 6}H{sub 13}N{sub 2}]{sup +} cations are located. Second-harmonic generation (SHG) measurements on the powdermore » samples reveal that 1 exhibits SHG efficiency approximately 0.9 times that of potassium dihydrogen phosphate (KDP). - Graphical abstract: The protonated [C{sub 6}H{sub 13}N{sub 2}]{sup +} cations and the polyanions [B{sub 5}O{sub 6}(OH){sub 4}]{sup -} form a 3D supramolecular network by extensive hydrogen bonds and electrostatic attraction. This compound shows NLO properties and the SHG efficiency is approximately 0.9 times that of KDP.« less
Sadeh, Sadra; Rotter, Stefan
2015-01-01
The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold equally well for mean-driven and fluctuation-driven regimes of activity.
Sadeh, Sadra; Rotter, Stefan
2015-01-01
The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold equally well for mean-driven and fluctuation-driven regimes of activity. PMID:25569445
Interpenetrating Polymer Networks as Innovative Drug Delivery Systems
Lohani, Alka; Singh, Garima; Bhattacharya, Shiv Sankar; Verma, Anurag
2014-01-01
Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs) have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs. PMID:24949205
Application distribution model and related security attacks in VANET
NASA Astrophysics Data System (ADS)
Nikaein, Navid; Kanti Datta, Soumya; Marecar, Irshad; Bonnet, Christian
2013-03-01
In this paper, we present a model for application distribution and related security attacks in dense vehicular ad hoc networks (VANET) and sparse VANET which forms a delay tolerant network (DTN). We study the vulnerabilities of VANET to evaluate the attack scenarios and introduce a new attacker`s model as an extension to the work done in [6]. Then a VANET model has been proposed that supports the application distribution through proxy app stores on top of mobile platforms installed in vehicles. The steps of application distribution have been studied in detail. We have identified key attacks (e.g. malware, spamming and phishing, software attack and threat to location privacy) for dense VANET and two attack scenarios for sparse VANET. It has been shown that attacks can be launched by distributing malicious applications and injecting malicious codes to On Board Unit (OBU) by exploiting OBU software security holes. Consequences of such security attacks have been described. Finally, countermeasures including the concepts of sandbox have also been presented in depth.
A demographic and social profile of age- and sex-matched vegetarians and nonvegetarians.
Freeland-Graves, J H; Greninger, S A; Young, R K
1986-07-01
A demographic and social profile was compiled for 150 vegetarians and 150 nonvegetarians who were matched for age and sex. A 328-item questionnaire containing both closed- and open-ended questions was administered. Information collected included personal and demographic data, personal habits, social activities, and possible influences of vegetarianism. No differences were observed in the cultural, ethnic, or familial background of the groups. Vegetarians were less influenced by parents and traditional religions, were slightly less well educated, and were employed in less-skilled occupations. However, vegetarians socialized more than nonvegetarians, as evidenced by their greater frequency of entertaining, going out with friends, and joining organizations. The commitment to vegetarianism was strong and appeared to be reinforced by an extensive network of family and friends who were also vegetarians. This strong support network was particularly evident for those who practiced the more restrictive forms of vegetarianism, the only major difference observed within the types of vegetarians studied.
Dendritic growth model of multilevel marketing
NASA Astrophysics Data System (ADS)
Pang, James Christopher S.; Monterola, Christopher P.
2017-02-01
Biologically inspired dendritic network growth is utilized to model the evolving connections of a multilevel marketing (MLM) enterprise. Starting from agents at random spatial locations, a network is formed by minimizing a distance cost function controlled by a parameter, termed the balancing factor bf, that weighs the wiring and the path length costs of connection. The paradigm is compared to an actual MLM membership data and is shown to be successful in statistically capturing the membership distribution, better than the previously reported agent based preferential attachment or analytic branching process models. Moreover, it recovers the known empirical statistics of previously studied MLM, specifically: (i) a membership distribution characterized by the existence of peak levels indicating limited growth, and (ii) an income distribution obeying the 80 - 20 Pareto principle. Extensive types of income distributions from uniform to Pareto to a "winner-take-all" kind are also modeled by varying bf. Finally, the robustness of our dendritic growth paradigm to random agent removals is explored and its implications to MLM income distributions are discussed.
Piatkowski, Tanja; Mühlfeld, Christian; Borchardt, Thilo; Braun, Thomas
2013-07-01
Adult newts efficiently regenerate the heart after injury in a process that involves proliferation of cardiac muscle and nonmuscle cells and repatterning of the myocardium. To analyze the processes that underlie heart regeneration in newts, we characterized the structural changes in the myocardium that allow regeneration after mechanical injury. We found that cardiomyocytes in the damaged ventricle mainly die by necrosis and are removed during the first week after injury, paving the way for the extension of thin myocardial trabeculae, which initially contain only very few cardiomyocytes. During the following 200 days, these thin trabeculae fill up with new cardiomyocytes until the myocardium is fully reconstituted. Interestingly, reconstruction of the newly formed trabeculated network is accompanied by transient deposition of extracellular matrix (ECM) components such as collagen III. We conclude that the ECM is a critical guidance cue for outgrowing and branching trabeculae to reconstruct the trabeculated network, which represents a hallmark of uninjured cardiac tissue in newts.
NASA Astrophysics Data System (ADS)
Zhang, Haifeng; Small, Michael; Fu, Xinchu; Sun, Guiquan; Wang, Binghong
2012-09-01
Outbreaks of infectious diseases may awaken the awareness of individuals, consequently, they may adjust their contact patterns according to the perceived risk from disease. In this paper, we assume that individuals make decisions on breaking or recovering links according to the information of diseases spreading which they have acquired. They will reduce some links when diseases are prevalent and have high risks; otherwise, they will recover some original links when the diseases are controlled or present minimal risk. Under such an assumption, we study the effects of information of diseases on the contact patterns within the population and on the dynamics of epidemics. By extensive simulations and theoretical analysis, we find that, due to the time-delayed information of diseases, both the density of the disease and the topology of the network vary with time in a periodic form. Our results indicate that the quality of information available to individuals can have an important effect on the spreading of infectious diseases and implications for related problems.
Molecular insights into the origin of the Hox-TALE patterning system
Hudry, Bruno; Thomas-Chollier, Morgane; Volovik, Yael; Duffraisse, Marilyne; Dard, Amélie; Frank, Dale; Technau, Ulrich; Merabet, Samir
2014-01-01
Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior–posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox–TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001 PMID:24642410
Molecular insights into the origin of the Hox-TALE patterning system.
Hudry, Bruno; Thomas-Chollier, Morgane; Volovik, Yael; Duffraisse, Marilyne; Dard, Amélie; Frank, Dale; Technau, Ulrich; Merabet, Samir
2014-03-18
Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior-posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox-TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001.
'Minimalist' Nanovaccine Constituted from Near Whole Antigen for Cancer Immunotherapy.
Wang, Kun; Wen, Shuman; He, Lianghua; Li, Ang; Li, Yan; Dong, Haiqing; Li, Wei; Ren, Tianbin; Shi, Donglu; Li, Yongyong
2018-06-21
One of the major challenges in vaccine design has been the over dependence on incorporation of abundant adjuvants, that in fact is in violation of the 'minimalist' principle. In the present study, a compact nanovaccine derived from a near whole antigen (up to 97 wt%) was developed. The nanovaccine structure was stabilized by free cysteines within each antigen (ovalbumin, OVA) which were tempo-spatially exposed and heat-driven to form extensive intermolecular disulfide network. This process enables the engineering of a nanovaccine upon integration of the danger signal (CpG-SH) into the network during the synthetic process. The 50 nm-sized nanovaccine was developed comprising of approximately 500 antigen molecules per nanoparticle. The nanovaccine prophylactically protected 70% of mice from tumorigenesis (0% for the control group) in murine B16-OVA melanoma. Significant tumor inhibition was achieved by strongly nanovaccine-induced cytotoxic T lymphocytes. This strategy can be adapted for the future design of vaccine for a minimalist composition in clinical settings.
Perceptual learning as improved probabilistic inference in early sensory areas.
Bejjanki, Vikranth R; Beck, Jeffrey M; Lu, Zhong-Lin; Pouget, Alexandre
2011-05-01
Extensive training on simple tasks such as fine orientation discrimination results in large improvements in performance, a form of learning known as perceptual learning. Previous models have argued that perceptual learning is due to either sharpening and amplification of tuning curves in early visual areas or to improved probabilistic inference in later visual areas (at the decision stage). However, early theories are inconsistent with the conclusions of psychophysical experiments manipulating external noise, whereas late theories cannot explain the changes in neural responses that have been reported in cortical areas V1 and V4. Here we show that we can capture both the neurophysiological and behavioral aspects of perceptual learning by altering only the feedforward connectivity in a recurrent network of spiking neurons so as to improve probabilistic inference in early visual areas. The resulting network shows modest changes in tuning curves, in line with neurophysiological reports, along with a marked reduction in the amplitude of pairwise noise correlations.
Extension of mixture-of-experts networks for binary classification of hierarchical data.
Ng, Shu-Kay; McLachlan, Geoffrey J
2007-09-01
For many applied problems in the context of medically relevant artificial intelligence, the data collected exhibit a hierarchical or clustered structure. Ignoring the interdependence between hierarchical data can result in misleading classification. In this paper, we extend the mechanism for mixture-of-experts (ME) networks for binary classification of hierarchical data. Another extension is to quantify cluster-specific information on data hierarchy by random effects via the generalized linear mixed-effects model (GLMM). The extension of ME networks is implemented by allowing for correlation in the hierarchical data in both the gating and expert networks via the GLMM. The proposed model is illustrated using a real thyroid disease data set. In our study, we consider 7652 thyroid diagnosis records from 1984 to early 1987 with complete information on 20 attribute values. We obtain 10 independent random splits of the data into a training set and a test set in the proportions 85% and 15%. The test sets are used to assess the generalization performance of the proposed model, based on the percentage of misclassifications. For comparison, the results obtained from the ME network with independence assumption are also included. With the thyroid disease data, the misclassification rate on test sets for the extended ME network is 8.9%, compared to 13.9% for the ME network. In addition, based on model selection methods described in Section 2, a network with two experts is selected. These two expert networks can be considered as modeling two groups of patients with high and low incidence rates. Significant variation among the predicted cluster-specific random effects is detected in the patient group with low incidence rate. It is shown that the extended ME network outperforms the ME network for binary classification of hierarchical data. With the thyroid disease data, useful information on the relative log odds of patients with diagnosed conditions at different periods can be evaluated. This information can be taken into consideration for the assessment of treatment planning of the disease. The proposed extended ME network thus facilitates a more general approach to incorporate data hierarchy mechanism in network modeling.
Exploring the retinal connectome
Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Shaw, Margaret V.; Yang, Jia-Hui; DeMill, David; Lauritzen, James S.; Lin, Yanhua; Rapp, Kevin D.; Mastronarde, David; Koshevoy, Pavel; Grimm, Bradley; Tasdizen, Tolga; Whitaker, Ross
2011-01-01
Purpose A connectome is a comprehensive description of synaptic connectivity for a neural domain. Our goal was to produce a connectome data set for the inner plexiform layer of the mammalian retina. This paper describes our first retinal connectome, validates the method, and provides key initial findings. Methods We acquired and assembled a 16.5 terabyte connectome data set RC1 for the rabbit retina at ≈2 nm resolution using automated transmission electron microscope imaging, automated mosaicking, and automated volume registration. RC1 represents a column of tissue 0.25 mm in diameter, spanning the inner nuclear, inner plexiform, and ganglion cell layers. To enhance ultrastructural tracing, we included molecular markers for 4-aminobutyrate (GABA), glutamate, glycine, taurine, glutamine, and the in vivo activity marker, 1-amino-4-guanidobutane. This enabled us to distinguish GABAergic and glycinergic amacrine cells; to identify ON bipolar cells coupled to glycinergic cells; and to discriminate different kinds of bipolar, amacrine, and ganglion cells based on their molecular signatures and activity. The data set was explored and annotated with Viking, our multiuser navigation tool. Annotations were exported to additional applications to render cells, visualize network graphs, and query the database. Results Exploration of RC1 showed that the 2 nm resolution readily recapitulated well known connections and revealed several new features of retinal organization: (1) The well known AII amacrine cell pathway displayed more complexity than previously reported, with no less than 17 distinct signaling modes, including ribbon synapse inputs from OFF bipolar cells, wide-field ON cone bipolar cells and rod bipolar cells, and extensive input from cone-pathway amacrine cells. (2) The axons of most cone bipolar cells formed a distinct signal integration compartment, with ON cone bipolar cell axonal synapses targeting diverse cell types. Both ON and OFF bipolar cells receive axonal veto synapses. (3) Chains of conventional synapses were very common, with intercalated glycinergic-GABAergic chains and very long chains associated with starburst amacrine cells. Glycinergic amacrine cells clearly play a major role in ON-OFF crossover inhibition. (4) Molecular and excitation mapping clearly segregates ultrastructurally defined bipolar cell groups into different response clusters. (5) Finally, low-resolution electron or optical imaging cannot reliably map synaptic connections by process geometry, as adjacency without synaptic contact is abundant in the retina. Only direct visualization of synapses and gap junctions suffices. Conclusions Connectome assembly and analysis using conventional transmission electron microscopy is now practical for network discovery. Our surveys of volume RC1 demonstrate that previously studied systems such as the AII amacrine cell network involve more network motifs than previously known. The AII network, primarily considered a scotopic pathway, clearly derives ribbon synapse input from photopic ON and OFF cone bipolar cell networks and extensive photopic GABAergic amacrine cell inputs. Further, bipolar cells show extensive inputs and outputs along their axons, similar to multistratified nonmammalian bipolar cells. Physiologic evidence of significant ON-OFF channel crossover is strongly supported by our anatomic data, showing alternating glycine-to-GABA paths. Long chains of amacrine cell networks likely arise from homocellular GABAergic synapses between starburst amacrine cells. Deeper analysis of RC1 offers the opportunity for more complete descriptions of specific networks. PMID:21311605
Exploring the retinal connectome.
Anderson, James R; Jones, Bryan W; Watt, Carl B; Shaw, Margaret V; Yang, Jia-Hui; Demill, David; Lauritzen, James S; Lin, Yanhua; Rapp, Kevin D; Mastronarde, David; Koshevoy, Pavel; Grimm, Bradley; Tasdizen, Tolga; Whitaker, Ross; Marc, Robert E
2011-02-03
A connectome is a comprehensive description of synaptic connectivity for a neural domain. Our goal was to produce a connectome data set for the inner plexiform layer of the mammalian retina. This paper describes our first retinal connectome, validates the method, and provides key initial findings. We acquired and assembled a 16.5 terabyte connectome data set RC1 for the rabbit retina at ≈ 2 nm resolution using automated transmission electron microscope imaging, automated mosaicking, and automated volume registration. RC1 represents a column of tissue 0.25 mm in diameter, spanning the inner nuclear, inner plexiform, and ganglion cell layers. To enhance ultrastructural tracing, we included molecular markers for 4-aminobutyrate (GABA), glutamate, glycine, taurine, glutamine, and the in vivo activity marker, 1-amino-4-guanidobutane. This enabled us to distinguish GABAergic and glycinergic amacrine cells; to identify ON bipolar cells coupled to glycinergic cells; and to discriminate different kinds of bipolar, amacrine, and ganglion cells based on their molecular signatures and activity. The data set was explored and annotated with Viking, our multiuser navigation tool. Annotations were exported to additional applications to render cells, visualize network graphs, and query the database. Exploration of RC1 showed that the 2 nm resolution readily recapitulated well known connections and revealed several new features of retinal organization: (1) The well known AII amacrine cell pathway displayed more complexity than previously reported, with no less than 17 distinct signaling modes, including ribbon synapse inputs from OFF bipolar cells, wide-field ON cone bipolar cells and rod bipolar cells, and extensive input from cone-pathway amacrine cells. (2) The axons of most cone bipolar cells formed a distinct signal integration compartment, with ON cone bipolar cell axonal synapses targeting diverse cell types. Both ON and OFF bipolar cells receive axonal veto synapses. (3) Chains of conventional synapses were very common, with intercalated glycinergic-GABAergic chains and very long chains associated with starburst amacrine cells. Glycinergic amacrine cells clearly play a major role in ON-OFF crossover inhibition. (4) Molecular and excitation mapping clearly segregates ultrastructurally defined bipolar cell groups into different response clusters. (5) Finally, low-resolution electron or optical imaging cannot reliably map synaptic connections by process geometry, as adjacency without synaptic contact is abundant in the retina. Only direct visualization of synapses and gap junctions suffices. Connectome assembly and analysis using conventional transmission electron microscopy is now practical for network discovery. Our surveys of volume RC1 demonstrate that previously studied systems such as the AII amacrine cell network involve more network motifs than previously known. The AII network, primarily considered a scotopic pathway, clearly derives ribbon synapse input from photopic ON and OFF cone bipolar cell networks and extensive photopic GABAergic amacrine cell inputs. Further, bipolar cells show extensive inputs and outputs along their axons, similar to multistratified nonmammalian bipolar cells. Physiologic evidence of significant ON-OFF channel crossover is strongly supported by our anatomic data, showing alternating glycine-to-GABA paths. Long chains of amacrine cell networks likely arise from homocellular GABAergic synapses between starburst amacrine cells. Deeper analysis of RC1 offers the opportunity for more complete descriptions of specific networks.
NEVESIM: event-driven neural simulation framework with a Python interface.
Pecevski, Dejan; Kappel, David; Jonke, Zeno
2014-01-01
NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies.
NEVESIM: event-driven neural simulation framework with a Python interface
Pecevski, Dejan; Kappel, David; Jonke, Zeno
2014-01-01
NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies. PMID:25177291
Constructing and decoding unconventional ubiquitin chains.
Behrends, Christian; Harper, J Wade
2011-05-01
One of the most notable discoveries in the ubiquitin system during the past decade is the extensive use of diverse chain linkages to control signaling networks. Although the utility of Lys48- and Lys63-linked chains in protein turnover and molecular assembly, respectively, are well known, we are only beginning to understand how unconventional chain linkages are formed on target proteins and how such linkages are decoded by specific binding proteins. In this review, we summarize recent efforts to elucidate the machinery and mechanisms controlling assembly of Lys11-linked and linear (or Met1-linked) ubiquitin chains, and describe current models for how these chain types function in immune signaling and cell-cycle control.
A Legal Negotiatiton Support System Based on A Diagram
NASA Astrophysics Data System (ADS)
Nitta, Katsumi; Shibasaki, Masato; Yasumura, Yoshiaki; Hasegawa, Ryuzo; Fujita, Hiroshi; Koshimura, Miyuki; Inoue, Katsumi; Shirai, Yasuyuki; Komatsu, Hiroshi
We present an overview of a legal negotiation support system, ANS (Argumentation based Negotiation support System). ANS consists of a user interface, three inference engines, a database of old cases, and two decision support modules. The ANS users negotiates or disputes with others via a computer network. The negotiation status is managed in the form of the negotiation diagram. The negotiation diagram is an extension of Toulmin’s argument diagram, and it contains all arguments insisted by participants. The negotiation protocols are defined as operations to the negotiation diagram. By exchanging counter arguments each other, the negotiation diagram grows up. Nonmonotonic reasoning using rule priorities are applied to the negotiation diagram.
Towards Breaking the Histone Code – Bayesian Graphical Models for Histone Modifications
Mitra, Riten; Müller, Peter; Liang, Shoudan; Xu, Yanxun; Ji, Yuan
2013-01-01
Background Histones are proteins that wrap DNA around in small spherical structures called nucleosomes. Histone modifications (HMs) refer to the post-translational modifications to the histone tails. At a particular genomic locus, each of these HMs can either be present or absent, and the combinatory patterns of the presence or absence of multiple HMs, or the ‘histone codes,’ are believed to co-regulate important biological processes. We aim to use raw data on HM markers at different genomic loci to (1) decode the complex biological network of HMs in a single region and (2) demonstrate how the HM networks differ in different regulatory regions. We suggest that these differences in network attributes form a significant link between histones and genomic functions. Methods and Results We develop a powerful graphical model under Bayesian paradigm. Posterior inference is fully probabilistic, allowing us to compute the probabilities of distinct dependence patterns of the HMs using graphs. Furthermore, our model-based framework allows for easy but important extensions for inference on differential networks under various conditions, such as the different annotations of the genomic locations (e.g., promoters versus insulators). We applied these models to ChIP-Seq data based on CD4+ T lymphocytes. The results confirmed many existing findings and provided a unified tool to generate various promising hypotheses. Differential network analyses revealed new insights on co-regulation of HMs of transcriptional activities in different genomic regions. Conclusions The use of Bayesian graphical models and borrowing strength across different conditions provide high power to infer histone networks and their differences. PMID:23748248
Wang, Junjing; Qiu, Shijun; Xu, Yong; Liu, Zhenyin; Wen, Xue; Hu, Xiangshu; Zhang, Ruibin; Li, Meng; Wang, Wensheng; Huang, Ruiwang
2014-09-01
Temporal lobe epilepsy (TLE) is one of the most common forms of drug-resistant epilepsy. Previous studies have indicated that the TLE-related impairments existed in extensive local functional networks. However, little is known about the alterations in the topological properties of whole brain functional networks. In this study, we acquired resting-state BOLD-fMRI (rsfMRI) data from 26 TLE patients and 25 healthy controls, constructed their whole brain functional networks, compared the differences in topological parameters between the TLE patients and the controls, and analyzed the correlation between the altered topological properties and the epilepsy duration. The TLE patients showed significant increases in clustering coefficient and characteristic path length, but significant decrease in global efficiency compared to the controls. We also found altered nodal parameters in several regions in the TLE patients, such as the bilateral angular gyri, left middle temporal gyrus, right hippocampus, triangular part of left inferior frontal gyrus, left inferior parietal but supramarginal and angular gyri, and left parahippocampus gyrus. Further correlation analysis showed that the local efficiency of the TLE patients correlated positively with the epilepsy duration. Our results indicated the disrupted topological properties of whole brain functional networks in TLE patients. Our findings indicated the TLE-related impairments in the whole brain functional networks, which may help us to understand the clinical symptoms of TLE patients and offer a clue for the diagnosis and treatment of the TLE patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
An Interaction Library for the FcεRI Signaling Network
Chylek, Lily A.; Holowka, David A.; Baird, Barbara A.; ...
2014-04-15
Antigen receptors play a central role in adaptive immune responses. Although the molecular networks associated with these receptors have been extensively studied, we currently lack a systems-level understanding of how combinations of non-covalent interactions and post-translational modifications are regulated during signaling to impact cellular decision-making. To fill this knowledge gap, it will be necessary to formalize and piece together information about individual molecular mechanisms to form large-scale computational models of signaling networks. To this end, we have developed an interaction library for signaling by the high-affinity IgE receptor, FcεRI. The library consists of executable rules for protein–protein and protein–lipid interactions.more » This library extends earlier models for FcεRI signaling and introduces new interactions that have not previously been considered in a model. Thus, this interaction library is a toolkit with which existing models can be expanded and from which new models can be built. As an example, we present models of branching pathways from the adaptor protein Lat, which influence production of the phospholipid PIP 3 at the plasma membrane and the soluble second messenger IP 3. We find that inclusion of a positive feedback loop gives rise to a bistable switch, which may ensure robust responses to stimulation above a threshold level. In addition, the library is visualized to facilitate understanding of network circuitry and identification of network motifs.« less
An Interaction Library for the FcεRI Signaling Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chylek, Lily A.; Holowka, David A.; Baird, Barbara A.
Antigen receptors play a central role in adaptive immune responses. Although the molecular networks associated with these receptors have been extensively studied, we currently lack a systems-level understanding of how combinations of non-covalent interactions and post-translational modifications are regulated during signaling to impact cellular decision-making. To fill this knowledge gap, it will be necessary to formalize and piece together information about individual molecular mechanisms to form large-scale computational models of signaling networks. To this end, we have developed an interaction library for signaling by the high-affinity IgE receptor, FcεRI. The library consists of executable rules for protein–protein and protein–lipid interactions.more » This library extends earlier models for FcεRI signaling and introduces new interactions that have not previously been considered in a model. Thus, this interaction library is a toolkit with which existing models can be expanded and from which new models can be built. As an example, we present models of branching pathways from the adaptor protein Lat, which influence production of the phospholipid PIP 3 at the plasma membrane and the soluble second messenger IP 3. We find that inclusion of a positive feedback loop gives rise to a bistable switch, which may ensure robust responses to stimulation above a threshold level. In addition, the library is visualized to facilitate understanding of network circuitry and identification of network motifs.« less
NASA Astrophysics Data System (ADS)
Deng, Qingming; Heine, Thomas; Irle, Stephan; Popov, Alexey A.
2016-02-01
The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). Electronic supplementary information (ESI) available: Additional information on metal-carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k
A Corticocortical Circuit Directly Links Retrosplenial Cortex to M2 in the Mouse
Radulovic, Jelena
2016-01-01
Retrosplenial cortex (RSC) is a dorsomedial parietal area involved in a range of cognitive functions, including episodic memory, navigation, and spatial memory. Anatomically, the RSC receives inputs from dorsal hippocampal networks and in turn projects to medial neocortical areas. A particularly prominent projection extends rostrally to the posterior secondary motor cortex (M2), suggesting a functional corticocortical link from the RSC to M2 and thus a bridge between hippocampal and neocortical networks involved in mnemonic and sensorimotor aspects of navigation. We investigated the cellular connectivity in this RSC→M2 projection in the mouse using optogenetic photostimulation, retrograde labeling, and electrophysiology. Axons from RSC formed monosynaptic excitatory connections onto M2 pyramidal neurons across layers and projection classes, including corticocortical/intratelencephalic neurons (reciprocally and callosally projecting) in layers 2–6, pyramidal tract neurons (corticocollicular, corticopontine) in layer 5B, and, to a lesser extent, corticothalamic neurons in layer 6. In addition to these direct connections, disynaptic connections were made via posterior parietal cortex (RSC→PPC→M2) and anteromedial thalamus (RSC→AM→M2). In the reverse direction, axons from M2 monosynaptically excited M2-projecting corticocortical neurons in the RSC, especially in the superficial layers of the dysgranular region. These findings establish an excitatory RSC→M2 corticocortical circuit that engages diverse types of excitatory projection neurons in the downstream area, suggesting a basis for direct communication from dorsal hippocampal networks involved in spatial memory and navigation to neocortical networks involved in diverse aspects of sensorimotor integration and motor control. SIGNIFICANCE STATEMENT Corticocortical pathways interconnect cortical areas extensively, but the cellular connectivity in these pathways remains largely uncharacterized. Here, we show that a posterior part of secondary motor cortex receives corticocortical axons from the rostral retrosplenial cortex (RSC) and these form monosynaptic excitatory connections onto a wide spectrum of excitatory projection neurons in this area. Our results define a cellular basis for direct communication from RSC to this medial frontal area, suggesting a direct link from dorsal hippocampal networks involved in spatial cognition and navigation (the “map”) to sensorimotor networks involved the control of movement (the “motor”). PMID:27605612
SENTRE and TREND attenuator field installations
DOT National Transportation Integrated Search
1990-02-01
Arizona's canal network is extensive and necessitates the existence of many short bridges on the highway network. The necessity for maintaining access to adjacent canal roads dictates that any barrier installation intended to shield errant vehicles f...
ERIC Educational Resources Information Center
Posthumus, Erin E.; Barnett, LoriAnne; Crimmins, Theresa M.; Kish, George R.; Sheftall, Will; Stancioff, Esperanza; Warren, Peter
2013-01-01
Extension, with its access to long-term volunteers, has the unique ability to teach citizen scientists about the connection between climate variability and the resulting effects on plants, animals, and thus, humans. The USA National Phenology Network's Nature's Notebook on-line program provides a science learning tool for Extension's Master…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... Collection Activities: Form AR-11 and Form AR- 11SR, Extension of an Existing Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection under Review: Form AR- 11 and Form AR-11SR, Alien... evaluating whether to revise the Form AR-11 and Form AR-11SR (Forms AR-11). Should USCIS decide to revise...
Network Leadership's Balancing Act: Contrivance or Emergence?
ERIC Educational Resources Information Center
Kubiak, Chris; Bertram, Joan
2005-01-01
It is well understood that one learns much of what one knows through one's network of relationships and through shared discussion and activity. A logical extension of this idea is the growing prominence in the UK where formal school-to-school networking such as Education Action Zones and Excellence in Cities has been established. This article…
Experiments on Learning by Back Propagation.
ERIC Educational Resources Information Center
Plaut, David C.; And Others
This paper describes further research on a learning procedure for layered networks of deterministic, neuron-like units, described by Rumelhart et al. The units, the way they are connected, the learning procedure, and the extension to iterative networks are presented. In one experiment, a network learns a set of filters, enabling it to discriminate…
Request for Support: A Tool for Strengthening Network Capacity
ERIC Educational Resources Information Center
Bain, Jamie; Harden, Noelle; Heim, Stephanie
2017-01-01
A request for support (RFS) is a tool that is used to strengthen network capacity by prioritizing needs and optimizing learning opportunities. Within University of Minnesota Extension, we implemented an RFS process through an online survey designed to help leaders of food networks identify and rank learning and capacity-building needs and indicate…
Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel
2015-01-01
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402
Sunden, Fanny; Peck, Ariana; Salzman, Julia; ...
2015-04-22
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less
Toward edge minability for role mining in bipartite networks
NASA Astrophysics Data System (ADS)
Dong, Lijun; Wang, Yi; Liu, Ran; Pi, Benjie; Wu, Liuyi
2016-11-01
Bipartite network models have been extensively used in information security to automatically generate role-based access control (RBAC) from dataset. This process is called role mining. However, not all the topologies of bipartite networks are suitable for role mining; some edges may even reduce the quality of role mining. This causes unnecessary time consumption as role mining is NP-hard. Therefore, to promote the quality of role mining results, the capability that an edge composes roles with other edges, called the minability of edge, needs to be identified. We tackle the problem from an angle of edge importance in complex networks; that is an edge easily covered by roles is considered to be more important. Based on this idea, the k-shell decomposition of complex networks is extended to reveal the different minability of edges. By this way, a bipartite network can be quickly purified by excluding the low-minability edges from role mining, and thus the quality of role mining can be effectively improved. Extensive experiments via the real-world datasets are conducted to confirm the above claims.
Cerebral cartography and connectomics
Sporns, Olaf
2015-01-01
Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. PMID:25823870
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks.
Yu, Lequan; Chen, Hao; Dou, Qi; Qin, Jing; Heng, Pheng-Ann
2017-04-01
Automated melanoma recognition in dermoscopy images is a very challenging task due to the low contrast of skin lesions, the huge intraclass variation of melanomas, the high degree of visual similarity between melanoma and non-melanoma lesions, and the existence of many artifacts in the image. In order to meet these challenges, we propose a novel method for melanoma recognition by leveraging very deep convolutional neural networks (CNNs). Compared with existing methods employing either low-level hand-crafted features or CNNs with shallower architectures, our substantially deeper networks (more than 50 layers) can acquire richer and more discriminative features for more accurate recognition. To take full advantage of very deep networks, we propose a set of schemes to ensure effective training and learning under limited training data. First, we apply the residual learning to cope with the degradation and overfitting problems when a network goes deeper. This technique can ensure that our networks benefit from the performance gains achieved by increasing network depth. Then, we construct a fully convolutional residual network (FCRN) for accurate skin lesion segmentation, and further enhance its capability by incorporating a multi-scale contextual information integration scheme. Finally, we seamlessly integrate the proposed FCRN (for segmentation) and other very deep residual networks (for classification) to form a two-stage framework. This framework enables the classification network to extract more representative and specific features based on segmented results instead of the whole dermoscopy images, further alleviating the insufficiency of training data. The proposed framework is extensively evaluated on ISBI 2016 Skin Lesion Analysis Towards Melanoma Detection Challenge dataset. Experimental results demonstrate the significant performance gains of the proposed framework, ranking the first in classification and the second in segmentation among 25 teams and 28 teams, respectively. This study corroborates that very deep CNNs with effective training mechanisms can be employed to solve complicated medical image analysis tasks, even with limited training data.
A framework on the emergence and effectiveness of global health networks.
Shiffman, Jeremy; Quissell, Kathryn; Schmitz, Hans Peter; Pelletier, David L; Smith, Stephanie L; Berlan, David; Gneiting, Uwe; Van Slyke, David; Mergel, Ines; Rodriguez, Mariela; Walt, Gill
2016-04-01
Since 1990 mortality and morbidity decline has been more extensive for some conditions prevalent in low- and middle-income countries than for others. One reason may be differences in the effectiveness of global health networks, which have proliferated in recent years. Some may be more capable than others in attracting attention to a condition, in generating funding, in developing interventions and in convincing national governments to adopt policies. This article introduces a supplement on the emergence and effectiveness of global health networks. The supplement examines networks concerned with six global health problems: tuberculosis (TB), pneumonia, tobacco use, alcohol harm, maternal mortality and newborn deaths. This article presents a conceptual framework delineating factors that may shape why networks crystallize more easily surrounding some issues than others, and once formed, why some are better able than others to shape policy and public health outcomes. All supplement papers draw on this framework. The framework consists of 10 factors in three categories: (1) features of the networks and actors that comprise them, including leadership, governance arrangements, network composition and framing strategies; (2) conditions in the global policy environment, including potential allies and opponents, funding availability and global expectations concerning which issues should be prioritized; (3) and characteristics of the issue, including severity, tractability and affected groups. The article also explains the design of the project, which is grounded in comparison of networks surrounding three matched issues: TB and pneumonia, tobacco use and alcohol harm, and maternal and newborn survival. Despite similar burden and issue characteristics, there has been considerably greater policy traction for the first in each pair. The supplement articles aim to explain the role of networks in shaping these differences, and collectively represent the first comparative effort to understand the emergence and effectiveness of global health networks. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2015; all rights reserved.
Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang
2014-01-01
Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN.
Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang
2014-01-01
Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN. PMID:25423109
Du, Zhiqiang; Valtierra, Stephanie; Li, Liming
2014-01-01
The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.
Griguoli, Marilena; Cherubini, Enrico
2017-01-01
Synchronized neuronal activity occurring at different developmental stages in various brain structures represents a hallmark of developmental circuits. This activity, which differs in its specific patterns among animal species may play a crucial role in de novo formation and in shaping neuronal networks. In the rodent hippocampus in vitro , the so-called giant depolarizing potentials (GDPs) constitute a primordial form of neuronal synchrony preceding more organized forms of activity such as oscillations in the theta and gamma frequency range. GDPs are generated at the network level by the interaction of the neurotransmitters glutamate and GABA which, immediately after birth, exert both a depolarizing and excitatory action on their targets. GDPs are triggered by GABAergic interneurons, which in virtue of their extensive axonal branching operate as functional hubs to synchronize large ensembles of cells. Intrinsic bursting activity, driven by a persistent sodium conductance and facilitated by the low expression of Kv7.2 and Kv7.3 channel subunits, responsible for I M , exerts a permissive role in GDP generation. Here, we discuss how GDPs are generated in a probabilistic way when neuronal excitability within a local circuit reaches a certain threshold and how GDP-associated calcium transients act as coincident detectors for enhancing synaptic strength at emerging GABAergic and glutamatergic synapses. We discuss the possible in vivo correlate of this activity. Finally, we debate recent data showing how, in several animal models of neuropsychiatric disorders including autism, a GDPs dysfunction is associated to morphological alterations of neuronal circuits and behavioral deficits reminiscent of those observed in patients.
Dynamics, morphogenesis and convergence of evolutionary quantum Prisoner's Dilemma games on networks
Yong, Xi
2016-01-01
The authors proposed a quantum Prisoner's Dilemma (PD) game as a natural extension of the classic PD game to resolve the dilemma. Here, we establish a new Nash equilibrium principle of the game, propose the notion of convergence and discover the convergence and phase-transition phenomena of the evolutionary games on networks. We investigate the many-body extension of the game or evolutionary games in networks. For homogeneous networks, we show that entanglement guarantees a quick convergence of super cooperation, that there is a phase transition from the convergence of defection to the convergence of super cooperation, and that the threshold for the phase transitions is principally determined by the Nash equilibrium principle of the game, with an accompanying perturbation by the variations of structures of networks. For heterogeneous networks, we show that the equilibrium frequencies of super-cooperators are divergent, that entanglement guarantees emergence of super-cooperation and that there is a phase transition of the emergence with the threshold determined by the Nash equilibrium principle, accompanied by a perturbation by the variations of structures of networks. Our results explore systematically, for the first time, the dynamics, morphogenesis and convergence of evolutionary games in interacting and competing systems. PMID:27118882
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
...-0057] Agency Information Collection Activities: Form N-600; Extension of an Existing Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection under Review; Form N- 600... be evaluating whether to revise the Form N-600. Should USCIS decide to revise Form N-600 we will...
76 FR 71621 - Proposed Collection; Comment Request for Form 8892
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
... 8892, Payment of Gift/GST Tax and/or Application for Extension to File Form 709. DATES: Written comments should be received on or before January 17, 2012 to be assured of consideration. ADDRESSES: Direct... Tax and/or Application for Extension to File Form 709. OMB Number: 1545-1913. Form Number: Form 8892...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
... Collection Activities: Form G-639; Extension of an Existing Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection Under Review; Form G- 639, Freedom of Information/Privacy Act... Form G-639. Should USCIS decide to revise Form G-639 we will advise the [[Page 24909
Effects of biases in domain wall network evolution. II. Quantitative analysis
NASA Astrophysics Data System (ADS)
Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.
2018-04-01
Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.
Efficient Management of Certificate Revocation Lists in Smart Grid Advanced Metering Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebe, Mumin; Akkaya, Kemal
Advanced Metering Infrastructure (AMI) forms a communication network for the collection of power data from smart meters in Smart Grid. As the communication within an AMI needs to be secure, key management becomes an issue due to overhead and limited resources. While using public-keys eliminate some of the overhead of key management, there is still challenges regarding certificates that store and certify the publickeys. In particular, distribution and storage of certificate revocation list (CRL) is major a challenge due to cost of distribution and storage in AMI networks which typically consist of wireless multi-hop networks. Motivated by the need ofmore » keeping the CRL distribution and storage cost effective and scalable, in this paper, we present a distributed CRL management model utilizing the idea of distributed hash trees (DHTs) from peer-to-peer (P2P) networks. The basic idea is to share the burden of storage of CRLs among all the smart meters by exploiting the meshing capability of the smart meters among each other. Thus, using DHTs not only reduces the space requirements for CRLs but also makes the CRL updates more convenient. We implemented this structure on ns-3 using IEEE 802.11s mesh standard as a model for AMI and demonstrated its superior performance with respect to traditional methods of CRL management through extensive simulations.« less
Kuo, Kuan-Chih; Lin, Ruei-Zeng; Tien, Han-Wen; Wu, Pei-Yun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh
2015-01-01
Tissue engineering promises to restore or replace diseased or damaged tissue by creating functional and transplantable artificial tissues. The development of artificial tissues with large dimensions that exceed the diffusion limitation will require nutrients and oxygen to be delivered via perfusion instead of diffusion alone over a short time period. One approach to perfusion is to vascularize engineered tissues, creating a de novo three-dimensional (3D) microvascular network within the tissue construct. This significantly shortens the time of in vivo anastomosis, perfusion and graft integration with the host. In this study, we aimed to develop injectable allogeneic collagen-phenolic hydroxyl (collagen-Ph) hydrogels that are capable of controlling a wide range of physicochemical properties, including stiffness, water absorption and degradability. We tested whether collagen-Ph hydrogels could support the formation of vascularized engineered tissue graft by human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSC) in vivo. First, we studied the growth of adherent ECFCs and MSCs on or in the hydrogels. To examine the potential formation of functional vascular networks in vivo, a liquid pre-polymer solution of collagen-Ph containing human ECFCs and MSCs, horseradish peroxidase and hydrogen peroxide was injected into the subcutaneous space or abdominal muscle defect of an immunodeficient mouse before gelation, to form a 3D cell-laden polymerized construct. These results showed that extensive human ECFC-lined vascular networks can be generated within 7 days, the engineered vascular density inside collagen-Ph hydrogel constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with the existing vasculature to further support the survival of host muscle tissues. Finally, optimized conditions of the cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse after 1 month of implantation. PMID:26348142
XML and its impact on content and structure in electronic health care documents.
Sokolowski, R.; Dudeck, J.
1999-01-01
Worldwide information networks have the requirement that electronic documents must be easily accessible, portable, flexible and system-independent. With the development of XML (eXtensible Markup Language), the future of electronic documents, health care informatics and the Web itself are about to change. The intent of the recently formed ASTM E31.25 subcommittee, "XML DTDs for Health Care", is to develop standard electronic document representations of paper-based health care documents and forms. A goal of the subcommittee is to work together to enhance existing levels of interoperability among the various XML/SGML standardization efforts, products and systems in health care. The ASTM E31.25 subcommittee uses common practices and software standards to develop the implementation recommendations for XML documents in health care. The implementation recommendations are being developed to standardize the many different structures of documents. These recommendations are in the form of a set of standard DTDs, or document type definitions that match the electronic document requirements in the health care industry. This paper discusses recent efforts of the ASTM E31.25 subcommittee. PMID:10566338
Composites incorporated a conductive polymer nanofiber network
Pozzo, Lilo Danielle; Newbloom, Gregory
2017-04-11
Methods of forming composites that incorporate networks of conductive polymer nanofibers are provided. Networks of less-than conductive polymers are first formed and then doped with a chemical dopant to provide networks of conductive polymers. The networks of conductive polymers are then incorporated into a matrix in order to improve the conductivity of the matrix. The formed composites are useful as conductive coatings for applications including electromagnetic energy management on exterior surfaces of vehicles.
From scale-free to Erdos-Rényi networks.
Gómez-Gardeñes, Jesús; Moreno, Yamir
2006-05-01
We analyze a model that interpolates between scale-free and Erdos-Rényi networks. The model introduced generates a one-parameter family of networks and allows one to analyze the role of structural heterogeneity. Analytical calculations are compared with extensive numerical simulations in order to describe the transition between these two important classes of networks. Finally, an application of the proposed model to the study of the percolation transition is presented.
Motivation: Molecular pathways and networks play a key role in basic and disease biology. An emerging notion is that networks encoding patterns of molecular interplay may themselves differ between contexts, such as cell type, tissue or disease (sub)type. However, while statistical testing of differences in mean expression levels has been extensively studied, testing of network differences remains challenging.
Extension of a System Level Tool for Component Level Analysis
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Schallhorn, Paul
2002-01-01
This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.
Extension of a System Level Tool for Component Level Analysis
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Schallhorn, Paul; McConnaughey, Paul K. (Technical Monitor)
2001-01-01
This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow, and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
... Collection Activities: Form N-644, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form N- 644, Application for Posthumous...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... Collection Activities: Form N-426, Extension of a Currently Approved Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection Under Review: Form N- 426, Request for Certification of... whether to revise the Form N-426. Should USCIS decide to revise Form N-426 we will advise the public when...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... Collection Activities: Form N-400; Extension of an Existing Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection Under Review; Form N- 400, Application for Naturalization... the Form N-400. Should USCIS decide to revise Form N-400 we will advise the public when we publish the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... Collection Activities: Form N-470; Extension of an Existing Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection Under Review; Form N- 470, Application To Preserve Residence... evaluating whether to revise the Form N-470. Should USCIS decide to revise Form N-470 we will advise the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... Collection Activities: Form N-644, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form N- 644, Application for Posthumous... Homeland Security sponsoring the collection: Form N-644; U.S. Citizenship and Immigration Services (USCIS...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... Collection Activities: Form N-400, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form N- 400, Application for Naturalization... Security sponsoring the collection: Form N-400; U.S. Citizenship and Immigration Services (USCIS). (4...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
... Collection Activities: Form G-639, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form G- 639, Freedom of Information/Privacy... technological collection techniques or other forms of information technology, e.g., permitting electronic...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-07
... Collection Activities: Form G-646, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form G- 646, Sworn Statement of Refugee... technological collection techniques or other forms of information technology, e.g., permitting electronic...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... Collection Activities: Form G-646, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form G- 646, Sworn Statement of Refugee... technological collection techniques or other forms of information technology, e.g., permitting electronic...
1987-12-01
Synchronization and Data Passing Mechanism ........ 50 4. System Shut Down .................................................................. 51 5...high performance, fault tolerance, and extensibility. These features are attained by synchronizing and coordinating the dis- tributed multicomputer... synchronizing all processors in the network. In a multitransputer network, processes that communicate with each other do so synchronously . This makes
Neural network modeling of nonlinear systems based on Volterra series extension of a linear model
NASA Technical Reports Server (NTRS)
Soloway, Donald I.; Bialasiewicz, Jan T.
1992-01-01
A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.
Stochastic Geometric Network Models for Groups of Functional and Structural Connectomes
Friedman, Eric J.; Landsberg, Adam S.; Owen, Julia P.; Li, Yi-Ou; Mukherjee, Pratik
2014-01-01
Structural and functional connectomes are emerging as important instruments in the study of normal brain function and in the development of new biomarkers for a variety of brain disorders. In contrast to single-network studies that presently dominate the (non-connectome) network literature, connectome analyses typically examine groups of empirical networks and then compare these against standard (stochastic) network models. Current practice in connectome studies is to employ stochastic network models derived from social science and engineering contexts as the basis for the comparison. However, these are not necessarily best suited for the analysis of connectomes, which often contain groups of very closely related networks, such as occurs with a set of controls or a set of patients with a specific disorder. This paper studies important extensions of standard stochastic models that make them better adapted for analysis of connectomes, and develops new statistical fitting methodologies that account for inter-subject variations. The extensions explicitly incorporate geometric information about a network based on distances and inter/intra hemispherical asymmetries (to supplement ordinary degree-distribution information), and utilize a stochastic choice of networks' density levels (for fixed threshold networks) to better capture the variance in average connectivity among subjects. The new statistical tools introduced here allow one to compare groups of networks by matching both their average characteristics and the variations among them. A notable finding is that connectomes have high “smallworldness” beyond that arising from geometric and degree considerations alone. PMID:25067815
Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks.
Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang
2016-11-06
Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.
Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks
Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang
2016-01-01
Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture. PMID:27827971
Limit of a nonpreferential attachment multitype network model
NASA Astrophysics Data System (ADS)
Shang, Yilun
2017-02-01
Here, we deal with a model of multitype network with nonpreferential attachment growth. The connection between two nodes depends asymmetrically on their types, reflecting the implication of time order in temporal networks. Based upon graph limit theory, we analytically determined the limit of the network model characterized by a kernel, in the sense that the number of copies of any fixed subgraph converges when network size tends to infinity. The results are confirmed by extensive simulations. Our work thus provides a theoretical framework for quantitatively understanding grown temporal complex networks as a whole.
Technologies for unattended network operations
NASA Technical Reports Server (NTRS)
Jaworski, Allan; Odubiyi, Jide; Holdridge, Mark; Zuzek, John
1991-01-01
The necessary network management functions for a telecommunications, navigation and information management (TNIM) system in the framework of an extension of the ISO model for communications network management are described. Various technologies that could substantially reduce the need for TNIM network management, automate manpower intensive functions, and deal with synchronization and control at interplanetary distances are presented. Specific technologies addressed include the use of the ISO Common Management Interface Protocol, distributed artificial intelligence for network synchronization and fault management, and fault-tolerant systems engineering.
Sociospace: A smart social framework based on the IP Multimedia Subsystem
NASA Astrophysics Data System (ADS)
Hasswa, Ahmed
Advances in smart technologies, wireless networking, and increased interest in contextual services have led to the emergence of ubiquitous and pervasive computing as one of the most promising areas of computing in recent years. Smart Spaces, in particular, have gained significant interest within the research community. Currently, most Smart Spaces rely on physical components, such as sensors, to acquire information about the real-world environment. Although current sensor networks can acquire some useful contextual information from the physical environment, their information resources are often limited, and the data acquired is often unreliable. We argue that by introducing social network information into such systems, smarter and more adaptive spaces can be created. Social networks have recently become extremely popular, and are now an integral part of millions of people's daily lives. Through social networks, users create profiles, build relationships, and join groups, forming intermingled sets and communities. Social Networks contain a wealth of information, which, if exploited properly, can lead to a whole new level of smart contextual services. A mechanism is therefore needed to extract data from heterogeneous social networks, to link profiles across different networks, and to aggregate the data obtained. We therefore propose the design and implementation of a Smart Spaces framework that utilizes the social context. In order to manage services and sessions, we integrate our system with the IP Multimedia Subsystem. Our system, which we call SocioSpace, includes full design and implementation of all components, including the central server, the location management system, the social network interfacing system, the service delivery platform, and user agents. We have built a prototype for proof of concept and carried out exhaustive performance analysis; the results show that SocioSpace is scalable, extensible, and fault-tolerant. It is capable of creating Smart Spaces that can truly deliver adaptive services that enhance the users' overall experience, increase their satisfaction, and make the surroundings more beneficial and interesting to them.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
...: 60-Day Notice of Information Collection Under Review: Form I- 602, Application by Refugee for Waiver...: Extension of an existing information collection. (2) Title of the Form/Collection: Application by Refugee...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-15
... ACTION: 30-Day Notice of Information Collection Under Review: Form I- 526, Immigrant Petition by Alien...: Extension of an existing information collection. (2) Title of the Form/Collection: Immigrant Petition by...
Machine Learning and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Chapline, George
The author has previously pointed out some similarities between selforganizing neural networks and quantum mechanics. These types of neural networks were originally conceived of as away of emulating the cognitive capabilities of the human brain. Recently extensions of these networks, collectively referred to as deep learning networks, have strengthened the connection between self-organizing neural networks and human cognitive capabilities. In this note we consider whether hardware quantum devices might be useful for emulating neural networks with human-like cognitive capabilities, or alternatively whether implementations of deep learning neural networks using conventional computers might lead to better algorithms for solving the many body Schrodinger equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasari, Venkat; Sadlier, Ronald J; Geerhart, Mr. Billy
Well-defined and stable quantum networks are essential to realize functional quantum applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. We develop new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.
NASA Astrophysics Data System (ADS)
Sword-Daniels, V. L.; Rossetto, T.; Wilson, T. M.; Sargeant, S.
2015-05-01
The essential services that support urban living are complex and interdependent, and their disruption in disasters directly affects society. Yet there are few empirical studies to inform our understanding of the vulnerabilities and resilience of complex infrastructure systems in disasters. This research takes a systems thinking approach to explore the dynamic behaviour of a network of essential services, in the presence and absence of volcanic ashfall hazards in Montserrat, West Indies. Adopting a case study methodology and qualitative methods to gather empirical data, we centre the study on the healthcare system and its interconnected network of essential services. We identify different types of relationship between sectors and develop a new interdependence classification system for analysis. Relationships are further categorised by hazard conditions, for use in extensive risk contexts. During heightened volcanic activity, relationships between systems transform in both number and type: connections increase across the network by 41%, and adapt to increase cooperation and information sharing. Interconnections add capacities to the network, increasing the resilience of prioritised sectors. This in-depth and context-specific approach provides a new methodology for studying the dynamics of infrastructure interdependence in an extensive risk context, and can be adapted for use in other hazard contexts.
NASA Astrophysics Data System (ADS)
Sword-Daniels, V. L.; Rossetto, T.; Wilson, T. M.; Sargeant, S.
2015-02-01
The essential services that support urban living are complex and interdependent, and their disruption in disasters directly affects society. Yet there are few empirical studies to inform our understanding of the vulnerabilities and resilience of complex infrastructure systems in disasters. This research takes a systems thinking approach to explore the dynamic behaviour of a network of essential services, in the presence and absence of volcanic ashfall hazards in Montserrat, West Indies. Adopting a case study methodology and qualitative methods to gather empirical data we centre the study on the healthcare system and its interconnected network of essential services. We identify different types of relationship between sectors and develop a new interdependence classification system for analysis. Relationships are further categorised by hazard condition, for use in extensive risk contexts. During heightened volcanic activity, relationships between systems transform in both number and type: connections increase across the network by 41%, and adapt to increase cooperation and information sharing. Interconnections add capacities to the network, increasing the resilience of prioritised sectors. This in-depth and context-specific approach provides a new methodology for studying the dynamics of infrastructure interdependence in an extensive risk context, and can be adapted for use in other hazard contexts.
CUFID-query: accurate network querying through random walk based network flow estimation.
Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun
2017-12-28
Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive performance evaluation based on biological networks with known functional modules, we show that CUFID-query outperforms the existing state-of-the-art algorithms in terms of prediction accuracy and biological significance of the predictions.
Applications of Social Network Analysis
NASA Astrophysics Data System (ADS)
Thilagam, P. Santhi
A social network [2] is a description of the social structure between actors, mostly persons, groups or organizations. It indicates the ways in which they are connected with each other by some relationship such as friendship, kinship, finance exchange etc. In a nutshell, when the person uses already known/unknown people to create new contacts, it forms social networking. The social network is not a new concept rather it can be formed when similar people interact with each other directly or indirectly to perform particular task. Examples of social networks include a friendship networks, collaboration networks, co-authorship networks, and co-employees networks which depict the direct interaction among the people. There are also other forms of social networks, such as entertainment networks, business Networks, citation networks, and hyperlink networks, in which interaction among the people is indirect. Generally, social networks operate on many levels, from families up to the level of nations and assists in improving interactive knowledge sharing, interoperability and collaboration.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... Collection Activities: Refugee/Asylee Relative Petition, Extension, Without Change, of a Currently Approved Collection ACTION: 60-Day Notice of Information Collection Under Review: Form I- 730, Refugee/Asylee Relative...: Extension, without change, of a currently approved collection. (2) Title of the Form/Collection: Refugee...
Pandini, Alessandro; Kleinjung, Jens; Rasool, Shafqat; Khan, Shahid
2015-01-01
Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) “torque” helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity. PMID:26561852
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
...-0113] Agency Information Collection Activities: InfoPass System, No Form Number; Extension, Without...) Title of the Form/Collection: InfoPass System. (3) Agency form number, if any, and the applicable... InfoPass system allows an applicant or petitioner to schedule an interview appointment with USCIS...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... Collection Activities: Form N-600, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form N- 600, Application for Certificate of... Homeland Security sponsoring the collection: Form N-600; U.S. Citizenship and Immigration Services (USCIS...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
... Collection Activities: Form N-470, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form N- 470, Application to Preserve... collection: Form N-470; U.S. Citizenship and Immigration Services (USCIS). (4) Affected public who will be...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
... Collection Activities: Form N-426, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form N- 426, Request for Certification of... Department of Homeland Security sponsoring the collection: Form N-426. U.S. Citizenship and Immigration...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-19
... Collection Activities: Form N-644; Extension of an Existing Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection Under Review: Form N- 644, Application for Posthumous... 60 days until June 20, 2011 this 60-day period, USCIS will be evaluating whether to revise the Form N...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-01
... Collection Activities: Form N-565, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-day notice of information collection under review: Form N- 565, Application for Replacement... collection: Form N-565; U.S. Citizenship and Immigration Services (USCIS). (4) Affected public who will be...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... Collection Activities: Form N-336, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form N- 336, Request for Hearing on a... Security sponsoring the collection: Form N-336; U.S. Citizenship and Immigration Services (USCIS). (4...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
...-0050] Agency Information Collection Activities: Form N-336; Extension of an Existing Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection under Review; Form N- 336..., 2010. During this 60 day period, USCIS will be evaluating whether to revise the Form N-336. Should...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... Collection Activities: Form N-644; Extension of an Existing Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection Under Review; Form N- 644, Application for Posthumous... until June 21, 2010. During this 60 day period, USCIS will be evaluating whether to revise the Form N...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... Collection Activities: Form N-400, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form N- 400, Application for Naturalization... sponsoring the collection: Form N-400. U.S. Citizenship and Immigration Services. (4) Affected public who...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
...: 30-Day Notice of Information Collection Under Review: Form I- 212, Application for Permission to...: Extension of an existing information collection. (2) Title of the Form/Collection: Application for Permission to Reapply for Admission into the United States after Deportation or Removal. (3) Agency form...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-20
... Collection Activities: Form AR-11, Extension of an Existing Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection under Review: Form AR- 11, Alien's Change of Address Card... collection: Form AR-11. U.S. Citizenship and Immigration Services. (4) Affected public who will be asked or...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-07
... ACTION: 60-Day Notice of Information Collection Under Review: Form I- 829, Petition by Entrepreneur to...: Extension of an existing information collection. (2) Title of the Form/Collection: Petition by Entrepreneur...: Individuals and households. This form is used by a conditional resident alien entrepreneur who obtained such...
75 FR 42177 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... SECURITIES AND EXCHANGE COMMISSION [Form N-SAR; SEC File No. 270-292; OMB Control No. 3235-0330... Commission, Office of Investor Education and Advocacy, Washington, DC 20549-0213. Extension: Form N-SAR, SEC... extension and approval. Form N-SAR (OMB Control No. 3235-0330, 17 CFR 249.330) is the form used by all...
Relun, Anne; Grosbois, Vladimir; Alexandrov, Tsviatko; Sánchez-Vizcaíno, Jose M; Waret-Szkuta, Agnes; Molia, Sophie; Etter, Eric Marcel Charles; Martínez-López, Beatriz
2017-01-01
In most European countries, data regarding movements of live animals are routinely collected and can greatly aid predictive epidemic modeling. However, the use of complete movements' dataset to conduct policy-relevant predictions has been so far limited by the massive amount of data that have to be processed (e.g., in intensive commercial systems) or the restricted availability of timely and updated records on animal movements (e.g., in areas where small-scale or extensive production is predominant). The aim of this study was to use exponential random graph models (ERGMs) to reproduce, understand, and predict pig trade networks in different European production systems. Three trade networks were built by aggregating movements of pig batches among premises (farms and trade operators) over 2011 in Bulgaria, Extremadura (Spain), and Côtes-d'Armor (France), where small-scale, extensive, and intensive pig production are predominant, respectively. Three ERGMs were fitted to each network with various demographic and geographic attributes of the nodes as well as six internal network configurations. Several statistical and graphical diagnostic methods were applied to assess the goodness of fit of the models. For all systems, both exogenous (attribute-based) and endogenous (network-based) processes appeared to govern the structure of pig trade network, and neither alone were capable of capturing all aspects of the network structure. Geographic mixing patterns strongly structured pig trade organization in the small-scale production system, whereas belonging to the same company or keeping pigs in the same housing system appeared to be key drivers of pig trade, in intensive and extensive production systems, respectively. Heterogeneous mixing between types of production also explained a part of network structure, whichever production system considered. Limited information is thus needed to capture most of the global structure of pig trade networks. Such findings will be useful to simplify trade networks analysis and better inform European policy makers on risk-based and more cost-effective prevention and control against swine diseases such as African swine fever, classical swine fever, or porcine reproductive and respiratory syndrome.
Code of Federal Regulations, 2011 CFR
2011-04-01
... year and check the appropriate box on Form 4868, “Application for Automatic Extension of Time To File a U.S. Individual Income Tax Return,” or Form 7004, “Application for Automatic Extension of Time to... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Extensions of time in the case of certain...
NASA Astrophysics Data System (ADS)
Ishizu, Tomohiro; Sakamoto, Yasuhiro
2017-07-01
In this extensive and valuable theoretical article, Pelowski et al. propose a psychological architecture in art appreciation by introducing the concepts of early/bottom-up and relatively late/top-down stages. The former is dictated as automatic processing on perceptual features of visual images, while the latter comprises cognitive and evaluative processes where modulations from acquired knowledge and memories come into play with recurrent loops to form final experiences, as well as brain areas/networks which possibly have a role in each processing component [9].
ERIC Educational Resources Information Center
Rios-Aguilar, Cecilia; Deil-Amen, Regina
2012-01-01
Social network analyses, combined with qualitative analyses, are examined to understand key components of the college trajectories of 261 Latina/o students. Their social network ties reveal variation in extensity and the relevance. Most ties facilitate social capital relevant to getting into college, fewer engage social capital relevant to…
ERIC Educational Resources Information Center
Hayajneh, Thaier Saleh
2009-01-01
Wireless ad hoc networks are suitable and sometimes the only solution for several applications. Many applications, particularly those in military and critical civilian domains (such as battlefield surveillance and emergency rescue) require that ad hoc networks be secure and stable. In fact, security is one of the main barriers to the extensive use…
NASA Astrophysics Data System (ADS)
Pratt, K.; Fellowes, J.; Giovannelli, D.; Stagno, V.
2016-12-01
Building a network of collaborators and colleagues is a key professional development activity for early career scientists (ECS) dealing with a challenging job market. At large conferences, young scientists often focus on interacting with senior researchers, competing for a small number of positions in leading laboratories. However, building a strong, international network amongst their peers in related disciplines is often as valuable in the long run. The Deep Carbon Observatory (DCO) began funding a series of workshops in 2014 designed to connect early career researchers within its extensive network of multidisciplinary scientists. The workshops, by design, are by and for early career scientists, thus removing any element of competition and focusing on peer-to-peer networking, collaboration, and creativity. The successful workshops, organized by committees of early career deep carbon scientists, have nucleated a lively community of like-minded individuals from around the world. Indeed, the organizers themselves often benefit greatly from the leadership experience of pulling together an international workshop on budget and on deadline. We have found that a combination of presentations from all participants in classroom sessions, professional development training such as communication and data management, and field-based relationship building and networking is a recipe for success. Small groups within the DCO ECS network have formed; publishing papers together, forging new research directions, and planning novel and ambitious field campaigns. Many DCO ECS also have come together to convene sessions at major international conferences, including the AGU Fall Meeting. Most of all, there is a broad sense of camaraderie and accessibility within the DCO ECS Community, providing the foundation for a career in the new, international, and interdisciplinary field of deep carbon science.
Hönes, Roland; Rühe, Jürgen
2018-05-08
Metallic superhydrophobic surfaces (SHSs) combine the attractive properties of metals, such as ductility, hardness, and conductivity, with the favorable wetting properties of nanostructured surfaces. Moreover, they promise additional benefits with respect to corrosion protection. For the modification of the intrinsically polar and hydrophilic surfaces of metals, a new method has been developed to deposit a long-term stable, highly hydrophobic coating, using nanostructured Ni surfaces as an example. Such substrates were chosen because the deposition of a thin Ni layer is a common choice for enhancing corrosion resistance of other metals. As the hydrophobic coating, we propose a thin film of an extremely hydrophobic fluoropolymer network. To form this network, a thin layer of a fluoropolymer precursor is deposited on the Ni substrate which includes a comonomer that is capable of C,H insertion cross-linking (CHic). Upon UV irradiation or heating, the cross-linker units become activated and the thin glassy film of the precursor is transformed into a polymer network that coats the surface conformally and permanently, as shown by extensive extraction experiments. To achieve an even higher stability, the same precursor film can also be transformed into a chemically surface-attached network by depositing a self-assembled monolayer of an alkane phosphonic acid on the Ni before coating with the precursor. During cross-linking, by the same chemical process, the growing polymer network will simultaneously attach to the alkane phosphonic acid layer at the surface of the metal. This strategy has been used to turn fractal Ni "nanoflower" surfaces grown by anisotropic electroplating into SHSs. The wetting characteristics of the obtained nanostructured metallic surfaces are studied. Additionally, the corrosion protection effect and the significant mechanical durability are demonstrated.
Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
Burbank, Kendra S
2015-12-01
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field's Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.
Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons
Burbank, Kendra S.
2015-01-01
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field’s Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks. PMID:26633645
Cerebral cartography and connectomics.
Sporns, Olaf
2015-05-19
Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Structural health monitoring system for bridges based on skin-like sensor
NASA Astrophysics Data System (ADS)
Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd
2017-09-01
Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.
Integrated metagenomics and network analysis of soil microbial community of the forest timberline
Ding, Junjun; Zhang, Yuguang; Deng, Ye; Cong, Jing; Lu, Hui; Sun, Xin; Yang, Caiyun; Yuan, Tong; Van Nostrand, Joy D.; Li, Diqiang; Zhou, Jizhong; Yang, Yunfeng
2015-01-01
The forest timberline responds quickly and markedly to climate changes, rendering it a ready indicator. Climate warming has caused an upshift of the timberline worldwide. However, the impact on belowground ecosystem and biogeochemical cycles remain elusive. To understand soil microbial ecology of the timberline, we analyzed microbial communities via 16s rRNA Illumina sequencing, a microarray-based tool named GeoChip 4.0 and a random matrix theory-based association network approach. We selected 24 sampling sites at two vegetation belts forming the timberline of Shennongjia Mountain in Hubei Province of China, a region with extraordinarily rich biodiversity. We found that temperature, among all of measured environmental parameters, showed the most significant and extensive linkages with microbial biomass, microbial diversity and composition at both taxonomic and functional gene levels, and microbial association network. Therefore, temperature was the best predictor for microbial community variations in the timberline. Furthermore, abundances of nitrogen cycle and phosphorus cycle genes were concomitant with NH4+-N, NO3−-N and total phosphorus, offering tangible clues to the underlying mechanisms of soil biogeochemical cycles. As the first glimpse at both taxonomic and functional compositions of soil microbial community of the timberline, our findings have major implications for predicting consequences of future timberline upshift. PMID:25613225
Brittain, John-Stuart; Brown, Peter
2013-12-01
Tremor represents one of the most prominent examples of aberrant synchronisation within the human motor system, and Essential Tremor (ET) is by far the most common tremor disorder. Yet, even within ET there is considerable variation, and patients may have contrasting amounts of postural and intention tremor. Recently, Pedrosa et al. (2013) challenged tremor circuits in a cohort of patients presenting with ET, by applying low-frequency deep brain stimulation within thalamus. This interventional approach provided strong evidence that distinct (yet possibly overlapping) neural substrates are responsible for postural and intention tremor in ET. Intention tremor, and not postural tremor, was exacerbated by low frequency stimulation, and the effect was localised in the region of the ventrolateral thalamus in such a way as to implicate cerebello-thalamic pathways. These results, taken in conjunction with the contemporary literature, reveal that pathological changes exaggerate oscillatory synchrony in selective components of an extensive and distributed motor network, and that synchronisation within these networks is further regulated according to motor state. Through a combination of pathological and more dynamic physiological factors, activity then spills out into the periphery in the form of tremor. The findings of Pedrosa et al. (2013) are timely as they coincide with an emerging notion that tremor may result through selective dysregulation within a broader tremorgenic network. © 2013.
3D simulations of early blood vessel formation
NASA Astrophysics Data System (ADS)
Cavalli, F.; Gamba, A.; Naldi, G.; Semplice, M.; Valdembri, D.; Serini, G.
2007-08-01
Blood vessel networks form by spontaneous aggregation of individual cells migrating toward vascularization sites (vasculogenesis). A successful theoretical model of two-dimensional experimental vasculogenesis has been recently proposed, showing the relevance of percolation concepts and of cell cross-talk (chemotactic autocrine loop) to the understanding of this self-aggregation process. Here we study the natural 3D extension of the computational model proposed earlier, which is relevant for the investigation of the genuinely three-dimensional process of vasculogenesis in vertebrate embryos. The computational model is based on a multidimensional Burgers equation coupled with a reaction diffusion equation for a chemotactic factor and a mass conservation law. The numerical approximation of the computational model is obtained by high order relaxed schemes. Space and time discretization are performed by using TVD schemes and, respectively, IMEX schemes. Due to the computational costs of realistic simulations, we have implemented the numerical algorithm on a cluster for parallel computation. Starting from initial conditions mimicking the experimentally observed ones, numerical simulations produce network-like structures qualitatively similar to those observed in the early stages of in vivo vasculogenesis. We develop the computation of critical percolative indices as a robust measure of the network geometry as a first step towards the comparison of computational and experimental data.
Structure constrained by metadata in networks of chess players.
Almeira, Nahuel; Schaigorodsky, Ana L; Perotti, Juan I; Billoni, Orlando V
2017-11-09
Chess is an emblematic sport that stands out because of its age, popularity and complexity. It has served to study human behavior from the perspective of a wide number of disciplines, from cognitive skills such as memory and learning, to aspects like innovation and decision-making. Given that an extensive documentation of chess games played throughout history is available, it is possible to perform detailed and statistically significant studies about this sport. Here we use one of the most extensive chess databases in the world to construct two networks of chess players. One of the networks includes games that were played over-the-board and the other contains games played on the Internet. We study the main topological characteristics of the networks, such as degree distribution and correlations, transitivity and community structure. We complement the structural analysis by incorporating players' level of play as node metadata. Although both networks are topologically different, we show that in both cases players gather in communities according to their expertise and that an emergent rich-club structure, composed by the top-rated players, is also present.
Strain accumulation in southern California, 1973-1980.
Savage, J.C.; Prescott, W.H.; Lisowski, M.; King, N.E.
1981-01-01
Frequent surveys of seven trilateration networks in southern California over the interval 1973-1980 suggest that a regional increment in strain may have occurred in 1978-1979. Prior to 1978 and after late 1979 the strain accumulation has been predominantly a uniaxial north-south compression. This secular trend was interrupted sometime in 1978-1979 by an increment in both north-south and east-west extension in five of the seven networks. The onset of this change appears to have occurred first in the networks farthest south. The changes occurred without any unusual seismicity within the networks, but the overall seismicity in southern California was unusually low prior to and has been unusually high since the occurrence. The average principal strain rates for the seven networks in the 1973-1980 interval are 0.17 mu strain/yr north- south contraction and 0.08 mu strain/yr east-west extension. Although the observed increment in strain could be related to unidentified systematic error in the measuring system, a careful review of the measurements and comparisons with three other measuring systems reveal no appreciable cumulative systematic error. -Authors
Free space optics: a viable last-mile alternative
NASA Astrophysics Data System (ADS)
Willebrand, Heinz A.; Clark, Gerald R.
2001-10-01
This paper explores Free Space Optics (FSO) as an access technology in the last mile of metropolitan area networks (MANs). These networks are based in part on fiber-optic telecommunications infrastructure, including network architectures of Synchronous Optical Network (commonly referred to as SONET), the North American standard for synchronous data transmission; and Synchronous Digital Hierarchy (commonly referred to as SDH), the international standard and equivalent of SONET. Several converging forces have moved FSO beyond a niche technology for use only in local area networks (LANs) as a bridge connecting two facilities. FSO now allows service providers to cost effectively provide optical bandwidth for access networks and accelerate the extension of metro optical networks bridging what has been termed by industry experts as the optical dead zone. The optical dead zone refers to both the slowdown in capital investment in the short-term future and the actual connectivity gap that exists today between core metro optical networks and the access optical networks. Service providers have built extensive core and minimal metro networks but have not yet provided optical bandwidth to the access market largely due to the non-compelling economics to bridge the dead zone with fiber. Historically, such infrastructure build-out slowdowns have been blamed on a combination of economics, time-to-market constraints and limited technology options. However, new technology developments and market acceptance of FSO give service providers a new cost-effective alternative to provide high-bandwidth services with optical bandwidth in the access networks. Merrill Lynch predicts FSO will grow into a $2 billion market by 2005. The drivers for this market are a mere 5%- 6% penetration of fiber to business buildings; cost effective solution versus RF or fiber; and significant capacity which can only be matched by a physical fiber link, Merrill Lynch reports. This paper will describe FSO technology, its capabilities and its limitations. The paper will investigate how FSO technology has evolved to its current stage for deployment in MANs, LANs, wireless backhaul and metropolitan network extensions - applications that fall within the category of last mile. The paper will address the market, drivers and the adoption of FSO, plus provide a projection of future FSO technology, based on today's product roadmaps. The paper concludes with a summary of findings and recommendations.
The dynamics of social networks among female Asian elephants
2011-01-01
Background Patterns in the association of individuals can shed light on the underlying conditions and processes that shape societies. Here we characterize patterns of association in a population of wild Asian Elephants at Uda Walawe National Park in Sri Lanka. We observed 286 individually-identified adult female elephants over 20 months and examined their social dynamics at three levels of organization: pairs of individuals (dyads), small sets of direct companions (ego-networks), and the population level (complete networks). Results Corroborating previous studies of this and other Asian elephant populations, we find that the sizes of elephant groups observed in the field on any particular day are typically small and that rates of association are low. In contrast to earlier studies, our longitudinal observations reveal that individuals form larger social units that can be remarkably stable across years while associations among such units change across seasons. Association rates tend to peak in dry seasons as opposed to wet seasons, with some cyclicity at the level of dyads. In addition, we find that individuals vary substantially in their fidelity to companions. At the ego-network level, we find that despite these fluctuations, individuals associate with a pool of long-term companions. At the population level, social networks do not exhibit any clear seasonal structure or hierarchical stratification. Conclusions This detailed longitudinal study reveals different social dynamics at different levels of organization. Taken together, these results demonstrate that low association rates, seemingly small group sizes, and fission-fusion grouping behavior mask hidden stability in the extensive and fluid social affiliations in this population of Asian elephants. PMID:21794147
Multi-Objective Community Detection Based on Memetic Algorithm
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646
Multi-objective community detection based on memetic algorithm.
Wu, Peng; Pan, Li
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.
Sánchez-Soriano, Natalia; Gonçalves-Pimentel, Catarina; Beaven, Robin; Haessler, Ulrike; Ofner-Ziegenfuss, Lisa; Ballestrem, Christoph; Prokop, Andreas
2010-01-01
The formation of neuronal networks, during development and regeneration, requires outgrowth of axons along reproducible paths toward their appropriate postsynaptic target cells. Axonal extension occurs at growth cones (GCs) at the tips of axons. GC advance and navigation requires the activity of their cytoskeletal networks, comprising filamentous actin (F-actin) in lamellipodia and filopodia as well as dynamic microtubules (MTs) emanating from bundles of the axonal core. The molecular mechanisms governing these two cytoskeletal networks, their cross-talk, and their response to extracellular signaling cues are only partially understood, hindering our conceptual understanding of how regulated changes in GC behavior are controlled. Here, we introduce Drosophila GCs as a suitable model to address these mechanisms. Morphological and cytoskeletal readouts of Drosophila GCs are similar to those of other models, including mammals, as demonstrated here for MT and F-actin dynamics, axonal growth rates, filopodial structure and motility, organizational principles of MT networks, and subcellular marker localization. Therefore, we expect fundamental insights gained in Drosophila to be translatable into vertebrate biology. The advantage of the Drosophila model over others is its enormous amenability to combinatorial genetics as a powerful strategy to address the complexity of regulatory networks governing axonal growth. Thus, using pharmacological and genetic manipulations, we demonstrate a role of the actin cytoskeleton in a specific form of MT organization (loop formation), known to regulate GC pausing behavior. We demonstrate these events to be mediated by the actin-MT linking factor Short stop, thus identifying an essential molecular player in this context.
Enzymes and other agents that enhance cell wall extensibility
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1999-01-01
Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.
ERIC Educational Resources Information Center
Seboka, B.; Deressa, A.
2000-01-01
Indigenous social networks of Ethiopian farmers participate in seed exchange based on mutual interdependence and trust. A government-imposed extension program must validate the role of local seed systems in developing a national seed industry. (SK)
Visualizing Transmedia Networks: Links, Paths and Peripheries
ERIC Educational Resources Information Center
Ruppel, Marc Nathaniel
2012-01-01
'Visualizing Transmedia Networks: Links, Paths and Peripheries' examines the increasingly complex rhetorical intersections between narrative and media ("old" and "new") in the creation of transmedia fictions, loosely defined as multisensory and multimodal stories told extensively across a diverse media set. In order…
Social Network Structures among Groundnut Farmers
ERIC Educational Resources Information Center
Thuo, Mary; Bell, Alexandra A.; Bravo-Ureta, Boris E.; Okello, David K.; Okoko, Evelyn Nasambu; Kidula, Nelson L.; Deom, C. Michael; Puppala, Naveen
2013-01-01
Purpose: Groundnut farmers in East Africa have experienced declines in production despite research and extension efforts to increase productivity. This study examined how social network structures related to acquisition of information about new seed varieties and productivity among groundnut farmers in Uganda and Kenya.…
Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors.
Zhou, X Edward; He, Yuanzheng; de Waal, Parker W; Gao, Xiang; Kang, Yanyong; Van Eps, Ned; Yin, Yanting; Pal, Kuntal; Goswami, Devrishi; White, Thomas A; Barty, Anton; Latorraca, Naomi R; Chapman, Henry N; Hubbell, Wayne L; Dror, Ron O; Stevens, Raymond C; Cherezov, Vadim; Gurevich, Vsevolod V; Griffin, Patrick R; Ernst, Oliver P; Melcher, Karsten; Xu, H Eric
2017-07-27
G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular β sheet with the N-terminal β strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to β-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.
3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh.
Kim, Min Sung; Lee, Byungjun; Kim, Hong Nam; Bang, Seokyoung; Yang, Hee Seok; Kang, Seong Min; Suh, Kahp-Yang; Park, Suk-Hee; Jeon, Noo Li
2017-03-23
We present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 µm. When human umbilical vein endothelial cells (HUVECs), human foreskin dermal fibroblasts, and skeletal muscle cells (C2C12) were cultured on the nanofiber mesh, they formed confluent monolayers and could be handled as continuous cell sheets with areas 3 × 3 cm 2 or larger. Thicker 3D tissues have been formed by stacking multiple cell sheets collected on frames that can be nested (i.e. Matryoshka dolls) without any special tools. When cultured on the nanofiber mesh, skeletal muscle, C2C12 cells oriented along the direction of the nanofibers and differentiated into uniaxially aligned multinucleated myotube. Myotube cell sheets were stacked (upto 3 layers) in alternating or aligned directions to form thicker tissue with ∼50 µm thickness. Sandwiching HUVEC cell sheets with two dermal fibroblast cell sheets resulted in vascularized 3D tissue. HUVECs formed extensive networks and expressed CD31, a marker of endothelial cells. Cell sheets formed on nanofiber mesh have a number of advantages, including manipulation and stacking of multiple cell sheets for constructing 3D tissue and may find applications in a variety of tissue engineering applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... Collection Activities: Form G-639; Extension of an Existing Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection Under Review; Form G- 639, Freedom of Information/Privacy Act... until July 6, 2010. During this 60 day period, USCIS will be evaluating whether to revise the Form G-639...
Using Reputation Systems and Non-Deterministic Routing to Secure Wireless Sensor Networks
Moya, José M.; Vallejo, Juan Carlos; Fraga, David; Araujo, Álvaro; Villanueva, Daniel; de Goyeneche, Juan-Mariano
2009-01-01
Security in wireless sensor networks is difficult to achieve because of the resource limitations of the sensor nodes. We propose a trust-based decision framework for wireless sensor networks coupled with a non-deterministic routing protocol. Both provide a mechanism to effectively detect and confine common attacks, and, unlike previous approaches, allow bad reputation feedback to the network. This approach has been extensively simulated, obtaining good results, even for unrealistically complex attack scenarios. PMID:22412345
The Human Thalamus Is an Integrative Hub for Functional Brain Networks
Bertolero, Maxwell A.
2017-01-01
The thalamus is globally connected with distributed cortical regions, yet the functional significance of this extensive thalamocortical connectivity remains largely unknown. By performing graph-theoretic analyses on thalamocortical functional connectivity data collected from human participants, we found that most thalamic subdivisions display network properties that are capable of integrating multimodal information across diverse cortical functional networks. From a meta-analysis of a large dataset of functional brain-imaging experiments, we further found that the thalamus is involved in multiple cognitive functions. Finally, we found that focal thalamic lesions in humans have widespread distal effects, disrupting the modular organization of cortical functional networks. This converging evidence suggests that the human thalamus is a critical hub region that could integrate diverse information being processed throughout the cerebral cortex as well as maintain the modular structure of cortical functional networks. SIGNIFICANCE STATEMENT The thalamus is traditionally viewed as a passive relay station of information from sensory organs or subcortical structures to the cortex. However, the thalamus has extensive connections with the entire cerebral cortex, which can also serve to integrate information processing between cortical regions. In this study, we demonstrate that multiple thalamic subdivisions display network properties that are capable of integrating information across multiple functional brain networks. Moreover, the thalamus is engaged by tasks requiring multiple cognitive functions. These findings support the idea that the thalamus is involved in integrating information across cortical networks. PMID:28450543
Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.
Picart, C; Dalhaimer, P; Discher, D E
2000-01-01
The red cell's spectrin-actin network is known to sustain local states of shear, dilation, and condensation, and yet the short actin filaments are found to maintain membrane-tangent and near-random azimuthal orientations. When calibrated with polarization results for single actin filaments, imaging of micropipette-deformed red cell ghosts has allowed an assessment of actin orientations and possible reorientations in the network. At the hemispherical cap of the aspirated projection, where the network can be dilated severalfold, filaments have the same membrane-tangent orientation as on a relatively unstrained portion of membrane. Likewise, over the length of the network projection pulled into the micropipette, where the network is strongly sheared in axial extension and circumferential contraction, actin maintains its tangent orientation and is only very weakly aligned with network extension. Similar results are found for the integral membrane protein Band 3. Allowing for thermal fluctuations, we deduce a bound for the effective coupling constant, alpha, between network shear and azimuthal orientation of the protofilament. The finding that alpha must be about an order of magnitude or more below its tight-coupling value illustrates how nanostructural kinematics can decouple from more macroscopic responses. Monte Carlo simulations of spectrin-actin networks at approximately 10-nm resolution further support this conclusion and substantiate an image of protofilaments as elements of a high-temperature spin glass. PMID:11106606
User-Friendly Interface Developed for a Web-Based Service for SpaceCAL Emulations
NASA Technical Reports Server (NTRS)
Liszka, Kathy J.; Holtz, Allen P.
2004-01-01
A team at the NASA Glenn Research Center is developing a Space Communications Architecture Laboratory (SpaceCAL) for protocol development activities for coordinated satellite missions. SpaceCAL will provide a multiuser, distributed system to emulate space-based Internet architectures, backbone networks, formation clusters, and constellations. As part of a new effort in 2003, building blocks are being defined for an open distributed system to make the satellite emulation test bed accessible through an Internet connection. The first step in creating a Web-based service to control the emulation remotely is providing a user-friendly interface for encoding the data into a well-formed and complete Extensible Markup Language (XML) document. XML provides coding that allows data to be transferred between dissimilar systems. Scenario specifications include control parameters, network routes, interface bandwidths, delay, and bit error rate. Specifications for all satellite, instruments, and ground stations in a given scenario are also included in the XML document. For the SpaceCAL emulation, the XML document can be created using XForms, a Webbased forms language for data collection. Contrary to older forms technology, the interactive user interface makes the science prevalent, not the data representation. Required versus optional input fields, default values, automatic calculations, data validation, and reuse will help researchers quickly and accurately define missions. XForms can apply any XML schema defined for the test mission to validate data before forwarding it to the emulation facility. New instrument definitions, facilities, and mission types can be added to the existing schema. The first prototype user interface incorporates components for interactive input and form processing. Internet address, data rate, and the location of the facility are implemented with basic form controls with default values provided for convenience and efficiency using basic XForms operations. Because different emulation scenarios will vary widely in their component structure, more complex operations are used to add and delete facilities.
Yu, Hye-Sun; Lee, Eun-Jung; Seo, Seog-Jin; Knowles, Jonathan C; Kim, Hae-Won
2015-09-01
Exploiting hydrogels for the cultivation of stem cells, aiming to provide them with physico-chemical cues suitable for osteogenesis, is a critical demand for bone engineering. Here, we developed hybrid compositions of collagen and silica into hydrogels via a simple sol-gel process. The physico-chemical and mechanical properties, degradation behavior, and bone-bioactivity were characterized in-depth; furthermore, the in vitro mesenchymal stem cell growth and osteogenic differentiation behaviors within the 3D hybrid gel matrices were communicated for the first time. The hydrolyzed and condensed silica phase enabled chemical links with the collagen fibrils to form networked hybrid gels. The hybrid gels showed improved chemical stability and greater resistance to enzymatic degradation. The in vitro apatite-forming ability was enhanced by the hybrid composition. The viscoelastic mechanical properties of the hybrid gels were significantly improved in terms of the deformation resistance to an applied load and the modulus values under a dynamic oscillation. Mesenchymal stem cells adhered well to the hybrid networks and proliferated actively with substantial cytoskeletal extensions within the gel matrices. Of note, the hybrid gels substantially reduced the cell-mediated gel contraction behaviors, possibly due to the stiffer networks and higher resistance to cell-mediated degradation. Furthermore, the osteogenic differentiation of cells, including the expression of bone-associated genes and protein, was significantly upregulated within the hybrid gel matrices. Together with the physico-chemical and mechanical properties, the cellular behaviors observed within 3D gel matrices, being different from the previous approaches reported on 2D substrates, provide new information on the feasibility and usefulness of the silica-collagen system for stem cell culture and tissue engineering of hard tissues. © The Author(s) 2015.
Puskas, C.M.; Smith, R.B.; Meertens, Charles M.; Chang, W. L.
2007-01-01
The Yellowstone-Snake River Plain tectonomagmatic province resulted from Late Tertiary volcanism in western North America, producing three large, caldera-forming eruptions at the Yellowstone Plateau in the last 2 Myr. To understand the kinematics and geodynamics of this volcanic system, the University of Utah conducted seven GPS campaigns at 140 sites between 1987 and 2003 and installed a network of 15 permanent stations. GPS deployments focused on the Yellowstone caldera, the Hebgen Lake and Teton faults, and the eastern Snake River Plain. The GPS data revealed periods of uplift and subsidence of the Yellowstone caldera at rates up to 15 mm/yr. From 1987 to 1995, the caldera subsided and contracted, implying volume loss. From 1995 to 2000, deformation shifted to inflation and extension northwest of the caldera. From 2000 to 2003, uplift continued to the northwest while caldera subsidence was renewed. The GPS observations also revealed extension across the Hebgen Lake fault and fault-normal contraction across the Teton fault. Deformation rates of the Yellowstone caldera and Hebgen Lake fault were converted to equivalent total moment rates, which exceeded historic seismic moment release and late Quaternary fault slip-derived moment release by an order of magnitude. The Yellowstone caldera deformation trends were superimposed on regional southwest extension of the Yellowstone Plateau at up to 4.3 ± 0.2 mm/yr, while the eastern Snake River Plain moved southwest as a slower rate at 2.1 ± 0.2 mm/yr. This southwest extension of the Yellowstone-Snake River Plain system merged into east-west extension of the Basin-Range province. Copyright 2007 by the American Geophysical Union.
A neural-network approach to robotic control
NASA Technical Reports Server (NTRS)
Graham, D. P. W.; Deleuterio, G. M. T.
1993-01-01
An artificial neural-network paradigm for the control of robotic systems is presented. The approach is based on the Cerebellar Model Articulation Controller created by James Albus and incorporates several extensions. First, recognizing the essential structure of multibody equations of motion, two parallel modules are used that directly reflect the dynamical characteristics of multibody systems. Second, the architecture of the proposed network is imbued with a self-organizational capability which improves efficiency and accuracy. Also, the networks can be arranged in hierarchical fashion with each subsequent network providing finer and finer resolution.
Networking for philanthropy: increasing volunteer behavior via social networking sites.
Kim, Yoojung; Lee, Wei-Na
2014-03-01
Social networking sites (SNSs) provide a unique social venue to engage the young generation in philanthropy through their networking capabilities. An integrated model that incorporates social capital into the Theory of Reasoned Action is developed to explain volunteer behavior through social networks. As expected, volunteer behavior was predicted by volunteer intention, which was influenced by attitudes and subjective norms. In addition, social capital, an outcome of the extensive use of SNSs, was as an important driver of users' attitude and subjective norms toward volunteering via SNSs.
NASA Astrophysics Data System (ADS)
Dasari, Venkat R.; Sadlier, Ronald J.; Geerhart, Billy E.; Snow, Nikolai A.; Williams, Brian P.; Humble, Travis S.
2017-05-01
Well-defined and stable quantum networks are essential to realize functional quantum communication applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. In this paper, we describe new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.
Tweaked residual convolutional network for face alignment
NASA Astrophysics Data System (ADS)
Du, Wenchao; Li, Ke; Zhao, Qijun; Zhang, Yi; Chen, Hu
2017-08-01
We propose a novel Tweaked Residual Convolutional Network approach for face alignment with two-level convolutional networks architecture. Specifically, the first-level Tweaked Convolutional Network (TCN) module predicts the landmark quickly but accurately enough as a preliminary, by taking low-resolution version of the detected face holistically as the input. The following Residual Convolutional Networks (RCN) module progressively refines the landmark by taking as input the local patch extracted around the predicted landmark, particularly, which allows the Convolutional Neural Network (CNN) to extract local shape-indexed features to fine tune landmark position. Extensive evaluations show that the proposed Tweaked Residual Convolutional Network approach outperforms existing methods.
Millet, Larry J; Stewart, Matthew E; Nuzzo, Ralph G; Gillette, Martha U
2010-06-21
Wiring the nervous system relies on the interplay of intrinsic and extrinsic signaling molecules that control neurite extension, neuronal polarity, process maturation and experience-dependent refinement. Extrinsic signals establish and enrich neuron-neuron interactions during development. Understanding how such extrinsic cues direct neurons to establish neural connections in vitro will facilitate the development of organized neural networks for investigating the development and function of nervous system networks. Producing ordered networks of neurons with defined connectivity in vitro presents special technical challenges because the results must be compliant with the biological requirements of rewiring neural networks. Here we demonstrate the ability to form stable, instructive surface-bound gradients of laminin that guide postnatal hippocampal neuron development in vitro. Our work uses a three-channel, interconnected microfluidic device that permits the production of adlayers of planar substrates through the combination of laminar flow, diffusion and physisorption. Through simple flow modifications, a variety of patterns and gradients of laminin (LN) and fluorescein isothiocyanate-conjugated poly-l-lysine (FITC-PLL) were deposited to present neurons with an instructive substratum to guide neuronal development. We present three variations in substrate design that produce distinct growth regimens for postnatal neurons in dispersed cell cultures. In the first approach, diffusion-mediated gradients of LN were formed on cover slips to guide neurons toward increasing LN concentrations. In the second approach, a combined gradient of LN and FITC-PLL was produced using aspiration-driven laminar flow to restrict neuronal growth to a 15 microm wide growth zone at the center of the two superimposed gradients. The last approach demonstrates the capacity to combine binary lines of FITC-PLL in conjunction with surface gradients of LN and bovine serum albumin (BSA) to produce substrate adlayers that provide additional levels of control over growth. This work demonstrates the advantages of spatio-temporal fluid control for patterning surface-bound gradients using a simple microfluidics-based substrate deposition procedure. We anticipate that this microfluidics-based patterning approach will provide instructive patterns and surface-bound gradients to enable a new level of control in guiding neuron development and network formation.
Moulin Migration and Development on the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Chu, V. W.; Yang, L.
2017-12-01
Extensive river networks that terminate into moulins efficiently drain the surface of the Greenland ice sheet. These river moulins connect surface meltwater to englacial and subglacial drainage networks, where increased meltwater can enhance ice sliding dynamics. Previous moulin studies were limited to small geographic areas using field observations and/or high-resolution aerial/satellite imagery, or to medium-resolution satellite imagery for larger areas. In this study, high-resolution moulin maps created from WorldView-1/2/3 imagery near Russell Glacier in southwest Greenland show development of moulins and their migration between 2012 and 2015. Moulins are mapped and categorized as being located: in crevasse fields, along a single ice fracture, within drained lake basins, or having no visible formation mechanism. A majority of moulins mapped in 2015 (73%) are linked to moulins in 2012 and are analysed for their movement patterns and compared to ice velocity and strain rates. New moulins most commonly form in crevassed, thinner ice near the ice sheet edge, but significant quantities also develop at higher elevations (22% above 1300 m elevation).
NASA Astrophysics Data System (ADS)
Usabiaga, Imanol; Camiruaga, Ander; Insausti, Aran; Çarçabal, Pierre; Cocinero, Emilio J.; León, Iker; Fernández, José A.
2018-02-01
We report a combination of laser spectroscopy in molecular jets and quantum mechanical calculations to characterize the aggregation preferences of phenyl-β-D-glucopyranoside (β-PhGlc) and phenyl-β-D-galactopyranoside (β-PhGal) homodimers. At least two structures of β-PhGlc dimer were found maintaining the same intramolecular interactions of the monomers, but with additional intermolecular interactions between the hydroxyl groups. Several isomers were also found for the dimer of β-PhGal forming extensive hydrogen bond networks between the interacting molecules, of very different shape. All the species found present several CH•••Pi and OH•••Pi interactions that add stability to the aggregates. The results show how even the smallest change in a substituent, from axial to equatorial position, plays a decisive role in the formation of the dimers. These conclusions reinforce the idea that the small structural changes between sugar units are amplified by formation of intra and intermolecular hydrogen bond networks, helping other molecules (proteins, receptors) to easily read the sugar code of glycans.
Distributed intelligent monitoring and reporting facilities
NASA Astrophysics Data System (ADS)
Pavlou, George; Mykoniatis, George; Sanchez-P, Jorge-A.
1996-06-01
Distributed intelligent monitoring and reporting facilities are of paramount importance in both service and network management as they provide the capability to monitor quality of service and utilization parameters and notify degradation so that corrective action can be taken. By intelligent, we refer to the capability of performing the monitoring tasks in a way that has the smallest possible impact on the managed network, facilitates the observation and summarization of information according to a number of criteria and in its most advanced form and permits the specification of these criteria dynamically to suit the particular policy in hand. In addition, intelligent monitoring facilities should minimize the design and implementation effort involved in such activities. The ISO/ITU Metric, Summarization and Performance management functions provide models that only partially satisfy the above requirements. This paper describes our extensions to the proposed models to support further capabilities, with the intention to eventually lead to fully dynamically defined monitoring policies. The concept of distributing intelligence is also discussed, including the consideration of security issues and the applicability of the model in ODP-based distributed processing environments.
A wireless sensor network for urban traffic characterization and trend monitoring.
Fernández-Lozano, J J; Martín-Guzmán, Miguel; Martín-Ávila, Juan; García-Cerezo, A
2015-10-15
Sustainable mobility requires a better management of the available infrastructure resources. To achieve this goal, it is necessary to obtain accurate data about road usage, in particular in urban areas. Although a variety of sensor alternates for urban traffic exist, they usually require extensive investments in the form of construction works for installation, processing means, etc. Wireless Sensor Networks (WSN) are an alternative to acquire urban traffic data, allowing for flexible, easy deployment. Together with the use of the appropriate sensors, like Bluetooth identification, and associate processing, WSN can provide the means to obtain in real time data like the origin-destination matrix, a key tool for trend monitoring which previously required weeks or months to be completed. This paper presents a system based on WSN designed to characterize urban traffic, particularly traffic trend monitoring through the calculation of the origin-destination matrix in real time by using Bluetooth identification. Additional sensors are also available integrated in different types of nodes. Experiments in real conditions have been performed, both for separate sensors (Bluetooth, ultrasound and laser), and for the whole system, showing the feasibility of this approach.
NETWORK DESIGN FOR OZONE MONITORING
The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks from air pollution. A major cr...
NASA Astrophysics Data System (ADS)
Thakar, Juilee; Albert, Réka
The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References
Grower Communication Networks: Information Sources for Organic Farmers
ERIC Educational Resources Information Center
Crawford, Chelsi; Grossman, Julie; Warren, Sarah T.; Cubbage, Fred
2015-01-01
This article reports on a study to determine which information sources organic growers use to inform farming practices by conducting in-depth semi-structured interviews with 23 organic farmers across 17 North Carolina counties. Effective information sources included: networking, agricultural organizations, universities, conferences, Extension, Web…
Modeling stream network-scale variation in coho salmon overwinter survival and smolt size
We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over ...
Synchronised integrated online e-health profiles.
Liang, Jian; Iannella, Renato; Sahama, Tony
2011-01-01
Web-based social networking applications have become increasingly important in recent years. The current applications in the healthcare sphere can support the health management, but to date there is no patient-controlled integrator. This paper proposes a platform called Multiple Profile Manager (MPM) that enables a user to create and manage an integrated profile that can be shared across numerous social network sites. Moreover, it is able to facilitate the collection of personal healthcare data, which makes a contribution to the development of public health informatics. Here we want to illustrate how patients and physicians can be benefited from enabling the platform for online social network sites. The MPM simplifies the management of patients' profiles and allows health professionals to obtain a more complete picture of the patients' background so that they can provide better health care. To do so, we demonstrate a prototype of the platform and describe its protocol specification, which is an XMPP (Extensible Messaging and Presence Protocol) [1] extension, for sharing and synchronising profile data (vCard²) between different social networks.
Blankenship, Elise; Vahedi-Faridi, Ardeschir; Lodowski, David T
2015-12-01
Rhodopsin, a light-activated G protein coupled receptor (GPCR), has been the subject of numerous biochemical and structural investigations, serving as a model receptor for GPCRs and their activation. We present the 2.3-Å resolution structure of native source rhodopsin stabilized in a conformation competent for G protein binding. An extensive water-mediated hydrogen bond network linking the chromophore binding site to the site of G protein binding is observed, providing connections to conserved motifs essential for GPCR activation. Comparison of this extensive solvent-mediated hydrogen-bonding network with the positions of ordered solvent in earlier crystallographic structures of rhodopsin photointermediates reveals both static structural and dynamic functional water-protein interactions present during the activation process. When considered along with observations that solvent occupies similar positions in the structures of other GPCRs, these analyses strongly support an integral role for this dynamic ordered water network in both rhodopsin and GPCR activation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kallus, Zsófia; Barankai, Norbert; Szüle, János; Vattay, Gábor
2015-01-01
Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization.
A bio-inspired system for spatio-temporal recognition in static and video imagery
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Moore, Christopher K.; Chelian, Suhas
2007-04-01
This paper presents a bio-inspired method for spatio-temporal recognition in static and video imagery. It builds upon and extends our previous work on a bio-inspired Visual Attention and object Recognition System (VARS). The VARS approach locates and recognizes objects in a single frame. This work presents two extensions of VARS. The first extension is a Scene Recognition Engine (SCE) that learns to recognize spatial relationships between objects that compose a particular scene category in static imagery. This could be used for recognizing the category of a scene, e.g., office vs. kitchen scene. The second extension is the Event Recognition Engine (ERE) that recognizes spatio-temporal sequences or events in sequences. This extension uses a working memory model to recognize events and behaviors in video imagery by maintaining and recognizing ordered spatio-temporal sequences. The working memory model is based on an ARTSTORE1 neural network that combines an ART-based neural network with a cascade of sustained temporal order recurrent (STORE)1 neural networks. A series of Default ARTMAP classifiers ascribes event labels to these sequences. Our preliminary studies have shown that this extension is robust to variations in an object's motion profile. We evaluated the performance of the SCE and ERE on real datasets. The SCE module was tested on a visual scene classification task using the LabelMe2 dataset. The ERE was tested on real world video footage of vehicles and pedestrians in a street scene. Our system is able to recognize the events in this footage involving vehicles and pedestrians.
Natural Gas Pipeline Network: Changing and Growing
1996-01-01
This chapter focuses upon the capabilities of the national natural gas pipeline network, examining how it has expanded during this decade and how it may expand further over the coming years. It also looks at some of the costs of this expansion, including the environmental costs which may be extensive. Changes in the network as a result of recent regional market shifts are also discussed.
The neural correlates of obsessive-compulsive disorder: a multimodal perspective.
Moreira, P S; Marques, P; Soriano-Mas, C; Magalhães, R; Sousa, N; Soares, J M; Morgado, P
2017-08-29
Obsessive-compulsive disorder (OCD) is one of the most debilitating psychiatric conditions. An extensive body of the literature has described some of the neurobiological mechanisms underlying the core manifestations of the disorder. Nevertheless, most reports have focused on individual modalities of structural/functional brain alterations, mainly through targeted approaches, thus possibly precluding the power of unbiased exploratory approaches. Eighty subjects (40 OCD and 40 healthy controls) participated in a multimodal magnetic resonance imaging (MRI) investigation, integrating structural and functional data. Voxel-based morphometry analysis was conducted to compare between-group volumetric differences. The whole-brain functional connectome, derived from resting-state functional connectivity (FC), was analyzed with the network-based statistic methodology. Results from structural and functional analysis were integrated in mediation models. OCD patients revealed volumetric reductions in the right superior temporal sulcus. Patients had significantly decreased FC in two distinct subnetworks: the first, involving the orbitofrontal cortex, temporal poles and the subgenual anterior cingulate cortex; the second, comprising the lingual and postcentral gyri. On the opposite, a network formed by connections between thalamic and occipital regions had significantly increased FC in patients. Integrative models revealed direct and indirect associations between volumetric alterations and FC networks. This study suggests that OCD patients display alterations in brain structure and FC, involving complex networks of brain regions. Furthermore, we provided evidence for direct and indirect associations between structural and functional alterations representing complex patterns of interactions between separate brain regions, which may be of upmost relevance for explaining the pathophysiology of the disorder.
Zheng, Ling; Yumak, Hasan; Chen, Ling; Ochs, Christopher; Geller, James; Kapusnik-Uner, Joan; Perl, Yehoshua
2017-09-01
The National Drug File - Reference Terminology (NDF-RT) is a large and complex drug terminology consisting of several classification hierarchies on top of an extensive collection of drug concepts. These hierarchies provide important information about clinical drugs, e.g., their chemical ingredients, mechanisms of action, dosage form and physiological effects. Within NDF-RT such information is represented using tens of thousands of roles connecting drugs to classifications. In previous studies, we have introduced various kinds of Abstraction Networks to summarize the content and structure of terminologies in order to facilitate their visual comprehension, and support quality assurance of terminologies. However, these previous kinds of Abstraction Networks are not appropriate for summarizing the NDF-RT classification hierarchies, due to its unique structure. In this paper, we present the novel Ingredient Abstraction Network (IAbN) to summarize, visualize and support the audit of NDF-RT's Chemical Ingredients hierarchy and its associated drugs. A common theme in our quality assurance framework is to use characterizations of sets of concepts, revealed by the Abstraction Network structure, to capture concepts, the modeling of which is more complex than for other concepts. For the IAbN, we characterize drug ingredient concepts as more complex if they belong to IAbN groups with multiple parent groups. We show that such concepts have a statistically significantly higher rate of errors than a control sample and identify two especially common patterns of errors. Copyright © 2017 Elsevier Inc. All rights reserved.
3D quantitative phase imaging of neural networks using WDT
NASA Astrophysics Data System (ADS)
Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel
2015-03-01
White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.
NASA Astrophysics Data System (ADS)
Lindsey, Charles G.; Chen, Jun; Dye, Timothy S.; Willard Richards, L.; Blumenthal, Donald L.
1999-08-01
During the 1990 Navajo Generating Station (NGS) Winter Visibility Study, a network of surface and upper-air meteorological measurement systems was operated in and around Grand Canyon National Park to investigate atmospheric processes in complex terrain that affected the transport of emissions from the nearby NGS. This network included 15 surface monitoring stations, eight balloon sounding stations (equipped with a mix of rawinsonde, tethersonde, and Airsonde sounding systems), three Doppler radar wind profilers, and four Doppler sodars. Measurements were made from 10 January through 31 March 1990. Data from this network were used to prepare objectively analyzed wind fields, trajectories, and streak lines to represent transport of emissions from the NGS, and to prepare isentropic analyses of the data. The results of these meteorological analyses were merged in the form of a computer animation that depicted the streak line analyses along with measurements of perfluorocarbon tracer, SO2, and sulfate aerosol concentrations, as well as visibility measurements collected by an extensive surface monitoring network. These analyses revealed that synoptic-scale circulations associated with the passage of low pressure systems followed by the formation of high pressure ridges accompanied the majority of cases when NGS emittants appeared to be transported to the Grand Canyon. The authors' results also revealed terrain influences on transport within the topography of the study area, especially mesoscale flows inside the Lake Powell basin and along the plain above the Marble Canyon.
76 FR 61763 - Extension: Form N-17f-2; Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-05
...: Form N-17f-2; Proposed Collection; Comment Request Upon Written Request, Copies Available From... information to the Office of Management and Budget for extension and approval. Form N-17f-2 (17 CFR 274.220... Investments in the Custody of Management Investment Companies.'' Form N-17f-2 is the cover sheet for the...
Suspended sediment transport trough a large fluvial-tidal channel network
Wright, Scott A.; Morgan-King, Tara L.
2015-01-01
The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they move through the system. Herein, we present analyses of the “first flush” sediment pulse that occurred on the Sacramento River in December 2012, documenting the transport pathways as well as the effects of advection and dispersion on the sediment as it moved through the fluvial-tidal transition in the Delta. The analyses identified an important transport pathway through the interior of the Delta toward the large pumping facilities in the south Delta, which has important implications for native fish (because their movements are triggered by sediment/turbidity). The results also reveal the dramatic transition from fluvial-dominated transport (advection) to tidal-dominated transport (dispersion) as the sediment pulse approaches the estuary.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... DEPARTMENT OF EDUCATION William D. Ford Federal Direct Loan Program Repayment Plan Selection Form; Extension of Public Comment Period; Correction AGENCY: Department of Education. ACTION: Correction notice... entitled, ``William D. Ford Federal Direct Loan Program Repayment Plan Selection Form''. ED is extending...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-01
... Collection Activities: Form G-646, Extension of a Currently Approved Information Collection; Comment Request ACTION: 30-day Notice of Information Collection Under Review: Form G- 646, Sworn Statement of Refugee... information technology, e.g., permitting electronic submission of responses. Overview of This information...
Environmental Design for a Structured Network Learning Society
ERIC Educational Resources Information Center
Chang, Ben; Cheng, Nien-Heng; Deng, Yi-Chan; Chan, Tak-Wai
2007-01-01
Social interactions profoundly impact the learning processes of learners in traditional societies. The rapid rise of the Internet using population has been the establishment of numerous different styles of network communities. Network societies form when more Internet communities are established, but the basic form of a network society, especially…
Quantum Bayesian networks with application to games displaying Parrondo's paradox
NASA Astrophysics Data System (ADS)
Pejic, Michael
Bayesian networks and their accompanying graphical models are widely used for prediction and analysis across many disciplines. We will reformulate these in terms of linear maps. This reformulation will suggest a natural extension, which we will show is equivalent to standard textbook quantum mechanics. Therefore, this extension will be termed quantum. However, the term quantum should not be taken to imply this extension is necessarily only of utility in situations traditionally thought of as in the domain of quantum mechanics. In principle, it may be employed in any modelling situation, say forecasting the weather or the stock market---it is up to experiment to determine if this extension is useful in practice. Even restricting to the domain of quantum mechanics, with this new formulation the advantages of Bayesian networks can be maintained for models incorporating quantum and mixed classical-quantum behavior. The use of these will be illustrated by various basic examples. Parrondo's paradox refers to the situation where two, multi-round games with a fixed winning criteria, both with probability greater than one-half for one player to win, are combined. Using a possibly biased coin to determine the rule to employ for each round, paradoxically, the previously losing player now wins the combined game with probabilitygreater than one-half. Using the extended Bayesian networks, we will formulate and analyze classical observed, classical hidden, and quantum versions of a game that displays this paradox, finding bounds for the discrepancy from naive expectations for the occurrence of the paradox. A quantum paradox inspired by Parrondo's paradox will also be analyzed. We will prove a bound for the discrepancy from naive expectations for this paradox as well. Games involving quantum walks that achieve this bound will be presented.
Service-Based Extensions to an OAIS Archive for Science Data Management
NASA Astrophysics Data System (ADS)
Flathers, E.; Seamon, E.; Gessler, P. E.
2014-12-01
With new data management mandates from major funding sources such as the National Institutes for Health and the National Science Foundation, architecture of science data archive systems is becoming a critical concern for research institutions. The Consultative Committee for Space Data Systems (CCSDS), in 2002, released their first version of a Reference Model for an Open Archival Information System (OAIS). The CCSDS document (now an ISO standard) was updated in 2012 with additional focus on verifying the authenticity of data and developing concepts of access rights and a security model. The OAIS model is a good fit for research data archives, having been designed to support data collections of heterogeneous types, disciplines, storage formats, etc. for the space sciences. As fast, reliable, persistent Internet connectivity spreads, new network-available resources have been developed that can support the science data archive. A natural extension of an OAIS archive is the interconnection with network- or cloud-based services and resources. We use the Service Oriented Architecture (SOA) design paradigm to describe a set of extensions to an OAIS-type archive: purpose and justification for each extension, where and how each extension connects to the model, and an example of a specific service that meets the purpose.
The Competitive Edge: Universities and Industry Working Together.
ERIC Educational Resources Information Center
National Association of State Universities and Land Grant Colleges, Washington, DC.
This publication describes industrial extension programs at five universities and argues for establishment of a national industrial extension network to help small and medium sized manufacturers meet the challenges of the current economic climate. A loss of competitive edge is ascribed to declining technical capabilities and productivity among…
Education-to-Go: Jan Poley and USDA's Extension Service.
ERIC Educational Resources Information Center
EDUCOM Review, 1993
1993-01-01
Examines plans for the cooperative extension service of the U.S. Department of Agriculture (USDA) and includes background on the director for communication, information, and technology, Janet Poley. Highlights include the use of new technology and major trends shaping future plans, including networking, globalization, organizational restructuring,…
Exploring Competencies for Manufacturing Education Partnership Centers
ERIC Educational Resources Information Center
Chapman, Diane D.; Guerdat, Kate G.
2012-01-01
The National Institute of Standards and Technology's Hollings Manufacturing Extension Partnership works with U.S. manufacturers to help them create and retain jobs, increase profits, and save time and money. Members of the Manufacturing Extension Partnership recognized the need to expand capacity and capabilities of their network to address the…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-62280] Order Granting Application for Extension... International Securities Exchange, LLC Relating to the Ownership Interest of International Securities Exchange Holdings, Inc. in an Electronic Communications Network June 11, 2010. I. Introduction On December 22, 2008...
Gelation And Mechanical Response of Patchy Rods
NASA Astrophysics Data System (ADS)
Kazem, Navid; Majidi, Carmel; Maloney, Craig
We perform Brownian Dynamics simulations to study the gelation of suspensions of attractive, rod-like particles. We show that details of the particle-particle interactions can dramatically affect the dynamics of gelation and the structure and mechanics of the networks that form. If the attraction between the rods is perfectly smooth along their length, they will collapse into compact bundles. If the attraction is sufficiently corrugated or patchy, over time, a rigid space spanning network forms. We study the structure and mechanical properties of the networks that form as a function of the fraction of the surface that is allowed to bind. Surprisingly, the structural and mechanical properties are non-monotonic in the surface coverage. At low coverage, there are not a sufficient number of cross-linking sites to form networks. At high coverage, rods bundle and form disconnected clusters. At intermediate coverage, robust networks form. The elastic modulus and yield stress are both non-monotonic in the surface coverage. The stiffest and strongest networks show an essentially homogeneous deformation under strain with rods re-orienting along the extensional axis. Weaker, clumpy networks at high surface coverage exhibit relatively little re-orienting with strong non-affine deformation. These results suggest design strategies for tailoring surface interactions between rods to yield rigid networks with optimal properties. National Science Foundation and the Air Force Office of Scientific Research.
Scalable Optical-Fiber Communication Networks
NASA Technical Reports Server (NTRS)
Chow, Edward T.; Peterson, John C.
1993-01-01
Scalable arbitrary fiber extension network (SAFEnet) is conceptual fiber-optic communication network passing digital signals among variety of computers and input/output devices at rates from 200 Mb/s to more than 100 Gb/s. Intended for use with very-high-speed computers and other data-processing and communication systems in which message-passing delays must be kept short. Inherent flexibility makes it possible to match performance of network to computers by optimizing configuration of interconnections. In addition, interconnections made redundant to provide tolerance to faults.
NASA Astrophysics Data System (ADS)
Liang, Likai; Bi, Yushen
Considered on the distributed network management system's demand of high distributives, extensibility and reusability, a framework model of Three-tier distributed network management system based on COM/COM+ and DNA is proposed, which adopts software component technology and N-tier application software framework design idea. We also give the concrete design plan of each layer of this model. Finally, we discuss the internal running process of each layer in the distributed network management system's framework model.
Extensibility and limitations of FDDI
NASA Technical Reports Server (NTRS)
Game, David; Maly, Kurt J.
1990-01-01
Recently two standards for Metropolitan Area Networks (MANs), Fiber Distributed Data Interface (FDDI) and Distributed Queue Dual Bus (DQDB), have emerged as the primary competitors for the MAN arena. Great interest exists in building higher speed networks which support large numbers of node and greater distance, and it is not clear what types of protocols are needed for this type of environment. There is some question as to whether or not these MAN standards can be extended to such environments. The extensibility of FDDI to the Gbps range and a long distance environment is investigated. Specification parameters which affect performance are shown and a measure is provided for predicting utilization of FDDI. A comparison of FDDI at 100 Mbps and 1 Gbps is presented. Some specific problems with FDDI are addressed and modifications which improve the viability of FDDI in such high speed networks are investigated.
Language and Tools for Networkers
ERIC Educational Resources Information Center
Wielinga, Eelke; Vrolijk, Maarten
2009-01-01
The network society has a major impact on knowledge systems, and in agricultural and rural development. It has changed relationships between actors such as farmers, extension workers, researchers, policy-makers, businessmen and consumers. These changes require different language, concepts and tools compared to the time that it was thought that…
Writingmatrix: Connecting Students with Blogs, Tags, and Social Networking
ERIC Educational Resources Information Center
Stevens, Vance; Quintana, Nelba; Zeinstejer, Rita; Sirk, Sasa; Molero, Doris; Arena, Carla
2008-01-01
This paper describes an extensive online project, Writingmatrix [http://writingmatrix.wikispaces.com], involving several key elements essential to collaboration in Web 2.0, such as aggregation, tagging, and social networking. Participant teachers in several different countries--Argentina, Venezuela, and Slovenia--had their adult students at…
76 FR 28767 - Desert Southwest Customer Service Region-Rate Order No. WAPA-152
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... Temporarily Extending Network Integration Transmission Service (NITS). SUMMARY: This action is to temporarily... Administration, Rate Extension for Desert Southwest Region Network Integration Transmission Service and WALC... Integration Transmission Service and Ancillary Services Formula Rates Section 302 of the Department of Energy...
DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS
The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...
NASA Astrophysics Data System (ADS)
Nightingale, James; Wang, Qi; Grecos, Christos; Goma, Sergio
2014-02-01
High Efficiency Video Coding (HEVC), the latest video compression standard (also known as H.265), can deliver video streams of comparable quality to the current H.264 Advanced Video Coding (H.264/AVC) standard with a 50% reduction in bandwidth. Research into SHVC, the scalable extension to the HEVC standard, is still in its infancy. One important area for investigation is whether, given the greater compression ratio of HEVC (and SHVC), the loss of packets containing video content will have a greater impact on the quality of delivered video than is the case with H.264/AVC or its scalable extension H.264/SVC. In this work we empirically evaluate the layer-based, in-network adaptation of video streams encoded using SHVC in situations where dynamically changing bandwidths and datagram loss ratios require the real-time adaptation of video streams. Through the use of extensive experimentation, we establish a comprehensive set of benchmarks for SHVC-based highdefinition video streaming in loss prone network environments such as those commonly found in mobile networks. Among other results, we highlight that packet losses of only 1% can lead to a substantial reduction in PSNR of over 3dB and error propagation in over 130 pictures following the one in which the loss occurred. This work would be one of the earliest studies in this cutting-edge area that reports benchmark evaluation results for the effects of datagram loss on SHVC picture quality and offers empirical and analytical insights into SHVC adaptation to lossy, mobile networking conditions.
Dynamic tubulation of mitochondria drives mitochondrial network formation.
Wang, Chong; Du, Wanqing; Su, Qian Peter; Zhu, Mingli; Feng, Peiyuan; Li, Ying; Zhou, Yichen; Mi, Na; Zhu, Yueyao; Jiang, Dong; Zhang, Senyan; Zhang, Zerui; Sun, Yujie; Yu, Li
2015-10-01
Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms.
Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS).
Ceseracciu, Luca; Heredia-Guerrero, José Alejandro; Dante, Silvia; Athanassiou, Athanassia; Bayer, Ilker S
2015-02-18
Designing starch-based biopolymers and biodegradable composites with durable mechanical properties and good resistance to water is still a challenging task. Although thermoplastic (destructured) starch has emerged as an alternative to petroleum-based polymers, its poor dimensional stability under humid and dry conditions extensively hinders its use as the biopolymer of choice in many applications. Unmodified starch granules, on the other hand, suffer from incompatibility, poor dispersion, and phase separation issues when compounded into other thermoplastics above a concentration level of 5%. Herein, we present a facile biodegradable elastomer preparation method by incorporating large amounts of unmodified corn starch, exceeding 80% by volume, in acetoxy-polyorganosiloxane thermosets to produce mechanically robust, hydrophobic bioelastomers. The naturally adsorbed moisture on the surface of starch enables autocatalytic rapid hydrolysis of polyorganosiloxane to form Si-O-Si networks. Depending on the amount of starch granules, the mechanical properties of the bioelastomers can be easily tuned with high elastic recovery rates. Moreover, starch granules considerably lowered the surface friction coefficient of the polyorganosiloxane network. Stress relaxation measurements indicated that the bioelastomers have strain energy dissipation factors that are lower than those of conventional rubbers, rendering them as promising green substitutes for plastic mechanical energy dampeners. Corn starch granules also have excellent compatibility with addition-cured polysiloxane chemistry that is used extensively in microfabrication. Regardless of the starch concentration, all of the developed bioelastomers have hydrophobic surfaces with lower friction coefficients and much less water uptake capacity than those of thermoplastic starch. The bioelastomers are biocompatible and are estimated to biodegrade in Mediterranean seawater within three to six years.
Buskens, Vincent; Snijders, Chris
2016-01-01
We study how payoffs and network structure affect reaching the payoff-dominant equilibrium in a [Formula: see text] coordination game that actors play with their neighbors in a network. Using an extensive simulation analysis of over 100,000 networks with 2-25 actors, we show that the importance of network characteristics is restricted to a limited part of the payoff space. In this part, we conclude that the payoff-dominant equilibrium is chosen more often if network density is larger, the network is more centralized, and segmentation of the network is smaller. Moreover, it is more likely that heterogeneity in behavior persists if the network is more segmented and less centralized. Persistence of heterogeneous behavior is not related to network density.
The Integrated Distributed Virtual Research Network: An Introduction
2014-06-01
Tom Kile , Theron Trout, and Gary Cohn for their extensive contribution to this document to include reviews, comments, and edits, which contributed...to the quality of the document. The ARL Integrated Distributed Virtual Research Testbed (IDVRT) team, consisting of Alex Tarantin, Khoa Bui, Tom Kile ...n. Network Engineer (non-voting member) Tom Kile o. Network Engineer (non-voting member) Theron Trout p. Non-voting members (serving at the
A CyberCIEGE Traffic Analysis Extension for Teaching Network Security
2011-12-01
Information Technology LAN Local Area Network MAADNET Military Academy Attack/Defense Network MAC Media Access Control MMORPG Massively...ready to launch its latest massively multiplayer online role-playing game ( MMORPG ) “SyberSIEGE”! The product is currently in the final stages of...achieve his goal, this approach will still allow Tina to meet her goals and avoid disruptions to existing operations, which is also what would have
Ye, Yusen; Gao, Lin; Zhang, Shihua
2017-01-01
Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions. PMID:29033978
Ye, Yusen; Gao, Lin; Zhang, Shihua
2017-01-01
Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions.
Discriminative Relational Topic Models.
Chen, Ning; Zhu, Jun; Xia, Fei; Zhang, Bo
2015-05-01
Relational topic models (RTMs) provide a probabilistic generative process to describe both the link structure and document contents for document networks, and they have shown promise on predicting network structures and discovering latent topic representations. However, existing RTMs have limitations in both the restricted model expressiveness and incapability of dealing with imbalanced network data. To expand the scope and improve the inference accuracy of RTMs, this paper presents three extensions: 1) unlike the common link likelihood with a diagonal weight matrix that allows the-same-topic interactions only, we generalize it to use a full weight matrix that captures all pairwise topic interactions and is applicable to asymmetric networks; 2) instead of doing standard Bayesian inference, we perform regularized Bayesian inference (RegBayes) with a regularization parameter to deal with the imbalanced link structure issue in real networks and improve the discriminative ability of learned latent representations; and 3) instead of doing variational approximation with strict mean-field assumptions, we present collapsed Gibbs sampling algorithms for the generalized relational topic models by exploring data augmentation without making restricting assumptions. Under the generic RegBayes framework, we carefully investigate two popular discriminative loss functions, namely, the logistic log-loss and the max-margin hinge loss. Experimental results on several real network datasets demonstrate the significance of these extensions on improving prediction performance.
78 FR 72139 - Forms Submitted to the Office of Management and Budget for Extension of Clearance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-02
... should be sent to the Office of Information and Regulatory Affairs, Attention: Desk Officer, Selective... SELECTIVE SERVICE SYSTEM Forms Submitted to the Office of Management and Budget for Extension of Clearance AGENCY: Selective Service System. ACTION: Notice. The following forms have been submitted to the...
76 FR 70803 - Form Submitted to the Office of Management and Budget for Extension of Clearance
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-15
... sent to the Office of Information and Regulatory Affairs, Attention: Desk Officer, Selective Service... SELECTIVE SERVICE SYSTEM Form Submitted to the Office of Management and Budget for Extension of Clearance AGENCY: Selective Service System. ACTION: Notice. The following forms have been submitted to the...
76 FR 62892 - Form Submitted to the Office of Management and Budget for Extension of Clearance
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... should be sent to the Office of Information and Regulatory Affairs, Attention: Desk Officer, Selective... SELECTIVE SERVICE SYSTEM Form Submitted to the Office of Management and Budget for Extension of Clearance AGENCY: Selective Service System. ACTION: Notice. The following form has been submitted to the...
76 FR 12394 - Form Submitted to the Office of Management and Budget for Extension of Clearance
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
... SELECTIVE SERVICE SYSTEM Form Submitted to the Office of Management and Budget for Extension of Clearance AGENCY: Selective Service System. ACTION: Notice. The following form has been submitted to the... boards in the Selective Service System. Respondents: Potential board members. Burden: A burden of 15...
75 FR 53012 - Form Submitted to the Office of Management and Budget for Extension of Clearance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-30
... Regulatory Affairs, Attention: Desk Officer, Selective Service System, Office of Management and Budget, New... SELECTIVE SERVICE SYSTEM Form Submitted to the Office of Management and Budget for Extension of Clearance AGENCY: Selective Service System. ACTION: Notice. The following form has been submitted to the...
76 FR 41855 - Forms Submitted to the Office of Management and Budget for Extension of Clearance
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... Regulatory Affairs, Attention: Desk Officer, Selective Service System, Office of Management and Budget, New... SELECTIVE SERVICE SYSTEM Forms Submitted to the Office of Management and Budget for Extension of Clearance AGENCY: Selective Service System. ACTION: Notice. The following form has been submitted to the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
...-0113] Agency Information Collection Activities: InfoPass System, No Form Number; Extension, Without... Change, of a Currently Approved Collection. (2) Title of the Form/Collection: InfoPass System. (3) Agency...: Primary: Individuals or households. The InfoPass system allows an applicant or petitioner to schedule an...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-28
... Instructions for V Nonimmigrant Status Applicants); OMB Control No. 1615-0004. The Department of Homeland... submit comments concerning the extension of Supplement A to Form I- 539 (Filing Instructions for V... V Nonimmigrant Status Applicants). (3) Agency form number, if any, and the applicable component of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... Activities: Form G-884, Extension of an Existing Information Collection; Comment Request ACTION: 30-Day Notice of Information Collection Under Review: Form G- 884, Request for the Return of Original Document(s... information technology, e.g., permitting electronic submission of responses. Overview of This Information...
78 FR 29398 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
..., Washington, DC 20549-0213. Extension: Form N-SAR. OMB Control No. 3235-0330, SEC File No. 270-292. Notice is... information to the Office of Management and Budget (``OMB'') for extension and approval. Form N-SAR (OMB... Form N-SAR pursuant to rule 30a-1 under the Investment Company Act, and registered management...
Klotzsch, Enrico; Smith, Michael L; Kubow, Kristopher E; Muntwyler, Simon; Little, William C; Beyeler, Felix; Gourdon, Delphine; Nelson, Bradley J; Vogel, Viola
2009-10-27
Rather than maximizing toughness, as needed for silk and muscle titin fibers to withstand external impact, the much softer extracellular matrix fibers made from fibronectin (Fn) can be stretched by cell generated forces and display extraordinary extensibility. We show that Fn fibers can be extended more than 8-fold (>700% strain) before 50% of the fibers break. The Young's modulus of single fibers, given by the highly nonlinear slope of the stress-strain curve, changes orders of magnitude, up to MPa. Although many other materials plastically deform before they rupture, evidence is provided that the reversible breakage of force-bearing backbone hydrogen bonds enables the large strain. When tension is released, the nano-sized Fn domains first contract in the crowded environment of fibers within seconds into random coil conformations (molten globule states), before the force-bearing hydrogen bond networks that stabilize the domain's secondary structures are reestablished within minutes (double exponential). The exposure of cryptic binding sites on Fn type III modules increases steeply upon stretching. Thus fiber extension steadily up-regulates fiber rigidity and cryptic epitope exposure, both of which are known to differentially alter cell behavior. Finally, since stress-strain relationships cannot directly be measured in native extracellular matrix (ECM), the stress-strain curves were correlated with stretch-induced alterations of intramolecular fluorescence resonance energy transfer (FRET) obtained from trace amounts of Fn probes (mechanical strain sensors) that can be incorporated into native ECM. Physiological implications of the extraordinary extensibility of Fn fibers and contraction kinetics are discussed.
An information model for a virtual private optical network (OVPN) using virtual routers (VRs)
NASA Astrophysics Data System (ADS)
Vo, Viet Minh Nhat
2002-05-01
This paper describes a virtual private optical network architecture (Optical VPN - OVPN) based on virtual router (VR). It improves over architectures suggested for virtual private networks by using virtual routers with optical networks. The new things in this architecture are necessary changes to adapt to devices and protocols used in optical networks. This paper also presents information models for the OVPN: at the architecture level and at the service level. These are extensions to the DEN (directory enable network) and CIM (Common Information Model) for OVPNs using VRs. The goal is to propose a common management model using policies.
Globalization and International Student Mobility: A Network Analysis
ERIC Educational Resources Information Center
Shields, Robin
2013-01-01
This article analyzes changes to the network of international student mobility in higher education over a 10-year period (1999-2008). International student flows have increased rapidly, exceeding 3 million in 2009, and extensive data on mobility provide unique insight into global educational processes. The analysis is informed by three theoretical…
77 FR 14370 - Agency Information Collection Activities; Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... Practice-based Research Networks (PBRNs) in Oregon and Wisconsin, and with the Health IT Regional Extension... AHRQ through its contractors, the Oregon Rural Practice-based Research Network (ORPRN) and the... effectiveness. Understanding clinical work practices and how they will be affected by practice innovations such...
77 FR 30011 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... Practice-based Research Networks (PBRNs) in Oregon and Wisconsin, and with the Health IT Regional Extension... AHRQ through its contractors, the Oregon Rural Practice-based Research Network (ORPRN) and the... effectiveness. Understanding clinical work practices and how they will be affected by practice innovations such...
Online Formative Assessments with Social Network Awareness
ERIC Educational Resources Information Center
Lin, Jian-Wei; Lai, Yuan-Cheng
2013-01-01
Social network awareness (SNA) has been used extensively as one of the strategies to increase knowledge sharing and collaboration opportunities. However, most SNA studies either focus on being aware of peer's knowledge context or on social context. This work proposes online formative assessments with SNA, trying to address the problems of online…
2011-09-01
COMPUTING: EFFECTS AND APPLICATION OF HASTILY FORMED NETWORKS (HFN) FOR HUMANITARIAN ASSISTANCE/DISASTER RELIEF (HA/DR) MISSIONS by Mark K. Morris...i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...SUBTITLE Virtual Cloud Computing: Effects and Application of Hastily Formed Networks (HFN) for Humanitarian Assistance/Disaster Relief (HA/DR) Missions
Isolation, characterization, and aggregation of a structured bacterial matrix precursor.
Chai, Liraz; Romero, Diego; Kayatekin, Can; Akabayov, Barak; Vlamakis, Hera; Losick, Richard; Kolter, Roberto
2013-06-14
Biofilms are surface-associated groups of microbial cells that are embedded in an extracellular matrix (ECM). The ECM is a network of biopolymers, mainly polysaccharides, proteins, and nucleic acids. ECM proteins serve a variety of structural roles and often form amyloid-like fibers. Despite the extensive study of the formation of amyloid fibers from their constituent subunits in humans, much less is known about the assembly of bacterial functional amyloid-like precursors into fibers. Using dynamic light scattering, atomic force microscopy, circular dichroism, and infrared spectroscopy, we show that our unique purification method of a Bacillus subtilis major matrix protein component results in stable oligomers that retain their native α-helical structure. The stability of these oligomers enabled us to control the external conditions that triggered their aggregation. In particular, we show that stretched fibers are formed on a hydrophobic surface, whereas plaque-like aggregates are formed in solution under acidic pH conditions. TasA is also shown to change conformation upon aggregation and gain some β-sheet structure. Our studies of the aggregation of a bacterial matrix protein from its subunits shed new light on assembly processes of the ECM within bacterial biofilms.
NASA Technical Reports Server (NTRS)
Goldstein, David
1991-01-01
Extensions to an architecture for real-time, distributed (parallel) knowledge-based systems called the Parallel Real-time Artificial Intelligence System (PRAIS) are discussed. PRAIS strives for transparently parallelizing production (rule-based) systems, even under real-time constraints. PRAIS accomplished these goals (presented at the first annual C Language Integrated Production System (CLIPS) conference) by incorporating a dynamic task scheduler, operating system extensions for fact handling, and message-passing among multiple copies of CLIPS executing on a virtual blackboard. This distributed knowledge-based system tool uses the portability of CLIPS and common message-passing protocols to operate over a heterogeneous network of processors. Results using the original PRAIS architecture over a network of Sun 3's, Sun 4's and VAX's are presented. Mechanisms using the producer-consumer model to extend the architecture for fault-tolerance and distributed truth maintenance initiation are also discussed.
Schwartz, Mark D.; Beaubien, Elisabeth G.; Crimmins, Theresa M.; Weltzin, Jake F.; Edited by Schwartz, Mark D.
2013-01-01
Plant phenological observations and networks in North America have been largely local and regional in extent until recent decades. In the USA, cloned plant monitoring networks were the exception to this pattern, with data collection spanning the late 1950s until approximately the early 1990s. Animal observation networks, especially for birds have been more extensive. The USA National Phenology Network (USA-NPN), established in the mid-2000s is a recent effort to operate a comprehensive national-scale network in the United States. In Canada, PlantWatch, as part of Nature Watch, is the current national-scale plant phenology program.
Automatic Seismic-Event Classification with Convolutional Neural Networks.
NASA Astrophysics Data System (ADS)
Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.
2017-12-01
Active volcanoes exhibit a wide range of seismic signals, providing vast amounts of unlabelled volcano-seismic data that can be analyzed through the lens of artificial intelligence. However, obtaining high-quality labelled data is time-consuming and expensive. Deep neural networks can process data in their raw form, compute high-level features and provide a better representation of the input data distribution. These systems can be deployed to classify seismic data at scale, enhance current early-warning systems and build extensive seismic catalogs. In this research, we aim to classify spectrograms from seven different seismic events registered at "Volcán de Fuego" (Colima, Mexico), during four eruptive periods. Our approach is based on convolutional neural networks (CNNs), a sub-type of deep neural networks that can exploit grid structure from the data. Volcano-seismic signals can be mapped into a grid-like structure using the spectrogram: a representation of the temporal evolution in terms of time and frequency. Spectrograms were computed from the data using Hamming windows with 4 seconds length, 2.5 seconds overlapping and 128 points FFT resolution. Results are compared to deep neural networks, random forest and SVMs. Experiments show that CNNs can exploit temporal and frequency information, attaining a classification accuracy of 93%, similar to deep networks 91% but outperforming SVM and random forest. These results empirically show that CNNs are powerful models to classify a wide range of volcano-seismic signals, and achieve good generalization. Furthermore, volcano-seismic spectrograms contains useful discriminative information for the CNN, as higher layers of the network combine high-level features computed for each frequency band, helping to detect simultaneous events in time. Being at the intersection of deep learning and geophysics, this research enables future studies of how CNNs can be used in volcano monitoring to accurately determine the detection and location of seismic events.
The impact of microglial activation on blood-brain barrier in brain diseases
da Fonseca, Anna Carolina Carvalho; Matias, Diana; Garcia, Celina; Amaral, Rackele; Geraldo, Luiz Henrique; Freitas, Catarina; Lima, Flavia Regina Souza
2014-01-01
The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders. PMID:25404894
Plastid and stromule morphogenesis in tomato.
Pyke, Kevin A; Howells, Caroline A
2002-11-01
By using green fluorescent protein targeted to the plastid organelle in tomato (Lycopersicon esculentum Mill.), the morphology of plastids and their associated stromules in epidermal cells and trichomes from stems and petioles and in the chromoplasts of pericarp cells in the tomato fruit has been revealed. A novel characteristic of tomato stromules is the presence of extensive bead-like structures along the stromules that are often observed as free vesicles, distinct from and apparently unconnected to the plastid body. Interconnections between the red pigmented chromoplast bodies are common in fruit pericarp cells suggesting that chromoplasts could form a complex network in this cell type. The potential implications for carotenoid biosynthesis in tomato fruit and for vesicles originating from beaded stromules as a secretory mechanism for plastids in glandular trichomes of tomato is discussed.
Plastid and Stromule Morphogenesis in Tomato
PYKE, KEVIN A.; HOWELLS, CAROLINE A.
2002-01-01
By using green fluorescent protein targeted to the plastid organelle in tomato (Lycopersicon esculentum Mill.), the morphology of plastids and their associated stromules in epidermal cells and trichomes from stems and petioles and in the chromoplasts of pericarp cells in the tomato fruit has been revealed. A novel characteristic of tomato stromules is the presence of extensive bead‐like structures along the stromules that are often observed as free vesicles, distinct from and apparently unconnected to the plastid body. Interconnections between the red pigmented chromoplast bodies are common in fruit pericarp cells suggesting that chromoplasts could form a complex network in this cell type. The potential implications for carotenoid biosynthesis in tomato fruit and for vesicles originating from beaded stromules as a secretory mechanism for plastids in glandular trichomes of tomato is discussed. PMID:12466096
Lehar, Steven
2003-01-01
Visual illusions and perceptual grouping phenomena offer an invaluable tool for probing the computational mechanism of low-level visual processing. Some illusions, like the Kanizsa figure, reveal illusory contours that form edges collinear with the inducing stimulus. This kind of illusory contour has been modeled by neural network models by way of cells equipped with elongated spatial receptive fields designed to detect and complete the collinear alignment. There are, however, other illusory groupings which are not so easy to account for in neural network terms. The Ehrenstein illusion exhibits an illusory contour that forms a contour orthogonal to the stimulus instead of collinear with it. Other perceptual grouping effects reveal illusory contours that exhibit a sharp corner or vertex, and still others take the form of vertices defined by the intersection of three, four, or more illusory contours that meet at a point. A direct extension of the collinear completion models to account for these phenomena tends towards a combinatorial explosion, because it would suggest cells with specialized receptive fields configured to perform each of those completion types, each of which would have to be replicated at every location and every orientation across the visual field. These phenomena therefore challenge the adequacy of the neural network approach to account for these diverse perceptual phenomena. I have proposed elsewhere an alternative paradigm of neurocomputation in the harmonic resonance theory (Lehar 1999, see website), whereby pattern recognition and completion are performed by spatial standing waves across the neural substrate. The standing waves perform a computational function analogous to that of the spatial receptive fields of the neural network approach, except that, unlike that paradigm, a single resonance mechanism performs a function equivalent to a whole array of spatial receptive fields of different spatial configurations and of different orientations, and thereby avoids the combinatorial explosion inherent in the older paradigm. The present paper presents the directional harmonic model, a more specific development of the harmonic resonance theory, designed to account for specific perceptual grouping phenomena. Computer simulations of the directional harmonic model show that it can account for collinear contours as observed in the Kanizsa figure, orthogonal contours as seen in the Ehrenstein illusion, and a number of illusory vertex percepts composed of two, three, or more illusory contours that meet in a variety of configurations.
Designing and application of SAN extension interface based on CWDM
NASA Astrophysics Data System (ADS)
Qin, Leihua; Yu, Shengsheng; Zhou, Jingli
2005-11-01
As Fibre Channel (FC) becomes the protocol of choice within corporate data centers, enterprises are increasingly deploying SANs in their data central. In order to mitigate the risk of losing data and improve the availability of data, more and more enterprises are increasingly adopting storage extension technologies to replicate their business critical data to a secondary site. Transmitting this information over distance requires a carrier grade environment with zero data loss, scalable throughput, low jitter, high security and ability to travel long distance. To address this business requirements, there are three basic architectures for storage extension, they are Storage over Internet Protocol, Storage over Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Storage over Dense Wavelength Division Multiplexing (DWDM). Each approach varies in functionality, complexity, cost, scalability, security, availability , predictable behavior (bandwidth, jitter, latency) and multiple carrier limitations. Compared with these connectiviy technologies,Coarse Wavelength Division Multiplexing (CWDM) is a Simplified, Low Cost and High Performance connectivity solutions for enterprises to deploy their storage extension. In this paper, we design a storage extension connectivity over CWDM and test it's electrical characteristic and random read and write performance of disk array through the CWDM connectivity, testing result show us that the performance of the connectivity over CWDM is acceptable. Furthermore, we propose three kinds of network architecture of SAN extension based on CWDM interface. Finally the credit-Based flow control mechanism of FC, and the relationship between credits and extension distance is analyzed.
ERIC Educational Resources Information Center
Bassano, Louis V.; McConnon, James C., Jr.
2011-01-01
This article explains how Extension can enhance and expand its nationwide community-based entrepreneurship programs by developing strategic partnerships with other organizations to create highly effective educational programs for rural entrepreneurs. The activities and impacts of the Down East Micro-Enterprise Network (DEMN), an alliance of three…
ERIC Educational Resources Information Center
Hellin, Jon
2012-01-01
Purpose: New approaches to extension service delivery are needed that stimulate increased agricultural production, contribute to collective action and which also foster the emergence of agricultural innovation systems. Research in Peru and Mexico explores some of these new approaches. Design/methodology/approach: In both countries, a qualitative…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... and Technology (NIST), Department of Commerce. ACTION: Request for Comments; extension. SUMMARY: On September 12, 2011, NIST published a Request for Comment in the Federal Register, inviting interested... safety broadband network. The comments will be used by NIST to help determine research and development...
Delivering Extension to the Living Room Using Internet TV
ERIC Educational Resources Information Center
Rice, Grant G., III
2014-01-01
Television is a widely adopted source for viewing educational information. Unfortunately, producing a television show on network television can be costly and time consuming. Internet TV offers Extension video content producers the opportunity to create a niche topic channel quickly and at low cost. Internet TV offers viewers a low-cost and…
A unified design space of synthetic stripe-forming networks
Schaerli, Yolanda; Munteanu, Andreea; Gili, Magüi; Cotterell, James; Sharpe, James; Isalan, Mark
2014-01-01
Synthetic biology is a promising tool to study the function and properties of gene regulatory networks. Gene circuits with predefined behaviours have been successfully built and modelled, but largely on a case-by-case basis. Here we go beyond individual networks and explore both computationally and synthetically the design space of possible dynamical mechanisms for 3-node stripe-forming networks. First, we computationally test every possible 3-node network for stripe formation in a morphogen gradient. We discover four different dynamical mechanisms to form a stripe and identify the minimal network of each group. Next, with the help of newly established engineering criteria we build these four networks synthetically and show that they indeed operate with four fundamentally distinct mechanisms. Finally, this close match between theory and experiment allows us to infer and subsequently build a 2-node network that represents the archetype of the explored design space. PMID:25247316
Adaptive form-finding method for form-fixed spatial network structures
NASA Astrophysics Data System (ADS)
Lan, Cheng; Tu, Xi; Xue, Junqing; Briseghella, Bruno; Zordan, Tobia
2018-02-01
An effective form-finding method for form-fixed spatial network structures is presented in this paper. The adaptive form-finding method is introduced along with the example of designing an ellipsoidal network dome with bar length variations being as small as possible. A typical spherical geodesic network is selected as an initial state, having bar lengths in a limit group number. Next, this network is transformed into the ellipsoidal shape as desired by applying compressions on bars according to the bar length variations caused by transformation. Afterwards, the dynamic relaxation method is employed to explicitly integrate the node positions by applying residual forces. During the form-finding process, the boundary condition of constraining nodes on the ellipsoid surface is innovatively considered as reactions on the normal direction of the surface at node positions, which are balanced with the components of the nodal forces in a reverse direction induced by compressions on bars. The node positions are also corrected according to the fixed-form condition in each explicit iteration step. In the serial results of time history, the optimal solution is found from a time history of states by properly choosing convergence criteria, and the presented form-finding procedure is proved to be applicable for form-fixed problems.
76 FR 15003 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... Section 8(b) of the Investment Company Act of 1940 (15 U.S.C. 80a-8(b)). Form N-8B-4 requires disclosure..., Washington, DC 20549-0213. Extension: Form N-8B-4; SEC File No. 270-180; OMB Control No. 3235-0247. Notice is... Management and Budget (``OMB'') for extension and approval. Form N-8B-4 (17 CFR 274.14) is the form used by...
Home Away from Home: International Students and Their Identity-Based Social Networks in Australia
ERIC Educational Resources Information Center
Gomes, Catherine; Berry, Marsha; Alzougool, Basil; Chang, Shanton
2014-01-01
This paper explores the role of identity in helping international students form social networks at an Australian institution and how these networks contribute to creating a sense of home away. The findings suggest that international students form distinct social networks that are not necessarily solely made up of fellow students from their home…
Energy efficient cooperation in underlay RFID cognitive networks for a water smart home.
Nasir, Adnan; Hussain, Syed Imtiaz; Soong, Boon-Hee; Qaraqe, Khalid
2014-09-30
Shrinking water resources all over the world and increasing costs of water consumption have prompted water users and distribution companies to come up with water conserving strategies. We have proposed an energy-efficient smart water monitoring application in [1], using low power RFIDs. In the home environment, there exist many primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce the interference from our proposed RFID network for these primary devices, we have proposed a cooperating underlay RFID cognitive network for our smart application on water. These underlay RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link, while keeping the interference levels for the primary network below a certain threshold. A closed form expression for the probability density function (pdf) of the SNR at the destination reader/writer and outage probability are derived. Analytical results are verified through simulations. It is also shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the low SNR region for cognitive networks. Moreover, the hidden Markov model's (HMM) multi-level variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and event detection for the data received for this system [4]. Using this model, a feedback and decision algorithm is also developed. This approach has been applied to simulated water pressure data from RFID motes, which were embedded in metallic water pipes.
Energy Efficient Cooperation in Underlay RFID Cognitive Networks for a Water Smart Home
Nasir, Adnan; Hussain, Syed Imtiaz; Soong, Boon-Hee; Qaraqe, Khalid
2014-01-01
Shrinking water resources all over the world and increasing costs of water consumption have prompted water users and distribution companies to come up with water conserving strategies. We have proposed an energy-efficient smart water monitoring application in [1], using low power RFIDs. In the home environment, there exist many primary interferences within a room, such as cell-phones, Bluetooth devices, TV signals, cordless phones and WiFi devices. In order to reduce the interference from our proposed RFID network for these primary devices, we have proposed a cooperating underlay RFID cognitive network for our smart application on water. These underlay RFIDs should strictly adhere to the interference thresholds to work in parallel with the primary wireless devices [2]. This work is an extension of our previous ventures proposed in [2,3], and we enhanced the previous efforts by introducing a new system model and RFIDs. Our proposed scheme is mutually energy efficient and maximizes the signal-to-noise ratio (SNR) for the RFID link, while keeping the interference levels for the primary network below a certain threshold. A closed form expression for the probability density function (pdf) of the SNR at the destination reader/writer and outage probability are derived. Analytical results are verified through simulations. It is also shown that in comparison to non-cognitive selective cooperation, this scheme performs better in the low SNR region for cognitive networks. Moreover, the hidden Markov model’s (HMM) multi-level variant hierarchical hidden Markov model (HHMM) approach is used for pattern recognition and event detection for the data received for this system [4]. Using this model, a feedback and decision algorithm is also developed. This approach has been applied to simulated water pressure data from RFID motes, which were embedded in metallic water pipes. PMID:25271565
Camera network video summarization
NASA Astrophysics Data System (ADS)
Panda, Rameswar; Roy-Chowdhury, Amit K.
2017-05-01
Networks of vision sensors are deployed in many settings, ranging from security needs to disaster response to environmental monitoring. Many of these setups have hundreds of cameras and tens of thousands of hours of video. The difficulty of analyzing such a massive volume of video data is apparent whenever there is an incident that requires foraging through vast video archives to identify events of interest. As a result, video summarization, that automatically extract a brief yet informative summary of these videos, has attracted intense attention in the recent years. Much progress has been made in developing a variety of ways to summarize a single video in form of a key sequence or video skim. However, generating a summary from a set of videos captured in a multi-camera network still remains as a novel and largely under-addressed problem. In this paper, with the aim of summarizing videos in a camera network, we introduce a novel representative selection approach via joint embedding and capped l21-norm minimization. The objective function is two-fold. The first is to capture the structural relationships of data points in a camera network via an embedding, which helps in characterizing the outliers and also in extracting a diverse set of representatives. The second is to use a capped l21-norm to model the sparsity and to suppress the influence of data outliers in representative selection. We propose to jointly optimize both of the objectives, such that embedding can not only characterize the structure, but also indicate the requirements of sparse representative selection. Extensive experiments on standard multi-camera datasets well demonstrate the efficacy of our method over state-of-the-art methods.
TrustRank: a Cold-Start tolerant recommender system
NASA Astrophysics Data System (ADS)
Zou, Haitao; Gong, Zhiguo; Zhang, Nan; Zhao, Wei; Guo, Jingzhi
2015-02-01
The explosive growth of the World Wide Web leads to the fast advancing development of e-commerce techniques. Recommender systems, which use personalised information filtering techniques to generate a set of items suitable to a given user, have received considerable attention. User- and item-based algorithms are two popular techniques for the design of recommender systems. These two algorithms are known to have Cold-Start problems, i.e., they are unable to effectively handle Cold-Start users who have an extremely limited number of purchase records. In this paper, we develop TrustRank, a novel recommender system which handles the Cold-Start problem by leveraging the user-trust networks which are commonly available for e-commerce applications. A user-trust network is formed by friendships or trust relationships that users specify among them. While it is straightforward to conjecture that a user-trust network is helpful for improving the accuracy of recommendations, a key challenge for using user-trust network to facilitate Cold-Start users is that these users also tend to have a very limited number of trust relationships. To address this challenge, we propose a pre-processing propagation of the Cold-Start users' trust network. In particular, by applying the personalised PageRank algorithm, we expand the friends of a given user to include others with similar purchase records to his/her original friends. To make this propagation algorithm scalable to a large amount of users, as required by real-world recommender systems, we devise an iterative computation algorithm of the original personalised TrustRank which can incrementally compute trust vectors for Cold-Start users. We conduct extensive experiments to demonstrate the consistently improvement provided by our proposed algorithm over the existing recommender algorithms on the accuracy of recommendations for Cold-Start users.
Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network
Usman, Muhammad; Sajjad Khan, Muhammad; Vu-Van, Hiep; Insoo, Koo
2015-01-01
The visiting and less-privileged status of the secondary users (SUs) in a cognitive radio network obligates them to release the occupied channel instantly when it is reclaimed by the primary user. The SU has a choice to make: either wait for the channel to become free, thus conserving energy at the expense of delayed transmission and delivery, or find and switch to a vacant channel, thereby avoiding delay in transmission at the expense of increased energy consumption. An energy-efficient decision that considers the tradeoff between energy consumption and continuous transmission needs to be taken as to whether to switch the channels. In this work, we consider a sensor network-assisted cognitive radio network and propose a backup channel, which is sensed by the SU in parallel with the operating channel that is being sensed by the sensor nodes. Imperfect channel sensing and residual energy of the SU are considered in order to develop an energy-efficient handoff strategy using the partially observable Markov decision process (POMDP), which considers beliefs about the operating and backup channels and the remaining energy of the SU in order to take an optimal channel handoff decision on the question “Should we switch the channel?” The objective is to dynamically decide in each time slot whether the SU should switch the channel or not in order to maximize throughput by utilizing energy efficiently. Extensive simulations were performed to show the effectiveness of the proposed channel handoff strategy, which was demonstrated in the form of throughput with respect to various parameters, i.e., detection probability, the channel idle probabilities of the operating and backup channels, and the maximum energy of the SU. PMID:26213936
Green Supplier Network Manufacturer Commitment Form
Online form expressing interest in committing to be a Green Supplier; this form expresses your intent to participate in a confidential Green Suppliers Network assessment, implement recommended environmental improvements and complete a NIST MEP follow-up.
SPACEWAY: Providing affordable and versatile communication solutions
NASA Astrophysics Data System (ADS)
Fitzpatrick, E. J.
1995-08-01
By the end of this decade, Hughes' SPACEWAY network will provide the first interactive 'bandwidth on demand' communication services for a variety of applications. High quality digital voice, interactive video, global access to multimedia databases, and transborder workgroup computing will make SPACEWAY an essential component of the computer-based workplace of the 21st century. With relatively few satellites to construct, insure, and launch -- plus extensive use of cost-effective, tightly focused spot beams on the world's most populated areas -- the high capacity SPACEWAY system can pass its significant cost savings onto its customers. The SPACEWAY network is different from other proposed global networks in that its geostationary orbit location makes it a truly market driven system: each satellite will make available extensive telecom services to hundreds of millions of people within the continuous view of that satellite, providing immediate capacity within a specific region of the world.
Age-related changes in parietal lobe activation during an episodic memory retrieval task.
Oedekoven, Christiane S H; Jansen, Andreas; Kircher, Tilo T; Leube, Dirk T
2013-05-01
The crucial role of lateral parietal regions in episodic memory has been confirmed in previous studies. While aging has an influence on retrieval of episodic memory, it remains to be examined how the involvement of lateral parietal regions in episodic memory changes with age. We investigated episodic memory retrieval in two age groups, using faces as stimuli and retrieval success as a measure of episodic memory. Young and elderly participants showed activation within a similar network, including lateral and medial parietal as well as prefrontal regions, but elderly showed a higher level of brain activation regardless of condition. Furthermore, we examined functional connectivity in the two age groups and found a more extensive network in the young group, including correlations of parietal and prefrontal regions. In the elderly, the overall stronger activation related to memory performance may indicate a compensatory process for a less extensive functional network.
SPACEWAY: Providing affordable and versatile communication solutions
NASA Technical Reports Server (NTRS)
Fitzpatrick, E. J.
1995-01-01
By the end of this decade, Hughes' SPACEWAY network will provide the first interactive 'bandwidth on demand' communication services for a variety of applications. High quality digital voice, interactive video, global access to multimedia databases, and transborder workgroup computing will make SPACEWAY an essential component of the computer-based workplace of the 21st century. With relatively few satellites to construct, insure, and launch -- plus extensive use of cost-effective, tightly focused spot beams on the world's most populated areas -- the high capacity SPACEWAY system can pass its significant cost savings onto its customers. The SPACEWAY network is different from other proposed global networks in that its geostationary orbit location makes it a truly market driven system: each satellite will make available extensive telecom services to hundreds of millions of people within the continuous view of that satellite, providing immediate capacity within a specific region of the world.
77 FR 36018 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-15
..., Washington, DC 20549-0213. Extension: Form TH; OMB Control No. 3235-0425; SEC File No. 270-377. Notice is... request for extension of the previously approved collection of information discussed below. Form TH (17... prescribed by Rule 201(a) of Regulation S-T. (17 CFR 232.201(a)). Form TH is a public document and is filed...
77 FR 22004 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
..., Washington, DC 20549-0213 Extension: Form TH, OMB Control No. 3235-0425, SEC File No. 270-377. Notice is... Management and Budget for extension and approval. Form TH (17 CFR 239.65, 249.447, 269.10 and 274.404) under... otherwise be required to be filed electronically as prescribed by Rule 201(a) of Regulation S-T. Form TH...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
...] Conflict of Interest and Disclosure Form; Extension of the Office of Management and Budget's Approval of... requirements contained in the proposed Conflict of Interest (COI) and Disclosure Form which will be used to determine whether or not a conflict of interest exists for a potential peer review panel member. DATES...
78 FR 44983 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-25
..., approximately 14.25 hours in preparing and filing reports on Form N-SAR and that the total hour burden for all..., Washington, DC 20549-0213. Extension: Form N-SAR. OMB Control No. 3235-0330, SEC File No. 270-292. Notice is... Office of Management and Budget (``OMB'') for extension and approval. Form N-SAR (OMB Control No. 3235...
75 FR 57305 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
..., approximately 14.31 hours in preparing and filing reports on Form N-SAR and that the total hour burden for all..., Washington, DC 20549-0213. Extension: Form N-SAR, SEC File No. 270-292, OMB Control No. 3235-0330. Notice is... Office of Management and Budget (``OMB'') for extension and approval. Form N-SAR (OMB Control No. 3235...
75 FR 1090 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
....C. 80a-8(b)). Form N-8B-2 requires disclosure about the organization of a UIT, its securities, the..., Washington, DC 20549-0213. Extension: Form N-8B-2; SEC File No. 270-186; OMB Control No. 3235-0186. Notice is... a request for extension of the previously approved collection of information discussed below. Form N...
77 FR 71460 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-30
... Form N-5, under Section 30(b) of the Investment Company Act of 1940 (15 U.S.C. 80a-1 et seq..., Washington, DC 20549-0213. Extension: Form N-Q. OMB Control No. 3235-0578, SEC File No. 270-519. Notice is... a request for extension of the previously approved collection of information discussed below. Form N...
77 FR 59027 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-25
...''), other than small business investment companies registered on Form N-5, under Section 30(b) of the..., Washington, DC 20549-0213. Extension: Form N-Q, OMB Control No. 3235-0578, SEC File No. 270-519. Notice is... Office of Management and Budget for extension and approval. Form N-Q (17 CFR 249.332 and 274.130) is a...
75 FR 9453 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
... Form N-5, under Section 30(b) of the Investment Company Act of 1940 (15 U.S.C. 80a-1 et seq..., Washington, DC 20549-0213. Extension: Form N-Q; SEC File No. 270-519; OMB Control No. 3235-0578. Notice is... a request for extension of the previously approved collection of information discussed below. Form N...
Symmetry operators of Killing spinors and superalgebras in AdS5
NASA Astrophysics Data System (ADS)
Ertem, Ümit
2016-04-01
We construct the first-order symmetry operators of Killing spinor equation in terms of odd Killing-Yano forms. By modifying the Schouten-Nijenhuis bracket of Killing-Yano forms, we show that the symmetry operators of Killing spinors close into an algebra in AdS5 spacetime. Since the symmetry operator algebra of Killing spinors corresponds to a Jacobi identity in extended Killing superalgebras, we investigate the possible extensions of Killing superalgebras to include higher-degree Killing-Yano forms. We found that there is a superalgebra extension but no Lie superalgebra extension of the Killing superalgebra constructed out of Killing spinors and odd Killing-Yano forms in AdS5 background.
A Survey on Trust Management for Mobile Ad Hoc Networks
2010-07-01
betrayal of trust. In his comments on Lagerspetz’s book titled Trust: The Tacit Demand, Lahno [24] describes the author’s view on trust as a moral...extension of AODV Zouridaki et al. (2005 ) [79] (2006) [80] Secure routing Direct observation [79][80] Reputation by secondhand information [80...the broad areas of signal processing, wireless communications, sensor and mobile ad hoc networks. He is co-editor of the book Wireless Sensor Networks
Employing Deceptive Dynamic Network Topology Through Software-Defined Networking
2014-03-01
manage economies, banking, and businesses , to the way we gather intelligence and militaries wage war. With computer networks and the Internet, we have seen...space, along with other generated statistics , similar to that performed by the Ant Census project. As we have shown, there is an extensive and diverse...calculated RTT for each probe. In the ping statistics , we are presented the details of probes sent and responses received, and the calculated packet loss
Macrostructure from Microstructure: Generating Whole Systems from Ego Networks
Smith, Jeffrey A.
2014-01-01
This paper presents a new simulation method to make global network inference from sampled data. The proposed simulation method takes sampled ego network data and uses Exponential Random Graph Models (ERGM) to reconstruct the features of the true, unknown network. After describing the method, the paper presents two validity checks of the approach: the first uses the 20 largest Add Health networks while the second uses the Sociology Coauthorship network in the 1990's. For each test, I take random ego network samples from the known networks and use my method to make global network inference. I find that my method successfully reproduces the properties of the networks, such as distance and main component size. The results also suggest that simpler, baseline models provide considerably worse estimates for most network properties. I end the paper by discussing the bounds/limitations of ego network sampling. I also discuss possible extensions to the proposed approach. PMID:25339783
Loris, R; De Greve, H; Dao-Thi, M H; Messens, J; Imberty, A; Wyns, L
2000-08-25
Protein-carbohydrate interactions are the language of choice for inter- cellular communication. The legume lectins form a large family of homologous proteins that exhibit a wide variety of carbohydrate specificities. The legume lectin family is therefore highly suitable as a model system to study the structural principles of protein-carbohydrate recognition. Until now, structural data are only available for two specificity families: Man/Glc and Gal/GalNAc. No structural data are available for any of the fucose or chitobiose specific lectins. The crystal structure of Ulex europaeus (UEA-II) is the first of a legume lectin belonging to the chitobiose specificity group. The complexes with N-acetylglucosamine, galactose and fucosylgalactose show a promiscuous primary binding site capable of accommodating both N-acetylglucos amine or galactose in the primary binding site. The hydrogen bonding network in these complexes can be considered suboptimal, in agreement with the low affinities of these sugars. In the complexes with chitobiose, lactose and fucosyllactose this suboptimal hydrogen bonding network is compensated by extensive hydrophobic interactions in a Glc/GlcNAc binding subsite. UEA-II thus forms the first example of a legume lectin with a promiscuous binding site and illustrates the importance of hydrophobic interactions in protein-carbohydrate complexes. Together with other known legume lectin crystal structures, it shows how different specificities can be grafted upon a conserved structural framework. Copyright 2000 Academic Press.
2012-01-01
Background In the 21st century, government and industry are supplementing hierarchical, bureaucratic forms of organization with network forms, compatible with principles of devolved governance and decentralization of services. Clinical networks are employed as a key health policy approach to engage clinicians in improving patient care in Australia. With significant investment in such networks in Australia and internationally, it is important to assess their effectiveness and sustainability as implementation mechanisms. Methods In two purposively selected, musculoskeletal clinical networks, members and stakeholders were interviewed to ascertain their perceptions regarding key factors relating to network effectiveness and sustainability. We adopted a three-level approach to evaluating network effectiveness: at the community, network, and member levels, across the network lifecycle. Results Both networks studied are advisory networks displaying characteristics of the ‘enclave’ type of non-hierarchical network. They are hybrids of the mandated and natural network forms. In the short term, at member level, both networks were striving to create connectivity and collaboration of members. Over the short to medium term, at network level, both networks applied multi-disciplinary engagement in successfully developing models of care as key outputs, and disseminating information to stakeholders. In the long term, at both community and network levels, stakeholders would measure effectiveness by the broader statewide influence of the network in changing and improving practice. At community level, in the long term, stakeholders acknowledged both networks had raised the profile, and provided a ‘voice’ for musculoskeletal conditions, evidencing some progress with implementation of the network mission while pursuing additional implementation strategies. Conclusions This research sheds light on stakeholders’ perceptions of assessing clinical network effectiveness at community, network, and member levels during the network’s timeline, and on the role of networks and their contribution. Overall, stakeholders reported positive momentum and useful progress in network growth and development, and saw their networks as providing valuable mechanisms for meeting instrumental goals and pursuing collaborative interests. Network forms can prove their utility in addressing ‘wicked problems,’ and these Australian clinical networks present a practical approach to the difficult issue of clinician engagement in state-level implementation of best practice for improving patient care and outcomes. PMID:23122000