Sample records for form highly organized

  1. Functionalized sorbent for chemical separations and sequential forming process

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA

    2012-03-20

    A highly functionalized sorbent and sequential process for making are disclosed. The sorbent includes organic short-length amino silanes and organic oligomeric polyfunctional amino silanes that are dispersed within pores of a porous support that form a 3-dimensional structure containing highly functionalized active binding sites for sorption of analytes.

  2. Flattened-Top Domical Water Drops Formed through Self-Organization of Hydrophobin Membranes: A Structural and Mechanistic Study Using Atomic Force Microscopy.

    PubMed

    Yamasaki, Ryota; Takatsuji, Yoshiyuki; Asakawa, Hitoshi; Fukuma, Takeshi; Haruyama, Tetsuya

    2016-01-26

    The Trichoderma reesei hydrophobin, HFBI, is a unique structural protein. This protein forms membranes by self-organization at air/water or water/solid interfaces. When HFBI forms a membrane at an air/water interface, the top of the water droplet is flattened. The mechanism underlying this phenomenon has not been explored. In this study, this unique phenomenon has been investigated. Self-organized HFBI membranes form a hexagonal structured membrane on the surface of water droplets; the structure was confirmed by atomic force microscopy (AFM) measurement. Assembled hexagons can form a planar sheet or a tube. Self-organized HFBI membranes on water droplets form a sheet with an array of hexagonal structures or a honeycomb structure. This membrane, with its arrayed hexagonal structures, has very high buckling strength. We hypothesized that the high buckling strength is the reason that water droplets containing HFBI form flattened domes. To test this hypothesis, the strength of the self-organized HFBI membranes was analyzed using AFM. The buckling strength of HFBI membranes was measured to be 66.9 mN/m. In contrast, the surface tension of water droplets containing dissolved HFBI is 42 mN/m. Thus, the buckling strength of a self-organized HFBI membrane is higher than the surface tension of water containing dissolved HFBI. This mechanistic study clarifies why the water droplets formed by self-organized HFBI membranes have a flattened top.

  3. Highly Non-Linear Optical (NLO) organic crystals

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    This research project involves the synthesis and characterization of organic materials having powerful nonlinear optical (NLO) properties and the growth of highly ordered crystals and monomolecular films of these materials. Research in four areas is discussed: theoretical design of new materials, characterization of NLO materials, synthesis of new materials and development of coupling procedures for forming layered films, and improvement of the techniques for vapor phase and solution phase growth of high quality organic crystals. Knowledge gained from these experiments will form the basis for experiments in the growth of these crystals.

  4. High-pressure high-temperature phase diagram of organic crystal paracetamol

    DOE PAGES

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-06

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I → orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II → unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. As a result, this new data is combined with previous ambientmore » temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol.« less

  5. High-pressure high-temperature phase diagram of organic crystal paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  6. Process for producing organic products containing silicon, hydrogen, nitrogen, and carbon by the direct reaction between elemental silicon and organic amines and products formed thereby

    DOEpatents

    Pugar, E.A.; Morgan, P.E.D.

    1988-04-04

    A process is disclosed for producing, at a low temperature, a high purity organic reaction product consisting essentially of silicon, hydrogen, nitrogen, and carbon. The process comprises reacting together a particulate elemental high purity silicon with a high purity reactive amine reactant in a liquid state at a temperature of from about O/degree/C up to about 300/degree/C. A high purity silicon carbide/silicon nitride ceramic product can be formed from this intermediate product, if desired, by heating the intermediate product at a temperature of from about 1200-1700/degree/C for a period from about 15 minutes up to about 2 hours or the organic reaction product may be employed in other chemical uses.

  7. Forms of work organization and associations with shoulder disorders: Results from a French working population.

    PubMed

    Bodin, Julie; Garlantézec, Ronan; Costet, Nathalie; Descatha, Alexis; Fouquet, Natacha; Caroly, Sandrine; Roquelaure, Yves

    2017-03-01

    The aim of this study was to identify forms of work organization in a French region and to study associations with the occurrence of symptomatic and clinically diagnosed shoulder disorders in workers. Workers were randomly included in this cross-sectional study from 2002 to 2005. Sixteen organizational variables were assessed by a self-administered questionnaire: i.e. shift work, job rotation, repetitiveness of tasks, paced work/automatic rate, work pace dependent on quantified targets, permanent controls or surveillance, colleagues' work and customer demand, and eight variables measuring decision latitude. Five forms of work organization were identified using hierarchical cluster analysis (HCA) of variables and HCA of workers: low decision latitude with pace constraints, medium decision latitude with pace constraints, low decision latitude with low pace constraints, high decision latitude with pace constraints and high decision latitude with low pace constraints. There were significant associations between forms of work organization and symptomatic and clinically-diagnosed shoulder disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. In Situ-Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries.

    PubMed

    Huang, Ying; Fang, Chun; Zeng, Rui; Liu, Yaojun; Zhang, Wang; Wang, Yanjie; Liu, Qingju; Huang, Yunhui

    2017-12-08

    Metal-organic compounds are a family of electrode materials with structural diversity and excellent thermal stability for rechargeable batteries. Here, we fabricated a hierarchical nanocomposite with metal-organic cuprous tetracyanoquinodimethane (CuTCNQ) in a 3 D conductive carbon nanofibers (CNFs) network by in situ growth, and evaluated it as flexible cathode for sodium-ion batteries (SIBs). CuTCNQ in such flexible composite electrode is able to exhibit a high capacity of 252 mAh g -1 at 0.1 C and highly reversible stability for 1200 cycles within the voltage range of 2.5-4.1 V (vs. Na + /Na). A high specific energy of 762 Wh kg -1 was obtained with high average potential of 3.2 V (vs. Na + /Na). The in situ-formed electroactive metal-organic composites with tailored nanoarchitecture provide a promising alternative choice for high-performance cathode materials in SIBs with high energy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. [Clinical and neurophysiological heterogeneity of attention deficit hyperactivity disorder].

    PubMed

    Chutko, L S; Yakovenko, E A; Surushkina, S Yu; Anisimova, T I; Kropotov, Yu D

    To determine clinical/neurophysiological characteristics of different forms of attention deficit hyperactivity disorder (ADHD) and the efficacy of treatment with cerebrolysin. Sixty children, aged 9 to 12 years, with ADHD were examined using clinical and electroencephalographic methods. Idiopathic and residual-organic forms were compared. The study shows significantly higher levels of impulsivity and hyperactivity in children with residual-organic form of the disease. There were significant differences in the amplitude component of engaging in action (P3 Go) and the amplitude of the action suppression component (P3 NOGO) in patients with different forms of ADHD. The high clinical efficacy (improvement in 70.0% of patients with idiopathic form of ADHD and 86.7% of patients with residual-organic form of the disease) was found.

  10. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  11. Oligomers Formed Through In-cloud Metylglyoxal Reactions: Chemical Composition, Properties, and Mechanisms Investigated by Ultra-high Resolution FT-ICR Mass Spectrometry

    EPA Science Inventory

    Secondary organic aerosol (SOA) is a substantial component of total atmospheric organic particulate matter, but little is known about the composition of SOA formed through cloud processing. We conducted aqueous phase photooxidation experiments of methylglyoxal and hydroxyl radica...

  12. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  13. Mesoscopic self-organization of a self-assembled supramolecular rectangle on highly oriented pyrolytic graphite and Au(111) surfaces.

    PubMed

    Gong, Jian-Ru; Wan, Li-Jun; Yuan, Qun-Hui; Bai, Chun-Li; Jude, Hershel; Stang, Peter J

    2005-01-25

    A self-assembled supramolecular metallacyclic rectangle was investigated with scanning tunneling microscopy on highly oriented pyrolytic graphite and Au(111) surfaces. The rectangles spontaneously adsorb on both surfaces and self-organize into well ordered adlayers. On highly oriented pyrolytic graphite, the long edge of the rectangle stands on the surface, forming a 2D molecular network. In contrast, the face of the rectangle lays flat on the Au(111) surface, forming linear chains. The structures and intramolecular features obtained through high-resolution scanning tunneling microscopy imaging are discussed.

  14. Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ

    PubMed Central

    Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei

    2013-01-01

    Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187

  15. Conceptualizations of Representation Forms and Knowledge Organization of High School Teachers in Finland: "Magnetostatics"

    ERIC Educational Resources Information Center

    Majidi, Sharareh; Emden, Markus

    2013-01-01

    One of the main components of teachers' pedagogical content knowledge refers to their use of representation forms. In a similar vein, organizing concepts logically and meaningfully is an essential element of teachers' subject matter knowledge. Since subject matter and pedagogical content knowledge of teachers are tightly connected as categories…

  16. Process for forming a metal compound coating on a substrate

    DOEpatents

    Sharp, D.J.; Vernon, M.E.; Wright, S.A.

    1988-06-29

    A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.

  17. CVD method for forming B.sub.i -containing oxide superconducting films

    DOEpatents

    Wessels, Bruce W.; Marks, Tobin J.; Richeson, Darrin S.; Tonge, Lauren M.; Zhang, Jiming

    1994-01-01

    Films of high T.sub.c Bi-Sr-Ca-Cu-O superconductor have been prepared by MOCVD using volatile metal organic precursors and water vapor. The metal organic precursors are volatized along with a bismuth source, such as Bi(C.sub.6 H.sub.5).sub.3, deposited on a heated substrate to form a film, and annealed.

  18. Multifunctional organic thin films and their electronic/optical properties

    NASA Astrophysics Data System (ADS)

    Shao, Yan

    The concept of multifunctional organic thin films and their electronic/optical properties has been applied to organic functional device design, fabrication, and characterization. The organic devices involve organic light-emitting diodes (OLEDs) and organic photovoltaic devices (OPV) in this dissertation. In the research of graded junction structure of OLEDs, two kinds of naturally-formed graded junction (NFGJ) structures, sharp and shallow graded junctions, can be formed using single thermal evaporation boat loaded with uniformly mixed charge transport and light-emitting materials. OLEDs with NFGJ have been demonstrated in Chapter 3; the performance is comparable to the heterojunction OLEDs, but with better device lifetime. A novel method to prepare highly uniform mixed organic solid solutions through a high temperature and high-pressure fusion process has been demonstrated in Chapter 4. A series of fused organic solid solution (FOSS) compounds with NPD doped with different organic emitting dopants were prepared and DSC technique was utilized to determine the thermal characteristics. For the first time, the schematic phase diagram for this binary system has been obtained. High performance OLEDs of single color and white emission were fabricated and the device properties were characterized. In Chapter 5, an efficient photovoltaic heterojunction of tetracene and fullerene has been investigated and high performance organic solar cells have been demonstrated by thermal deposition and successive heat treatment. The preliminary conclusion for this enhancement is discussed and supported by atomic force microscopy images, absorption spectra and x-ray diffraction analysis. Additionally, an effective organic photovoltaic heterojunction based on the typical triplet material PtOEP was demonstrated. It is believed that introducing appropriate organic materials with long exciton lifetime is a very promising way to improve photovoltaic performance.

  19. Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates.

    PubMed

    Baumgartner, Jens; Morin, Guillaume; Menguy, Nicolas; Perez Gonzalez, Teresa; Widdrat, Marc; Cosmidis, Julie; Faivre, Damien

    2013-09-10

    The iron oxide mineral magnetite (Fe3O4) is produced by various organisms to exploit magnetic and mechanical properties. Magnetotactic bacteria have become one of the best model organisms for studying magnetite biomineralization, as their genomes are sequenced and tools are available for their genetic manipulation. However, the chemical route by which magnetite is formed intracellularly within the so-called magnetosomes has remained a matter of debate. Here we used X-ray absorption spectroscopy at cryogenic temperatures and transmission electron microscopic imaging techniques to chemically characterize and spatially resolve the mechanism of biomineralization in those microorganisms. We show that magnetite forms through phase transformation from a highly disordered phosphate-rich ferric hydroxide phase, consistent with prokaryotic ferritins, via transient nanometric ferric (oxyhydr)oxide intermediates within the magnetosome organelle. This pathway remarkably resembles recent results on synthetic magnetite formation and bears a high similarity to suggested mineralization mechanisms in higher organisms.

  20. Preparing highly ordered glasses of discotic liquid crystalline systems by vapor deposition

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit; Gomez, Jaritza; Bishop, Camille E.; Toney, Michael F.; Ediger, M. D.

    Anisotropic molecular packing, particularly in highly ordered liquid-crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized out-of-equilibrium (glassy) solids of discotic liquid-crystalline (LC) systems. Using grazing incidence x-ray scattering, we compare 3 systems: a rectangular columnar LC, a hexagonal columnar LC and a non-liquid crystal former. The packing motifs accessible by vapor deposition are highly organized and vary from face-on to edge-on columnar arrangements depending upon substrate temperature. A subset of these structures cannot be accessed under equilibrium conditions. The structures formed at a given substrate temperature can be understood as the result of the system partially equilibrating toward the structure of the free surface of the equilibrium liquid crystal. Consistent with this view, the structures formed are independent of the substrate material.

  1. Method of preparing a high heating value fuel product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, R.; Fan, L.T.

    1989-10-24

    This patent describes a method of preparing a high heating value fuel product. The method comprising the steps of: blending a high heating value waste material with a cellulosic material; mixing an organic reagent to the blended mixture of the waste material and the cellulosic material, the organic reagent being a mixture having a 4-15 weight percent of a chemical selected from the group consisting of: triethylene, glycol, diethylene glycol, and glycerin propylene glycol; introducing a pozzolanic agent to the blended mixture for controlling the rate of solidification; and forming the blended mixture into a form suitable for handling. Alsomore » described is the same method with the mixture of the organic reagent further comprising: a 20-32 weight percent calcium chloride solution. Another method of preparing a fuel product is also described.« less

  2. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  3. Histological and three dimensional organizations of lymphoid tubules in normal lymphoid organ of Penaeus monodon.

    PubMed

    Duangsuwan, Pornsawan; Phoungpetchara, Ittipon; Tinikul, Yotsawan; Poljaroen, Jaruwan; Wanichanon, Chaitip; Sobhon, Prasert

    2008-04-01

    The normal lymphoid organ of Penaeus monodon (which tested negative for WSSV and YHV) was composed of two parts: lymphoid tubules and interstitial spaces, which were permeated with haemal sinuses filled with large numbers of haemocytes. There were three permanent types of cells present in the wall of lymphoid tubules: endothelial, stromal and capsular cells. Haemocytes penetrated the endothelium of the lymphoid tubule's wall to reside among the fixed cells. The outermost layer of the lymphoid tubule was covered by a network of fibers embedded in a PAS-positive extracellular matrix, which corresponded to a basket-like network that covered all the lymphoid tubules as visualized by a scanning electron microscope (SEM). Argyrophilic reticular fibers surrounded haemal sinuses and lymphoid tubules. Together they formed the scaffold that supported the lymphoid tubule. Using vascular cast and SEM, the three dimensional structure of the subgastric artery that supplies each lobe of the lymphoid organ was reconstructed. This artery branched into highly convoluted and blind-ending terminal capillaries, each forming the lumen of a lymphoid tubule around which haemocytes and other cells aggregated to form a cuff-like wall. Stromal cells which form part of the tubular scaffold were immunostained for vimentin. Examination of the whole-mounted lymphoid organ, immunostained for vimentin, by confocal microscopy exhibited the highly branching and convoluted lymphoid tubules matching the pattern of the vascular cast observed in SEM.

  4. The pitcher plant Sarracenia purpurea can directly acquire organic nitrogen and short-circuit the inorganic nitrogen cycle.

    PubMed

    Karagatzides, Jim D; Butler, Jessica L; Ellison, Aaron M

    2009-07-07

    Despite the large stocks of organic nitrogen in soil, nitrogen availability limits plant growth in many terrestrial ecosystems because most plants take up only inorganic nitrogen, not organic nitrogen. Although some vascular plants can assimilate organic nitrogen directly, only recently has organic nitrogen been found to contribute significantly to the nutrient budget of any plant. Carnivorous plants grow in extremely nutrient-poor environments and carnivory has evolved in these plants as an alternative pathway for obtaining nutrients. We tested if the carnivorous pitcher plant Sarracenia purpurea could directly take up intact amino acids in the field and compared uptake of organic and inorganic forms of nitrogen across a gradient of nitrogen deposition. We hypothesized that the contribution of organic nitrogen to the nitrogen budget of the pitcher plant would decline with increasing nitrogen deposition. At sites in Canada (low nitrogen deposition) and the United States (high nitrogen deposition), individual pitchers were fed two amino acids, glycine and phenylalanine, and inorganic nitrogen (as ammonium nitrate), individually and in mixture. Plants took up intact amino acids. Acquisition of each form of nitrogen provided in isolation exceeded uptake of the same form in mixture. At the high deposition site, uptake of organic nitrogen was higher than uptake of inorganic nitrogen. At the low deposition site, uptake of all three forms of nitrogen was similar. Completeness of the associated detritus-based food web that inhabits pitcher-plant leaves and breaks down captured prey had no effect on nitrogen uptake. By taking up intact amino acids, Sarracenia purpurea can short-circuit the inorganic nitrogen cycle, thus minimizing potential bottlenecks in nitrogen availability that result from the plant's reliance for nitrogen mineralization on a seasonally reconstructed food web operating on infrequent and irregular prey capture.

  5. An Integrated Architecture to Support Hastily Formed Network (HFN)

    DTIC Science & Technology

    2007-12-01

    17 1. Creating Awareness of the Situation (intra-organization).............17 2. Sharing Awareness Among Organizations (inter...Convergence - Sharing a Common Goal to Achieve a Common Outcome...................................................................39 b. Interdependency and...Weaknesses, Opportunities and Threat UC Unclassified UCC Unified Command Center UHF Ultra High Frequency VHF Very High Frequency VoIP Voice over

  6. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors

    PubMed Central

    Walters, Diane M.; Lyubimov, Ivan; de Pablo, Juan J.; Ediger, M. D.

    2015-01-01

    Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. We apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (Tsubstrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by Tsubstrate/Tg, where Tg is the glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form “stable glasses” with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. By showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics. PMID:25831545

  7. Formation, Evaporation, and Hydrolysis of Organic Nitrates from Nitrate Radical Oxidation of Monoterpenes

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Takeuchi, M.; Eris, G.; Berkemeier, T.; Boyd, C.; Nah, T.; Xu, L.

    2017-12-01

    Organic nitrates play an important role in the cycling of NOx and secondary organic aerosol (SOA) formation, yet their formation mechanisms and fates remain highly uncertain. The interactions of biogenic VOCs with NO3 radicals represent a direct way for positively linking anthropogenic and biogenic emissions. Results from ambient studies suggest that organic nitrates have a relatively short lifetime, though corresponding laboratory data are limited. SOA and organic nitrates produced at night may evaporate the following morning due to increasing temperatures or dilution of semi-volatile compounds. Once formed, organic nitrates can also undergo hydrolysis in the presence of particle water. In this work, we investigate the formation, evaporation, and hydrolysis of organic nitrates generated from the nitrate radical oxidation of a-pinene, b-pinene, and limonene. Experiments are conducted in the Georgia Environmental Chamber facility (GTEC) under dry and humid conditions and different temperatures. Experiments are also designed to probe different peroxy radical pathways (RO2+HO2 vs RO2+NO3). Speciated gas-phase and particle-phase organic nitrates are continuously monitored by a Filter Inlet for Gases and AEROsols High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (FIGAERO-HR-ToF-CIMS). Bulk aerosol composition is measured by a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). A large suite of highly oxygenated gas- and particle-phase organic nitrates are formed rapidly. We find a resistance to aerosol evaporation when it is heated. The extent of organic nitrate hydrolysis in the humid experiments is evaluated. The dynamics of the speciated organic nitrates over the course of the experiments will also be discussed. Results from this chamber study provide fundamental data for understanding the dynamics of organic nitrate aerosols over its atmospheric lifetime.

  8. Modeling microbial survival in buildup biofilm for complex medical devices

    PubMed Central

    2009-01-01

    Background Flexible endoscopes undergo repeated rounds of patient-use and reprocessing. Some evidence indicates that there is an accumulation or build-up of organic material that occurs over time in endoscope channels. This "buildup biofilm" (BBF) develops as a result of cyclical exposure to wet and dry phases during usage and reprocessing. This study investigated whether the BBF matrix represents a greater challenge to disinfectant efficacy and microbial eradication than traditional biofilm (TBF), which forms when a surface is constantly bathed in fluid. Methods Using the MBEC (Minimum Biofilm Eradication Concentration) system, a unique modelling approach was developed to evaluate microbial survival in BBF formed by repetitive cycles of drying, disinfectant exposure and re-exposure to the test organism. This model mimics the cumulative effect of the reprocessing protocol on flexible endoscopes. Glutaraldehyde (GLUT) and accelerated hydrogen peroxide (AHP) were evaluated to assess the killing of microbes in TBF and BBF. Results The data showed that the combination of an organic matrix and aldehyde disinfection quickly produced a protective BBF that facilitated high levels of organism survival. In cross-linked BBF formed under high nutrient conditions the maximum colony forming units (CFU) reached ~6 Log10 CFU/peg. However, if an oxidizing agent was used for disinfection and if organic levels were kept low, organism survival did not occur. A key finding was that once established, the microbial load of BBF formed by GLUT exposure had a faster rate of accumulation than in TBF. The rate of biofilm survival post high-level disinfection (HLD) determined by the maximum Log10CFU/initial Log10CFU for E. faecalis and P. aeruginosa in BBF was 10 and 8.6 respectively; significantly different compared to a survival rate in TBF of ~2 for each organism. Data from indirect outgrowth testing demonstrated for the first time that there is organism survival in the matrix. Both TBF and BBF had surviving organisms when GLUT was used. For AHP survival was seen less frequently in BBF than in TBF. Conclusion This BBF model demonstrated for the first time that survival of a wide range of microorganisms does occur in BBF, with significantly more rapid outgrowth compared to TBF. This is most pronounced when GLUT is used compared to AHP. The data supports the need for meticulous cleaning of reprocessed endoscopes since the presence of organic material and microorganisms prevents effective disinfection when GLUT and AHP are used. However, cross-linking agents like GLUT are not as effective when there is BBF. The data from the MBEC model of BBF suggest that for flexible endoscopes that are repeatedly used and reprocessed, the assurance of effective high-level disinfection may decrease if BBF develops within the channels. PMID:19426471

  9. Three-dimensional fine structure of the organization of microtubules in neurite varicosities by ultra-high voltage electron microscope tomography.

    PubMed

    Nishida, Tomoki; Yoshimura, Ryoichi; Endo, Yasuhisa

    2017-09-01

    Neurite varicosities are highly specialized compartments that are involved in neurotransmitter/ neuromodulator release and provide a physiological platform for neural functions. However, it remains unclear how microtubule organization contributes to the form of varicosity. Here, we examine the three-dimensional structure of microtubules in varicosities of a differentiated PC12 neural cell line using ultra-high voltage electron microscope tomography. Three-dimensional imaging showed that a part of the varicosities contained an accumulation of organelles that were separated from parallel microtubule arrays. Further detailed analysis using serial sections and whole-mount tomography revealed microtubules running in a spindle shape of swelling in some other types of varicosities. These electron tomographic results showed that the structural diversity and heterogeneity of microtubule organization supported the form of varicosities, suggesting that a different distribution pattern of microtubules in varicosities is crucial to the regulation of varicosities development.

  10. Self-organization of sorted patterned ground.

    PubMed

    Kessler, M A; Werner, B T

    2003-01-17

    Striking circular, labyrinthine, polygonal, and striped patterns of stones and soil self-organize in many polar and high alpine environments. These forms emerge because freeze-thaw cycles drive an interplay between two feedback mechanisms. First, formation of ice lenses in freezing soil sorts stones and soil by displacing soil toward soil-rich domains and stones toward stone-rich domains. Second, stones are transported along the axis of elongate stone domains, which are squeezed and confined as freezing soil domains expand. In a numerical model implementing these feedbacks, circles, labyrinths, and islands form when sorting dominates; polygonal networks form when stone domain squeezing and confinement dominate; and stripes form as hillslope gradient is increased.

  11. Formation and enhanced biocidal activity of water-dispersable organic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Haifei; Wang, Dong; Butler, Rachel; Campbell, Neil L.; Long, James; Tan, Bien; Duncalf, David J.; Foster, Alison J.; Hopkinson, Andrew; Taylor, David; Angus, Doris; Cooper, Andrew I.; Rannard, Steven P.

    2008-08-01

    Water-insoluble organic compounds are often used in aqueous environments in various pharmaceutical and consumer products. To overcome insolubility, the particles are dispersed in a medium during product formation, but large particles that are formed may affect product performance and safety. Many techniques have been used to produce nanodispersions-dispersions with nanometre-scale dimensions-that have properties similar to solutions. However, making nanodispersions requires complex processing, and it is difficult to achieve stability over long periods. Here we report a generic method for producing organic nanoparticles with a combination of modified emulsion-templating and freeze-drying. The dry powder composites formed using this method are highly porous, stable and form nanodispersions upon simple addition of water. Aqueous nanodispersions of Triclosan (a commercial antimicrobial agent) produced with this approach show greater activity than organic/aqueous solutions of Triclosan.

  12. The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution

    NASA Astrophysics Data System (ADS)

    Vaattovaara, P.; Huttunen, P. E.; Yoon, Y. J.; Joutsensaari, J.; Lehtinen, K. E. J.; O'Dowd, C. D.; Laaksonen, A.

    2006-04-01

    Newly-formed nanometer-sized particles have been observed at coastal and marine environments worldwide. Interestingly, organic species have so far not been detected in those newly-formed nucleation mode particles. In this study, we applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to study the possible existence of an organic fraction in recently formed coastal nucleation mode particles (d<20 nm) at the Mace Head research station. Furthermore, effects of those nucleation events to potential CCN (cloud condensation nuclei) were studied. The coastal events were typical for the Mace Head region and they occurred at low tide conditions during efficient solar radiation and high biological activity (HBA, i.e. a high mass concentration of chlorophyll a of the ocean) in spring 2002. Additionally, a PHA-UCPC (pulse height analyzer ultrafine condensation particle counter) technique was used to study the composition of newly-formed particles formed in low tide conditions during a lower biological activity (LBA, i.e. a lower mass concentration of chlorophyll a of the ocean) in October 2002. The overall results of the UFO-TDMA and the PHA-UCPC measurements indicate that those coastally/marinely formed nucleation mode particles include a remarkable fraction of secondary organic products, beside iodine oxides, which are likely to be responsible for the nucleation. During clean marine air mass conditions, the origin of those secondary organic oxidation compounds can be related to marine/coastal biota and thus a major fraction of the organics may originate from biosynthetic production of alkenes such as isoprene and their oxidation by iodine, hydroxyl radical, and ozone. During modified marine conditions, also anthropogenic secondary organic compounds may contribute to the nucleation mode organic mass, in addition to biogenic secondary organic compounds. Thus, the UFO-TDMA results suggest that the secondary organic compounds may, in addition to being significant contributors to the nucleation mode processes, accelerate the growth of freshly nucleated particles and increase their survival probability to CCN and even larger radiatively active particle sizes. The results give new insights to the coastal/marine particle formation, growth, and properties. The marine biota driven secondary organic contributions to coastal/marine particle formation and composition can be anticipated in other species specific biologically active oceans and fresh-waters areas around the world and thus, they may be significant also to the global radiative bugdet, atmosphere-biosphere feedbacks, and climate change.

  13. Army Airmobility Handbook

    DTIC Science & Technology

    1967-03-01

    is restricted only by the practical range of its organic aerial vehicles which provide its high degree of mobility; a form of warfare that not only... ORGANIC AIRCRAFT RADIOS 1* Chapter and Appendix. APPENDIX 4 ARMY AIRCRAFT WEAPONS SYSTEMS APPENDIX 5 ARMY AVIATION ORGANIZATIONS IL. APPENDIX 6 AIRMOBILE...helicopters, fix,:d wing aircraft, and organizations and equipment associatetd with Army aviation. It provides basic and general information, and

  14. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies

    NASA Astrophysics Data System (ADS)

    Kotadiya, Naresh B.; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W. M.; Wetzelaer, Gert-Jan A. H.

    2018-02-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  15. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies.

    PubMed

    Kotadiya, Naresh B; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W M; Wetzelaer, Gert-Jan A H

    2018-04-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  16. Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation: New Insights into the Formation and Fates of Highly Oxygenated Gas- and Particle-phase Organic Nitrates

    NASA Astrophysics Data System (ADS)

    Nah, T.; Sanchez, J.; Boyd, C.; Ng, N. L.

    2015-12-01

    The nitrate radical (NO3), one of the most important oxidants in the nocturnal atmosphere, can react rapidly with a variety of biogenic volatile organic compounds (BVOCs) to form high mass concentrations of secondary organic aerosol (SOA) and organic nitrates (ON). Despite its critical importance in aerosol formation, the mechanisms and products from the NO3 oxidation of BVOCs have been largely unexplored, and the fates of their SOA and ON after formation are not well characterized. In this work, we studied the formation of SOA and ON from the NO3 oxidation of α-pinene and β-pinene and investigated for the first time how they evolve during dark and photochemical aging through a series of chamber experiments performed at the Georgia Tech Environmental Chamber (GTEC) facility. The α-pinene and β-pinene SOA are characterized using real-time gas- and particle-phase measurements, which are used to propose mechanisms for SOA and organic nitrate formation and aging. Highly oxygenated gas- and particle-phase ON (containing as many as 9 oxygen atoms) are detected during the NO3 reaction. In addition, the β-pinene SOA and α-pinene SOA exhibited drastically different behavior during photochemical aging. Our results indicate that nighttime ON formed by NO3+monoterpene chemistry can serve as either NOx reservoirs or sinks depending on the monoterpene precursor. Results from this study provide fundamental data for evaluating the contributions of NO3+monoterpene reactions to ambient OA measured in the Southeastern U.S.

  17. Synthesis of New Organic Semiconducting Polymer Materials Having High Radiowave Absorption Rate

    DTIC Science & Technology

    2008-11-01

    ISTC Project No. #1571P Synthesis of New Organic Semiconducting Polymer Materials Having High Radiowave Absorption Rate Final Project Technical...Technology Center ( ISTC ), Moscow. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information...polymer materials having high radiowave absorption rate 5a. CONTRACT NUMBER ISTC Registration No: A-1571p 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  18. High thermal stability and antiferromagnetic properties of a 3D Mn(II)-organic framework with metal carboxylate chains

    NASA Astrophysics Data System (ADS)

    Han, Lei; Zhou, Yan; Wang, Xiu-Teng; Li, Xing; Tong, Ming-Liang

    2009-04-01

    A novel three-dimensional metal-organic framework, [Mn 2(hfipbb) 2(bpy)] n ( 1) (H 2hfipbb = 4,4'-(hexafluoroisopropylidene)bis(benzoic acid), bpy = 4,4'-bipyridine), has been hydrothermally synthesized and structurally characterized. The complex consists of metal carboxylate chains, which are cross-linked to six adjacent chains through organic moieties forming extended three-dimensional networks. Complex 1 exhibits high thermal stability (450 °C) and antiferromagnetic properties.

  19. Melt-cast organic glasses as high-efficiency fast neutron scintillators

    NASA Astrophysics Data System (ADS)

    Carlson, Joseph S.; Feng, Patrick L.

    2016-10-01

    In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. The combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.

  20. High residue levels and the chemical form of mercury in tissues and organs of seabirds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.Y.; Murakami, Toru; Saeki, Kazutoshi

    1995-12-31

    Total and organic (methyl) mercury in liver, muscle, kidney and feather of 9 species of seabirds were analyzed to determine the levels and their distribution and to clarify the occurrences of high mercury levels and their detoxification process in seabirds. Total mercury levels in liver showed great variations in intra and interspecies, while organic mercury levels were less variable. As compared with species in relatively low mercury levels, the species which accumulated the high concentration of mercury like black-footed albatross exhibited the different distribution of mercury in the body: in total mercury burden, albatross species contained less than 10% inmore » feather and over 50% in liver, while other species contained over 40% in feather and less than 20% in liver. The order of organic mercury concentrations in tissues were as follows: liver > kidney > muscle in seabirds examined, except oldsquaw. The mean percentage of organic mercury in total was 35%, 66%, and 36% in liver, muscle and kidney, respectively, for all the species. The significant negative correlations were found between organic mercury percentage to total mercury and total mercury concentrations in the liver and muscle of black-footed albatross and in the liver of laysan albatross. Furthermore, in liver, muscle, and kidney of all the species, the percentages of organic mercury had a negative trend with an increase of total mercury concentrations. The results suggest that albatross species may be capable for demethylating organic mercury in the tissues (mainly in liver), and for storing the mercury as immobilizable inorganic form in the liver as substitution for delivering organic mercury to other organs. It is noteworthy that the species with high degree of demethylation showed the lower mercury burdens in feather and slow moulting pattern.« less

  1. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors

    DOE PAGES

    Dalal, Shakeel S.; Walters, Diane M.; Lyubimov, Ivan; ...

    2015-03-23

    Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. In this paper, we apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (T substrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by T substrate/T g, where T g is themore » glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form “stable glasses” with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. Finally, by showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics.« less

  2. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    PubMed

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. © 2016. Published by The Company of Biologists Ltd.

  3. Diverse microbial species survive high ammonia concentrations

    NASA Astrophysics Data System (ADS)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  4. Organic matter and the geotechnical properties of submarine sediments

    NASA Astrophysics Data System (ADS)

    Keller, George H.

    1982-09-01

    Continental slope deposits off Peru and Oregon where coastal upwelling is a pronounced oceanographic process possess significant concentrations of organic carbon. Geotechnical properties are altered to varying degrees by the organic matter. Organic matter absorbs water and causes clay-size particles to aggregate forming an open fabric. This causes unusually high water contents and plasticity and exceptionally low wet bulk densities. Some of these deposits show notable increases in shear strength, sensitivity and degree of apparent overconsolidation. Owing to the unique geotechnical properties, sediment stability characteristics are considered to be poor in situations of excess pore pressures. Failure appears to take the form of a fluidized flow somewhat similar to the quick clays of Scandinavia.

  5. Molecular Characterization of Organosulfur Compounds in Biodiesel and Diesel Fuel Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, Sandra L.; MacMillan, Amanda C.; Drozd, Greg T.

    Secondary organic aerosol (SOA), formed in a process of photooxidization of diesel fuel, biodiesel fuel, and 20% biodiesel fuel/80% diesel fuel mixture, are prepared under high-NOx conditions in the presence and absence of sulfur dioxide (SO2), ammonia (NH3), and relative humidity (RH). The composition of condensed-phase organic compounds in SOA is measured using several analytical techniques including aerosol mass spectrometry (AMS), high-resolution nanospray desorption electrospray ionization mass spectrometry (nano-DESI/HRMS), and ultra high resolution and mass accuracy 21T Fourier transform ion cyclotron resonance mass spectrometry (21T FT-ICR MS). Results demonstrate that sulfuric acid and condensed organosulfur species formed in photooxidation experimentsmore » with SO2 are present in the SOA particles. Fewer organosulfur species are formed in the high humidity experiments, performed at RH 90%, in comparison with experiments done under dry conditions. There is a strong overlap of organosulfur species observed in this study with previous field and chamber studies of SOA. Many mass spectrometry peaks of organosulfates (R–OS(O)2OH) in field studies previously designated as biogenic or of unknown origin might have originated from anthropogenic sources, such as photooxidation of hydrocarbons present in diesel and biodiesel fuel.« less

  6. Multi-scale simulation of quantum dot formation in Al/Al (110) homoepitaxy

    NASA Astrophysics Data System (ADS)

    Tiwary, Yogesh; Fichthorn, Kristen

    2007-03-01

    In experimental studies of Al(110) homoepitaxy, it is observed that over a certain temperature window (330-500K), 3D huts, up to 50 nm high with well defined and smooth (111) and (100) facets, form and self-organize over the micron scale [1]. The factors leading to this kinetic self-organization are currently unclear. To understand how these structures form and evolve, we simulated multi-layer, homoepitaxial growth on Al(110) using ab initio kinetic Monte Carlo (KMC). At the high temperatures, where nano-huts form, the KMC simulations are slow. To tackle this problem, we use a technique developed by Devita & Sander [2], in which isolated adatoms make multiple moves in one step. We achieve high efficiency with this algorithm and we explore very high temperatures on large simulation lattices. We uncover a variety of interesting morphologies (Ripples, mounds, smooth surface, huts) that depend on the growth temperature. By varying the barriers for various rate processes, we discern the factors that determine hut sizes, aspect ratios, and self-organization. [1] F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Phys. Rev. Lett. 91, 016102 (2003). [2] J.P. Devita & L.M. Sander, Phys. Rev. B 72, 205421 (2005).

  7. Distribution of selenium in zebrafish larvae after exposure to organic and inorganic selenium forms.

    PubMed

    Dolgova, N V; Hackett, M J; MacDonald, T C; Nehzati, S; James, A K; Krone, P H; George, G N; Pickering, I J

    2016-03-01

    Selenium is an essential micronutrient for many organisms, and in vertebrates has a variety of roles associated with protection from reactive oxygen species. Over the past two decades there have been conflicting reports upon human health benefits and detriments arising from consumption of selenium dietary supplements. Thus, early studies report a decrease in the incidence of certain types of cancer, whereas subsequent studies did not observe any anti-cancer effect, and adverse effects such as increased risks for type 2 diabetes have been reported. A possible contributing factor may be that different chemical forms of selenium were used in different studies. Using larval stage zebrafish (Danio rerio) as a model organism, we report a comparison of the toxicities and tissue selenium distributions of four different chemical forms of selenium. We find that the organic forms of selenium tested (Se-methyl-l-selenocysteine and l-selenomethionine) show considerably more toxicity than inorganic forms (selenite and selenate), and that this appears to be correlated with the level of bioaccumulation. Despite differences in concentrations, the tissue specific pattern of selenium accumulation was similar for the chemical forms tested; selenium was found to be highly concentrated in pigment (melanin) containing tissues especially for the organic selenium treatments, with lower concentrations in eye lens, yolk sac and heart. These results suggest that pigmented tissues might serve as a storage reservoir for selenium.

  8. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials.

    PubMed

    Faivre, Damien; Godec, Tina Ukmar

    2015-04-13

    Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind-boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reactive intermediates revealed in secondary organic aerosol formation from isoprene

    PubMed Central

    Surratt, Jason D.; Chan, Arthur W. H.; Eddingsaas, Nathan C.; Chan, ManNin; Loza, Christine L.; Kwan, Alan J.; Hersey, Scott P.; Flagan, Richard C.; Wennberg, Paul O.; Seinfeld, John H.

    2010-01-01

    Isoprene is a significant source of atmospheric organic aerosol; however, the oxidation pathways that lead to secondary organic aerosol (SOA) have remained elusive. Here, we identify the role of two key reactive intermediates, epoxydiols of isoprene (IEPOX = β-IEPOX + δ-IEPOX) and methacryloylperoxynitrate (MPAN), which are formed during isoprene oxidation under low- and high-NOx conditions, respectively. Isoprene low-NOx SOA is enhanced in the presence of acidified sulfate seed aerosol (mass yield 28.6%) over that in the presence of neutral aerosol (mass yield 1.3%). Increased uptake of IEPOX by acid-catalyzed particle-phase reactions is shown to explain this enhancement. Under high-NOx conditions, isoprene SOA formation occurs through oxidation of its second-generation product, MPAN. The similarity of the composition of SOA formed from the photooxidation of MPAN to that formed from isoprene and methacrolein demonstrates the role of MPAN in the formation of isoprene high-NOx SOA. Reactions of IEPOX and MPAN in the presence of anthropogenic pollutants (i.e., acidic aerosol produced from the oxidation of SO2 and NO2, respectively) could be a substantial source of “missing urban SOA” not included in current atmospheric models. PMID:20080572

  10. Improving the Effectiveness of Organic Chemistry Experiments through Multimedia Teaching Materials for Junior High School Students

    ERIC Educational Resources Information Center

    Lou, Shi-Jer; Lin, Hui-Chen; Shih, Ru-Chu; Tseng, Kuo-Hung

    2012-01-01

    The purpose of the study aimed to explore the effects of three different forms of the multimedia teaching materials on the achievements and attitudes of junior high school students in a chemistry laboratory context. The three forms of the multimedia teaching materials, static pictures, video, and animation, were employed to teach chemistry…

  11. Volatile organic compound constituents from an integrated iron and steel facility.

    PubMed

    Tsai, Jiun-Horng; Lin, Kuo-Hsiung; Chen, Chih-Yu; Lai, Nina; Ma, Sen-Yi; Chiang, Hung-Lung

    2008-09-15

    This study measured the volatile organic compound (VOC) constituents of four processes in an integrated iron and steel industry; cokemaking, sintering, hot forming, and cold forming. Toluene, 1,2,4-trimethylbenzene, isopentane, m,p-xylene, 1-butene, ethylbenzene, and benzene were the predominant VOC species in these processes. However, some of the chlorinated compounds were high (hundreds ppbv), i.e., trichloroethylene in all four processes, carbon tetrachloride in the hot forming process, chlorobenzene in the cold forming process, and bromomethane in the sintering process. In the sintering process, the emission factors of toluene, benzene, xylene, isopentane, 1,2,4-trimethylbenzene, and ethylbenzene were over 9 g/tonne-product. In the vicinity of the manufacturing plant, toluene, isopentane, 1,2,4-trimethylbenzene, xylene and ethylbenzene were high. Toluene, 1,2,4-trimethylbenzene, xylene, 1-butene and isopentane were the major ozone formation species. Aromatic compounds were the predominant VOC groups, constituting 45-70% of the VOC concentration and contributing >70% to the high ozone formation potential in the stack exhaust and workplace air. The sequence of VOC concentration and ozone formation potential was as follows: cold forming>sintering>hot forming>cokemaking. For the workplace air, cokemaking was the highest producer, which was attributed to the fugitive emissions of the coke oven and working process release.

  12. Organization of astaxanthin within oil bodies of Haematococcus pluvialis studied with polarization-dependent harmonic generation microscopy.

    PubMed

    Tokarz, Danielle; Cisek, Richard; El-Ansari, Omar; Espie, George S; Fekl, Ulrich; Barzda, Virginijus

    2014-01-01

    Nonlinear optical microscopy was used to image the localization of astaxanthin accumulation in the green alga, Haematococcus pluvialis. Polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and third harmonic generation (THG) microscopy was applied to study the crystalline organization of astaxanthin molecules in light-stressed H. pluvialis in vivo. Since astaxanthin readily forms H- and J-aggregates in aqueous solutions, PIPO THG studies of astaxanthin aggregates contained in red aplanospores were compared to PIPO THG of in vitro self-assembled H- and J-aggregates of astaxanthin. The PIPO THG data clearly showed an isotropic organization of astaxanthin in red aplanospores of H. pluvialis. This is in contrast to the highly anisotropic organization of astaxanthin in synthetic H- and J-aggregates, which showed to be uniaxial. Since carotenoids in vitro preferentially form H- and J-aggregates, but in vivo form a randomly organized structure, this implies that astaxanthin undergoes a different way of packing in biological organisms, which is either due to the unique physical environment of the alga or is controlled enzymatically.

  13. Organization of Astaxanthin within Oil Bodies of Haematococcus pluvialis Studied with Polarization-Dependent Harmonic Generation Microscopy

    PubMed Central

    Tokarz, Danielle; Cisek, Richard; El-Ansari, Omar; Espie, George S.; Fekl, Ulrich; Barzda, Virginijus

    2014-01-01

    Nonlinear optical microscopy was used to image the localization of astaxanthin accumulation in the green alga, Haematococcus pluvialis. Polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and third harmonic generation (THG) microscopy was applied to study the crystalline organization of astaxanthin molecules in light-stressed H. pluvialis in vivo. Since astaxanthin readily forms H- and J-aggregates in aqueous solutions, PIPO THG studies of astaxanthin aggregates contained in red aplanospores were compared to PIPO THG of in vitro self-assembled H- and J-aggregates of astaxanthin. The PIPO THG data clearly showed an isotropic organization of astaxanthin in red aplanospores of H. pluvialis. This is in contrast to the highly anisotropic organization of astaxanthin in synthetic H- and J-aggregates, which showed to be uniaxial. Since carotenoids in vitro preferentially form H- and J-aggregates, but in vivo form a randomly organized structure, this implies that astaxanthin undergoes a different way of packing in biological organisms, which is either due to the unique physical environment of the alga or is controlled enzymatically. PMID:25215522

  14. The Pitcher Plant Sarracenia purpurea Can Directly Acquire Organic Nitrogen and Short-Circuit the Inorganic Nitrogen Cycle

    PubMed Central

    Karagatzides, Jim D.; Butler, Jessica L.; Ellison, Aaron M.

    2009-01-01

    Background Despite the large stocks of organic nitrogen in soil, nitrogen availability limits plant growth in many terrestrial ecosystems because most plants take up only inorganic nitrogen, not organic nitrogen. Although some vascular plants can assimilate organic nitrogen directly, only recently has organic nitrogen been found to contribute significantly to the nutrient budget of any plant. Carnivorous plants grow in extremely nutrient-poor environments and carnivory has evolved in these plants as an alternative pathway for obtaining nutrients. We tested if the carnivorous pitcher plant Sarracenia purpurea could directly take up intact amino acids in the field and compared uptake of organic and inorganic forms of nitrogen across a gradient of nitrogen deposition. We hypothesized that the contribution of organic nitrogen to the nitrogen budget of the pitcher plant would decline with increasing nitrogen deposition. Methodology and Principal Findings At sites in Canada (low nitrogen deposition) and the United States (high nitrogen deposition), individual pitchers were fed two amino acids, glycine and phenylalanine, and inorganic nitrogen (as ammonium nitrate), individually and in mixture. Plants took up intact amino acids. Acquisition of each form of nitrogen provided in isolation exceeded uptake of the same form in mixture. At the high deposition site, uptake of organic nitrogen was higher than uptake of inorganic nitrogen. At the low deposition site, uptake of all three forms of nitrogen was similar. Completeness of the associated detritus-based food web that inhabits pitcher-plant leaves and breaks down captured prey had no effect on nitrogen uptake. Conclusions and Significance By taking up intact amino acids, Sarracenia purpurea can short-circuit the inorganic nitrogen cycle, thus minimizing potential bottlenecks in nitrogen availability that result from the plant's reliance for nitrogen mineralization on a seasonally reconstructed food web operating on infrequent and irregular prey capture. PMID:19582167

  15. Melt-cast organic glasses as high-efficiency fast neutron scintillators

    DOE PAGES

    Carlson, Joseph S.; Feng, Patrick L.

    2016-06-24

    In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. In conclusion, themore » combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.« less

  16. Simplified Production of Organic Compounds Containing High Enantiomer Excesses

    NASA Technical Reports Server (NTRS)

    Cooper, George W. (Inventor)

    2015-01-01

    The present invention is directed to a method for making an enantiomeric organic compound having a high amount of enantiomer excesses including the steps of a) providing an aqueous solution including an initial reactant and a catalyst; and b) subjecting said aqueous solution simultaneously to a magnetic field and photolysis radiation such that said photolysis radiation produces light rays that run substantially parallel or anti-parallel to the magnetic field passing through said aqueous solution, wherein said catalyst reacts with said initial reactant to form the enantiomeric organic compound having a high amount of enantiomer excesses.

  17. Organic/Inorganic Complex Pigments: Ancient Colors Maya Blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polette-Niewold, L.A.; Manciu, F.S.; Torres, B.

    2009-06-04

    Maya Blue is an ancient blue pigment composed of palygorskite clay and indigo. It was used by the ancient Maya and provides a dramatic background for some of the most impressive murals throughout Mesoamerica. Despite exposure to acids, alkalis, and chemical solvents, the color of the Maya Blue pigment remains unaltered. The chemical interaction between palygorskite and indigo form an organic/inorganic complex with the carbonyl oxygen of the indigo bound to a surface Al{sup 3+} in the Si-O lattice. In addition indigo will undergo an oxidation to dehydroindigo during preparation. The dehydro-indigo molecule forms a similar but stronger complex withmore » the Al{sup 3+}. Thus, Maya Blue varies in color due to the mixed indigo/dehydroindigo complex. The above conclusions are the result of application of multiple techniques (X-ray diffraction, differential thermal analysis/thermal gravimetric analysis, high resolution transmission electron microscopy, scanning electron microscopy, infrared and Raman spectroscopy) to the characterization of the organic/inorganic complex. A picture of the bonding of the organic molecule to the palygorskite surface forming a surface complex is developed and supported by the results of density functional theory calculations. We also report that other organic molecules such as thioindigo form similar organic/inorganic complexes thus, opening an entirely new class of complex materials for future applications.« less

  18. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, Timothy J.; Even, Jr., William R.

    2000-01-01

    A novel method for preparing a hydrogenation composition comprising organic polymer molecules having carbon--carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces and particularly from atmospheres within enclosed spaces that contain air, water vapor, oxygen, carbon dioxide or ammonia. The organic polymers molecules containing carbon--carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble noble metal catalyst composition. High molecular weight polymers may be added to the organic polymer/catalyst mixture in order to improve their high temperature performance. The hydrogenation composition is prepared by dispersing the polymers in a suitable solvent, forming thereby a solution suspension, flash-freezing droplets of the solution in a liquid cryogen, freeze-drying the frozen droplets to remove frozen solvent incorporated in the droplets, and recovering the dried powder thus formed.

  19. Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale

    NASA Astrophysics Data System (ADS)

    Lin, Senhu

    2017-04-01

    Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.

  20. Drosophila as a model for epithelial tube formation.

    PubMed

    Maruyama, Rika; Andrew, Deborah J

    2012-01-01

    Epithelial tubular organs are essential for life in higher organisms and include the pancreas and other secretory organs that function as biological factories for the synthesis and delivery of secreted enzymes, hormones, and nutrients essential for tissue homeostasis and viability. The lungs, which are necessary for gas exchange, vocalization, and maintaining blood pH, are organized as highly branched tubular epithelia. Tubular organs include arteries, veins, and lymphatics, high-speed passageways for delivery and uptake of nutrients, liquids, gases, and immune cells. The kidneys and components of the reproductive system are also epithelial tubes. Both the heart and central nervous system of many vertebrates begin as epithelial tubes. Thus, it is not surprising that defects in tube formation and maintenance underlie many human diseases. Accordingly, a thorough understanding how tubes form and are maintained is essential to developing better diagnostics and therapeutics. Among the best-characterized tubular organs are the Drosophila salivary gland and trachea, organs whose relative simplicity have allowed for in depth analysis of gene function, yielding key mechanistic insight into tube initiation, remodeling and maintenance. Here, we review our current understanding of salivary gland and trachea formation - highlighting recent discoveries into how these organs attain their final form and function. Copyright © 2011 Wiley Periodicals, Inc.

  1. Iodine chemistry in the water column of the Chesapeake Bay: Evidence for organic iodine forms

    NASA Astrophysics Data System (ADS)

    Luther, George W.; Ferdelman, Timothy; Culberson, Charles H.; Kostka, Joel; Wu, Jingfeng

    1991-03-01

    During the summer of 1987, we collected and analysed Chesapeake Bay water samples for the inorganic iodine species: iodide (by cathodic-stripping squarewave voltammetry) and iodate (by differential pulse polarography); and total iodine (by hypochlorite oxidation of the seawater sample to iodate). The difference between the sum of the inorganic iodine species and the total iodine was significant for about one-third of the samples collected from the Bay. Thus, in these samples, a third (or more) 'new' form(s) of iodine was present. These samples were primarily from oxygen-saturated surface waters of high biological activity (primary productivity and bacterial processes). This 'new' form can make up as much as 70% of the total iodine. Waters containing low oxygen concentrations showed less of this 'new' form of iodine whereas anoxic and sulphidic bottom waters contained only iodide. This 'new' form of iodine is organic in nature and probably non-volatile. It may reside in the peptide and humic fractions. Only reduced iodine (iodide and organic iodine) was detected in waters from the northern section of the Bay, whereas only iodide and iodate were detected in the southern section of the Bay. In only two samples were iodide, iodate and the 'new' form of iodine found to coexist. Iodide and organic iodine are probably cycled in the surface waters of the northern section of the Bay via a combination of biogeochemical and photochemical processes which produce the reactive intermediates, molecular iodine and hypoiodous acid. These react quickly with reduced inorganic and organic compounds to maintain the reduced forms of iodine in the water column. Only total iodine is conservative throughout the estuary. The inorganic iodine forms can be used as geochemical tracers.

  2. Meteor wake in high frame-rate images--implications for the chemistry of ablated organic compounds

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Stenbaek-Nielsen, Hans C.

    2004-01-01

    Extraterrestrial organic matter may have been chemically altered into forms more ameanable for prebiotic chemistry in the wake of a meteor after ablation. We measured the rate of cooling of the plasma in the meteor wake from the intensity decay just behind a meteoroid by freezing its motion in high frame-rate 1000 frames/s video images, with an intensified camera that has a short phosphor decay time. Though the resulting cooling rate was found to be lower than theoretically predicted, our calculations indicated that there would have been insufficient collisions to break apart large organic compounds before most reactive radicals and electrons were lost from the air plasma. Organic molecules delivered from space to the early Earth via meteors might therefore have survived in a chemically altered form. In addition, we discovered that relatively small meteoroids generated far-ultraviolet emission that is absorbed in the immediate environment of the meteoroid, which may chemically alter the atmosphere over a much larger region than previously recognized.

  3. Rotary Apparatus Concentrates And Separates Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1992-01-01

    Apparatus concentrates and separates swimming micro-organisms of different species into concentric rings in fluid. Fluid containing high concentration of desired species removed by use of small scoop placed into fluid at radius of one of rings formed by that species. Micro-organisms concentrated into concentric rings by combined dynamic effects of upward and horizontal components of swimming, rotation of dish, gravitation, and viscosity.

  4. Process for producing organic products containing silicon, hydrogen, nitrogen, and carbon by the direct reaction between elemental silicon and organic amines

    DOEpatents

    Pugar, Eloise A.; Morgan, Peter E. D.

    1990-04-03

    A process is disclosed for producing, at a low temperature, a high purity organic reaction product consisting essentially of silicon, hydrogen, nitrogen, and carbon. The process comprises reacting together a particulate elemental high purity silicon with a high purity reactive amine reactant in a liquid state at a temperature of from about 0.degree. C. up to about 300.degree. C. A high purity silicon carbide/silicon nitride ceramic product can be formed from this intermediate product, if desired, by heating the intermediate product at a temperature of from about 1200.degree.-1700.degree. C. for a period from about 15 minutes up to about 2 hours or the organic reaction product may be employed in other chemical uses.

  5. ASSESSMENT OF CORAL CONDITION

    EPA Science Inventory

    Complex reef structures formed by calcified coral skeletons provide a physical habitat that produces highly-valued ecosystem services, including shoreline protection and a high diversity and abundance of marine organisms that support lucrative fishing and tourism. Yet, coral reef...

  6. Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications

    DOEpatents

    Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing

    2001-01-01

    Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

  7. Phase transition of Fe oxides under reducing condition and its relation with the As behavior

    NASA Astrophysics Data System (ADS)

    Choi, S. H.; Kim, S. H.; Jeong, G. Y.; Kim, K.

    2014-12-01

    Fe oxides are very common in the earth's crust and easily transform into other minerals such as magnetite and siderite under reducing conditions by microbial reactions. It is well known that As concentrations in groundwater is strongly regulated by adsorption onto Fe oxides. Even though some studies have suggested that the formation of siderite can also control the As concentration, direct evidences are not sufficient. In this study, we performed microbial incubation experiments to see the phase transition of As-rich Fe oxides under anoxic condition and to see how the water As concentrations are controlled accordingly. Three experiments were performed by changing organic carbon concentrations. Natural groundwaters and yeast extracts were used for the sources of microorganisms and organic carbon. Seven reactors were prepared for each experiment and opened one by one to observe the changes of the water chemistry and solid phases for 60 days. The formation of magnetite was observed at the early stage of each experiment. Siderite was formed at the later stage only when the dissolved organic carbon concentrations were high (donor/accepter molar ratio = 1.5). Goethite and hematite, instead of siderite, were formed from the experiment using low organic carbon concentration (donor/accepter molar ratio = 0.75). It is likely that dissolved ferrous ion adsorbs onto the Fe oxides and recrystallizes into hematite and goethite when the DOC concentration was low. As concentrations were generally very low in the water (normally 10 ug/L) and we could not find any relations with the Fe minerals formed by anoxic microbial reactions, maybe due to high Fe oxide/water ratio of our experiments. The sequential extraction analysis indicated that most of the As in solids are mostly associated with Fe-oxides and organic matters. The As bound to carbonates were very low even in the precipitates containing siderite due to low As concentrations in the water where the siderite formed. Further experiments precipitating siderite in the water with high As concentrations are required.

  8. Asymmetric organic-inorganic hybrid membrane formation via block copolymer-nanoparticle co-assembly.

    PubMed

    Gu, Yibei; Dorin, Rachel M; Wiesner, Ulrich

    2013-01-01

    A facile method for forming asymmetric organic-inorganic hybrid membranes for selective separation applications is developed. This approach combines co-assembly of block copolymer (BCP) and inorganic nanoparticles (NPs) with non-solvent induced phase separation. The method is successfully applied to two distinct molar mass BCPs with different fractions of titanium dioxide (TiO2) NPs. The resulting hybrid membranes exhibit structural asymmetry with a thin nanoporous surface layer on top of a macroporous fingerlike support layer. Key parameters that dictate membrane surface morphology include the fraction of inorganics used and the length of time allowed for surface layer development. The resulting membranes exhibit both good selectivity and high permeability (3200 ± 500 Lm(-2) h(-1) bar(-1)). This fast and straightforward synthesis method for asymmetric hybrid membranes provides a new self-assembly platform upon which multifunctional and high-performance organic-inorganic hybrid membranes can be formed.

  9. High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles.

    PubMed

    Lee, Sunghun; Shin, Hyun; Kim, Jang-Joo

    2014-09-03

    Tandem white organic light-emitting diodes (WOLEDs) using horizontally oriented phosphorescent dyes in an exciplex-forming co-host are presented, along with an orange OLED. A high external quantum efficiency of 32% is achieved for the orange OLED at 1000 cd m(-2) and the tandem WOLEDs exhibit a high maximum EQE of 54.3% (PE of 63 lm W(-1)). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Understanding polymorphism in organic semiconductor thin films through nanoconfinement.

    PubMed

    Diao, Ying; Lenn, Kristina M; Lee, Wen-Ya; Blood-Forsythe, Martin A; Xu, Jie; Mao, Yisha; Kim, Yeongin; Reinspach, Julia A; Park, Steve; Aspuru-Guzik, Alán; Xue, Gi; Clancy, Paulette; Bao, Zhenan; Mannsfeld, Stefan C B

    2014-12-10

    Understanding crystal polymorphism is a long-standing challenge relevant to many fields, such as pharmaceuticals, organic semiconductors, pigments, food, and explosives. Controlling polymorphism of organic semiconductors (OSCs) in thin films is particularly important given that such films form the active layer in most organic electronics devices and that dramatic changes in the electronic properties can be induced even by small changes in the molecular packing. However, there are very few polymorphic OSCs for which the structure-property relationships have been elucidated so far. The major challenges lie in the transient nature of metastable forms and the preparation of phase-pure, highly crystalline thin films for resolving the crystal structures and evaluating the charge transport properties. Here we demonstrate that the nanoconfinement effect combined with the flow-enhanced crystal engineering technique is a powerful and likely material-agnostic method to identify existing polymorphs in OSC materials and to prepare the individual pure forms in thin films at ambient conditions. With this method we prepared high quality crystal polymorphs and resolved crystal structures of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), including a new polymorph discovered via in situ grazing incidence X-ray diffraction and confirmed by molecular mechanic simulations. We further correlated molecular packing with charge transport properties using quantum chemical calculations and charge carrier mobility measurements. In addition, we applied our methodology to a [1]benzothieno[3,2-b][1]1benzothiophene (BTBT) derivative and successfully stabilized its metastable form.

  11. Oligomers, organosulfates, and nitroxy organosulfates identified in rainwater

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Turpin, B. J.; Seitzinger, S. P.

    2008-12-01

    Wet deposition is an important removal mechanism for atmospheric organic matter, and a potentially important input for receiving ecosystems, yet less than 50 percent of rainwater organic matter is considered chemically characterized. Precipitation samples collected in New Jersey, USA, were analyzed by negative ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We document the presence of 552 unique compounds in the rainwater over a mass range of 50-500 Da, in four compound classes (i.e., CHO, CHOS, CHON, and CHONS). The presence of oligomers, organosulfates, nitroxy organosulfates, organic acids, and linear alkylbenzene sulfonates is reported. Some compounds detected have distinct primary sources; however, the composition of the bulk of this material suggests it is formed in the atmosphere and composed of known contributors to secondary organic aerosol. For example, eight oligomer series known to form through aqueous photooxidation of methylglyoxal and organosulfate compounds known to form from 4 precursors in smog chamber experiments were identified in the rainwater samples. The oligomers, organosulfates, and nitroxy organosulfates detected in the rainwater could all contribute to the HULIS fraction of atmospheric organic matter.

  12. Loop formation of microtubules during gliding at high density

    NASA Astrophysics Data System (ADS)

    Liu, Lynn; Tüzel, Erkan; Ross, Jennifer L.

    2011-09-01

    The microtubule cytoskeleton, including the associated proteins, forms a complex network essential to multiple cellular processes. Microtubule-associated motor proteins, such as kinesin-1, travel on microtubules to transport membrane bound vesicles across the crowded cell. Other motors, such as cytoplasmic dynein and kinesin-5, are used to organize the cytoskeleton during mitosis. In order to understand the self-organization processes of motors on microtubules, we performed filament-gliding assays with kinesin-1 motors bound to the cover glass with a high density of microtubules on the surface. To observe microtubule organization, 3% of the microtubules were fluorescently labeled to serve as tracers. We find that microtubules in these assays are not confined to two dimensions and can cross one other. This causes microtubules to align locally with a relatively short correlation length. At high density, this local alignment is enough to create 'intersections' of perpendicularly oriented groups of microtubules. These intersections create vortices that cause microtubules to form loops. We characterize the radius of curvature and time duration of the loops. These different behaviors give insight into how crowded conditions, such as those in the cell, might affect motor behavior and cytoskeleton organization.

  13. Model and Algorithm for Substantiating Solutions for Organization of High-Rise Construction Project

    NASA Astrophysics Data System (ADS)

    Anisimov, Vladimir; Anisimov, Evgeniy; Chernysh, Anatoliy

    2018-03-01

    In the paper the models and the algorithm for the optimal plan formation for the organization of the material and logistical processes of the high-rise construction project and their financial support are developed. The model is based on the representation of the optimization procedure in the form of a non-linear problem of discrete programming, which consists in minimizing the execution time of a set of interrelated works by a limited number of partially interchangeable performers while limiting the total cost of performing the work. The proposed model and algorithm are the basis for creating specific organization management methodologies for the high-rise construction project.

  14. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1996-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  15. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1997-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  16. Workplace Bullying: Curing the Cancer of the American Workplace.

    ERIC Educational Resources Information Center

    Glendinning, Peter M.

    2001-01-01

    A literature review concluded that supervisor/supervisee relationships are critical to job satisfaction; workplace bullying in the form of a management style of aggressive and intimidating behaviors is widespread; certain types of organizations foster bullying; and bullying has high costs for the targeted employee and the organization. (Contains…

  17. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests

    Treesearch

    G. Shetler; .R. Turetsky; E. Kane; E. Kasischke

    2008-01-01

    The high water retention of hummock-forming Sphagnum species minimizes soil moisture fluctuations and might protect forest floor organic matter from burning during wildfire. We hypothesized that Sphagnum cover reduces overall forest floor organic matter consumption during wildfire compared with other ground-layer vegetation. We...

  18. Solution-Phase Dynamic Assembly of Permanently Interlocked Aryleneethynylene Cages through Alkyne Metathesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Yu, Chao; Long, Hai

    2015-05-08

    Highly stable permanently interlocked aryleneethynylene molecular cages were synthesized from simple triyne monomers using dynamic alkyne metathesis. The interlocked complexes are predominantly formed in the reaction solution in the absence of any recognition motif and were isolated in a pure form using column chromatography. This study is the first example of the thermodynamically controlled solution-phase synthesis of interlocked organic cages with high stability.

  19. Water Photo-oxidation Initiated by Surface-Bound Organic Chromophores.

    PubMed

    Eberhart, Michael S; Wang, Degao; Sampaio, Renato N; Marquard, Seth L; Shan, Bing; Brennaman, M Kyle; Meyer, Gerald J; Dares, Christopher; Meyer, Thomas J

    2017-11-15

    Organic chromophores can be synthesized by established methods and offer an opportunity to expand overall solar spectrum utilization for dye-sensitized photoelectrosynthesis cells. However, there are complications in the use of organic chromophores arising from the instability of their oxidized forms, the inability of their oxidized forms to activate a water oxidation catalyst, or the absence of a sufficiently reducing excited state for electron injection into appropriate semiconductors. Three new triarylamine donor-acceptor organic dyes have been investigated here for visible-light-driven water oxidation. They offer highly oxidizing potentials (>1 V vs NHE in aqueous solution) that are sufficient to drive a water oxidation catalyst and excited-state potentials (∼-1.2 V vs NHE) sufficient to inject into TiO 2 . The oxidized form of one of the chromophores is sufficiently stable to exhibit reversible electrochemistry in aqueous solution. The chromophores also have favorable photophysics. Visible-light-driven oxygen production by an organic chromophore for up to 1 h of operation has been demonstrated with reasonable faradaic efficiencies for measured O 2 production. The properties of organic chromophores necessary for successfully driving water oxidation in a light-driven system are explored along with strategies for improving device performance.

  20. Pluto's elongated dark regions formed by the Charon-forming giant impact

    NASA Astrophysics Data System (ADS)

    Genda, Hidenori; Sekine, Yusuhito; Kamata, Shunichi; Funatsu, Taro

    2017-04-01

    The New Horizons spacecraft has found elongated dark areas in the equatorial region of Pluto, which were informally called "the Whale" or Cthulhu Region (Stern et al. 2015). Here we examine the possibility that the dark areas on Pluto were formed by thermal alterations and polymerization of interstellar volatiles caused by a Charon-forming giant impact. Pluto is one of the largest Kuiper belt objects, which is highly likely to contain various interstellar volatiles, including aldehyde and ammonia. The previous study (Cordy et al. 2011) shows that these interstellar volatiles are thermally polymerized in solutions at high temperatures, forming complex insoluble organic solids. Given the satellite-to-planet mass ratio, the Pluto-Charon system is suggested to be of a giant impact origin (Canup 2005). Impact-induced heating on Pluto could have converted these volatile into complex organic matter in solution near the surface, which may explain the presence of dark areas in the equatorial region of Pluto. Here, we produce complex organic matter for various temperatures by thermal polymerization of formaldehyde and ammonia in solutions. By measuring the UV-VIS absorption spectra of the produced organic matter, we found that the color of the solution changes to be dark if the temerature is above 50 degree C for months or more. This duration corresponds to the cooling timescale of a water pond with 500-km thickness. By using SPH code (Genda et al. 2015), we carried out many simulations of a giant impact, and we found that a molten hot pond with > 500-km thickness is formed around the equatorial region of Pluto by a Charon-forming giant impact, if the water/rock mixing mass ratio is less than 1 or if the pre-impact interior temperature is 150 K. Both the dark equatorial region and a Charon-sized moon are formed when the pre-impact Pluto is undifferentiated. To keep a rock-rich Pluto undifferentiated at time of the giant impact, Pluto may have been formed >100 Myrs after CAIs, and the giant impact may have occurred <100 Myrs after the Pluto's formation.

  1. High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Fray, Nicolas; Bardyn, Anaïs; Cottin, Hervé; Altwegg, Kathrin; Baklouti, Donia; Briois, Christelle; Colangeli, Luigi; Engrand, Cécile; Fischer, Henning; Glasmachers, Albrecht; Grün, Eberhard; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Jessberger, Elmar K; Koch, Andreas; Krüger, Harald; Langevin, Yves; Lehto, Harry; Lehto, Kirsi; Le Roy, Léna; Merouane, Sihane; Modica, Paola; Orthous-Daunay, François-Régis; Paquette, John; Raulin, François; Rynö, Jouni; Schulz, Rita; Silén, Johan; Siljeström, Sandra; Steiger, Wolfgang; Stenzel, Oliver; Stephan, Thomas; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Wanczek, Karl-Peter; Zaprudin, Boris; Kissel, Jochen; Hilchenbach, Martin

    2016-10-06

    The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov-Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites' parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.

  2. Pesticide residues in imported, organic, and "suspect" fruits and vegetables.

    PubMed

    Winter, Carl K

    2012-05-09

    Consumers are frequently urged to avoid imported foods as well as specific fruits and vegetables due to health concerns from pesticide residues and are often encouraged to choose organic fruits and vegetables rather than conventional forms. Studies have demonstrated that while organic fruits and vegetables have lower levels of pesticide residues than do conventional fruits and vegetables, pesticide residues are still frequently detected on organic fruits and vegetables; typical dietary consumer exposure to pesticide residues from conventional fruits and vegetables does not appear to be of health significance. Similarly, research does not demonstrate that imported fruits and vegetables pose greater risks from pesticide residues than do domestic fruits and vegetables or that specific fruits and vegetables singled out as being the most highly contaminated by pesticides should be avoided in their conventional forms.

  3. Effects of poultry manure on phosphorus availability to perennial ryegrass

    USDA-ARS?s Scientific Manuscript database

    Soil phosphorus (P) exists in numerous forms that differ in plant availability. High-P organic fertilizers, including poultry manure (PM), can alter the balance of these soil P forms and may affect plant nutrient status. To investigate the effects of PM on soil P distribution and plant utilization...

  4. TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells

    DOEpatents

    Marks, Iobin J [Evanston, IL; Hains, Alexander W [Evanston, IL

    2011-02-15

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.

  5. [Air stripping-UASB process for the treatment of evaporator condensate from a Kraft pulp mill].

    PubMed

    Zhou, Wei-li; Qin, Xiao-peng; Yu, Jun; Imai, Tsuyoshi; Ukita, Masao

    2006-04-01

    Evaporator condensate from a kraft pulp mill is characterized by high temperature, high strength, poor nutrition, and some odor and inhibitive materials. In this study, air stripping-UASB process was developed to treat the wastewater from a kraft pulp mill. The lab scale study demonstrated that air stripping process removed 70%-80% of the volatile organic sulfur compounds. After that, the UASB reactor showed high efficiency, at the organic loading rate (COD) of 30 kg x (m3 x d)(-1), COD removal was retained about 95%. On the other hand, the inoculated granules were broken in the new surroundings and were replaced with the newly formed granules The scanning electronic microscope (SEM) observation showed wide difference of the predominant anaerobic microorganisms in the seed and newly formed granules.

  6. Pore-forming toxins in Cnidaria.

    PubMed

    Podobnik, Marjetka; Anderluh, Gregor

    2017-12-01

    The ancient phylum of Cnidaria contains many aquatic species with peculiar lifestyle. In order to survive, these organisms have evolved attack and defense mechanisms that are enabled by specialized cells and highly developed venoms. Pore-forming toxins are an important part of their venomous arsenal. Along some other types, the most representative are examples of four protein families that are commonly found in other kingdoms of life: actinoporins, Cry-like proteins, aerolysin-like toxins and MACPF/CDC toxins. Some of the homologues of pore-forming toxins may serve other functions, such as in food digestion, development and response against pathogenic organisms. Due to their interesting physico-chemical properties, the cnidarian pore-forming toxins may also serve as tools in medical research and nanobiotechnological applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Self-organized Motion During Dictyostelium amoebae aggregation

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    2004-03-01

    After starvation, amoeba of the cellular slime mold Dictyostelium discoideum aggregate to form rudimentary multicellular organisms. The coordination of the individual motions of hundreds of thousands of individual cells is an important ingredient in the success of this process. This coordination is accomplished by chemical signaling during the early stages and by direct cell-cell interactions once the cells reach the nascent mound. This talk will review the basic nonequilibrium physics underlying the spatial patterns formed by these cooperative motions, including high-density incoming streams and spontaneously rotating mounds.

  8. Toward an understanding of "Legacy P" - phosphorus sorption mechanisms in stream sediments as influenced by organic matter

    NASA Astrophysics Data System (ADS)

    Audette, Yuki; O'Halloran, Ivan P.; Nowell, Peter M.; Congreves, Katelyn; Voroney, R. Paul

    2017-04-01

    Water chemistry and phosphorus (P) forms were analyzed to determine the nature of legacy P in sediments of the West Holland River and the adjacent drainage canals of the Holland Marsh drainage system, located in southern Ontario, Canada. The river and canals route water from the intensively cropped muck polders of the Holland Marsh and drain Lake Simcoe. Sediment samples were characterized for mineralogy using X-ray diffraction techniques (XRD); total P (TP); and Ca, Fe, Mn, and Mg contents, as well as cation exchange capacity and organic matter (OM) content. Forms of sediment P in five depth sections (ranging from 0-15 cm depth) were characterized and quantified by sequential P fractionation chemistry. At all study sites, mobile P forms including organic P forms were found to be higher in surface sediments than in deeper sediments. The major P form within the sediments of the two canal sites, where the concentration of TP in the surface water was within the Ontario Provincial Water Quality Objectives (PWQO) of 0.03 mg P L-1, was Ca-bound P, indicating a low risk of soluble reactive P (SRP) release. A trace of apatite (a stable Ca-P mineral) was also detected in these sediments. Conversely, sediments collected from the West Holland River at sites located within the Holland Marsh exhibited a high risk of SRP release, and redox-sensitive P was the dominant P form in the sediment despite the surface water exhibiting higher concentration of Ca and alkaline pH. In addition, the concentrations of TP as measured in surface water samples taken from the site were 8 times greater than PWQO. In the sediments where the risk of SRP release was high, OM contents were also relatively high and traces of brushite (a labile Ca-P mineral) were detected. The formation of OM and cation complexes, such as OM-Fe complexes, may play an important role in regulating the fate of sediment-P forms through the adsorption of SRP. These OM-Fe complexes may inhibit the formation of more stable Ca-P minerals, even under neutral to alkaline conditions. Thus, where OM-Fe-P forms predominate, we predict a high risk of SRP release from sediments when water chemistry changes. In addition, OM may inhibit the transformation of labile Ca-P forms to more stable Ca-P minerals. Loading of OM affects the development of hypoxia in aquatic systems, and the accumulation of OM can promote the release of both SRP and dissolved organic C to downstream environments. This study provides evidence that the presence of OM in stream sediments influences P sorption mechanisms and is critical in understanding P biogeochemistry in freshwater environments.

  9. Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite.

    PubMed

    Ruan, Qichao; Liberman, David; Zhang, Yuzheng; Ren, Dongni; Zhang, Yunpeng; Nutt, Steven; Moradian-Oldak, Janet

    2016-06-13

    Bioinspired synthesis of hierarchically structured calcium phosphate (CaP) material is a highly promising strategy for developing improved bone substitute materials. However, synthesis of CaP materials with outstanding mechanical properties still remains an ongoing challenge. Inspired by the formation of lamellar structure in nacre, we designed an organic matrix composed of chitosan and cis-butenediolic acid (maleic acid, MAc) that could assemble into a layered complex and further guide the mineralization of monetite crystals, resulting in the formation of organized and parallel arrays of monetite platelets with a brick-and-mortar structure. Using the layered monetite-chitosan composite as a precursor, we were able to synthesize hydroxyapatite (HAp) with multiscale hierarchically ordered structure via a topotactic phase transformation process. On the nanoscale, needlelike HAp crystallites assembled into organized bundles that aligned to form highly oriented plates on the microscale. On the large-scale level, these plates with different crystal orientations were stacked together to form a layered structure. The organized structures and composite feature yielded CaP materials with improved mechanical properties close to those of bone. Our study introduces a biomimetic approach that may be practical for the design of advanced, mechanically robust materials for biomedical applications.

  10. Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna.

    PubMed

    Rodrigues, Marcos; Pavinato, Paulo Sergio; Withers, Paul John Anthony; Teles, Ana Paula Bettoni; Herrera, Wilfrand Ferney Bejarano

    2016-01-15

    Crop production in the Brazilian Cerrado is limited by soil phosphorus (P) supply without large inputs of inorganic P fertilizer, which may become more costly and scarce in the future. Reducing dependency on fertilizer P requires a greater understanding of soil P supply in the highly weathered soils in this important agricultural region. We investigated the impact of no tillage (NT) and conventional tillage (CT) agriculture on accumulated (legacy) soil P and P forms in four long-term sites. Compared to the native savanna soils, tilled soils receiving regular annual P fertilizer inputs (30-50 kg P ha(-1)) increased all forms of inorganic and organic P, except highly recalcitrant P associated with the background lithology. However, 70-85% of the net added P was bound in moderately labile and non-labile forms associated with Fe/Al oxyhydroxides rather than in plant available forms. Under NT agriculture, organic P forms and labile and non-labile inorganic P forms were all significantly (P<0.05) increased in the surface soil, except for one site with maize residues where labile inorganic P was increased more under CT agriculture. The contribution of organic P cycling in these tropical soils increased after conversion to agriculture and was proportionally greater under NT. The results highlight the large amounts of unutilized legacy P present in Brazil's Cerrado soils that could be better exploited to reduce dependency on imports of finite phosphate rock. No tillage agriculture confers a positive albeit relatively small benefit for soil P availability and overall soil function. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Synthesis and characterization of low viscosity carbon dioxide binding organic liquids for flue gas clean up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koech, Phillip K.; Malhotra, Deepika; Heldebrant, David J.

    2015-01-01

    Climate change is partly attributed to global anthropogenic carbon dioxide (CO2) emission to the atmosphere. These environmental effects can be mitigated by CO2 capture, utilization and storage. Alkanolamine solvents, such as monoethanolamine (MEA), which bind CO2 as carbamates or bicarbonate salts are used for CO2 capture in niche applications. These solvents consist of approximately 30 wt% of MEA in water, exhibiting a low, CO2-rich viscosity, fast kinetics and favorable thermodynamics. However, these solvents have low CO2 capacity and high heat capacity of water, resulting in prohibitively high costs of thermal solvent regeneration. Effective capture of the enormous amounts of CO2more » produced by coal-fired plants requires a material with high CO2 capacity and low regeneration energy requirements. To this end, several water-lean transformational solvents systems have been developed in order to reduce these energy penalties. These technologies include nano-material organic hybrids (NOHMs), task-specific, protic and conventional ionic liquids, phase change solvents. As part of an ongoing program in our group, we have developed new water lean transformational solvents known as CO2 binding organic liquids (CO2BOLs) which have the potential to be energy efficient CO2 capture solvents. These solvents, also known as switchable ionic liquids meaning, are organic solvents that can reversibly transform from non- ionic to ionic form and back. The zwitterionic state in these liquids is formed when low polarity non-ionic alkanolguanidines or alkanolamidines react with CO2 or SO2 to form ionic liquids with high polarity. These polar ionic liquids can be thermally converted to the less polar non-ionic solvent by releasing CO2.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Joseph S.; Feng, Patrick L.

    In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. In conclusion, themore » combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.« less

  13. Bioavailability of organic and inorganic phosphates adsorbed on short-range ordered aluminum precipitate.

    PubMed

    Shang, C; Caldwell, D E; Stewart, J W; Tiessen, H; Huang, P M

    1996-01-01

    A nonreductive community-level study of P availability was conducted using various forms of adsorbed P. Orthophosphate (Pi), inositol hexaphosphate (IHP), and glucose 6-phosphate (G6P) were adsorbed to a short-range ordered Al precipitate. These bound phosphates provided a P source sufficient to support the growth of microbial communities from acidic Brazilian soils (oxisols). Adsorbed IHP, the most abundant form of organic phosphate in most soils, had the lowest bioavailability among the three phosphates studied. Adsorbed G6P and Pi were almost equally available. The amount of adsorbed Pi (1 cmol P kg(-1)) required to support microbial growth was at least 30 times less than that of IHP (30 cmol P kg(-1)). With increased surface coverage, adsorbed IHP became more bioavailable. This availability was attributed to a change in the structure of surface complexes and presumably resulted from the decreased number of high-affinity surface sites remaining at high levels of coverage. It thus appears that the bioavailability of various forms of adsorbed phosphate was determined primarily by the stability of the phosphate-surface complexes that they formed, rather than by the total amount of phosphate adsorbed. IHP, having the potential to form stable multiple-ring complexes, had the highest surface affinity and the lowest bioavailability. Bioaggregates consisting of bacteria and Al precipitate were observed and may be necessary for effective release of adsorbed P. Bacteria in the genera Enterobacter and Pseudomonas were the predominate organisms selected during these P-limited enrichments.

  14. Strategic Organizational Engagement in Social Media to Motivate Directed Action

    ERIC Educational Resources Information Center

    Heath, Donald Ray, Jr.

    2014-01-01

    Little is known regarding organizations' high-level strategies toward social media. This research develops an empirically informed understanding of how organizations can engage in social media to accomplish their strategic goals. To develop an in formed understanding, I conduct interpretive case research over a twenty-four month period on a single…

  15. Culture and Commitment: The Key to the Creation of an Action Learning Organization

    ERIC Educational Resources Information Center

    Hind, Matthew; Koenigsberger, John

    2007-01-01

    This article examines the introduction and practice of action learning into a highly volatile, commercial environment. During nine years of action learning projects, the impact on individuals, the action learning sets into which they were formed, the organization and its structure and the organizational culture were evaluated. The article…

  16. Prediction of large gap flat Chern band in a two-dimensional metal-organic framework

    NASA Astrophysics Data System (ADS)

    Su, Ninghai; Jiang, Wei; Wang, Zhengfei; Liu, Feng

    2018-01-01

    Systems with a flat Chern band have been extensively studied for their potential to realize high-temperature fractional quantum Hall states. To experimentally observe the quantum transport properties, a sizable topological gap is highly necessary. Here, taking advantage of the high tunability of two-dimensional (2D) metal-organic frameworks (MOFs), whose crystal structures can be easily tuned using different metal atoms and molecular ligands, we propose a design of a 2D MOF [Tl2(C6H4)3, Tl2Ph3] showing nontrivial topological states with an extremely large gap in both the nearly flat Chern band and the Dirac bands. By coordinating π-conjugated thallium ions and benzene rings, crystalline Tl2Ph3 can be formed with Tl and Ph constructing honeycomb and kagome lattices, respectively. The px,y orbitals of Tl on the honeycomb lattice form ideal pxy four-bands, through which a flat Chern band with a spin-orbit coupling (SOC) gap around 140 meV evolves below the Fermi level. This is the largest SOC gap among all the theoretically proposed organic topological insulators so far.

  17. Peatland Organic Matter Chemistry Trends Over a Global Latitudinal Gradient

    NASA Astrophysics Data System (ADS)

    Verbeke, B. A.; Hodgkins, S. B.; Carson, M. A.; Lamit, L. J.; Lilleskov, E.; Chanton, J.

    2017-12-01

    Peatlands contain a significant amount of the global soil carbon, and the climate feedback of carbon cycling within these peatland systems is still relatively unknown. Organic matter composition of peatlands plays a major role in determining carbon storage, and while high latitude peatlands seem to be the most sensitive to climate change, a global picture of peat organic matter chemistry is required to improve predictions and models of greenhouse gas emissions fueled by peatland decomposition. The objective of this research is to test the hypothesis that carbohydrate content of peatlands near the equator will be lower than high latitude peatlands, while aromatic content will be higher. As a part of the Global Peatland Microbiome Project (GPMP), around 2000 samples of peat from 10 to 70 cm across a latitudinal gradient of 79 N to 53 S were measured with Fourier transform infrared spectroscopy (FTIR) to examine the organic matter functional groups of peat. Carbohydrate and aromatic content, as determined by FTIR, are useful proxies of decomposition potential and recalcitrance, respectively. We found a highly significant relationship between carbohydrate and aromatic content, latitude, and depth. Carbohydrate content of high latitude sites were significantly greater than at sites near the equator, in contrast to aromatic content which showed the opposite trend. It is also clear that carbohydrate content decreases with depth while aromatic content increases with depth. Higher carbohydrate content at higher latitudes indicates a greater potential for lability and resultant mineralization to form the greenhouse gases, carbon dioxide and methane, whereas the composition of low latitude peatlands is consistent with their apparent stability. We speculate that the combination of low carbohydrates and high aromatics at warmer locations near the equator could foreshadow the organic matter composition of high latitude peat transitioning to a more recalcitrant form with a warming climate.

  18. Autotrophy of green non-sulphur bacteria in hot spring microbial mats: biological explanations for isotopically heavy organic carbon in the geological record

    NASA Technical Reports Server (NTRS)

    van der Meer, M. T.; Schouten, S.; de Leeuw, J. W.; Ward, D. M.

    2000-01-01

    Inferences about the evidence of life recorded in organic compounds within the Earth's ancient rocks have depended on 13C contents low enough to be characteristic of biological debris produced by the well-known CO2 fixation pathway, the Calvin cycle. 'Atypically' high values have been attributed to isotopic alteration of sedimentary organic carbon by thermal metamorphism. We examined the possibility that organic carbon characterized by a relatively high 13C content could have arisen biologically from recently discovered autotrophic pathways. We focused on the green non-sulphur bacterium Chloroflexus aurantiacus that uses the 3-hydroxypropionate pathway for inorganic carbon fixation and is geologically significant as it forms modern mat communities analogous to stromatolites. Organic matter in mats constructed by Chloroflexus spp. alone had relatively high 13C contents (-14.9%) and lipids diagnostic of Chloroflexus that were also isotopically heavy (-8.9% to -18.5%). Organic matter in mats constructed by Chloroflexus in conjunction with cyanobacteria had a more typical Calvin cycle signature (-23.5%). However, lipids diagnostic of Chloroflexus were isotopically enriched (-15.1% to -24.1%) relative to lipids typical of cyanobacteria (-33.9% to -36.3%). This suggests that, in mats formed by both cyanobacteria and Chloroflexus, autotrophy must have a greater effect on Chloroflexus carbon metabolism than the photoheterotrophic consumption of cyanobacterial photosynthate. Chloroflexus cell components were also selectively preserved. Hence, Chloroflexus autotrophy and selective preservation of its products constitute one purely biological mechanism by which isotopically heavy organic carbon could have been introduced into important Precambrian geological features.

  19. Dissolved organic phosphorus (DOP) and its potential role for ecosystem nutrition

    NASA Astrophysics Data System (ADS)

    Brödlin, Dominik; Hagedorn, Frank; Kaiser, Klaus

    2016-04-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known about the fluxes of dissolved organic phosphorus (DOP) forms and their role in the P cycle. However, there is evidence that DOP is composed of some plant-derived organic phosphorus compounds, such as phytate, which are less mobile and prone to be sorbed to mineral surfaces, whereas microbial-derived compounds like nucleic acids and simple phospho-monoester may represent more mobile forms of soil phosphorus. In our study, we estimated fluxes, composition, and bioavailability of DOP along a gradient in phosphorus availability at five sites on silicate bedrock across Germany (Bad Brückenau, Conventwald, Vessertal, Mitterfels and Lüss) and at a calcareous site in Switzerland (Schänis). Soil solution was collected at 0 down to 60 to 150 cm soil depth at different intervals. Since most solutions had very low P concentrations (<0.05 mg total dissolved P/L), soil solutions had to be concentrated by freeze-drying for the enzymatic characterization of DOP. In order to test the potential bioavailability, we used an enzyme assay distinguishing between phytate-like P (phytate), diester-like P (nucleic acids), monoester-like P (glucose-6-phosphate), and pyrophosphate of bulk molybdate unreactive phosphorus (MUP). First results from the enzymatic assay indicated that monoester-like P and diester-like P were the most prominent form of the hydrolysable DOP constituents. In leachates from the organic layer, there was a high enzymatic activity for monoester-like P, indicating high recycling efficiency and rapid hydrolysis of labile DOP constituents. DOP was the dominating P form in soil solution at some of the sites, with a greater contribution to total dissolved P in winter than in summer. Concentrations of DOP decreased along the phosphorus availability gradient from less to the more developed forest ecosystems.

  20. Lactic acid bacterial extract as a biogenic mineral growth modifier

    NASA Astrophysics Data System (ADS)

    Borah, Ballav M.; Singh, Atul K.; Ramesh, Aiyagari; Das, Gopal

    2009-04-01

    The formation of minerals and mechanisms by which bacteria could control their formation in natural habitats is now of current interest for material scientists to have an insight of the mechanism of in vivo mineralization, as well as to seek industrial and technological applications. Crystalline uniform structures of calcium and barium minerals formed micron-sized building blocks when synthesized in the presence of an organic matrix consisting of secreted protein extracts from three different lactic acid bacteria (LAB) viz.: Lactobacillus plantarum MTCC 1325, Lactobacillus acidophilus NRRL B4495 and Pediococcus acidilactici CFR K7. LABs are not known to form organic matrix in biological materialization processes. The influence of these bacterial extracts on the crystallization behavior was investigated in details to test the basic coordination behavior of the acidic protein. In this report, varied architecture of the mineral crystals obtained in presence of high molecular weight protein extracts of three different LAB strains has been discussed. The role of native form of high molecular weight bacterial protein extracts in the generation of nucleation centers for crystal growth was clearly established. A model for the formation of organic matrix-cation complex and the subsequent events leading to crystal growth is proposed.

  1. Exciplex-Forming Co-Host-Based Red Phosphorescent Organic Light-Emitting Diodes with Long Operational Stability and High Efficiency.

    PubMed

    Lee, Jeong-Hwan; Shin, Hyun; Kim, Jae-Min; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2017-02-01

    The use of exciplex forming cohosts and phosphors incredibly boosts the efficiency of organic light-emitting diodes (OLEDs) by providing a barrier-free charge injection into an emitting layer and a broad recombination zone. However, most of the efficient OLEDs based on the exciplex forming cohosts has suffered from the short operational lifetime. Here, we demonstrated phosphorescent OLEDs (PhOLEDs) having both high efficiency and long lifetime by using a new exciplex forming cohost composed of N,N'-diphenyl-N,N'-bis(1,1'-biphenyl)-4,4'-diamine (NPB) and (1,3,5-triazine-2,4,6-triyl)tris(benzene-3,1-diyl))tris(diphenylphosphine oxide) (PO-T2T). The red-emitting PhOLEDs using the exciplex forming cohost achieved a maximum external quantum efficiency (EQE) of 34.1% and power efficiency of 62.2 lm W 1- with low operating voltages and low efficiency roll-offs. More importantly, the device demonstrated a long lifetime around 2249 h from 1000 cd m -2 to 900 cd m -2 (LT 90 ) under a continuous flow of constant current. The efficiencies of the devices are the highest for red OLEDs with an LT 90 > 1000 h.

  2. Dissolved organic carbon concentrations and compositions, and trihalomethane formation potentials in waters from agricultural peat soils, Sacramento-San Joaquin Delta, California; implications for drinking-water quality

    USGS Publications Warehouse

    Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.

    1998-01-01

    Water exported from the Sacramento-San Joaquin River delta (Delta) is an important drinking-water source for more than 20 million people in California. At times, this water contains elevated concentrations of dissolved organic carbon and bromide, and exceeds the U.S. Environmental Protection Agency's maximum contaminant level for trihalomethanes of 0.100 milligrams per liter if chlorinated for drinking water. About 20 to 50 percent of the trihalomethane precursors to Delta waters originates from drainage water from peat soils on Delta islands. This report elucidates some of the factors and processes controlling and affecting the concentration and quality of dissolved organic carbon released from peat soils and relates the propensity of dissolved organic carbon to form trihalomethanes to its chemical composition.Soil water was sampled from near-surface, oxidized, well-decomposed peat soil (upper soil zone) and deeper, reduced, fibrous peat soil (lower soil zone) from one agricultural field in the west central Delta over 1 year. Concentrations of dissolved organic carbon in the upper soil zone were highly variable, with median concentrations ranging from 46.4 to 83.2 milligrams per liter. Concentrations of dissolved organic carbon in samples from the lower soil zone were much less variable and generally slightly higher than samples from the upper soil zone, with median concentrations ranging from 49.3 to 82.3 milligrams per liter. The dissolved organic carbon from the lower soil zone had significantly higher aromaticity (as measured by specific ultraviolet absorbance) and contained significantly greater amounts of aromatic humic substances (as measured by XAD resin fractionation and carbon-13 nuclear magnetic resonance analysis of XAD isolates) than the dissolved organic carbon from the upper soil zone. These results support the conclusion that more aromatic forms of dissolved organic carbon are produced under anaerobic conditions compared to aerobic conditions. Dissolved organic carbon concentration, trihalomethane formation potential, and ultraviolet absorbance were all highly correlated, showing that trihalomethane precursors increased with increasing dissolved organic carbon and ultraviolet absorbance for whole water samples. Contrary to the generally accepted conceptual model for trihalomethane formation that assumes that aromatic forms of carbon are primary precursors to trihalomethanes, results from this study indicate that dissolved organic carbon aromaticity appears unrelated to trihalomethane formation on a carbon-normalized basis. Thus, dissolved organic carbon aromaticity alone cannot fully explain or predict trihalomethane precursor content, and further investigation of aromatic and nonaromatic forms of carbon will be needed to better identify trihalomethane precursors.

  3. Use of aromatic salts for simultaneously removing SO.sub.2 and NO.sub.x pollutants from exhaust of a combustion system

    DOEpatents

    Levendis, Yiannis A.; Wise, Donald L.

    1994-10-04

    A method is disclosed for removing pollutants from the exhaust of combustion systems burning fuels containing substantial amounts of sulfur and nitrogen. An exemplary method of the invention involves the formation and reaction of a sorbent comprising calcium benzoate. The calcium benzoate is either dry-sprayed (in the form of a fine powder) or wet-sprayed in an aqueous solution in a high temperature environment such as a combustion chamber. The latter technique is feasible since calcium benzoate is a water-soluble form of calcium. When the dispersed particles of calcium benzoate are heated to a high temperature, the organic benzoate burns off and fine calcium oxide particles are formed. These particles are cenospheric (hollow) and have thin and highly porous walls, thus, affording optimum external and internal accessibility for reacting with toxic gaseous emissions such as SO.sub.2. Further, the combustion of the organic benzoate portion of the sorbent results in the conversion of NO.sub.x to N.sub.2.

  4. Soils of the Eastern mountainsides of the southern Sikhote-Alin (on the example of Lazovsky nature reserve, Russia)

    NASA Astrophysics Data System (ADS)

    Tregubova, Valentina; Semal, Victoria; Nesterova, Olga; Yaroslavtsev, Alexis

    2017-04-01

    The most common soils of the southern Far East are Brownzems under Russian classification (Cambisols), which are the zonal ones, emerging on the steep slopes and tops of hills, on high river terraces under broad-leaved and cedar-broad-leaved forests. Those soils formed due to two processes: organic matter metamorphism and clayization by siallite, leading to the formation of clay-metamorphic horizon Bw. The main morphological features of Cambisols are not deep soil profile (50 - 70 cm), weak horizons differentiation, with lots of cobble. Chemically those soils are low saturated, even in the humus horizon. Distribution of total absorbed bases is mostly accumulative, which is related to the distribution of humus in these soils, and the predominant type of clay fraction distribution of. The only exception are Humic Cambisols and Humic Cambisols Calcic which were formed on redeposited products of limestone rock weathering. Fine-grained deposits are mainly loams with a low content of silt. Silt distribution has an accumulative character with a gradual decrease in the content of silt down from the top of the profile. Layer of fresh leaf fall is very common for the Humic Cambisols surfaces, and under it there is the litter of plant residues with different degrees of decomposition. Accumulative humus horizon is dark gray with brownish tint, thin, from 10 to 15 cm in depth, loose, crumbly, highly penetrated by roots, with a strong granular structure, with aggregates tightly attached to the root hairs, sandy loam or sandy clay loam. The middle horizon is brown, yellowish-brown, divided into sub-horizons, with different color intensity, density, soil texture and amount of cobble. Dystric Cambisols are acidic or strongly acidic with low saturation of soil absorbing complex. Due to amount and distribution of organic matter these soils can be divided into two groups. The first group is soils with accumulative humus distribution: with a low depth humus-accumulative horizon (11 - 12 cm) and high content of organic matter (23 - 26 %); humus in the upper horizons mainly consists of humic acids, while in lower horizons it is with higher ratio of fulvic acids. The second group is soils with a gradual humus distribution along the profile and with a smaller amount of organic matter in the upper horizon (9 - 13 %) and with no differentiation in humus composition. Folic Cambisols are formed on the watershed surfaces, on the steep slopes under pine and oak trees. Under thin litter horizon these soils have organic-accumulative horizon of well decomposed organic matter, but in contrast with Dystric Cambisols it doesn't have strong granular structure. At the bottom the organic horizon is humic-impregnated or has clear streaks of humus. Humic Cambisols are formed in the lower parts of slopes, on steep slopes and high river terraces under pine and deciduous forests. All this soils have humified litter horizon, which is up to 7 cm in depth, weak differentiation of the soil profile, deep humus-accumulative horizon (18 - 31 cm) with dark gray, almost black color, with strong granular structure and loam or clay loam texture. Soil acidity is determined by the lithogenic basis. Base saturation is quite high (77 - 90%) in mineral horizons and is up to 70 % in organic and accumulative ones. There is a high amount of humus on the entire profile (5 - 16 %), which consists of humic acids in the upper half of the profile and of fulvates at the bottom. Humic Cambisols Gleyic are located in the lower parts of gentle slopes under mixed forest. Due to higher moisture at the lower parts of slopes this soils have signs of weak gley process in dense subsoil horizons in the form of small light grey spots. Humic Leptosols are weakly developed soils formed on rocky hills, boulders, rocky outcrops, under thick moss layer, under which is a layer of weathered gravel rock. Humic Cambisols (Calcic) are formed on the surface sediments of limestone. They have a deep soil profile, up to 40 cm and it's humus-accumulative horizon is dark gray or black, gradually passing into soil-forming rock. Bw horizon, typical for Cambisols, is weak.

  5. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O 3 and α-pinene + NO x + O 3 systems in the presence ofmore » neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O 3 + NO 3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O 3 and α-pinene + NO x + O 3 systems do not form light-absorbing SOA under typical atmospheric conditions.« less

  6. Growing Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In situ transmission electron microscope (TEM) video (accelerated 10 times) of nucleation and self-organization of a high-density carbon nanotube network from catalytic iron nanoparticles, forming a vertically aligned forest.

  7. Speciation and distribution of cadmium and lead in salinized horizons of antrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, D.; Bulgariu, L.; Astefanei, D.

    2009-04-01

    The utilization of intensive technologies for the vegetable cultivation in glass houses by the administration of high doses of organic fertilizes, the supra-dimensional irrigation and the maintaining of soil at high humidity state, in special in case of vicious drainage have as result the rapid degradation of morphological, chemical and physical characteristics of soils, concretized by: (i) decrease of structural aggregates stability; (ii) more dense packing of soil; (iii) accumulation of easy soluble salts (in special at superior horizons level); (iv) limitation of organic compounds and micro-elements biodisponibility. All these determined a significant reduction of productivity and of exploitation duration of soils from glass houses. These phenomena modified continuously the dynamic of speciation processes and inter-phases distribution, of heavy metals in soils from glass houses, and can determined a non-controlled accumulation of heavy metals, in special as mobile forms with high biodisponibility. Ours studied have been performed using soil profiles drawing from Copou-glass house, Iasi (Romania). Has been followed the modification of distribution for speciation forms of cadmium and lead (two heavy metals with high toxicity degree), between hortic antrosol horizons, and between chemical-mineralogical components of this, with the progressive salinization of superior horizons, in 2007-2008 period. The separation, differentiation and determination of cadmium and lead speciation forms was done by combined solid-liquid sequential extraction (SPE) and extraction in aqueous polymer-inorganic salt two-phase systems (ABS) procedure, presented in some of ours previous studies. After extraction, the total contents of the two heavy metals and fractions from these differential bonded by mineral and organic components of hortic antrosol have been determined by atomic absorption spectrometry. The specific interaction mechanisms of Cd and Pb with organic-mineral components of soils have been estimated on the basis of Raman and FT-IR spectra, recorded for fractions obtained after each extraction step. These data were correlated with those obtained by chemical analysis and UV-VIS spectrometry, and were used for to establish the type and weight of Cd and Pb speciation forms in studied antrosol. Our studies have been show that in medium and inferior horizons of hortic antrosols, the heavy metals have a general accumulation tendency, preferential by binding on organic matter and organic-mineral complexes, components with higher abundance in such type of soils. The selectivity and complexation mechanisms are controlled by speciation forms of the two metals. This phenomenon has two important consequences, the strong fixation of heavy metals in hortic antrosol and significant modification of structure and conformation of organic macromolecules. A specific phenomenon of hortic antrosols is that the accumulation rate of heavy metals is higher than levigation rate, and the mobile forms of these have a higher biodisponibility, being relative easy assimilated by plants. The progressive salinization of superior horizons of soils from glass houses, determined a sever perturbation of equilibrium between Cd and Pb speciation forms. In consequence these will have an accentuated migration tendency in superior horizons, as complexes with inorganic ligands, with a high mobility and biodsiponibility. The accumulation of soluble salts in superior horizons, and the formation of frangipane horizon (horizon of geochemical segregation of hortic antrosols) modified the ionic strength from soil solution and the thermodynamic activity of cadmium and lead species. Under these conditions, the levigation rate of cadmium and lead is higher than the accumulation rate, which means that the migration of these metals in soil solution occurs fast and in high concentrations. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07 an Project PNCDI 2-D5 no. 52141 / 08).

  8. Low-voltage-operated organic one-time programmable memory using printed organic thin-film transistors and antifuse capacitors.

    PubMed

    Jung, Soon-Won; Na, Bock Soon; Park, Chan Woo; Koo, Jae Bon

    2014-11-01

    We demonstrate an organic one-time programmable memory cell formed entirely at plastic-compatible temperatures. All the processes are performed at below 130 degrees C. Our memory cell consists of a printed organic transistor and an organic capacitor. Inkjet-printed organic transistors are fabricated by using high-k polymer dielectric blends comprising poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] and poly(methyl methacrylate) (PMMA) for low-voltage operation. P(NDI2OD-T2) transistors have a high field-effect mobility of 0.2 cm2/Vs and a low operation gate voltage of less than 10 V. The operation voltage effectively decreases owing to the high permittivity of the P(VDF-TrFE):PMMA blended film. The data in the memory cell are programmed by electrically breaking the organic capacitor. The organic capacitor acts like an antifuse capacitor, because it is initially open, and it becomes permanently short-circuited by applying a high voltage. The organic memory cells are programmed with 4 V, and they are read out with 2 V. The memory data are read out by sensing the current in the memory cell. The printed organic one-time programmable memory is suitable for applications storing small amount of data, such as low-cost radio-frequency identification (RFID) tag.

  9. Efficient Photocatalytic H2 Evolution: Controlled Dewetting-Dealloying to Fabricate Site-Selective High-Activity Nanoporous Au Particles on Highly Ordered TiO2 Nanotube Arrays.

    PubMed

    Nguyen, Nhat Truong; Altomare, Marco; Yoo, JeongEun; Schmuki, Patrik

    2015-05-27

    Anodic self-organized TiO2 nanostumps are formed and exploited for self-ordering dewetting of Au-Ag sputtered films. This forms ordered particle configurations at the tube top (crown position) or bottom (ground position). By dealloying from a minimal amount of noble metal, porous Au nanoparticles are then formed, which, when in the crown position, allow for a drastically improved photocatalytic H2 production compared with nanoparticles produced by conventional dewetting processes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Crystal structure of a small heat-shock protein from Xylella fastidiosa reveals a distinct high-order structure.

    PubMed

    Fonseca, Emanuella Maria Barreto; Scorsato, Valéria; Dos Santos, Marcelo Leite; Júnior, Atilio Tomazini; Tada, Susely Ferraz Siqueira; Dos Santos, Clelton Aparecido; de Toledo, Marcelo Augusto Szymanski; de Souza, Anete Pereira; Polikarpov, Igor; Aparicio, Ricardo

    2017-04-01

    Citrus variegated chlorosis is a disease that attacks economically important citrus plantations and is caused by the plant-pathogenic bacterium Xylella fastidiosa. In this work, the structure of a small heat-shock protein from X. fastidiosa (XfsHSP17.9) is reported. The high-order structures of small heat-shock proteins from other organisms are arranged in the forms of double-disc, hollow-sphere or spherical assemblies. Unexpectedly, the structure reported here reveals a high-order architecture forming a nearly square cavity.

  11. Low driving voltage simplified tandem organic light-emitting devices by using exciplex-forming hosts

    NASA Astrophysics Data System (ADS)

    Zhou, Dong-Ying; Cui, Lin-Song; Zhang, Ying-Jie; Liao, Liang-Sheng; Aziz, Hany

    2014-10-01

    Tandem organic light-emitting devices (OLEDs), i.e., OLEDs containing multiple electroluminescence (EL) units that are vertically stacked, are attracting significant interest because of their ability to realize high current efficiency and long operational lifetime. However, stacking multiple EL units in tandem OLEDs increases driving voltage and complicates fabrication process relative to their standard single unit counterparts. In this paper, we demonstrate low driving voltage tandem OLEDs via utilizing exciplex-forming hosts in the EL units instead of conventional host materials. The use of exciplex-forming hosts reduces the charge injection barriers and the trapping of charges on guest molecules, resulting in the lower driving voltage. The use of exciplex-forming hosts also allows using fewer layers, hence simpler EL configuration which is beneficial for reducing the fabrication complexity of tandem OLEDs.

  12. Learning from regeneration research organisms: The circuitous road to scar free wound healing

    PubMed Central

    Erickson, Jami R.; Echeverri, Karen

    2018-01-01

    The skin is the largest organ in the body and plays multiple essential roles ranging from regulating temperature, preventing infection and ultimately defining who we are physically. It is a highly dynamic organ that constantly replaces the outermost cells throughout life. However, when faced with a major injury, human skin cannot restore a significant lesion to its original functionality, instead a reparative scar is formed. In contrast to this, many other species have the unique ability to regenerate full thickness skin without formation of scar tissue. Here we review recent advances in the field that shed light on how the skin cells in regenerative species react to injury to prevent scar formation versus scar forming humans. PMID:29179946

  13. Megahertz organic/polymer diodes

    DOEpatents

    Katz, Howard Edan; Sun, Jia; Pal, Nath Bhola

    2012-12-11

    Featured is an organic/polymer diode having a first layer composed essentially of one of an organic semiconductor material or a polymeric semiconductor material and a second layer formed on the first layer and being electrically coupled to the first layer such that current flows through the layers in one direction when a voltage is applied in one direction. The second layer is essentially composed of a material whose characteristics and properties are such that when formed on the first layer, the diode is capable of high frequency rectifications on the order of megahertz rectifications such as for example rectifications at one of above 100KHz, 500KhZ, IMHz, or 10 MHz. In further embodiments, the layers are arranged so as to be exposed to atmosphere.

  14. Sharp organic interface of molecular C60 chains and a pentacene derivative SAM on Au(788): A combined STM & DFT study

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Tang, Jian-Ming; Larson, Amanda M.; Miller, Glen P.; Pohl, Karsten

    2013-12-01

    Controlling the molecular structure of the donor-acceptor interface is essential to overcoming the efficiency bottleneck in organic photovoltaics. We present a study of self-assembled fullerene (C60) molecular chains on perfectly ordered 6,13-dichloropentacene (DCP) monolayers forming on a vicinal Au(788) surface using scanning tunneling microscopy in conjunction with density functional theory calculations. DCP is a novel pentacene derivative optimized for photovoltaic applications. The molecules form a brick-wall patterned centered rectangular lattice with the long axis parallel to the monatomic steps that separate the 3.9 nm wide Au(111) terraces. The strong interaction between the C60 molecules and the gold substrate is well screened by the DCP monolayer. At submonolayer C60 coverage, the fullerene molecules form long parallel chains, 1.1 nm apart, with a rectangular arrangement instead of the expected close-packed configuration along the upper step edges. The perfectly ordered DCP structure is unaffected by the C60 chain formation. The controlled sharp highly-ordered organic interface has the potential to improve the conversion efficiency in organic photovoltaics.

  15. Comparative Chloroplast Genomes of Pinaceae: Insights into the Mechanism of Diversified Genomic Organizations

    PubMed Central

    Wu, Chung-Shien; Lin, Ching-Ping; Hsu, Chi-Yao; Wang, Rui-Jiang; Chaw, Shu-Miaw

    2011-01-01

    Abstract Pinaceae, the largest family of conifers, has diversified organizations of chloroplast genomes (cpDNAs) with the two typical inverted repeats (IRs) highly reduced. To unravel the mechanism of this genomic diversification, we examined the cpDNA organizations from 53 species of the ten Pinaceous genera, including those of Larix decidua (122,474 bp), Picea morrisonicola (124,168 bp), and Pseudotsuga wilsoniana (122,513 bp), which were firstly elucidated. The results uncovered four distinct cpDNA forms (A−C and P) that are due to rearrangements of two ∼20 and ∼21 kb specific fragments. The C form was documented for the first time and the A form might be the most ancestral one. In addition, only the individuals of Ps. macrocarpa and Ps. wilsoniana were detected to have isomeric cpDNA forms. Three types (types 1−3) of Pinaceae-specific repeats situated nearby the rearranged fragments were found to be syntenic. We hypothesize that type 1 (949 ± 343 bp) and type 3 (608 ± 73 bp) repeats are substrates for homologous recombination (HR), whereas type 2 repeats are likely inactive for HR because of their relatively short sizes (151 ± 30 bp). Conversions among the four distinct forms may be achieved by HR and mediated by type 1 or 3 repeats, thus resulting in increased diversity of cpDNA organizations. We propose that in the Pinaceae cpDNAs, the reduced IRs have lost HR activity, then decreasing the diversity of cpDNA organizations, but the specific repeats that the evolution endowed Pinaceae complement the reduced IRs and increase the diversity of cpDNA organizations. PMID:21402866

  16. MaizeGDB update: New tools, data, and interface for the maize model organism database

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, ...

  17. Ultrastructural localization of proteins involved in sea urchin biomineralization.

    PubMed

    Ameye, L; Hermann, R; Killian, C; Wilt, F; Dubois, P

    1999-09-01

    Three skeletal tissues of the adult echinoid Paracentrotus lividus (the pedicellaria primordium, the test, and the tooth) were immunolabeled with three sera raised against the total mineralization organic matrix and two specific matrix proteins (SM30 and SM50) from the embryo of the echinoid Strongylocentrotus purpuratus. Two conventional chemical fixation protocols and two high-pressure freezing/freeze-substitution protocols were tested. One conventional protocol is recommended for its good preservation of the ultrastructure, and one high-pressure freezing/freeze-substitution protocol is recommended for its good retention of antigenicity. Immunolabeling was obtained in the three adult tissues. It was confined to the active skeleton-forming cells and to the structured organic matrix. The results indicate that the matrix proteins follow the classical routes of secretory protein assembly and export and suggest that SM30 and SM50 are a part of the tridimensional network formed by the organic matrix before the onset of mineralization. They show that the genetic program of part of skeletogenesis is conserved among different calcification models and developmental stages.

  18. Structural Transformation of Guanine Coordination Motifs in Water Induced by Metal ions and Temperature.

    PubMed

    Li, Wei; Jin, Jing; Liu, Xiaoqing; Wang, Li

    2018-06-15

    The transformation effects of metal ions and temperature on the DNA bases guanine (G) metal-organic coordination motifs in water have been investigated by scanning tunneling microcopy (STM). The G molecules form an ordered hydrogen-bonded structure at the water- highly oriented pyrolytic graphite (HOPG) interface. The STM observations reveal that the canonical G/9H form can be transformed into the G/(3H, 7H) tautomer by increasing the temperature of the G solution to 38.6oC. Moreover, metal ions bind with G molecules to form G4Fe13+, G3Fe32+ and the heterochiral intermixed G4Na1+ metal-organic networks after the introduction of the alkali-metal ions in cellular environment.

  19. Comparison between the evaluation of bacterial regrowth capability in a turbidimeter and biodegradable dissolved organic carbon bioreactor measurements in water.

    PubMed

    Kott, Y; Ribas, F; Frías, J; Lucena, F

    1997-09-01

    In recent years, two different approaches to the study of biodegradable organic matter in distribution systems have been followed. The assimilable organic carbon (AOC) indicates the portion of the dissolved organic matter used by bacteria and converted to biomass, which is directly measured as total bacteria, active bacteria or colony-forming units and indirectly as ATP or increase in turbidity. In contrast, the biodegradable dissolved organic carbon (BDOC) is the portion of the dissolved organic carbon that can be mineralized by heterotrophic microorganisms, and it is measured as the difference between the inflow and the outflow of a bioreactor. In this study, at different steps in a water treatment plant, the bacterial regrowth capability was determined by the AOC method that measures the maximum growth rate by using a computerized Monitek turbidimeter. The BDOC was determined using a plug flow bioreactor. Measurements of colony-forming units and total organic carbon (TOC) evolution in a turbidimeter and of colony-forming units at the inflow/outflow of the bioreactor were also performed, calculating at all sampling points the coefficient yield (Y = cfu/delta TOC) in both systems. The correlations between the results from the bioreactor and turbidimeter have been calculated; a high correlation level was observed between BDOC values and all the other parameters, except for Y calculated from bacterial suspension measured in the turbidimeter.

  20. Oil Sands Operations in Alberta, Canada: A large source of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S. M.; Hayden, K.; Taha, Y. M.; Stroud, C.; Darlington, A. L.; Drollette, B.; Gordon, M.; Lee, P.; Liu, P.; Leithead, A.; Moussa, S.; Wang, D.; O'Brien, J.; Mittermeier, R. L.; Brook, J.; Lu, G.; Staebler, R. M.; Han, Y.; Tokarek, T. W.; Osthoff, H. D.; Makar, P.; Zhang, J.; Plata, D.; Gentner, D. R.

    2015-12-01

    Little is known of the reaction products of emissions to the atmosphere from extraction of oil from unconventional sources in the oil sands (OS) region of Alberta, Canada. This study examines these reaction products, and in particular, the extent to which they form secondary organic aerosol (SOA), which can significantly contribute to regional particulate matter formation. An aircraft measurement campaign was conducted over the Athabasca oil sands region between August 13 and September 7, 2013. A broad suite of measurements were made during 22 flights, including organic aerosol mass and composition with a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and organic aerosol gas-phase precursors by Proton Transfer Reaction (PTR) and off-line gas chromatography mass spectrometry. Large concentrations of organic aerosol were measured downwind of the OS region, which we show to be entirely secondary in nature. Laboratory experiments demonstrated that bitumen (the mined product) contains semi-volatile vapours in the C12-C18 range that will be emitted at ambient temperatures. When oxidized, these vapours form SOA with highly similar HR-ToF-AMS spectra to the SOA measured in the flights. Box modelling of the OS plume evolution indicated that the measured levels of traditional volatile organic compounds (VOCs) are not capable of accounting for the amount of SOA formed in OS plumes. This discrepancy is only reconciled in the model by including bitumen vapours along with their oxidation and condensation into the model. The concentration of bitumen vapours required to produce SOA matching observations is similar to that of traditional VOC precursors of SOA. It was further estimated that the cumulative SOA mass formation approximately 100 km downwind of the OS during these flights, and under these meteorological conditions was up to 82 tonnes/day. The combination of airborne measurements, laboratory experiments and box modelling indicated that semi-volatile organic compounds (SVOC) are emitted from OS operations which accounted for >85% of the formed SOA mass in these plumes. Implications of this SOA formation will be discussed.

  1. High-Performance Long-Term-Stable Dopant-Free Perovskite Solar Cells and Additive-Free Organic Solar Cells by Employing Newly Designed Multirole π-Conjugated Polymers.

    PubMed

    Kranthiraja, Kakaraparthi; Gunasekar, Kumarasamy; Kim, Hyunji; Cho, An-Na; Park, Nam-Gyu; Kim, Seonha; Kim, Bumjoon J; Nishikubo, Ryosuke; Saeki, Akinori; Song, Myungkwan; Jin, Sung-Ho

    2017-06-01

    Perovskite solar cells (PSCs) and organic solar cells (OSCs) are promising renewable light-harvesting technologies with high performance, but the utilization of hazardous dopants and high boiling additives is harmful to all forms of life and the environment. Herein, new multirole π-conjugated polymers (P1-P3) are developed via a rational design approach through theoretical hindsight, further successfully subjecting them into dopant-free PSCs as hole-transporting materials and additive-free OSCs as photoactive donors, respectively. Especially, P3-based PSCs and OSCs not only show high power conversion efficiencies of 17.28% and 8.26%, but also display an excellent ambient stability up to 30 d (for PSCs only), owing to their inherent superior optoelectronic properties in their pristine form. Overall, the rational approach promises to support the development of environmentally and economically sustainable PSCs and OSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10.

    PubMed

    Liu, Tao; Guo, Yuan; Yi, Yuanping; Huo, Lijun; Xue, Xiaonan; Sun, Xiaobo; Fu, Huiting; Xiong, Wentao; Meng, Dong; Wang, Zhaohui; Liu, Feng; Russell, Thomas P; Sun, Yanming

    2016-12-01

    Two different nonfullerene acceptors and one copolymer are used to fabricate ternary organic solar cells (OSCs). The two acceptors show unique interactions that reduce crystallinity and form a homogeneous mixed phase in the blend film, leading to a high efficiency of ≈10.3%, the highest performance reported for nonfullerene ternary blends. This work provides a new approach to fabricate high-performance OSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Edge-Oriented Graphene on Carbon Nanofiber for High-Frequency Supercapacitors

    NASA Astrophysics Data System (ADS)

    Islam, Nazifah; Warzywoda, Juliusz; Fan, Zhaoyang

    2018-03-01

    High-frequency supercapacitors are being studied with the aim to replace the bulky electrolytic capacitors for current ripple filtering and other functions used in power systems. Here, 3D edge-oriented graphene (EOG) was grown encircling carbon nanofiber (CNF) framework to form a highly conductive electrode with a large surface area. Such EOG/CNF electrodes were tested in aqueous and organic electrolytes for high-frequency supercapacitor development. For the aqueous and the organic cell, the characteristic frequency at - 45° phase angle was found to be as high as 22 and 8.5 kHz, respectively. At 120 Hz, the electrode capacitance density was 0.37 and 0.16 mF cm-2 for the two cells. In particular, the 3 V high-frequency organic cell was successfully tested as filtering capacitor used in AC/DC converter, suggesting the promising potential of this technology for compact power supply design and other applications. [Figure not available: see fulltext.

  4. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  5. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  6. Process for preparing active oxide powders

    DOEpatents

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  7. Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells.

    PubMed

    Klingner, Christoph; Cherian, Anoop V; Fels, Johannes; Diesinger, Philipp M; Aufschnaiter, Roland; Maghelli, Nicola; Keil, Thomas; Beck, Gisela; Tolić-Nørrelykke, Iva M; Bathe, Mark; Wedlich-Soldner, Roland

    2014-10-13

    Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin-Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization. © 2014 Klingner et al.

  8. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    DOEpatents

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.

    2018-04-24

    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  9. Pros and cons in the search for extraterrestrial intelligence.

    PubMed

    Kantha, S S

    1996-03-01

    I propose a new term, 'galactic organism with distinct intelligence', for the extraterrestrial forms, with which humans can make contact. This is because, among the three existing terms: (a) 'the search for extraterrestrial intelligence' 'excludes biology and is inelegant'; (b) 'extraterrestrial' does not distinguish between the micro-organisms and highly-evolved intelligent life-forms; and (c) 'unidentified flying object' projects a sense of mysticism. On the presence of galactic organisms with distinct intelligence, scientists belong to three camps. Astronomers, physicists and some biochemists belong to the believers group. Evolutionists are in the doubters category. The third camp is represented by the 'uncommitted'. Approaches for contacting galactic organisms with distinct intelligence would take three steps. These are: (a) radioastronomical observations in the galaxy and interstellar space for the presence of organic matter; (b) initiating radio contact and listening to any transmitted message, as set out by the search for extraterrestrial intelligence program, and (c) landing instruments and humans in the galaxy.

  10. Super-lncRNAs: identification of lncRNAs that target super-enhancers via RNA:DNA:DNA triplex formation.

    PubMed

    Soibam, Benjamin

    2017-11-01

    Super-enhancers are characterized by high levels of Mediator binding and are major contributors to the expression of their associated genes. They exhibit high levels of local chromatin interactions and a higher order of local chromatin organization. On the other hand, lncRNAs can localize to specific DNA sites by forming a RNA:DNA:DNA triplex, which in turn can contribute to local chromatin organization. In this paper, we characterize a new class of lncRNAs called super-lncRNAs that target super-enhancers and which can contribute to the local chromatin organization of the super-enhancers. Using a logistic regression model based on the number of RNA:DNA:DNA triplex sites a lncRNA forms within the super-enhancer, we identify 442 unique super-lncRNA transcripts in 27 different human cell and tissue types; 70% of these super-lncRNAs were tissue restricted. They primarily harbor a single triplex-forming repeat domain, which forms an RNA:DNA:DNA triplex with multiple anchor DNA sites (originating from transposable elements) within the super-enhancers. Super-lncRNAs can be grouped into 17 different clusters based on the tissue or cell lines they target. Super-lncRNAs in a particular cluster share common short structural motifs and their corresponding super-enhancer targets are associated with gene ontology terms pertaining to the tissue or cell line. Super-lncRNAs may use these structural motifs to recruit and transport necessary regulators (such as transcription factors and Mediator complexes) to super-enhancers, influence chromatin organization, and act as spatial amplifiers for key tissue-specific genes associated with super-enhancers. © 2017 Soibam; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. On leadership organizational intelligence/organizational stupidity: the leader's challenge.

    PubMed

    Kerfoot, Karlene

    2003-01-01

    Creating organizations with a high IQ or creating organizations without the necessary intelligence guarantees success or failure of the organization. Without structures such as shared leadership and other forms of participative management, the organization or unit cannot access and use the available information and wisdom in the organization. When nurses and other health care professionals do not feel like they have a shared stake and do not feel like citizens of the organization, they lack passion for the organization's work. When nurses feel a sense of share ownnership and autonomy for the clinical practice, terrific outcomes are achieved. Leaders must accept the challenge to build the infrastructure that leads to excellence in organizational IQ.

  12. Impact of Sarbanes-Oxley and IRS Form 990 on Nonprofit Organizations in Pennsylvania

    ERIC Educational Resources Information Center

    Kisow, Matthew R.

    2011-01-01

    The Sarbanes-Oxley Act, an attempt to reform publicly traded companies that suffered from a series of scandalous failures in the late 1990's, did not apply to nonprofit organizations. Several high-profile scandals which occurred in the nonprofit sector between 1996 and 2002 led lawmakers to make several unsuccessful attempts at mandating that the…

  13. Dynamics of hydrophobic organic contaminants in the Baltic proper pelagial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelman, J.; Broman, D.; Naef, C.

    Hydrophobic organic contaminants occur in different forms in natural water. Apart from being truly dissolved in water they partition into dissolved organic carbon (DOC) and particles of different sizes including pelagic bacteria, phytoplankton and zooplankton. The distribution between the different forms is dependent on carbon turnover rates in and transport between the different compartments and on the physical and chemical properties of the compound in focus. The water phase, the DOC-phase and two particle size fractions, 0.2--2pm and 2--20 pm representing the base of the pelagic food web, were analyzed for their content of PCBs and PAHs during summer andmore » winter conditions in the open sea in the Baltic proper. New methods for separating truly dissolved from DOC-bound compounds have been developed using a high capacity perfusion adsorbent and large scale gas sparging. The small particle size fraction was sampled using high volume tangential flow filtration. The possibility to separate between these four different compartments has given a more detailed picture of the short term dynamics of hydrophobic organic compounds in the important base of the pelagial food web.« less

  14. Extraction of Photogenerated Electrons and Holes from a Covalent Organic Framework Integrated Heterojunction

    PubMed Central

    2014-01-01

    Covalent organic frameworks (COFs) offer a strategy to position molecular semiconductors within a rigid network in a highly controlled and predictable manner. The π-stacked columns of layered two-dimensional COFs enable electronic interactions between the COF sheets, thereby providing a path for exciton and charge carrier migration. Frameworks comprising two electronically separated subunits can form highly defined interdigitated donor–acceptor heterojunctions, which can drive the photogeneration of free charge carriers. Here we report the first example of a photovoltaic device that utilizes exclusively a crystalline organic framework with an inherent type II heterojunction as the active layer. The newly developed triphenylene–porphyrin COF was grown as an oriented thin film with the donor and acceptor units forming one-dimensional stacks that extend along the substrate normal, thus providing an optimal geometry for charge carrier transport. As a result of the degree of morphological precision that can be achieved with COFs and the enormous diversity of functional molecular building blocks that can be used to construct the frameworks, these materials show great potential as model systems for organic heterojunctions and might ultimately provide an alternative to the current disordered bulk heterojunctions. PMID:25412210

  15. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au111 surfaces.

    PubMed

    Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J

    2005-11-23

    The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.

  16. High-efficiency photovoltaic cells

    DOEpatents

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  17. Investigating surface chemistry-controlled dolomite precipitation in saline, alkaline, and dilute waters

    NASA Astrophysics Data System (ADS)

    Yoerg, A.; Roberts, J. A.

    2017-12-01

    Previous experiments have shown carboxylated organic matter facilitates dolomite precipitation at low temperature (< 80°C) in both modern and ancient seawater geochemistries. The efficacy of this mechanism in alternative chemical environments, particularly those typical of modern dolomitic environments, remains unclear. We investigated this question using a series of batch laboratory experiments ranging in duration from hours to several months. Experiments were conducted using fluids representative of environments where dolomite is found/thought to form in the modern, such as evaporative, alkaline lakes, sabkhas, and dilute mixing zones. Results indicate that while carboxylated organic matter promotes mineral precipitation in a variety of chemistries, the resultant mineralogy is primarily a function solution chemistry (i.e. saturation state). Specifically, our results suggest elevated alkalinity may be required to produce a high-Mg phase. In solutions where alkalinity is scarce, only amorphous carbonate phases form in association with organic matter, contrasting the Mg-bearing crystalline phases that result from highly alkaline solutions. Results of high-alkalinity, short-term experiments suggest that initially amorphous material is rapidly transformed into high and low-Mg phases in the presence of carboxylated organic matter, but that within days this mineralogy evolves. Longer timescales or elevated temperature may be necessary to produce an ordered dolomite phase. Additional results from longer term, steady-state experiments and additional analyses (Raman spectroscopy and tender energy spectroscopy) will shed further light on resultant mineralogy and this mechanism of dolomite precipitation.

  18. Learning from regeneration research organisms: The circuitous road to scar free wound healing.

    PubMed

    Erickson, Jami R; Echeverri, Karen

    2018-01-15

    The skin is the largest organ in the body and plays multiple essential roles ranging from regulating temperature, preventing infection and ultimately defining who we are physically. It is a highly dynamic organ that constantly replaces the outermost cells throughout life. However, when faced with a major injury, human skin cannot restore a significant lesion to its original functionality, instead a reparative scar is formed. In contrast to this, many other species have the unique ability to regenerate full thickness skin without formation of scar tissue. Here we review recent advances in the field that shed light on how the skin cells in regenerative species react to injury to prevent scar formation versus scar forming humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Lessons Learned from A System-Wide Evidence-Based Practice Program Implementation

    DTIC Science & Technology

    2017-04-25

    services to better support the 59 MDW high reliability organization. Method of Implementation: Using a pretest posttest design, the project started with...FORM 3039 LOCATED ON AF E-PUBLISHING 1. The author must complete page two of this form: a. In Section 2, add the funding source for your study [e.g...form and all supporting documentation to your unit commander. program director or immediate supervisor for review/approval. 6. On page 2, have either

  20. Spectroscopic and thermal properties of short wavelength metal (II) complexes containing α-isoxazolylazo-β-diketones as co-ligands

    NASA Astrophysics Data System (ADS)

    Huang, Fuxin; Wu, Yiqun; Gu, Donghong; Gan, Fuxi

    2005-10-01

    Two new azo dyes of α-isoxazolylazo-β-diketones and their Ni(II) and Cu(II) complexes with blue-violet light wavelength were synthesized using a coupling component, different diazo components and metal (II) ions (Ni 2+ and Cu 2+). Based on the elemental analysis, MS spectra and FT-IR spectral analyses, azo dyes were unequivocally shown to exist as hydrazoketo and azoenol forms which were respectively obtained from the solution forms and from the solid forms. The action of sodium methoxide (NaOMe) on azo dyes in solutions converts hydrazoketo form into azoenol form, so azo dyes are coordinated with metal (II) ions as co-ligands in the azoenol forms. The solubility of all the compounds in common organic solvents such as 2,2,3,3-tetrafluoro-1-propanol (TFP) or chloroform (CHCl 3) and absorption properties of spin-coating thin films were measured. The difference of absorption maxima from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. It is found that these new metal (II) complexes had potential application for high-density digital versatile disc-recordable (HD-DVD-R) system due to their good solubility in organic solvents, reasonable and controllable absorption spectra in blue-violet light region and high thermal stability.

  1. 75 FR 75904 - Rescission of Form T-1, Trust Annual Report; Requiring Subsidiary Organization Reporting on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... DEPARTMENT OF LABOR Office of Labor-Management Standards 29 CFR Part 403 RIN 1215--AB75; 1245--AA02 Rescission of Form T-1, Trust Annual Report; Requiring Subsidiary Organization Reporting on the Form LM-2, Labor Organization Annual Report; Modifying Subsidiary Organization Reporting on the Form LM-3, Labor Organization Annual Report; LMRDA...

  2. Process to form mesostructured films

    DOEpatents

    Brinker, C. Jeffrey; Anderson, Mark T.; Ganguli, Rahul; Lu, Yunfeng

    1999-01-01

    This invention comprises a method to form a family of supported films film with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts.

  3. Process to form mesostructured films

    DOEpatents

    Brinker, C.J.; Anderson, M.T.; Ganguli, R.; Lu, Y.F.

    1999-01-12

    This invention comprises a method to form a family of supported films with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts. 12 figs.

  4. Engineering radical polymer electrodes for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Nevers, Douglas R.; Brushett, Fikile R.; Wheeler, Dean R.

    2017-06-01

    In principle a wide range of organic materials can store energy in the form of reversible redox conversions of stable radicals. Such chemistry holds great promise for energy storage applications due to high theoretical capacities, high rate capabilities, intrinsic structural tunability, and the possibility of low-cost "green" syntheses from renewable sources. There have been steady improvements in the design of organic radical polymers, in which radicals are incorporated into the backbone and/or as pendant groups. This review highlights opportunities for improved redox molecule and polymer design along with the key challenges (e.g., transport phenomena, solubility, and reaction mechanisms) to transitioning known organic radicals into high-performance electrodes. Ultimately, organic-based batteries are still a nascent field with many open questions. Further advances in molecular design, electrode engineering, and device architecture will be required for these systems to reach their full potential and meet the diverse and increasing demands for energy storage.

  5. High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels

    PubMed Central

    Zhang, Bingxing; Zhang, Jianling; Liu, Chengcheng; Peng, Li; Sang, Xinxin; Han, Buxing; Ma, Xue; Luo, Tian; Tan, Xiuniang; Yang, Guanying

    2016-01-01

    To design high-internal-phase emulsion (HIPE) systems is of great interest from the viewpoints of both fundamental researches and practical applications. Here we demonstrate for the first time the utilization of metal-organic framework (MOF) for HIPE formation. By stirring the mixture of water, oil and MOF at room temperature, the HIPE stabilized by the assembly of MOF nanocrystals at oil-water interface could be formed. The MOF-stabilized HIPE provides a novel route to produce highly porous metal-organic aerogel (MOA) monolith. After removing the liquids from the MOF-stabilized HIPE, the ultralight MOA with density as low as 0.01 g·cm−3 was obtained. The HIPE approach for MOA formation has unique advantages and is versatile in producing different kinds of ultralight MOAs with tunable porosities and structures. PMID:26892258

  6. Narrow-Band Organic Photodiodes for High-Resolution Imaging.

    PubMed

    Han, Moon Gyu; Park, Kyung-Bae; Bulliard, Xavier; Lee, Gae Hwang; Yun, Sungyoung; Leem, Dong-Seok; Heo, Chul-Joon; Yagi, Tadao; Sakurai, Rie; Ro, Takkyun; Lim, Seon-Jeong; Sul, Sangchul; Na, Kyoungwon; Ahn, Jungchak; Jin, Yong Wan; Lee, Sangyoon

    2016-10-05

    There are growing opportunities and demands for image sensors that produce higher-resolution images, even in low-light conditions. Increasing the light input areas through 3D architecture within the same pixel size can be an effective solution to address this issue. Organic photodiodes (OPDs) that possess wavelength selectivity can allow for advancements in this regard. Here, we report on novel push-pull D-π-A dyes specially designed for Gaussian-shaped, narrow-band absorption and the high photoelectric conversion. These p-type organic dyes work both as a color filter and as a source of photocurrents with linear and fast light responses, high sensitivity, and excellent stability, when combined with C60 to form bulk heterojunctions (BHJs). The effectiveness of the OPD composed of the active color filter was demonstrated by obtaining a full-color image using a camera that contained an organic/Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensor.

  7. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films.

    PubMed

    Purandare, Sumit; Gomez, Eliot F; Steckl, Andrew J

    2014-03-07

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A(-1) and 20 lm W(-1), respectively, and a maximum brightness of 10,000 cd m(-2).

  8. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films

    NASA Astrophysics Data System (ADS)

    Purandare, Sumit; Gomez, Eliot F.; Steckl, Andrew J.

    2014-03-01

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A-1 and 20 lm W-1, respectively, and a maximum brightness of 10 000 cd m-2.

  9. Reliability of equivalent sphere model in blood-forming organ dose estimation

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Wilson, John W.; Nealy, John E.

    1990-01-01

    The radiation dose equivalents to blood-forming organs (BFO's) of the astronauts at the Martian surface due to major solar flare events are calculated using the detailed body geometry of Langley and Billings. The solar flare spectra of February 1956, November 1960, and August 1972 events are employed instead of the idealized Webber form. The detailed geometry results are compared with those based on the 5-cm sphere model which was used often in the past to approximate BFO dose or dose equivalent. Larger discrepancies are found for the later two events possibly due to the lower numbers of highly penetrating protons. It is concluded that the 5-cm sphere model is not suitable for quantitative use in connection with future NASA deep-space, long-duration mission shield design studies.

  10. Determination of Cr(III) solids formed by reduction of Cr(VI) in a contaminated fractured bedrock aquifer: evidence for natural attenuation of Cr(VI)

    EPA Science Inventory

    Hexavalent chromium Cr(VI) is toxic and can be highly mobile in many aquifer systems. Redox reactions with naturally occurring minerals and organic compounds can reduce Cr(VI) to Cr(III), forming labile Cr(III) oxyhydroxide precipitates, which is a natural attenuation process. In...

  11. Integration of transmissible organic electronic devices for sensor application

    NASA Astrophysics Data System (ADS)

    Tam, Hoi Lam; Wang, Xizu; Zhu, Furong

    2013-09-01

    A high performance proximity sensor that integrates a front semitransparent organic photodiode (OPD) and an organic light-emitting diode (OLED) is demonstrated. A 0.3-nm-thick plasma-polymerized fluorocarbon film (CFX)-modified thin silver interlayer, serving simultaneously as a semitransparent cathode for the OPD and an anode for OLED, is used to vertically connect the functional organic electronic components. A microcavity OLED is formed between a semitransparent Ag/CFX interlayer and the rear Al cathode enhancing the forward electroluminescence emission in the integrated device. The semitransparent-OPD/OLED stack is designed using an optical admittance analysis method. In the integrated sensor, the front semitransparent OPD component enables a high transmission of light emitted by the integrated OLED unit and a high absorption when light is reflected from objects, thereby to increase the signal/noise ratio. The design and fabrication flexibility of an integrated semitransparent-OPD/OLED device also has cost benefit, making it possible for application in organic proximity sensors.

  12. C4N3H monolayer: A two-dimensional organic Dirac material with high Fermi velocity

    NASA Astrophysics Data System (ADS)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Li, Jianfu; Du, Youwei; Tang, Nujiang

    2017-11-01

    Searching for two-dimensional (2D) organic Dirac materials, which have more adaptable practical applications compared with inorganic ones, is of great significance and has been ongoing. However, only two such materials with low Fermi velocity have been discovered so far. Herein, we report the design of an organic monolayer with C4N3H stoichiometry that possesses fascinating structure and good stability in its free-standing state. More importantly, we demonstrate that this monolayer is a semimetal with anisotropic Dirac cones and very high Fermi velocity. This Fermi velocity is roughly one order of magnitude larger than the largest velocity ever reported in 2D organic Dirac materials, and it is comparable to that in graphene. The Dirac states in this monolayer arise from the extended π -electron conjugation system formed by the overlapping 2 pz orbitals of carbon and nitrogen atoms. Our finding paves the way to a search for more 2D organic Dirac materials with high Fermi velocity.

  13. DEVELOP NEW TOTAL ORGANIC CARBON/SPECIFIC UV ...

    EPA Pesticide Factsheets

    The purpose of this project is to provide a total organic carbon (TOC)/specific ultraviolet absorbance (SUVA) method that will be used by the Office of Ground Water and Drinking Water (OGWDW) to support monitoring requirements of the Stage 2 Disinfectant/Disinfection By-products (D/DBP) Rule. The Stage 2 Rule requires that enhanced water treatment be used if the source water is high in aquatic organic matter prior to the application of a disinfectant. Disinfectants (chlorine, ozone, etc.) are used in the production of drinking water in order to reduce the risk of microbial disease. These disinfectants react with the organic material that is naturally present in the source water to form disinfection by-products (DBPs). Exposure to some of these by-products may pose a long term health risk. The number and nature of DBPs make it impossible to fully characterize all of the by-products formed during the treatment of drinking water and it is more cost effective to reduce formation of DBPs than to remove them from the water after they are formed. Two measurements (TOC and SUVA) are believed to be predictive of the amount of by-products that can be formed during the disinfection of drinking water and are considered to be surrogates for DBP precursors. SUVA is calculated as the ultraviolet absorption at 254nm (UV254) in cm-1 divided by the mg/L dissolved organic carbon (DOC) concentration (measured after filtration of the water through a 0.45um pore-diameter filte

  14. Chemoresistive gas sensor

    DOEpatents

    Hirschfeld, T.B.

    1985-09-30

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron tunneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner.

  15. Chemoresistive gas sensor

    DOEpatents

    Hirschfeld, Tomas B.

    1987-01-01

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner.

  16. Chemoresistive gas sensor

    DOEpatents

    Hirschfeld, T.B.

    1987-06-23

    A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner. 2 figs.

  17. Characterization of nicergoline polymorphs crystallized in several organic solvents.

    PubMed

    Malaj, Ledjan; Censi, Roberta; Capsoni, Doretta; Pellegrino, Luca; Bini, Marcella; Ferrari, Stefania; Gobetto, Roberto; Massarotti, Vincenzo; Di Martino, Piera

    2011-07-01

    Nicergoline (NIC), a poorly water-soluble semisynthetic ergot derivative, was crystallized from several organic solvents, obtaining two different polymorphic forms, the triclinic form I and the orthorhombic form II. NIC samples were then characterized by several techniques such as (13)C cross-polarization magic angle spinning solid-state spectroscopy, room-temperature and high-temperature X-ray powder diffraction, differential scanning calorimetry, and by analysis of weight loss, solvent content, powder density, morphology, and particle size. Solubility and intrinsic dissolution rates determined for the two polymorphic forms in water and hydrochloride solutions (HCl 0.1 N) were always higher for form II than for form I, which is actually the form used for the industrial preparation of NIC medicinal products. Preformulation studies might encourage industry for the evaluation of polymorph II, as it is more suitable for pharmaceutical applications. Results in drug delivery, as well as those obtained by the above-mentioned techniques, and the application of Burger-Ramberger's rules make it possible to conclude that there is a thermodynamic relation of monotropy between the two polymorphs. This last assumption may help formulators in predicting the relative stability of the two forms. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  18. Evidence for organic synthesis in high temperature aqueous media - facts and prognosis

    NASA Technical Reports Server (NTRS)

    Simoneit, Bernd R. T.

    1995-01-01

    Hydrothermal systems are common along the active tectonic areas of the earth. Potential sites being studied for organic matter alteration and possible organic synthesis are spreading ridges, off-axis systems, back-arc activity, hot spots, volcanism, and subduction. Organic matter alteration, primarily reductive and generally from immature organic detritus, occurs in these high temperature and rapid fluid flow hydrothermal regimes. Hot circulating water (temperature range - warm to greater than 400 C) is responsible for these molecular alterations, expulsion and migration. Compounds that are obviously synthesized are minor components because they are generally masked by the pyrolysis products formed from contemporary natural organic precursors. The reactivity of organic compounds in hot water (200-350 C) has been studied in autoclaves, and supercritical water as a medium for chemistry has also been evaluated. This high temperature aqueous organic chemistry and the strong reducing conditions of the natural systems suggest this as an important route to produce organic compounds on the primitive earth. Thus a better understanding of the potential syntheses of organic compounds in hydrothermal systems will require investigations of the chemistry of condensation, autocatalysis, catalysis and hydrolysis reactions in aqueous mineral buffered systems over a range of temperatures from warm to greater than 400 C.

  19. Absorption and distribution of cadmium in mice fed diets containing either inorganic or oyster-incorporated cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, M.F.; Hardy, J.T.; Miller, B.M.

    1984-02-01

    To determine the absorption, organ distribution, and retention of organically bound cadmium (Cd) and the effects of dietary zinc (Zn) on Cd metabolism, groups of mice were fed five different diets. The organic Cd used in the diets was in the form of lyophilized oyster (Crassostrea virginica) that had accumulated radiolabeled 109Cd through a plankton food chain. The mice were fed either a standard basal mouse diet (AIN-76) or diets containing five or eight times the Zn concentration of the basal diet. The source of Zn was either oyster tissue or ZnCO3. The concentration of organic and inorganic Cd providedmore » a dose of approximately 0.4 mg/kg. Diets prepared from oyster tissue probably contained all of the Cd and 85% of the Zn in organic form. Diets prepared with inorganic metals contained about the same Cd and Zn concentrations as the diets prepared with oyster. There was very little difference between the retention of Cd by mice that ingested organic (oyster bound) Cd and those fed inorganic Cd (CdCl2). However, when the Cd retained in the intestine was excluded, retention of organic Cd was significantly greater than that of inorganic Cd. The organ distribution of Cd differed significantly according to the chemical form of Cd fed (organic or inorganic) and the Zn level in the diet. The kidneys of mice fed organically bound Cd retained a higher percentage of the metal than the kidneys of those fed inorganic Cd. On the other hand, the livers of animals fed a low-Zn diet retained a higher percentage of the Cd than the livers of those fed a high-Zn diet, regardless of the dietary source of Cd.« less

  20. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  1. Photoluminescence Spectroscopy of Rhodamine 800 Aqueous Solution and Dye-Doped Polymer Thin-Film: Concentration and Solvent Effects

    NASA Astrophysics Data System (ADS)

    Le, Khai Q.; Dang, Ngo Hai

    2018-05-01

    This paper investigates solvent and concentration effects on photoluminescence (PL) or fluorescence properties of Rhodamine 800 (Rho800) dyes formed in aqueous solution and polymer thin-film. Various commonly used organic solvents including ethanol, methanol and cyclopentanol were studied at a constant dye concentration. There were small changes in the PL spectra for the different solvents in terms of PL intensity and peak wavelength. The highest PL intensity was observed for cyclopentanol and the lowest for ethanol. The longest peak wavelength was found in cyclopentanol (716 nm) and the shortest in methanol (708 nm). Dissolving the dye powder in the methanol solvent and varying the dye concentration in aqueous solution from the high concentrated solution to highly dilute states, the wavelength tunability was observed between about 700 nm in the dilute state and 730 nm at high concentration. Such a large shift may be attributed to the formation of dye aggregates. Rho800 dye-doped polyvinyl alcohol (PVA) polymer thin-film was further investigated. The PL intensity of the dye in the form of thin-film is lower than that of the aqueous solution form whereas the peak wavelength is redshifted due to the presence of PVA. This paper, to our best knowledge, reports the first study of spectroscopic properties of Rho800 dyes in various forms and provides useful guidelines for production of controllable organic luminescence sources.

  2. Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae.

    PubMed

    Liu, Chao; Ersan, Mahmut S; Plewa, Michael J; Amy, Gary; Karanfil, Tanju

    2018-05-29

    Seasonal algal blooms in freshwater and marine water can increase the input of algal organic matter (AOM) to the pool of dissolved organic matter. The impact of bromide (Br - ) and iodide (I - ) on the formation of regulated and unregulated disinfection byproducts (DBPs) was studied from chlorination of AOM solutions extracted from three species of cultured isolates of freshwater and marine algae (Microcystis aeruginosa (MA), Synechococcus (SYN), and Alexandrium tamarense (AT)). Comparable concentrations of DBPs were formed from three types of AOM. In the absence of Br - , trihalomethanes (THMs), haloacetic acids (HAAs), and haloacetaldehydes (HALs) were the main groups of DBP formed, and haloacetonitriles (HANs) were formed at lower concentrations. In contrast, the formation of iodinated THMs was <8 nM (1.7 μg/L) since most of initial I - was oxidized to iodate. Increasing initial Br - concentrations increased the formation of THMs and HANs, while concentrations of total organic halogen and HAA remained stable. On the contrary, total HAL concentrations decreased due to the instability of bromated HALs. Decreasing the specific UV absorbance (SUVA) value of AOM favours bromine substitution since bromine more preferentially reacts with low reactivity organic matter than chlorine. Increasing the pH enhanced the formation of THMs but decreased the formation of HANs. Concentrations of HANs and HALs decreased at high pH (e.g., 9.0), high initial chlorine concentration and long reaction time due to the decomposition. Based on the cytotoxicity calculations, unregulated HANs and HALs were the main contributors for the total toxicity of DBPs measured, even though based on the weight regulated THMs and HAAs predominated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Directed Panspermia. 3. strategies and Motivation for Seeding Star-Forming Clouds

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.

    1997-11-01

    Microbial swarms aimed at star-forming regions of interstellar clouds can seed stellar associations of 10 - 100 young planetary systems. Swarms of millimeter size, milligram packets can be launched by 35 cm solar sails at 5E-4 c, to penetrate interstellar clouds. Selective capture in high-density planetary accretion zones of densities > 1E-17 kg m-3 is achieved by viscous drag. Strategies are evaluated to seed dense cloud cores, or individual protostellar condensations, accretion disks or young planets therein. Targeting the Ophiuchus cloud is described as a model system. The biological content, dispersed in 30 μm, 1E-10 kg capsules of 1E6 freeze-dried microorganisms each, may be captured by new planets or delivered to planets after incorporation first into carbonaceous asteroids and comets. These objects, as modeled by meteorite materials, contain biologically available organic and mineral nutrients that are shown to sustain microbial growth. The program may be driven by panbiotic ethics, predicated on: 1. The unique position of complex organic life amongst the structures of Nature; 2. Self-propagation as the basic propensity of the living pattern; 3. The biophysical unity humans with of the organic, DNA/protein family of life; and 4. Consequently, the primary human purpose to safeguard and propagate our organic life form. To promote this purpose, panspermia missions with diverse biological payloads will maximize survival at the targets and induce evolutionary pressures. In particular, eukaryotes and simple multicellular organisms in the payload will accelerate higher evolution. Based on the geometries and masses of star-forming regions, the 1E24 kg carbon resources of one solar system, applied during its 5E9 yr lifespan, can seed all newly forming planetary systems in the galaxy.

  4. Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds

    NASA Astrophysics Data System (ADS)

    Singh, H.; Chen, Y.; Staudt, A.; Jacob, D.; Blake, D.; Heikes, B.; Snow, J.

    2001-04-01

    The presence of oxygenated organic compounds in the troposphere strongly influences key atmospheric processes. Such oxygenated species are, for example, carriers of reactive nitrogen and are easily photolysed, producing free radicals-and so influence the oxidizing capacity and the ozone-forming potential of the atmosphere-and may also contribute significantly to the organic component of aerosols. But knowledge of the distribution and sources of oxygenated organic compounds, especially in the Southern Hemisphere, is limited. Here we characterize the tropospheric composition of oxygenated organic species, using data from a recent airborne survey conducted over the tropical Pacific Ocean (30°N to 30°S). Measurements of a dozen oxygenated chemicals (carbonyls, alcohols, organic nitrates, organic pernitrates and peroxides), along with several C2-C8 hydrocarbons, reveal that abundances of oxygenated species are extremely high, and collectively, oxygenated species are nearly five times more abundant than non-methane hydrocarbons in the Southern Hemisphere. Current atmospheric models are unable to correctly simulate these findings, suggesting that large, diffuse, and hitherto-unknown sources of oxygenated organic compounds must therefore exist. Although the origin of these sources is still unclear, we suggest that oxygenated species could be formed via the oxidation of hydrocarbons in the atmosphere, the photochemical degradation of organic matter in the oceans, and direct emissions from terrestrial vegetation.

  5. Growth mechanism of GaAs1-xSbx ternary alloy thin film on MOCVD reactor using TMGa, TDMAAs and TDMASb

    NASA Astrophysics Data System (ADS)

    Suhandi, A.; Tayubi, Y. R.; Arifin, P.

    2016-04-01

    Metal Organic Chemical Vapor Deposition (MOCVD) is a method for growing a solid material (in the form of thin films, especially for semiconductor materials) using vapor phase metal organic sources. Studies on the growth mechanism of GaAs1-xSbx ternary alloy thin solid film in the range of miscibility-gap using metal organic sources trimethylgallium (TMGa), trisdimethylaminoarsenic (TDMAAs), and trisdimethylaminoantimony (TDMASb) on MOCVD reactor has been done to understand the physical and chemical processes involved. Knowledge of the processes that occur during alloy formation is very important to determine the couple of growth condition and growth parameters are appropriate for yield high quality GaAs1-xSbx alloy. The mechanism has been studied include decomposition of metal organic sources and chemical reactions that may occur, the incorporation of the alloy elements forming and the contaminants element that are formed in the gown thin film. In this paper presented the results of experimental data on the growth of GaAs1-xSbx alloy using Vertical-MOCVD reactor to demonstrate its potential in growing GaAs1-xSbx alloy in the range of its miscibility gap.

  6. Multi-layered nanocomposite dielectrics for high density organic memory devices

    NASA Astrophysics Data System (ADS)

    Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik

    2015-01-01

    We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).

  7. Experiments of the Essential Amino Acids at high temperature and high pressure using DAC

    NASA Astrophysics Data System (ADS)

    Kubo, K.; Okamoto, K.

    2017-12-01

    Amino acids are organic compounds that form the fundamental part of life. Proteins are formed by peptide binding and polymerization of amino acids. Amino acids are polymerized in the ridge hydrothermal field, formed proteins, and might be evolved into life. Experimental studies on the polymerization of amino acids in hydrothermal environments have been conducted. However, they were hydrothermal experiments and after the experiments. All run products (amid-acids) were observed at ambient condition. Few in-situ observations of amino acids were done in experiments in hydrothermal condition. In order to perform in-situ observation of the polymerization of amino acids, we have conducted the DAC experiments. Amino acids were filled in the DAC, pressures were applied, then heated to high temperature with Raman analysis. In preliminary experiment using glycine, polymerization forming diglycine, were completed. Investigation amino acids polymerization under hydrothermal condition would shed light for new view of early life science.

  8. Why Wargaming Works

    DTIC Science & Technology

    2011-01-01

    Clinton read The Cobra Event. What makes telling a good story more powerful than other forms of communication ? The Power of Prose To explore this...reaction as any story. But high-engagement games are more than simple narratives; they employ ranges of physical cues, as do movies or stage plays. The...relationships can reflect and help organize hierarchical or communications rela- tionships. The venue also organizes players and their interactions into group

  9. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts.

    PubMed

    Trofimova, Irina; Krasikova, Alla

    2016-12-01

    Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.

  10. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts

    PubMed Central

    Krasikova, Alla

    2016-01-01

    ABSTRACT Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription. PMID:27763817

  11. Hybrid microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Richard C. K. (Inventor); Rembaum, Alan (Inventor)

    1985-01-01

    Substrates, particularly inert synthetic organic resin beads (10) or sheet (12) such as polystyrene are coated with a covalently bound layer (24) of polyacrolein by irradiation a solution (14) of acrolein or other aldehyde with high intensity radiation. Individual microspheres (22) are formed which attach to the surface to form the aldehyde containing layer (24). The aldehyde groups can be converted to other functional groups by reaction with materials such as hydroxylamine. Adducts of proteins such as antibodies or enzymes can be formed by direct reaction with the surface aldehyde groups.

  12. Highly Microporous Nitrogen-doped Carbon Synthesized from Azine-linked Covalent Organic Framework and its Supercapacitor Function.

    PubMed

    Kim, Gayoung; Yang, Jun; Nakashima, Naotoshi; Shiraki, Tomohiro

    2017-12-11

    Porous carbons with nitrogen-doped (N-doped) structures are promising materials for advanced energy conversion and storage applications, including supercapacitors and fuel cell catalysts. In this study, microporous N-doped carbon was successfully fabricated through carbonization of covalent organic frameworks (COFs) with an azine-linked two-dimensional molecular network (ACOF1). In the carbonized ACOF1, micropores with diameters smaller than 1 nm are selectively formed, and a high specific surface area (1596 cm 2  g -1 ) is achieved. In addition, the highly porous structure with N-doped sites results in enhancement of the electrochemical capacitance. Detailed investigation for the micropore-forming process reveals that the formation of nitrogen gas during the thermal degradation of the azine bond contributes to the microporous structure formation. Therefore, the present direct carbonization approach using COFs allows the fabrication of microporous heteroatom-doped carbons, based on molecularly designed COFs, toward future electrochemical and energy applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Host-guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals

    NASA Astrophysics Data System (ADS)

    Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.

    2015-12-01

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.

  14. Enhancing the color gamut of white displays using novel deep-blue organic fluorescent dyes to form color-changed thin films with improved efficiency

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Ting; Huang, Wen-Yao

    2012-10-01

    This study used the novel fluorescence based deep-blue-emitting molecule BPVPDA in an organic fluorescent color thin film to exhibit deep blue color with CIE coordinates of (0.13, 0.16). The developed original organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and thin-film-transistor (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a TFT LCD with organic color thin films. The organic color thin films structure uses an organic dye dopant in a limpid photoresist. With this technology, the following characteristics can be obtained: 1. high color reproduction of gamut ratio, and 2. improved luminous efficiency with organic color fluorescent thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD or OLED.

  15. Enhancing the color gamut of white displays using novel deep-blue organic fluorescent dyes to form color-changed thin films with improved efficiency

    NASA Astrophysics Data System (ADS)

    Liu, Wei-ting; Huang, Wen-Yao

    2012-06-01

    This study used novel fluorescence based deep-blue-emitting molecules, namely BPVPDA, an organic fluorescence color thin film using BPVPDA exhibit deep blue fluorine with CIE coordinates of (0.13,0.16). The developed original Organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness, in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a thin-film-transistor (TFT) LCD with organic color thin films. The organic color thin films structure uses organic dye dopent in limpid photo resist. With this technology , the following characteristics can be obtained: (1) high color reproduction of gamut ratio, and (2) improved luminous efficiency with organic color fluorescence thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD and OLED.

  16. Organic Dots Based on AIEgens for Two-Photon Fluorescence Bioimaging.

    PubMed

    Lou, Xiaoding; Zhao, Zujin; Tang, Ben Zhong

    2016-12-01

    Two-photon fluorescence imaging technique is a powerful bioanalytical approach in terms of high photostability, low photodamage, high spatiotemporal resolution. Recently, fluorescent organic dots comprised of organic emissive cores and a polymeric matrix are emerging as promising contrast reagents for two-photon fluorescence imaging, owing to their numerous merits of high and tunable fluorescence, good biocompatibility, strong photobleaching resistance, and multiple surface functionality. The emissive core is crucial for organic dots to get high brightness but many conventional chromophores often encounter a severe problem of fluorescence quenching when they form aggregates. To solve this problem, fluorogens featuring aggregation-induced emission (AIE) can fluoresce strongly in aggregates, and thus become ideal candidates for fluorescent organic dots. In addition, two-photon absorption property of the dots can be readily improved by just increase loading contents of AIE fluorogen (AIEgen). Hence, organic dots based on AIEgens have exhibited excellent performances in two-photon fluorescence in vitro cellular imaging, and in vivo vascular architecture visualization of mouse skin, muscle, brain and skull bone. In view of the rapid advances in this important research field, here, we highlight representative fluorescent organic dots with an emissive core of AIEgen aggregate, and discuss their great potential in bioimaging applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Towards a High Quality High School Workforce: A Longitudinal, Demographic Analysis of U.S. Public School Physics Teachers

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Rosengrant, David; Dewar, Andrew; Shah, Lisa; Ray, Herman E.; Sheppard, Keith; Watanabe, Lynn

    2017-01-01

    Efforts to improve the number and quality of the high school physics teaching workforce have taken several forms, including those sponsored by professional organizations. Using a series of large-scale teacher demographic data sets from the National Center for Education Statistics (NCES), this study sought to investigate trends in teacher quality…

  18. Role of high molecular mass organics in colour formation during biological treatment of pulp and paper wastewater.

    PubMed

    Milestone, C B; Stuthridge, T R; Fulthorpe, R R

    2007-01-01

    This paper forms part of series of biological treatment colour behaviour studies. Surveys across a range of mills have observed colour increases in aerated stabilisation basins of 20-45%. Much of the colour formation has been demonstrated to occur in high molecular mass effluent organic constituents (HMM) present in bleach plant effluents. Removing material greater than 3000 Da essentially eliminated the colour forming ability in both E and D stage wastewaters. We have also shown that pulp and paper sludges contain anaerobic bacteria capable of reducing humic like materials. Colour formation was correlated to the anoxic conditions and the availability of readily biodegradable organic constituents during the wastewater treatment process. Overall, these studies suggest that colour formation in pulp and paper biological treatment systems may be caused by anaerobic bacteria using HMM material from the bleaching effluents as an electron acceptor for growth. This leads to the reduction of the material, which in turn leads to non-reversible internal changes, such as intra-molecular polymerisation or formation of chromophoric functional groups.

  19. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  20. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  1. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  2. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  3. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  4. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    ERIC Educational Resources Information Center

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  5. Polydiacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.

    1993-01-01

    One very promising class of organic compounds for nonlinear optical (NLO) applications are polydiacetylenes, which are novel in that they are highly conjugated polymers which can also be crystalline. Polydiacetylenes offer several advantages over other organic materials: because of their highly conjugated electronic structures, they are capable of possessing large optical nonlinearities with fast response times; because they are crystalline, they can be highly ordered, which is essential for optimizing their NLO properties; and, last, because they are polymeric, they can be formed as thin films, which are useful for device fabrication. We have actively been carrying out ground-based research on several compounds of interest.

  6. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    DOE PAGES

    Koziol, Lucas; Goldman, Nir

    2015-04-21

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extendedmore » structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Lastly, our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.« less

  7. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koziol, Lucas; Goldman, Nir

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extendedmore » structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Lastly, our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.« less

  8. Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Feng, Wenchun; Zhang, Huangxi; Wang, Zhenlong; Calcaterra, Heather A.; Yeom, Bongjun; Hu, Ping An; Kotov, Nicholas A.

    2016-02-01

    Nacre-like composites have been investigated typically in the form of coatings or free-standing sheets. They demonstrated remarkable mechanical properties and are used as ultrastrong materials but macroscale fibres with nacre-like organization can improve mechanical properties even further. The fiber form or nacre can, simplify manufacturing and offer new functional properties unknown yet for other forms of biomimetic materials. Here we demonstrate that nacre-like fibres can be produced by shear-induced self-assembly of nanoplatelets. The synergy between two structural motifs--nanoscale brick-and-mortar stacking of platelets and microscale twisting of the fibres--gives rise to high stretchability (>400%) and gravimetric toughness (640 J g-1). These unique mechanical properties originate from the multiscale deformation regime involving solid-state self-organization processes that lead to efficient energy dissipation. Incorporating luminescent CdTe nanowires into these fibres imparts the new property of mechanically tunable circularly polarized luminescence. The nacre-like fibres open a novel technological space for optomechanics of biomimetic composites, while their continuous spinning methodology makes scalable production realistic.

  9. Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres.

    PubMed

    Zhang, Jia; Feng, Wenchun; Zhang, Huangxi; Wang, Zhenlong; Calcaterra, Heather A; Yeom, Bongjun; Hu, Ping An; Kotov, Nicholas A

    2016-02-24

    Nacre-like composites have been investigated typically in the form of coatings or free-standing sheets. They demonstrated remarkable mechanical properties and are used as ultrastrong materials but macroscale fibres with nacre-like organization can improve mechanical properties even further. The fiber form or nacre can, simplify manufacturing and offer new functional properties unknown yet for other forms of biomimetic materials. Here we demonstrate that nacre-like fibres can be produced by shear-induced self-assembly of nanoplatelets. The synergy between two structural motifs--nanoscale brick-and-mortar stacking of platelets and microscale twisting of the fibres--gives rise to high stretchability (>400%) and gravimetric toughness (640 J g(-1)). These unique mechanical properties originate from the multiscale deformation regime involving solid-state self-organization processes that lead to efficient energy dissipation. Incorporating luminescent CdTe nanowires into these fibres imparts the new property of mechanically tunable circularly polarized luminescence. The nacre-like fibres open a novel technological space for optomechanics of biomimetic composites, while their continuous spinning methodology makes scalable production realistic.

  10. Fully Solution-Processed Flexible Organic Thin Film Transistor Arrays with High Mobility and Exceptional Uniformity

    PubMed Central

    Fukuda, Kenjiro; Takeda, Yasunori; Mizukami, Makoto; Kumaki, Daisuke; Tokito, Shizuo

    2014-01-01

    Printing fully solution-processed organic electronic devices may potentially revolutionize production of flexible electronics for various applications. However, difficulties in forming thin, flat, uniform films through printing techniques have been responsible for poor device performance and low yields. Here, we report on fully solution-processed organic thin-film transistor (TFT) arrays with greatly improved performance and yields, achieved by layering solution-processable materials such as silver nanoparticle inks, organic semiconductors, and insulating polymers on thin plastic films. A treatment layer improves carrier injection between the source/drain electrodes and the semiconducting layer and dramatically reduces contact resistance. Furthermore, an organic semiconductor with large-crystal grains results in TFT devices with shorter channel lengths and higher field-effect mobilities. We obtained mobilities of over 1.2 cm2 V−1 s−1 in TFT devices with channel lengths shorter than 20 μm. By combining these fabrication techniques, we built highly uniform organic TFT arrays with average mobility levels as high as 0.80 cm2 V−1 s−1 and ideal threshold voltages of 0 V. These results represent major progress in the fabrication of fully solution-processed organic TFT device arrays. PMID:24492785

  11. Nitrogen Containing Organic Compounds and Oligomers in Secondary Organic Aerosol Formed by Photooxidation of Isoprene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tran B.; Laskin, Julia; Laskin, Alexander

    2011-07-06

    Electrospray ionization high-resolution mass spectrometry (ESI HR-MS) was used to probe molecular structures of oligomers in secondary organic aerosol (SOA) generated in laboratory experiments on isoprene photooxidation at low- and high-NOx conditions. Up to 80-90% of the observed products are oligomers and up to 33% are nitrogen-containing organic compounds (NOC). We observe oligomers with up to 8 monomer units in length. Tandem mass spectrometry (MSn) confirms NOC compounds are organic nitrates and elucidates plausible chemical building blocks contributing to oligomer formation. Most organic nitrates are comprised of methylglyceric acid units. Other important multifunctional C2-C5 monomer units are identified including methylglyoxal,more » hydroxyacetone, hydroxyacetic acid, glycolaldehyde, and 2-methyltetrols. The majority of the NOC oligomers contain only one nitrate moiety resulting in a low average N:C ratio of 0.019. Average O:C ratios of the detected SOA compounds are 0.54 under the low-NOx conditions and 0.83 under the high-NOx conditions. Our results underscore the importance of isoprene photooxidation as a source of NOC in organic particulate matter.« less

  12. Delivery of Exogenous Complex Organic Compounds by Solar System Small Bodies and Space Dusts and Its Relevance to Origins of Life

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Fushimi, Hidehiko; Motoyama, Takuya; Kaneko, Takeo; Obayashi, Yumiko; Yoshida, Satoshi; Mita, Hajime; Yabuta, Hikaru; Okudaira, Kyoko; Hashimoto, Hirofumi; Yokobori, Shin-Ichi; Yamagishi, Akihiko

    A wide variety of organic compounds including amino acid precursors have been detected in such extraterrestrial bodies as carbonaceous chondrites and comets. It was suggested that these organics were formed in quite cold environments. We irradiated frozen mixtures of possible constituents of ice mantles of interstellar dust particles including water, methanol and ammonia with high-energy heavy ions from HIMAC, National Institute of Radiological Science, Japan. Amino acid precursors with complex structures were detected whose molecular weights are up to a few thousands. Such complex amino acid precursors are much stronger than free amino acids against radiation. Such organics could have been incorporated in solar system small bodies after the formation of the solar system and delivered to the primitive Earth. Possible carriers of such organics are meteorites, comets and interplanetary dust particles (IDPs) that were formed from comets and meteorites. It is suggested that IDPs brought much more organics than meteorites and comets. However, nature of organics in IDPs is little known, since they have been collected only in terrestrial biosphere. We are planning a space experiments named Tanpopo, where IDPs would be collected in aerogel equipped on the Exposure Facility of the International Space Station. In addition, amino acids and their relating compounds would be exposed to space environments to see their possible alteration processes in the interplanetary space. We will report some preliminary results for the preparation of the mission including the capture of amino acid-containing particles at high velocity with ultra-low density aerogel.

  13. On the synthesis and structure of resorcinol-formaldehyde polymeric networks – Precursors to 3D-carbon macroassemblies

    DOE PAGES

    Lewicki, James P.; Fox, Christina A.; Worsley, Marcus A.

    2015-05-15

    With the new impetus towards the development of hierarchical graphene and CNT macro-assemblies for application in fields such as advanced energy storage, catalysis and electronics; there is much renewed interest in organic carbon-based sol–gel processes as a synthetically convenient and versatile means of forming three dimensional, covalently bonded organic/inorganic networks. Such matrices can act as highly effective precursors, scaffolds or molecular ‘glues’ for the assembly of a wide variety of functional carbon macro-assemblies. However, despite the utility and broad use of organic sol–gel processes – such as the ubiquitous resorcinol-formaldehyde (RF) reaction, there are details of the reaction chemistries ofmore » these important sol–gel processes that remain poorly understood at present. It is therefore both timely and necessary to examine these reactions in more detail using modern analytical techniques in order to gain a more rigorous understanding of the mechanisms by which these organic networks form. The goal of such studies is to obtain improved and rational control over the organic network structure, in order to better direct and tailor the architecture of the final inorganic carbon matrix. In this study we have investigated in detail, the mechanism of the organic sol–gel network forming reaction of resorcinol and formaldehyde from a structural and kinetic standpoint, by using a combination of real-time high field solution state nuclear magnetic resonance (NMR), low field NMR relaxometry and differential scanning calorimetry (DSC). These investigations have allowed us to track the network formation processes in real-time, gain both detailed structural information on the mechanisms of the RF sol–gel process and a quantitative assessment of the kinetics of the global network formation process. Here, it has been shown that the mechanism, by which the RF organic network forms, proceeds via an initial exothermic step correlated to the formation of a free aromatic aldehyde. The network growth reaction then proceeds in a statistical manner following a first order Arrhenius type kinetic relationship – characteristic of a typical thermoset network poly-condensation process. Finally, despite the relative complexity and ill-defined nature of the formaldehyde staring material, the final network structure is to a large extent, governed by the substitution pattern of the resorcinol molecule.« less

  14. Modeling self-organization of novel organic materials

    NASA Astrophysics Data System (ADS)

    Sayar, Mehmet

    In this thesis, the structural organization of oligomeric multi-block molecules is analyzed by computational analysis of coarse-grained models. These molecules form nanostructures with different dimensionalities, and the nanostructured nature of these materials leads to novel structural properties at different length scales. Previously, a number of oligomeric triblock rodcoil molecules have been shown to self-organize into mushroom shaped noncentrosymmetric nanostructures. Interestingly, thin films of these molecules contain polar domains and a finite macroscopic polarization. However, the fully polarized state is not the equilibrium state. In the first chapter, by solving a model with dipolar and Ising-like short range interactions, we show that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a ≈ 6 nm), leading to a reduction in the repulsive dipolar interactions that oppose polar order within layers. This enables the formation of a striped pattern with polar domains of alternating directions. The energies of the possible structures at zero temperature are computed exactly and results of Monte Carlo simulations are provided at non-zero temperatures. In the second chapter, the macroscopic polarization of such nanostructured films is analyzed in the presence of a short range surface interaction. The surface interaction leads to a periodic domain structure where the balance between the up and down domains is broken, and therefore films of finite thickness have a net macroscopic polarization. The polarization per unit volume is a function of film thickness and strength of the surface interaction. Finally, in chapter three, self-organization of organic molecules into a network of one dimensional objects is analyzed. Multi-block organic dendron rodcoil molecules were found to self-organize into supramolecular nanoribbons (threads) and form gels at very low concentrations. Here, the formation and structural properties of these networks are studied with Monte Carlo simulations. The model gelators can form intra and inter-thread bonds, and the threads have a finite stiffness. The results suggest that the high persistence length is a result of the interplay of thread stiffness and inter-thread interactions. Furthermore, this high persistence length enables the formation of networks at low concentrations.

  15. 17 CFR 249.819 - Form 19b-4, for electronic filing with respect to proposed rule changes by all self-regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... filing with respect to proposed rule changes by all self-regulatory organizations. 249.819 Section 249..., SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and Forms for... organizations. This form shall be used by all self-regulatory organizations, as defined in section 3(a)(26) of...

  16. 17 CFR 249.819 - Form 19b-4, for electronic filing with respect to proposed rule changes by all self-regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... filing with respect to proposed rule changes by all self-regulatory organizations. 249.819 Section 249..., SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and Forms for... organizations. This form shall be used by all self-regulatory organizations, as defined in section 3(a)(26) of...

  17. 17 CFR 249.819 - Form 19b-4, for electronic filing with respect to proposed rule changes by all self-regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... filing with respect to proposed rule changes by all self-regulatory organizations. 249.819 Section 249..., SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and Forms for... organizations. This form shall be used by all self-regulatory organizations, as defined in section 3(a)(26) of...

  18. Spatial intensity distribution analysis quantifies the extent and regulation of homodimerization of the secretin receptor

    PubMed Central

    Ward, Richard J.; Pediani, John D.; Harikumar, Kaleeckal G.; Miller, Laurence J.

    2017-01-01

    Previous studies have indicated that the G-protein-coupled secretin receptor is present as a homodimer, organized through symmetrical contacts in transmembrane domain IV, and that receptor dimerization is critical for high-potency signalling by secretin. However, whether all of the receptor exists in the dimeric form or if this is regulated is unclear. We used measures of quantal brightness of the secretin receptor tagged with monomeric enhanced green fluorescent protein (mEGFP) and spatial intensity distribution analysis to assess this. Calibration using cells expressing plasma membrane-anchored forms of mEGFP initially allowed us to demonstrate that the epidermal growth factor receptor is predominantly monomeric in the absence of ligand and while wild-type receptor was rapidly converted into a dimeric form by ligand, a mutated form of this receptor remained monomeric. Equivalent studies showed that, at moderate expression levels, the secretin receptor exists as a mixture of monomeric and dimeric forms, with little evidence of higher-order complexity. However, sodium butyrate-induced up-regulation of the receptor resulted in a shift from monomeric towards oligomeric organization. In contrast, a form of the secretin receptor containing a pair of mutations on the lipid-facing side of transmembrane domain IV was almost entirely monomeric. Down-regulation of the secretin receptor-interacting G-protein Gαs did not alter receptor organization, indicating that dimerization is defined specifically by direct protein–protein interactions between copies of the receptor polypeptide, while short-term treatment with secretin had no effect on organization of the wild-type receptor but increased the dimeric proportion of the mutated receptor variant. PMID:28424368

  19. Antarctic snow: metals bound to high molecular weight dissolved organic matter.

    PubMed

    Calace, Nicoletta; Nardi, Elisa; Pietroletti, Marco; Bartolucci, Eugenia; Pietrantonio, Massimiliana; Cremisini, Carlo

    2017-05-01

    In this paper we studied some heavy metals (Cu, Zn, Cd, Pb, As, U) probably associated to high molecular weight organic compounds present in the Antarctic snow. Snow-pit samples were collected and analysed for high molecular weight fraction and heavy metals bound to them by means of ultrafiltration treatment. High molecular weight dissolved organic matter (HMW-DOM) recovered by ultrafiltration showed a dissolved organic carbon concentration (HMW-DOC) of about 18-83% of the total dissolved organic carbon measured in Antarctic snow. The characterisation of HMW-DOM fraction evidenced an ageing of organic compounds going from surface layers to the deepest ones with a shift from aliphatic compounds and proteins/amino sugars to more high unsaturated character and less nitrogen content. The heavy metals associated to HMW-DOM fraction follows the order: Zn > Cu > Pb > Cd ∼ As ∼ U. The percentage fraction of metals bound to HMW-DOM respect to total metal content follows the order: Cu > Pb > Zn, Cd in agreement with humic substance binding ability (Irwing-William series). Going down to depth of trench, all metals except arsenic, showed a high concentration peak corresponding to 2.0-2.5 m layer. This result was attributed to particular structural characteristic of organic matter able to form different type of complexes (1:1, 1:2, 1:n) with metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Method of making highly sinterable lanthanum chromite powder

    DOEpatents

    Richards, Von L.; Singhal, Subhash C.

    1992-01-01

    A highly sinterable powder consisting essentially of LaCrO.sub.3, containing from 5 weight % to 20 weight % of a chromite of dopant Ca, Sr, Co, Ba, or Mg and a coating of a chromate of dopant Ca, Sr, Co, Ba, or Mg; is made by (1) forming a solution of La, Cr, and dopant; (2) heating their solutions; (3) forming a combined solution having a desired ratio of La, Cr, and dopant and heating to reduce solvent; (4) forming a foamed mass under vacuum; (5) burning off organic components and forming a charred material; (6) grinding the charred material; (7) heating the char at from 590.degree. C. to 950 C. in inert gas containing up to 50,000 ppm O.sub.2 to provide high specific surface area particles; (8) adding that material to a mixture of a nitrate of Cr and dopant to form a slurry; (9) grinding the particles in the slurry; (10) freeze or spray drying the slurry to provide a coating of nitrates on the particles; and (11) heating the coated particles to convert the nitrate coating to a chromate coating and provide a highly sinterable material having a high specific surface area of over 7 m.sup.2 /g.

  1. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples.

    PubMed

    Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S

    2018-01-01

    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  3. Information Technology and New Forms of Organisations.

    ERIC Educational Resources Information Center

    Ghasemiyeh, Rahim; Li, Feng

    This paper evaluates the impacts of the Internet on organizational structures and identifies new forms of organizations in light of information technology (IT) advances. Four traditional forms of organizations are summarized, i.e., the bureaucratic hierarchy, the entrepreneurial organization, the matrix organization, and the adhocacy. The…

  4. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  5. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  6. Synthesis of organosilicon derivatives of [1]benzothieno[3,2-b][1]-benzothiophene for efficient monolayer Langmuir-Blodgett organic field effect transistors.

    PubMed

    Borshchev, O V; Sizov, A S; Agina, E V; Bessonov, A A; Ponomarenko, S A

    2017-01-16

    For the first time, the synthesis of organosilicon derivatives of dialkyl[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) capable of forming a semiconducting monolayer at the water-air interface is reported. Self-assembled monolayer organic field-effect transistors prepared from these materials using the Langmuir-Blodgett technique showed high hole mobilities and excellent air stability.

  7. Geochemical controls on vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  8. Geochemical controls of vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  9. The link between volcanism and plutonism in epizonal magma systems; high-precision U–Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico

    USGS Publications Warehouse

    Rioux, Matthew; Farmer, Lang; Bowring, Samuel; Wooton, Kathleen M.; Amato, Jeffrey M.; Coleman, Drew S.; Verplanck, Philip L.

    2016-01-01

    The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U–Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean 206Pb/238U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean 206Pb/238U date of 36.259 ± 0.021 Ma. Weighted mean 206Pb/238U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the final eruption. Calculated magmatic fluxes for the Organ Needle pluton range from 0.0006 to 0.0030 km3/year, in agreement with estimates from other well-studied plutons. The petrogenetic evolution proposed here may be common to many small-volume silicic volcanic systems.

  10. Use of on-site high performance liquid chromatography to evaluate the magnitude and extent of organic contaminants in aquifers

    USGS Publications Warehouse

    Goerlitz, D.F.; Franks, B.J.

    1989-01-01

    Appraisal of ground water contaminated by organic substances raises problems of difficult sample collection and timely chemical analysis. High-performance liquid chromatography was evaluated for on-site determination of specific organic contaminants in ground water samples and was used at three study sites. Organic solutes were determined directly in water samples, with little or no preparation, and usually in less than an hour after collection. This information improved sampling efficiency and was useful in screening for subsequent laboratory analysis. On two occasions, on-site analysis revealed that samples were undergoing rapid change, with major solutes being upgraded and alteration products being formed. In addition to sample stability, this technique proved valuable for monitoring other sampling factors such as compositional changes with respect to pumping, filtration, and cross contamination. -Authors

  11. Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded Cu nanowires using intense pulsed light irradiation

    NASA Astrophysics Data System (ADS)

    Zhong, Zhaoyang; Woo, Kyoohee; Kim, Inhyuk; Hwang, Hyewon; Kwon, Sin; Choi, Young-Man; Lee, Youngu; Lee, Taik-Min; Kim, Kwangyoung; Moon, Jooho

    2016-04-01

    Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs.Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00444j

  12. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry.

    PubMed

    Hao, Liqing; Romakkaniemi, Sami; Kortelainen, Aki; Jaatinen, Antti; Portin, Harri; Miettinen, Pasi; Komppula, Mika; Leskinen, Ari; Virtanen, Annele; Smith, James N; Sueper, Donna; Worsnop, Douglas R; Lehtinen, Kari E J; Laaksonen, Ari

    2013-03-19

    This study presents results of direct observations of aerosol chemical composition in clouds. A high-resolution time-of-flight aerosol mass spectrometer was used to make measurements of cloud interstitial particles (INT) and mixed cloud interstitial and droplet residual particles (TOT). The differences between these two are the cloud droplet residuals (RES). Positive matrix factorization analysis of high-resolution mass spectral data sets and theoretical calculations were performed to yield distributions of chemical composition of the INT and RES particles. We observed that less oxidized hydrocarbon-like organic aerosols (HOA) were mainly distributed into the INT particles, whereas more oxidized low-volatile oxygenated OA (LVOOA) mainly in the RES particles. Nitrates existed as organic nitrate and in chemical form of NH(4)NO(3). Organic nitrates accounted for 45% of total nitrates in the INT particles, in clear contrast to 26% in the RES particles. Meanwhile, sulfates coexist in forms of acidic NH(4)HSO(4) and neutralized (NH(4))(2)SO(4). Acidic sulfate made up 64.8% of total sulfates in the INT particles, much higher than 10.7% in the RES particles. The results indicate a possible joint effect of activation ability of aerosol particles, cloud processing, and particle size effects on cloud formation.

  13. Practice management companies improve practices' financial position.

    PubMed

    Dupell, T

    1997-11-01

    To maintain control over healthcare delivery and financial decisions, as well as increase access to capital markets, some group practices are forming their own physician practice management companies. These companies should be organized to balance the expectations of physicians with the values of capital markets. This organization should include retained earnings, financial reporting in accordance with generally accepted accounting principles (GAAP), predictable earnings and cash flow, physician ownership and leadership, and incentives for high-quality management. Three large, primary care and multispecialty clinics that merged to form a new physician practice management company increased their access to capital markets and improved their overall financial position, which will help them achieve long-term survival.

  14. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    USGS Publications Warehouse

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  15. The Production of Complex Organics from Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis; Bernstein, Max; Deamer, David; Dworkin, Jason; Zare, Richard

    2001-01-01

    Infrared spectroscopy of ices in interstellar dense molecular clouds has shown that they contain a variety of simple molecules, as well as aromatic hydrocarbons. While in these clouds, these ices are processed by ultraviolet light and cosmic rays. High vacuum, UV irradiation laboratory simulations conducted using various realistic approx. 10 K interstellar mixed-molecular ice analogs, both with and without polycyclic aromatic hydrocarbons (PAHs), have been carried out in NASA-Ames' Astrochemistry Laboratory. Upon warming, these irradiated ices are found to produce refractory organic residues. These residues have been analyzed using a variety of techniques, including HPLC and laser desorption mass spectrometry, and they have been shown to contain a variety of complex organic compounds. Several of these compounds may be of prebiotic significance. In particular, we will discuss the detection of quinones (substituted PAHs that are used by living systems for electron transport) and amphiphiles (molecules that self-assemble to form membranes). Laboratory simulations have also demonstrated that the organic products can show isotopic enrichments in D that provide clues for the mechanisms of their formation. Similar compounds and D enrichments are seen in the organics found in primitive meteorites, suggesting a direct link between interstellar chemistry and the delivery of organics to newly formed planets.

  16. Noncovalent Polymerization of Mesogens Crystallizes Lysozyme: Correlation between Nonamphiphilic Lyotropic Liquid Crystal Phase and Protein Crystal Formation

    PubMed Central

    Simon, Karen A.; Shetye, Gauri S.; Englich, Ulrich; Wu, Lei; Luk, Yan-Yeung

    2011-01-01

    Crystallization of proteins is important for fundamental studies and biopharmaceutical development but remains largely an empirical science. Here, we report the use of organic salts that can form a class of unusual non-amphiphilic lyotropic liquid crystals to crystallize the protein lysozyme. Certain non-amphiphilic organic molecules with fused aromatic rings and two charges can assemble into stable thread-like noncovalent polymers that may further form liquid crystal phases in water, traditionally termed chromonic liquid crystals. Using five of these mesogenic molecules as additives to induce protein crystallization, we discover that molecules that can form liquid crystal phases in water are highly effective at inducing the crystal formation of lysozyme, even at concentrations significantly lower than that required for forming liquid crystal phases. This result reveals an example of inducing protein crystallization by the molecular assembly of the additives, and is consistent with a new mechanism by which the strong hydration of an assembly process provides a gradual means to compete for the water molecules to enable solvated proteins to form crystals. PMID:21786812

  17. Oil Shale

    USGS Publications Warehouse

    Birdwell, Justin E.

    2017-01-01

    Oil shales are fine-grained sedimentary rocks formed in many different depositional environments (terrestrial, lacustrine, marine) containing large quantities of thermally immature organic matter in the forms of kerogen and bitumen. If defined from an economic standpoint, a rock containing a sufficient concentration of oil-prone kerogen to generate economic quantities of synthetic crude oil upon heating to high temperatures (350–600 °C) in the absence of oxygen (pyrolysis) can be considered an oil shale.

  18. Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Shih, Chun-Jen; Lee, Chih-Chien; Chen, Ying-Hao; Biring, Sajal; Kumar, Gautham; Yeh, Tzu-Hung; Sen, Somaditya; Liu, Shun-Wei; Wong, Ken-Tsung

    2018-01-17

    An exciplex forming cohost system is employed to achieve a highly efficient organic light-emitting diode (OLED) with good electroluminescent lifetime. The exciplex is formed at the interfacial contact of a conventional star-shaped carbazole hole-transporting material, 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA), and a triazine electron-transporting material, 2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (3P-T2T). The excellent combination of TCTA and 3P-T2T is applied as the cohost of a common green phosphorescent emitter with almost zero energy loss. When Ir(ppy) 2 (acac) is dispersed in such exciplex cohost system, OLED device with maximum external quantum efficiency of 29.6%, the ultrahigh power efficiency of 147.3 lm/W, and current efficiency of 107 cd/A were successfully achieved. More importantly, the OLED device showed a low-efficiency roll-off and an operational lifetime (τ 80 ) of ∼1020 min with the initial brightness of 2000 cd/m 2 , which is 56 times longer than the reference device. The significant difference of device stability was attributed to the degradation of exciplex system for energy transfer process, which was investigated by the photoluminescence aging measurement at room temperature and 100 K, respectively.

  19. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    PubMed

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  20. The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant

    NASA Astrophysics Data System (ADS)

    Setiawati, Mieke Rochimi; Damayani, Maya; Herdiyantoro, Diyan; Suryatmana, Pujawati; Anggraini, Derisfha; Khumairah, Fiqriah Hanum

    2018-02-01

    The yield of rice plants is strongly influenced by N fertilizer. Nitrogen in rice plants has roles in vegetative growth, tiller formation and increasing yield through rice protein formation. Nitrogen supplied from organic fertilizers is better than inorganic fertilizers that may have environmental problem effects. Organic fertilizers from Azolla pinnata water fern contain higher N than other organic fertilizers. Symbiosis between A. pinnata and the N-fixing cyanobacteria results in high content of nitrogen, 3 to 5%. A. pinnata can be added to the rice field as organic fertilizer in form of fresh biomass or composted. Composted form can be ground into powder which passes through 100 mesh sieve. Preparation of compost powder of A. pinnata is done to reduce the constraints of voluminous application of organic fertilizers and to improve the efficiency of its use. The objective of this research was to compare the effect of the use of fresh A. pinnata and compost powder of A. pinnata on some soil and plant chemical properties and rice yield. The treatments applied were fresh A. pinnata at the dose of 0, 10 and 20 ton ha-1 and A. pinnata compost powder at 12.5 and 25 kg ha-1. The results showed that incorporation of fresh A. pinnata at 20 tons ha-1 and its compost powder at 25 kg ha-1 increased the available P of soil, plant P content and tiller number, but did not affect the content of organic-C, total soil N, plant N content and rice yield. This study suggested the benefits of A. pinnata compost powder technology in organic fertilization of soil to increase the nutrient content of soil and rice plants.

  1. Preliminary Plans. A Senior High School in the Bailey Hill Area, Eugene, Oregon.

    ERIC Educational Resources Information Center

    Lutes and Amundson, Architects and Community Planners, Springfield, OR.

    The design of this high school is explained by outlining the decision making process used by the architects. The following design criteria form the basis of this process--(1) design for expansion, (2) design for team teaching, (3) organized by function, (4) space for teachers, (5) space for instructional materials, (6) audio-visual communication…

  2. Laying Tracks to Graduation: The First Year of Implementing Diplomas Now

    ERIC Educational Resources Information Center

    Corrin, William; Sepanik, Susan; Gray, Aracelis; Fernandez, Felix; Briggs, Ashley; Wang, Kathleen K.

    2014-01-01

    Too many students in high-poverty, urban communities drop out of high school, and too few graduate prepared for college and careers. Three national organizations--Talent Development Secondary, City Year, and Communities In Schools--have formed Diplomas Now in an effort to transform urban secondary schools so fewer students drop out and more…

  3. Moving down the Track: Changing School Practices during the Second Year of "Diplomas Now"

    ERIC Educational Resources Information Center

    Sepanik, Susan; Corrin, William; Roy, David; Gray, Aracelis; Fernandez, Felix; Briggs, Ashley; Wang, Kathleen K.

    2015-01-01

    Too many students in high-poverty, urban communities drop out of high school, and too few graduate prepared for college and careers. Three national organizations--Talent Development Secondary, City Year, and Communities In Schools--have formed "Diplomas Now" in an effort to transform urban secondary schools so fewer students drop out and…

  4. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolates of swine origin form robust biofilms

    USDA-ARS?s Scientific Manuscript database

    Methicillin-resistant Staphylococcus aureus (MRSA) colonization of livestock animals is common and prevalence rates for pigs have been reported to be as high as 49%. One hypothesis to explain the high prevalence of MRSA in swine herds is the ability of these organisms to exist as biofilms. To invest...

  5. Ethics of the allocation of highly advanced medical technologies.

    PubMed

    Sass, H M

    1998-03-01

    The disproportionate distribution of financial, educational, social, and medical resources between some rich countries of the northern hemisphere and less fortunate societies creates a moral challenge of global dimension. The development of new forms of highly advanced medical technologies, including neoorgans and xenografts, as well as the promotion of health literacy and predictive and preventive medical services might reduce some problems in allocational justice. Most governments and the World Health Organization (WHO) reject financial and other rewards for living organ donors thus indirectly contributing to the development of black markets. A societal gratuity model supporting and safeguarding a highly regulated market between providers and recipients of organs might provide for better protection of those who provide organs not solely based on altruistic reasons. The moral assessment of global issues in allocation and justice in the distribution of medical technologies must be increased and will have to be based on the principles of self determination and responsibility, solidarity and subsidiarity, and respect for individual values and cultural traditions.

  6. A machine-learning apprentice for the completion of repetitive forms

    NASA Technical Reports Server (NTRS)

    Hermens, Leonard A.; Schlimmer, Jeffrey C.

    1994-01-01

    Forms of all types are used in businesses and government agencies, and most of them are filled in by hand. Yet much time and effort has been expended to automate form-filling by programming specific systems or computers. The high cost of programmers and other resources prohibits many organizations from benefiting from efficient office automation. A learning apprentice can be used for such repetitious form-filling tasks. In this paper, we establish the need for learning apprentices, describe a framework for such a system, explain the difficulties of form-filling, and present empirical results of a form-filling system used in our department from September 1991 to April 1992. The form-filling apprentice saves up to 87 percent in keystroke effort and correctly predicts nearly 90 percent of the values on the form.

  7. Absorption and emission behaviour of trans- p-coumaric acid in aqueous solutions and some organic solvents

    NASA Astrophysics Data System (ADS)

    Putschögl, M.; Zirak, P.; Penzkofer, A.

    2008-01-01

    The absorption and fluorescence behaviour of trans- p-coumaric acid ( trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form ( p-CAH 2) and the single anionic form ( p-CAH -) at low pH (p Kna ≈ 4.9), and between the single anionic and the double anionic form ( p-CA 2-) at high pH (p Kaa ≈ 9.35). In the organic solvents studied trans- p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans- p-coumaric acid in aqueous solution is ϕF ≈ 1.4 × 10 -4 for the neutral and the single anionic form, while it is ϕF ≈ 1.3 × 10 -3 for the double anionic form. For trans- p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 × 10 -5 (acetonitrile) to 1.5 × 10 -4 (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm -1 Stokes shifted in aqueous solution, and 5400-8200 cm -1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA 2-, solvent-assisted intra-molecular charge-transfer or ππ ∗ to nπ ∗ transfer and internal conversion for p-CAH 2 and p-CAH -). The solvent dependence of the first ππ ∗ electronic transition frequency and of the fluorescence Stokes shift of p-CAH 2 is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.

  8. Rare-Earth Elements from Modern Mineral-Organic Associations in the Zone of Sulfide Ore Hypergenesis

    NASA Astrophysics Data System (ADS)

    Vakh, E. A.; Vakh, A. S.; Petukhov, V. I.; Barinov, N. N.

    2018-01-01

    The REE composition of modern mineral-organic associations in the sulfide ore hypergenesis zone of the Berezitovoe deposit in the Russian Far East was studied for the first time. It is shown that the mineral-organic associations widely abundant in the valley of Konstantinovskii Creek and represented by bright brown crusts on the surface of deluvial deposits were formed at the expense of the influence of acid highly mineralized mine waters from the Berezitovoe deposit. The mineral-organic associations found in the Creek valley may be considered as a new indicator for evaluation of the geoecological state of modern technogenic landscapes.

  9. Clues for biomimetics from natural composite materials

    PubMed Central

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2013-01-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  10. Clues for biomimetics from natural composite materials.

    PubMed

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2012-09-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine.

  11. Influence of iodine on the treatment of spacecraft humidity condensate to produce potable water

    NASA Technical Reports Server (NTRS)

    Symons, James M.; Muckle, Susan V.

    1990-01-01

    Several compounds in the ersatz humidity condensate do react with iodine to form iodine-substituted organic compounds (TOI), most notably phenol, acetaldehyde, ethanol, and sodium formate. Iodination of the ersatz humidity condensate produced 3.0 to 3.5 mg/L of TOI within 24 hours. The TOI that was produced by the passage of the ersatz humidity condensate through the first iodinated resin (IR) in the adsorption system was removed by the granular activated carbon that followed. TOI detected in the final effluent was formed by the reaction of the non-adsorbable condensate compounds with the final IR in the treatment series. The activated carbon bed series in the adsorption system performed poorly in its removal of TOC. The rapid breakthrough of TOC was not surprising, as the ersatz humidity condensate contained several highly soluble organic compounds, alcohols and organic acids.

  12. Evaluating specificity of sequential extraction for chemical forms of lead in artificially-contaminated and field-contaminated soils.

    PubMed

    Tai, Yiping; McBride, Murray B; Li, Zhian

    2013-03-30

    In the present study, we evaluated a commonly employed modified Bureau Communautaire de Référence (BCR test) 3-step sequential extraction procedure for its ability to distinguish forms of solid-phase Pb in soils with different sources and histories of contamination. When the modified BCR test was applied to mineral soils spiked with three forms of Pb (pyromorphite, hydrocerussite and nitrate salt), the added Pb was highly susceptible to dissolution in the operationally-defined "reducible" or "oxide" fraction regardless of form. When three different materials (mineral soil, organic soil and goethite) were spiked with soluble Pb nitrate, the BCR sequential extraction profiles revealed that soil organic matter was capable of retaining Pb in more stable and acid-resistant forms than silicate clay minerals or goethite. However, the BCR sequential extraction for field-collected soils with known and different sources of Pb contamination was not sufficiently discriminatory in the dissolution of soil Pb phases to allow soil Pb forms to be "fingerprinted" by this method. It is concluded that standard sequential extraction procedures are probably not very useful in predicting lability and bioavailability of Pb in contaminated soils. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Apparatus and method for the desulfurization of petroleum by bacteria

    DOEpatents

    Lizama, H.M.; Scott, T.C.; Scott, C.D.

    1995-10-17

    A method is described for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the ``Sulfate Reducing Bacteria``. These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing. 5 figs.

  14. Apparatus and method for the desulfurization of petroleum by bacteria

    DOEpatents

    Lizama, Hector M.; Scott, Timothy C.; Scott, Charles D.

    1995-01-01

    A method for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the "Sulfate Reducing Bacteria." These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing.

  15. Examining the coupling of carbon and nitrogen cycles in Southern Appalachian streams: Understanding the role of dissolved organic nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, Brian D; Bernhardt, Emily; Roberts, Brian

    Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolvedmore » organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.« less

  16. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    NASA Astrophysics Data System (ADS)

    Starkenburg, Daken J.; Johns, Paul M.; Baciak, James E.; Nino, Juan C.; Xue, Jiangeng

    2017-12-01

    Developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced from an X-ray generator, SubPc:C60, AlPcCl:C70, and P3HT:PC61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.18 μGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy-1 cm-2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.

  17. Exposure to Organic Solvents Used in Dry Cleaning Reduces Low and High Level Visual Function

    PubMed Central

    Jiménez Barbosa, Ingrid Astrid

    2015-01-01

    Purpose To investigate whether exposure to occupational levels of organic solvents in the dry cleaning industry is associated with neurotoxic symptoms and visual deficits in the perception of basic visual features such as luminance contrast and colour, higher level processing of global motion and form (Experiment 1), and cognitive function as measured in a visual search task (Experiment 2). Methods The Q16 neurotoxic questionnaire, a commonly used measure of neurotoxicity (by the World Health Organization), was administered to assess the neurotoxic status of a group of 33 dry cleaners exposed to occupational levels of organic solvents (OS) and 35 age-matched non dry-cleaners who had never worked in the dry cleaning industry. In Experiment 1, to assess visual function, contrast sensitivity, colour/hue discrimination (Munsell Hue 100 test), global motion and form thresholds were assessed using computerised psychophysical tests. Sensitivity to global motion or form structure was quantified by varying the pattern coherence of global dot motion (GDM) and Glass pattern (oriented dot pairs) respectively (i.e., the percentage of dots/dot pairs that contribute to the perception of global structure). In Experiment 2, a letter visual-search task was used to measure reaction times (as a function of the number of elements: 4, 8, 16, 32, 64 and 100) in both parallel and serial search conditions. Results Dry cleaners exposed to organic solvents had significantly higher scores on the Q16 compared to non dry-cleaners indicating that dry cleaners experienced more neurotoxic symptoms on average. The contrast sensitivity function for dry cleaners was significantly lower at all spatial frequencies relative to non dry-cleaners, which is consistent with previous studies. Poorer colour discrimination performance was also noted in dry cleaners than non dry-cleaners, particularly along the blue/yellow axis. In a new finding, we report that global form and motion thresholds for dry cleaners were also significantly higher and almost double than that obtained from non dry-cleaners. However, reaction time performance on both parallel and serial visual search was not different between dry cleaners and non dry-cleaners. Conclusions Exposure to occupational levels of organic solvents is associated with neurotoxicity which is in turn associated with both low level deficits (such as the perception of contrast and discrimination of colour) and high level visual deficits such as the perception of global form and motion, but not visual search performance. The latter finding indicates that the deficits in visual function are unlikely to be due to changes in general cognitive performance. PMID:25933026

  18. Tandem SAM Domain Structure of Human Caskin1: A Presynaptic, Self-Assembling Scaffold for CASK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stafford, Ryan L.; Hinde, Elizabeth; Knight, Mary Jane

    2012-02-07

    The synaptic scaffolding proteins CASK and Caskin1 are part of the fibrous mesh of proteins that organize the active zones of neural synapses. CASK binds to a region of Caskin1 called the CASK interaction domain (CID). Adjacent to the CID, Caskin1 contains two tandem sterile a motif (SAM) domains. Many SAM domains form polymers so they are good candidates for forming the fibrous structures seen in the active zone. We show here that the SAM domains of Caskin1 form a new type of SAM helical polymer. The Caskin1 polymer interface exhibits a remarkable segregation of charged residues, resulting in amore » high sensitivity to ionic strength in vitro. The Caskin1 polymers can be decorated with CASK proteins, illustrating how these proteins may work together to organize the cytomatrix in active zones.« less

  19. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Y.; Shock, Everett L.

    2003-04-01

    Formation of a sulfate-bearing ocean on Jupiter's satellite Europa by quenched hydrothermal fluids provides a source of metabolic energy for low-temperature sulfate-reducing organisms that use dissolved H2 as an electron donor. Inhibition of thermodynamically favorable sulfate reduction in cooled hydrothermal fluids creates the potential for biologic reduction. Both high temperature and reduced conditions of ocean-forming hydrothermal solutions favor sulfate reduction in quenched fluids. The maximum amount of energy available to support autotrophic sulfate reduction is on the order of a few kilojoules per kilogram of water and is limited by the low abundances of either H2 or sulfate in ocean-forming fluids. Although this irreplaceable energy source might have supported early life on Europa, maintenance of biologic sulfate reduction throughout the ocean's history would require a supply of organic compounds from endogenic sources or from the satellite's surface.

  20. Complex organic molecules toward low-mass and high-mass star forming regions

    NASA Astrophysics Data System (ADS)

    Favre, C.; Ceccarelli, C.; Lefloch, B.; Bergin, E.; Carvajal, M.; Brouillet, N.; Despois, D.; Jørgensen, J.; Kleiner, I.

    2016-12-01

    One of the most important questions in molecular astrophysics is how, when, and where complex organic molecules, COMs (≥ 6 atoms) are formed. In the Interstellar-Earth connection context, could this have a bearing on the origin of life on Earth? Formation mechanisms of COMs, which include potentially prebiotic molecules, are still debated and may include grain-mantle and/or gas-phase chemistry. Understanding the mechanisms that lead to the interstellar molecular complexification, along with the involved physicochemical processes, is mandatory to answer the above questions. In that context, active researches are ongoing in theory, laboratory experiment, chemical modeling and observations. Thanks to recent progress in radioastronomy instrumentation for both single-dish and millimeter array (e.g. Herschel, NOEMA, ALMA), new results have been obtained. I will review some notable results on the detection of COMs, including prebiotic molecules, towards star forming regions.

  1. Amorphous Calcium Carbonate in Biomineralization: Stable and Precursor Phases

    NASA Astrophysics Data System (ADS)

    Weiner, S.

    2003-12-01

    The biological formation of the crystalline polymorphs of calcium carbonate, aragonite and calcite, is widespread. The less stable polymorphs, vaterite and monohydrocalcite are also formed by some organisms. Surprisingly, the highly unstable phase, amorphous calcium carbonate (ACC), is formed by a variety of organisms from different phyla. Most of these are stable at least within the lifetime of the organism. The stable forms all have a stoichiometry of CaCO3.H2O. Despite the fact that they do not diffract X-rays. Studies of their short range order by EXAFS, reveal species specific variations in the number and distances of atoms that surround the calcium ion. Proteins extracted from stable biogenic ACC are able to stabilize the phase in vitro. ACC has also been identified as a transient precursor phase during the formation of the calcitic larval spicule of the sea urchin and the formation of the larval shell of a bivalve. The transient form has little or no water associated with the CaCO3. Preliminary EXAFS data suggest that the short range order of the sea urchin spicule transient ACC resembles calcite. Proteins extracted from these spicules are able to stabilize ACC provided Mg is present in the solution. As the mollusks and the echinoderms are on two different branches of the animal phylogenetic tree, it is conceivable that the strategy of using ACC as a precursor phase at least for larval mineralization may be widespread. It has yet to be shown that it is used by adults of either phylum. The manner in which organisms precipitate, stabilize and destabilize if necessary, this highly metastable phase of calcium carbonate presents many fascinating and enigmatic questions, whose solutions could well contribute to a better understanding of basic processes in biomineralization. For more details and references, see Addadi, L., Raz, S. and Weiner, S. (2003). Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mat.15, 959-970.

  2. Occurrence and mobility of mercury in groundwater: Chapter 5

    USGS Publications Warehouse

    Barringer, Julia L.; Szabo, Zoltan; Reilly, Pamela A.; Bradley, Paul M.

    2013-01-01

    Mercury (Hg) has long been identified as an element that is injurious, even lethal, to living organisms. Exposure to its inorganic form, mainly from elemental Hg (Hg(0)) vapor (Fitzgerald & Lamborg, 2007) can cause damage to respiratory, neural, and renal systems (Hutton, 1987; USEPA, 2012; WHO, 2012). The organic form, methylmercury (CH3Hg+; MeHg), is substantially more toxic than the inorganic form (Fitzgerald & Lamborg, 2007). Methylmercury attacks the nervous system and exposure can prove lethal, as demonstrated by well-known incidents such as those in 1956 in Minimata, Japan (Harada, 1995), and 1971 in rural Iraq (Bakir et al., 1973), where, in the former, industrial release of MeHg into coastal waters severely tainted the fish caught and eaten by the local population, and in the latter, grain seed treated with an organic mercurial fungicide was not planted, but eaten in bread instead. Resultant deaths are not known with certainty but have been estimated at about 100 and 500, respectively (Hutton, 1987). Absent such lethal accidents, human exposure to MeHg comes mainly from ingestion of piscivorous fish in which MeHg has accumulated, with potential fetal damage ascribed to high fish diets during their mothers’ pregnancies (USEPA, 2001). Lesser human exposure occurs through ingestion of drinking water (USEPA, 2001), where concentrations of total Hg (THg; inorganic plus organic forms) typically are in the low nanograms-per-liter range[1] - , particularly from many groundwater sources, and concentrations at the microgram-per-liter level are rare.

  3. AMINE EXTRACTION OF PLUTONIUM FROM NITRIC ACID SOLUTIONS LOADING AND STRIPPING EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A.S.

    1961-01-19

    Information is presented on a suitable amine processing system for plutonium nitrate. Experiments with concentrated plutonium nitrate solutions show that trilaurylamine (TLA) - xylene solvent systems did not form a second organic phase. Experiments are also reported with tri-noctylamine (TnOA)-xylene and TLA-Amsco - octyl alcohol. Two organic phases appear in both these systems at high plutonium nitrate concentrations. Data are tabulated from loading and stripping experiments. (J.R.D.)

  4. Sorption of CO 2 in a hydrogen-bonded diamondoid network of sulfonylcalix[4]arene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnwell, Michael A.; Atwood, Jerry L.; Thallapally, Praveen K.

    An organic material, p-tert-butyltetrasulfonylcalix[4]arene, self-assembles via hydrogen bonding to form a diamondoid supramolecular network. Possessing discrete, zero-dimensional (0D) microcavities, the thiacalixarene derivative adsorbs CO2 at high pressures

  5. Formation of Complex Amino Acid Precursors in Simulated Primitive Atmosphere and Their Alteration under Simulated Submarine Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kurihara, Hironari; Hirako, Tomoaki; Obayashi, Yumiko; Kaneko, Takeo; Takano, Yoshinori; Yoshimura, Yoshitaka

    Since late 1970's a great number of submarine hydrothermal systems (SHSs) has been dis-covered, and they are considered possible sites of chemical evolution and generation of life on the Earth since their discovery in late 1970s. A number of experiments simulating the con-ditions of SHSs were conducted, and abiotic production and polymerization of amino acids were reported. Free amino acids were frequently used as starting materials to examine possible organic reactions in the simulation experiments. In our early studies, not free amino acids but complex amino acids precursors with large molecular weights were formed abiotically from simulated primitive Earth atmosphere (a mixture of CO, N2 and H2 O) (Takano et al., 2004). Such complex organics (hereafter referred as to CNWs) should have been delivered to SHSs in Primitive Ocean, where they were subjected to further alteration. We examined possible alteration of the complex organics in high-temperature high-pressure environments by the su-percritical water flow reactor (SCWFR) (Islam et al.. 2003) and an autoclave. CNWs were quite hydrophilic compounds whose molecular weights were ca. 3000. After heating 573 K for 2 min in the SCWFR, aggregates of organics were formed, which were separated from aque-ous solution with a Nucleopore filter (pore size: 200 nm). We propose the following scenario of chemical evolution: (1) Complex organics including amino acid precursors were formed in primitive atmosphere and/or extraterrestrial environments, (ii) they were delivered to primor-dial SHSs, (iii) hydrothermal alteration occurred in SHSs to give organic aggregates, (iv) quite primitive molecular systems with subtle biological functions were generated in the competition among such aggregates. References: Islam, Md. N., Kaneko, T., and Kobayashi, K (2003). Reactions of Amino Acids with a Newly ConstructedSupercritical Water Flow Reactor Simulating Submarine Hydrothermal Systems. Bull. Chem. Soc. Jpn., 76, 1171. Takano, Y., Marumo, K., Yabashi, S., Kaneko, T., and Kobayashi, K., (2004). Curie-Point Pyrolysis of Complex Organics Simulated by Cosmic Rays Irradiation of Simple Inorganic Gas Mixture. Appl Phys. Lett., 85, 1633.

  6. Evaluation of a transvaginal mesh delivery system for the correction of pelvic organ prolapse: subjective and objective findings at least 1 year after surgery.

    PubMed

    Culligan, Patrick J; Littman, Paul M; Salamon, Charbel G; Priestley, Jennifer L; Shariati, Amir

    2010-11-01

    We sought to track objective and subjective outcomes ≥1 year after transvaginal mesh system to correct prolapse. This was a retrospective cohort study of 120 women who received a transvaginal mesh procedure (Avaulta Solo, CR Bard Inc, Covington, GA). Outcomes were pelvic organ prolapse quantification values; Pelvic Floor Distress Inventory, Short Form 20/Pelvic Floor Impact Questionnaire, Short Form 7 scores; and a surgical satisfaction survey. "Surgical failure" was defined as pelvic organ prolapse quantification point >0, and/or any reports of vaginal bulge. Of 120 patients, 116 (97%) were followed up for a mean of 14.4 months (range, 12-30). In all, 74 patients had only anterior mesh, 21 only posterior mesh, and 21 both meshes. Surgical cure rate was 81%. Surgical failure was more common if preoperative point C ≥+2 (35% vs 16%; P = .04). Mesh erosion and de novo pain occurred in 11.7% and 3.3%, respectively. Pelvic Floor Distress Inventory, Short Form 20/Pelvic Floor Impact Questionnaire, Short Form 7 scores improved (P < .01). Objective and subjective improvements occurred at ≥1 year, yet failure rates were high when preoperative point C was ≥+2. Copyright © 2010 Mosby, Inc. All rights reserved.

  7. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  8. Experimental model of the role of cracks in the mechanism of explosive eruption of St. Helens-80

    NASA Astrophysics Data System (ADS)

    Kedrinskii, V. K.; Skulkin, A. A.

    2017-07-01

    A unique mini model of explosive volcano eruption through a formed system of cracks is developed. The process of crack formation and development is simulated by electric explosion of a conductor in a plate of optically transparent organic glass submerged into water. The explosion of a wire aligned with a through hole in the plate generates shock-wave loading along the plate and forms cracks. The fundamental role of high velocity flow in crack wedging by a high power hydrodynamic flow of a pulsating explosion cavity has been demonstrated.

  9. Observational Constraints on Modeling Growth and Evaporation Kinetics of Isoprene SOA

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shilling, J. E.; Zelenyuk, A.; Liu, J.; Wilson, J. M.; Laskin, A.; Wang, B.; Fast, J. D.; Easter, R. C.; Wang, J.; Kuang, C.; Thornton, J. A.; Setyan, A.; Zhang, Q.; Onasch, T. B.; Worsnop, D. R.

    2014-12-01

    Isoprene is thought to be a major contributor to the global secondary organic aerosol (SOA) budget, and therefore has the potential to exert a significant influence on earth's climate via aerosol direct and indirect radiative effects. Both aerosol optical and cloud condensation nuclei properties are quite sensitive to aerosol number size distribution, as opposed to the total aerosol mass concentration. Recent studies suggest that SOA particles can be highly viscous, which can affect the kinetics of SOA partitioning and size distribution evolution when the condensing organic vapors are semi-volatile. In this study, we examine the growth kinetics of SOA formed from isoprene photooxidation in the presence of pre-existing Aitken and accumulation mode aerosols in: (a) the ambient atmosphere during the CARES field campaign, and (b) the environmental chamber at PNNL. Each growth episode is analyzed and interpreted with the updated MOSAIC aerosol box model, which performs kinetic gas-particle partitioning of SOA and takes into account diffusion and chemical reaction within the particle phase. The model is initialized with the observed aerosol size distribution and composition at the beginning of the experiment, and the total amount of SOA formed in the model at any given time is constrained by the observed total amount of SOA formed. The variable model parameters include the number of condensing organic species, their gas-phase formation rates, their effective volatilities, and their bulk diffusivities in the Aitken and accumulation modes. The objective of the constrained modeling exercise is then to determine which model configuration is able to best reproduce the observed size distribution evolution, thus providing valuable insights into the possible mechanism of SOA formation. We also examine the evaporation kinetics of size-selected particles formed in the environmental chamber to provide additional constraints on the effective volatility and bulk diffusivity of the organic species. Our results suggest that SOA formed from isoprene photooxidation is semi-volatile, and the resulting size distribution evolution is highly sensitive to the phase state (bulk diffusivity) of the pre-existing aerosol. Implications of these findings on further SOA model development and evaluation strategy will be discussed.

  10. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities.

    PubMed

    Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H 2 SO 4 ) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1 H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal have the potential to produce significant organic aerosol mass and therefore could potentially impact chemical, optical and/or cloud-forming properties of aerosols, especially if the products partition to the aerosol surface.

  11. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal have the potential to produce significant organic aerosol mass and therefore could potentially impact chemical, optical and/or cloud-forming properties of aerosols, especially if the products partition to the aerosol surface. PMID:27212937

  12. Radiation Transport Modeling and Assessment to Better Predict Radiation Exposure, Dose, and Toxicological Effects to Human Organs on Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor

    2000-01-01

    NASA's long-range plans include possible human exploratory missions to the moon and Mars within the next quarter century. Such missions beyond low Earth orbit will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and the missions long, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. The focus of this study is radiation exposure to the blood-forming organs of the NASA astronauts. NASA/JSC developed the Phantom Torso Experiment for Organ Dose Measurements which housed active and passive dosimeters that would monitor and record absorbed radiation levels at vital organ locations. This experiment was conducted during the STS-9 I mission in May '98 and provided the necessary space radiation data for correlation to results obtained from the current analytical models used to predict exposure to the blood-forming organs. Numerous models (i.e., BRYNTRN and HZETRN) have been developed and used to predict radiation exposure. However, new models are continually being developed and evaluated. The Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronomy, is to be used and evaluated as a part of the research activity. It is the intent of this research effort to compare the modeled data to the findings from the STS-9 I mission; assess the accuracy and efficiency of this model; and to determine its usefulness for predicting radiation exposure and developing better guidelines for shielding requirements for long duration manned missions.

  13. Rhizosphere Environment and Labile Phosphorus Release from Organic Waste-Amended Soils.

    NASA Astrophysics Data System (ADS)

    Dao, Thanh H.

    2015-04-01

    Crop residues and biofertilizers are primary sources of nutrients for organic crop production. However, soils treated with large amounts of nutrient-enriched manure have elevated phosphorus (P) levels in regions of intensive animal agriculture. Surpluses occurred in these amended soils, resulting in large pools of exchangeable inorganic P (Pi) and enzyme-labile organic P (Po) that averaging 30.9 and 68.2 mg kg-1, respectively. Organic acids produced during crop residue decomposition can promote the complexation of counter-ions and decouple and release unbound Pi from metal and alkali metal phosphates. Animal manure and cover crop residues also contain large amounts of soluble organic matter, and likely generate similar ligands. However, a high degree of heterogeneity in P spatial distribution in such amended fields, arising from variances in substrate physical forms ranging from slurries to dried solids, composition, and diverse application methods and equipment. Distinct clusters of Pi and Po were observed, where accumulation of the latter forms was associated with high soil microbial biomass C and reduced phosphomonoesterases' activity. Accurate estimates of plant requirements and lability of soil P pools, and real-time plant and soil P sensing systems are critical considerations to optimally manage manure-derived nutrients in crop production systems. An in situ X-ray fluorescence-based approach to sensing canopy and soil XRFS-P was developed to improve the yield-soil P relationship for optimal nutrient recommendations in addition to allowing in-the-field verification of foliar P status.

  14. Analysis of organic sulfur compounds in atmospheric aerosols at the HKUST supersite in Hong Kong using HR-ToF-AMS.

    PubMed

    Huang, Dan Dan; Li, Yong Jie; Lee, Berto P; Chan, Chak K

    2015-03-17

    Organic sulfur compounds have been identified in ambient secondary organic aerosols, but their contribution to organic mass is not well quantified. In this study, using a high-resolution time-of-flight aerosol mass spectrometer (AMS), concentrations of organic sulfur compounds were estimated based on the high-resolution fragmentation patterns of methanesulfonic acid (MSA), and organosulfates (OS), including alkyl, phenyl, and cycloalkyl sulfates, obtained in laboratory experiments. Mass concentrations of MSA and minimum mass concentrations of OS were determined in a field campaign conducted at a coastal site of Hong Kong in September 2011. MSA and OS together accounted for at least 5% of AMS detected organics. MSA is of marine origin with its formation dominated by local photochemical activities and enhanced by aqueous phase processing. OS concentrations are better correlated with particle liquid water content (LWC) than with particle acidity. High-molecular-weight OS were detected in the continental influenced period probably because they had grown into larger molecules during long-range transport or they were formed from large anthropogenic precursors. This study highlights the importance of both aqueous-phase processing and regional influence, i.e., different air mass origins, on organic sulfur compound formation in coastal cities like Hong Kong.

  15. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    NASA Astrophysics Data System (ADS)

    Pracht, Lara E.; Tfaily, Malak M.; Ardissono, Robert J.; Neumann, Rebecca B.

    2018-03-01

    Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC) mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC) in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC) were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC). In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic favorability of degrading compounds with a low NOSC. While all compound types were eventually degraded during incubation, NOSC and compound size controlled the rates of carbon transformation. Large, more thermodynamically favorable compounds (e.g., aromatics with a high NOSC) were targeted first, while small, less thermodynamically favorable compounds (e.g., alkanes and olefinics with a low NOSC) were used last. These results indicate that in anaerobic conditions, microbial communities are capable of degrading and mineralizing all forms of organic matter, converting larger energy-rich compounds into smaller energy-poor compounds. However, in an open system, where fresh carbon is continually supplied, the slower degradation rate of reduced carbon compounds would enable this portion of the organic carbon pool to build up, explaining the apparent persistence of compounds with a low NOSC in anaerobic environments.

  16. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light‐Emitting Diodes

    PubMed Central

    Song, Wook; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2017-01-01

    Abstract A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light‐emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole‐type host and a triazine‐type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light‐emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light‐emitting diodes. PMID:29610726

  17. Highly diverse, massive organic data as explored by a composite QSPR strategy: an advanced study of boiling point.

    PubMed

    Ivanova, A A; Ivanov, A A; Oliferenko, A A; Palyulin, V A; Zefirov, N S

    2005-06-01

    An improved strategy of quantitative structure-property relationship (QSPR) studies of diverse and inhomogeneous organic datasets has been proposed. A molecular connectivity term was successively corrected for different structural features encoded in fragmental descriptors. The so-called solvation index 1chis (a weighted Randic index) was used as a "leading" variable and standardized molecular fragments were employed as "corrective" class-specific variables. Performance of the new approach was illustrated by modelling a dataset of experimental normal boiling points of 833 organic compounds belonging to 20 structural classes. Firstly, separate QSPR models were derived for each class and for eight groups of structurally similar classes. Finally, a general model formed by combining all the classes together was derived (r2=0.957, s=12.9degreesC). The strategy outlined can find application in QSPR analyses of massive, highly diverse databases of organic compounds.

  18. Three-dimensional organization of dermal fibroblasts by macromass culture.

    PubMed

    Deshpande, Manisha

    2008-01-01

    The three-dimensional organization of cells by high-cell-seeding-density culture, termed 'macromass culture', is described. By macromass culture, dermal fibroblasts can be made to organize themselves into a unified three-dimensional form without the aid of a scaffold, and macroscopic constructs, named macromasses, can be made wholly from cells. The sole factor causing three-dimensional organization is culture of cells at high cell seeding density per unit area. No scaffold or extraneous matrix is used for the generation of macromasses; they are of completely cellular origin. No other agents or external influences such as tissue-inducing chemicals, tissue-inducing growth factors, substratum with special properties, rotational culture, centrifugation etc. are employed for macromass formation, and all seeded cells become part of the cohesive construct. These three-dimensional constructs have the potential for use as in vitro tissue analogues, and a possible application for in vitro cytotoxicity testing is demonstrated.

  19. High transconductance organic electrochemical transistors

    NASA Astrophysics Data System (ADS)

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-07-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.

  20. Self-organization of SiO{sub 2} nanodots deposited by chemical vapor deposition using an atmospheric pressure remote microplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnoult, G.; Belmonte, T.; Henrion, G.

    Self-organization of SiO{sub 2} nanodots is obtained by chemical vapor deposition out of hexamethyldisiloxane (HMDSO) and atmospheric pressure remote Ar-O{sub 2} plasma operating at high temperature (1200-1600 K). The dewetting of the film being deposited when it is still thin enough (<500 nm) is found to be partly responsible for this self-organization. When the coating becomes thicker (approx1 mum), and for relatively high contents in HMDSO, SiO{sub 2} walls forming hexagonal cells are obtained on a SiO{sub 2} sublayer. For thicker coatings (>1 mum), droplet-shaped coatings with a Gaussian distribution in thickness over their width are deposited. The coatings aremore » submitted to high compressive stress. When it is relaxed, 'nestlike structures' made of nanoribbons are synthesized.« less

  1. Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order

    DOE PAGES

    Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang; ...

    2017-10-04

    Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less

  2. High transconductance organic electrochemical transistors

    PubMed Central

    Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele; Gurfinkel, Moshe; Leleux, Pierre; Jimison, Leslie H.; Stavrinidou, Eleni; Herve, Thierry; Sanaur, Sébastien; Owens, Róisín M.; Malliaras, George G.

    2013-01-01

    The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications. PMID:23851620

  3. High-Performance Vertical Organic Electrochemical Transistors.

    PubMed

    Donahue, Mary J; Williamson, Adam; Strakosas, Xenofon; Friedlein, Jacob T; McLeod, Robert R; Gleskova, Helena; Malliaras, George G

    2018-02-01

    Organic electrochemical transistors (OECTs) are promising transducers for biointerfacing due to their high transconductance, biocompatibility, and availability in a variety of form factors. Most OECTs reported to date, however, utilize rather large channels, limiting the transistor performance and resulting in a low transistor density. This is typically a consequence of limitations associated with traditional fabrication methods and with 2D substrates. Here, the fabrication and characterization of OECTs with vertically stacked contacts, which overcome these limitations, is reported. The resulting vertical transistors exhibit a reduced footprint, increased intrinsic transconductance of up to 57 mS, and a geometry-normalized transconductance of 814 S m -1 . The fabrication process is straightforward and compatible with sensitive organic materials, and allows exceptional control over the transistor channel length. This novel 3D fabrication method is particularly suited for applications where high density is needed, such as in implantable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gujral, Ankit; Gomez, Jaritza; Ruan, Shigang

    Anisotropic molecular packing, particularly in highly ordered liquid crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized glassy solids of discotic liquid crystalline systems. Using grazing incidence X-ray scattering, atomic force microscopy, and UV–vis spectroscopy, we compare three systems: a rectangular columnar liquid crystal, a hexagonal columnar liquid crystal, and a nonmesogen. The packing motifs accessible by vapor deposition are highly organized for the liquid crystalline systems with columns propagating either in-plane or out-of-plane depending upon the substrate temperature during deposition.more » As a result, the structures formed at a given substrate temperature can be understood as resulting from partial equilibration toward the structure of the equilibrium liquid crystal surface during the deposition process.« less

  5. Research of vacuum polymer film on three-dimension surface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bau, Yung-Han

    2016-09-01

    This study focused on UV-curable acrylic hybrid of solute in vacuum-deposited on the surface and make it smooth. On the surface coating of the entire process, including the pre-treatment of organic solutes, vacuum, nozzle pressure, airflow, frequency ratio, the surface of the rotation rate, nozzle angle, UV light irradiation time, waste solute recycling.Organic solutes through a flow meter and precise measured,by high pressure or vibration of a piezoelectric material, spray our organic solute in a certain degree of vacuum,leaving nozzle of tiny micro-mist volatiles in a vacuum to form secondary atomization,deposited our surface,Since no UV light irradiation, the surface is a liquid having fluidity, so the non-planar substrates can have good performance, finally it is irradiated by UV light of sufficient energy solidify to form a solid film.The advantage of this approach is that a smooth surface,Strong adhesion, low-cost equipment, low temperature, a wide range of high deposition rate can be combined with other deposition method,Under vacuum have not waste because excess paint can be recycled.Avoid solute direct contact with human, relative to the environment-friendly.

  6. Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline

    NASA Astrophysics Data System (ADS)

    Singha, Somdutta; Ghosh, Swapankumar

    2017-09-01

    Carbon nanotubes in all forms are very much insoluble in both organic and inorganic solvents due to its high agglomeration and entangled morphology. General methods for dissolution of single-walled carbon nanotubes (SWNTs) are mostly associated with complexation or polymerization or addition of macromolecules which change the physical or chemical properties of SWNTs and the pristine nature of SWNTs is lost. Dissolution of SWNTs in a solvent like aniline is practiced here which is a very simple reaction method. Here aniline is capable to form a SWNT-aniline charge transfer complex without attachment of macromolecules or polymer which is also soluble in other organic solvents. Solvation of SWNTs by this method is also capable of maintaining the similarity between the structure of SWNTs before and after the dissolution, which means that the pristine nature of SWNTs is preserved. Formation of charge transfer complex in this reaction has been proven by UV-Vis/NIR absorption and photoluminescence spectroscopy. Raman spectroscopy and electron microscopy (FESEM and TEM) are the evidences for protection of the pristine nature of SWNTs even after high-temperature complexation reaction with aniline and also after solubilization in organic solvents.

  7. Host-guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals.

    PubMed

    Bodnarchuk, Maryna I; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V

    2015-12-09

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 10(11) Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.

  8. Host–guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals

    PubMed Central

    Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.

    2015-01-01

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host–guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs. PMID:26647828

  9. Solvent-assisted lipid bilayer formation on silicon dioxide and gold.

    PubMed

    Tabaei, Seyed R; Choi, Jae-Hyeok; Haw Zan, Goh; Zhdanov, Vladimir P; Cho, Nam-Joon

    2014-09-02

    Planar lipid bilayers on solid supports mimic the fundamental structure of biological membranes and can be investigated using a wide range of surface-sensitive techniques. Despite these advantages, planar bilayer fabrication is challenging, and there are no simple universal methods to form such bilayers on diverse material substrates. One of the novel methods recently proposed and proven to form a planar bilayer on silicon dioxide involves lipid deposition in organic solvent and solvent exchange to influence the phase of adsorbed lipids. To scrutinize the specifics of this solvent-assisted lipid bilayer (SALB) formation method and clarify the limits of its applicability, we have developed a simplified, continuous solvent-exchange version to form planar bilayers on silicon dioxide, gold, and alkanethiol-coated gold (in the latter case, a lipid monolayer is formed to yield a hybrid bilayer) and varied the type of organic solvent and rate of solvent exchange. By tracking the SALB formation process with simultaneous quartz crystal microbalance-dissipation (QCM-D) and ellipsometry, it was determined that the acoustic, optical, and hydration masses along with the acoustic and optical thicknesses, measured at the end of the process, are comparable to those observed by employing conventional fabrication methods (e.g., vesicle fusion). As shown by QCM-D measurements, the obtained planar bilayers are highly resistant to protein adsorption, and several, but not all, water-miscible organic solvents could be successfully used in the SALB procedure, with isopropanol yielding particularly high-quality bilayers. In addition, fluorescence recovery after photobleaching (FRAP) measurements demonstrated that the coefficient of lateral lipid diffusion in the fabricated bilayers corresponds to that measured earlier in the planar bilayers formed by vesicle fusion. With increasing rate of solvent exchange, it was also observed that the bilayer became incomplete and a phenomenological model was developed in order to explain this feature. The results obtained allowed us to clarify and discriminate likely steps of the SALB formation process as well as determine the corresponding influence of organic solvent type and flow conditions on these steps. Taken together, the findings demonstrate that the SALB formation method can be adapted to a continuous solvent-exchange procedure that is technically minimal, quick, and efficient to form planar bilayers on solid supports.

  10. Water-Gated n-Type Organic Field-Effect Transistors for Complementary Integrated Circuits Operating in an Aqueous Environment.

    PubMed

    Porrazzo, Rossella; Luzio, Alessandro; Bellani, Sebastiano; Bonacchini, Giorgio Ernesto; Noh, Yong-Young; Kim, Yun-Hi; Lanzani, Guglielmo; Antognazza, Maria Rosa; Caironi, Mario

    2017-01-31

    The first demonstration of an n-type water-gated organic field-effect transistor (WGOFET) is here reported, along with simple water-gated complementary integrated circuits, in the form of inverting logic gates. For the n-type WGOFET active layer, high-electron-affinity organic semiconductors, including naphthalene diimide co-polymers and a soluble fullerene derivative, have been compared, with the latter enabling a high electric double layer capacitance in the range of 1 μF cm -2 in full accumulation and a mobility-capacitance product of 7 × 10 -3 μF/V s. Short-term stability measurements indicate promising cycling robustness, despite operating the device in an environment typically considered harsh, especially for electron-transporting organic molecules. This work paves the way toward advanced circuitry design for signal conditioning and actuation in an aqueous environment and opens new perspectives in the implementation of active bio-organic interfaces for biosensing and neuromodulation.

  11. Organic-inorganic proximity effect in the magneto-conductance of vertical organic field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, B.; Devir-Wolfman, A. H.; Ehrenfreund, E., E-mail: eitane@technion.ac.il

    Vertical organic field effect transistors having a patterned source electrode and an a-SiO{sub 2} insulation layer show high performance as a switching element with high transfer characteristics. By measuring the low field magneto-conductance under ambient conditions at room temperature, we show here that the proximity of the inorganic a-SiO{sub 2} insulation to the organic conducting channel affects considerably the magnetic response. We propose that in n-type devices, electrons in the organic conducting channel and spin bearing charged defects in the inorganic a-SiO{sub 2} insulation layer (e.g., O{sub 2} = Si{sup +·}) form oppositely charged spin pairs whose singlet-triplet spin configurations are mixedmore » through the relatively strong hyperfine field of {sup 29}Si. By increasing the contact area between the insulation layer and the conducting channel, the ∼2% magneto-conductance response may be considerably enhanced.« less

  12. Water-Gated n-Type Organic Field-Effect Transistors for Complementary Integrated Circuits Operating in an Aqueous Environment

    PubMed Central

    2017-01-01

    The first demonstration of an n-type water-gated organic field-effect transistor (WGOFET) is here reported, along with simple water-gated complementary integrated circuits, in the form of inverting logic gates. For the n-type WGOFET active layer, high-electron-affinity organic semiconductors, including naphthalene diimide co-polymers and a soluble fullerene derivative, have been compared, with the latter enabling a high electric double layer capacitance in the range of 1 μF cm–2 in full accumulation and a mobility–capacitance product of 7 × 10–3 μF/V s. Short-term stability measurements indicate promising cycling robustness, despite operating the device in an environment typically considered harsh, especially for electron-transporting organic molecules. This work paves the way toward advanced circuitry design for signal conditioning and actuation in an aqueous environment and opens new perspectives in the implementation of active bio-organic interfaces for biosensing and neuromodulation. PMID:28180187

  13. Assessment of the hazard posed by metal forms in water and sediments.

    PubMed

    Wojtkowska, Małgorzata; Bogacki, Jan; Witeska, Anna

    2016-05-01

    This study aimed to describe the prevalence heavy metals (Zn, Cu, Pb, and Cd) forms in the ecosystem of the Utrata river in order to determine the mobile forms and bioavailability of metals. To extract the dissolved forms of metals in the water of the Utrata PHREEQC2 geochemical speciation model was used. The river waters show a high percentage of mobile and eco-toxic forms of Zn, Cu and Pb. The percentage of carbonate forms for all the studied metals was low (<1%). The content of carbonates in the water and the prevailing physical and chemical conditions (pH, hardness, alkalinity) reduce the share of toxic metal forms, which precipitate as hardly soluble carbonate salts of Zn, Cu, Cd and Pb. Cu in the water in 90% of cases appeared in the form of hydroxyl compounds. To identify the forms of metal occurrence in the sediments Tessier's sequential extraction was used, allowing to assay bound metals in five fractions (ion exchange, carbonate, adsorption, organic, residual), whose nature and bioavailability varies in aquatic environments. The study has shown a large share of metals in labile and bioavailable forms. The speciation analysis revealed an absolute dominance of the organic fraction in the binding of Cu and Pb. Potent affinity for this fraction was also exhibited by Cd. The rations of exchangeable Zn and Cu forms in the sediments were similar. Both these metals had the lowest share in the most mobile ion exchange fraction. Copyright © 2016. Published by Elsevier B.V.

  14. Growth of a mat-forming photograph in the presence of UV radiation

    NASA Technical Reports Server (NTRS)

    Pierson, Beverly K.; Ruff, A. L.

    1989-01-01

    Knowledge of the survival and growth of microorganisms in the presence of ultraviolet radiation is important for understanding the potential for life to exist in environments exposed to high fluxes of UV radiation. The growth of a mat-forming phototrophic prokaryote, Chloroflexus aurantiacus, was examined in the presence of continuous high UV irradiation under otherwise optimal growth conditions. Evidence was sought for an intrinsic ability to grow in the presence of UV radiation in a carefully chosen organism known to be unusually resistant to UV radiation, of ancient lineage among the phototrophs, to resemble ancient microfossils from the Precambrian, and to be a mat-former. It was assumed that even a high intrinsic UV resistance would be inadequate for survival and growth in the presence of very high UV fluxes, and iron (Fe3+) was selected as a common, abundant UV-absorbing substance that might protest microorganisms growing in or under iron-bearing sediments. The effectiveness of Fe(3+) was tested as a UV protective agent at low concentrations in thin layers. It was concluded that intrinsic UV resistance in some organisms may account for growth, not just survival, of these organisms when exposed to high UV fluxes under otherwise optimal growth conditions in an anoxic environment. It was also concluded that Fe(3+) bearing sediments of 1 mm or less in thickness may provide an adequate shield against high UV fluxes permitting the growth of microorganisms just below their surface. As long as growth conditions were met, then the evolution and development of microorganisms would not be hampered by high UV fluxes impinging upon the surface of iron-bearing sediments.

  15. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2

    USDA-ARS?s Scientific Manuscript database

    Diacylglycerol acyltransferases (DGATs) are responsible for the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Different forms of DGATs have nonredundant functions in TAG biosynthesis in species such as tung tree (Vernicia fordii), which contains approximately 80% high-valu...

  16. Spontaneously formed high-performance charge-transport layers of organic single-crystal semiconductors on precisely synthesized insulating polymers

    NASA Astrophysics Data System (ADS)

    Makita, Tatsuyuki; Sasaki, Masayuki; Annaka, Tatsuro; Sasaki, Mari; Matsui, Hiroyuki; Mitsui, Chikahiko; Kumagai, Shohei; Watanabe, Shun; Hayakawa, Teruaki; Okamoto, Toshihiro; Takeya, Jun

    2017-04-01

    Charge-transporting semiconductor layers with high carrier mobility and low trap-density, desired for high-performance organic transistors, are spontaneously formed as a result of thermodynamic phase separation from a blend of π-conjugated small molecules and precisely synthesized insulating polymers dissolved in an aromatic solvent. A crystal film grows continuously to the size of centimeters, with the critical conditions of temperature, concentrations, and atmosphere. It turns out that the molecular weight of the insulating polymers plays an essential role in stable film growth and interfacial homogeneity at the phase separation boundary. Fabricating the transistor devices directly at the semiconductor-insulator boundaries, we demonstrate that the mixture of 3,11-didecyldinaphtho[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene and poly(methyl methacrylate) with the optimized weight-average molecular weight shows excellent device performances. The spontaneous phase separation with a one-step fabrication process leads to a high mobility up to 10 cm2 V-1 s-1 and a low subthreshold swing of 0.25 V dec-1 even without any surface treatment such as self-assembled monolayer modifications on oxide gate insulators.

  17. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less

  18. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    DOE PAGES

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; ...

    2016-09-07

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less

  19. Optical properties of doped sol-gel silica glasses

    NASA Astrophysics Data System (ADS)

    King, Terence A.

    1994-01-01

    Sol-gel optical composites were developed and characterized for potential applications in optics, lasers, nonlinear optics, and optoelectronics. Post-doped xerogels were index matched by in-situ polymerization of monomers to form inorganic-organic composites of low scatter and high optical quality. Characterization of the microstructure was made by visible and IR absorption and Raman Spectroscopy and optical quality by attenuation and scatter measurement. Doping techniques were optimized using hypercritical drying and vacuum impregnation and doping distribution monitored by laser-induced fluorescence. One-tenth wavelength surfaces were formed by novel optical polishing. Organic molecular dopants were tested in laser and nonlinear systems. Initial third harmonic generation and Z-scan measurements have shown the potential for saturable absorption and optical limiting.

  20. Electrical Characteristics of Organic Field Effect Transistor Formed by Gas Treatment of High-k Al2O3 at Low Temperature

    NASA Astrophysics Data System (ADS)

    Lee, Sunwoo; Yoon, Seungki; Park, In-Sung; Ahn, Jinho

    2009-04-01

    We studied the electrical characteristics of an organic field effect transistor (OFET) formed by the hydrogen (H2) and nitrogen (N2) mixed gas treatment of a gate dielectric layer. We also investigated how device mobility is related to the length and width variations of the channel. Aluminum oxide (Al2O3) was used as the gate dielectric layer. After the treatment, the mobility and subthreshold swing were observed to be significantly improved by the decreased hole carrier localization at the interfacial layer between the gate oxide and pentacene channel layers. H2 gas plays an important role in removing the defects of the gate oxide layer at temperatures below 100 °C.

  1. Method of making highly sinterable lanthanum chromite powder

    DOEpatents

    Richards, V.L.; Singhal, S.C.

    1992-09-01

    A highly sinterable powder consisting essentially of LaCrO[sub 3], containing from 5 weight % to 20 weight % of a chromite of dopant Ca, Sr, Co, Ba, or Mg and a coating of a chromate of dopant Ca, Sr, Co, Ba, or Mg; is made by (1) forming a solution of La, Cr, and dopant; (2) heating their solutions; (3) forming a combined solution having a desired ratio of La, Cr, and dopant and heating to reduce solvent; (4) forming a foamed mass under vacuum; (5) burning off organic components and forming a charred material; (6) grinding the charred material; (7) heating the char at from 590 C to 950 C in inert gas containing up to 50,000 ppm O[sub 2] to provide high specific surface area particles; (8) adding that material to a mixture of a nitrate of Cr and dopant to form a slurry; (9) grinding the particles in the slurry; (10) freeze or spray drying the slurry to provide a coating of nitrates on the particles; and (11) heating the coated particles to convert the nitrate coating to a chromate coating and provide a highly sinterable material having a high specific surface area of over 7 m[sup 2]/g. 2 figs.

  2. Pyrolysis gas chromatography-mass spectrometry to characterize organic matter and its relationship to uranium content of Appalachian Devonian black shales

    USGS Publications Warehouse

    Leventhal, J.S.

    1981-01-01

    Gas Chromatographic analysis of volatile products formed by stepwise pyrolysis of black shales can be used to characterize the kerogen by relating it to separated, identified precursors such as land-derived vitrinite and marine-source Tasmanites. Analysis of a Tasmanites sample shows exclusively n-alkane and -alkene pyrolysis products, whereas a vitrinite sample shows a predominance of one- and two-ring substituted aromatics. For core samples from northern Tennessee and for a suite of outcrop samples from eastern Kentucky, the organic matter type and the U content (<10-120ppm) show variations that are related to precursor organic materials. The samples that show a high vitrinite component in their pyrolysis products are also those samples with high contents of U. ?? 1981.

  3. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  4. Enzymatic vegetable organic extracts as soil biochemical biostimulants and atrazine extenders.

    PubMed

    García-Martínez, Ana María; Tejada, Manuel; Díaz, Ana Isabel; Rodríguez-Morgado, Bruno; Bautista, Juan; Parrado, Juan

    2010-09-08

    The purpose of this study was to gather information on the potential effects of organic biostimulants on soil activity and atrazine biodegradation. Carob germ enzymatic extract (CGEE) and wheat condensed distiller solubles enzymatic extract (WCDS-EE) have been obtained using an enzymatic process; their main organic components are soluble carbohydrates and proteins in the form of peptides and free amino acids. Their application to soil results in high biostimulation, rapidly increased dehydrogenase, phosphatase and glucosidase activities, and an observed atrazine extender capacity due to inhibition of its mineralization. The extender capacity of both extracts is proportional to the protein/carbohydrate ratio content. As a result, these enzymatic extracts are highly microbially available, leading to two independent phenomena, fertility and an atrazine persistence that is linked to increased soil activity.

  5. A ‘NanoSuit’ surface shield successfully protects organisms in high vacuum: observations on living organisms in an FE-SEM

    PubMed Central

    Takaku, Yasuharu; Suzuki, Hiroshi; Ohta, Isao; Tsutsui, Takami; Matsumoto, Haruko; Shimomura, Masatsugu; Hariyama, Takahiko

    2015-01-01

    Although extremely useful for a wide range of investigations, the field emission scanning electron microscope (FE-SEM) has not allowed researchers to observe living organisms. However, we have recently reported that a simple surface modification consisting of a thin extra layer, termed ‘NanoSuit’, can keep organisms alive in the high vacuum (10−5 to 10−7 Pa) of the SEM. This paper further explores the protective properties of the NanoSuit surface-shield. We found that a NanoSuit formed with the optimum concentration of Tween 20 faithfully preserves the integrity of an organism's surface without interfering with SEM imaging. We also found that electrostatic charging was absent as long as the organisms were alive, even if they had not been coated with electrically conducting materials. This result suggests that living organisms possess their own electrical conductors and/or rely on certain properties of the surface to inhibit charging. The NanoSuit seems to prolong the charge-free condition and increase survival time under vacuum. These findings should encourage the development of more sophisticated observation methods for studying living organisms in an FE-SEM. PMID:25631998

  6. Study of organic-inorganic hetero-interfaces and electrical transport in semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Wagner, Sean Robert

    As the electronics industry continues to evolve and move towards functional electronic devices with increasing complexity and functionality, it becomes important to explore materials outside the regime of conventional semiconductors. Organic semiconducting small molecules have received a large amount of attention due to their high degree of flexibility, the option to perform molecular synthesis to modify their electronic and magnetic properties, and their ability to organize into highly-ordered functionalized nanostructures and thin films. Being able to form complex nanostructures and thin films with molecular precision, while maintaining the ability to tune properties through modifications in the molecular chemistry could result in vast improvements in conventional device architectures. However, before this is realized, there still remains a significant lack of understanding regarding how these molecules interact with various substrate surfaces as well as their intermolecular interactions. The interplay between these interactions can produce drastic changes in the molecular orientation and ordering at the hetero-interface, which can affect the transport properties of the molecular thin film and ultimately modify the performance of the organic electronic device. This study first focuses on the growth dynamics, molecular ordering, and molecular orientation of metal phthalocyanine (MPc) molecules, particularly on Si, a substrate which is notoriously difficult to form an organized organic thin film on due to the surface dangling bonds. By deactivating these bonds, the formation of a highly ordered organic molecular thin film becomes possible. Combining scanning tunneling microscopy, scanning tunneling spectroscopy, low-energy electron diffraction, and density functional theory calculations, the growth evolution of MPc molecules ( M = Zn, Cu, Co) from the single molecule level to multilayered films on the deactivated Si(111)-B surface is investigated. Initial tests are centered around thermally evaporated ZnPc. These molecules display a highly-ordered, close-packed, tilted configuration which differs from any known bulk packing motif. The ZnPc molecules are able to diffuse rapidly on the Si surface and preferentially nucleate at Si step-edges. This is followed by the formation of highly-ordered anisotropic stripe structures which grow across the Si terraces, i.e. anisotropic step-flow growth. The step-flow growth mode further impacts the growth by reducing the allowed symmetry of the molecular domains such that thin films with an exclusive in-plane molecular ordering are formed. Additionally, the ZnPc tilted packing motif stabilizes the molecular film, allowing it to maintain this packing for multilayered films, despite the decreasing substrate influence. The strength of the MPc-substrate interaction can be modified by changing the central transition-metal ion within the molecule. Through selective p-d orbital coupling between MPc molecules and the substrate, the degree of orbital coupling can induce modifications in the molecular ordering and orientation of MPc molecules at the interface. The secondary focus of this study is to initiate preliminary experimentation towards understanding how ordered organic molecular thin films can be applied to silicon-based devices that could have a significant impact on the electronics market. Si nanomembrane is a flexible, low-dimensional nanomaterial with electronic properties that are highly sensitive to the interface condition. By merging the knowledge of MPc thin film growth on Si with Si nanomembrane technology, possibilities towards modifying the transport properties of nanomaterials through engineering the organic-inorganic hetero-interface can be explored.

  7. High pCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial.

    PubMed

    Kamennaya, Nina A; Zemla, Marcin; Mahoney, Laura; Chen, Liang; Holman, Elizabeth; Holman, Hoi-Ying; Auer, Manfred; Ajo-Franklin, Caroline M; Jansson, Christer

    2018-05-29

    The contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22-2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO 2 pressure (pCO 2 ) representative of the early Paleoproterozoic. We find that high pCO 2 boosts generation of acidic extracellular polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.

  8. LHCII organization and thylakoid lipids affect the sensitivity of the photosynthetic apparatus to high-light treatment.

    PubMed

    Dankov, Kolyo G; Dobrikova, Anelia G; Ughy, Bettina; Bogos, Balázs; Gombos, Zoltan; Apostolova, Emilia L

    2011-06-01

    Pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photosynthetic oxygen evolution were used to investigate the role of the different amount and organization of light-harvesting complexes of photosystem II (LHCII) in four pea species on the susceptibility of the photosynthetic apparatus to high-light treatment. In this work we analyzed the thylakoid membrane lipid composition of the studied pea plants. A relationship between the structural organization of LHCII proteins, the amount of the main lipid classes and the sensitivity of the photosynthetic apparatus to high-light treatment was found. The results reveal that the photosynthetic apparatus, enriched in oligomeric forms of LHCII concomitant with decreased amount of anionic lipids and increased content of the monogalactosyldiacylglycerol (MGDG), is less sensitive to high light. Our data also suggest that the degree of LHCII oligomerization, as well as the lipid composition do not influence the degree of recovery of the PSII photochemistry after excess light exposure. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  9. Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres

    PubMed Central

    Domagal-Goldman, Shawn D.; Meadows, Victoria S.

    2018-01-01

    Abstract Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8–2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30× the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1× the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1× the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 ∼ 0.2, but at 30× the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/CO2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 μm, likely the most accessible CO2 feature on an Archean-like exoplanet. Key Words: Organic haze—Organic sulfur gases—Biosignatures—Archean Earth. Astrobiology 18, 311–329. PMID:29189040

  10. Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres.

    PubMed

    Arney, Giada; Domagal-Goldman, Shawn D; Meadows, Victoria S

    2018-03-01

    Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS 2 , OCS, CH 3 SH, and CH 3 SCH 3 ), photochemistry involving these gases can drive haze formation at lower CH 4 /CO 2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30× the modern organic sulfur gas flux, haze forms at a CH 4 /CO 2 ratio 20% lower than at 1× the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1× the modern Earth organic sulfur flux, a substantial haze forms at CH 4 /CO 2 ∼ 0.2, but at 30× the organic sulfur flux, the CH 4 /CO 2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH 4 /CO 2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH 4 and CO 2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO 2 feature at 1.57 μm, likely the most accessible CO 2 feature on an Archean-like exoplanet. Key Words: Organic haze-Organic sulfur gases-Biosignatures-Archean Earth. Astrobiology 18, 311-329.

  11. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE PAGES

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...

    2016-01-29

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  12. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  13. Cognitive architecture of perceptual organization: from neurons to gnosons.

    PubMed

    van der Helm, Peter A

    2012-02-01

    What, if anything, is cognitive architecture and how is it implemented in neural architecture? Focusing on perceptual organization, this question is addressed by way of a pluralist approach which, supported by metatheoretical considerations, combines complementary insights from representational, connectionist, and dynamic systems approaches to cognition. This pluralist approach starts from a representationally inspired model which implements the intertwined but functionally distinguishable subprocesses of feedforward feature encoding, horizontal feature binding, and recurrent feature selection. As sustained by a review of neuroscientific evidence, these are the subprocesses that are believed to take place in the visual hierarchy in the brain. Furthermore, the model employs a special form of processing, called transparallel processing, whose neural signature is proposed to be gamma-band synchronization in transient horizontal neural assemblies. In neuroscience, such assemblies are believed to mediate binding of similar features. Their formal counterparts in the model are special input-dependent distributed representations, called hyperstrings, which allow many similar features to be processed in a transparallel fashion, that is, simultaneously as if only one feature were concerned. This form of processing does justice to both the high combinatorial capacity and the high speed of the perceptual organization process. A naturally following proposal is that those temporarily synchronized neural assemblies are "gnosons", that is, constituents of flexible self-organizing cognitive architecture in between the relatively rigid level of neurons and the still elusive level of consciousness.

  14. Secondary Organic Aerosol (SOA) from Nitrate Radical Oxidation of Monoterpenes: Effects of Temperature, Dilution, and Humidity on Aerosol Formation, Mixing, and Evaporation.

    PubMed

    Boyd, Christopher M; Nah, Theodora; Xu, Lu; Berkemeier, Thomas; Ng, Nga Lee

    2017-07-18

    Nitrate radical (NO 3 ) oxidation of biogenic volatile organic compounds (BVOC) is important for nighttime secondary organic aerosol (SOA) formation. SOA produced at night may evaporate the following morning due to increasing temperatures or dilution of semivolatile compounds. We isothermally dilute the oxidation products from the limonene+NO 3 reaction at 25 °C and observe negligible evaporation of organic aerosol via dilution. The SOA yields from limonene+NO 3 are approximately constant (∼174%) at 25 °C and range from 81 to 148% at 40 °C. Based on the difference in yields between the two temperatures, we calculated an effective enthalpy of vaporization of 117-237 kJ mol -1 . The aerosol yields at 40 °C can be as much as 50% lower compared to 25 °C. However, when aerosol formed at 25 °C is heated to 40 °C, only about 20% of the aerosol evaporates, which could indicate a resistance to aerosol evaporation. To better understand this, we probe the possibility that SOA from limonene+NO 3 and β-pinene+NO 3 reactions is highly viscous. We demonstrate that particle morphology and evaporation is dependent on whether SOA from limonene is formed before or during the formation of SOA from β-pinene. This difference in particle morphology is present even at high relative humidity (∼70%).

  15. Storage and Bioavailability of Molybdenum in Soils Increased by Organic Matter Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichard, T.; Mishra, B; Myneni, S

    2009-01-01

    The micronutrient molybdenum is a necessary component of the nitrogen-fixing enzyme nitrogenase1, 2. Molybdenum is very rare in soils, and is usually present in a highly soluble form, making it susceptible to leaching3, 4. However, it is generally thought that molybdenum attaches to mineral surfaces in acidic soils; this would prevent its escape into the groundwater, but would also impede uptake by microbes3. Here we use X-ray spectroscopy to examine the chemical speciation of molybdenum in soil samples from forests in Arizona and New Jersey. We show that in the leaf litter layer, most of the molybdenum forms strong complexesmore » with plant-derived tannins and tannin-like compounds; molybdenum binds to these organic ligands across a wide pH range. In deeper soils, molybdenum binds to both iron oxides and natural organic matter. We suggest that the molybdenum bound to organic matter can be captured by small complexing agents that are released by nitrogen-fixing bacteria; the molybdenum can then be incorporated into nitrogenase. We conclude that the binding of molybdenum to natural organic matter helps prevent leaching of molybdenum, and is thus a critical step in securing new nitrogen in terrestrial ecosystems.« less

  16. Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign

    NASA Astrophysics Data System (ADS)

    Sareen, Neha; Carlton, Annmarie G.; Surratt, Jason D.; Gold, Avram; Lee, Ben; Lopez-Hilfiker, Felipe D.; Mohr, Claudia; Thornton, Joel A.; Zhang, Zhenfa; Lim, Yong B.; Turpin, Barbara J.

    2016-11-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols), leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Hydroxyl (OH⚫) radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS). Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) spectra and tandem MS (MS-MS) fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and complexes). Thus, formation of pyruvate/oxalate suggests the potential for aqueous processing of these ambient mixtures to form SOAAQ.

  17. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Dong-Kyun; Volosin, Alex

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite materialmore » can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.« less

  18. 15 CFR Supplement No. 3 to Part 715 - Deadlines for Submission of Declarations, No Changes Authorization Forms, Amendments for...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Declarations, No Changes Authorization Forms, Amendments for Unscheduled Discrete Organic Chemical (UDOC... COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING UNSCHEDULED DISCRETE ORGANIC..., No Changes Authorization Forms, Amendments for Unscheduled Discrete Organic Chemical (UDOC...

  19. 15 CFR Supplement No. 3 to Part 715 - Deadlines for Submission of Declarations, No Changes Authorization Forms, Amendments for...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Declarations, No Changes Authorization Forms, Amendments for Unscheduled Discrete Organic Chemical (UDOC... COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING UNSCHEDULED DISCRETE ORGANIC... Changes Authorization Forms, Amendments for Unscheduled Discrete Organic Chemical (UDOC) Facilities, and...

  20. 15 CFR Supplement No. 3 to Part 715 - Deadlines for Submission of Declarations, No Changes Authorization Forms, Amendments for...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Declarations, No Changes Authorization Forms, Amendments for Unscheduled Discrete Organic Chemical (UDOC... COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING UNSCHEDULED DISCRETE ORGANIC..., No Changes Authorization Forms, Amendments for Unscheduled Discrete Organic Chemical (UDOC...

  1. 15 CFR Supplement No. 3 to Part 715 - Deadlines for Submission of Declarations, No Changes Authorization Forms, Amendments for...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Declarations, No Changes Authorization Forms, Amendments for Unscheduled Discrete Organic Chemical (UDOC... COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING UNSCHEDULED DISCRETE ORGANIC... Changes Authorization Forms, Amendments for Unscheduled Discrete Organic Chemical (UDOC) Facilities, and...

  2. 15 CFR Supplement No. 3 to Part 715 - Deadlines for Submission of Declarations, No Changes Authorization Forms, Amendments for...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Declarations, No Changes Authorization Forms, Amendments for Unscheduled Discrete Organic Chemical (UDOC... COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING UNSCHEDULED DISCRETE ORGANIC... Changes Authorization Forms, Amendments for Unscheduled Discrete Organic Chemical (UDOC) Facilities, and...

  3. The Path of Carbon in Photosynthesis

    DOE R&D Accomplishments Database

    Bassham, J. A.; Calvin, Melvin

    1960-10-01

    Biosynthesis begins with photosynthesis. Green plants and other photosynthetic organisms use the energy of absorbed visible light to make organic compounds from inorganic compounds. These organic compounds are the starting point for all other biosynthetic pathways. The products of photosynthesis provide not only the substrate material but also chemical energy for all subsequent biosynthesis. For example, nonphotosynthetic organisms making fats from sugars would first break down the sugars to smaller organic molecules. Some of the smaller molecules might be oxidized with O{sub 2} to CO{sub 2} and water. These reactions are accompanied by a release of chemical energy because O{sub 2} and sugar have a high chemical potential energy towards conversion to CO{sub 2} and H{sub 2}O. In a biochemical system only part of this energy would be released as heat. The heat would be used to bring about the conversion of certain enzymic cofactors to their more energetic forms. These cofactors would then enter into specific enzymic reactions in such a way as to supply energy to drive reactions in the direction of fat synthesis. Fats would be formed from the small organic molecules resulting from the breakdown of sugars. Thus sugar, a photosynthetic product, can supply both the energy and the material for the biosynthesis of fats.

  4. Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves

    NASA Technical Reports Server (NTRS)

    Warren, Stephen G.; Roesler, Collin S.; Morgan, Vincent I.; Brandt, Richard E.; Goodwin, Ian D.; Allison, Ian

    1993-01-01

    Samples of Antarctic seawater, basal ice, and green ice from ice cliffs and green icebergs are analyzed in order to examine green icebergs formed by the freezing of organic-rich seawater to the base of Antarctic ice shelves. Spectral reflectance of a green iceberg measured near 67 deg S, 62 deg E confirms that the color is inherent in the ice, not an artifact of the illumination. A constituent that absorbs blue photons is identified by spectrophotometric analysis of core samples from this iceberg and from the Amery basal ice, and of seawater samples from Prydz Bay off the Amery Ice Shelf. Analysis of the samples by fluorescence spectroscopy indicates that the blue absorption, and hence the inherent green color, is due to the presence of marine-derived organic matter in the green iceberg, basal ice, and seawater. Thick accumulations of green ice, in icebergs, and at the base of ice shelves indicate that high concentrations of organic matter exist in seawater for centuries at the depth of basal freezing.

  5. Development of bovine serum albumin-water partition coefficients predictive models for ionogenic organic chemicals based on chemical form adjusted descriptors.

    PubMed

    Ding, Feng; Yang, Xianhai; Chen, Guosong; Liu, Jining; Shi, Lili; Chen, Jingwen

    2017-10-01

    The partition coefficients between bovine serum albumin (BSA) and water (K BSA/w ) for ionogenic organic chemicals (IOCs) were different greatly from those of neutral organic chemicals (NOCs). For NOCs, several excellent models were developed to predict their logK BSA/w . However, it was found that the conventional descriptors are inappropriate for modeling logK BSA/w of IOCs. Thus, alternative approaches are urgently needed to develop predictive models for K BSA/w of IOCs. In this study, molecular descriptors that can be used to characterize the ionization effects (e.g. chemical form adjusted descriptors) were calculated and used to develop predictive models for logK BSA/w of IOCs. The models developed had high goodness-of-fit, robustness, and predictive ability. The predictor variables selected to construct the models included the chemical form adjusted averages of the negative potentials on the molecular surface (V s-adj - ), the chemical form adjusted molecular dipole moment (dipolemoment adj ), the logarithm of the n-octanol/water distribution coefficient (logD). As these molecular descriptors can be calculated from their molecular structures directly, the developed model can be easily used to fill the logK BSA/w data gap for other IOCs within the applicability domain. Furthermore, the chemical form adjusted descriptors calculated in this study also could be used to construct predictive models on other endpoints of IOCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Organic Matter in Rivers: The Crossroads between Climate and Water Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davisson, M L

    2001-04-27

    All surface waters in the world contain dissolved organic matter and its concentration depends on climate and vegetation. Dissolved organic carbon (DOC) is ten times higher in wetlands and swamps than in surface water of arctic, alpine, or arid climate. Climates of high ecosystem productivity (i.e., tropics) typically have soils with low organic carbon storage, but drain high dissolved organic loads to rivers. Regions with lower productivity (e.g. grasslands) typically have high soil carbon storage while adjacent rivers have high DOC contents. Most DOC in a free-flowing river is derived from leaching vegetation and soil organic matter, whereas in dammedmore » rivers algae may comprise a significant portion. Water chemistry and oxygen-18 abundance of river water, along with radiocarbon and carbon-13 isotope abundance measurements of DOC were used to distinguish water and water quality sources in the Missouri River watershed. Drinking water for the City of St. Louis incorporates these different sources, and its water quality depends mostly on whether runoff is derived from the upper or the lower watershed, with the lower watershed contributing water with the highest DOC. During drinking water chlorination, DOC forms carcinogenic by-products in proportion to the amount of DOC present. This has recently led the USEPA to propose federal regulation standards. Restoration of natural riparian habitat such as wetlands will likely increase DOC concentrations in river water.« less

  7. Germanium geochemistry and mineralogy

    USGS Publications Warehouse

    Bernstein, L.R.

    1985-01-01

    Germanium is enriched in the following geologic environments: 1. (1) iron meteorites and terrestrial iron-nickel; 2. (2) sulfide ore deposits, particularly those hosted by sedimentary rocks; 3. (3) iron oxide deposits; 4. (4) oxidized zones of Ge-bearing sulfide deposits; 5. (5) pegmatites, greisens, and skarns; and 6. (6) coal and lignitized wood. In silicate melts, Ge is highly siderophile in the presence of native iron-nickel; otherwise, it is highly lithophile. Among silicate minerals, Ge is concentrated in those having less polymerized silicate tetrahedra such as olivine and topaz. In deposits formed from hydrothermal solutions, Ge tends to be enriched mostly in either sulfides or in fluorine-bearing phases; it is thus concentrated both in some hydrothermal sulfide deposits and in pegmatites, greisens, and skarns. In sulfide deposits that formed from solutions having low to moderate sulfur activity, Ge is concentrated in sphalerite in amounts up to 3000 ppm. Sulfide deposits that formed from solutions having higher sulfur activity allowed Ge to either form its own sulfides, particularly with Cu, or to substitute for As, Sn, or other metals in sulfosalts. The Ge in hydrothermal fluids probably derives from enrichment during the fractional crystallization of igneous fluids, or is due to the incorporation of Ge from the country rocks, particularly from those containing organic material. Germanium bonds to lignin-derivative organic compounds that are found in peat and lignite, accounting for its common concentration in coals and related organic material. Germanium is precipitated from water together with iron hydroxide, accounting for its concentration in some sedimentary and supergene iron oxide deposits. It also is able to substitute for Fe in magnetite in a variety of geologic environments. In the oxidized zone of Ge-bearing sulfide deposits, Ge is concentrated in oxides, hydroxides, and hydroxy-sulfates, sometimes forming its own minerals. It is particularly enriched in some iron- and manganese-bearing oxides and hydroxides, including goethite (up to 5300 ppm) and hematite (up to 7000 ppm). ?? 1985.

  8. Superstructures with diverse morphologies and highly ordered fullerene C60 arrays from 1 : 1 and 2 : 1 adamantane-C60 hybrid molecules.

    PubMed

    Zhou, Shengju; Wang, Lin; Chen, Mengjun; Liu, Baoyong; Sun, Xiaofeng; Cai, Meirong; Li, Hongguang

    2017-11-02

    Superstructures from fullerene C 60 -containing compounds, especially those tethered to rigid functional groups with defined shapes, remain largely unexplored. Being the smallest diamondoid, adamantane (Ad) can be viewed as a promising building block for the construction of well-defined superstructures. Here, we report the syntheses of 1 : 1 (4a) and 2 : 1 (4b) Ad-C 60 hybrid molecules, which were then used to construct superstructures in binary solvent mixtures via a modified liquid/liquid interfacial precipitation (LLIP) method using CHCl 3 as a good solvent. Typically in the combination of DMSO/CHCl 3 with a final concentration (c f ) of 1.0 mmol L -1 , 4a successively forms spheres, plates, nanoflowers and plicated particles with increasing content of DMSO while 4b forms cuboid blocks and microparticles with hierarchically organized surfaces. Changing from DMSO to other poor solvents including acetone, MeOH and EtOAc leads to variations of the morphology of the superstructures for both 4a and 4b. At the nanometer length scale, 4a and 4b adopt different organizations within the superstructures. While 4a tends to self-organize into lamellae with highly ordered C 60 layers, the hexagonal phase is dominant in the superstructures formed by 4b. Wettability tests indicate that films formed by the superstructures of 4a and 4b show anti-wetting properties. Besides the solvent effect, the morphology of the superstructures can be also tuned by concentration. For example, when c f is lowered to 0.5 mmol L -1 , a new form of superstructure, i.e., fibers, was detected for 4a. Our results also indicate that besides the solvent-induced aggregate transition, gravity-induced sedimentation and subsequent structure ripening can have a significant influence on the final morphology of the superstructures and the aggregate transition pathways.

  9. High quality factor whispering gallery modes from self-assembled hexagonal GaN rods grown by metal-organic vapor phase epitaxy.

    PubMed

    Tessarek, C; Sarau, G; Kiometzis, M; Christiansen, S

    2013-02-11

    Self-assembled GaN rods were grown on sapphire by metal-organic vapor phase epitaxy using a simple two-step method that relies first on a nitridation step followed by GaN epitaxy. The mask-free rods formed without any additional catalyst. Most of the vertically aligned rods exhibit a regular hexagonal shape with sharp edges and smooth sidewall facets. Cathodo- and microphotoluminescence investigations were carried out on single GaN rods. Whispering gallery modes with quality factors greater than 4000 were measured demonstrating the high morphological and optical quality of the self-assembled GaN rods.

  10. Analysis of Poly-β-Hydroxybutyrate in Rhizobium japonicum Bacteroids by Ion-Exclusion High-Pressure Liquid Chromatography and UV Detection †

    PubMed Central

    Karr, Dale B.; Waters, James K.; Emerich, David W.

    1983-01-01

    Ion-exclusion high-pressure liquid chromatography (HPLC) was used to measure poly-β-hydroxybutyrate (PHB) in Rhizobium japonicum bacteroids. The products in the acid digest of PHB-containing material were fractionated by HPLC on Aminex HPX-87H ion-exclusion resin for organic acid analysis. Crotonic acid formed from PHB during acid digestion was detected by its intense absorbance at 210 nm. The Aminex-HPLC method provides a rapid and simple chromatographic technique for routine analysis of organic acids. Results of PHB analysis by Aminex-HPLC were confirmed by gas chromatography and spectrophotometric analysis. PMID:16346443

  11. Re-inventing clinical trials through TransCelerate.

    PubMed

    Gill, Dalvir

    2014-11-01

    TransCelerate BioPharma was formed in 2012 as a non-profit organization with a mission to collaborate across the biopharmaceutical research and development community to identify, prioritize, design and facilitate the implementation of solutions to drive efficient, effective and high-quality delivery of new medicines.

  12. Control of Newcastle disease virus

    USDA-ARS?s Scientific Manuscript database

    Newcastle disease virus (NDV), also know as avian paramyxovirus serotype 1, is an important poultry pathogen worldwide. In naive poultry, the virulent forms of the virus cause high mortality. Because of this the virus is reportable to the World Organization for Animal Health and can be an important ...

  13. A superhydrophobic surface with high performance derived from STA-APTES organic-inorganic molecular hybrid.

    PubMed

    Si, Fangfang; Zhao, Ning; Chen, Li; Xu, Jian; Tao, Qingsheng; Li, Jinyong; Ran, Chunbo

    2013-10-01

    The chemical originals of natural superhydrophobic surfaces are based on botanic or animal wax or fat, which have poor chemical and thermal resistance. Herein, we report a simple chemical modification of stearic acid (STA) with γ-aminopropyl triethoxysilane (APTES), to obtain an organic-inorganic molecular hybrid STA-APTES compound. A flower-like hierarchically structured surface with superhydrophobicity can be obtained simply by casting the STA-APTES solution under ambient circumstance. The crystallization of the hydrocarbon chain from STA leads to the formation of the binary microstructure and reduces the surface tension, contributing to the superhydrophobicity of the as-formed surface. In addition, the condensation of Si(OCH2CH3)3 from APTES can lead to the cross-linking of the resultant surface, which endows the as-formed superhydrophobic surface with high performances, such as excellent thermal and solvent resistance, etc. This superhydrophobic surface prepared is superior to its many analogs in nature, promising a wide application especially in harsh circumstance. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. 3D superstructures with an orthorhombic lattice assembled by colloidal PbS quantum dots.

    PubMed

    Ushakova, Elena V; Cherevkov, Sergei A; Litvin, Aleksandr P; Parfenov, Peter S; Kasatkin, Igor A; Fedorov, Anatoly V; Gun'ko, Yurii K; Baranov, Alexander V

    2018-05-03

    We report a new type of metamaterial comprising a highly ordered 3D network of 3-7 nm lead sulfide quantum dots self-assembled in an organic matrix formed by amphiphilic ligands (oleic acid molecules). The obtained 3D superstructures possess an orthorhombic lattice with the distance between the nanocrystals as large as 10-40 nm. Analysis of self-assembly and destruction of the superstructures in time performed by a SAXS technique shows that their morphology depends on the quantity of amphiphilic ligands and width of the quantum dot size and its distribution. Formation of the superstructures is discussed in terms of a model describing the lyotropic crystal formation by micelles from three-phase mixtures. The results show that the organic molecules possessing surfactant properties and capable of forming micelles with nanoparticles as a micelle core can be utilized as building blocks for the creation of novel metamaterials based on a highly ordered 3D network of semiconductors, metals or magnetic nanoparticles.

  15. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids.

    PubMed

    Arakaki, Atsushi; Shimizu, Katsuhiko; Oda, Mayumi; Sakamoto, Takeshi; Nishimura, Tatsuya; Kato, Takashi

    2015-01-28

    Organisms produce various organic/inorganic hybrid materials, which are called biominerals. They form through the self-organization of organic molecules and inorganic elements under ambient conditions. Biominerals often have highly organized and hierarchical structures from nanometer to macroscopic length scales, resulting in their remarkable physical and chemical properties that cannot be obtained by simple accumulation of their organic and inorganic constituents. These observations motivate us to create novel functional materials exhibiting properties superior to conventional materials--both synthetic and natural. Herein, we introduce recent progress in understanding biomineralization processes at the molecular level and the development of organic/inorganic hybrid materials by these processes. We specifically outline fundamental molecular studies on silica, iron oxide, and calcium carbonate biomineralization and describe material synthesis based on these mechanisms. These approaches allow us to design a variety of advanced hybrid materials with desired morphologies, sizes, compositions, and structures through environmentally friendly synthetic routes using functions of organic molecules.

  16. Real-time Visualization of Tissue Dynamics during Embryonic Development and Malignant Transformation

    NASA Astrophysics Data System (ADS)

    Yamada, Kenneth

    Tissues undergo dramatic changes in organization during embryonic development, as well as during cancer progression and invasion. Recent advances in microscopy now allow us to visualize and track directly the dynamic movements of tissues, their constituent cells, and cellular substructures. This behavior can now be visualized not only in regular tissue culture on flat surfaces (`2D' environments), but also in a variety of 3D environments that may provide physiological cues relevant to understanding dynamics within living organisms. Acquisition of imaging data using various microscopy modalities will provide rich opportunities for determining the roles of physical factors and for computational modeling of complex processes in living tissues. Direct visualization of real-time motility is providing insight into biology spanning multiple spatio-temporal scales. Many cells in our body are known to be in contact with connective tissue and other forms of extracellular matrix. They do so through microscopic cellular adhesions that bind to matrix proteins. In particular, fluorescence microscopy has revealed that cells dynamically probe and bend the matrix at the sites of cell adhesions, and that 3D matrix architecture, stiffness, and elasticity can each regulate migration of the cells. Conversely, cells remodel their local matrix as organs form or tumors invade. Cancer cells can invade tissues using microscopic protrusions that degrade the surrounding matrix; in this case, the local matrix protein concentration is more important for inducing the micro-invasive protrusions than stiffness. On the length scales of tissues, transiently high rates of individual cell movement appear to help establish organ architecture. In fact, isolated cells can self-organize to form tissue structures. In all of these cases, in-depth real-time visualization will ultimately provide the extensive data needed for computer modeling and for testing hypotheses in which physical forces interact closely with cell signaling to form organs or promote tumor invasion.

  17. Evolution of Morphological and Physical Properties of Laboratory Interstellar Organic Residues with Ultraviolet Irradiation

    NASA Astrophysics Data System (ADS)

    Piani, L.; Tachibana, S.; Hama, T.; Tanaka, H.; Endo, Y.; Sugawara, I.; Dessimoulie, L.; Kimura, Y.; Miyake, A.; Matsuno, J.; Tsuchiyama, A.; Fujita, K.; Nakatsubo, S.; Fukushi, H.; Mori, S.; Chigai, T.; Yurimoto, H.; Kouchi, A.

    2017-03-01

    Refractory organic compounds formed in molecular clouds are among the building blocks of the solar system objects and could be the precursors of organic matter found in primitive meteorites and cometary materials. However, little is known about the evolutionary pathways of molecular cloud organics from dense molecular clouds to planetary systems. In this study, we focus on the evolution of the morphological and viscoelastic properties of molecular cloud refractory organic matter. We found that the organic residue, experimentally synthesized at ˜10 K from UV-irradiated H2O-CH3OH-NH3 ice, changed significantly in terms of its nanometer- to micrometer-scale morphology and viscoelastic properties after UV irradiation at room temperature. The dose of this irradiation was equivalent to that experienced after short residence in diffuse clouds (≤104 years) or irradiation in outer protoplanetary disks. The irradiated organic residues became highly porous and more rigid and formed amorphous nanospherules. These nanospherules are morphologically similar to organic nanoglobules observed in the least-altered chondrites, chondritic porous interplanetary dust particles, and cometary samples, suggesting that irradiation of refractory organics could be a possible formation pathway for such nanoglobules. The storage modulus (elasticity) of photo-irradiated organic residues is ˜100 MPa irrespective of vibrational frequency, a value that is lower than the storage moduli of minerals and ice. Dust grains coated with such irradiated organics would therefore stick together efficiently, but growth to larger grains might be suppressed due to an increase in aggregate brittleness caused by the strong connections between grains.

  18. Evolution of Morphological and Physical Properties of Laboratory Interstellar Organic Residues with Ultraviolet Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piani, L.; Tachibana, S.; Endo, Y.

    Refractory organic compounds formed in molecular clouds are among the building blocks of the solar system objects and could be the precursors of organic matter found in primitive meteorites and cometary materials. However, little is known about the evolutionary pathways of molecular cloud organics from dense molecular clouds to planetary systems. In this study, we focus on the evolution of the morphological and viscoelastic properties of molecular cloud refractory organic matter. We found that the organic residue, experimentally synthesized at ∼10 K from UV-irradiated H{sub 2}O-CH{sub 3}OH-NH{sub 3} ice, changed significantly in terms of its nanometer- to micrometer-scale morphology andmore » viscoelastic properties after UV irradiation at room temperature. The dose of this irradiation was equivalent to that experienced after short residence in diffuse clouds (≤10{sup 4} years) or irradiation in outer protoplanetary disks. The irradiated organic residues became highly porous and more rigid and formed amorphous nanospherules. These nanospherules are morphologically similar to organic nanoglobules observed in the least-altered chondrites, chondritic porous interplanetary dust particles, and cometary samples, suggesting that irradiation of refractory organics could be a possible formation pathway for such nanoglobules. The storage modulus (elasticity) of photo-irradiated organic residues is ∼100 MPa irrespective of vibrational frequency, a value that is lower than the storage moduli of minerals and ice. Dust grains coated with such irradiated organics would therefore stick together efficiently, but growth to larger grains might be suppressed due to an increase in aggregate brittleness caused by the strong connections between grains.« less

  19. Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth

    DOE PAGES

    Werner, Florian; Mueller, Carsten W.; Thieme, Jurgen; ...

    2017-06-09

    Soils comprise various heterogeneously distributed pools of lithogenic, free organic, occluded, adsorbed, and precipitated phosphorus (P) forms, which differ depending on soil forming factors. Small-scale heterogeneity of element distributions recently has received increased attention in soil science due to its influence on soil functions and soil fertility. We investigated the micro-scale distribution of total P and different specific P binding forms in aggregates taken from a high-P clay-rich soil and a low-P sandy soil by combining advanced spectrometric and spectroscopic techniques to introduce new insights on P accessibility and availability in soils. Here we show that soil substrate and soilmore » depth determine micro-scale P heterogeneity in soil aggregates. In P-rich areas of all investigated soil aggregates, P was predominantly co-located with aluminium and iron oxides and hydroxides, which are known to strongly adsorb P. Clay minerals were co-located with P only to a lesser extent. In the low-P topsoil aggregate, the majority of the P was bound organically. Aluminium and iron phosphate predominated in the quartz-rich low-P subsoil aggregate. Sorbed and mineral P phases determined P speciation in the high-P top- and subsoil, and apatite was only detected in the high-P subsoil aggregate. Lastly, our results indicate that micro-scale spatial and chemical heterogeneity of P influences P accessibility and bioavailability.« less

  20. Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, Florian; Mueller, Carsten W.; Thieme, Jurgen

    Soils comprise various heterogeneously distributed pools of lithogenic, free organic, occluded, adsorbed, and precipitated phosphorus (P) forms, which differ depending on soil forming factors. Small-scale heterogeneity of element distributions recently has received increased attention in soil science due to its influence on soil functions and soil fertility. We investigated the micro-scale distribution of total P and different specific P binding forms in aggregates taken from a high-P clay-rich soil and a low-P sandy soil by combining advanced spectrometric and spectroscopic techniques to introduce new insights on P accessibility and availability in soils. Here we show that soil substrate and soilmore » depth determine micro-scale P heterogeneity in soil aggregates. In P-rich areas of all investigated soil aggregates, P was predominantly co-located with aluminium and iron oxides and hydroxides, which are known to strongly adsorb P. Clay minerals were co-located with P only to a lesser extent. In the low-P topsoil aggregate, the majority of the P was bound organically. Aluminium and iron phosphate predominated in the quartz-rich low-P subsoil aggregate. Sorbed and mineral P phases determined P speciation in the high-P top- and subsoil, and apatite was only detected in the high-P subsoil aggregate. Lastly, our results indicate that micro-scale spatial and chemical heterogeneity of P influences P accessibility and bioavailability.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metaxas, Athena E.; Cort, John R.

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished frommore » each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.« less

  2. Mixing of phosphorescent and exciplex emission in efficient organic electroluminescent devices.

    PubMed

    Cherpak, Vladyslav; Stakhira, Pavlo; Minaev, Boris; Baryshnikov, Gleb; Stromylo, Evgeniy; Helzhynskyy, Igor; Chapran, Marian; Volyniuk, Dmytro; Hotra, Zenon; Dabuliene, Asta; Tomkeviciene, Ausra; Voznyak, Lesya; Grazulevicius, Juozas Vidas

    2015-01-21

    We fabricated a yellow organic light-emitting diode (OLED) based on the star-shaped donor compound tri(9-hexylcarbazol-3-yl)amine, which provides formation of the interface exciplexes with the iridium(III) bis[4,6-difluorophenyl]-pyridinato-N,C2']picolinate (FIrpic). The exciplex emission is characterized by a broad band and provides a condition to realize the highly effective white OLED. It consists of a combination of the blue phosphorescent emission from the FIrpic complex and a broad efficient delayed fluorescence induced by thermal activation with additional direct phosphorescence from the triplet exciplex formed at the interface. The fabricated exciplex-type device exhibits a high brightness of 38 000 cd/m(2) and a high external quantum efficiency.

  3. The approach to detection and application of the company’s technological competences to form a business-model

    NASA Astrophysics Data System (ADS)

    Chursin, A. A.; Kashirin, A. I.; Strenalyuk, V. V.; Semenov, A. S.; Ostrovskaya, A. A.; Kokuytseva, T. V.

    2018-02-01

    The most important condition for increasing the competitiveness of business is the formation, retention, and development of key competences of the organization, which reflect the competitive advantage. This problem is especially urgent for high-tech industries, which are the most sensitive to all kinds of changes and innovations. The ways of applying the company’s technological competences to form a business model, the proper form of competence description and analysis on the example of the company “Teplolux” are considered. The following from is recommended to use in IT solutions for competence databases.

  4. LIQUID PHASE SINTERING OF METALLIC CARBIDES

    DOEpatents

    Hammond, J.; Sease, J.D.

    1964-01-21

    An improved method is given for fabricating uranium carbide composites, The method comprises forming a homogeneous mixture of powdered uranium carbide, a uranium intermetallic compound which wets and forms a eutectic with said carbide and has a non-uranium component which has a relatively high vapor pressure at a temperature in the range 1200 to 1500 deg C, and an organic binder, pressing said mixture to a composite of desired green strength, and then vacuum sintering said composite at the eutectic forming temperature for a period sufficient to remove at least a portion of the non-uranium containing component of said eutectic. (AEC)

  5. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkenburg, Daken J.; Johns, Paul M.; Baciak, James E.

    Here, developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced frommore » an X-ray generator, SubPc:C 60, AlPcCl:C 70, and P3HT:PC 61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.28 µGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy -1 cm -2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.« less

  6. Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation

    DOE PAGES

    Starkenburg, Daken J.; Johns, Paul M.; Baciak, James E.; ...

    2017-12-14

    Developments in the field of organic semiconductors have generated organic photodetectors with high quantum efficiency, wide spectral sensitivity, low power consumption, and unique form factors that are flexible and conformable to their substrate shape. In this work, organic photodetectors coupled with inorganic CsI(Tl) scintillators are used to showcase the low dose rate sensitivity that is enabled when high performance organic photodetectors and scintillator crystals are integrated. The detection capability of these organic-inorganic coupled systems to high energy radiation highlights their potential as an alternative to traditional photomultiplier tubes for nuclear spectroscopy applications. When exposed to Bremsstrahlung radiation produced from anmore » X-ray generator, SubPc:C60, AlPcCl:C70, and P3HT:PC61BM thin film photodetectors with active layer thicknesses less than 100 nm show detection of incident radiation at low and no applied bias. Remarkably low dose rates, down to at least 0.28 µGy/s, were detectable with a characteristic linear relationship between exposure rate and photodetector current output. These devices also demonstrate sensitivities as high as 5.37 mC Gy-1 cm-2 when coupled to CsI(Tl). Additionally, as the tube voltage across the X-ray generator was varied, these organic-inorganic systems showed their ability to detect a range of continuous radiation spectra spanning several hundred keV.« less

  7. [Detection of organic compounds on Mars].

    PubMed

    Kobayashi, K

    1997-03-01

    McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.

  8. Quantifying resistances across nanoscale low- and high-angle interspherulite boundaries in solution-processed organic semiconductor thin films.

    PubMed

    Lee, Stephanie S; Mativetsky, Jeffrey M; Loth, Marsha A; Anthony, John E; Loo, Yueh-Lin

    2012-11-27

    The nanoscale boundaries formed when neighboring spherulites impinge in polycrystalline, solution-processed organic semiconductor thin films act as bottlenecks to charge transport, significantly reducing organic thin-film transistor mobility in devices comprising spherulitic thin films as the active layers. These interspherulite boundaries (ISBs) are structurally complex, with varying angles of molecular orientation mismatch along their lengths. We have successfully engineered exclusively low- and exclusively high-angle ISBs to elucidate how the angle of molecular orientation mismatch at ISBs affects their resistivities in triethylsilylethynyl anthradithiophene thin films. Conductive AFM and four-probe measurements reveal that current flow is unaffected by the presence of low-angle ISBs, whereas current flow is significantly disrupted across high-angle ISBs. In the latter case, we estimate the resistivity to be 22 MΩμm(2)/width of the ISB, only less than a quarter of the resistivity measured across low-angle grain boundaries in thermally evaporated sexithiophene thin films. This discrepancy in resistivities across ISBs in solution-processed organic semiconductor thin films and grain boundaries in thermally evaporated organic semiconductor thin films likely arises from inherent differences in the nature of film formation in the respective systems.

  9. Method for desulfurization of coal

    DOEpatents

    Kelland, David R.

    1987-01-01

    A process and apparatus for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS.sub.2 to a troilite FeS form or a pyrrhotite form Fe.sub.1-x S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H.sub.2 S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents.

  10. Successful control of Epstein-Barr virus (EBV)-infected cells by allogeneic nonmyeloablative stem cell transplantation in a patient with the lethal form of chronic active EBV infection.

    PubMed

    Uehara, Taeko; Nakaseko, Chiaki; Hara, Satoru; Harima, Akane; Ejiri, Megumi; Yokota, Akira; Saito, Yasushi; Nishimura, Miki

    2004-08-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a heterogeneous EBV-related disorder, ranging from mild/moderate forms to rapidly lethal disorders. The lethal form of CAEBV is characterized by multiple organ failure, hemophagocytic syndrome, and development of lymphomas. Allogeneic stem cell transplantation is considered as the only potentially curative treatment for the lethal form of CAEBV, but it is not always desirable because of the high incidence of regimen-related toxicities. A 17-year-old female with CAEBV, who was refractory to conventional therapies and considered to be unable to receive a myeloablative regimen because of multiple organ dysfunction, underwent allogeneic nonmyeloablative stem cell transplantation (allo-NST) before developing a hematological malignancy. She has been well without any signs of CAEBV for 27 months after allo-NST, and we confirmed that specific cytotoxic T lymphocyte activity against EBV was reconstituted. This outcome suggests that allo-NST can control CAEBV by reconstituting the host immunity against EBV. Copyright 2004 Wiley-Liss, Inc.

  11. IMO Fireball report form: results and prospects

    NASA Astrophysics Data System (ADS)

    Hankey, M.; Perlerin, V.

    2015-01-01

    At the 2014 IMC, we presented the new IMO (International Meteor Organization) online, Fireball report (available at fireballs.imo.net). This fireball report form was specifically designed for use by people with no astronomy experience who witnessed a fireball, a bolide or a suspected similar phenomenon. The IMO version of the form has been officially launched in February 2015. Since then, the form has been translated in different languages and customized for organizations around the world. In this paper, we will present preliminary results of the form and provide tips to improve the online presence of local organizations, in order to promote usage. We will also highlight procedures to be followed by local organizations to get a custom version of the form.

  12. Social structure of the harem-forming promiscuous fruit bat, Cynopterus sphinx, is the harem truly important?

    PubMed

    Garg, Kritika M; Chattopadhyay, Balaji; Ramakrishnan, Uma

    2018-02-01

    Bats are social animals and display a diverse variety of mating and social systems, with most species exhibiting some form of polygyny. Their social organization is fluid and individuals frequently switch partners and roosting sites. While harem-like social organization is observed in multiple tropical species, its importance is contested in many of them. In this study, we investigated the role of harems in the social organization of the old world fruit bat Cynopterus sphinx . Based on regular behavioural observations over a period of 20 months and genetic data from microsatellite markers, we observed that the social organization is flexible, individuals regularly shift between roosts and the social organization resembles a fission-fusion society. Behavioural and genetic analyses suggest that the harems are not strict units of social structure, and the colony does not show signatures of subdivision with harems as behavioural units. We also observed that there was no correlation between individuals with high association index and pairwise relatedness. Our findings indicate that similar to the mating system, the social organization of C. sphinx can also be categorized as a fission-fusion society, and hence the term 'harem' is a misnomer. We conclude that the social system of C. sphinx is flexible, with multi-male multi-female organization, and individuals tend to be loyal to a given area rather than a roost.

  13. Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage

    DOEpatents

    Yaghi, Omar M.; Eddaoudi, Mohamed; Li, Hailian; Kim, Jaheon; Rosi, Nathaniel

    2005-08-16

    An isoreticular metal-organic framework (IRMOF) and method for systematically forming the same. The method comprises the steps of dissolving at least one source of metal cations and at least one organic linking compound in a solvent to form a solution; and crystallizing the solution under predetermined conditions to form a predetermined IRMOF. At least one of functionality, dimension, pore size and free volume of the IRMOF is substantially determined by the organic linking compound.

  14. Life without water

    NASA Technical Reports Server (NTRS)

    Crowe, Lois M.; Crowe, John H.

    1989-01-01

    Anhydrobiosis, or life without water is commonly demonstrated by a number of plants and animals. These organisms have the capacity to loose all body water, remain dry for various periods, and then be revived by rehydration. While in the anhydrobiotic state, these organisms become highly resistant to several environmental stresses such as extremely low temperatures, elevated temperatures, ionizing radiation, and high vacuum. Since water is commonly thought to be essential for life, survival of anhydrobiotic organisms with an almost total loss of water is examined. A search of literature reveal that many anhydrobiotic organisms make large quantities of trehalose or other carbohydrates. Laboratory experiments have shown that trehalose is able to stabilize and preserve microsomes of sarcoplasmic reticulum and artificial liposomes. It was demonstrated that trehalose and other disaccharides can interact directly with phosopipid headgroups and maintain membranes in their native configuration by replacing water in the headgroup region. Recent studies show that trehalose is an effective stabilizer of proteins during drying and that it does so by direct interaction with groups on the protein. If life that is able to withstand environmental extremes has ever developed on Mars, it is expected that such life would have developed some protective compounds which can stabilize macromolecular structure in the absence of water and at cold temperatures. On Earth, that role appears to be filled by carbohydrates that can stabilize both membrane and protein stuctures during freezing and drying. By analog with terrestrial systems, such life forms might develop resistance either during some reproductive stage or at any time during adult existence. If the resistant form is a developmental stage, the life cycle of the organism must be completed with a reasonable time period relative to time when environmental conditions are favorable. This would suggest that simple organisms with a short life cycle might be most sucessful.

  15. Second Thoughts on the Capitalism-Enlightenment Connection: Are Americans Over Educated or Are Our Jobs Dumb?

    ERIC Educational Resources Information Center

    Bowles, Samuel

    This paper asserts that the reason so many high school graduates are functionally illiterate may be that the form of economic organization in the United States does not sufficiently value or make use of intelligence. The paper reviews studies that report both the decline in general knowledge of high school graduates and the promotion of programs…

  16. Low Temperature Photoluminescence (PL) from High Electron Mobility Transistors (HEMTs)

    DTIC Science & Technology

    2015-03-01

    Photoluminescence Form InxAl1-xN Films Deposited by Plasma-Assisted Molecular Beam Epitaxy ,” Submitted to Applied Physics Letters, July 2014. 8 LIST OF...TECHNICAL REPORT RDMR-WD-14-55 LOW TEMPERATURE PHOTOLUMINESCENCE (PL) FROM HIGH ELECTRON MOBILITY TRANSISTORS ( HEMTS ...Mobility Transistors ( HEMTs ) 5. FUNDING NUMBERS 6. AUTHOR(S) Adam T. Roberts and Henry O. Everitt 7. PERFORMING ORGANIZATION NAME(S

  17. Thermionic Energy

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Thermionic energy conversion is the production of energy from a nuclear source. It is a technology advanced by SNSO, a joint research and development organization formed by NASA and the AEC. SNSO contracted with Thermo Electron Corporation to develop high temperature applications, i.e., metals with high melting points. Thermo Electron Corporation's expertise resulted in contracts for products made from exotic metals such as bone implants, artificial hips, and heart pacemakers.

  18. Air Quality Management Using Pollution Prevention: A Joint Service Approach

    DTIC Science & Technology

    1998-03-01

    sites to promote polymerization. High solids coatings may be one or two component systems based on acrylic , alkyd , epoxy, polyester, or urethane...formulation to form high molecular weight polymers. Examples include acrylic , epoxy/polyester hybrid , functional epoxy, thin film epoxy, and urethane...Air Human System Center (HSC/OEBQ) Naval Facilities Engineering Service Center (NFESC) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9

  19. Supported catalysts using nanoparticles as the support material

    DOEpatents

    Wong, Michael S.; Wachs, Israel E.; Knowles, William V.

    2010-11-02

    A process for making a porous catalyst, comprises a) providing an aqueous solution containing a nanoparticle precursor, b) forming a composition containing nanoparticles, c) adding a first catalytic component or precursor thereof and a pore-forming agent to the composition containing nanoparticles and allowing the first catalytic component, the pore-forming agent, and the nanoparticles form an organic-inorganic structure, d) removing water from the organic-inorganic structure; and e) removing the pore-forming agent from the organic-inorganic structure so as to yield a porous catalyst.

  20. Studies on the biofilm produced by Pseudomonas aeruginosa grown in different metal fatty acid salt media and its application in biodegradation of fatty acids and bioremediation of heavy metal ions.

    PubMed

    Abinaya Sindu, P; Gautam, Pennathur

    2017-01-01

    Metal fatty acid salts (MFAS) in untreated industrial effluents cause environmental pollution. The use of biocompatible agents for remediation may help in reducing the harm caused to the ambient aquatic organism. Pseudomonas aeruginosa is a ubiquitous organism that thrives under harsh conditions and is resistant to toxic metal ions. The present study shows a proof-of-concept of using this organism in the biodegradation of MFAS. MFAS were prepared and we studied their effect on the growth of the planktonic form and the formation of biofilm by P. aeruginosa. We observed biofilm formation in the presence of all the MFAS when used as the sole carbon source, albeit the quantity of biofilm formed in the presence of cadmium and copper was less. There was no effect on the planktonic form of the organism but the formation of biofilm increased in the presence of magnesium palmitate. This study shows that metal ions play a pivotal role in the formation of biofilm. HPLC (high-performance liquid chromatography) analysis of the biofilm polysaccharide showed that hexose sugar was a major component when compared with pentose sugar. The structure of biofilm polysaccharide and the coordination of the metal ion with the biofilm polysaccharide were confirmed by FTIR (Fourier transform infrared spectroscopy) and Raman spectroscopy.

  1. Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review.

    PubMed

    Trojanowicz, Marek; Bojanowska-Czajka, Anna; Capodaglio, Andrea G

    2017-09-01

    The increasing role of chemistry in industrial production and its direct and indirect impacts in everyday life create the need for continuous search and efficiency improvement of new methods for decomposition/removal of different classes of waterborne anthropogenic pollutants. This review paper addresses a highly promising class of water treatment solutions, aimed at tackling the pressing problem of emerging contaminants in natural and drinking waters and wastewater discharges. Radiation processing, a technology originating from radiation chemistry studies, has shown encouraging results in the treatment of (mainly) organic water pollution. Radiation ("high energy") processing is an additive-free technology using short-lived reactive species formed by the radiolysis of water, both oxidative and reducing, to carry out decomposition of organic pollutants. The paper illustrates the basic principles of radiolytic treatment of organic pollutants in water and wastewaters and specifically of one of its most practical implementations (electron beam processing). Application examples, highlighting the technology's strong points and operational conditions are described, and a discussion on the possible future of this technology follows.

  2. Fabrication of sophisticated two-dimensional organic nanoarchitectures thought hydrogen bond mediated molecular self assembly

    NASA Astrophysics Data System (ADS)

    Silly, Fabien

    2012-02-01

    Complex supramolecular two-dimensional (2D) networks are attracting considerable interest as highly ordered functional materials for applications in nanotechnology. The challenge consists in tailoring the ordering of one or more molecular species into specific architectures over an extended length scale with molecular precision. Highly organized supramolecular arrays can be obtained through self-assembly of complementary molecules which can interlock via intermolecular interactions. Molecules forming hydrogen bonds (H-bonds) are especially interesting building blocks for creating sophisticated organic architectures due to high selectivity and directionality of these bindings. We used scanning tunnelling microscopy to investigate at the atomic scale the formation of H-bonded 2D organic nanoarchitectures on surfaces. We mixed perylene derivatives having rectangular shape with melamine and DNA base having triangular and non symmetric shape respectively. We observe that molecule substituents play a key role in formation of the multicomponent H-bonded architectures. We show that the 2D self-assembly of these molecules can be tailored by adjusting the temperature and molecular ratio. We used these stimuli to successfully create numerous close-packed and porous 2D multicomponent structures.

  3. Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs

    PubMed Central

    Hosono, Hideo; Toda, Yoshitake; Kamiya, Toshio; Watanabe, Satoru

    2017-01-01

    Efficient electron transfer between a cathode and an active organic layer is one key to realizing high-performance organic devices, which require electron injection/transport materials with very low work functions. We developed two wide-bandgap amorphous (a-) oxide semiconductors, a-calcium aluminate electride (a-C12A7:e) and a-zinc silicate (a-ZSO). A-ZSO exhibits a low work function of 3.5 eV and high electron mobility of 1 cm2/(V · s); furthermore, it also forms an ohmic contact with not only conventional cathode materials but also anode materials. A-C12A7:e has an exceptionally low work function of 3.0 eV and is used to enhance the electron injection property from a-ZSO to an emission layer. The inverted electron-only and organic light-emitting diode (OLED) devices fabricated with these two materials exhibit excellent performance compared with the normal type with LiF/Al. This approach provides a solution to the problem of fabricating oxide thin-film transistor-driven OLEDs with both large size and high stability. PMID:28028243

  4. First-principles design of nanostructured hybrid photovoltaics based on layered transition metal phosphates

    DOE PAGES

    Lentz, Levi C.; Kolpak, Alexie M.

    2017-04-28

    The performance of bulk organic and hybrid organic-inorganic heterojunction photovoltaics is often limited by high carrier recombination arising from strongly bound excitons and low carrier mobility. Structuring materials to minimize the length scales required for exciton separation and carrier collection is therefore a promising approach for improving efficiency. In this work, first-principles computations are employed to design and characterize a new class of photovoltaic materials composed of layered transition metal phosphates (TMPs) covalently bound to organic absorber molecules to form nanostructured superlattices. Using a combination of transition metal substitution and organic functionalization, the electronic structure of these materials is systematicallymore » tuned to design a new hybrid photovoltaic material predicted to exhibit very low recombination due to the presence of a local electric field and spatially isolated, high mobility, two-dimensional electron and hole conducting channels. Furthermore, this material is predicted to have a large open-circuit voltage of 1.7 V. Here, this work suggests that hybrid TMPs constitute an interesting class of materials for further investigation in the search for achieving high efficiency, high power, and low cost photo Zirconium phosphate was chosen, in part, due to previous experiment voltaics.« less

  5. First-principles design of nanostructured hybrid photovoltaics based on layered transition metal phosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, Levi C.; Kolpak, Alexie M.

    The performance of bulk organic and hybrid organic-inorganic heterojunction photovoltaics is often limited by high carrier recombination arising from strongly bound excitons and low carrier mobility. Structuring materials to minimize the length scales required for exciton separation and carrier collection is therefore a promising approach for improving efficiency. In this work, first-principles computations are employed to design and characterize a new class of photovoltaic materials composed of layered transition metal phosphates (TMPs) covalently bound to organic absorber molecules to form nanostructured superlattices. Using a combination of transition metal substitution and organic functionalization, the electronic structure of these materials is systematicallymore » tuned to design a new hybrid photovoltaic material predicted to exhibit very low recombination due to the presence of a local electric field and spatially isolated, high mobility, two-dimensional electron and hole conducting channels. Furthermore, this material is predicted to have a large open-circuit voltage of 1.7 V. Here, this work suggests that hybrid TMPs constitute an interesting class of materials for further investigation in the search for achieving high efficiency, high power, and low cost photo Zirconium phosphate was chosen, in part, due to previous experiment voltaics.« less

  6. Organ donation in Muslim countries: the case of Malaysia.

    PubMed

    Tumin, Makmor; Noh, Abdillah; Mohd Satar, Nurulhuda; Chin-Sieng, Chong; Soo-Kun, Lim; Abdullah, Nawi; Kok-Peng, Ng

    2013-12-09

    The aim of this paper is to look into the factors influencing Malaysian Muslims' decision to become deceased organ donors in Malaysia. We approached 900 Malaysian Muslims and 779 participated in our survey, conducted in Kuala Lumpur and its suburb. We examined their willingness to become donors and the willing donors were asked why they did not pledge to become donors. Non-donors were asked why they refuse to become donors. The survey found the main reason for Malaysian Muslims not pledging their organs was due to their lack of information on organ donation and/or their lack of confidence in the government's ability to properly administer organ donation procedures. Another interesting finding is that religion is not a main deterrent to organ donation. The survey suggests that Malaysia can explore many ways to encourage organ donation without having to resort to the highly controversial financial incentive option. A key to Malaysia's success or failure to increase organ donation rate lies in its ability to persuade its Muslim population (its largest population) to donate organs. This can be done by adopting a segmented, focused, and highly localized form of public education and by leveraging on existing networks involving local religious and community leaders as well as government and non-governmental institutions.

  7. Direct Aqueous Photochemistry of Isoprene High-NOx Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tran B.; Laskin, Alexander; Laskin, Julia

    2012-05-17

    Secondary organic aerosol (SOA) generated from the high-NOx photooxidation of isoprene was dissolved in water and irradiated with {lambda} > 290 nm light to simulate direct photolytic processing of organics in atmospheric water droplets. High-resolution mass spectrometry was used to characterize the composition at four time intervals (0, 1, 2, and 4 h). Photolysis resulted in the decomposition of high molecular weight (MW) oligomers, reducing the average length of organics by 2 carbon units. Approximately 65% by count of SOA molecules decomposed during photolysis, accompanied by the formation of new products. An average of 30 % of the organic massmore » was modified after 4 h of direct photolysis. In contrast, only a small fraction of the mass (<2 %), belonging primarily to organic nitrates, decomposed in the absence of irradiation by hydrolysis. We observed a statistically-significant increase in average O/C, decrease in H/C, and increase in N/C ratios resulting from photolysis. Furthermore, the concentration of aromatic compounds increased significantly during photolysis. Approximately 10 % of photodegraded compounds and 50 % of the photoproducts contain nitrogen. Organic nitrates and multifunctional oligomers were identified as compounds degraded by photolysis. Low-MW 0N (compounds with 0 nitrogen atoms in their structure) and 2N compounds were the dominant photoproducts. Fragmentation experiments using tandem mass spectrometry (MSn, n = 2-3) indicate that the 2N products are likely heterocyclic/aromatic and are tentatively identified as furoxans. Although the exact mechanism is unclear, these 2N heterocyclic compounds are produced by reactions between photochemically-formed aqueous NOx species and SOA organics.« less

  8. [Life forms of organisms as patterns of organization and spatial ecological factors].

    PubMed

    Kirpotin, S N

    2005-01-01

    Tectological and archaetectonical approaches which are conventionally used in morphology are discussed. The similarity of these approaches to some views on the structure and organization of nature systems was shown. These wiews were originated within the framework of the modern system-cybernetic conception. The morphology particularities of natural object of any rank (from organism to biosphere) allow determination of environment influence character. In some cases intensity of the influence can be determined. This, morphological-geometrical approach of nature investigation acquires high prognostic value. The aspects of "pattern organization" concept and its perspectives are discussed. The patterns of organization of organisms could be characterized only in the context of their interactions with environment. Therefore it is necessary to distinguish new group of ecological factors: spatial or chorological one. It was suggested that spatial ecological factors is predominant if all other physical factors have no extreme values.

  9. Low cost solution-based materials processing methods for large area OLEDs and OFETs

    NASA Astrophysics Data System (ADS)

    Jeong, Jonghwa

    In Part 1, we demonstrate the fabrication of organic light-emitting devices (OLEDs) with precisely patterned pixels by the spin-casting of Alq3 and rubrene thin films with dimensions as small as 10 mum. The solution-based patterning technique produces pixels via the segregation of organic molecules into microfabricated channels or wells. Segregation is controlled by a combination of weak adsorbing characteristics of aliphatic terminated self-assembled monolayers (SAMs) and by centrifugal force, which directs the organic solution into the channel or well. This novel patterning technique may resolve the limitations of pixel resolution in the method of thermal evaporation using shadow masks, and is applicable to the fabrication of large area displays. Furthermore, the patterning technique has the potential to produce pixel sizes down to the limitation of photolithography and micromachining techniques, thereby enabling the fabrication of high-resolution microdisplays. The patterned OLEDs, based upon a confined structure with low refractive index of SiO2, exhibited higher current density than an unpatterned OLED, which results in higher electroluminescence intensity and eventually more efficient device operation at low applied voltages. We discuss the patterning method and device fabrication, and characterize the morphological, optical, and electrical properties of the organic pixels. In part 2, we demonstrate a new growth technique for organic single crystals based on solvent vapor assisted recrystallization. We show that, by controlling the polarity of the solvent vapor and the exposure time in a closed system, we obtain rubrene in orthorhombic to monoclinic crystal structures. This novel technique for growing single crystals can induce phase shifting and alteration of crystal structure and lattice parameters. The organic molecules showed structural change from orthorhombic to monoclinic, which also provided additional optical transition of hypsochromic shift from that of the orthorhombic form. An intermediate form of the crystal exhibits an optical transition to the lowest vibrational energy level that is otherwise disallowed in the single-crystal orthorhombic form. The monoclinic form exhibits entirely new optical transitions and showed a possible structural rearrangement for increasing charge carrier mobility, making it promising for organic devices. These phenomena can be explained and proved by the chemical structure and molecular packing of the monoclinic form, transformed from orthorhombic crystalline structure.

  10. Flow-through pretreatment of lignocellulosic biomass with inorganic nanoporous membranes

    DOEpatents

    Bhave, Ramesh R.; Lynd, Lee; Shao, Xiongjun

    2018-04-03

    A process for the pretreatment of lignocellulosic biomass is provided. The process generally includes flowing water through a pretreatment reactor containing a bed of particulate ligno-cellulosic biomass to produce a pressurized, high-temperature hydrolyzate exit stream, separating solubilized compounds from the hydrolyzate exit stream using an inorganic nanoporous membrane element, fractionating the retentate enriched in solubilized organic components and recycling the permeate to the pretreatment reactor. The pretreatment process provides solubilized organics in concentrated form for the subsequent conversion into biofuels and other chemicals.

  11. High Flux, Fouling Resistant Membranes for RO Pretreatment

    DTIC Science & Technology

    2012-05-31

    formed by decomposition of dead organisms (often termed humus ) and carried to surface and seawater with rain water drainage. The most important...formulation, NOM components are introduced by Orchid Pro, which is a plant food formulation made from humus deposits. Blue-green algae is used as a

  12. Freeforming objects with low-binder slurry

    DOEpatents

    Cesarano, III, Joseph; Calvert, Paul D.

    2000-01-01

    In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

  13. Synthesis of bioactive organic-inorganic nanohybrid for bone repair through sol-gel processing.

    PubMed

    Miyazaki, Toshiki; Ohtsuki, Chikara; Tanihara, Masao

    2003-12-01

    So-called bioactive ceramics have been attractive because they form bone-like apatite on their surfaces to bond directly to living bone when implanted in bony defects. However, they are much more brittle and much less flexible than natural bone. Organic-inorganic hybrids consisting of flexible organic polymers and the essential constituents of the bioactive ceramics (i.e., Si-OH groups and Ca2+ ions) are useful as novel bone substitutes, because of their bioactivity and mechanical properties analogous to those of natural bone. In the present study, organic-inorganic nanohybrids were synthesized from hydroxyethylmethacrylate (HEMA) and methacryloxypropyltrimethoxysilane (MPS), as well as various calcium salts. Bioactivity of the synthesized hybrids was assessed in vitro by examining their acceptance of apatite deposition in simulated body fluid (Kokubo solution). The prepared hybrids formed apatite in Kokubo solution when they were modified with calcium chloride (CaCl2) at 5 or 10 mol% of the total of MPS and HEMA. Deposition of a kind of calcium phosphate was observed for the hybrids modified with calcium acetate (Ca(CH3COO)2), although it could not be identified with apatite. The addition of glycerol up to 10 mol% of the total of MPS and HEMA or water up to 20 mol% as plasticizers did not appreciably decrease the acceptance of apatite formation of the hybrids. These findings allow wide selectivity in the design of bioactive nanohybrids developed by organic modification of the Si-OH group and calcium ion through sol-gel processing. Such nanohybrids have potential as novel bone substitutes with both high bioactivity and high flexibility.

  14. Changes in the Degree of Contamination of Organic Horizons of Al-Fe-Humus Podzols upon a Decrease in Aerotechnogenic Loads, the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Barkan, V. Sh.; Lyanguzova, I. V.

    2018-03-01

    Contamination levels of the organic horizon of Al-Fe-humus podzols (Albic Rustic Podzols) in the zone affected by atmospheric emissions of the Severonikel smelter (Murmansk oblast) within a 20-yearlong period are compared. The spatiotemporal changes in the total content of heavy metals in the soils in response to a decrease in aerotechnogenic loads have a complicated pattern. As the content of heavy metals in the soils varies widely, the correlation between their amount in the organic soil horizon and the distance from the contamination source is absent. In response to the ninefold decrease in the amount of atmospheric emission of Ni compounds, the bulk content of Ni in the organic horizons of podzols reliably decreased by 2.5 times. The threefold decrease in the emission of Cu compounds proved to be insufficient for a significant decrease in the Cu content in the soils. In 2016, the content of heavy metals in some sampling points even increased in comparison with the earlier periods. The Ni-to-Cu ratio in the soil samples changed significantly. In 1989-1994, bulk forms of heavy metals in the soil samples formed the sequence Ni > Cu > Co; in 2016, it changed to Cu > Ni > Co, which corresponds to the proportions of these metals in the aerial emissions. Under conditions of the continuous input of heavy metals from the atmosphere, the contamination of the organic horizons of podzols with heavy metals remains at the high or very high levels.

  15. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions.

    PubMed

    Tagliazucchi, Mario; de la Cruz, Mónica Olvera; Szleifer, Igal

    2010-03-23

    The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.

  16. Speciation and weathering of selenium in upper cretaceous chalk and shale from South Dakota and Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Kulp, Thomas R.; Pratt, Lisa M.

    2004-09-01

    In geologic materials, petroleum, and the environment, selenium occurs in various oxidation states (VI, IV, 0, -II), mineralized forms, and organo-Se complexes. Each of these forms is characterized by specific chemical and biochemical properties that control the element's solubility, toxicity, and environmental behavior. The organic rich chalks and shales of the Upper Cretaceous Niobrara Formation and the Pierre Shale in South Dakota and Wyoming are bentoniferous stratigraphic intervals characterized by anomalously high concentrations of naturally occurring Se. Numerous environmental problems have been associated with Se derived from these geological units, including the development of seleniferous soils and vegetation that are toxic to livestock and the contamination of drinking water supplies by Se mobilized in groundwater. This study describes a sequential extraction protocol followed by speciation treatments and quantitative analysis by Hydride Generation-Atomic Absorption Spectroscopy. This protocol was utilized to investigate the geochemical forms and the oxidation states in which Se occurs in these geologic units. Organic Se and di-selenide minerals are the predominant forms of Se present in the chalks, shales, and bentonites, but distinctive variations in these forms were observed between different sample types. Chalks contain significantly greater proportions of Se in the form of di-selenide minerals (including Se associated with pyrite) than the shales where base-soluble, humic, organo-Se complexes are more prevalent. A comparison between unweathered samples collected from lithologic drill cores and weathered samples collected from outcrop suggest that the humic, organic-Se compounds in shale are formed during oxidative weathering and that Se oxidized by weathering is more likely to be retained by shale than by chalk. Selenium enrichment in bentonites is inferred to result from secondary processes including the adsorption of Se mobilized by groundwater from surrounding organic rich sediments to clay mineral and iron hydroxide surfaces, as well as microbial reduction of Se within the bentonitic intervals. Distinct differences are inferred for the biogeochemical pathways that affected sedimentary Se sequestration during periods of chalk accumulation compared to shale deposition in the Cretaceous seaway. Mineralogy of sediment and the nature of the organic matter associated with each of these rock types have important implications for the environmental chemistry and release of Se to the environment during weathering.

  17. Organic Haze as a Biosignature in Anoxic Earth-Like Atmospheres

    NASA Technical Reports Server (NTRS)

    Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.

    2017-01-01

    Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and anM4Vdwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30x the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1x the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1x the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 approx. 0.2, but at 30x the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/ CO2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 microns, likely the most accessible CO2 feature on an Archean-like exoplanet.

  18. Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit.

    PubMed

    Shin, Hyun; Lee, Sunghun; Kim, Kwon-Hyeon; Moon, Chang-Ki; Yoo, Seung-Jun; Lee, Jeong-Hwan; Kim, Jang-Joo

    2014-07-16

    A high-efficiency blue-emitting organic light-emitting diode (OLED) approaching theoretical efficiency using an exciplex-forming co-host composed of N,N'-dicarbazolyl-3,5-benzene (mCP) and bis-4,6-(3,5-di-3-pyridylphenyl)- 2-methylpyrimidine (B3PYMPM) is fabricated. Iridium(III)bis[(4,6-difluorophenyl)- pyridinato-N,C2']picolinate (FIrpic) is used as the emitter, which turns out to have a preferred horizontal dipole orientation in the emitting layer. The OLED shows a maximum external quantum efficiency of 29.5% (a maximum current efficiency of 62.2 cd A(-1) ), which is in perfect agreement with the theoretical prediction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.

    2006-08-01

    It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.

  20. Handbook for Evaluating Ecological Effects of Pollution at DARCOM Installations. Volume 5. Aquatic Surveys,

    DTIC Science & Technology

    1980-05-01

    occur in areas of high current and pools in areas of low current. The habitats of greatest invertebrate animal production in streams are riffles. They...feeding and spawning ground for trout, smallmouth bass, and other fish. Dissolved oxygen content is high and primary production (plant material) is...stream forms. In pools, primary production is generally higher than in riffles if siltation and 1-3 organic pollution are not high enough to cause

  1. Soil phosphorus forms and profile distributions in the tidal river network region in the Yellow River Delta estuary.

    PubMed

    Yu, Junbao; Qu, Fanzhu; Wu, Huifeng; Meng, Ling; Du, Siyao; Xie, Baohua

    2014-01-01

    Modified Hedley fraction method was used to study the forms and profile distribution in the tidal river network region subjected to rapid deposition and hydrologic disturbance in the Yellow River Delta (YRD) estuary, eastern China. The results showed that the total P (Pt) ranged from 612.1 to 657.8 mg kg(-1). Dilute HCl extractable inorganic P (Pi) was the predominant form in all profiles, both as absolute values and as a percentage of total extracted Pi. The NaOH extractable organic P (Po) was the predominant form of total extracted Po, while Bicarb-Pi and C.HCl-Po were the lowest fractions of total extracted Pi and Po in all the P forms. The Resin-P concentrations were high in the top soil layer and decreased with depth. The Pearson correlation matrix indicated that Resin-P, Bicarb-Pi, NaOH-Pi, and C.HCl-Pi were strongly positively correlated with salinity, TOC, Ca, Al, and Fe but negatively correlated with pH. The significant correlation of any studied form of organic P (Bicarb-Po, NaOH-Po, and C.HCl-Po) with geochemical properties were not observed in the study. Duncan multiple-range test indicated that the P forms and distribution heterogeneity in the profiles could be attributed to the influences of vegetation cover and hydrologic disturbance.

  2. Electrospinning Nanofiber Based Organic Solar Cell

    NASA Astrophysics Data System (ADS)

    Yang, Zhenhua; Liu, Ying; Moffa, Maria; Nam, Chang-Yong; Pisignano, Dario; Rafailovich, Miriam

    Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their potential to result in printable, inexpensive solar cells which can be processed onto flexible substrates. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the presence of unfavorable morphological features, including dead ends or isolated domains. Here we MEH-PPV:PVP:PCBM electrospun nanofiber into BHJ solar cell for the active layer morphology optimization. Larger interfacial area between donor and acceptor is abtained with electrospinning method and the high aspect ratio of the MEH-PPV:PVP:PCBM nanofibers allow them to easily form a continuous pathway. The surface morphology is investigated with atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrospun nanofibers are discussed as a favorable structure for application in bulk-heterojunction organic solar cells. Electrospinning Nanofiber Based Bulk Heterojunction Organic Solar Cell.

  3. Columnaris as a disease of cold-water fishes

    USGS Publications Warehouse

    1945-01-01

    A natural outbreak of columnaris disease among wild adult and hatchery-reared fingerling salmon in the State of Washington is described. The disease is identified by the recovery of the causative organism, Bacillus columnaris Davis, which may be readily identified by its characteristic action in forming columns on the surfaces of infected material held in a water mount on a microscope slide. The gross lesions vary in appearance according to the particular organ affected but are formed, essentially, by the progressive necrosis and disintegration of the tissues. The tissues primarily affected are skin, body musculature, and the gills. Cultivation of the causative organism in tryptone solutions is recorded. Controlled, laboratory-induced infections indicate that among the cold-water fishes, columnaris disease is of little consequence to fingerlings at water temperatures below 55° F., but becomes highly pathogenic at temperatures in excess of 70° F. Between these temperature thresholds, the degree and severity of the infection is markedly influenced by factors adverse to the host. No effective control measures have been found.

  4. Difficulties in Laboratory Studies and Astronomical Observations of Organic Molecules: Hydroxyacetone and Lactic Acid

    NASA Technical Reports Server (NTRS)

    Apponi, A. J.; Brewster, M. A.; Hoy, J.; Ziurys, L. M.

    2006-01-01

    For the past 35 years, radio astronomy has revealed a rich organic chemistry in the interstellar gas, which is exceptionally complex towards active star-forming regions. New solar systems condense out of this gas and may influence the evolution of life on newly formed planets. Much of the biologically important functionality is present among the some 130 gas-phase molecules found to date, including alcohols, aldehydes, ketones, acids, amines, amides and even the simplest sugar - glycolaldehyde. Still, many unidentified interstellar radio signals remain, and their identification relies on further laboratory study. The molecules hydroxyacetone and lactic acid are relatively small organic molecules, but possess rather complex rotational spectra owing to their high asymmetry. Hydroxyacetone is particularly problematic because it possess a very low barrier to internal rotation, and exhibits strong coupling of the free-rotor states with the overall rotation of the molecule. As in the case of acetamide, a full decomposition method was employed to order the resultant eigenstates onto normal asymmetric top eigenvectors.

  5. Self-organizing layers from complex molecular anions

    DOE PAGES

    Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.; ...

    2018-05-14

    The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less

  6. Self-organizing layers from complex molecular anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.

    The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less

  7. Degas's sculptures--three-dimensionality and action.

    PubMed

    Rotenberg, Carl T

    2005-01-01

    The psychological self is formed largely by the steady accretion of forms of organizing experience. Outside of the interpersonal realm, these formal and categorical modes of organization can be incorporated through cyclical, continuous, and episodic interaction with modes of cultural expression, such as art, music, and poetry. Degas's sculptures, a highly experimental and personal section of his overall work, have particular formal modes of organization unique to this artist and to his particular era. Formal principles unique to Degas sculpture include the ways he rendered sculpted surfaces, masses in a state of action, and uniquely collaged materials. Degas's sculptures are proto-cinematic because they depict a brief instant in time, as opposed to a more prolonged narrative episode. Empathic, though unconscious, identification with the formal principles of Degas's sculptures shapes in the viewers ordering principles in the self that govern reactions to the vicissitudes of living, object relations, the sense of mortality, and the accomplishment of a sense of agency significant and consequential to the modern era.

  8. Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH.

    PubMed

    Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel

    2015-01-01

    High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of "oxalate plants." The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids.

  9. Development of inorganic resists for electron beam lithography: Novel materials and simulations

    NASA Astrophysics Data System (ADS)

    Jeyakumar, Augustin

    Electron beam lithography is gaining widespread utilization as the semiconductor industry progresses towards both advanced optical and non-optical lithographic technologies for high resolution patterning. The current resist technologies are based on organic systems that are imaged most commonly through chain scission, networking, or a chemically amplified polarity change in the material. Alternative resists based on inorganic systems were developed and characterized in this research for high resolution electron beam lithography and their interactions with incident electrons were investigated using Monte Carlo simulations. A novel inorganic resist imaging scheme was developed using metal-organic precursors which decompose to form metal oxides upon electron beam irradiation that can serve as inorganic hard masks for hybrid bilayer inorganic-organic imaging systems and also as directly patternable high resolution metal oxide structures. The electron beam imaging properties of these metal-organic materials were correlated to the precursor structure by studying effects such as interactions between high atomic number species and the incident electrons. Optimal single and multicomponent precursors were designed for utilization as viable inorganic resist materials for sub-50nm patterning in electron beam lithography. The electron beam imaging characteristics of the most widely used inorganic resist material, hydrogen silsesquioxane (HSQ), was also enhanced using a dual processing imaging approach with thermal curing as well as a sensitizer catalyzed imaging approach. The interaction between incident electrons and the high atomic number species contained in these inorganic resists was also studied using Monte Carlo simulations. The resolution attainable using inorganic systems as compared to organic systems can be greater for accelerating voltages greater than 50 keV due to minimized lateral scattering in the high density inorganic systems. The effects of loading nanoparticles in an electron beam resist was also investigated using a newly developed hybrid Monte Carlo approach that accounts for multiple components in a solid film. The resolution of the nanocomposite resist process was found to degrade with increasing nanoparticle loading. Finally, the electron beam patterning of self-assembled monolayers, which were found to primarily utilize backscattered electrons from the high atomic number substrate materials to form images, was also investigated and characterized. It was found that backscattered electrons limit the resolution attainable at low incident electron energies.

  10. [Pectolytic enzymes formed by Penicillium and Fusarium micromycetes].

    PubMed

    Devdariani, T G; Aĭzenberg, V L; Bilaĭ, T I; Zakordonets, L A; Mudzhiri, L A

    1982-01-01

    The ability of the two cultures Penicillium sp. and Fusarium sp. to synthesize extracellular pectolytic enzymes was investigated. The cultivation conditions providing a high level of the biosynthesis of these enzymes were identified. The methods of isolating the enzymes by means of organic solvents were developed. The pectinase from Penicillium sp. showed a higher thermostability whereas that from Fusarium sp. displayed a greater acid resistance. Using glutaraldehyde and titanium salts, active immobilized forms of pectinases on silica carriers were prepared.

  11. Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks

    PubMed Central

    McCracken, Joselle M.; Xu, Sheng; Badea, Adina; Jang, Kyung-In; Yan, Zheng; Wetzel, David J.; Nan, Kewang; Lin, Qing; Han, Mengdi; Anderson, Mikayla A.; Lee, Jung Woo; Wei, Zijun; Pharr, Matt; Wang, Renhan; Su, Jessica; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2018-01-01

    Complex 3D organizations of materials represent ubiquitous structural motifs found in the most sophisticated forms of matter, the most notable of which are in life-sustaining hierarchical structures found in biology, but where simpler examples also exist as dense multilayered constructs in high-performance electronics. Each class of system evinces specific enabling forms of assembly to establish their functional organization at length scales not dissimilar to tissue-level constructs. This study describes materials and means of assembly that extend and join these disparate systems—schemes for the functional integration of soft and biological materials with synthetic 3D microscale, open frameworks that can leverage the most advanced forms of multilayer electronic technologies, including device-grade semiconductors such as monocrystalline silicon. Cellular migration behaviors, temporal dependencies of their growth, and contact guidance cues provided by the nonplanarity of these frameworks illustrate design criteria useful for their functional integration with living matter (e.g., NIH 3T3 fibroblast and primary rat dorsal root ganglion cell cultures). PMID:29552634

  12. Untangling the origin of viruses and their impact on cellular evolution.

    PubMed

    Nasir, Arshan; Sun, Feng-Jie; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2015-04-01

    The origin and evolution of viruses remain mysterious. Here, we focus on the distribution of viral replicons in host organisms, their morphological features, and the evolution of highly conserved protein and nucleic acid structures. The apparent inability of RNA viral replicons to infect contemporary akaryotic species suggests an early origin of RNA viruses and their subsequent loss in akaryotes. A census of virion morphotypes reveals that advanced forms were unique to viruses infecting a specific supergroup, while simpler forms were observed in viruses infecting organisms in all forms of cellular life. Results hint toward an ancient origin of viruses from an ancestral virus harboring either filamentous or spherical virions. Finally, phylogenetic trees built from protein domain and tRNA structures in thousands of genomes suggest that viruses evolved via reductive evolution from ancient cells. The analysis presents a complete account of the evolutionary history of cells and viruses and identifies viruses as crucial agents influencing cellular evolution. © 2015 New York Academy of Sciences.

  13. Lithium Enolates in the Enantioselective Construction of Tetrasubstituted Carbon Centers with Chiral Lithium Amides as Noncovalent Stereodirecting Auxiliaries.

    PubMed

    Yu, Kai; Lu, Ping; Jackson, Jeffrey J; Nguyen, Thuy-Ai D; Alvarado, Joseph; Stivala, Craig E; Ma, Yun; Mack, Kyle A; Hayton, Trevor W; Collum, David B; Zakarian, Armen

    2017-01-11

    Lithium enolates derived from carboxylic acids are ubiquitous intermediates in organic synthesis. Asymmetric transformations with these intermediates, a central goal of organic synthesis, are typically carried out with covalently attached chiral auxiliaries. An alternative approach is to utilize chiral reagents that form discrete, well-defined aggregates with lithium enolates, providing a chiral environment conducive of asymmetric bond formation. These reagents effectively act as noncovalent, or traceless, chiral auxiliaries. Lithium amides are an obvious choice for such reagents as they are known to form mixed aggregates with lithium enolates. We demonstrate here that mixed aggregates can effect highly enantioselective transformations of lithium enolates in several classes of reactions, most notably in transformations forming tetrasubstituted and quaternary carbon centers. Easy recovery of the chiral reagent by aqueous extraction is another practical advantage of this one-step protocol. Crystallographic, spectroscopic, and computational studies of the central reactive aggregate, which provide insight into the origins of selectivity, are also reported.

  14. Different roles of water in secondary organic aerosol formation from toluene and isoprene

    NASA Astrophysics Data System (ADS)

    Jia, Long; Xu, YongFu

    2018-06-01

    Roles of water in the formation of secondary organic aerosol (SOA) from the irradiations of toluene-NO2 and isoprene-NO2 were investigated in a smog chamber. Experimental results show that the yield of SOA from toluene almost doubled as relative humidity increased from 5 to 85 %, whereas the yield of SOA from isoprene under humid conditions decreased by 2.6 times as compared to that under dry conditions. The distinct difference of RH effects on SOA formation from toluene and isoprene is well explained with our experiments and model simulations. The increased SOA from humid toluene-NO2 irradiations is mainly contributed by O-H-containing products such as polyalcohols formed from aqueous reactions. The major chemical components of SOA in isoprene-NO2 irradiations are oligomers formed from the gas phase. SOA formation from isoprene-NO2 irradiations is controlled by stable Criegee intermediates (SCIs) that are greatly influenced by water. As a result, high RH can obstruct the oligomerization reaction of SCIs to form SOA.

  15. Fused-Ring Acceptors with Asymmetric Side Chains for High-Performance Thick-Film Organic Solar Cells.

    PubMed

    Feng, Shiyu; Zhang, Cai'e; Liu, Yahui; Bi, Zhaozhao; Zhang, Zhe; Xu, Xinjun; Ma, Wei; Bo, Zhishan

    2017-11-01

    A kind of new fused-ring electron acceptor, IDT-OB, bearing asymmetric side chains, is synthesized for high-efficiency thick-film organic solar cells. The introduction of asymmetric side chains can increase the solubility of acceptor molecules, enable the acceptor molecules to pack closely in a dislocated way, and form favorable phase separation when blended with PBDB-T. As expected, PBDB-T:IDT-OB-based devices exhibit high and balanced hole and electron mobility and give a high power conversion efficiency (PCE) of 10.12%. More importantly, the IDT-OB-based devices are not very sensitive to the film thickness, a PCE of 9.17% can still be obtained even the thickness of active layer is up to 210 nm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  17. Germ line mechanics – and unfinished business

    PubMed Central

    Wessel, Gary M.

    2016-01-01

    Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function, and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patch-work quilt of our understanding of germ line formation during embryogenesis. PMID:26970000

  18. Germ Line Mechanics--And Unfinished Business.

    PubMed

    Wessel, Gary M

    2016-01-01

    Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patchwork quilt of our understanding of germ line formation during embryogenesis. © 2016 Elsevier Inc. All rights reserved.

  19. Shaping highly regular glass architectures: A lesson from nature

    PubMed Central

    Schoeppler, Vanessa; Reich, Elke; Vacelet, Jean; Rosenthal, Martin; Pacureanu, Alexandra; Rack, Alexander; Zaslansky, Paul; Zolotoyabko, Emil; Zlotnikov, Igor

    2017-01-01

    Demospongiae is a class of marine sponges that mineralize skeletal elements, the glass spicules, made of amorphous silica. The spicules exhibit a diversity of highly regular three-dimensional branched morphologies that are a paradigm example of symmetry in biological systems. Current glass shaping technology requires treatment at high temperatures. In this context, the mechanism by which glass architectures are formed by living organisms remains a mystery. We uncover the principles of spicule morphogenesis. During spicule formation, the process of silica deposition is templated by an organic filament. It is composed of enzymatically active proteins arranged in a mesoscopic hexagonal crystal-like structure. In analogy to synthetic inorganic nanocrystals that show high spatial regularity, we demonstrate that the branching of the filament follows specific crystallographic directions of the protein lattice. In correlation with the symmetry of the lattice, filament branching determines the highly regular morphology of the spicules on the macroscale. PMID:29057327

  20. High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires.

    PubMed

    Noori, Mohammed; Sadeghi, Hatef; Lambert, Colin J

    2017-04-20

    If high efficiency organic thermoelectric materials could be identified, then these would open the way to a range of energy harvesting technologies and Peltier coolers using flexible and transparent thin-film materials. We have compared the thermoelectric properties of three zinc porphyrin (ZnP) dimers and a ZnP monomer and found that the "edge-over-edge" dimer formed from stacked ZnP rings possesses a high electrical conductance, negligible phonon thermal conductance and a high Seebeck coefficient of the order of 300 μV K -1 . These combine to yield a predicted room-temperature figure of merit of ZT ≈ 4, which is the highest room-temperature ZT ever reported for a single organic molecule. This high value of ZT is a consequence of the low phonon thermal conductance arising from the stacked nature of the porphyrin rings, which hinders phonon transport through the edge-over-edge molecule and enhances the Seebeck coefficient.

  1. 12 CFR 905.25 - Forms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FEDERAL HOUSING FINANCE BOARD FEDERAL HOUSING FINANCE BOARD ORGANIZATION AND OPERATIONS DESCRIPTION OF ORGANIZATION AND FUNCTIONS Miscellaneous § 905.25 Forms. The following forms are available at the Finance Board...—Appointive Director Candidates—Personal Certification and Disclosure Form. E-1—Elective Director Nominees...

  2. 12 CFR 905.25 - Forms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FEDERAL HOUSING FINANCE BOARD FEDERAL HOUSING FINANCE BOARD ORGANIZATION AND OPERATIONS DESCRIPTION OF ORGANIZATION AND FUNCTIONS Miscellaneous § 905.25 Forms. The following forms are available at the Finance Board...—Appointive Director Candidates—Personal Certification and Disclosure Form. E-1—Elective Director Nominees...

  3. 12 CFR 905.25 - Forms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FEDERAL HOUSING FINANCE BOARD FEDERAL HOUSING FINANCE BOARD ORGANIZATION AND OPERATIONS DESCRIPTION OF ORGANIZATION AND FUNCTIONS Miscellaneous § 905.25 Forms. The following forms are available at the Finance Board...—Appointive Director Candidates—Personal Certification and Disclosure Form. E-1—Elective Director Nominees...

  4. Semi-Supervised Clustering for High-Dimensional and Sparse Features

    ERIC Educational Resources Information Center

    Yan, Su

    2010-01-01

    Clustering is one of the most common data mining tasks, used frequently for data organization and analysis in various application domains. Traditional machine learning approaches to clustering are fully automated and unsupervised where class labels are unknown a priori. In real application domains, however, some "weak" form of side…

  5. Detoxification of nitric oxide by Fusarium verticillioides is linked to denitrification

    USDA-ARS?s Scientific Manuscript database

    Nitric oxide (NO) is a potent cellular signaling molecule and a byproduct of nitrogen metabolism. High concentrations of NO are a form of nitrosative stress, and to alleviate this stress, organisms utilize flavohemoglobins to convert NO into nontoxic nitrate ions. We have investigated the capacity o...

  6. Classroom Environment as Related to Contest Ratings among High School Performing Ensembles.

    ERIC Educational Resources Information Center

    Hamann, Donald L.; And Others

    1990-01-01

    Examines influence of classroom environments, measured by the Classroom Environment Scale, Form R (CESR), on vocal and instrumental ensembles' musical achievement at festival contests. Using random sample, reveals subjects with higher scores on CESR scales of involvement, affiliation, teacher support, and organization received better contest…

  7. The Future of Faculty Development: Where Are We Going?

    ERIC Educational Resources Information Center

    Austin, Ann E.; Sorcinelli, Mary Deane

    2013-01-01

    Faculty development has been evolving in focus and form over the past five decades. Originally organized around sabbatical leaves, faculty development now offers a wide array of programs and involves a growing body of highly professional, deeply dedicated professionals. As both faculty members and faculty developers with over fifty collective…

  8. Business Principles and Management. Curriculum Guidelines.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This senior high school curriculum guide offers a general overview of the American business system and a study of various forms of business ownership, internal organization and management functions of business, and the financing of business. Ten areas are explored in the course: (1) capitalism; (2) money, credit, and banking; (3) government and…

  9. Fate and Transport of Hydrophobic and Hydrophilic Cyanotoxins through Granular Activated Carbons (abstract)

    EPA Science Inventory

    Cyanobacteria (also known as “blue-green algae”) are microscopic organisms that are found in most bodies of water, which can multiply to form harmful algal blooms (HABs) under favorable conditions (i.e., rich nutrients, strong sunlight, and high temperature). Many genera of cyano...

  10. Community College of Rhode Island: Annual Report, 1998.

    ERIC Educational Resources Information Center

    Abood, Nancy V.; LeBlanc, William

    This 1998 annual report describes the college's plans for building facilities for the future and its infrastructure improvements. The document looks at the college's response to building programs of study that will meet the community's needs, and describes partnerships formed with high schools, colleges and universities, non-profit organizations,…

  11. Method for freeforming objects with low-binder slurry

    DOEpatents

    Cesarano, III, Joseph; Calvert, Paul D.

    2002-01-01

    In a rapid prototyping system, a part is formed by depositing a bead of slurry that has a sufficient high concentration of particles to be pseudoplastic and almost no organic binders. After deposition the bead is heated to drive off sufficient liquid to cause the bead to become dilatant.

  12. Formation and characterization of non-growth states in Clostridium thermocellum: spores and L-forms

    PubMed Central

    2012-01-01

    Background Clostridium thermocellum is an anaerobic thermophilic bacterium that exhibits high levels of cellulose solublization and produces ethanol as an end product of its metabolism. Using cellulosic biomass as a feedstock for fuel production is an attractive prospect, however, growth arrest can negatively impact ethanol production by fermentative microorganisms such as C. thermocellum. Understanding conditions that lead to non-growth states in C. thermocellum can positively influence process design and culturing conditions in order to optimize ethanol production in an industrial setting. Results We report here that Clostridium thermocellum ATCC 27405 enters non-growth states in response to specific growth conditions. Non-growth states include the formation of spores and a L-form-like state in which the cells cease to grow or produce the normal end products of metabolism. Unlike other sporulating organisms, we did not observe sporulation of C. thermocellum in low carbon or nitrogen environments. However, sporulation did occur in response to transfers between soluble and insoluble substrates, resulting in approximately 7% mature spores. Exposure to oxygen caused a similar sporulation response. Starvation conditions during continuous culture did not result in spore formation, but caused the majority of cells to transition to a L-form state. Both spores and L-forms were determined to be viable. Spores exhibited enhanced survival in response to high temperature and prolonged storage compared to L-forms and vegetative cells. However, L-forms exhibited faster recovery compared to both spores and stationary phase cells when cultured in rich media. Conclusions Both spores and L-forms cease to produce ethanol, but provide other advantages for C. thermocellum including enhanced survival for spores and faster recovery for L-forms. Understanding the conditions that give rise to these two different non-growth states, and the implications that each has for enabling or enhancing C. thermocellum survival may promote the efficient cultivation of this organism and aid in its development as an industrial microorganism. PMID:22897981

  13. A phenomenological description of BslA assemblies across multiple length scales

    PubMed Central

    Morris, Ryan J.; Bromley, Keith M.; Stanley-Wall, Nicola

    2016-01-01

    Intrinsically interfacially active proteins have garnered considerable interest recently owing to their potential use in a range of materials applications. Notably, the fungal hydrophobins are known to form robust and well-organized surface layers with high mechanical strength. Recently, it was shown that the bacterial biofilm protein BslA also forms highly elastic surface layers at interfaces. Here we describe several self-assembled structures formed by BslA, both at interfaces and in bulk solution, over a range of length scales spanning from nanometres to millimetres. First, we observe transiently stable and highly elongated air bubbles formed in agitated BslA samples. We study their behaviour in a range of solution conditions and hypothesize that their dissipation is a consequence of the slow adsorption kinetics of BslA to an air–water interface. Second, we describe elongated tubules formed by BslA interfacial films when shear stresses are applied in both a Langmuir trough and a rheometer. These structures bear a striking resemblance, although much larger in scale, to the elongated air bubbles formed during agitation. Taken together, this knowledge will better inform the conditions and applications of how BslA can be used in the stabilization of multi-phase materials. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298433

  14. Method for desulfurization of coal

    DOEpatents

    Kelland, D.R.

    1987-07-07

    A process and apparatus are disclosed for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS[sub 2] to a troilite FeS form or a pyrrhotite form Fe[sub 1[minus]x]S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H[sub 2]S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents. 2 figs.

  15. Degradation of natural organic matter by UV/chlorine oxidation: Molecular decomposition, formation of oxidation byproducts and cytotoxicity.

    PubMed

    Wang, Wen-Long; Zhang, Xue; Wu, Qian-Yuan; Du, Ye; Hu, Hong-Ying

    2017-11-01

    The degradation of natural organic matters (NOMs) by the combination of UV and chlorine (UV/chlorine) was investigated in this study. UV/chlorine oxidation can effectively degrade NOMs, with the degradation of chromophores (∼80%) and fluorophores (76.4-80.8%) being more efficient than that of DOC (15.1-18.6%). This effect was attributed to the chromophores and fluorophores (double bonds, aromatic groups and phenolic groups) being preferentially degraded by UV/chlorine oxidation, particularly reactive groups with high electron donating capacity. Radical species •OH and •Cl were generated during UV/chlorine oxidation, with the contribution of •OH 1.4 times as high as that of •Cl. The degradation kinetics of different molecular weight (MW) fractions suggests that UV/chlorine oxidation degrades high MW fractions into low MW fractions, with the degradation rates of high MW fractions (>3000 Da) 4.5 times of those of medium MW fractions (1000-3000 Da). In comparison with chlorination alone, UV/chlorine oxidation did not increase the formation (30 min) and formation potential (24 h) of trihalomethanes, but instead promoted the formation and formation potential of haloacetic acids and chloral hydrate. Adsorbable organic halogen (AOX) formed from UV/chlorine oxidation of NOM were 0.8 times higher than those formed from chlorination. Cytotoxicity studies indicated that the cytotoxicity of NOM increased after both chlorination and UV/chlorine oxidation, which may be due to the formation of AOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Extraterrestrial Organic Compounds in Meteorites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  17. 17 CFR 274.11b - Form N-3, registration statement of separate accounts organized as management investment companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... statement of separate accounts organized as management investment companies. 274.11b Section 274.11b... accounts organized as management investment companies. Form N-3 shall be used as the registration statement... offer variable annuity contracts to register as management investment companies. This form shall also be...

  18. 17 CFR 249.820 - Form 19b-4(e) for the listing and trading of new derivative securities products by self...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and trading of new derivative securities products by self-regulatory organizations that are not deemed... Forms for Self-Regulatory Organization Rule Changes and Forms for Registration of and Reporting by... listing and trading of new derivative securities products by self-regulatory organizations that are not...

  19. 17 CFR 249.820 - Form 19b-4(e) for the listing and trading of new derivative securities products by self...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and trading of new derivative securities products by self-regulatory organizations that are not deemed... Forms for Self-Regulatory Organization Rule Changes and Forms for Registration of and Reporting by... listing and trading of new derivative securities products by self-regulatory organizations that are not...

  20. 17 CFR 249.820 - Form 19b-4(e) for the listing and trading of new derivative securities products by self...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and trading of new derivative securities products by self-regulatory organizations that are not deemed... Forms for Self-Regulatory Organization Rule Changes and Forms for Registration of and Reporting by... listing and trading of new derivative securities products by self-regulatory organizations that are not...

  1. 17 CFR 249.820 - Form 19b-4(e) for the listing and trading of new derivative securities products by self...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and trading of new derivative securities products by self-regulatory organizations that are not deemed... Forms for Self-Regulatory Organization Rule Changes and Forms for Registration of and Reporting by... listing and trading of new derivative securities products by self-regulatory organizations that are not...

  2. 17 CFR 249.820 - Form 19b-4(e) for the listing and trading of new derivative securities products by self...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and trading of new derivative securities products by self-regulatory organizations that are not deemed... Forms for Self-Regulatory Organization Rule Changes and Forms for Registration of and Reporting by... listing and trading of new derivative securities products by self-regulatory organizations that are not...

  3. Anatomical Analysis of Saccharomyces cerevisiae Stalk-Like Structures Reveals Spatial Organization and Cell Specialization

    PubMed Central

    Scherz, Ruth; Shinder, Vera; Engelberg, David

    2001-01-01

    Recently we reported an unusual multicellular organization in yeast that we termed stalk-like structures. These structures are tall (0.5 to 3 cm long) and narrow (1 to 3 mm in diameter). They are formed in response to UV radiation of cultures spread on high agar concentrations. Here we present an anatomical analysis of the stalks. Microscopic inspection of cross sections taken from stalks revealed that stalks are composed of an inner core in which cells are dense and vital and a layer of cells (four to six rows) that surrounds the core. This outer layer is physically separated from the core and contains many dead cells. The outer layer may form a protective shell for the core cells. Through electron microscopy analysis we observed three types of cells within the stalk population: (i) cells containing many unusual vesicles, which might be undergoing some kind of cell death; (ii) cells containing spores (usually one or two spores only); and (iii) familiar rounded cells. We suggest that stalk cells are not only spatially organized but may undergo processes that induce a certain degree of cell specialization. We also show that high agar concentration alone, although not sufficient to induce stalk formation, induces dramatic changes in a colony's morphology. Most striking among the agar effects is the induction of growth into the agar, forming peg-like structures. Colonies grown on 4% agar or higher are reminiscent of stalks in some aspects. The agar concentration effects are mediated in part by the Ras pathway and are related to the invasive-growth phenomenon. PMID:11514526

  4. Formation of light absorbing organo-nitrogen species from evaporation of droplets containing glyoxal and ammonium sulfate.

    PubMed

    Lee, Alex K Y; Zhao, Ran; Li, Richard; Liggio, John; Li, Shao-Meng; Abbatt, Jonathan P D

    2013-11-19

    In the atmosphere, volatile organic compounds such as glyoxal can partition into aqueous droplets containing significant levels of inorganic salts. Upon droplet evaporation, both the organics and inorganic ions become highly concentrated, accelerating reactions between them. To demonstrate this process, we investigated the formation of organo-nitrogen and light absorbing materials in evaporating droplets containing glyoxal and different ammonium salts including (NH4)2SO4, NH4NO3, and NH4Cl. Our results demonstrate that evaporating glyoxal-(NH4)2SO4 droplets produce light absorbing species on a time scale of seconds, which is orders of magnitude faster than observed in bulk solutions. Using aerosol mass spectrometry, we show that particle-phase organics with high N:C ratios were formed when ammonium salts were used, and that the presence of sulfate ions promoted this chemistry. Since sulfate can also significantly enhance the Henry's law partitioning of glyoxal, our results highlight the atmospheric importance of such inorganic-organic interactions in aqueous phase aerosol chemistry.

  5. Design of bone-integrating organic-inorganic composite suitable for bone repair.

    PubMed

    Miyazaki, Toshiki

    2013-01-01

    Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.

  6. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    PubMed

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  7. Windmill Co4 {Co4 (μ4 -O)} with 16 Divergent Branches Forming a Family of Metal-Organic Frameworks: Organic Metrics Control Topology, Gas Sorption, and Magnetism.

    PubMed

    Chen, Qing; Xue, Wei; Lin, Jian-Bin; Wei, Yong-Sheng; Yin, Zheng; Zeng, Ming-Hua; Kurmoo, Mohamedally; Chen, Xiao-Ming

    2016-08-16

    A series of highly connected metal-organic frameworks (MOFs), [Co8 (O)(OH)4 (H2 O)4 (ina)8 ](NO3 )2 ⋅2 C2 H5 OH⋅4 H2 O (1), [Co8 (O)(OH)4 (H2 O)4 (pba)8 ](NO3 )2 ⋅8 C2 H5 OH⋅28 H2 O (2), and [Co8 (O)(OH)4 (H2 O)4 (pbba)8 ](NO3 )2 ⋅guest (3), in which ina=isonicotinate, pba=4-pyridylbenzoate, and pbba=4-(pyridine-4-yl)phenylbenzoate, is reported. These MOFs contain a new secondary building unit (SBU), with a square Co4 (μ4 -O) central unit having the rare μ4 -O(2-) motif, which is decorated by the other four peripheral cobalt atoms through μ3 -OH in a windmill-like shape. This SBU holds 16 divergent connecting organic ligands, pyridyl-carboxylates, to form three different frameworks. The high porosity of desolvated 2 is shown by the efficient gas absorption of N2 , CO2 , CH4 , and H2 . In addition, 1 and 2 exhibit unusual canted antiferromagnetic behavior with spin-glass-like relaxation, with blocking temperatures that are fairly high, 20 K (1) and 10 K (2), for cobalt materials. The relationship between the metal clusters and linkers has been studied, in which the size and rotational degrees of freedom of the ligands are found to control the topology, gas sorption, and magnetic properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characterizing Skeletal Framework Proteins from the Stony Coral, Stylophora pistillata using Proteomics

    NASA Astrophysics Data System (ADS)

    Drake, J.; Mass, T.; Haramaty, L.; Zelzion, U.; Bhattacharya, D.; Falkowski, P. G.

    2012-12-01

    Carbonate formation by biological organisms is catalyzed by a set of proteins. In corals, the proteins form a subset of a poorly characterized skeletal organic matrix (SOM). This matrix is not simply cells occluded in the mineral, but is instead a suite of biomolecules secreted from cells for the purpose of nucleation and/or scaffolding. However, the mechanism(s) for SOM's role in biomineral formation remain to be elucidated, in part because, for many organisms including stony corals, the organic molecules have yet to be characterized much less modeled. In an effort to understand the calcification process, we sequenced the SOM protein complex in the zooxanthellate coral, Stylophora pistillata, by liquid chromatography-tandem mass spectrometry. Our analysis reveals several 'framework' proteins as well as three highly acidic proteins (proteins that contain >30% aspartic and glutamic acids). The SOM framework proteins show sequence homology with other stony corals as well as with calcite biomineralizers. Several of these proteins exhibit calcium-binding domains, while others are likely involved in attachment of the coral calicoblastic layer to the newly formed skeleton substrate. We have begun to express and purify the framework proteins to (1) confirm and visualize their presence in the extracted SOM and in intact skeleton by antibody staining and immunolocalization, and (2) test their interaction with the highly acidic SOM proteins that may direct aragonite nucleation. This work is the first comprehensive proteomic analysis of coral SOM. Together with our genomic work investigating highly acidic SOM candidates (Mass et al. 2012 AGU Fall Meeting abstract), this will allow us to construct a three-dimensional model of the coral calcifying space to better understand the mechanisms of coral biomineralization.

  9. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Laskin, Alexander

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e.more » NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.« less

  10. Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study.

    PubMed

    Fabritius, Helge-Otto; Ziegler, Andreas; Friák, Martin; Nikolov, Svetoslav; Huber, Julia; Seidl, Bastian H M; Ruangchai, Sukhum; Alagboso, Francisca I; Karsten, Simone; Lu, Jin; Janus, Anna M; Petrov, Michal; Zhu, Li-Fang; Hemzalová, Pavlína; Hild, Sabine; Raabe, Dierk; Neugebauer, Jörg

    2016-09-09

    The crustacean cuticle is a composite material that covers the whole animal and forms the continuous exoskeleton. Nano-fibers composed of chitin and protein molecules form most of the organic matrix of the cuticle that, at the macroscale, is organized in up to eight hierarchical levels. At least two of them, the exo- and endocuticle, contain a mineral phase of mainly Mg-calcite, amorphous calcium carbonate and phosphate. The high number of hierarchical levels and the compositional diversity provide a high degree of freedom for varying the physical, in particular mechanical, properties of the material. This makes the cuticle a versatile material ideally suited to form a variety of skeletal elements that are adapted to different functions and the eco-physiological strains of individual species. This review presents our recent analytical, experimental and theoretical studies on the cuticle, summarising at which hierarchical levels structure and composition are modified to achieve the required physical properties. We describe our multi-scale hierarchical modeling approach based on the results from these studies, aiming at systematically predicting the structure-composition-property relations of cuticle composites from the molecular level to the macro-scale. This modeling approach provides a tool to facilitate the development of optimized biomimetic materials within a knowledge-based design approach.

  11. Murchison CM2 chondrite at nanoscale: evidence for hydrated minerals in the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J. M.; Vila-Ruaix, A.; Alonso-Azcárate, J.; Abad, M. M.

    2017-03-01

    The most pristine chondrites are undifferentiated meteorites with highly unequilibrated mineral grains that accreted from the protoplanetary disk about 4.6 Gyrs ago. Here we focus our attention in the study of Murchison, one of the most primitive carbonaceous chondrites belonging to the CM2 group. Despite of being aqueously altered, Murchison matrix is extraordinarily complex at nanoscale, and its study can hold clues to understand the origin of the water incorporated in the parent bodies of carbonaceous chondrites. Murchison comes from an undifferentiated carbon-rich asteroid which formed from the accretion of solid particles formed in the outer protoplanetary disk. Their rock-forming materials felt into the plane of the system where they mixed with organics, and probably with hydrated minerals. Our UHRTEM (ultra-high resolution transmission electron microscopy) data demonstrate that Murchison fine-grained matrix consists of a complex mixture of many ingredients, including chondrule and CAI fragments, stellar grains, phyllosilicates and organic compounds. We describe here some mineral and textural features that exemplify how pristine, and diverse is Murchison matrix. Our results indicate that the study of carbonaceous chondrites at nanoscale can provide a significant progress in our understanding of the accretion of materials and the preservation of presolar grains in the outer regions of the protoplanetary disk.

  12. Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators

    NASA Astrophysics Data System (ADS)

    Choi, Yunah; Kim, Jin Il; Moon, Jungjin; Jeong, Jongyeob; Park, Jong Hyeok

    2018-06-01

    A tailored interface between organic and inorganic materials is of great importance to maximize the synergistic effects from hybridization. Polyethylene separators over-coated with inorganic thin films are the state-of-the art technology for preparing various secondary batteries with high safety. Unfortunately, the organic/inorganic hybrid separators have the drawback of a non-ideal interface, thus causing poor thermal/dimensional stability. Here, we report a straightforward method to resolve the drawback of the non-ideal interface between vapor deposited SiO2 and polyethylene separators, to produce a highly stable lithium-ion battery separator through strong chemical linking generated by direct electron beam irradiation. The simple treatment with an electron beam with an optimized dose generates thermally stable polymer separators, which may enhance battery safety under high-temperature conditions. Additionally, the newly formed Si-O-C or Si-CH3 chemical bonding enhances electrolyte-separator compatibility and thus may provide a better environment for ionic transport between the cathode and anode, thereby leading to better charge/discharge behaviors.

  13. Single-molecule imaging in live bacteria cells.

    PubMed

    Ritchie, Ken; Lill, Yoriko; Sood, Chetan; Lee, Hochan; Zhang, Shunyuan

    2013-02-05

    Bacteria, such as Escherichia coli and Caulobacter crescentus, are the most studied and perhaps best-understood organisms in biology. The advances in understanding of living systems gained from these organisms are immense. Application of single-molecule techniques in bacteria have presented unique difficulties owing to their small size and highly curved form. The aim of this review is to show advances made in single-molecule imaging in bacteria over the past 10 years, and to look to the future where the combination of implementing such high-precision techniques in well-characterized and controllable model systems such as E. coli could lead to a greater understanding of fundamental biological questions inaccessible through classic ensemble methods.

  14. Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zhou, Yongfang; Wang, Min; Wang, Liang; Liu, Shuli; Chen, Shufen; Cao, Kun; Shang, Wenjuan; Mai, Jiangquan; Zhao, Baomin; Feng, Jing; Lu, Xinhui; Huang, Wei

    2017-09-01

    An insulated poly(sodium 4-styrenseulfonate) (PSS) was used to modify monolayer graphene for anode applications of organic photovoltaics (OPVs). With this PSS interfacial modification layer, the OPVs showed a significant increase of 56.4% in efficiency due to an improved work function and hydrophilic feature of graphene and an enlarged recombination resistance of carriers/excitons. Doping a highly contorted 1,2,5-thiadiazole-fused 12-ring polyaromatic hydrocarbon into the active layer to form ternary blended OPVs further enlarged the recombination resistance of carriers/excitons and improved light absorption of the active layer, with which a high power conversion efficiency of 6.29% was acquired.

  15. Transient phases during fast crystallization of organic thin films from solution

    NASA Astrophysics Data System (ADS)

    Wan, Jing; Li, Yang; Ulbrandt, Jeffrey G.; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam C.; Headrick, Randall L.

    2016-01-01

    We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s), mobility up to 3.0 cm2/V-s has been observed.

  16. Water Ice and Life's Roots in Space

    NASA Technical Reports Server (NTRS)

    Blake, David; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nearly three decades ago as Voyager 2 spacecraft raced out of the Solar System. NASA engineers turned its camera arm around (at the request of the American astronomer Carl Sagan) to take a parting snapshot of Earth. Earth's image was a single pale blue pixel, its color caused by the Rayleigh scattering of sunlight in the water of our oceans. Earth is a water planet, and this is the color of life. No matter how far we travel on our planet, no matter how high or deep, if we find liquid water, we find some form of life that manages to survive there. And yet there is a cruel irony. Water in its solid crystalline form is hostile to life. Organisms can roost in geysers, wallow in brine and gulp down acid, but they cowered from ice. The rigid ordering of water molecules in ice crystals expels impurities and tears organic tissue beyond repair. In fact, about the only good thing you can say about ice is that it gets out of the way: Its low density ensures that it floats and leaves the water dwelling creatures in peace. Recent discoveries have caused us to rethink this basic premise. New lines of evidence both observational and experimental - suggest that prebiotic organic compounds are not only comfortable in, but in fact had their origin in a peculiar form of solid water ice that is ubiquitous in interstellar space, but completely absent from Earth. Only recently have we been able to create even submicroscopic quantities of this ice in terrestrial laboratories, yet it constitutes the most abundant form of water in the universe. Interstellar ice is a far cry from the ice we are so familiar with on Earth. This interstellar ice has no crystalline structure, and despite the fact that its temperature is a scant few degrees above absolute zero (where all molecular motion ceases), it is highly reactive and can flow like water when exposed to radiation. It is in fact this ice's similarity to liquid water that allows it to participate in the creation of the very first organic compounds.

  17. Differential Effect of Plant Lipids on Membrane Organization

    PubMed Central

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  18. Urban aerosol particles of Santiago, Chile:. organic content and molecular characterization

    NASA Astrophysics Data System (ADS)

    Didyk, Borys M.; Simoneit, Bernd R. T.; Alvaro Pezoa, L.; Luis Riveros, M.; Anselmo Flores, A.

    Santiago, Chile has developed a significant problem of atmospheric contamination with high levels of total suspended aerosol particles consisting of a high PM-10 fraction. This is associated with a growing economy, rapid urban expansion, increasing rate of motorization and expanding industrial activity. The organic contribution to atmospheric suspended particles (PM-10) in Santiago has been quantitated, characterized and related to its input sources in this report. The average organic content of 38% is significantly lower from pre-regulatory levels of 71% and in the range reported for other urban centers. Molecular markers indicate that a predominant proportion of the organic compounds associated with the particluate matter are derived from uncombusted diesel, uncombusted lubricating oil and other petrochemical fuel use. A significant organic contribution from natural plant wax hydrocarbons is also detected, suggesting biomass fuel use, open burning of vegetation in incidental fires or agricultural practices and resuspension of weathered vegetation debris. Aromatic hydrocarbon fractions indicate the presence of pyrogenic PAH formed by high-temperature combustion processes of petrochemical fuels with a significant contribution of retene indicative of conifer wood combustion. Maturity indicators, based on methylphenanthrene indexes, also indicate the simultaneous concurrence of high- and low-temperature combustion processes and confirm a significant contribution of non-petrochemical-sourced organic compounds to the atmospheric aerosols. Benzopyrene ratios indicate that Santiago aerosols are freshly generated and do not have an extensive solar exposure. The present study provides a reference baseline for the organic components relating to air quality in Santiago, and will permit the assessment of the environmental effectiveness of corrective measures related to energy usage and transport administration.

  19. Sustainable Process for the Preparation of High-Performance Thin-Film Composite Membranes using Ionic Liquids as the Reaction Medium.

    PubMed

    Mariën, Hanne; Bellings, Lotte; Hermans, Sanne; Vankelecom, Ivo F J

    2016-05-23

    A new form of interfacial polymerization to synthesize thin-film composite membranes realizes a more sustainable membrane preparation and improved nanofiltration performance. By introducing an ionic liquid (IL) as the organic reaction phase, the extremely different physicochemical properties to those of commonly used organic solvents influenced the top-layer formation in several beneficial ways. In addition to the elimination of hazardous solvents in the preparation, the m-phenylenediamine (MPD) concentration could be reduced 20-fold, and the use of surfactants and catalysts became redundant. Together with the more complete recycling of the organic phase in the water/IL system, these factors resulted in a 50 % decrease in the mass intensity of the top-layer formation. Moreover, a much thinner top layer with a high ethanol permeance of 0.61 L m(-2)  h(-1)  bar(-1) [99 % Rose Bengal (RB, 1017 Da) retention; 1 bar=0.1 MPa] was formed without the use of any additives. This EtOH permeance is 555 and 161 % higher than that for the conventional interfacial polymerization (without and with additives, respectively). In reverse osmosis, high NaCl retentions of 97 % could be obtained. Finally, the remarkable decrease in the membrane surface roughness indicates the potential for reduced fouling with this new type of membrane. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Investigation of the mechanisms of membrane fouling by intracellular organic matter under different iron treatments during ultrafiltration.

    PubMed

    Huang, Weiwei; Qin, Xiao; Dong, Bingzhi; Zhou, Wenzong; Lv, Weiguang

    2018-05-30

    Iron is an important trace element in algal growth and water eutrophication. This study focused on the ultrafiltration (UF) membrane fouling mechanism by the intracellular organic matter (IOM) of Microcystis aeruginosa under different iron treatments. The results indicated that the membranes experienced faster flux decline and worse fouling reversibility when the IOM formed under low iron concentrations. In contrast, less IOM membrane fouling was found under normal and high iron concentrations. The mass balances of the dissolved organic carbon (DOC) content implied that the IOM in the low-iron treatment was associated with higher IOM retention and a higher capacity of reversibly deposited organics, whereas more IOM in the high-iron treatment passed through the UF membrane. The IOM in the low-iron treatment was composed of more biopolymer macromolecules, whereas the IOM in the high-iron treatment contained more UV-absorbing hydrophobic organics. The fluorescence excitation-emission matrix (EEM) spectra coupled with peak-fitting analysis implied that the fouling associated with protein-like components was more irreversible in the low-iron treatment than those in the normal- and high-iron treatments. Cake formation combined with intermediate blocking was identified as the main membrane fouling mechanism responsible for the flux decline caused by IOM solutions in the three iron treatments in this study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. 20 CFR 422.527 - Private printing and modification of prescribed applications, forms, and other publications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prescribed applications, forms, and other publications. 422.527 Section 422.527 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES Applications and Related Forms § 422.527 Private..., institution, or organization wishing to reproduce, reprint, or distribute any application, form, or...

  2. 41 CFR 61-250.11 - On what form must the data required by this part be submitted?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... boxes. Type of Form: If a reporting organization submits only one VETS-100 Report form for a single location, check the Single Establishment box. If the reporting organization submits more than one form... the space provided. For each form, only one box should be checked within this block. COMPANY...

  3. 41 CFR 61-250.11 - On what form must the data required by this part be submitted?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boxes. Type of Form: If a reporting organization submits only one VETS-100 Report form for a single location, check the Single Establishment box. If the reporting organization submits more than one form... the space provided. For each form, only one box should be checked within this block. COMPANY...

  4. 41 CFR 61-250.11 - On what form must the data required by this part be submitted?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... boxes. Type of Form: If a reporting organization submits only one VETS-100 Report form for a single location, check the Single Establishment box. If the reporting organization submits more than one form... the space provided. For each form, only one box should be checked within this block. COMPANY...

  5. High pCO 2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial

    DOE PAGES

    Kamennaya, Nina A.; Zemla, Marcin; Mahoney, Laura; ...

    2018-05-29

    Here, the contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22–2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO 2 pressure ( pCO 2) representative of the early Paleoproterozoic. We find that high pCO 2 boosts generation of acidic extracellularmore » polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.« less

  6. High pCO 2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamennaya, Nina A.; Zemla, Marcin; Mahoney, Laura

    Here, the contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22–2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO 2 pressure ( pCO 2) representative of the early Paleoproterozoic. We find that high pCO 2 boosts generation of acidic extracellularmore » polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.« less

  7. Distributions, Early Diagenesis, and Spatial Characteristics of Amino Acids in Sediments of Multi-Polluted Rivers: A Case Study in the Haihe River Basin, China.

    PubMed

    Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong; Rong, Nan; Ding, Yuekui

    2016-02-19

    The Haihe River Basin, which is one of the most water-scarce and polluted river basins in China, has abnormally high nitrogen levels. In this study, total hydrolyzable amino acids (THAAs) were measured in surface sediment and sediment core samples in the Haihe River Basin to determine if amino acids were potential sources of ammonium, organic nitrogen, and organic carbon. The rivers were found to be in a state of hypoxia and contain abnormally high levels of ammonium and organic nitrogen. Additionally, NH₃-N was the predominant form of inorganic nitrogen in the surface sediments, while organic nitrogen accounted for 92.53% of sedimentary nitrogen. THAAs-C accounted for 14.92% of the total organic carbon, while THAAs-N accounted for more than 49.59% of organic nitrogen and 45.68% of total nitrogen. The major fraction of THAAs were protein amino acids. Three sediment cores of the most heavily polluted rivers also showed high levels of THAAs. Evaluation of the degradation index (DI) of sedimentary organic matter in sediments evaluated based on the THAAs revealed that most positive DI values were found in the downstream portion of the Ziya River Watershed. Additionally, the DI of surface sediment was correlated with THAAs (r² = 0.763, p < 0.001), as was the DI of sediment cores (r² = 0.773, p < 0.001). Overall, amino acids in sediments were found to be an important potential source of ammonium, organic nitrogen, and organic carbon.

  8. Distributions, Early Diagenesis, and Spatial Characteristics of Amino Acids in Sediments of Multi-Polluted Rivers: A Case Study in the Haihe River Basin, China

    PubMed Central

    Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong; Rong, Nan; Ding, Yuekui

    2016-01-01

    The Haihe River Basin, which is one of the most water-scarce and polluted river basins in China, has abnormally high nitrogen levels. In this study, total hydrolyzable amino acids (THAAs) were measured in surface sediment and sediment core samples in the Haihe River Basin to determine if amino acids were potential sources of ammonium, organic nitrogen, and organic carbon. The rivers were found to be in a state of hypoxia and contain abnormally high levels of ammonium and organic nitrogen. Additionally, NH3-N was the predominant form of inorganic nitrogen in the surface sediments, while organic nitrogen accounted for 92.53% of sedimentary nitrogen. THAAs-C accounted for 14.92% of the total organic carbon, while THAAs-N accounted for more than 49.59% of organic nitrogen and 45.68% of total nitrogen. The major fraction of THAAs were protein amino acids. Three sediment cores of the most heavily polluted rivers also showed high levels of THAAs. Evaluation of the degradation index (DI) of sedimentary organic matter in sediments evaluated based on the THAAs revealed that most positive DI values were found in the downstream portion of the Ziya River Watershed. Additionally, the DI of surface sediment was correlated with THAAs (r2 = 0.763, p < 0.001), as was the DI of sediment cores (r2 = 0.773, p < 0.001). Overall, amino acids in sediments were found to be an important potential source of ammonium, organic nitrogen, and organic carbon. PMID:26907310

  9. Organic Phosphorus Characterisation in Agricultural Soils by Enzyme Addition Assays

    NASA Astrophysics Data System (ADS)

    Jarosch, Klaus; Frossard, Emmanuel; Bünemann, Else K.

    2013-04-01

    Phosphorus (P) is a non-renewable resource and it is a building block of many molecules indispensable for life. Up to 80 per cent of total soil P can be in organic form. Hydrolysability and thereby availability to plants and microorganisms differ strongly among the multitude of chemical forms of soil organic P. A recent approach to characterise organic P classes is the addition of specific enzymes which hydrolyse organic P to inorganic orthophosphate, making it detectable by colorimetry. Based on the substrate specificity of the added enzymes, conclusions about the hydrolysed forms of organic P can then be made. The aim of this study was to determine the applicability of enzyme addition assays for the characterisation of organic P species in soil:water suspensions of soils with differing properties. To this end, ten different soil samples originating from four continents, with variable pH (in water) values (4.2-8.0), land management (grassland or cropped land) and P fertilization intensity were analysed. Three different enzymes were used (acid phosphatase, nuclease and phytase). Acid phosphatase alone or in combination with nuclease was applied to determine the content of P in simple monoesters (monoester-like P) and P in DNA (DNA-like P), while P hydrolysed from myo-inositol hexakisphosphate (Ins6P-like P) was calculated from P release after incubation with phytase minus P release by acid phosphatase. To reduce sorption of inorganic P on soil particles of the suspension, especially in highly weathered soils, soil specific EDTA additions were determined in extensive pre-tests. The results of these pre-tests showed that recoveries of at least 30 per cent could be achieved in all soils. Thus, detection of even small organic P pools, such as DNA-like P, was possible in all soils if a suitable EDTA concentration was chosen. The enzyme addition assays provided information about the hydrolysable quantities of the different classes of soil organic P compounds as affected by various soil specific variables. Thus, the characterisation of soil organic P by enzyme addition assays was further developed and shown to be applicable on a very wide range of soil types. The method also bears the potential for describing translocation processes of dissolved organic P species in soil - aquifer systems. Key words: soil organic phosphorus characterisation, enzyme additions, dissolved organic P

  10. Manufacture of ceramic tiles from fly ash

    DOEpatents

    Hnat, James G.; Mathur, Akshay; Simpson, James C.

    1999-01-01

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.

  11. [Chemical forms and ecological effect of soil Mn in liver cancer's high incidence area in Zhu-jiang River Delta, China].

    PubMed

    Dou, Lei; Zhou, Yong-Zhang; Li, Yong; Ma, Jin; An, Yan-Fei; Du, Hai-Yan; Li, Zhan-Qiang

    2008-06-01

    The samples of surface soil, deep soil, and vegetables were collected from the liver cancer's high- and low incidence areas in Zhujiang River Delta to study the relationships between soil Mn forms and vegetables' Mn enrichment. The results showed that the soil Mn in study area was mainly derived from parent materials, and rarely come from human activities. The average soil Mn content in liver cancer's high incidence area was 577.65 mg x kg(-1), being significantly lower than that of liver cancer's low incidence area (718.04 mg x kg(-1)) and whole country (710 mg x kg(-1)). The Mn forms in high incidence area were mainly of residual Mn and Fe-Mn oxide, and less of water soluble Mn and exchangeable Mn, with the sum of the latter two's distribution coefficients being not higher than 4%. In low incidence area, the distribution pattern of soil Mn forms was similar to that in high incidence area, but the absolute contents of the Mn forms were significantly higher. Soil total Mn and soil pH had significant effects on soil Mn forms. There existed significant positive correlations between soil total Mn and the Mn forms of Fe-Mn bound, humic acid bound, carbonate bound, and residual, and negative correlations between soil pH and soil water soluble and organic bound Mn forms. Among the test five kinds of vegetables, Youmai lettuce and Chinese cabbage in liver cancer' s high incidence area had a significantly lower Mn content than in low incidence area, while the other three had less difference. The Mn enrichment in test vegetables was positively correlated with to the content of soil available Mn (sum of water soluble Mn and exchangeable Mn), but had no correlations with the contents of soil total Mn and other Mn forms.

  12. The protein folds as platonic forms: new support for the pre-Darwinian conception of evolution by natural law.

    PubMed

    Denton, Michael J; Marshall, Craig J; Legge, Michael

    2002-12-07

    Before the Darwinian revolution many biologists considered organic forms to be determined by natural law like atoms or crystals and therefore necessary, intrinsic and immutable features of the world order, which will occur throughout the cosmos wherever there is life. The search for the natural determinants of organic form-the celebrated "Laws of Form"-was seen as one of the major tasks of biology. After Darwin, this Platonic conception of form was abandoned and natural selection, not natural law, was increasingly seen to be the main, if not the exclusive, determinant of organic form. However, in the case of one class of very important organic forms-the basic protein folds-advances in protein chemistry since the early 1970s have revealed that they represent a finite set of natural forms, determined by a number of generative constructional rules, like those which govern the formation of atoms or crystals, in which functional adaptations are clearly secondary modifications of primary "givens of physics." The folds are evidently determined by natural law, not natural selection, and are "lawful forms" in the Platonic and pre-Darwinian sense of the word, which are bound to occur everywhere in the universe where the same 20 amino acids are used for their construction. We argue that this is a major discovery which has many important implications regarding the origin of proteins, the origin of life and the fundamental nature of organic form. We speculate that it is unlikely that the folds will prove to be the only case in nature where a set of complex organic forms is determined by natural law, and suggest that natural law may have played a far greater role in the origin and evolution of life than is currently assumed.

  13. Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata.

    PubMed

    Zhang, Wei; Guo, Zhiqiang; Zhou, Yanyan; Liu, Huaxue; Zhang, Li

    2015-01-01

    Arsenic (As) exists as the toxic inorganic forms in marine water and sediment, while marine oysters usually accumulate high As contents mostly as the less toxic organic forms. It has not yet been clear that how As is biotransformed in marine oysters. This study therefore investigated the biotransformation and detoxification of two inorganic As forms (As(III) and As(V)) in Bombay oyster Saccostrea cucullata after waterborne exposures for 30 days. Seven treatments of dissolved As exposure (clean seawater, 1, 5, 20 mg/L As(III), and 1, 5, 20 mg/L As(V)) were performed. Body As concentration increased significantly after all As exposure treatments except 1mg/L As(V). Total As, As(III), and As(V) concentration were positive correlated with glutathione-S-transferases (GST) activities, suggesting GST might play an important role in the As biotransformation and detoxification process. Organic As species were predominant in control and the low As exposed oysters, whereas a large fraction of As was remained as the inorganic forms in the high As exposed oysters, suggesting As could be biotransformed efficiently in the oysters in clean or light contaminated environment. The results of As speciation demonstrated the As biotransformation in the oysters included As(V) reduction, methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and subsequent conversion to arsenobetaine (AsB). More As was distributed in the subcellular metallothionein-like proteins fraction (MTLP) functioning sequestration and detoxification in the inorganic As exposed oysters, suggesting it was also a strategy for oysters against As stress. In summary, this study elucidated that marine oysters had high ability to accumulate, biotransform, and detoxify inorganic As. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. 32 CFR Appendix C to Part 77 - DD Form 2581-1, Public and Community Service Organization Validation

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false DD Form 2581-1, Public and Community Service Organization Validation C Appendix C to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY..., App. C Appendix C to Part 77—DD Form 2581-1, Public and Community Service Organization Validation...

  15. 32 CFR Appendix C to Part 77 - DD Form 2581-1, Public and Community Service Organization Validation

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false DD Form 2581-1, Public and Community Service Organization Validation C Appendix C to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY..., App. C Appendix C to Part 77—DD Form 2581-1, Public and Community Service Organization Validation...

  16. 32 CFR Appendix C to Part 77 - DD Form 2581-1, Public and Community Service Organization Validation

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false DD Form 2581-1, Public and Community Service Organization Validation C Appendix C to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY..., App. C Appendix C to Part 77—DD Form 2581-1, Public and Community Service Organization Validation...

  17. 32 CFR Appendix C to Part 77 - DD Form 2581-1, Public and Community Service Organization Validation

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false DD Form 2581-1, Public and Community Service Organization Validation C Appendix C to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY..., App. C Appendix C to Part 77—DD Form 2581-1, Public and Community Service Organization Validation...

  18. 32 CFR Appendix C to Part 77 - DD Form 2581-1, Public and Community Service Organization Validation

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false DD Form 2581-1, Public and Community Service Organization Validation C Appendix C to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY..., App. C Appendix C to Part 77—DD Form 2581-1, Public and Community Service Organization Validation...

  19. The effect of fire on soil organic matter--a review.

    PubMed

    González-Pérez, José A; González-Vila, Francisco J; Almendros, Gonzalo; Knicker, Heike

    2004-08-01

    The extent of the soil organic carbon pool doubles that present in the atmosphere and is about two to three times greater than that accumulated in living organisms in all Earth's terrestrial ecosystems. In such a scenario, one of the several ecological and environmental impacts of fires is that biomass burning is a significant source of greenhouse gases responsible for global warming. Nevertheless, the oxidation of biomass is usually incomplete and a range of pyrolysis compounds and particulate organic matter (OM) in aerosols are produced simultaneously to the thermal modification of pre-existing C forms in soil. These changes lead to the evolution of the OM to "pyromorphic humus", composed by rearranged macromolecular substances of weak colloidal properties and an enhanced resistance against chemical and biological degradation. Hence the occurrence of fires in both undisturbed and agricultural ecosystems may produce long-lasting effects on soils' OM composition and dynamics. Due to the large extent of the C pool in soils, small deviations in the different C forms may also have a significant effect in the global C balance and consequently on climate change. This paper reviews the effect of forest fires on the quantity and quality of soils' OM. It is focused mainly on the most stable pool of soil C; i.e., that having a large residence time, composed of free lipids, colloidal fractions, including humic acids (HA) and fulvic acids (FA), and other resilient forms. The main transformations exerted by fire on soil humus include the accumulation of new particulate C forms highly resistant to oxidation and biological degradation including the so-called "black carbon" (BC). Controversial environmental implications of such processes, specifically in the stabilisation of C in soil and their bearing on the global C cycle are discussed.

  20. Formation of Hydrocarbons in the Outflows from Red Giants

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne; Kress, Monika; Tielens, Alexander G.

    1995-01-01

    The formation of hydrocarbons in the oxygen-rich outflows from red giants was studied. The existence of organic molecules in such outflows has been known for several years; however, their surprisingly high abundances has been a mystery since all of the carbon had been thought to be irretrievably locked up in CO, the most strongly bound molecule. CO is the first molecule to form from the atoms present in the star's extended atmosphere, and as strong stellar winds drive a cooling outflow, dust grains condense out. In oxygen-rich outflows, the dust is thought to be composed mainly of silicates and other metal oxides. Perhaps the noble metals can condense out in metallic form, in particular the relatively abundant transition metals iron and nickel. We proposed that perhaps the carbon reservoir held as CO can be accessed through a catalytic process involving the chemisorption of CO and H2 onto grains rich in metallic iron. CO and H2 are the two most abundant molecules in circumstellar outflows, and they both are known to dissociate on transition metal surfaces at elevated temperatures, freeing carbon to form organic molecules such as methane. We believe methane is a precursor molecule to the organics observed in oxygen-rich red giants. We have developed a nonequilibrium numerical model of a surface chemical (catalytic) process. Based on this model, we believe that methane can be formed under the conditions present in circumstellar outflows. Although the methane formation rates are exceptionally low under these conditions, over dynamical timescales, a significant amount of CO can be converted to methane and driven further out in the envelope, explaining the presence of organics there.

  1. Supramolecular Organization of the α121-α565 Collagen IV Network*

    PubMed Central

    Robertson, Wesley E.; Rose, Kristie L.; Hudson, Billy G.; Vanacore, Roberto M.

    2014-01-01

    Collagen IV is a family of 6 chains (α1-α6), that form triple-helical protomers that assemble into supramolecular networks. Two distinct networks with chain compositions of α121 and α345 have been established. These oligomerize into separate α121 and α345 networks by a homotypic interaction through their trimeric noncollagenous (NC1) domains, forming α121 and α345 NC1 hexamers, respectively. These are stabilized by novel sulfilimine (SN) cross-links, a covalent cross-link that forms between Met93 and Hyl211 at the trimer-trimer interface. A third network with a composition of α1256 has been proposed, but its supramolecular organization has not been established. In this study we investigated the supramolecular organization of this network by determining the chain identity of sulfilimine-cross-linked NC1 domains derived from the α1256 NC1 hexamer. High resolution mass spectrometry analyses of peptides revealed that sulfilimine bonds specifically cross-link α1 to α5 and α2 to α6 NC1 domains, thus providing the spatial orientation between interacting α121 and α565 trimers. Using this information, we constructed a three-dimensional homology model in which the α565 trimer shows a good chemical and structural complementarity to the α121 trimer. Our studies provide the first chemical evidence for an α565 protomer and its heterotypic interaction with the α121 protomer. Moreover, our findings, in conjunction with our previous studies, establish that the six collagen IV chains are organized into three canonical protomers α121, α345, and α565 forming three distinct networks: α121, α345, and α121-α565, each of which is stabilized by sulfilimine bonds between their C-terminal NC1 domains. PMID:25006246

  2. Phosphorus speciation and its bioavailability in sediments of the Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Kang, Xuming; Song, Jinming; Yuan, Huamao; Shi, Xin; Yang, Weifeng; Li, Xuegang; Li, Ning; Duan, Liqin

    2017-03-01

    Phosphorus (P) is an important macronutrient that can limit primary productivity in coastal marine ecosystems. In this study, four sediment cores were collected in the Jiaozhou Bay to study the phosphorus forms and their bioavailability, including exchangeable or loosely sorbed P (Ex-P), iron-bound P (Fe-P), authigenic P (Ca-P), detrital P (De-P) and organic P (OP), which were separated and quantified using a sequential extraction method (SEDEX). The results showed that the concentration of total P (TP) in core sediments ranged from 6.23 to 10.46 μmol/g, and inorganic P (IP) was the dominated P form. Fe-P and De-P were the main chemical forms of IP in core sediments. The profile variation of OP presented the most significant among the phosphorus forms. Whereas the concentrations of Ex-P, Fe-P, and Ca-P varied slightly with depth, indicating that the transformation of Ex-P, Fe-P, Ca-P, and OP could occur during sedimentary P burial. Moreover, the distribution of P species was influenced by many factors, including terrigenous input, biological processes, organic matter degradation and increasing human activities. High total organic carbon (TOC)/OP ratio occurred in the Jiaozhou Bay, ranging from 73 to 472 (average, 180 ± 81) in core sediments, which was caused by the increasing terrestrial organic matter. The ratio of TOC/Preactive ranged from 24 to 101 (average 46 ± 15) in core sediments (lower than the Redfield ratio), implying a surplus of sedimentary reactive P compared with TOC. Potential bioavailable P (BAP) accounted for about 28.2-60.8% (average, 47.1 ± 7.4%) of TP in core sediments, and presented an increasing trend since 1980s, which might be responsible for the shift of phytoplankton community composition during these decades.

  3. Solubility behavior of lamivudine crystal forms in recrystallization solvents.

    PubMed

    Jozwiakowski, M J; Nguyen, N A; Sisco, J M; Spancake, C W

    1996-02-01

    Lamivudine can be obtained as acicular crystals (form I, 0.2 hydrate) from water or methanol and as bipyramidal crystals (form II, nonsolvated) from many nonaqueous solvents. Form II is thermodynamically favored in the solid state (higher melting point and greater density than form I) at ambient relative humidities. Solubility measurements on both forms versus solvent and temperature was used to determine whether entropy or enthalpy was the driving force for solubility. Solution calorimetry data indicated that form I is favored (less soluble) in all solvents studied on the basis of enthalpy alone. In higher alcohols and other organic solvents, form I has a larger entropy of solution than form II, which compensates for the enthalpic factors and results in physical stability for form II in these systems. The metastable crystal form solubility at 25 degrees C was estimated to be 1.2-2.3 times as high as the equilibrium solubility of the stable form, depending on the temperature, solvent, and crystal form. Binary solvent studies showed that > 18-20% water must be present in ethanol to convert the excess solid to form I at equilibrium.

  4. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part I. Amino acids, carbohydrates and lignin

    NASA Technical Reports Server (NTRS)

    Steinberg, S. M.; Venkatesan, M. I.; Kaplan, I. R.

    1987-01-01

    Total organic carbon (TOC), lignin, amino acids, sugars and amino sugars were measured in recent sediments for the continental margin off southern New England. The various organic carbon fractions decreased in concentration with increasing distance from shore. The fraction of the TOC that was accounted for by these major components also decreased with increasing distance from shore. The concentration of lignin indicated that only about 3-5% of the organic carbon in the nearshore sediment was of terrestrial origin. The various fractions were highly correlated, which was consistent with a simple linear mixing model of shelf organic matter with material form the slope and rise and indicated a significant transport of sediment from the continental shelf to the continental slope and rise.

  5. Maintenance of spray humidifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brundrett, G.W.

    1979-02-01

    Recycled water can become a breeding medium for micro-organisms particularly if there is nutrient such as organic dust present. If such micro-organisms and/or their metabolites are injected into the atmosphere in quantity by a spray humidifier then the room occupants are liable to develop flu-like symptoms now known as 'humidifier fever'. The symptoms are worst on re-exposure after an interval and lead to the expression 'Monday sickness'. Any industrial process involving both humidification and organic dust offers a potential breeding ground for the micro-organisms. The most common process combining the two is the stationery and printing industry. Winter humidification ismore » necessary and nutrients in the form of airborne cellulose from the paper are plentiful. Particularly high standards of maintentance, including regular cleaning and prevention of sludge buildup is needed.« less

  6. Organic electrochemical transistors

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Róisín M.; Berggren, Magnus; Malliaras, George G.

    2018-02-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  7. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  8. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  9. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  10. Organic materials and devices for detecting ionizing radiation

    DOEpatents

    Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  11. Is Polysialylated NCAM Not Only a Regulator during Brain Development But also during the Formation of Other Organs?

    PubMed Central

    Galuska, Christina E.; Lütteke, Thomas; Galuska, Sebastian P.

    2017-01-01

    In mammals several cell adhesion molecules are involved during the pre- and postnatal development of all organ systems. A very prominent member of this family is the neural cell adhesion molecule (NCAM). Interestingly, NCAM can be a target for a special form of posttranslational modification: polysialylation. Whereas nearly all extracellular proteins bear mono-sialic acid residues, only a very small group can be polysialylated. Polysialic acid is a highly negatively-charged sugar polymer and can comprise more than 90 sialic acid residues in postnatal mouse brains increasing dramatically the hydrodynamic radius of their carriers. Thus, adhesion and communication processes on cell surfaces are strongly influenced allowing, e.g., the migration of neuronal progenitor cells. In the developing brain the essential role of polysialylated NCAM has been demonstrated in many studies. In comparison to the neuronal system, however, during the formation of other organs the impact of the polysialylated form of NCAM is not well characterized and the number of studies is limited so far. This review summarizes these observations and discusses possible roles of polysialylated NCAM during the development of organs other than the brain. PMID:28448440

  12. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.

    PubMed

    Farré, Maria José; Day, Sophie; Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2013-09-15

    Disinfection by-products (DBP) formed from natural organic matter and disinfectants like chlorine and chloramine may cause adverse health effects. Here, we evaluate how the quantity and quality of natural organic matter and other precursors influence the formation of DBPs during chlorination and chloramination using a comprehensive approach including chemical analysis of regulated and emerging DBPs, total organic halogen quantification, organic matter characterisation and bioanalytical tools. In vitro bioassays allow us to assess the hazard potential of DBPs early in the chain of cellular events, when the DBPs react with their molecular target(s) and activate stress response and defence mechanisms. Given the reactive properties of known DBPs, a suite of bioassays targeting reactive modes of toxic action including genotoxicity and sensitive early warning endpoints such as protein damage and oxidative stress were evaluated in addition to cytotoxicity. Coagulated surface water was collected from three different drinking water treatment plants, along with reverse osmosis permeate from a desalination plant, and DBP formation potential was assessed after chlorination and chloramination. While effects were low or below the limit of detection before disinfection, the observed effects and DBP levels increased after disinfection and were generally higher after chlorination than after chloramination, indicating that chlorination forms higher concentrations of DBPs or more potent DBPs in the studied waters. Bacterial cytotoxicity, assessed using the bioluminescence inhibition assay, and induction of the oxidative stress response were the most sensitive endpoints, followed by genotoxicity. Source waters with higher dissolved organic carbon levels induced increased DBP formation and caused greater effects in the endpoints related to DNA damage repair, glutathione conjugation/protein damage and the Nrf2 oxidative stress response pathway after disinfection. Fractionation studies indicated that all molecular weight fractions of organic carbon contributed to the DBP formation potential, with the humic rich fractions forming the greatest amount of DBPs, while the low molecular weight fractions formed more brominated DBPs due to the high bromide to organic carbon ratio. The presence of higher bromide concentrations also led to a higher fraction of brominated DBPs as well as proportionally higher effects. This study demonstrates how a suite of analytical and bioanalytical tools can be used to effectively characterise the precursors and formation potential of DBPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. ON THE CLASSIFICATION OF THE STREPTOTHRICES, PARTICULARLY IN THEIR RELATION TO BACTERIA.

    PubMed

    Claypole, E J

    1913-01-01

    It is impossible from any point of view, morphological, biological or serological, to draw a sharp dividing line in this series. The forms change gradually from the mycelial organism to the bacillary, acid-fast organism. It is biologically a group complex and should be so considered. No doubt experiments with a larger series of species would yield results giving a possibility of closer classification and the introduction of some of the forms now in a debatable position, as Bacillus diphtheriae and Bacillus mallei, and other organisms, sometimes called, on account of their morphological irregularities, corynebacterium and mycobacterium, would help to show their real relation to both the Streptothrices and the true bacteria. The latter in many ways are acknowledged to be far from primitive; their endospores, flagella, and food habits all indicate a relatively high degree of specialization. Hence it would seem biologically more reasonable to look upon this group of Streptothrices with their variable morphology and close relationships as representing the ancestral type that gave rise to both the higher fungi and true bacteria, and not as being themselves higher bacteria. The various bacteria, other than the acid-fast forms, can readily have arisen from the non-acid-fast bacillary types, or even as non-acid-fast specializations of the mixed types. All the various forms shown at present by the bacteria,-cocci, spirilla, bacilli, etc.,-either separate or in chains and masses, are to be recognized in this group, and specializations in one or another line in the past would readily have given rise to the types we consider true bacteria. The processes of evolution have carried them far away from the parent stock and made them into this group. The recognition of this group complex and of the intermediate forms indicates clearly the past history and present relations of these interesting organisms. These relations may be represented by the following scheme. See PDF for Structure It is probable that the relation between the acid-fast organisms and the Streptothrices is a closer one than that between the Streptothrices and the bacteria, perhaps close enough to warrant a common genus for both.

  14. Interim Results of a National Test of the Rapid Assessment of Hospital Procurement Barriers in Donation (RAPiD)

    PubMed Central

    Traino, H. M.; Alolod, G. P.; Shafer, T.; Siminoff, L. A.

    2012-01-01

    Organ donation remains a major public health challenge with over 114 000 people on the waitlist in the United States. Among other factors, extant research highlights the need to improve the identification and timely referral of potential donors by hospital health-care providers (HCPs) to organ procurement organizations (OPOs). We implemented a national test of the Rapid Assessment of hospital Procurement barriers in Donation (RAPiD) to identify assets and barriers to the organ donation and patient referral processes; assess hospital–OPO relationships and offer tailored recommendations for improving these processes. Having partnered with seven OPOs, data were collected at 70 hospitals with high donor potential in the form of direct observations and interviews with 2358 HCPs. We found that donation attitudes and knowledge among HCPs were high, but use of standard referral criteria was lacking. Significant differences were found in the donation-related attitudes, knowledge and behaviors of physicians and emergency department staff as compared to other staff in intensive care units with high organ donor potential. Also, while OPO staff were generally viewed positively, they were often perceived as outsiders rather than members of healthcare teams. Recommendations for improving the referral and donation processes are discussed. PMID:22900761

  15. Products and Mechanism of Aerosol Formation from the Reaction of β-Pinene with NO3 Radicals: Role of Oligomer Formation

    NASA Astrophysics Data System (ADS)

    Claflin, M. S.; Ziemann, P. J.

    2017-12-01

    Large amounts of organic nitrates have been reported in aerosol analyzed during field studies conducted around the world. Although organic nitrates can be formed in daytime from the oxidation of volatile organic compounds in the presence of NOx, it has recently been proposed that the nighttime reaction of monoterpenes with NO3 radicals may account for a substantial fraction of these compounds. While past studies have made progress quantifying the aerosol forming potential of these reactions, relatively little is known about the gas-phase oxidation mechanism, the identities of stable products, and their fate after they partition into aerosol. In an effort to better understand these reactions, we conducted environmental chamber experiments in which β-pinene was reacted with NO3 radicals and the secondary organic aerosol (SOA) that formed was analyzed online using a thermal desorption particle beam mass spectrometer and offline using a variety of methods. SOA was collected on filters, extracted, and analyzed using derivatization-spectrophotometric methods to quantify carbonyl, hydroxyl, carboxyl, nitrate, peroxide, and ester functional groups; and molecular products were identified and quantified by coupling high performance liquid chromatography with UV-Vis detection and mass spectrometry with electrospray ionization, electron ionization, and chemical ionization. We identified and quantified >98% of the products in the SOA and found that 95% were oligomers formed through hemiacetal and acetal reactions. This information was used to determine the yields of monomer building blocks, which in turn were combined with modeling to estimate branching ratios in the gas-phase oxidation reaction and timescales of oligomer formation within the aerosol. The results of this study highlight several key processes in the formation of SOA from reactions of monoterpenes with NO3 radicals: (1) alkoxy radical chemistry, including the role of ring opening through decomposition (2) particle-phase reactions and (3) formation of separate organic and aqueous phases within aerosol.

  16. Method for simultaneously removing SO.sub.2 and NO.sub.X pollutants from exhaust of a combustion system

    DOEpatents

    Levendis, Yiannis A.; Wise, Donald L.

    1994-05-17

    A method is disclosed for removing pollutants from the exhaust of combustion systems burning fuels containing substantial amounts of sulfur and nitrogen. An exemplary method of the invention involves the formation and reaction of a sorbent comprising calcium magnesium acetate (CMA). The CMA is either dry-sprayed (in the form of a fine powder) or wet-sprayed in an aqueous solution in a high temperature environment such as a combustion chamber. The latter technique is feasible since CMA is a uniquely water-soluble form of calcium and magnesium. When the dispersed particles of CMA are heated to a high temperature, fine calcium and magnesium oxide particles, which are hollow with thin and highly porous walls are formed, affording optimum external and internal accessibility for reacting with toxic gaseous emissions such as SO.sub.2. Further, the combustion of the organic acetate portion of the sorbent results in the conversion of NO.sub.x to N.sub.2.

  17. [Primary hyperparathyroidism - new clinical forms of the disease].

    PubMed

    Zajíčková, Kateřina

    Primary hyperparathyroidism (PHPT) has been increasingly diagnosed incidentally in its asymptomatic form owing to calcium screening tests. This form of PHPT represents 80% in developed countries. Although PHPT patients are asym-ptomatic, target organ (bone and kidney) involvement is frequently observed. Mild PHPT is associated with a reduction of bone mineral densityand, moreover, with increased risk of vertebral fractures. The extent of a patient evaluation and indications for parathyroidectomy are based on expert guidelines from 2014. Normocalcemic variant of PHPT has been recently recognized, possibly with higher prevalence in general population than the hypercalcemic form of PHPT. Normal but with respect to hypercalcemia inadequately high parathormon levels characterize normohormonal PHPT. If a hereditary form of PHPT is suspected, genetic testing is recommended. Although there are new clinical forms of PHPT, parathyroidectomy still represents the only curative approach to PHPT followed by substantial osteoprotective effect.Key words: asymptomatic form - normocalcemic form - normohormonal form - parathyroidectomy - primary hyperparathyroidism - recent guidelines for the management PHPT.

  18. [The importance of social stress and effective occupational motivation in the forming of life-style, population health, and the development of demographic processes in Russia].

    PubMed

    Velichkovskiĭ, B T

    2007-01-01

    The body of pathogenetic mechanisms that have caused super high and super early mortality of able-bodied people due to socioeconomic reforms is caused by a special form of stress, the so called "social stress", having a specific origin. The reason for it is loss of effective occupational motivation by population, a motivation based on the ability to provide decent existence for oneself and one's family with honest labor. Within the 20th century there were only four periods when population health improved, and all these periods were associated with a rise in occupational motivation. Chronic social stress, unlike common stress, does not mobilize the protective force of the organism. It causes the biggest health loss in able-bodied population, leading to the development of the exhaustion phase of general adaptation syndrome, breakdown of the dynamic stereotype of higher nervous activity, the forming of the phenomenon of "programmed death of the organism--phenoptosis", and disorder of free-radical balance of the organism in heterozygous individuals who have grown poor. Analysis of the causes and mechanisms of the development of medico-demographic crisis suggests that the nation's viability has lowered not because of the reforms themselves, but due to the strategy of their conduction.

  19. Studying volatility from composition, dilution, and heating measurements of secondary organic aerosols formed during α-pinene ozonolysis

    NASA Astrophysics Data System (ADS)

    Sato, Kei; Fujitani, Yuji; Inomata, Satoshi; Morino, Yu; Tanabe, Kiyoshi; Ramasamy, Sathiyamurthi; Hikida, Toshihide; Shimono, Akio; Takami, Akinori; Fushimi, Akihiro; Kondo, Yoshinori; Imamura, Takashi; Tanimoto, Hiroshi; Sugata, Seiji

    2018-04-01

    Traditional yield curve analysis shows that semi-volatile organic compounds are a major component of secondary organic aerosols (SOAs). We investigated the volatility distribution of SOAs from α-pinene ozonolysis using positive electrospray ionization mass analysis and dilution- and heat-induced evaporation measurements. Laboratory chamber experiments were conducted on α-pinene ozonolysis, in the presence and absence of OH scavengers. Among these, we identified not only semi-volatile products, but also less volatile highly oxygenated molecules (HOMs) and dimers. Ozonolysis products were further exposed to OH radicals to check the effects of photochemical aging. HOMs were also formed during OH-initiated photochemical aging. Most HOMs that formed from ozonolysis and photochemical aging had 10 or fewer carbons. SOA particle evaporation after instantaneous dilution was measured at < 1 and ˜ 40 % relative humidity. The volume fraction remaining of SOAs decreased with time and the equilibration timescale was determined to be 24-46 min for SOA evaporation. The experimental results of the equilibration timescale can be explained when the mass accommodation coefficient is assumed to be 0.1, suggesting that the existence of low-volatility materials in SOAs, kinetic inhibition, or some combined effect may affect the equilibration timescale measured in this study.

  20. Surface Properties and Catalytic Performance of Activated Carbon Fibers Supported TiO2 Photocatalyst

    NASA Astrophysics Data System (ADS)

    Yang, Huifen; Fu, Pingfeng

    Activated carbon fibers supported TiO2 photocatalyst (TiO2/ACF) in felt-form was successfully prepared with a dip-coating process using organic silicon modified acrylate copolymer as a binder followed by calcination at 500°C in a stream of Ar gas. The photocatalyst was characterized by SEM, XRD, XPS, FTIR, and BET surface area. Most of carbon fibers were coated with uniformly distributed TiO2 clusters of nearly 100 nm. The loaded TiO2 layer was particulate for the organic binder in the compact film was carbonized. According to XPS and FTIR analysis, amorphous silica in carbon grains was synthesized after carbonizing organic silicon groups, and the Ti-O-Si bond was formed between the interface of loaded TiO2 and silica. Additionally, the space between adjacent carbon fibers still remained unfilled after TiO2 coating, into which both UV light and polluted solutions could penetrate to form a three-dimensional environment for photocatalytic reactions. While loaded TiO2 amount increased to 456 mg TiO2/1 g ACF, the TiO2/ACF catalyst showed its highest photocatalytic activity, and this activity only dropped about 10% after 12 successive runs, exhibiting its high fixing stability of coated TiO2.

  1. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna.

    PubMed

    Yamashita, Yumiko; Yamashita, Michiaki

    2010-06-11

    A novel selenium-containing compound having a selenium atom in the imidazole ring, 2-selenyl-N(alpha),N(alpha),N(alpha)-trimethyl-L-histidine, 3-(2-hydroseleno-1H-imidazol-5-yl)-2-(trimethylammonio)propanoate, was identified from the blood and other tissues of the bluefin tuna, Thunnus orientalis. The selenium-containing compound was purified from the tuna blood in several chromatographic steps. High resolution mass spectrometry and nuclear magnetic resonance spectroscopy showed that the exact mass of the [M+H](+) ion of the compound was 533.0562 and the molecular formula was C(18)H(29)N(6)O(4)Se(2). Its gross structure was assigned as the oxidized dimeric form of an ergothioneine selenium analog in which the sulfur of ergothioneine is replaced by selenium. Therefore, we named this novel selenium-containing compound "selenoneine." By speciation analysis of organic selenium compounds using liquid chromatography inductively coupled plasma mass spectrometry, selenoneine was found widely distributed in various tissues of the tuna, with the highest concentration in blood; mackerel blood contained similar levels. Selenoneine was measurable at 2-4 orders of magnitude lower concentration in a limited set of tissues from squid, tilapia, pig, and chicken. Quantitatively, selenoneine is the predominant form of organic selenium in tuna tissues.

  2. Enhancing biomethanogenic treatment of fresh incineration leachate using single chambered microbial electrolysis cells.

    PubMed

    Gao, Yan; Sun, Dezhi; Dang, Yan; Lei, Yuqing; Ji, Jiayang; Lv, Tingwei; Bian, Rui; Xiao, Zhihui; Yan, Liangming; Holmes, Dawn E

    2017-05-01

    Methanogenic treatment of municipal solid waste (MSW) incineration leachate can be hindered by high concentrations of refractory organic matter and humification of compounds in the leachate. In an attempt to overcome some of these impediments, microbial electrolysis cells (MECs) were incorporated into anaerobic digesters (ADMECs). COD removal efficiencies and methane production were 8.7% and 44.3% higher in ADMECs than in controls, and ADMEC reactors recovered more readily from souring caused by high organic loading rates. The degradation rate of large macromolecules was substantially higher (96% vs 81%) in ADMEC than control effluent, suggesting that MECs stimulated degradation of refractory organic matter and reduced humification. Exoelectrogenic bacteria and microorganisms known to form syntrophic partnerships were enriched in ADMECs. These results show that ADMECs were more effective at treatment of MSW incineration leachate, and should be taken into consideration when designing future treatment facilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Silica decorated on porous activated carbon nanofiber composites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, So Yeun; Kim, Bo-Hye

    2016-10-01

    A hybrid of silica decorated on porous activated carbon nanofibers (ACNFs) is fabricated in the form of a web via electrospinning and an activation process as an electrode material for electrochemical capacitors in an organic electrolyte. The introduction of PhSiH3 (PS) into the polyacrylonitrile (PAN) solution induces a porous ACNF structure containing silica nanoparticles (NPs) via the spontaneous sol-gel process of PS by steam in the subsequent physical activation process. These inorganic-organic hybrid composites of porous ACNF containing silica NPs show superior specific capacitance and energy density in electrochemical tests, along with good rate capability and excellent cycle life in an organic electrolyte, which is attributed to the combination of ACNF's high surface area and silica's hydrophilicity. The electrochemical performance decreases with increasing PS concentration, and this trend is consistent with the specific surface area results, which reveal the rapid formation of a double layer.

  4. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo

    PubMed Central

    Chen, Chen; Lim, Hong Hwa; Shi, Jian; Tamura, Sachiko; Maeshima, Kazuhiro; Surana, Uttam; Gan, Lu

    2016-01-01

    Chromatin organization has an important role in the regulation of eukaryotic systems. Although recent studies have refined the three-dimensional models of chromatin organization with high resolution at the genome sequence level, little is known about how the most fundamental units of chromatin—nucleosomes—are positioned in three dimensions in vivo. Here we use electron cryotomography to study chromatin organization in the budding yeast Saccharomyces cerevisiae. Direct visualization of yeast nuclear densities shows no evidence of 30-nm fibers. Aside from preribosomes and spindle microtubules, few nuclear structures are larger than a tetranucleosome. Yeast chromatin does not form compact structures in interphase or mitosis and is consistent with being in an “open” configuration that is conducive to high levels of transcription. From our study and those of others, we propose that yeast can regulate its transcription using local nucleosome–nucleosome associations. PMID:27605704

  5. Plasma and collision processes of hypervelocity meteorite impact in the prehistory of life

    NASA Astrophysics Data System (ADS)

    Managadze, G.

    2010-07-01

    A new concept is proposed, according to which the plasma and collision processes accompanying hypervelocity impacts of meteorites can contribute to the arising of the conditions on early Earth, which are necessary for the appearance of primary forms of living matter. It was shown that the processes necessary for the emergence of living matter could have started in a plasma torch of meteorite impact and have continued in an impact crater in the case of the arising of the simplest life form. It is generally accepted that planets are the optimal place for the origin and evolution of life. In the process of forming the planetary systems the meteorites, space bodies feeding planet growth, appear around stars. In the process of Earth's formation, meteorite sizes ranged from hundreds and thousands of kilometres. These space bodies consisted mostly of the planetesimals and comet nucleus. During acceleration in Earth's gravitational field they reached hypervelocity and, hitting the surface of planet, generated powerful blowouts of hot plasma in the form of a torch. They also created giant-size craters and dense dust clouds. These bodies were composed of all elements needed for the synthesis of organic compounds, with the content of carbon being up to 5%-15%. A new idea of possible synthesis of the complex organic compounds in the hypervelocity impact-generated plasma torch was proposed and experimentally confirmed. A previously unknown and experimentally corroborated feature of the impact-generated plasma torch allowed a new concept of the prehistory of life to be developed. According to this concept the intensive synthesis of complex organic compounds arose during meteoritic bombardment in the first 0.5 billion years at the stage of the planet's formation. This most powerful and destructive action in Earth's history could have played a key role and prepared conditions for the origin of life. In the interstellar gas-dust clouds, the synthesis of simple organic matter could have been explained by an identical process occurring in the plasma torch of hypervelocity collisions between submicron size dust particles. It is assumed that the processes occurred in the highly unbalanced hot plasma simultaneously with the synthesis of simple and complicated organic compounds, thereby ensuring their ordering and assembly. Bona fide experimental evidence presented below indicates that the physical fields generated in the plasma environment in the process of the formation and expansion of the torch meet the main requirements toward “true” local chiral fields. These fields were very likely to be capable to trigger the initial, weak breaking of enantiomer symmetry and determine the “sign” of the asymmetry of the bioorganic world. These fields could have worked as “trapping” fields influencing spontaneous processes occurring in highly overheated and nonequilibrium plasma in the state that is far from the thermodynamical branch of equilibrium and may have contributed to the formation of an environment needed for the synthesis of homochiral molecular structures, which, in turn, were needed for the emergence of the primary forms of living matter. It has been shown experimentally that the plasma-chemical processes in the torch have high catalytic properties and assure the rise of the chemical reaction rates by 10-100 million times. In the process of the plasma flyaway this in turn can assure the fast formation of simple and complicated organic compounds, including hyper-branched polymers. It is possible to assume that predominantly inorganic substances from meteorites were used for the synthesis of complicated organic compounds on early Earth. A laboratory experiment with hypervelocity impact plasma torch modelling by a laser with a Q-switch mode has shown the possibility of high-molecular organic compound synthesis, with mass of approximately 5000 a.m.u. by meteorite impact with an effective diameter of 100 mkm. The target contained only H, C, N and O elements in inorganic forms. The approximation of the curve received in these experiments has shown that molecular structures comparable in mass with the protoviroid (a hypothetical primogenitor of the biosphere) and could have been synthesized as a result of the impact of a meteorite of a millimetre-size range. Observable characteristics of the synthesis processes suggest high catalytic activity of the plasma medium and high speed of plasma-chemical reactions, combined with ordering and assemblage processes. This suggests that the plasma torch with a huge local density of energy and matter may be the optimal medium for the synthesis of complex organic compounds needed for prebiotic evolution and the development of the primary form of living matter. A new view of the impact crater provides the most interesting and unexpected consequence of the concept proposed. When considering the problem, it became evident that at a prebiotic stage of evolution there should be an environment in which a photogenic creature could have survived. The crater of the meteoric impact, which is capable of producing ‘a primogenitor of the biosphere’ environment sated with organic matter, moderate temperature and water for considerable time and becoming ‘a life cradle’, appears to be such an environment. Having enormous energy, the meteorite impact is capable of injecting the newly created complicated organic compounds deep into the space body surfaces, including subsurface water reservoirs, such as Europe, Enchilada and Titan. In this case the meteorite impact has no natural alternative in the creation of initial conditions for the origin of extraterrestrial life. This possibility was confirmed by a laboratory impact model experiment, in which the plasma torch was created under the water surface. The concept proposed is based on physical processes occurring in nature and on experimental results of impact experiments and subsequent modelling of their analogues in laboratory conditions. Thus, the realizability and survivability of this concept should be taken as well grounded due to the simplicity and clarity of the physical processes.

  6. San Carlos Apache Tribe - Energy Organizational Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, James; Albert, Steve

    2012-04-01

    The San Carlos Apache Tribe (SCAT) was awarded $164,000 in late-2011 by the U.S. Department of Energy (U.S. DOE) Tribal Energy Program's "First Steps Toward Developing Renewable Energy and Energy Efficiency on Tribal Lands" Grant Program. This grant funded:  The analysis and selection of preferred form(s) of tribal energy organization (this Energy Organization Analysis, hereinafter referred to as "EOA").  Start-up staffing and other costs associated with the Phase 1 SCAT energy organization.  An intern program.  Staff training.  Tribal outreach and workshops regarding the new organization and SCAT energy programs and projects, including two annual tribalmore » energy summits (2011 and 2012). This report documents the analysis and selection of preferred form(s) of a tribal energy organization.« less

  7. Medaka embryonic stem cells are capable of generating entire organs and embryo-like miniatures.

    PubMed

    Hong, Ni; He, Bei Ping; Schartl, Manfred; Hong, Yunhan

    2013-03-01

    Embryonic stem (ES) cells have the potency to produce many cell types of the embryo and adult body. Upon transplantation into early host embryos, ES cells are able to differentiate into various specialized cells and contribute to host tissues and organs of all germ layers. Here we present data in the fish medaka (Oryzias latipes) that ES cells have a novel ability to form extra organs and even embryo-like miniatures. Upon transplantation as individual cells according to the standard procedure, ES cells distributed widely to various organ systems of 3 germ layers. Upon transplantation as aggregates, ES cells were able to form extra organs, including the hematopoietic organ and contracting heart. We show that localized ES cell transplantation often led to the formation of extra axes that comprised essentially of either host cells or donor ES cells. These extra axes were associated with the head region of the embryo proper or formed at ectopic sites on the yolk sac. Surprisingly, certain ectopic axes were even capable of forming embryo-like miniatures. We conclude that ES cells have the ability to form entire organs and even embryo-like miniatures under proper environmental conditions. This finding points to a new possibility to generate ES cell-derived axes and organs.

  8. A potentiometric titration method for the crystallization of drug-like organic molecules.

    PubMed

    Du-Cuny, Lei; Huwyler, Jörg; Fischer, Holger; Kansy, Manfred

    2007-09-05

    It is generally accepted, that crystalline solids representing a low energy polymorph should be selected for development of oral dosage forms. As a consequence, efficient and robust procedures are needed at an early stage during drug discovery to prepare crystals from drug-like organic molecules. In contrast to the use of supersaturated solutions, we present a potentiometric crystallization procedure where saturated solutions are prepared in a controlled manner by pH-titration. Crystallization is carried out under defined conditions using the sample concentration and experimental pK(a) values as input parameters. Crystals of high quality were obtained for 11 drugs selected to demonstrate the efficiency and applicability of the new method. Technical improvements are suggested to overcome practical limitations and to enhance the possibility of obtaining crystals from molecules in their uncharged form.

  9. Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC.

    PubMed

    Cockayne, Eric; Nelson, Eric B

    2015-07-14

    Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites.

  10. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration

    USGS Publications Warehouse

    Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J.; Afeworki, M.; Sansone, M.; Freund, H.; Pottorf, R.J.; Machel, H.G.; Zhang, T.; Ellis, G.S.; Tang, Y.; Peters, K.E.

    2008-01-01

    Insoluble solid bitumens are organic residues that can form by the thermal chemical alteration (TCA) or thermochemical sulfate reduction (TSR) of migrated petroleum. TCA may actually encompass several low temperature processes, such as biodegradation and asphaltene precipitation, followed by thermal alteration. TSR is an abiotic redox reaction where petroleum is oxidized by sulfate. It is difficult to distinguish solid bitumens associated with TCA of petroleum from those associated with TSR when both processes occur at relatively high temperature. The focus of the present work was to characterize solid bitumen samples associated with TCA or TSR using X-ray photoelectron spectroscopy (XPS). XPS is a surface analysis conducted on either isolated or in situ (>25 ??m diameter) solid bitumen that can provide the relative abundance and chemical speciation of carbon, organic and inorganic heteroatoms (NSO). In this study, naturally occurring solid bitumens from three locations, Nisku Fm. Brazeau River area (TSR-related), LaBarge Field Madison Fm. (TSR-related), and the Alaskan Brooks range (TCA-related), are compared to organic solids generated during laboratory simulation of the TSR and TCA processes. The abundance and chemical nature of organic nitrogen and sulfur in solid bitumens can be understood in terms of the nature of (1) petroleum precursor molecules, (2) the concentration of nitrogen by way of thermal stress and (3) the mode of sulfur incorporation. TCA solid bitumens originate from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. Organic sulfur in TCA organic solids remains fairly constant with increasing maturation (3.5 to ???17 sulfur per 100 carbons) into aromatic structures and to the low levels of nitrogen in their hydrocarbon precursors. Hence, XPS results provide organic chemical composition information that helps to distinguish whether solid bitumen, either in situ or removed and concentrated from the rock matrix, was formed via the TCA or TRS process. ?? 2008 Elsevier Ltd.

  11. Manufacture of ceramic tiles from fly ash

    DOEpatents

    Hnat, J.G.; Mathur, A.; Simpson, J.C.

    1999-08-10

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.

  12. Organic compounds in hydraulic fracturing fluids and wastewaters: A review.

    PubMed

    Luek, Jenna L; Gonsior, Michael

    2017-10-15

    High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas produces a large quantity of wastewater in the form of flowback fluids and produced water. These wastewaters are highly variable in their composition and contain a mixture of fracturing fluid additives, geogenic inorganic and organic substances, and transformation products. The qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the composition of HVHF wastewaters. In general, analyses of organic compounds have focused on those amenable to gas chromatography, focusing on volatile and semi-volatile oil and gas compounds. Studies of more polar and non-volatile organic compounds have been limited by a lack of knowledge of what compounds may be present as well as quantitative methods and standards available for analyzing these complex mixtures. Liquid chromatography paired with high-resolution mass spectrometry has been used to investigate a number of additives and will be a key tool to further research on transformation products that are increasingly solubilized through physical, chemical, and biological processes in situ and during environmental contamination events. Diverse treatments have been tested and applied to HVHF wastewaters but limited information has been published on the quantitative removal of individual organic compounds. This review focuses on recently published information on organic compounds identified in flowback fluids and produced waters from HVHF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Blastocystis hominis revisited.

    PubMed Central

    Stenzel, D J; Boreham, P F

    1996-01-01

    Blastocystis hominis is a unicellular organism found commonly in the intestinal tract of humans and many other animals. Very little is known of the basic biology of the organism, and controversy surrounds its taxonomy and pathogenicity. There morphological forms (vacuolar, granular, and ameboid) have been recognized, but recent studies have revealed several additional forms (cyst, avacuolar, and multivacuolar). The biochemistry of the organism has not been studied to any extent, and organelles and structures of unknown function and composition are present in the cells. Several life cycles have been proposed but not experimentally validated. The form used for transmission has not been defined. Infections with the organism are worldwide and appear in both immunocompetent and immunodeficient individuals. Symptoms generally attributed to B. hominis infection are nonspecific, and the need for treatment is debated. If treatment appears warranted, metronidazole is suggested as the drug of choice, although failures of this drug in eradicating the organism have been reported. Infection is diagnosed by light microscopic examination of stained smears or wet mounts of fecal material. Most laboratories identify B. hominis by observing the vacuolar form, although morphological studies indicate that other forms, such as the cyst form and multivacuolar form, also should be sought for diagnosis. PMID:8894352

  14. Characterization of organic compounds in biochars derived from municipal solid waste.

    PubMed

    Taherymoosavi, Sarasadat; Verheyen, Vince; Munroe, Paul; Joseph, Stephen; Reynolds, Alicia

    2017-09-01

    Municipal solid waste (MSW) generation has been growing in many countries, which has led to numerous environmental problems. Converting MSW into a valuable biochar-based by-product can manage waste and, possibly, improve soil fertility, depending on the soil properties. In this study, MSW-based biochars, collected from domestic waste materials and kerbsides in two Sydney's regions, were composted and pyrolysed at 450°C, 550°C and 650°C. The characteristics of the organic components and their interactions with mineral phases were investigated using a range of analytical techniques, with special attention given to polycyclic aromatic hydrocarbons and heavy metal concentrations. The MSW biochar prepared at 450°C contained the most complex organic compounds. The highest concentration of fixed C, indicating the stability of biochar, was detected in the high-temperature-biochar. Microscopic analysis showed development of pores and migration of mineral phases, mainly Ca/P/O-rich phases, into the micro-pores and Si/Al/O-rich phases on the surface of the biochar in the MSW biochar produced at 550°C. Amalgamation of organic phases with mineral compounds was observed, at higher pyrolysis temperatures, indicating chemical reactions between these two phases at 650°C. XPS analysis showed the main changes occurred in C and N bonds. During heat treatment, N-C/C=N functionalities decomposed and oxidized N configurations, mainly pyridine-N-oxide groups, were formed. The majority of the dissolved organic carbon fraction in both MSW biochar produced at 450°C and 550°C was in the form of building blocks, whereas LMW acids was the main fraction in high-temperature-biochar (59.9%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Formation of organic layer on femtosecond laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Yasumaru, Naoki; Sentoku, Eisuke; Kiuchi, Junsuke

    2017-05-01

    Two types of laser-induced periodic surface structures (LIPSS) formed on titanium by femtosecond (fs) laser pulses (λ = 800 nm, τ = 180 fs, ν = 1 kHz) in air were investigated experimentally. At a laser fluence F above the ablation threshold, LIPSS with a minimum mean spacing of D < λ⁄2 were observed perpendicular to the laser polarization direction. In contrast, for F slightly below than the ablation threshold, ultrafine LIPSS with a minimum value of D < λ/10 were formed parallel to the polarization direction. The surface roughness of the parallel-oriented LIPSS was almost the same as that of the non-irradiated surface, unlike the high roughness of the perpendicular-oriented LIPSS. In addition, although the surface state of the parallel-oriented LIPSS was the same as that of the non-irradiated surface, the perpendicular-oriented LIPSS were covered with an organic thin film similar to a cellulose derivative that cannot be easily formed by conventional chemical synthesis. The results of these surface analyses indicate that these two types of LIPSS are formed through different mechanisms. This fs-laser processing technique may become a new technology for the artificial synthesis of cellulose derivatives.

  16. Integrating phase and composition of secondary organic aerosol from the ozonolysis of α-pinene

    PubMed Central

    Kidd, Carla; Perraud, Véronique; Wingen, Lisa M.; Finlayson-Pitts, Barbara J.

    2014-01-01

    Airborne particles are important for public health, visibility, and climate. Predicting their concentrations, effects, and responses to control strategies requires accurate models of their formation and growth in air. This is challenging, as a large fraction is formed by complex reactions of volatile organic compounds, generating secondary organic aerosol (SOA), which grows to sizes important for visibility, climate, and deposition in the lung. Growth of SOA is particularly sensitive to the phase/viscosity of the particles and remains poorly understood. We report studies using a custom-designed impactor with a germanium crystal as the impaction surface to study SOA formed from the ozonolysis of α-pinene at relative humidities (RHs) up to 87% at 297 ± 2 K (which corresponds to a maximum RH of 70–86% inside the impactor). The impaction patterns provide insight into changes in phase/viscosity as a function of RH. Attenuated total reflectance-Fourier transform infrared spectroscopy and aerosol mass spectrometry provide simultaneous information on composition changes with RH. The results show that as the RH at which the SOA is formed increases, there is a decrease in viscosity, accompanied by an increasing contribution from carboxylic acids and a decreasing contribution from higher molecular mass products. In contrast, SOA that is formed dry and subsequently humidified remains solid to high RH. The results of these studies have significant implications for modeling the growth, aging, and ultimately, lifetime of SOA in the atmosphere. PMID:24821796

  17. Energy densification of biomass-derived organic acids

    DOEpatents

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  18. Metal–Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Teng; Manna, Kuntal; Lin, Wenbin

    New and active earth-abundant metal catalysts are critically needed to replace precious metal-based catalysts for sustainable production of commodity and fine chemicals. We report here the design of highly robust, active, and reusable cobalt-bipyridine- and cobalt-phenanthroline-based metal–organic framework (MOF) catalysts for alkene hydrogenation and hydroboration, aldehyde/ketone hydroboration, and arene C–H borylation. In alkene hydrogenation, the MOF catalysts tolerated a variety of functional groups and displayed unprecedentedly high turnover numbers of ~2.5 × 10 6 and turnover frequencies of ~1.1 × 10 5 h –1. Structural, computational, and spectroscopic studies show that site isolation of the highly reactive (bpy)Co(THF) 2 speciesmore » in the MOFs prevents intermolecular deactivation and stabilizes solution-inaccessible catalysts for broad-scope organic transformations. Computational, spectroscopic, and kinetic evidence further support a hitherto unknown (bpy•–)CoI(THF) 2 ground state that coordinates to alkene and dihydrogen and then undergoing σ-complex-assisted metathesis to form (bpy)Co(alkyl)(H). Reductive elimination of alkane followed by alkene binding completes the catalytic cycle. MOFs thus provide a novel platform for discovering new base-metal molecular catalysts and exhibit enormous potential in sustainable chemical catalysis.« less

  19. The sheep genome illuminates biology of the rumen and lipid metabolism

    USDA-ARS?s Scientific Manuscript database

    Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep gen...

  20. Box 11: Tissue Engineering and Bioscience Methods Using Proton Beam Writing

    NASA Astrophysics Data System (ADS)

    van Kan, J. A.

    Tissue engineering is a rapidly developing and highly interdisciplinary field that applies the principles of cell biology, engineering, and materials science to the culture of biological tissue. The artificially grown tissue then can be implanted directly into the body, or it can form part of a device that replaces organ functionality.

  1. Art. Program of Art Instruction in the Secondary School.

    ERIC Educational Resources Information Center

    Battle Creek Public Schools, MI.

    GRADES OR AGES: Junior and senior high school. SUBJECT MATTER: Art. ORGANIZATION AND PHYSICAL APPEARANCE: The guide has four main sections: 1) "Aims of the Art Program"; 2) "Function of the Guide"; 3) "Course Descriptions"; and 4) "References, Source Materials, Aids." The course descriptions in section 3 are arranged in chart form with six…

  2. Mastering Academic Language: Organization and Stance in the Persuasive Writing of High School Students

    ERIC Educational Resources Information Center

    Uccelli, Paola; Dobbs, Christina L.; Scott, Jessica

    2013-01-01

    Beyond mechanics and spelling conventions, academic writing requires progressive mastery of advanced language forms and functions. Pedagogically useful tools to assess such language features in adolescents' writing, however, are not yet available. This study examines language predictors of writing quality in 51 persuasive essays produced by high…

  3. Silylene- and disilyleneacetylene polymers from trichloroethylene

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina

    1990-07-10

    Organosilane polymers having recurring silyleneacetylene and/or disilyleneacetylene units are prepared in a one-pot synthesis from trichloroethylene. Depending on the organic substituents (R and R'), these polymers have useful film-forming properties, and are converted to the ceramic, silicon carbide upon heating in very uniform high yields. They can also be pulled into fibers.

  4. Silylene- and disilyleneacetylene polymers from trichloroethylene

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.

    1990-07-10

    Organosilane polymers having recurring silyleneacetylene and/or disilyleneacetylene units are prepared in a one-pot synthesis from trichloroethylene. Depending on the organic substituents (R and R[prime]), these polymers have useful film-forming properties, and are converted to the ceramic, silicon carbide upon heating in very uniform high yields. They can also be pulled into fibers.

  5. Storymakers: Hopa Mountain's Early Literacy Program

    ERIC Educational Resources Information Center

    Templin, Patricia A.

    2013-01-01

    Hopa Mountain's StoryMakers program is an innovative, research-based program for donating high quality young children's books to parents. Hopa Mountain is a nonprofit organization based in Bozeman, Montana. Hopa Mountain works with groups of rural and tribal citizen leaders who form StoryMakers Community Teams to talk one-on-one with local parents…

  6. Adult Education in Sweden.

    ERIC Educational Resources Information Center

    Ministry of Education and Cultural Affairs, Stockholm (Sweden).

    The forms of adult education in Sweden discussed in this review include the courses provided by the Labour Market Board, the folk high schools, the national and local educational schemes, the Commission for TV and Radio in Education (TRU), and the training courses arranged by the employee organizations. Brief mention is also made of the courses…

  7. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites

    NASA Astrophysics Data System (ADS)

    Xiao, Zhengguo; Kerner, Ross A.; Zhao, Lianfeng; Tran, Nhu L.; Lee, Kyung Min; Koh, Tae-Wook; Scholes, Gregory D.; Rand, Barry P.

    2017-01-01

    Organic-inorganic hybrid perovskite materials are emerging as highly attractive semiconductors for use in optoelectronics. In addition to their use in photovoltaics, perovskites are promising for realizing light-emitting diodes (LEDs) due to their high colour purity, low non-radiative recombination rates and tunable bandgap. Here, we report highly efficient perovskite LEDs enabled through the formation of self-assembled, nanometre-sized crystallites. Large-group ammonium halides added to the perovskite precursor solution act as a surfactant that dramatically constrains the growth of 3D perovskite grains during film forming, producing crystallites with dimensions as small as 10 nm and film roughness of less than 1 nm. Coating these nanometre-sized perovskite grains with longer-chain organic cations yields highly efficient emitters, resulting in LEDs that operate with external quantum efficiencies of 10.4% for the methylammonium lead iodide system and 9.3% for the methylammonium lead bromide system, with significantly improved shelf and operational stability.

  8. Improving transplantation programs and patient care.

    PubMed

    Shaheen, F A M; Souqiyyeh, M Z

    2005-09-01

    Organ transplantation is the preferred mode of replacement therapy. Currently acceptable 5-year posttransplantation survival rates are 85% for renal grafts, 70% for liver, and 65% for heart. Organ donation, however, remains a significant factor in organ transplantation, as humans are the only possible donors and the numbers of patients on waiting lists remain high. Several factors affect organ transplantation in countries in the Middle East Society for Organ Transplantation (MESOT) region, including inadequate preventive medicine, differing health infrastructures, poor awareness within the medical community and lay public regarding the importance of organ donation and transplantation, a high level of ethnicity, and poor government support of organ transplantation. Moreover, there is lack of team spirit among transplant physicians, a lack of coordination between groups that manage organ procurement and the transplant centers, and a lack of effective health insurance coverage for many persons. Three models of organ donation and transplantation exist in the MESOT region-the Saudi, Iranian, and Pakistani models. Living-organ donation, the most widely practiced form of donation in countries in the MESOT region, includes kidney and partial liver. Cadaveric organ donation has significant potential in the MESOT region. However, numerous obstacles must be overcome in MESOT countries. Resolution of these obstacles will require continuous work on many fronts. Experiences from all sources must be incorporated into new and improved models that can overcome current inadequacies. Solutions will require continued focus within the medical community, steady support from the lay public and religious institutions, as well as governmental assistance.

  9. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free amino acids. Complex amino acid precursors with high molecular weights could be formed in simulated dense cloud environments. They would have been altered in the early solar system by irradiation with soft X-rays from the young Sun, which caused increase of hydrophobicity of the organics of interstellar origin. They were taken up by parent bodies of meteorites or comets, and could have been delivered to the Earth by meteorites, comets and cosmic dusts. Cosmic dusts were so small that they were directly exposed to the solar radiation, which might be critical for the survivability of organics in them. In order to evaluate the roles of space dusts as carriers of bioorganic compounds to the primitive Earth, we are planning the Tanpopo Mission, where collection of cosmic dusts by using ultra low-density aerogel, and exposure of amino acids and their precursors for years are planned by utilizing the Japan Experimental Module / Exposed Facility of the ISS [2]. The mission is now scheduled to start in 2013. We thank Dr. Katsunori Kawasaki of Tokyo Institute of Technology, and Dr. Satoshi Yoshida of National Institute of Radiological Sciences for their help in particles irradiation. We also thank to the members of JAXA Tanpopo Working Group (PI: Prof. Akihiko Yamagishi) for their helpful discussion. [1] K. Kobayashi, et al., in ``Astrobiology: from Simple Molecules to Primitive Life,'' ed. by V. Basiuk, American Scientific Publishers, Valencia, CA, (2010), pp. 175-186. [2] K. Kobayashi, et al., Trans. Jpn. Soc. Aero. Space Sci., in press (2012).

  10. Effects of different forms of plant-derived organic matter on nitrous oxide emissions.

    PubMed

    Qiu, Qingyan; Wu, Lanfang; Ouyang, Zhu; Li, Binbin; Xu, Yanyan

    2016-07-13

    To investigate the impact of different forms of plant-derived organic matter on nitrous oxide (N2O) emissions, an incubation experiment with the same rate of total nitrogen (N) application was carried out at 25 °C for 250 days. Soils were incorporated with maize-derived organic matter (i.e., maize residue-derived dissolved organic matter and maize residues with different C/N ratios) and an inorganic N fertilizer (urea). The pattern and magnitude of nitrous oxide (N2O) emissions were affected by the form of N applied. Single application of maize-derived organic matter resulted in a higher N2O emission than single application of the inorganic N fertilizer or combined application of the inorganic N fertilizer and maize-derived organic matter. The positive effect of maize residue-derived dissolved organic matter (DOM) addition on N2O emissions was relatively short-lived and mainly occurred at the early stage following DOM addition. In contrast, the positive effect induced by maize residue addition was more pronounced and lasted for a longer period. Single application of maize residues resulted in a substantial decrease in soil nitric nitrogen (NO3(-)-N), but it did not affect the production of N2O. No significant relationship between N2O emission and NO3(-)-N and ammonium nitrogen (NH4(+)-N) suggested that the availability of soil N was not limiting the production of N2O in our study. The key factors affecting soil N2O emission were the soil dissolved organic carbon (DOC) content and metabolism quotient (qCO2). Both of them could explain 87% of the variation in cumulative N2O emission. The C/N ratio of maize-derived organic matter was a poor predictor of N2O emission when the soil was not limited by easily available C and the available N content met the microbial N demands for nitrification and denitrification. The results suggested that the magnitude of N2O emission was determined by the impact of organic amendments on soil C availability and microbial activity rather than on soil N availability. In agricultural management practices, if the N inputs from organic and inorganic N fertilizers are equivalent, addition of organic N fertilizers that contain high amounts of available C will result in a higher N2O emission.

  11. [Specific features of 2-methyl hydroxybenzene and 3-methyl hydroxybenzene distribution in the organism of warm-blooded animals].

    PubMed

    Shormanov, B K; Grishenko, V K; Astashkina, A P; Elizarova, M K

    2013-01-01

    The present work was designed to study the specific features of 2-methyl hydroxybezene and 3-methyl hydroxybenzene distribution after intragastric administration of these toxicants to warm-blooded animals (rats). They were detected in the unmetabolized form in the internal organs and blood of the animals. The levels of 2-methyl hydroxybezene were especially high in the stomach and blood whereas the maximum content of 3-methyl hydroxybenzene was found in brain, blood, small intestines of the poisoned rats.

  12. Highly Efficient Solution-Processed Deep-Red Organic Light-Emitting Diodes Based on an Exciplex Host Composed of a Hole Transporter and a Bipolar Host.

    PubMed

    Huang, Manli; Jiang, Bei; Xie, Guohua; Yang, Chuluo

    2017-10-19

    With the aim to achieve highly efficient deep-red emission, we introduced an exciplex forming cohost, 4,4',4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA): 2,5-bis(2-(9H-carbazol-9-yl)phenyl)-1,3,4-oxadiazole (o-CzOXD) (1:1). Due to the efficient triplet up-conversion processes upon the exciplex forming cohost, excellent performances of the devices were achieved with deep-red emission. Using the heteroleptic iridium complexes as the guest dopants, the solution-processed deep-red phosphorescent organic light-emitting diodes (PhOLEDs) with the iridium(III) bis(6-(4-(tert-butyl)phenyl)phenanthridine)acetylacetonate [(TP-BQ) 2 Ir(acac)]-based phosphorescent emitter exhibited an electroluminescent peak at 656 nm and a maximum external quantum efficiency (EQE) of 11.9%, which is 6.6 times that of the device based on the guest emitter doped in the polymer-based cohost. The unique exciplex with a typical hole transporter and a bipolar material is ideal and universal for hosting the red PhOLEDs and tremendously improves the device performances.

  13. Variations of floc morphology and extracellular organic matters (EOM) in relation to floc filterability under algae flocculation harvesting using polymeric titanium coagulants (PTCs).

    PubMed

    Zhang, Weijun; Song, Rongna; Cao, Bingdi; Yang, Xiaofang; Wang, Dongsheng; Fu, Xingmin; Song, Yao

    2018-05-01

    The work evaluated the algae cells removal efficiency using titanium salt coagulants with different degree of polymerization (PTCs), and the algae cells aggregates and extracellular organic matter (EOM) under chemical flocculation were investigated. The results indicated that PTCs performed well in algae cells flocculation and separation. The main mechanism using PTCs of low alkalisation degree for algae flocculation was associated with charge neutralization, while adsorption bridging and sweep flocculation was mainly responsible for algae removal by PTCs of high alkalisation degree treatment. In addition, the flocs formed by PTC 1.0 showed the best filtration property, and EOM reached the minimum at this time, indicating the flocs formed by PTC 1.0 were more compact than other PTCs, which can be confirmed by SEM analysis. Three-dimensional excitation emission matrix fluorescence (3D-EEM) and high performance size exclusion chromatography (HPSEC) revealed that the EOMs were removed under PTCs flocculation, which improved floc filterability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Separating Autotrophic and Heterotrophic Respiration in Streams and the Importance for Carbon Cycling: a Preliminary Study

    NASA Astrophysics Data System (ADS)

    Bozeman, M.; Raymond, P.

    2005-05-01

    Autotrophic and heterotrophic organisms confer different effects on nutrient cycling, especially on carbon (C). In stream ecosystems, net ecosystem production determines the amount and form of C exported; however any transformation due to different respiratory (R) mechanisms are not separated. These mechanisms highly influence the form and lability of the C transported. To understand the current state of knowledge and estimate the importance of autotrophic versus heterotrophic R, we obtained a range of respiratory rates from the literature and modeled effects of different balances of rates on bulk dissolved inorganic and organic C chemistry. Preliminary results show that a wide range of estimates of autotrophic R exist and that these can effect bulk properties of exported C. While specific effects are highly dependent upon physical structure of the study watershed, we offer that separating R mechanisms provides further insight into ecosystem C cycling. We also propose a method to measure autotrophic and heterotrophic R at the ecosystem scale and obtain watershed-level estimates of the importance of these processes on C cycling.

  15. Electrochemical reduction of carbon dioxide. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaConti, A.B.; Molter, T.M.; Zagaja, J.A.

    1986-05-01

    Many researchers have studied the electrochemical reduction of carbon dioxide and related organic species to form concentrated liquid/gaseous products in laboratory-scale hardware. Hamilton Standard has developed a high pressure SPE electrolysis cell capable of reducing carbon dioxide streams to form pure, concentrated alcohols, carboxylic acids, and other hydrocarbons. The process is unique in that the byproducts of reaction include oxygen and, under some test conditions water. In addition, a relatively simple test system was designed and constructed permitting both batch and semibatch type electrochemical reduction studies. In this study, cathode materials were developed which 1) had a characteristic high hydrogenmore » overvoltage, and 2) possessed the intrinsic affinity for electrochemical reduction of the carbon dioxide species. In addition, suitable anode electrocatalyst materials were identified. Studies involving the electrochemical reduction of carbon dioxide required the ability to identify and quantify reaction products obtained during cell evaluation. Gas chromatographic techniques were developed along with the establishment of ion chromatographic methods permitting the analysis of organic reaction products. Hamilton Standard has evaluated electrochemical carbon dioxide reduction cells under a variety of test conditions.« less

  16. Gram scale synthesis of Fe/Fe xO y core–shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites

    DOE PAGES

    Watt, John Daniel; Bleier, Grant C.; Romero, Zachary William; ...

    2018-05-15

    In this paper, significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/Fe xO y core–shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of themore » resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this ‘matrix-free’ approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.« less

  17. Gram scale synthesis of Fe/Fe xO y core–shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, John Daniel; Bleier, Grant C.; Romero, Zachary William

    In this paper, significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/Fe xO y core–shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of themore » resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this ‘matrix-free’ approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.« less

  18. Optically Clear and Resilient Free-Form µ-Optics 3D-Printed via Ultrafast Laser Lithography.

    PubMed

    Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2017-01-02

    We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm² intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures.

  19. Silica-Protection-Assisted Encapsulation of Cu2 O Nanocubes into a Metal-Organic Framework (ZIF-8) To Provide a Composite Catalyst.

    PubMed

    Li, Bo; Ma, Jian-Gong; Cheng, Peng

    2018-06-04

    The integration of metal/metal oxide nanoparticles (NPs) into metal-organic frameworks (MOFs) to form composite materials has attracted great interest due to the broad range of applications. However, to date, it has not been possible to encapsulate metastable NPs with high catalytic activity into MOFs, due to their instability during the preparation process. For the first time, we have successfully developed a template protection-sacrifice (TPS) method to encapsulate metastable NPs such as Cu 2 O into MOFs. SiO 2 was used as both a protective shell for Cu 2 O nanocubes and a sacrificial template for forming a yolk-shell structure. The obtained Cu 2 O@ZIF-8 composite exhibits excellent cycle stability in the catalytic hydrogenation of 4-nitrophenol with high activity. This is the first report of a Cu 2 O@MOF-type composite material. The TPS method provides an efficient strategy for encapsulating unstable active metal/metal oxide NPs into MOFs or maybe other porous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optically Clear and Resilient Free-Form μ-Optics 3D-Printed via Ultrafast Laser Lithography

    PubMed Central

    Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2017-01-01

    We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm2 intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures. PMID:28772389

Top