Characterizing Fullerene Nanoparticles in Aqueous Suspensions
Studies have indicated that fullerenes can form stable colloidal suspensions in water when introduced to the aqueous phase through solvent exchange, sonication, or extended mixing. The colloidal suspensions created using these techniques have effective aqueous phase concentratio...
Joffe, Eleanore W.; Mudd, Stuart
1935-01-01
The relation between electrokinetic potential and suspension stability of four strains of non-flagellate intestinal bacteria has been studied. The smooth forms have ζ-potentials which approximate zero over a wide range of pH and salt concentration, yet nevertheless form stable suspensions. The rough variants have ζ-potentials which vary with pH and electrolyte concentration in the familiar way. The rough forms have values of ζ-potential critical for their suspension stability. PMID:19872869
The effect of particle size on the dehydration/rehydration behaviour of lactose.
Crisp, J L; Dann, S E; Edgar, M; Blatchford, C G
2010-05-31
Ethanolic suspensions of spray dried and micronized alpha lactose monohydrate (L(alpha)xH(2)O) with average particle size between 3 and 200 microm, have been prepared and their dehydration behaviour was investigated by (13)C CP-MASNMR spectroscopy. Sub-micron lactose suspension prepared by a novel high pressure homogenisation method has been compared with the standard ethanolic suspensions of (L(alpha).H(2)O prepared by reflux or static room temperature methods. In all cases, suspensions were shown to contain the stable anhydrous form of lactose ((L(alpha)(S)). Several approaches were employed to remove ethanol from these suspensions and the resulting dry lactose powders were then analysed by FT-IR, PXRD and SEM to evaluate the effect of drying procedure on type and distribution of lactose polymorphs and particle size. For samples with mean particle size greater than 1 microm, the stable anhydrous polymorphic form of lactose was retained on removal of the ethanol, although differences in the morphology and particle size of the crystals were apparent depending on method of suspension formation. Sub-micron (L(alpha)(S), while stable in dry conditions, has been shown to be less stable to atmospheric water vapour than (L(alpha)(S) with particle size between 3 and 200 microm. Copyright (c) 2010 Elsevier B.V. All rights reserved.
In-situ chemical barrier and method of making
Cantrell, K.J.; Kaplan, D.I.
1999-01-12
A chemical barrier is formed by injecting a suspension of solid particles or colloids into the subsurface. First, a stable colloid suspension is made including a surfactant and a non-Newtonian fluid. This stable colloid suspension is characterized by colloid concentration, colloid size, colloid material, solution ionic strength, and chemical composition. A second step involves injecting the optimized stable colloid suspension at a sufficiently high flow rate to move the colloids through the subsurface sediment, but not at such a high rate so as to induce resuspending indigenous soil particles in the aquifer. While injecting the stable colloid suspension, a withdrawal well may be used to draw the injected colloids in a direction perpendicular to the flow path of a contaminant plume. The withdrawal well, may then be used as an injection well, and a third well, in line with the first two wells, may then be used as a withdrawal well, thereby increasing the length of the colloid barrier. This process would continue until emplacement of the colloid barrier is complete. 7 figs.
In-situ chemical barrier and method of making
Cantrell, Kirk J.; Kaplan, Daniel I.
1999-01-01
A chemical barrier is formed by injecting a suspension of solid particles or colloids into the subsurface. First, a stable colloid suspension is made including a surfactant and a non-Newtonian fluid. This stable colloid suspension is characterized by colloid concentration, colloid size, colloid material, solution ionic strength, and chemical composition. A second step involves injecting the optimized stable colloid suspension at a sufficiently high flow rate to move the colloids through the subsurface sediment, but not at such a high rate so as to induce resuspending indigenous soil particles in the aquifer. While injecting the stable colloid suspension, a withdrawal well may be used to draw the injected colloids in a direction perpendicular to the flow path of a contaminant plume. The withdrawal well, may then be used as an injection well, and a third well, in line with the first two wells, may then be used as a withdrawal well, thereby increasing the length of the colloid barrier. This process would continue until emplacement of the colloid barrier is complete.
de Villiers, M M; Mahlatji, M D; Malan, S F; van Tonder, E C; Liebenberg, W
2004-07-01
This study reports the preparation of four niclosamide solvates and the determination of the stability of the crystal forms in different suspension vehicles by DSC and TG analysis. Thermal analysis showed that the niclosamide solvates were extremely unstable in a PVP-vehicle and rapidly changed to monohydrated crystals. A suspension in propylene glycol was more stable and TG analysis showed that crystal transformation was less rapid. In this vehicle, the crystals transformed to the anhydrate, rather than the monohydrate, since the vehicle was non-aqueous. The TEG-hemisolvate was the most stable in suspension and offered the best possibility of commercial exploitation.
Physical and Chemical Stability of Mycophenolate Mofetil (MMF) Suspension Prepared at the Hospital
Fahimi, Fanak; Baniasadi, Shadi; Mortazavi, Seyed Alireza; Dehghan, Hanie; Zarghi, Afshin
2012-01-01
To evaluate the physical and chemical stability of a suspension of mycophenolate mofetil (MMF) prepared in the hospital from commercially available MMF capsules and tablets. Extemporaneous pharmacy was used as a feasible method in this experimental study to prepare suspension form of MMF. Suspension formulations were prepared from both tablets and capsules forms of MMF. Thereafter the stability parameters such as pH, microbial control, thermal and physical stability and particle sizes were evaluated. The amount of MMF, in the suspension was measured at various time points by HPLC. The HPLC method showed that concentration of suspensions prepared from tablets and capsules were 49 mg/mL and 50 mg/mL at time 0, respectively. The effective amount of suspensions prepared from capsules was 101% at time 0, 100% after 7 days, 98% after 14 days, and less than 70% after 28 days. According to the obtained results in this study, capsule-based suspension was stable for as long as 14 days at 5°C. This formulation appears to be clinically acceptable and provides a convenient dosage form for pediatric patients and for adults during the early postoperative period. PMID:24250439
Hansen, R.S.; Minturn, R.E.
1958-02-25
This patent deals with a method of preparing actinide metal oxides of a very fine particle size and of forming stable suspensions therefrom. The process consists of dissolving the nitrate of the actinide element in a combustible organic solvent, converting the solution obtained into a spray, and igniting the spray whereby an oxide powder is obtained. The oxide powder is then slurried in an aqueous soiution of a substance which is adsorbable by said oxides, dspersed in a colloid mill whereby a suspension is obtained, and electrodialyzed until a low spectiic conductance is reached.
Stability of extemporaneous erlotinib, lapatinib, and imatinib oral suspensions.
Li, Quan; Liu, Zhaoying; Kolli, Shamalatha; Wetz, Karen; Griffith, Niesha; Poi, Ming J
2016-09-01
The stability of extemporaneously prepared erlotinib, lapatinib, and imatinib oral liquid dosage forms using two commercially available vehicles when stored at 4 and 25 °C was evaluated. Three batches of extemporaneous oral suspensions were prepared for each drug. Erlotinib and lapatinib tablets were crushed and mixed in a 1:1 mixture of Ora-Plus:Ora-Sweet solution to yield 10- and 50-mg/mL suspensions, respectively. Imatinib tablets were crushed and mixed in Ora-Sweet solution to yield a 40-mg/mL suspension. Suspensions were stored in amber plastic bottles, and samples from each bottle were obtained on days 0, 1, 3, 7, 14, and 28. Erlotinib 10-mg/mL and lapatinib 50-mg/mL oral suspensions in a 1:1 mixture of Ora-Plus and Ora-Sweet retained at least 90% of their initial concentration throughout the 28-day study when stored at 25 °C. Visual inspection revealed notable viscosity changes in the erlotinib and lapatinib suspensions stored at 4 °C for 7 days and beyond. The viscosity of these preparations increased with time and was particularly evident with the erlotinib suspension, which exhibited a puddinglike texture. Imatinib 40-mg/mL oral suspension in Ora-Sweet appeared stable for up to 14 days when stored at both 25 and 4 °C. Erlotinib 10-mg/mL and lapatinib 50-mg/mL oral suspensions prepared from commercially available tablets were stable for at least 28 days when prepared in a 1:1 mixture of Ora-Plus:Ora-Sweet at 25 °C. Imatinib 40-mg/mL oral suspension prepared from commercially available tablets was stable for up to 14 days when prepared in Ora-Sweet and stored at 25 and 4 °C. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Bifurcation from stable holes to replicating holes in vibrated dense suspensions.
Ebata, H; Sano, M
2013-11-01
In vertically vibrated starch suspensions, we observe bifurcations from stable holes to replicating holes. Above a certain acceleration, finite-amplitude deformations of the vibrated surface continue to grow until void penetrates fluid layers, and a hole forms. We studied experimentally and theoretically the parameter dependence of the holes and their stabilities. In suspensions of small dispersed particles, the circular shapes of the holes are stable. However, we find that larger particles or lower surface tension of water destabilize the circular shapes; this indicates the importance of capillary forces acting on the dispersed particles. Around the critical acceleration for bifurcation, holes show intermittent large deformations as a precursor to hole replication. We applied a phenomenological model for deformable domains, which is used in reaction-diffusion systems. The model can explain the basic dynamics of the holes, such as intermittent behavior, probability distribution functions of deformation, and time intervals of replication. Results from the phenomenological model match the linear growth rate below criticality that was estimated from experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitsche, R.T.; Pope, G.N.
A process for reforming a naphtha feedstock is disclosed. The reforming process is effected at reforming conditions in contact with a catalyst comprising a platinum group metal component and a group iv-a metal component composited with an alumina support wherein said support is prepared by admixing an alpha alumina monohydrate with an aqueous ammoniacal solution having a ph of at least about 7.5 to form a stable suspension. A salt of a strong acid, e.g., aluminum nitrate, is commingled with the suspension to form an extrudable paste or dough. On extrusion, the extrudate is dried and calcined to form saidmore » alumina support.« less
NASA Astrophysics Data System (ADS)
Chhikara, Bhupender S.; Misra, Santosh K.; Bhattacharya, Santanu
2012-02-01
Methods which disperse single-walled carbon nanotubes (SWNTs) in water as ‘debundled’, while maintaining their unique physical properties are highly useful. We present here a family of cationic cholesterol compounds (Chol+) {Cholest-5en-3β-oxyethyl pyridinium bromide (Chol-PB+), Cholest-5en-3β-oxyethyl N-methyl pyrrolidinium bromide (Chol-MPB+), Cholest-5en-3β-oxyethyl N-methyl morpholinium bromide (Chol-MMB+) and Cholest-5en-3β-oxyethyl diazabicyclo octanium bromide (Chol-DOB+)}. Each of these could be easily dispersed in water. The resulting cationic cholesterol (Chol+) suspensions solubilized single-walled carbon nanotubes (SWCNTs) by the non-specific physical adsorption of Chol+ to form stable, transparent, dark aqueous suspensions at room temperature. Electron microscopy reveals the existence of highly segregated CNTs in these samples. Zeta potential measurements showed an increase in potential of cationic cholesterol aggregates on addition of CNTs. The CNT-Chol+ suspensions were capable of forming stable complexes with genes (DNA) efficiently. The release of double-helical DNA from such CNT-Chol+ complexes could be induced upon the addition of anionic micellar solution of SDS. Furthermore, the CNT-based DNA complexes containing cationic cholesterol aggregates showed higher stability in fetal bovine serum media at physiological conditions. Confocal studies confirm that CNT-Chol+ formulations adhere to HeLa cell surfaces and get internalized more efficiently than the cationic cholesterol suspensions alone (devoid of any CNTs). These cationic cholesterol-CNT suspensions therefore appear to be a promising system for further use in biological applications.
Atkins, Stephen J; Bentley, Ian; Brooks, Darrell; Burrows, Mark P; Hurst, Howard T; Sinclair, Jonathan K
2015-06-01
Core stability training traditionally uses stable-base techniques. Less is known as to the use of unstable-base techniques, such as suspension training, to activate core musculature. This study sought to assess the neuromuscular activation of global core stabilizers when using suspension training techniques, compared with more traditional forms of isometric exercise. Eighteen elite level, male youth swimmers (age, 15.5 ± 2.3 years; stature, 163.3 ± 12.7 cm; body mass, 62.2 ± 11.9 kg) participated in this study. Surface electromyography (sEMG) was used to determine the rate of muscle contraction in postural musculature, associated with core stability and torso bracing (rectus abdominus [RA], external obliques [EO], erector spinae [ES]). A maximal voluntary contraction test was used to determine peak amplitude for all muscles. Static bracing of the core was achieved using a modified "plank" position, with and without a Swiss ball, and held for 30 seconds. A mechanically similar "plank" was then held using suspension straps. Analysis of sEMG revealed that suspension produced higher peak amplitude in the RA than using a prone or Swiss ball "plank" (p = 0.04). This difference was not replicated in either the EO or ES musculature. We conclude that suspension training noticeably improves engagement of anterior core musculature when compared with both lateral and posterior muscles. Further research is required to determine how best to activate both posterior and lateral musculature when using all forms of core stability training.
Deploying Liquid Filaments and Suspensions with an Electrohydrodynamic Liquid Bridge
NASA Astrophysics Data System (ADS)
Saville, D. A.
2005-11-01
We show that a dynamic liquid bridge can be formed by deploying the filament issuing from a Taylor Cone onto a surface with the nozzle and surface held at different electric potentials. This configuration differs sharply form the familiar `electrospinning' configuration where the filament whips violently. Nevertheless, although the aspect ratio (length/diameter) exceeds the Plateau limit by more than two orders of magnitude the bridge is stable. Here we report on the stability characteristics and show that such a bridge can be used to `print' sub-micron scale features on a moving surface with both clear fluids and suspensions.
Stability study of oral pediatric idebenone suspensions.
Schlatter, Joël; Bourguignon, Elodie; Majoul, Elyes; Kabiche, Sofiane; Balde, Issa-Bella; Cisternino, Salvatore; Fontan, Jean-Eudes
2017-03-01
Adapted forms for administration to infants are limited. The proposed study was performed to propose oral liquid formulations of idebenone in Ora-Plus and either Ora-Sweet or Ora-Sweet SF, Ora-Blend, Ora-Blend SF and Inorpha. Each formulation was stored in 30 ml amber glass bottle at 5 or 25 °C for 90 days. Idebenone contents in these suspensions, determined by a stability-indicating high-performance liquid chromatography method, remained stable at least 90 days in Inorpha when stored at the two temperatures. In Ora-Blend, the stability was estimated at 14 days and in other suspensions at 20 days at the two temperatures. After 90 days storage, the pH of Ora-Plus and Ora-Sweet or Ora-Sweet SF changed between -0.10 and -0.25 units. For others suspensions, the pH changes were not significant (< -0.09 unit). No change was observed in color, odor or visual microbiology. To conclude, we recommended the use of idebenone in Inorpha vehicle stable for at least 90 days at 25 °C.
Formation of Stable Cationic Lipid/DNA Complexes for Gene Transfer
NASA Astrophysics Data System (ADS)
Hofland, Hans E. J.; Shephard, Lee; Sullivan, Sean M.
1996-07-01
Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.
Analysis of soybean tissue culture protein dynamics using difference gel electrophoresis
USDA-ARS?s Scientific Manuscript database
Excised hypocotyls from developing soybean (Glycine max (L.) merr. cv. Jack) were cultivated on agar-solidified medium until callus formed. The calli were then propagated in liquid medium until stable, relatively uniform, finely-divided suspension cultures were obtained. Cells were typically transfe...
Exchange of Surfactant by Natural Organic Matter on the Surfaces of Multi-Walled Carbon Nanotubes
The increasing production and applications of multi-walled carbon nanotubes (MWCNTs) have elicited concerns regarding their release and potential adverse effects in the environment. To form stable aqueous MWCNTs suspensions, surfactants are often employed to facilitate dispersion...
Chemical stability of extemporaneously prepared Lorazepam suspension at two temperatures.
Lee, Wan-Man Ellaria; Lugo, Ralph A; Rusho, William J; Mackay, Mark; Sweeley, John
2004-10-01
The objective of this study was to determine the chemical stability of extemporaneously prepared lorazepam suspension (1 mg/mL) stored at two temperatures (4°C and 22°C) for 3 months. Lorazepam tablets marketed by two manufacturers (Mylan Pharmaceuticals and Watson Laboratories) were used to extemporaneously formulate two independently prepared suspensions. Each suspension was prepared using sterile water, Ora-Plus(®) and Ora-Sweet(®) to achieve a final concentration of 1 mg/mL. The two brands of tablets required different volumes of vehicles to prepare a pharmaceutically optimal suspension. The suspensions were stored in amber glass bottles at 4°C and 22°C for 91 days. Samples were analyzed by high performance liquid chromatography at baseline and on days 2, 3, 7, 14, 21, 28, 42, 63, and 91. The suspensions were considered stable if the mean lorazepam concentration remained greater than 90% of the initial concentration.The chemical stabilities of these two extemporaneously prepared lorazepam suspensions were comparable throughout the study. Both lorazepam suspensions were stable for 63 days when stored at 4°C or 22°C, and both were stable for 91 days when refrigerated at 4°C. When stored at room temperature, the suspension prepared from the Watson tablet retained 88.9 ± 1.4% of the initial concentration on day 91 and was therefore considered unstable, while the suspension prepared from the Mylan tablet was stable for the entire 91-day study.
Retention of Aqu/C60 Nanoparticles on Quartz Surfaces
Studies have shown that C60 fullerene can form stable suspensions of colloidal sized particles in water resulting in C60 aqueous concentrations many orders of magnitude above C60’s aqueous solubility. These studies have raised concern over the mobility and distribution of fuller...
Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins
NASA Astrophysics Data System (ADS)
Kolesnichenko, N. V.; Yashina, O. V.; Ezhova, N. N.; Bondarenko, G. N.; Khadzhiev, S. N.
2018-01-01
Nanodispersed suspensions that are effective in DME conversion and stable in the reaction zone in a three-phase system (slurry reactor) are obtained from MFI zeolite commercial samples (TsVM, IK-17-1, and CBV) in liquid media via ultrasonic treatment (UST). It is found that the dispersion medium, in which ultrasound affects zeolite commercial sample, has a large influence on particle size in the suspension. UST in the aqueous medium produces zeolite nanoparticles smaller than 50 nm, while larger particles of MFI zeolite samples form in silicone or hydrocarbon oils. Spectral and adsorption data show that when zeolites undergo UST in an aqueous medium, the acid sites are redistributed on the zeolite surface and the specific surface area of the mesopores increases. Preliminary UST in aqueous media of zeolite commercial samples (TsVM, IK-17-1, and CBV) affects the catalytic properties of MFI zeolite nanodispersed suspensions. The selectivity of samples when paraffins and olefins form is largely due to superacid sites consisting of OH groups of hydroxonium ion H3O+.
Column study for the evaluation of the transport properties of polyphenol-coated nanoiron.
Mystrioti, C; Papassiopi, N; Xenidis, A; Dermatas, D; Chrysochoou, M
2015-01-08
Injection of a nano zero valent iron (nZVI) suspension in the subsurface is a remedial option for obtaining the in situ reduction and immobilization of hexavalent chromium in contaminated aquifers. Prerequisite for the successful implementation of this technology is that the nanoparticles form a stable colloidal suspension with good transport properties when delivered in the subsurface. In this study we produced stable suspensions of polyphenol-coated nZVI (GT-nZVI) and we evaluated their transport behavior through representative porous media. Two types of porous materials were tested: (a) silica sand as a typical inert medium and (b) a mixture of calcareous soil and sand. The transport of GT-nZVI through the sand column was effectively described using a classic 1-D convection-dispersion flow equation (CDE) in combination with the colloid filtration theory (CFT). The calculations indicate that nZVI travel distance will be limited in the range 2.5-25cm for low Darcy velocities (0.1-1m/d) and in the order of 2.5m at higher velocities (10m/d). The mobility of GT-nZVI suspension in the soil-sand column is lower and is directly related to the progress of the neutralization reactions between the acidic GT-nZVI suspension and soil calcite. Copyright © 2014 Elsevier B.V. All rights reserved.
Visser, J Carolina; Ten Seldam, Inge E J; van der Linden, Isabella J; Hinrichs, Wouter L J; Veenendaal, Reinier F H; Dijkers, Eli C F; Woerdenbag, Herman J
2018-01-01
A pharmaceutical suspension is a semi-liquid dosage form suitable for patients being unable to swallow solid medicines such as tablets and capsules. A vehicle used for the preparation of pharmaceutical oral suspensions preferably shows pseudo-plastic behavior. In a product that gets thinner with agitation and thicker upon standing, slow settlement of the suspended active pharmaceutical ingredient is combined with good pourability and rehomogenization. This gives the best guarantee of uniformity of dose for oral suspensions. In this study, the rheological behavior of commercially available ready-to-use vehicles for oral pharmaceutical preparations was compared, and the sedimentation of paracetamol dispersed in these vehicles was investigated. With SuspendIt and SyrSpend SF PH4 (Liquid), both pseudoplastic vehicles, very stable paracetamol suspensions were obtained. Of these two vehicles, SyrSpend SF PH4 (Liquid) displayed somewhat higher viscosity, which is a favorable quality characteristic for suspensions. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media.
Kloser, Elisabeth; Gray, Derek G
2010-08-17
Aqueous suspensions of poly(ethylene oxide)-grafted nanocrystalline cellulose (PEO-grafted NCC) were prepared in order to achieve steric instead of electrostatic stabilization. A two-step process was employed: in the first step NCC suspensions prepared by sulfuric acid hydrolysis were desulfated with sodium hydroxide, and in the second step the surfaces of the crystals were functionalized with epoxy-terminated poly(ethylene oxide) (PEO epoxide) under alkaline conditions. The PEO-grafted samples were analyzed by conductometric titration, ATR-IR, solid-state NMR, MALDI-TOF MS, SEC MALLS, and AFM. The covalent nature of the linkage was confirmed by weight increase and MALDI-TOF analysis. The PEO-grafted cellulose nanocrystals (CNCs) formed a stable colloidal suspension that remained well dispersed, while the desulfated nanoparticles aggregated and precipitated. Upon concentration of the PEO-grafted aqueous NCC suspension, a chiral nematic phase was observed.
Large scale structures in liquid crystal/clay colloids
NASA Astrophysics Data System (ADS)
van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.
2005-04-01
Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.
Stability of allopurinol and of five antineoplastics in suspension.
Dressman, J B; Poust, R I
1983-04-01
The stability of allopurinol, azathioprine, chlorambucil, melphalan, mercaptopurine, and thioguanine each in an extemporaneously prepared suspension was studied. Tablets of each drug were crushed, mixed with a suspending agent, and brought to a final volume of 10, 15, or 20 ml with a 2:1 mixture of simple syrup and wild cherry syrup. Suspensions were prepared in the following concentrations: allopurinol (20 mg/ml), azathioprine (50 mg/ml), chlorambucil (2 mg/ml), melphalan (2 mg/ml), mercaptopurine (50 mg/ml), and thioguanine (40 mg/ml). Using high-performance liquid chromatography or ultraviolet scans, duplicate assays were performed on each suspension periodically during storage for up to 84 days at ambient room temperature or 5 degrees C. The time required for the suspensions to drop below 90% of labeled strength was used as an indicator of drug stability. Allopurinol and azathioprine were stable for at least 56 days at room temperature and at 5 degrees C. Chlorambucil decomposed rapidly at room temperature but was stable for seven days when stored at 5 degrees C. Melphalan suspensions did not meet the stated criteria for stability even at the time of initial assay. Mercaptopurine and thioguanine were stable for 14 and 84 days, respectively, at room temperature; at 5 degrees C, assay values dropped below those obtained at room temperature. In the suspension formulation tested, allopurinol, azathioprine, mercaptopurine, and thioguanine are stable for at least 14 days at room temperature; chlorambucil suspensions should be refrigerated and discarded after seven days. Melphalan decomposes too rapidly to make this suspension formulation feasible for extemporaneous compounding.
Stability of aggregates in the environment: role of solid bridging
NASA Astrophysics Data System (ADS)
Seiphoori, A.; Jerolmack, D. J.; Arratia, P. E.
2017-12-01
Colloids in suspension may form larger flocs under favorable conditions, via diffusion- or reaction-limited aggregation. In addition, the process of drying colloidal suspensions drives colloids together via hydrodynamic forces to form aggregates, that may be stable or unstable when subject to re-wetting and transport. Channel banks, shorelines and hillslopes are examples where the periodic wetting and drying results in the aggregation of muds. If aggregates disperse, the mud structure is unstable to subsequent wetting or fluid shear and can easily be detached and transported to rivers and coasts. The effective friction that governs hillslope and channel-bank soil creep rates also depends on the stability of the soil aggregates. Yet, few studies probe the particle-scale assembly or stability of aggregates subject to environmental loads, and the effects of shape or size heterogeneity have not been examined in detail. Here we investigate the formation and stability of aggregates subject to passive re-wetting (by misting) and shearing using a simple Poiseuille flow in a microfluidic device. We study the kinetics of a wide range of silicate colloids of different size and surface charge properties using in situ microscopy and particle tracking. We find that negatively charged silica microspheres are dragged by the retreating edge of an evaporating drop and are resuspended easily on re-wetting, showing that aggregates are unstable. In contrast, a bi-disperse suspension created by the addition of silica nanoparticles forms stable deposits, where nanoparticles bind larger particles by bridging the interparticle space, a mechanism similar to capillary bridging that we refer to as "solid bridging." Although aggregate structure and dynamics of the bi-disperse system changes quantitatively with surface-charge of the nanoparticles, smaller particles always conferred stability on the aggregates. Investigation of other colloids, including asbestos fibers and various clays, reveals that this solid bridging effect is robust across variations in particle shape and material composition. These experiments suggest that natural mud and soil may form more stable aggregates than would naively be expected by considering the charge effects alone, because their inherent size heterogeneity is conducive to solid bridging.
Zaid, Abdel Naser; Assali, Mohyeddin; Qaddomi, Aiman; Ghanem, Mashhour; Zaaror, Yara Abu
2014-01-01
The aim of this study was to develop an extemporaneous valsartan suspension (80 mg valsartan/5 mL) starting from commercial tablets (80-mg/ tablet). A high-performance liquid chromatographic system was used for the analysis and quantification of valsartan in the samples studied. Samples of valsartan suspension for analysis were prepared as reported by the validated high-performance liquid chromatographic method and the dissolution tests were performed according to the U.S. Food and Drug Administration's method. The high-performance liquid chromatographic assay indicated that the 80-mg/5-mL valsartan suspension was stable for 30 days when stored at long-term and accelerated storage conditions. Valsartan release profile showed that approximately 85% of valsartan dissolved after 10 minutes and, accordingly, the calculation of similarity factor was not necessary. It is possible for the pharmacist to crush valsartan 80-mg tablets and prepare a suspension which has dosage flexibility that can be calculated according to body-surface area, kidney, and liver functions, without affecting the chemical stability of the active ingredient nor its dissolution profile and also have a cost-effective dosage form.
Stability of amlodipine besylate in two liquid dosage forms.
Nahata, M C; Morosco, R S; Hipple, T F
1999-01-01
To determine the stability of amlodipine besylate in two liquid dosage forms under refrigeration and at room temperature. Commercially available amlodipine tablets (Norvasc-Pfizer) were used to prepare two suspensions: one in extemporaneously prepared 1% methylcellulose in syrup (1:1), and another in equal volumes of commercially available OraPlus/OraSweet. Each suspension containing amlodipine 1 mg/mL was stored in 10 plastic prescription bottles; 5 were stored at 4 degrees C and 5 at 25 degrees C. Samples were collected immediately after preparation (day 0) and on days 7, 14, 28, 42, 56, 70, and 91. Amlodipine concentration was measured by stability-indicating HPLC method (n = 15). Research laboratory at Children's Hospital. Physical and chemical stability (> 90% of the initial concentration) of amlodipine in the two extemporaneously prepared suspensions during storage in plastic prescription bottles at 4 degrees C and 25 degrees C. Observed mean concentrations exceeded 90% of the initial concentrations in both suspensions for 91 days at 4 degrees C and 56 days at 25 degrees C. No noticeable change in physical appearance or odor was observed; pH changed slightly in the methylcellulose-containing formulation stored at 25 degrees C. Amlodipine was stable in two suspensions when stored in plastic prescription bottles for 91 days at 4 degrees C or 56 days at 25 degrees C. These formulations may be considered for pediatric or elderly patients who are unable to swallow tablets. The liquid dosage form would also permit accurate administration of amlodipine doses to infants and young children based on their body weight.
About the solubility of reduced SWCNT in DMSO
NASA Astrophysics Data System (ADS)
Guan, Jingwen; Martinez-Rubi, Yadienka; Dénommée, Stéphane; Ruth, Dean; Kingston, Christopher T.; Daroszewska, Malgosia; Barnes, Michael; Simard, Benoit
2009-06-01
Single-walled carbon nanotubes (SWCNT) have been reduced with sodium naphthalide in THF. The reduced SWCNT are not only soluble in dimethylsulfoxide (DMSO) to form a stable solution/suspension, but also react spontaneously at room temperature with DMSO to evolve hydrocarbon gases and are converted into functionalized SWCNT. The degree of functionalization is about 2C% and the addends are mainly methyl and small oxygen-containing hydrocarbons. The functionalized SWCNT are apparently more soluble and stable in DMSO solution. It may open a new era for further processing and applications.
NASA Astrophysics Data System (ADS)
Li, Jipeng; Zheng, Jun; Huang, Huan; Li, Yanxing; Li, Haitao; Deng, Zigang
2017-10-01
The flux pinning effect of YBa2Cu3O7-x high temperature superconducting (HTS) bulk can achieve self-stable levitation over a permanent magnet or magnet array. Devices based on this phenomenon have been widely developed. However, the self-stable flux pinning effect is not unconditional, under disturbances, for example. To disclose the roots of this amazing self-stable levitation phenomenon in theory, mathematical and mechanical calculations using Lyapunov's stability theorem and the Hurwitz criterion were performed under the conditions of magnetic levitation and suspension of HTS bulk near permanent magnets in Halbach array. It is found that the whole dynamical system, in the case of levitation, has only one equilibrium solution, and the singular point is a stable focus. In the general case of suspension, the system has two singular points: one is a stable focus, and the other is an unstable saddle. With the variation of suspension force, the two first-order singular points mentioned earlier will get closer and closer, and finally degenerate to a high-order singular point, which means the stable region gets smaller and smaller, and finally vanishes. According to the center manifold theorem, the high-order singular point is unstable. With the interaction force varying, the HTS suspension dynamical system undergoes a saddle-node bifurcation. Moreover, a deficient damping can also decrease the stable region. These findings, together with existing experiments, could enlighten the improvement of HTS devices with strong anti-interference ability.
Studies have shown that C60 fullerene can form stable colloidal suspensions in water that result in C60 aqueous concentrations many orders of magnitude above C60's aqueous solubility; however, quantitative methods for the analysis of C60 and other fullerenes in environmental medi...
Maas, Michael; Bodnar, Pedro Marcus; Hess, Ulrike; Treccani, Laura; Rezwan, Kurosch
2013-10-01
The synthesis of porous hydroxyapatite scaffolds is essential for biomedical applications such as bone tissue engineering and replacement. One way to induce macroporosity, which is needed to support bone in-growth, is to use protein additives as foaming agents. Another reason to use protein additives is the potential to introduce a specific biofunctionality to the synthesized scaffolds. In this work, we study the rheological properties of a hydroxyapatite suspension system with additions of the proteins bovine serum albumin (BSA), lysozyme (LSZ) and fibrinogen (FIB). Both the rheology of the bulk phase as well as the interfacial shear rheology are studied. The bulk rheological data provides important information on the setting behavior of the thixotropic suspension, which we find to be faster with the addition of FIB and LSZ and much slower with BSA. Foam bubble stabilization mechanisms can be rationalized via interfacial shear rheology and we show that it depends on the growth of interfacial films at the suspension/air interface. These interfacial films support the stabilization of bubbles within the ceramic matrix and thereby introduce macropores. Due to the weak interaction of the protein molecules with the hydroxyapatite particles of the suspension, we find that BSA forms the most stable interfacial films, followed by FIB. LSZ strongly interacts with the hydroxyapatite particles and thus only forms thin films with very low elastic moduli. In summary, our study provides fundamental rheological insights which are essential for tailoring hydroxyapatite/protein suspensions in order to synthesize scaffolds with controlled porosities. Copyright © 2013 Elsevier Inc. All rights reserved.
Studies of uranium-sodium suspensions. Part I. Construction and operation of experimental loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bett, F L; Hilditch, R J; Mepham, R G
1961-08-01
An experimnental uranium- sodium suspension loop was operated for 4320 hr. The design, construction, commissioning, and operation of the loop to the point where a comnplete stable suspension was obtained is described.
Misra, Santosh K; Kondaiah, Paturu; Bhattacharya, Santanu; Rao, C N R
2012-01-09
A cationic amphiphile, cholest-5en-3β-oxyethyl pyridinium bromide (PY(+) -Chol), is able to efficiently disperse exfoliated graphene (GR) in water by the physical adsorption of PY(+) -Chol on the surface of GR to form stable, dark aqueous suspensions at room temperature. The GR-PY(+) -Chol suspension can then be used to solubilize Tamoxifen Citrate (TmC), a breast cancer drug, in water. The resulting TmC-GR-PY(+) -Chol is stable for a long time without any precipitation. Fluorescence emission and UV absorption spectra indicate the existence of noncovalent interactions between TmC, GR, and PY(+) -Chol in these suspensions. Electron microscopy shows the existence of segregated GR sheets and TmC 'ribbons' in the composite suspensions. Atomic force microscopy indicates the presence of 'extended' structures of GR-PY(+) -Chol, which grows wider in the presence of TmC. The slow time-dependent release of TmC is noticed in a reconstituted cell culture medium, a property useful as a drug carrier. TmC-GR-PY(+) -Chol selectively enhanced the cell death (apoptosis) of the transformed cancer cells compared to normal cells. This potency is found to be true for a wide range of transformed cancer cells viz. HeLa, A549, ras oncogene-transformed NIH3T3, HepG2, MDA-MB231, MCF-7, and HEK293T compared to the normal cell HEK293 in vitro. Confocal microscopy confirmed the high efficiency of TmC-GR-PY(+) -Chol in delivering the drug to the cells, compared to the suspensions devoid of GR. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cupi, Denisa; Hartmann, Nanna B; Baun, Anders
2016-05-01
In aquatic toxicity testing of engineered nanoparticles (ENPs) the process of agglomeration is very important as it may alter bioavailability and toxicity. In the present study, we aimed to identify test conditions that are favorable for maintaining stable ENP suspensions. We evaluated the influence of key environmental parameters: pH (2-12) and ionic strength using M7, Soft EPA (S EPA) medium, and Very Soft EPA (VS EPA) medium; and observed the influence of these parameters on zeta potential, zeta average, and acute immobilization of Daphnia magna for three different ENPs. Despite being sterically stabilized, test suspensions of silver (Ag) ENPs formed large agglomerates in both VS EPA and M7 media; and toxicity was found to be higher in VS EPA medium due to increased dissolution. Low-agglomerate suspensions for zinc oxide (ZnO) could be obtained at pH 7 in VS EPA medium, but the increase in dissolution caused higher toxicity than in M7 medium. Titanium dioxide (TiO2) ENPs had a point of zero charge in the range of pH 7-8. At pH 7 in VS EPA, agglomerates with smaller hydrodynamic diameters (~200nm) were present compared to the high ionic strength M7 medium where hydrodynamic diameters reached micrometer range. The stable suspensions of TiO2 ENPs caused immobilization of D. magna, 48-h EC50 value of 13.7mgL(-1) (95% CI, 2.4mg-79.1mgL(-1)); whereas no toxicity was seen in the unstable, highly agglomerated M7 medium suspensions, 48-h EC50 >100mgL(-1). The current study provides a preliminary approach for methodology in testing and assessing stability and toxicity of ENPs in aquatic toxicity tests of regulatory relevance. Copyright © 2016 Elsevier Inc. All rights reserved.
Rheological properties of concentrated, nonaqueous silicon nitride suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergstroem, L.
1996-12-01
The rheological properties of nonaqueous silicon nitride powder suspensions have been investigated using steady shear and viscoelastic measurements. The polymeric dispersant, Hypermer KD-3, adsorbed strongly on the powder surfaces, and colloidally stable, fluid suspensions up to a volume fraction of {Phi} = 0.50 could be prepared. The concentrated suspensions all displayed a shear thinning behavior which could be modeled using the high shear form of the Cross equation. The viscoelastic response at high concentrations was dominated by particle interactions, probably due to interpenetration of the adsorbed polymer layers, and a thickness of the adsorbed Hypermer KD-3 layer, {Delta} {approx} 10more » nm, was estimated. The volume fraction dependences of the high shear viscosity of three different silicon nitride powders were compared and the differences, analyzed by using a modified Krieger-Dougherty model, were related to effective volume effects and the physical characteristics of the powders. The significantly lower maximum volume fraction, {Phi}{sub m} = 0.47, of the SN E-10 powder was referred to the narrow particle size distribution and the possibility of an unfavorable particle morphology.« less
NASA Astrophysics Data System (ADS)
Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko
2016-09-01
There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.
Fang, Shiyue; Guan, Yousheng; Blatchley, Ernest R; Shen, Chengyue; Bergstrom, Donald E
2008-03-01
( E)-5-[2-(Methoxycarbonyl)ethenyl]cytidine was biotinylated through a diisopropylsilylacetal linkage and attached to the surface of hydrophilic streptavidin-coated microspheres through the high-affinity noncovalent interaction between biotin and streptavidin. The functionalized microspheres form a stable suspension in water. Upon UV irradiation, the nonfluorescent ( E)-5-[2-(methoxycarbonyl)ethenyl]cytidine on the microspheres undergoes photocyclization to produce highly fluorescent 3-beta-D-ribofuranosyl-2,7-dioxopyrido[2,3-d]pyrimidine. The fluorescence intensity of the microspheres can be correlated to the particle-specific UV doses applied at different suspension concentrations. The microspheres allow one to measure the UV dose (fluence) distribution in high-throughput water disinfection systems.
Effect of sonication on the colloidal stability of iron oxide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sodipo, Bashiru Kayode; Aziz, Azlan Abdul
2015-04-24
Colloidal stability of superparamagnetic iron oxide nanoparticles’ (SPION) suspensions, ultrasonically irradiated at various pH was studied. Electrophoresis measurement of the sonicated SPION showed that the shock waves and other unique conditions generated from the acoustic cavitation process (formation, growth and collapse of bubbles) affect the zeta potential value of the suspension. In this work, stabled colloidal suspensions of SPION were prepared and their pH is varied between 3 and 5. Prior to ultrasonic irradiation of the suspensions, their initial zeta potential values were determined. After ultrasonic irradiation of the suspensions, we observed that the sonication process interacts with colloidal stabilitymore » of the nanoparticles. The results demonstrated that only suspensions with pH less 4 were found stable and able to retain more than 90% of its initial zeta potential value. However, at pH greater than 4, the suspensions were found unstable. The result implies that good zeta potential value of SPION can be sustained in sonochemical process as long as the pH of the mixture is kept below 4.« less
Formation Kinetics of Aqueous Suspensions of Fullerenes:Meeting in New Orleans.
Stable colloidal suspension of C60 is commonly achieved through various solvent exchange techniques. Nevertheless, the additives such as tetrahydrofuran may be retained in the C60 aggregates, which may influence the surface properties of the suspension. In this study, colloidal...
Stress hysteresis as the cause of persistent holes in particulate suspensions
NASA Astrophysics Data System (ADS)
Deegan, Robert D.
2010-03-01
Concentrated particulate suspensions under vibrations can support stable, localized, vertically oriented free surfaces. The most robust of these structures are persistent holes: deep and stable depressions of the interface. Using a reduced model of the hydrodynamics we show that a rheology with hysteresis can lead to motion opposite to the time-averaged applied force. Moreover, we show experimentally that particulate suspensions of cornstarch in water exhibits hysteresis in the shear-rate response to an applied sinusoidal stress. The results of our model and our experiments suggest that hysteresis accounts for the outward force needed to support persistent holes.
Ramos, Mariana Gontijo; Ramos, Daniel Gontijo; Ramos, Camila Gontijo
2017-01-01
Vitiligo is a chronic disease characterized by the appearance of achromic macules caused by melanocyte destruction. Surgical treatments with melanocyte transplantation can be used for stable vitiligo cases. To evaluate treatment response to the autologous transplantation of noncultured epidermal cell suspension in patients with stable vitiligo. Case series study in patients with stable vitiligo submitted to noncultured epidermal cell suspension transplantation and evaluated at least once, between 3 and 6 months after the procedure, to observe repigmentation and possible adverse effects. The maximum follow-up period for some patients was 24 months. Of the 20 patients who underwent 24 procedures, 25% showed an excellent rate of repigmentation, 50% good repigmentation, 15% regular, and 10% poor response. The best results were observed in face and neck lesions, while the worst in extremity lesions (88% and 33% of satisfactory responses, respectively). Patients with segmental vitiligo had a better response (84%) compared to non-segmental ones (63%). As side effects were observed hyperpigmentation of the treated area and the appearance of Koebner phenomenon in the donor area. Some limitations of the study included the small number of patients, a subjective evaluation, and the lack of long-term follow-up on the results. CONCLUSION: Noncultured epidermal cell suspension transplantation is efficient and well tolerated for stable vitiligo treatment, especially for segmental vitiligo on the face and neck.
Method for reducing NOx during combustion of coal in a burner
Zhou, Bing [Cranbury, NJ; Parasher, Sukesh [Lawrenceville, NJ; Hare, Jeffrey J [Provo, UT; Harding, N Stanley [North Salt Lake, UT; Black, Stephanie E [Sandy, UT; Johnson, Kenneth R [Highland, UT
2008-04-15
An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.
Casimir quantum levitation tuned by means of material properties and geometries
NASA Astrophysics Data System (ADS)
Dou, Maofeng; Lou, Fei; Boström, Mathias; Brevik, Iver; Persson, Clas
2014-05-01
The Casimir force between two surfaces is attractive in most cases. Although stable suspension of nano-objects has been achieved, the sophisticated geometries make them difficult to be merged with well-established thin film processes. We find that by introducing thin film surface coating on porous substrates, a repulsive to attractive force transition is achieved when the separations are increased in planar geometries, resulting in a stable suspension of two surfaces near the force transition separation. Both the magnitude of the force and the transition distance can be flexibly tailored though modifying the properties of the considered materials, that is, thin film thickness, doping concentration, and porosity. This stable suspension can be used to design new nanodevices with ultralow friction. Moreover, it might be convenient to merge this thin film coating approach with micro- and nanofabrication processes in the future.
Contact-aware simulations of particulate Stokesian suspensions
NASA Astrophysics Data System (ADS)
Lu, Libin; Rahimian, Abtin; Zorin, Denis
2017-10-01
We present an efficient, accurate, and robust method for simulation of dense suspensions of deformable and rigid particles immersed in Stokesian fluid in two dimensions. We use a well-established boundary integral formulation for the problem as the foundation of our approach. This type of formulation, with a high-order spatial discretization and an implicit and adaptive time discretization, have been shown to be able to handle complex interactions between particles with high accuracy. Yet, for dense suspensions, very small time-steps or expensive implicit solves as well as a large number of discretization points are required to avoid non-physical contact and intersections between particles, leading to infinite forces and numerical instability. Our method maintains the accuracy of previous methods at a significantly lower cost for dense suspensions. The key idea is to ensure interference-free configuration by introducing explicit contact constraints into the system. While such constraints are unnecessary in the formulation, in the discrete form of the problem, they make it possible to eliminate catastrophic loss of accuracy by preventing contact explicitly. Introducing contact constraints results in a significant increase in stable time-step size for explicit time-stepping, and a reduction in the number of points adequate for stability.
Chun, B H; Bang, W G; Park, Y K; Woo, S K
2001-11-01
The recombinant a and bsubunits for human coagulation factor XIII were transfected into Chinese hamster ovary (CHO) cells. CHO cells were amplified and selected with methotrexate in adherent cultures containing serum, and CHO 1-62 cells were later selected in protein-free medium. To develop a recombinant factor XIII production process in a suspension culture, we have investigated the growth characteristics of CHO cells and the maintenance of factor XIII expression in the culture medium. Suspension adaptation of CHO cells was performed in protein-free medium, GC-CHO-PI, by two methods, such as serum weaning and direct switching from serum containing media to protein-free media. Although the growth of CHO cells in suspension culture was affected initially by serum depletion, cell specific productivity of factor XIII showed only minor changes by the direct switching to protein-free medium during a suspension culture. As for the long-term stability of factor XIII, CHO 1-62 cells showed a stable expression of factor XIII in protein-free condition for 1000 h. These results indicate that the CHO 1-62cells can be adapted to express recombinant human factor XIII in a stable maimer in suspension culture using a protein-free medium. Our results demonstrate that enhanced cell growth in a continuous manner is achievable for factor XIII production in a protein-free medium when a perfusion bioreactor culture system with a spin filter is employed.
Formulation of benzoporphyrin derivatives in Pluronics.
Chowdhary, Rubinah K; Chansarkar, Namrata; Sharif, Isha; Hioka, Noboru; Dolphin, David
2003-03-01
This study investigates the potential of Pluronics for the formulation of tetrapyrrole-based photosensitizers, with a particular focus on B-ring benzoporphyrin derivatives. The B-ring derivatives have a high tendency to aggregate in aqueous solutions, and this poses a significant formulation problem. Pluronics are ABA-type triblock copolymers composed of a central hydrophobic polypropylene oxide section with two hydrophilic polyethylene oxide sections of equal length at either end. Out of a range of different commercially available block copolymers studied, it was found that the longer the hydrophobic block, the better the stabilization of tetrapyrrolic drugs in monomeric form in aqueous suspensions. Of these the best performance was observed in the micelle-forming Pluronic P123. Micelle size determination by laser light scattering confirmed that particle size in stable Pluronic formulations was around 20 nm. Pluronics such as L122 formed emulsions spontaneously without the need for emulsion stabilizers; emulsions were highly stable at ambient temperatures over several days and also highly effective as potential drug delivery agents.
NASA Astrophysics Data System (ADS)
Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding
2016-11-01
This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s-1 for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability.
Su, Yu; Yang, Guoqing; Lu, Kun; Petersen, Elijah J.; Mao, Liang
2017-01-01
Understanding the colloidal stability of graphene is essential for predicting its transport and ecological risks in aquatic environments. We investigated the agglomeration of 14C-labeled few-layer graphene (FLG) at concentrations spanning nearly four orders of magnitude (2 μg/L to 10 mg/L) using dynamic light scattering and sedimentation measurements. FLG agglomerates formed rapidly in deionized water at concentrations > 3 mg/L. From 1 mg/L to 3 mg/L, salt-induced agglomeration was decreased with dilution of FLG suspensions; the critical coagulation concentration of the more concentrated suspension (3 mg/L) was significantly lower than the dilute suspension (1 mg/L) in the presence of NaCl (1.6 mmol/L and 10 mmol/L, respectively). In contrast, FLG underwent slow agglomeration and settling at concentrations ≤ 0.1 mg/L in NaCl solutions and ambient waters with low ionic strength (< 10 mmol/L). Although salt-induced agglomeration led to 67 % reduction in number of small FLG (25 nm to 50 nm) according to atomic force microscopy characterization, transition from concentrated to dilute suspension retarded the removal of the small FLG. Additionally, the small FLG exhibited greater bioaccumulation in zebrafish embryo and stronger chorion penetration ability than larger ones. These findings suggest that FLG at more environmentally relevant concentration is relatively stable and may have implications for exposure of small FLG to ecological receptors. PMID:27720543
Svirskis, Darren; Lin, Shao-Wei; Brown, Helen; Sangaroomthong, Annie; Shin, Daniel; Wang, Ziqi; Xu, Hongtao; Dean, Rebecca; Vareed, Preetika; Jensen, Maree; Wu, Zimei
2018-01-01
Three brands of levothyroxine tablets are currently available in New Zealand (Eltroxin, Mercury Pharma, Synthroid) for extemporaneous compounding into suspensions. This study aims to determine whether tablet brand (i.e., formulation), concentration, storage conditions, as well as pH, impact the stability of compounded levothyroxine suspensions. Using the three available brands of levothyroxine tablets, suspensions were compounded at concentrations of 15 µg/mL and 25 µg/mL and stored at 4°C and 22°C. Samples were withdrawn weekly for 4 weeks, and chemical stability was evaluated using high-performance liquid chromatographic analysis. Physical appearance, ease of resuspension, and pH were also monitored weekly. To evaluate the effect on drug stability, pH modifiers were added to a suspension. As demonstrated by high-performance liquid chromatographic analysis, the suspensions compounded from the Eltroxin and Mercury Pharma tablets were more stable (>90% remaining after 4 weeks) than Synthroid across both storage conditions and concentrations. The drug was more stable at the higher concentration of 25 µg/mL than at 15 µg/mL. Levothyroxine was stable when pH was increased to pH 8 through the addition of sodium citrate; stability was reduced at a lower pH. Storage temperature did not affect the stability of the suspensions during the 4-week study. This is the first study demonstrating the impact of tablet brand, with different excipients, and drug concentrations on stability, and thus the beyond-use date of the compounded levothyroxine liquid formulations. The pH control achieved by sodium citrate, either as an excipient in tablets or an additive during compounding, improved drug stability. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Growing Arabidopsis in vitro: cell suspensions, in vitro culture, and regeneration.
Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar
2014-01-01
An understanding of basic methods in Arabidopsis tissue culture is beneficial for any laboratory working on this model plant. Tissue culture refers to the aseptic growth of cells, organs, or plants in a controlled environment, in which physical, nutrient, and hormonal conditions can all be easily manipulated and monitored. The methodology facilitates the production of a large number of plants that are genetically identical over a relatively short growth period. Techniques, including callus production, cell suspension cultures, and plant regeneration, are all indispensable tools for the study of cellular biochemical and molecular processes. Plant regeneration is a key technology for successful stable plant transformation, while cell suspension cultures can be exploited for metabolite profiling and mining. In this chapter we report methods for the successful and highly efficient in vitro regeneration of plants and production of stable cell suspension lines from leaf explants of both Arabidopsis thaliana and Arabidopsis halleri.
Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.
Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P
2014-07-23
Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills.
Can pro-marriage policies work? An analysis of marginal marriages.
Frimmel, Wolfgang; Halla, Martin; Winter-Ebmer, Rudolf
2014-08-01
Policies to promote marriage are controversial, and it is unclear whether they are successful. To analyze such policies, one must distinguish between a marriage that is created by a marriage-promoting policy (marginal marriage) and a marriage that would have been formed even in the absence of a state intervention (average marriage). We exploit the suspension of a cash-on-hand marriage subsidy in Austria to examine the differential behavior of marginal and average marriages. The announcement of an impending suspension of this subsidy led to an enormous marriage boom among eligible couples that allows us to locate marginal marriages. Applying a difference-in-differences approach, we show that marginal marriages are surprisingly as stable as average marriages but produce fewer children, children later in marriage, and children who are less healthy at birth.
Design of latex-layered double hydroxide composites by tuning the aggregation in suspensions.
Pavlovic, Marko; Rouster, Paul; Bourgeat-Lami, Elodie; Prevot, Vanessa; Szilagyi, Istvan
2017-01-25
Colloidal stability of polymeric latex particles was studied in the presence of oppositely charged layered double hydroxide (LDH) platelets of different interlayer anions. Adsorption of the LDH particles led to charge neutralization and to overcharging of the latex at appropriate concentrations. Mixing stable colloidal suspensions of individual particles results in rapid aggregation once the LDH adsorption neutralizes the negative charges of the polymer spheres, while stable suspensions were observed at high and low LDH doses. The governing interparticle interactions included repulsive electrical double layer forces as well as van der Waals and patch-charge attractions, whose strength depended on the amount of LDH particles adsorbed on the latex surface. The type of the LDH interlayer anions did not affect the colloidal stability of the samples. Structural investigation of the obtained latex-LDH composites revealed that the polymer spheres were completely coated with the inorganic platelets once their concentration was sufficiently high. These results are especially important for designing synthetic routes for hybrid systems in suspensions, where stable colloids are required for uniform film-formation and for the homogeneous distribution of the inorganic filler within the composite materials.
6. 2nd floor where stables used to be; note bottom ...
6. 2nd floor where stables used to be; note bottom of truss with suspension rods for floor which results in clear span on 1st level - Diebolt Brewing Company Stable, 2695 Pittsburgh Avenue, Cleveland, Cuyahoga County, OH
ERIC Educational Resources Information Center
Schiraldi, Vincent; Ziedenberg, Jason
Though the media depicts U.S. youth as more criminally prone than they actually are and highlights school shootings, schools are still one of the safest places for youth to be. This policy brief adds perspective to punitive school policies (e.g., zero tolerance policies that require suspension or expulsion) in the face of stable or declining rates…
Rasmussen, J L; Kikkert, J R; Roy, M K; Sanford, J C
1994-01-01
We have used both Escherichia coli cells and Agrobacterium tumefaciens cells as microprojectiles to deliver DNA into suspension-cultured tobacco (Nicotiana tabacum L. line NT1) cells using a helium powered biolistic device. In addition, E. coli cells were used as microprojectiles for the transformation of suspension-cultured maize (Zea mays cv. Black Mexican Sweet) cells. Pretreating the bacterial cells with phenol at a concentration of 1.0%, and combining the bacterial cells with tungsten particles increased the rates of transformation. In N. tabacum, we obtained hundreds of transient transformants per bombardment, but were unable to recover any stable transformants. In Z. mays we obtained thousands of transient transformants and an average of six stable transformants per bombardment. This difference is discussed.
Naratriptan hydrochloride in extemporaneosly compounded oral suspensions.
Zhang, Y P; Trissel, L A; Fox, J L
2000-01-01
The purpose of this study was to determine the pharmaceutical acceptability and chemical stability of naratriptan hydrochloride in three extemporaneously compounded suspension formulations. The naratriptan-hydrochloride oral suspensions were prepared from 2.5-mg commercial tablets yielding a nominal naratriptan concentration of 0.5 mg/mL. The suspension vehicles selected for testing were Syrpalta, an equal-parts mixture of Ora-Plus and Ora-Sweet, and an equal-parts mixture of Ora-Plus and Ora-Sweet SF. The tablets were crushed and thoroughly triturated to a fine powder using a porcelain mortar and pestle. The powder was incorporated into a portion of the Syrpalta or Ora-Plus suspension vehicle and mixed until homogeneous. The mixtures were then brought to volume with Syrpalta, Ora-Sweet or Ora-Sweet SF, as appropriate. The suspensions were packaged in amber, plastic, screw-cap prescription bottles and stored at 23 deg C for seven days and 4 deg C for 90 days. An adequate suspension was never achieved in Syrpalta. The crushed-tablet powder did not produce a uniformly dispersed mixture and exhibited clumping and a high rate of sedimentation. A distinct layer of the solid tablet material settled immediately after shaking. Over the next four hours, a densely packed, yellow, caked layer formed at the bottom of the containers, making resuspension difficult. During storage, the caking became worse. Chemical analysis was not performed. The Ora-Plus and Ora-Sweet or Ora-Sweet SF suspensions had a slight greenish cast and were resuspended without difficulty by shaking for approximately ten seconds, yielding easily poured and homogeneous mixtures throughout the study. Visible settling and layering did not begin for four hours with the Ora-Sweet suspension and 24 hours for the Ora-Sweet SF suspension. High pressure liquid chromatographic analysis found that the naratriptan concentration in both suspension-vehicle combinations exhibited little or no loss for seven days at 23 deg C and 90 days at 4 deg C. At least 96% of the inital concentration remained at all time points. Naratriptan hydrochloride extemporaneously prepared as oral suspensions from tablets in equal-parts mixtures of Ora-Plus suspension vehicle with Ora-Sweet and with Ora-Sweet SF syrups was pharmaceutically acceptable and chemically stable for at least seven days at 23 deg C and 90 days at 4 deg C. Syrpalta was unacceptable for use as a vehicle for naratriptan hydrochloride suspensions prepared from tablets.
Nguyen, Kyvan Q; Hawkins, Michelle G; Taylor, Ian T; Wiebe, Valerie J; Tell, Lisa A
2009-07-01
To determine the stability and distribution of voriconazole in 2 extemporaneously prepared (compounded) suspensions stored for 30 days at 2 temperatures. Voriconazole suspensions (40 mg/mL) compounded from commercially available 200-mg tablets suspended in 1 of 2 vehicles. One vehicle contained a commercially available suspending agent and a sweetening syrup in a 1:1 mixture (SASS). The other vehicle contained the suspending agent with deionized water in a 3:1 mixture (SADI). Voriconazole suspensions (40 mg/mL in 40-mL volumes) were compounded on day 0 and stored at room temperature (approx 21 degrees C) or refrigerated (approx 5 degrees C). To evaluate distribution, room-temperature aliquots of voriconazole were measured immediately after preparation. Refrigerated aliquots were measured after 3 hours of refrigeration. To evaluate stability, aliquots from each suspension were measured at approximately 7-day intervals for up to 30 days. Voriconazole concentration, color, odor, opacity, and pH were measured, and aerobic and anaerobic bacterial cultures were performed at various points. Drug distribution was uniform (coefficient of variation, < 5%) in both suspensions. On day 0, 87.8% to 93.0% of voriconazole was recovered; percentage recovery increased to between 95.1% and 100.8% by day 7. On subsequent days, up to day 30, percentage recovery was stable (> 90%) for all suspensions. The pH of each suspension did not differ significantly throughout the 30-day period. Storage temperature did not affect drug concentrations at any time, nor was bacterial growth obtained. Extemporaneously prepared voriconazole in SASS and SADI resulted in suspensions that remained stable for at least 30 days. Refrigerated versus room-temperature storage of the suspensions had no effect on drug stability.
Nicotine demethylation in Nicotiana cell suspension cultures: N'-formylnornicotine is not involved.
Bartholomeusz, Trixie Ann; Bhogal, Ramneek K; Molinié, Roland; Felpin, François-Xavier; Mathé-Allainmat, Monique; Meier, Anna-Carolin; Dräger, Birgit; Lebreton, Jacques; Roscher, Albrecht; Robins, Richard J; Mesnard, François
2005-10-01
Nicotine or nornicotine enriched with stable isotopes in either the N'-methyl group or the pyrrolidine-N were fed to Nicotiana plumbaginifolia suspension cell cultures that do not form endogenous nicotine. The metabolism of these compounds was investigated by analysing the incorporation of isotope into other alkaloids using gas chromatography-mass spectroscopy (GC-MS). Nicotine metabolism primarily resulted in the accumulation of nornicotine, the N'-demethylation product. In addition, six minor metabolites appeared during the course of nicotine metabolism, four of which were identified as cotinine, myosmine, N'-formylnornicotine and N'-carboethoxynornicotine. While cotinine was formed from [(13)C,(2)H(3)-methyl]nicotine without dilution of label, N'-formylnornicotine was labelled at only about 6% of the level of nicotine and N'-carboethoxynornicotine was unlabelled. Feeding with [1'-(15)N]nornicotine resulted in incorporation without dilution of label into both N'-formylnornicotine and N'-carboethoxynornicotine. This pattern strongly indicates that, while nornicotine and cotinine are derived directly from nicotine, N'-formylnornicotine and N'-carboethoxynornicotine are metabolites of nornicotine. Thus, it is directly demonstrated that N'-formylnornicotine is not an intermediate in nicotine demethylation.
Ji, Xiang; Song, Yahui; Han, Jing; Ge, Lin; Zhao, Xiaoxiang; Xu, Chen; Wang, Yongqiang; Wu, Di; Qiu, Haixia
2017-07-01
A green approach for the preparation of a stable reduced graphene oxide (RGO) suspension from graphene oxide (GO) has been developed. This method uses l-serine (l-Ser) as the reductant and yellow dextrin (YD) as the stabilizing agent. X-ray photoelectron spectroscopy, UV-vis spectroscopy, X-ray diffraction and thermogravimetric analyses showed that l-Ser can efficiently reduce GO at a comparatively low temperature, and that the YD adsorbed onto the RGO facilitating the formation of a stable RGO aqueous suspension. Since l-Ser and YD are natural environmentally friendly materials, this approach provides a green method to produce stable RGO from GO on a large scale. Sodium salicylate (SS) which has an aromatic structure was loaded onto the RGO through π-π interactions and a maximum loading capacity of 44.6mg/g was obtained. The release of the loaded SS can be controlled by adjusting the solution pH, and a 74.8% release was reached after 70h at pH 7.4. The release profile of SS could be further controlled by incorporating it into RGO Dispersed carboxylated chitosan films. Copyright © 2016. Published by Elsevier Inc.
Stability of extemporaneously prepared rufinamide oral suspensions.
Hutchinson, David J; Liou, Yayin; Best, Robert; Zhao, Fang
2010-03-01
Rufinamide is an oral antiepileptic drug indicated for adjunctive therapy in treating generalized seizures associated with Lennox-Gastaut syndrome. Currently, rufinamide is available as 200-mg and 400-mg tablets. A liquid dosage form does not exist at the present time. Lack of a suspension formulation may present an administration problem for many children and adults who are unable to swallow tablets. The availability of a liquid dosage form will provide an easy and accurate way to measure and administer the medication. To determine the stability of both sugar-containing and sugar-free rufinamide suspensions over a 90-day period. A suspension of rufinamide 40 mg/mL was prepared by grinding twelve 400-mg tablets of rufinamide tablets in a glass mortar. Sixty milliliters of Ora-Plus and 60 mL of either Ora-Sweet or Ora-Sweet SF (sugar free) were mixed and added to the powder to make a final volume of 120 mL. Three identical samples of each formulation were prepared and placed in 60-mL amber plastic bottles and were stored at room temperature. A 1-mL sample was withdrawn from each of the 6 bottles with a micropipette immediately after preparation and at 7, 14, 28, 56, and 90 days. After further dilution to an expected concentration of 0.4 mg/mL, the samples were assayed using high-performance liquid chromatography. Stability was defined as the retention of at least 90% of the initial concentration. At least 90% of the initial rufinamide concentration remained throughout the 90-day study period in both preparations. There were no detectable changes in color, odor, taste, and pH and no visible microbial growth. Extemporaneously compounded suspensions of rufinamide 40 mg/mL in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF were stable for at least 90 days when stored in 59-mL amber polypropylene plastic bottles at room temperature.
Zhu, Suming; Zhu, Huangqiu
2015-07-01
The control accuracy and dynamic performance of suspension force are confined in the traditional bearingless permanent magnet slice motor (BPMSM) control strategies because the suspension force control is indirectly achieved by adopting a closed loop of displacement only. Besides, the phase information in suspension force control relies on accurate measurement of rotor position, making the control system more complex. In this paper, a new suspension force control strategy with displacement and radial suspension force double closed loops is proposed, the flux linkage of motor windings is identified based on voltage-current model and the flexibility of motor control can be improved greatly. Simulation and experimental results show that the proposed suspension force control strategy is effective to realize the stable operation of the BPMSM. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Bumb, Ambika; Sarkar, Susanta K; Billington, Neil; Brechbiel, Martin W; Neuman, Keir C
2013-05-29
Fluorescent nanodiamonds (FNDs) emit in the near-IR and do not photobleach or photoblink. These properties make FNDs better suited for numerous imaging applications compared with commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here we present a method for encapsulating nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution.
Formation and characterization of chitosan-protein particles with fractal whey protein aggregates.
Ahmed, Khouloud Fekih; Aschi, Adel; Nicolai, Taco
2018-05-15
Hybrid protein-polysaccharide particles were formed by complexation of fractal whey protein aggregates and the cationic polysaccharide chitosan. The fractal aggregates were preformed by heating native whey protein isolate at pH 7 and subsequently mixed with chitosan at pH 3 where these proteins and polysaccharides don't interact with each other. Stable dispersions of protein-polysaccharide particles were formed spontaneously when the pH was gradually increased between 4.1 and 6.8, whereas in the absence of chitosan the fractal aggregates precipitated between pH 4.1 and 5.4. Potentiometric titration of the mixtures showed that deprotonation of both components was affected by complexation. With increasing pH, the size of the complexes increased sharply between pH 4.1. and pH 4.5, remained constant up to pH 5.6 and then increased again. A minimum amount of chitosan was needed to form stable complexes at pH 5.0 and the size of the complexes decreased with increasing chitosan concentration. Light scattering showed that the complexes were stable to dilution and had a self similar structure with a fractal dimensions close to two. The effect of changing the pH on the size and stability of the complexes was investigated. Suspensions of complexes of preformed whey protein aggregates and chitosan are more stable up to high pH (6.8) than complexes between native WPI and chitosan as reported in the literature. Copyright © 2018. Published by Elsevier B.V.
Stability of Diazoxide in Extemporaneously Compounded Oral Suspensions.
Friciu, Mihaela; Zaraa, Sarra; Roullin, V Gaëlle; Leclair, Grégoire
2016-01-01
The objective of this study was to evaluate the stability of diazoxide in extemporaneously compounded oral suspensions. Oral suspensions of diazoxide 10 mg/mL were prepared from either bulk drug or capsules dispersed in either Oral Mix or Oral Mix Sugar Free. These suspensions were stored at 5°C and 25°C/60%RH in bottles and oral syringes for a total of 90 days. At predetermined time intervals, suspensions were inspected for homogeneity, color or odor change; the pH was measured and the concentration of diazoxide was evaluated by ultraviolet detection using a stability-indicating high pressure liquid chromatography method. All preparations were demonstrated to be chemically stable for at least 90 days.
Lin, Yiliang; Liu, Yang
2017-01-01
Stable suspensions of eutectic gallium indium (EGaIn) liquid metal nanoparticles form by probe-sonicating the metal in an aqueous solution. Positively-charged molecular or macromolecular surfactants in the solution, such as cetrimonium bromide or lysozyme, respectively, stabilize the suspension by interacting with the negative charges of the surface oxide that forms on the metal. The liquid metal breaks up into nanospheres via sonication, yet can transform into rods of gallium oxide monohydroxide (GaOOH) via moderate heating in solution either during or after sonication. Whereas heating typically drives phase transitions from solid to liquid (via melting), here heating drives the transformation of particles from liquid to solid via oxidation. Interestingly, indium nanoparticles form during the process of shape transformation due to the selective removal of gallium. This dealloying provides a mechanism to create indium nanoparticles at temperatures well below the melting point of indium. To demonstrate the versatility, we show that it is possible to shape transform and dealloy other alloys of gallium including ternary liquid metal alloys. Scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS) mapping, and X-ray diffraction (XRD) confirm the dealloying and transformation mechanism. PMID:28580116
Stability of gas channels in a dense suspension in the presence of obstacles
NASA Astrophysics Data System (ADS)
Poryles, Raphaël; Varas, Germán; Vidal, Valérie
2017-06-01
We investigate experimentally the influence of a fixed obstacle on gas rising in a dense suspension. Air is injected at a constant flow rate by a single nozzle at the bottom center of a Hele-Shaw cell. Without obstacles, previous works have shown that a fluidized zone is formed with a parabolic shape, with a central air channel and two granular convection rolls on its sides. Here, we quantify the influence of the obstacle's shape, size, and height on the location and dynamics of the central air channel. Different regimes are reported: the air channel can simply deviate (stable), or it can switch sides over time (unstable), leading to two signatures not only above the obstacle, but sometimes also below it. This feedback also influences the channel deviation when bypassing the obstacle. A wake of less or no motion is reported above the largest obstacles as well as the maximum probability of gas location, which can be interesting for practical applications. The existence of a critical height hc≃7 cm is discussed and compared with the existence of an air finger that develops from the injection nozzle and is stable in time. A dimensionless number describing the transition between air fingering and fracturing makes it possible to predict the channel's stability.
Purification of trona ores by conditioning with an oil-in-water emulsion
Miller, J. D.; Wang, Xuming; Li, Minhua
2009-04-14
The present invention is a trona concentrate and a process for floating gangue material from trona ore that comprises forming an emulsion, conditioning the trona ore at a high solids content in a saturated trona suspension, and then floating and removing the gangue material. The process for separating trona from gangue materials in trona ore can include emulsifying an oil in an aqueous solution to form an oil-in-water emulsion. A saturated trona suspension having a high solids content can also be formed having trona of a desired particle size. The undissolved trona in the saturated suspension can be conditioned by mixing the saturated suspension and the oil-in-water emulsion to form a conditioning solid suspension of trona and gangue material. A gas can be injected through the conditioning solid suspension to float the gangue material. Thus, the floated gangue material can be readily separated from the trona to form a purified trona concentrate without requirements of additional heat or other expensive processing steps.
Harsha, Sree
2013-01-01
Pharmaceutical suspension containing oral dosage forms delivering both immediate-release and sustained-release amoxicillin was developed as a new dosage form to eradicate Helicobacter pylori. Amoxicillin-loaded gelatin nanoparticles are able to bind with the mucosal membrane after delivery to the stomach and could escalate the effectiveness of a drug, providing dual release. The objective of this study was to develop amoxicillin nanoparticles using innovative new technology--the Büchi Nano Spray Dryer B-90 - and investigate such features as drug content, particle morphology, yield, in vitro release, flow properties, and stability. The nanoparticles had an average particle size of 571 nm. The drug content and percentage yield was 89.2% ± 0.5% and 93.3% ± 0.6%, respectively. Angle of repose of nanoparticle suspension was 26.3° and bulk density was 0.59 g/cm(3). In vitro drug release of formulations was best fitted by first-order and Peppas models with R (2) of 0.9841 and 0.9837 respectively; release profile was 15.9%, while; for the original drug, amoxicillin, under the same conditions, 90% was released in the first 30 minutes. The nanoparticles used in this study enabled sustained release of amoxicillin over an extended period of time, up to 12 hours, and were stable for 12 months under accelerated storage conditions of 25 °C ± 2 °C and 60% ± 5% relative humidity.
NASA Astrophysics Data System (ADS)
Ahmadian, Mehdi; Blanchard, Emmanuel
2011-02-01
This article provides a non-dimensionalised closed-form analysis of semi-active vehicle suspensions, using a quarter-car model. The derivation of the closed-form solutions for three indices that can be used for ride comfort, vehicle handling, and stability are presented based on non-dimensionalised suspension parameters. The behaviour of semi-active vehicle suspensions is evaluated using skyhook, groundhook, and hybrid control policies, and compared with passive suspensions. The relationship between vibration isolation, suspension deflection, and road holding is studied, using three performance indices based on the mean square of the sprung mass acceleration, rattle space, and tyre deflection, respectively. The results of the study indicate that the hybrid control policy yields significantly better comfort than a passive suspension, without reducing the road-holding quality or increasing the suspension displacement for typical passenger cars. The results also indicate that for typical passenger cars, the hybrid control policy results in a better compromise between comfort, road holding and suspension travel requirements than both the skyhook and groundhook control methods.
Stability of Diazoxide in Extemporaneously Compounded Oral Suspensions
Friciu, Mihaela; Zaraa, Sarra; Roullin, V. Gaëlle
2016-01-01
The objective of this study was to evaluate the stability of diazoxide in extemporaneously compounded oral suspensions. Oral suspensions of diazoxide 10 mg/mL were prepared from either bulk drug or capsules dispersed in either Oral Mix or Oral Mix Sugar Free. These suspensions were stored at 5°C and 25°C/60%RH in bottles and oral syringes for a total of 90 days. At predetermined time intervals, suspensions were inspected for homogeneity, color or odor change; the pH was measured and the concentration of diazoxide was evaluated by ultraviolet detection using a stability-indicating high pressure liquid chromatography method. All preparations were demonstrated to be chemically stable for at least 90 days. PMID:27727306
Development of Extemporaneously Compounded Aripiprazole Oral Suspensions for Use in Children.
Pramann, Lance A; Davidow, Lawrence W; van Haandel, Leon; Funk, Ryan S
2016-01-01
The purpose of this study was to develop extemporaneously compounded oral liquid formulations of aripiprazole for use in pediatric patients and those patients unable to swallow the solid oral dosage forms. Aripiprazole tablets(30 mg) were ground to a fine powder and suspended at a concentration of 1.0 mg/mL in either a 1:1 blend of Ora-Plus and Ora-Sweet, or 1% methylcellulose and Simple Syrup NF. Five amber, plastic liquid prescription bottles of each formulation were stored at 4°C, and aripiprazole content was measured by ultra-performance liquid chromatography time-of-flight mass spectrometry at 0, 14, 32, 67, and 91 days. Formulations were visually inspected at each time point for color change and precipitation. Forced degradation studies were conducted under oxidizing, acidic, basic, and thermal conditions. Concentrations of aripiprazole in the formulation containing 1:1 Ora-Plus and Ora-Sweet were unchanged over the study period with no signs of degradation over 91 days. In the 1:1 1% methylcellulose and Simple Syrup NF formulation, aripiprazole concentrations were 95% of labeled levels at 67 days, but failed to maintain greater than 90% of labeled levels at 91 days, with an average of only 84% of the labeled content. No apparent physical changes in the formulations were noted over the study period. In the forced degradation studies, loss of aripiprazole was notable under extreme oxidizing and alkaline conditions. Extemporaneously compounded oral suspensions of 1.0 mg/mL aripiprazole in 1:1 Ora-Plus and Ora-Sweet are stable for at least 91 days when stored in amber, plastic prescription bottles at 4°C, whereas suspensions in 1:1 1% methylcellulose and Simple Syrup NF are stable for up to 67 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Magnetic bearings: Fifty years of progress
NASA Technical Reports Server (NTRS)
Swann, Michael K.
1993-01-01
Magnetic bearings are just beginning to be flown in spacecraft systems, but their development spans more than 50 years. The promise of completely noncontacting, unlubricated rotating systems operating at speeds substantially beyond the range of conventional bearings, and with no wear and virtually no vibration, has provided the incentive to develop magnetic bearing technology for many diverse applications. Earnshaw theorized in 1842 that stable magnetic suspension is not possible in all three spatial directions unless the magnetic field is actively controlled. Since that time, researchers have attempted to successfully support spinning rotors in a stable manner. Development of magnetic suspension systems over the past fifty years has included progress on both passive (permanent magnet) and active (electromagnet) systems. The improvements in bearing load capacity, stiffness, and damping characteristics are traced. The trends in rotor size, rotational kinetic energy, and improvements in active control systems capabilities are also reviewed. Implications of superconductivity on suspension system design and performance are discussed.
Sapra, Mahak; Pawar, Amol Ashok; Venkataraman, Chandra
2016-02-15
Surface modification of nanoparticles during aerosol or gas-phase synthesis, followed by direct transfer into liquid media can be used to produce stable water-dispersed nanoparticle suspensions. This work investigates a single-step, aerosol process for in-situ surface-modification of nanoparticles. Previous studies have used a two-step sublimation-condensation mechanism following droplet drying, for surface modification, while the present process uses a liquid precursor containing two solutes, a matrix lipid and a surface modifying agent. A precursor solution in chloroform, of stearic acid lipid, with 4 %w/w of surface-active, physiological molecules [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)-sodium salt (DPPG) or 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 2000]-ammonium salt (DPPE-PEG)] was processed in an aerosol reactor at a low gas temperatures. The surface modified nanoparticles were characterized for morphology, surface composition and suspension properties. Spherical, surface-modified lipid nanoparticles with median mobility diameters in the range of 105-150nm and unimodal size distributions were obtained. Fourier transform infra-red spectroscopy (FTIR) measurements confirmed the presence of surface-active molecules on external surfaces of modified lipid nanoparticles. Surface modified nanoparticles exhibited improved suspension stability, compared to that of pure lipid nanoparticles for a period of 30days. Lowest aggregation was observed in DPPE-PEG modified nanoparticles from combined electrostatic and steric effects. The study provides a single-step aerosol method for in-situ surface modification of nanoparticles, using minimal amounts of surface active agents, to make stable, aqueous nanoparticle suspensions. Copyright © 2015 Elsevier Inc. All rights reserved.
Bumb, Ambika; Sarkar, Susanta K.; Billington, Neil; Brechbiel, Martin W.; Neuman, Keir C.
2013-01-01
Fluorescent nanodiamonds (FNDs) emit in the near infrared and do not photo-bleach or photoblink. These properties make FNDs better suited for numerous imaging applications in comparison to commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here, we present a method to encapsulate nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution. PMID:23581827
Transparent ceramics and methods of preparation thereof
Hollingsworth, Joel P.; Kuntz, Joshua D.; Seeley, Zachary M.; Soules, Thomas F.
2012-12-25
A method for forming a transparent ceramic preform in one embodiment includes forming a suspension of oxide particles in a solvent, wherein the suspension includes a dispersant, with the proviso that the suspension does not include a gelling agent; and uniformly curing the suspension for forming a preform of gelled suspension. A method according to another embodiment includes creating a mixture of inorganic particles, a solvent and a dispersant, the inorganic particles having a mean diameter of less than about 2000 nm; agitating the mixture; adding the mixture to a mold; and curing the mixture in the mold for gelling the mixture, with the proviso that no gelling agent is added to the mixture.
Solution-processed photodetectors from colloidal silicon nano/micro particle composite.
Tu, Chang-Ching; Tang, Liang; Huang, Jiangdong; Voutsas, Apostolos; Lin, Lih Y
2010-10-11
We demonstrate solution-processed photodetectors composed of heavy-metal-free Si nano/micro particle composite. The colloidal Si particles are synthesized by electrochemical etching of Si wafers, followed by ultra-sonication to pulverize the porous surface. With alkyl ligand surface passivation through hydrosilylation reaction, the particles can form a stable colloidal suspension which exhibits bright photoluminescence under ultraviolet excitation and a broadband extinction spectrum due to enhanced scattering from the micro-size particles. The efficiency of the thin film photodetectors has been substantially improved by preventing oxidation of the particles during the etching process.
Rafferty, A; Alsebaie, A M; Olabi, A G; Prescott, T
2009-01-15
Alumina-zirconia composites were prepared by two routes: powder processing, and colloidal processing. Unstabilised zirconia powder was added to alumina in 5 wt%, 10 wt% and 20 wt% quantities. For the colloidal method, zirconium(IV) propoxide solution was added to alumina powder, also in 5 wt%, 10 wt% and 20 wt% quantities. Additions of glacial acetic acid were needed to form stable suspensions. Suspension stability was verified by pH measurements and sedimentation testing. For the powder processed samples Vickers hardness decreased indefinitely with increasing ZrO(2) additions, but for colloidal samples the hardness at first decreased but then increased again above >10 wt% ZrO(2). Elastic modulus (E) values decreased with ZrO(2) additions. However, samples containing 20 wt% zirconia prepared via a colloidal method exhibited a much higher modulus than the powder processed equivalent. This was due to the homogeneous dispersion of zirconia yielding a sample which was less prone to microcracking.
Gold-coated nanoparticles for use in biotechnology applications
Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM
2009-07-07
A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.
Gold-coated nanoparticles for use in biotechnology applications
Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM
2007-06-05
A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.
In-line mixing states monitoring of suspensions using ultrasonic reflection technique.
Zhan, Xiaobin; Yang, Yili; Liang, Jian; Zou, Dajun; Zhang, Jiaqi; Feng, Luyi; Shi, Tielin; Li, Xiwen
2016-02-01
Based on the measurement of echo signal changes caused by different concentration distributions in the mixing process, a simple ultrasonic reflection technique is proposed for in-line monitoring of the mixing states of suspensions in an agitated tank in this study. The relation between the echo signals and the concentration of suspensions is studied, and the mixing process of suspensions is tracked by in-line measurement of ultrasonic echo signals using two ultrasonic sensors. Through the analysis of echo signals over time, the mixing states of suspensions are obtained, and the homogeneity of suspensions is quantified. With the proposed technique, the effects of impeller diameter and agitation speed on the mixing process are studied, and the optimal agitation speed and the minimum mixing time to achieve the maximum homogeneity are acquired under different operating conditions and design parameters. The proposed technique is stable and feasible and shows great potential for in-line monitoring of mixing states of suspensions. Copyright © 2015 Elsevier B.V. All rights reserved.
The effect of linear spring number at side load of McPherson suspension in electric city car
NASA Astrophysics Data System (ADS)
Budi, Sigit Setijo; Suprihadi, Agus; Makhrojan, Agus; Ismail, Rifky; Jamari, J.
2017-01-01
The function of the spring suspension on Mc Pherson type is to control vehicle stability and increase ride convenience although having tendencies of side load presence. The purpose of this study is to obtain simulation results of Mc Pherson suspension spring in the electric city car by using the finite element method and determining the side load that appears on the spring suspension. This research is conducted in several stages; they are linear spring designing models with various spring coil and spring suspension modeling using FEM software. Suspension spring is compressed in the vertical direction (z-axis) and at the upper part of the suspension springs will be seen the force that arises towards the x, y, and z-axis to simulate the side load arising on the upper part of the spring. The results of FEM simulation that the side load on the spring toward the x and y-axis which the value gets close to zero is the most stable spring.
Ensom, Mary H H; Décarie, Diane
2014-07-01
Dexamethasone is widely used to treat rheumatic and endocrine disorders and chemotherapy-induced nausea and vomiting. A palatable, alcohol-free liquid formulation, with a suitable concentration to allow reasonable administration volume, is available only via extemporaneous compounding. To evaluate the stability of dexamethasone suspensions in commercially available vehicles (Oral Mix and Oral Mix SF) in various types of containers after storage at 25°C and 4°C for up to 91 days. Dexamethasone suspensions (1 mg/mL) were prepared in Oral Mix and Oral Mix SF and then transferred to amber glass and plastic prescription bottles and plastic oral syringes. Suspensions in all 3 types of containers were stored at 25°C; suspensions in glass and plastic bottles were also stored at 4°C. Samples were collected weekly from each container up to 28 days and then every 2 weeks up to 91 days. The samples were analyzed by a validated, stability-indicating high-performance liquid chromatography - ultraviolet detection method. A suspension was considered stable if it maintained at least 90% of its initial dexamethasone concentration. Changes in colour, taste, odour, precipitation (and ease of resuspension), and pH were used to assess physical compatibility. All suspensions maintained at least 96% of the original concentration for up to 91 days with storage at 25°C or at 4°C. No notable changes in colour, taste, odour, precipitation, or pH were observed over the 91-day period. Dexamethasone suspensions (1 mg/mL) in Oral Mix and Oral Mix SF, stored in amber glass or plastic bottles or plastic syringes at 25°C or in amber glass or plastic bottles at 4°C can be expected to remain stable for up to 91 days.
Moghimipour, Eskandar; Rezaee, Saeed; Salimi, Anayatollah; Asadi, Elham; Handali, Somayeh
2013-07-01
Ciprofloxacin is a fluoroquinolone and is used against a broad spectrum of gram-negative and gram-positive bacteria. The aim of the study is to investigate the effect of structural vehicles and other formulating factors on physical stability and rheological behavior of ciprofloxacin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated. Then to achieve controlled flocculation, different concentrations of sodium chloride and calcium chloride were added. After choosing suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose (NaCMC), hydroxypropylmethylcellulose (HPMC) and Veegum were evaluated. Physical stability parameters such as sedimentation volume, the degree of flocculation and the ease of redispersion of the suspensions and growth of crystals were evaluated. After incorporation of structural vehicles, the rheological properties of formulations containing were also studied to find out their rheological behavior. According to the results, suspension containing glycerin (0.2% w/v) and sodium chloride (0.05% w/v) as wetting agent and flocculating agent, respectively, were the most stable formulations regarding their F and N. Microscopic observations showed the growth of crystals in ciprofloxacin suspension in formulation without excipients and the minimum amount of crystal growth was seen in suspension containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v). Rheological studies showed that almost all of the formulations had psuedoplastic behavior with different degree of thixotropy. The formulation containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v) was the most stable formulation. It may be concluded that by altering the amount ratios of formulation factors, the best rheological behavior and the most proper thixotropy may be achieved.
Moghimipour, Eskandar; Rezaee, Saeed; Salimi, Anayatollah; Asadi, Elham; Handali, Somayeh
2013-01-01
Ciprofloxacin is a fluoroquinolone and is used against a broad spectrum of gram-negative and gram-positive bacteria. The aim of the study is to investigate the effect of structural vehicles and other formulating factors on physical stability and rheological behavior of ciprofloxacin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated. Then to achieve controlled flocculation, different concentrations of sodium chloride and calcium chloride were added. After choosing suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose (NaCMC), hydroxypropylmethylcellulose (HPMC) and Veegum were evaluated. Physical stability parameters such as sedimentation volume, the degree of flocculation and the ease of redispersion of the suspensions and growth of crystals were evaluated. After incorporation of structural vehicles, the rheological properties of formulations containing were also studied to find out their rheological behavior. According to the results, suspension containing glycerin (0.2% w/v) and sodium chloride (0.05% w/v) as wetting agent and flocculating agent, respectively, were the most stable formulations regarding their F and N. Microscopic observations showed the growth of crystals in ciprofloxacin suspension in formulation without excipients and the minimum amount of crystal growth was seen in suspension containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v). Rheological studies showed that almost all of the formulations had psuedoplastic behavior with different degree of thixotropy. The formulation containing NaCMC (0.25% w/v), Veegum (0.1% w/v) and NaCl (0.05% w/v) was the most stable formulation. It may be concluded that by altering the amount ratios of formulation factors, the best rheological behavior and the most proper thixotropy may be achieved. PMID:24083201
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dabbs, Daniel M.; Ramachandran, Usha; Lu, Sang
Citric acid has been shown to act as an agent for increasing the solubility of aluminum oxyhydroxides in aqueous solutions of high (>2.47 mol/mol) hydroxide-to-aluminum ratios. Conversely, citric acid also colloidally stabilizes particles in aqueous suspensions of aluminum-containing particles. Solutions of aluminum chloride, with and without citric acid added, were titrated with NaO(aq). The presence and size of particles were determined using quasi-elastic light scattering. In solutions that contained no citric acid, particles formed instantaneously when NaOH(aq) was added but these were observed to rapidly diminish in size, disappearing at OH/Al ratios below 2.5 mol/mol. When the OH/Al ratio wasmore » raised beyond 2.5 by addingmoreNaOH(aq), suspensions of colloidally stable particles formed. Large polycations containing 13 aluminum atoms were detected by 27Al solution NMR in citric-acid-free solutions with OH/Al ratios slightly lower than 2.5. In comparison, adding citric acid to solutions of aluminum chloride inhibited the formation of large aluminum-containing polycations. The absence of the polycations prevents or retards the subsequent formation of particles, indicating that the polycations, when present, act as seeds to the formation of new particles. Particles did not form in solutions with a citric acid/aluminum ratio of 0.8 until sufficient NaOH(aq) was added to raise the OH/Al ratio to 3.29. By comparison, lower amounts of citric acid did not prevent particles from forming but did retard the rate of growth.« less
Utilisation des technologies d'impression pour le remplissage industriel des trous d'interconnexion
NASA Astrophysics Data System (ADS)
Blonde, Paul
This master project concerns a feasibility study about the use of inkjet drop-on-demand to fill through silicon vias in MEMS "via last" microfabrication process. The aim of our research was to develop a comprehensive process based on the use of a dispersion of a gold/tin alloy (Au80Sn 20) of nanoparticles in suspension in a carrier fluid. Our work mainly focused on the preparation of stable suspensions of nanoparticles and on the high precision filling of the vias. We first developed a method to form a stable suspension of nanoparticles in a carrier fluid using a surfactant, polyvinylpyrrolidone (PVP). Tests performed on various solvents allowed us to determine that isopropanol was the best carrier fluid to achieve high volume fractions of suspended nanoparticles. The volume fraction of the stable dispersion with the highest content reached 11 %. The conditions to generate stable individual microdroplets from a piezoelectric printing actuator were then analyzed. The generation of monodisperse microdroplets beiing a complex process, partly described by Fromm's theory and the theory of waveguides, we investigated the operating conditions permitting to precisely set the drop volume and ejection velocity. We therefore characterized an "ejectability zone" model universally usable to generate microdrops with desired output parameters based on the amplitude, width, and frequency of the electric pulse applied to the piezoelectric actuator of a print head having a 50 mum diameter aperture. We also developed a theoretical kinematical model describing the trajectories of microdrops during printing in order to understand the influence of their volume and initial velocity on the accuracy, reproducibility and homogeneity of the deposits in the presence of air fluctuations. This model was implemented in MATLAB and validated in real operating conditions. The results showed that a print head with a 50 mum diameter aperture will generate microdroplets with diameters between 30 and 60 microns with a maximum placement error on the substrate of the order of +/- 20 microns. We estimated that filling TSVs with an opening of 70 microns and higher is possible with our inkjet DOD (non defined) process. Finally, we experimentally addressed the vias filling by studying the behavior of nanoparticles in the vias during the evaporation of the carrier fluid and the annealing of the gold/tin alloy nanoparticles of eutectic composition. This last step revealed the incompatibility of non-homogenous AuSn alloy particles with the temperature window requirement used during sintering. To overcome this defect we replaced the Au80Sn20 by tin nanoparticles to complete our analysis of the impact of the use of PVP in the suspension of nanoparticles on the resistivity after annealing in the vias. Most aspects of this project being interrelated, much attention has been paid to the study of the influence of the various parameters on the quality of prints realized. The main conclusion is that we are able to validate the use of inkjet technologies as an alternative to perform the filling of TSVs by metal alloy nanoparticles. This conclusion is subject to the feasibility of the adaptation of our suspension and annealing methods to nanopowders alloys other than gold/tin and tin.
Bouchard, Dermont; Ma, Xin
2008-09-05
Studies have shown that C(60) fullerene can form stable colloidal suspensions in water that result in C(60) aqueous concentrations many orders of magnitude above C(60)'s aqueous solubility; however, quantitative methods for the analysis of C(60) and other fullerenes in environmental media are scarce. Using a 80/20v/v toluene-acetonitrile mobile phase and a 4.6 mm x 150 mm Cosmosil 5micron PYE column, C(60), C(70), and PCBM ([6,6]-phenyl C(61)-butyric acid methyl ester) were fully resolved. Selectivity factors (alpha) for C(60) relative to PCBM and C(70) relative to C(60) were 3.18 and 2.19, respectively. The best analytical wavelengths for the fullerenes were determined to be 330, 333, and 333 nm with log molar absorption coefficients (log epsilon) of 4.63, 4.82, and 4.60 for PCBM, C(60), C(70), respectively. Extraction and quantitation of all three fullerenes in aqueous suspensions over a range of pH (4-10) and ionic strengths were very good. Whole-method quantification limits for ground and surface suspensions were 2.87, 2.48, and 6.54 microg/L for PCBM, C(60), and C(70), respectively.
NASA Astrophysics Data System (ADS)
Yang, Yunpeng
Controlled ceramic processing is required to produce ceramic parts with few strength-limiting defects and the economic forming of near net shape components. Temperature induced forming (TIF) is a novel ceramic forming process that uses colloidal processing to form ceramic green bodies by physical gelation. The dissertation research shows that TIF alumina suspensions (>40vol%) can be successfully fabricated by using 0.4wt% of ammonium citrate powder and <0.1wt% poly (acrylic acid) (PAA). It is found that increasing the volume fraction of alumina or the molecular weight of polymer will increase the shear viscosity and shear modulus. Larger molecular weight PAA tends to decrease the volume fraction gelation threshold of the alumina suspensions. The author is the first in this field to utilize the continuous percolation theory to interpret the evolution of the storage modulus with temperature for the TIF alumina suspensions. A model that relates the storage modulus with temperature and the volume fraction of solids is proposed. Calculated results using this percolation model show that the storage modulus of the suspensions can be affected by the volume fraction of solids, temperature, volume fraction gelation threshold and the percolation nature. The parameters in this model have been derived from the experimental data. The calculated results fit the measured data well. For the PAA-free TIF alumina suspensions, it is found that the ionization reaction of the magnesium citrate, which is induced by the pH or temperature of the suspensions, controls the flocculation of the suspensions. The percolation theory model was successfully applied to this type of suspension. Compared with the PAA addition TIF suspensions, these suspensions reflect a higher degree of percolation nature, as indicated by a larger value of percolation exponent. These results show that the percolation model proposed in this dissertation can be used to predict the gelation degree of the TIF suspensions. Complex-shape engineering ceramic parts have been successfully fabricated by direct casting using the TIF alumina suspensions, which has a relative density of ˜65%. The sintered sample at 1550°C for 2h is translucent and has a uniform grain size.
Suszka-Świtek, Aleksandra; Ryszka, Florian; Dolińska, Barbara; Dec, Renata; Danch, Alojzy; Filipczyk, Łukasz; Wiaderkiewicz, Ryszard
2017-04-01
Although many synthetic gonadoliberin analogs have been developed, only a few of them, including buserelin, were introduced into clinical practice. Dalarelin, which differs from buserelin by just one aminoacid in the position 6 (D-Ala), is not widely used so far. Gonadotropin-releasing hormone (GnRH) analogs are used to treat many different illnesses and are available in different forms like solution for injection, nasal spray, microspheres, etc. Unfortunately, none of the above drug formulations can release the hormones for 24 h. We assumed that classical suspension could solve this problem. Two sets of experiments were performed. In the first one, buserelin and dalarelin were injected into mature female rats in two forms: suspension, in which the analogs are bounded by Zn 2+ ions and solution. The pharmacokinetic parameters and bioavailability of the analogs were calculated, based on their concentration in the plasma measured by high-performance liquid chromatography method (HPLC). In the second experiment, the hormones in two different forms were injected into superovulated immature female rats and then the concentration of Luteinizing hormone (LH), Follicle-stimulating hormone (FSH) and 17β-estradiol in the serum was measured by radioimmunological method. The Extent of Biological Availability (EBA), calculated on the base of AUC 0-∞ , showed that in the form of solution buserelin and dalarelin display, respectively, only 13 and 8 % of biological availability of their suspension counterparts. Comparing both analogs, the EBA of dalarelin was half (53 %) that of buserelin delivered in the form of solution and 83 % when they were delivered in the form of suspension. The injection of buserelin or dalarelin, in the form of solution or suspension, into superovulated female rats increased LH, FSH and estradiol concentration in the serum. However, after injection of the analogs in the form of suspension, the high concentration of LH and FSH in the serum persisted longer. Performed studies indicate that GnRH analogs in the form of suspension have higher bioavailability than their solution counterparts. It influences the effects of their action, especially in relation to LH and FSH.
Polonini, Hudson C; Loures, Sharlene; de Araujo, Edson Peter; Brandão, Marcos Antônio F; Ferreira, Anderson O
2016-01-01
Oral liquids are safe alternatives to solid dosage forms, notably for elderly and pediatric patients that present dysphagia. The use of ready-to-use suspending vehicles such as SyrSpend SF PH4 is a suitable resource for pharmacists as they constitute a safe and timesaving option that has been studied often. The objective of this study was to evaluate the stability of 10 commonly used active pharmaceutical ingredients (allopurinol 20 mg/mL; amitriptyline hydrochloride 10 mg/mL; carbamazepine 25 mg/mL; domperidone 5 mg/mL; isoniazid 10 mg/mL; ketoconazole 20 mg/mL; lisinopril 1 mg/mL; naproxen 25 mg/mL; paracetamol [acetaminophen] 50 mg/mL; and sertraline hydrochloride 10 mg/mL) compounded in oral suspensions using SyrSpend SF PH4 as the vehicle throughout the study period and stored both at controlled refrigerated (2°C to 8°C) and room temperature (20°C to 25°C). Stability was assessed by means of measuring the percent recovery at varying time points throughout a 90-day period. The quantification of the active pharmaceutical ingredients was performed by high-performance liquid chromatography through a stability-indicating method. Methods were adequately validated. Forced-degradation studies showed that at least one parameter influenced the stability of the active pharmaceutical ingredients. All suspensions were assayed and showed active pharmaceutical ingredient contents between 90% and 110% during the 90-day study period. Although the forced-degradation experiments led to visible fluctuations in the chromatographic responses, the final preparations were stable in the storage conditions. The beyond-use dates of the preparations were found to be at least 90 days for all suspensions, both for controlled refrigerated temperature and room temperature. This confirms that SyrSpend SF PH4 is a stable suspending vehicle for compounding with a broad range of different active pharmaceutical ingredients for different medical usages. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Production and stability of mechanochemically exfoliated graphene in water and culture media
NASA Astrophysics Data System (ADS)
León, V.; González-Domínguez, J. M.; Fierro, J. L. G.; Prato, M.; Vázquez, E.
2016-07-01
The preparation of graphene suspensions in water, without detergents or any other additives is achieved using freeze-dried graphene powders, produced by mechanochemical exfoliation of graphite. These powders of graphene can be safely stored or shipped, and promptly dissolved in aqueous media. The suspensions are relatively stable in terms of time, with a maximum loss of ~25% of the initial concentration at 2 h. This work provides an easy and general access to aqueous graphene suspensions of chemically non-modified graphene samples, an otherwise (almost) impossible task to achieve by other means. A detailed study of the stability of the relative dispersions is also reported.The preparation of graphene suspensions in water, without detergents or any other additives is achieved using freeze-dried graphene powders, produced by mechanochemical exfoliation of graphite. These powders of graphene can be safely stored or shipped, and promptly dissolved in aqueous media. The suspensions are relatively stable in terms of time, with a maximum loss of ~25% of the initial concentration at 2 h. This work provides an easy and general access to aqueous graphene suspensions of chemically non-modified graphene samples, an otherwise (almost) impossible task to achieve by other means. A detailed study of the stability of the relative dispersions is also reported. Electronic supplementary information (ESI) available: A video showing the dispersion process, the N 1s XPS spectrum of BMG, image of the graphite test in CCM, and the characterization of the GO employed. See DOI: 10.1039/c6nr03246j
A green method of graphene preparation in an alkaline environment.
Štengl, Václav; Henych, Jiří; Bludská, Jana; Ecorchard, Petra; Kormunda, Martin
2015-05-01
We present a new, simple, quick and ecologically friendly method of exfoliating graphite to produce graphene. The method is based on the intercalation of a permanganate M2MnO4 (M=K, Na, Li), which is formed by the reaction of a manganate MMnO4 with an alkali metal hydroxide MOH. The quality of exfoliation and the morphology were determined using X-ray photoelectron spectroscopy, X-ray diffraction and microscopic techniques, including transmission electron microscopy and atomic force microscopy. We observed that a stable graphene suspension could be prepared under strongly alkaline conditions in the presence of permanganate and ultrasound assistance. The use of only an alkaline environment for the direct preparation of graphene from graphite structures has not been previously described or applied. It was found that such a method of preparation leads to surprisingly high yields and a stable product for hydrophilic graphene applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Transparent ceramics and methods of preparation thereof
Hollingsworth, Joel P [Oakland, CA; Kuntz, Joshua D [Livermore, CA; Seeley, Zachary M [Pullman, WA; Soules, Thomas F [Livermore, CA
2011-10-18
According to one embodiment, a method for forming a transparent ceramic preform includes forming a suspension of oxide particles in a solvent, adding the suspension to a mold of a desired shape, and uniformly curing the suspension in the mold for forming a preform. The suspension includes a dispersant but does not include a gelling agent. In another embodiment, a method includes creating a mixture without a gelling agent, the mixture including: inorganic particles, a solvent, and a dispersant. The inorganic particles have a mean diameter of less than about 2000 nm. The method also includes agitating the mixture, adding the mixture to a mold, and curing the mixture in the mold at a temperature of less than about 80.degree. C. for forming a preform. Other methods for forming a transparent ceramic preform are also described according to several embodiments.
32 CFR 766.10 - Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Cancellation or suspension of the aviation... (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.10 Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1...
32 CFR 766.10 - Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Cancellation or suspension of the aviation... (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.10 Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1...
32 CFR 766.10 - Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Cancellation or suspension of the aviation... (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.10 Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1...
32 CFR 766.10 - Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Cancellation or suspension of the aviation... (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.10 Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1...
32 CFR 766.10 - Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Cancellation or suspension of the aviation... (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.10 Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1...
Articulated Suspension Without Springs
NASA Technical Reports Server (NTRS)
Bickler, Donald B.
1990-01-01
Wheels negotiate bumps and holes with minimal tilting of vehicle body. In new suspension, wheel climbs obstacle as high as 1 1/2 times its diameter without excessive tilting of chassis. Provides highly stable ride over rough ground for such vehicles as wheelchairs, military scout cars, and police and fire robots. System of levers distributes weight to wheels. Sized to distribute equal or other desired portions of load among wheels.
Zhang, Fang; Ren, Hao; Dou, Jing; Tong, Guolin; Deng, Yulin
2017-01-01
Hereby we report a novel cellulose nanofirbril aerogel-based W/O/W microreactor system that can be used for fast and high efficient molecule or ions extraction and separation. The ultra-light cellulose nanofibril based aerogel microspheres with high porous structure and water storage capacity were prepared. The aerogel microspheres that were saturated with stripping solution were dispersed in an oil phase to form a stable water-in-oil (W/O) suspension. This suspension was then dispersed in large amount of external waste water to form W/O/W microreactor system. Similar to a conventional emulsion liquid membrane (ELM), the molecules or ions in external water can quickly transport to the internal water phase. However, the microreactor is also significantly different from traditional ELM: the water saturated nanocellulose cellulose aerogel microspheres can be easily removed by filtration or centrifugation after extraction reaction. The condensed materials in the filtrated aerogel particles can be squeezed and washed out and aerogel microspheres can be reused. This novel process overcomes the key barrier step of demulsification in traditional ELM process. Our experimental indicates the novel microreactor was able to extract 93% phenol and 82% Cu2+ from external water phase in a few minutes, suggesting its great potential for industrial applications. PMID:28059153
NASA Astrophysics Data System (ADS)
Zhang, Fang; Ren, Hao; Dou, Jing; Tong, Guolin; Deng, Yulin
2017-01-01
Hereby we report a novel cellulose nanofirbril aerogel-based W/O/W microreactor system that can be used for fast and high efficient molecule or ions extraction and separation. The ultra-light cellulose nanofibril based aerogel microspheres with high porous structure and water storage capacity were prepared. The aerogel microspheres that were saturated with stripping solution were dispersed in an oil phase to form a stable water-in-oil (W/O) suspension. This suspension was then dispersed in large amount of external waste water to form W/O/W microreactor system. Similar to a conventional emulsion liquid membrane (ELM), the molecules or ions in external water can quickly transport to the internal water phase. However, the microreactor is also significantly different from traditional ELM: the water saturated nanocellulose cellulose aerogel microspheres can be easily removed by filtration or centrifugation after extraction reaction. The condensed materials in the filtrated aerogel particles can be squeezed and washed out and aerogel microspheres can be reused. This novel process overcomes the key barrier step of demulsification in traditional ELM process. Our experimental indicates the novel microreactor was able to extract 93% phenol and 82% Cu2+ from external water phase in a few minutes, suggesting its great potential for industrial applications.
Existence of Torsional Solitons in a Beam Model of Suspension Bridge
NASA Astrophysics Data System (ADS)
Benci, Vieri; Fortunato, Donato; Gazzola, Filippo
2017-11-01
This paper studies the existence of solitons, namely stable solitary waves, in an idealized suspension bridge. The bridge is modeled as an unbounded degenerate plate, that is, a central beam with cross sections, and displays two degrees of freedom: the vertical displacement of the beam and the torsional angles of the cross sections. Under fairly general assumptions, we prove the existence of solitons. Under the additional assumption of large tension in the sustaining cables, we prove that these solitons have a nontrivial torsional component. This appears relevant for security since several suspension bridges collapsed due to torsional oscillations.
Live Soap: Stability, Order, and Fluctuations in Apolar Active Smectics
NASA Astrophysics Data System (ADS)
Adhyapak, Tapan Chandra; Ramaswamy, Sriram; Toner, John
2013-03-01
We construct a hydrodynamic theory of noisy, apolar active smectics in bulk suspension or on a substrate. Unlike purely orientationally ordered active fluids, active apolar smectics can be dynamically stable in Stokesian bulk suspensions. Smectic order in these systems is quasilong ranged in dimension d=2 and long ranged in d=3. We predict reentrant Kosterlitz-Thouless melting to an active nematic in our simplest model in d=2, a nonzero second-sound speed parallel to the layers in bulk suspensions, and that there are no giant number fluctuations in either case. We also briefly discuss possible instabilities in these systems.
Chain Dynamics in Magnetorheological Suspensions
NASA Technical Reports Server (NTRS)
Gast, A. P.; Furst, E. M.
1999-01-01
Magnetorheological (MR) suspensions are composed of colloidal particles which acquire dipole moments when subjected to an external magnetic field. At sufficient field strengths and concentrations, the dipolar particles rapidly aggregate to form long chains. Subsequent lateral cross-linking of the dipolar chains is responsible for a rapid liquid-to-solid-like rheological transition. The unique, magnetically-activated rheological properties of MR suspensions make them ideal for interfacing mechanical systems to electronic controls. Additionally, the ability to experimentally probe colloidal suspensions interacting through tunable anisotropic potentials is of fundamental interest. Our current experimental work has focused on understanding the fluctuations of dipolar chains. It has been proposed by Halsey and Toor (HT) that the strong Landau-Peierls thermal fluctuations of dipolar chains could be responsible for long-range attractions between chains. Such interactions will govern the long-time relaxation of MR suspensions. We have synthesized monodisperse neutrally buoyant MR suspensions by density matching stabilized ferrofluid emulsion droplets with D2O. This allows us to probe the dynamics of the dipolar chains using light scattering without gravitational, interfacial, and polydispersity effects to resolve the short-wavelength dynamics of the dipolar chains. We used diffusing wave spectroscopy to measure these dynamics. The particle displacements at short times that show an independence to the field strength, but at long times exhibit a constrained, sub-diffusive motion that slows as the dipole strength is increased. The experiments are in good qualitative agreement with Brownian dynamics simulations of dipolar chains. Although there have been several important and detailed studies of the structure and interactions in MR suspensions, there has not been conclusive evidence that supports or contradicts the HT model prediction that long-range interactions exist between fluctuating chains of dipolar particles. Resolving this issue would contribute greatly to the understanding of these interesting and important materials. We have begun to test the predictions of the HT model by both examining the dynamics of individual chains and by measuring the forces between dipolar chains directly to accurately and quantitatively assess the interactions that they experience. To do so, we employ optical trapping techniques and video-microscopy to manipulate and observe our samples on the microscopic level. With these techniques, it is possible to observe chains that are fluctuating freely in three-dimensions, independent of interfacial effects. More importantly, we are able to controllably observe the interactions of two chains at various separations to measure the force-distance profile. The techniques also allow us to study the mechanical properties of individual chains and chain clusters. Our work to this point has focused on reversibly-formed dipolar chains due to field induced dipoles where the combination of this chaining, the dipolar forces, and the hydrodynamic interactions that dictate the rheology of the suspensions. One can envision, however, many situations where optical, electronic, or rheological behavior may be optimized with magneto-responsive anisotropic particles. Chains of polarizable particles may have the best properties as they can coil and flex in the absence of a field and stiffen and orient when a field is applied. We have recently demonstrated a synthesis of stable, permanent paramagnetic chains by both covalently and physically linking paramagnetic colloidal particles. The method employed allows us to create monodisperse chains of controlled length. We observed the stability, field-alignment, and rigidity of this new class of materials. The chains may exhibit unique rheological properties in an applied magnetic field over isotropic suspensions of paramagnetic particles. They are also useful rheological models as bead-spring systems. These chains form the basis for our current experiments with optical traps.
Extemporaneous suspension of propafenone: attending lack of pediatric formulations in Mexico.
Juárez Olguín, Hugo; Flores Pérez, Carmen; Ramírez Mendiola, Blanca; Coria Jiménez, Rafael; Sandoval Ramírez, Eunice; Flores Pérez, Janett
2008-11-01
Physicians have frequently encountered difficulties when prescribing drugs not available in doses suitable for pediatric age groups. Furthermore, children have difficulty swallowing tablets. This study aimed to determine the stability of an oral propafenone suspension made from commercial tablets with a syrup vehicle and to establish its reliable use with children. An extemporaneous suspension of propafenone 1.5 mg/ml was prepared with commercial tablets. Its physicochemical and microbiologic stability was established by constant monitoring during 90 days at room temperature (15 +/- 5 degrees C) and at refrigeration (3-5 degrees C). Plasma levels of propafenona were measured in two children with supraventricular tachycardia at steady state. The suspension was stable, maintaining its original physicochemical and microbiologic properties. Moreover, no apparent changes in color or odor were observed. Plasma levels of propafenone in patients demonstrated therapeutic concentrations after they had taken the suspension, with no unwanted outcome. The conservation of both physicochemical and microbiologic stability of the suspension represents an option for the administration of propafenone to children.
Shin, Kyounghee; Gong, Gyeonghyeon; Cuadrado, Jonas; Jeon, Serim; Seo, Mintae; Choi, Hong Sung; Hwang, Jae Sung; Lee, Youngbok; Fernandez-Nieves, Alberto; Kim, Jin Woong
2017-03-28
This study introduces an extremely stable attractive nanoscale emulsion fluid, in which the amphiphilic block copolymer, poly(ethylene oxide)-block-poly(ϵ-caprolactone) (PEO-b-PCL), is tightly packed with lecithin, thereby forming a mechanically robust thin-film at the oil-water interface. The molecular association of PEO-b-PCL with lecithin is critical for formation of a tighter and denser molecular assembly at the interface, which is systematically confirmed by T 2 relaxation and DSC analyses. Moreover, suspension rheology studies also reflect the interdroplet attractions over a wide volume fraction range of the dispersed oil phase; this results in a percolated network of stable drops that exhibit no signs of coalescence or phase separation. This unique rheological behavior is attributed to the dipolar interaction between the phosphorylcholine groups of lecithin and the methoxy end groups of PEO-b-PCL. Finally, the nanoemulsion system significantly enhances transdermal delivery efficiency due to its favorable attraction to the skin, as well as high diffusivity of the nanoscale emulsion drops. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mendes, Cassiana; Costa, Ana Paula; Oliveira, Paulo Renato; Tagliari, Monika Piazzon; Silva, Marcos Antônio Segatto
2013-01-01
Extemporaneous suspensions of the antihypertensive agents furosemide, spironolactone and hydrochlorothiazide for pediatric use have been prepared at University Hospital (Federal University of Santa Catarina - Brazil). The aim of this work was to investigate the physicochemical and microbiological stability of these suspensions over the estimated shelf-life period of seven days and, if necessary, to optimize the formulations by improving the chemical stability. The pediatric suspensions were prepared using drug raw material and were stored at 25 ± 2°C and 5 ± 3°C. Chemical stability was evaluated by HPLC assay of the suspensions for drug content. Physical stability was evaluated by sedimentation volume, redispersibility, particle size, and zeta potential. Viable bacterial and fungal contaminations were assessed according to the official compendium. Furosemide and spironolactone suspensions as prepared herein can be stored for 7 days. However, the hydrochlorothiazide suspension formulation at pH 6.5 demonstrated poor chemical stability and was optimized by adjusting the pH to 3.3 where the drug exhibited acceptable stability. The optimized formulation demonstrated to be stable over the required period of 7 days.
Evaluating the DLVO Model for Non-Aqueous Colloidal Suspensions
NASA Astrophysics Data System (ADS)
DeCarlo, Keith Joseph
Application of DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory for suspensions utilizing non-aqueous suspension mediums has been tested. Prediction of suspension stability using DLVO theory requires the calculation of the attractive and repulsive forces between the suspended colloids and that the only significant stabilization mechanism present is electrostatic stabilization which was tested. The van der Waals attractive potential was calculated for 12 different colloids in 11 suspending mediums in accord with Lifshitz's treatment and a new approximation proposing that the material bandgap energy can be used to approximate the Hamaker constant was developed. This treatment requires the complete knowledge of the permittivity as a function of frequency for all the components in the respective suspension. The permittivity data was simplified using a damped oscillator model described by Ninham and Parsegian. All permittivity data was compiled from the literature. Microwave data was tabulated by NIST, infrared parameters were determined from FTIR data, and the ultraviolet/visual parameters were determined via Cauchy plots or estimated by the bandgap. Using the bandgap to approximate the ultraviolet/visual parameters proved to be more accurate than other approximations when compared to the accepted values. It was found that the non-oxide and non-stoichiometric colloids tested had the largest associated van der Waals attractive force. The van der Waals potential calculated for oxide particles was found to follow a direct relationship with the ionic character of the bonding. Repulsive forces were calculated for 12 different colloids in 11 suspending mediums. The calculated repulsive potential generated is a function of both the magnitude of charge generated on each colloid (zeta-potential) and the size of the interacting double-layers. zeta-potential was measured for each suspension using a microelectrophoretic technique and the double-layer thickness was calculated. It was demonstrated that as the polarity of the suspending medium increased, the thickness of the double-layer also increased. A large double-layer thickness was found to directly correlate to the suspension stability. A large double-layer thickness results in a decreased slope of the charge degradation from the colloidal surface to the bulk suspension. This coupled with a large magnitude of surface charge increases the probability of dispersion. Through viscosity measurements, the stability mechanism of each suspension was determined by comparison of the viscosity at a shear rate of 1.0s -1 with the shear thinning exponent. It was determined that, of the suspension mediums tested, heptane, octanoic acid, and poly(ethylene glycol) introduce non-electrostatic stabilization mechanisms significant enough to invalidate the DLVO predictions for suspensions made using those mediums. Consistent with DLVO theory, the total interaction potential was calculated by summation of the repulsive and attractive potentials of each suspension (84 suspensions total) as a function of separation distance. Based upon the results of the summation, the suspension stability can be predicted. 64 of the 84 suspensions were determined to be unstable as the colloids agglomerated in the primary minimum, 11 suspensions were determined to be weakly flocculated, and nine suspensions were found to be stable. Viscosity was used to determine the critical value for the thermal energy barrier and to test the DLVO predictions. The critical value of the thermal energy barrier was found to be 2.0 x 10 -6J/m2. Therefore, for suspensions calculated to have a thermal energy barrier less than the critical value, the Brownian motion of the colloids in suspension at 298K were enough to overcome it, resulting in agglomeration at the primary minimum. For suspensions with a thermal barrier larger than 2.0 x 10-6J/m2, the interacting colloids moved into the secondary energy minimum. All suspensions tested in which the thermal energy barrier was less than 2.0 x 10-6J/m 2 had a specific viscosity at a shear rate of 1.0s-1 greater than the cut-off viscosity for stability. If the colloids moved into the secondary minimum, the resulting suspension was characterized as either being weakly flocculated or stable. Weakly flocculated suspensions had an equilibrium separation distance of colloids less than 40nm resulting in a viscosity at a shear rate of 1.0s-1 larger than the determined specific viscosity cut-off (1.1x 104), but a shear thinning exponent greater than 1.0. Stable suspensions were defined by the colloids as having an equilibrium separation distance greater than 40nm, resulting in viscosity values at a shear rate of 1.0s-1 smaller than that of the determined cut-off viscosity value.
Cooper, Peter D; Petrovsky, Nikolai
2011-05-01
We report a novel isoform of β-D-[2 → 1] poly(fructo-furanosyl) α-D-glucose termed delta inulin (DI), comparing it with previously described alpha (AI), beta (BI) and gamma (GI) isoforms. In vitro, DI is the most immunologically active weight/weight in human complement activation and in binding to monocytes and regulating their chemokine production and cell surface protein expression. In vivo, this translates into potent immune adjuvant activity, enhancing humoral and cellular responses against co-administered antigens. As a biocompatible polysaccharide particle, DI is safe and well tolerated by subcutaneous or intramuscular injection. Physico-chemically, DI forms as an insoluble precipitate from an aqueous solution of suitable AI, BI or GI held at 37-48°C, whereas the precipitate from the same solution at lower temperatures has the properties of AI or GI. DI can also be produced by heat conversion of GI suspensions at 56°C, whereas GI is converted from AI at 45°C. DI is distinguished from GI by its higher temperature of solution in dilute aqueous suspension and by its lower solubility in dimethyl sulfoxide, both consistent with greater hydrogen bonding in DI's polymer packing structure. DI suspensions can be dissolved by heat, re-precipitated by cooling as AI and finally re-converted back to DI by repeated heat treatment. Thus, DI, like the previously described inulin isoforms, reflects the formation of a distinct polymer aggregate packing structure via reversible noncovalent bonding. DI forms the basis for a potent new human vaccine adjuvant and further swells the growing family of carbohydrate structures with immunological activity.
Buontempo, F; Moretton, M A; Quiroga, E; Chiappetta, D A
2013-01-01
Two clobazam aqueous suspensions for paediatric oral usage (5 mg/ml) were investigated to determinate its physicochemical stability under different storage conditions. Formulations were stored at 4 and 25 °C and the clobazam content was determined by High Performance Liquid Chromatography. Each sample was analyzed by triplicate at different time points (0, 7, 14, 28 and 56 days). Liquid suspensions were successfully formulated from pure drug and commercially available tablets. In both cases, samples showed suitable physical stability. Clobazam was chemically stable in aqueous suspension during the 56 days of the study at the two storage temperatures. All the tried oral liquid formulations can be conserved at 4 and 25 °C at least 56-day period. Copyright © 2013 SEFH. Published by AULA MEDICA. All rights reserved.
Stability of extemporaneous oral ribavirin liquid preparation.
Chan, John P; Tong, Henry H Y; Chow, Albert H L
2004-01-01
Ribavirin is an antiviral agent commonly used in Hong Kong for the treatment of severe acute respiratory syndrome. The choice of oral ribavirin therapeutic products available in the local market is currently limited to capsules. The present study investigated the chemical stability of an oral ribavirin suspension (200 mg/5mL) prepared extemporaneously from oral capsules using a sugar-free suspension formula. The suspension was subjected to stability testing at 4 deg C for up to 28 days. Employing a validated stability-indicating high-performance liquid chromatographic method, the ribavirin content of the extemporaneous preparation has been demonstrated to exhibit negligible changes throughout the storage period. No degradation product was observable in all high-peroformance liquid chromatograms, suggesting that the suspension remained chermically stable under the stated conditions.
Ensom, Mary H H; Décarie, Diane
2014-01-01
Background Dexamethasone is widely used to treat rheumatic and endocrine disorders and chemotherapy-induced nausea and vomiting. A palatable, alcohol-free liquid formulation, with a suitable concentration to allow reasonable administration volume, is available only via extemporaneous compounding. Objective: To evaluate the stability of dexamethasone suspensions in commercially available vehicles (Oral Mix and Oral Mix SF) in various types of containers after storage at 25°C and 4°C for up to 91 days. Methods: Dexamethasone suspensions (1 mg/mL) were prepared in Oral Mix and Oral Mix SF and then transferred to amber glass and plastic prescription bottles and plastic oral syringes. Suspensions in all 3 types of containers were stored at 25°C; suspensions in glass and plastic bottles were also stored at 4°C. Samples were collected weekly from each container up to 28 days and then every 2 weeks up to 91 days. The samples were analyzed by a validated, stability-indicating high-performance liquid chromatography − ultraviolet detection method. A suspension was considered stable if it maintained at least 90% of its initial dexamethasone concentration. Changes in colour, taste, odour, precipitation (and ease of resuspension), and pH were used to assess physical compatibility. Results: All suspensions maintained at least 96% of the original concentration for up to 91 days with storage at 25°C or at 4°C. No notable changes in colour, taste, odour, precipitation, or pH were observed over the 91-day period. Conclusion: Dexamethasone suspensions (1 mg/mL) in Oral Mix and Oral Mix SF, stored in amber glass or plastic bottles or plastic syringes at 25°C or in amber glass or plastic bottles at 4°C can be expected to remain stable for up to 91 days. PMID:25214658
Comparative study on the uptake and bioimpact of metal nanoparticles released into environment
NASA Astrophysics Data System (ADS)
Andries, Maria; Pricop, Daniela; Grigoras, Marian; Lupu, Nicoleta; Sacarescu, Liviu; Creanga, Dorina; Iacomi, Felicia
2015-12-01
Metallic particles of very small size are ubiquitously released in the air, water and soil from various natural and artificial sources - the last ones with enhanced extent since nanotechnology development accelerated exponentially. In this study we focused on the impact of metal nanoparticles in vegetal species of agroindustrial interest namely the maize (Zea mais L.). Laboratory simulation of environmental pollution was carried out by using engineered nanoparticles of two types: iron oxides with magnetic properties and gold nanoparticles supplied in the form of dilutes stable suspensions in the culture medium of maize seedlings. Magnetic nanoparticle (MNPs) preparation was performed by applying chemical route from iron ferric and ferrous precursor salts in alkali reaction medium at relatively high temperature (over 80 °C). Gold nanoparticles (GNPs) synthesis was accomplished from auric hydrochloride acid in alkali reaction medium in similar temperature conditions. In both types of metallic nanoparticles citrate ions were used as coating shell with role of suspension stabilization. Plantlet response was assessed at the level of assimilatory pigment contents in green tissue of seedlings in early ontogenetic stages.
Exploration and characterization of new synthesis methods for C60 colloidal suspensions in water
NASA Astrophysics Data System (ADS)
Hilburn, Martha E.
Buckminsterfullerene, C60, has been used in the production of several commercial products from badminton racquets and lubricants for their mechanical properties to cosmetics and even dietary supplements for their "antioxidant" properties. Multi-ton production of C60 began in 2003 encouraging serious consideration of its fate in the environment in the case of an accidental release or improper disposal. Although C60 is practically insoluble in water, it readily forms stable aqueous colloidal suspensions (termed nC60) through solvent exchange methods or long-term vigorous stirring in water. Two new solvent exchange methods for synthesizing nC60 are presented. These methods combine key advantages of multiple existing synthesis methods including high yield, narrow particle size distribution, short synthesis time, and an absence of solvents such as tetrahydrofuran that have historically caused problems in laboratory synthesized aggregates. The resulting samples are attractive candidates for use in controlled environmental impact, biological, and toxicity studies. An improved method for quantifying residual solvents in nC60 samples utilizing solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) is also discussed.
Sandu, Ion; Fleaca, Claudiu Teodor
2011-06-15
The focus of the present article is the study of the influence of gravity on the particle deposition profiles on a solid substrate during the evaporation of sessile, hanging and sandwiched hanging drops of colloidal particle suspensions. For concentrations of nanoparticles in the colloidal solutions in the range 0.0001-1 wt.%, highly diluted suspensions will preferentially form rings while concentrated suspensions will preferentially form spots in both sessile and hanging drop evaporation. For intermediary concentrations, the particle deposition profiles will depend on the nanoparticle aggregation dynamics in the suspension during the evaporation process, gravity and on the detailed evaporation geometry. The evaporation of a drop of toluene/carbon nanoparticle suspension hanging from a pendant water drop will leave on the substrate a circular spot with no visible external ring. By contrast, a clear external ring is formed on the substrate by the sessile evaporation of a similar drop of suspension sandwiched between a water drop and the substrate. From the application viewpoint, these processes can be used to create preferential electrical conductive carbon networks and contacts for arrays of self-assembled nanostructures fabricated on solid substrates as well as on flexible polymeric substrates. Copyright © 2011 Elsevier Inc. All rights reserved.
Electrochemical slurry compositions and methods for preparing the same
Doherty, Tristan; Limthongkul, Pimpa; Butros, Asli; Duduta, Mihai; Cross, III, James C.
2016-11-01
Embodiments described herein generally relate to semi-solid suspensions, and more particularly to systems and methods for preparing semi-solid suspensions for use as electrodes in electrochemical devices such as, for example batteries. In some embodiments, a method for preparing a semi-solid electrode includes combining a quantity of an active material with a quantity of an electrolyte to form an intermediate material. The intermediate material is then combined with a conductive additive to form an electrode material. The electrode material is mixed to form a suspension having a mixing index of at least about 0.80 and is then formed into a semi-solid electrode.
Stability of pyrimethamine in a liquid dosage formulation stored for three months.
Nahata, M C; Morosco, R S; Hipple, T F
1997-12-01
The stability of pyrimethamine in a liquid dosage formulation stored for up to three months was studies. Commercially available 25-mg pyrimethamine tablets were crushed with a mortar and pestle and mixed with a 1:1 mixture of Simple Syrup, NF, and 1% methylcellulose to yield a suspension with a pyrimethamine concentration of 2 mg/mL. The suspension was poured into 10 amber plastic and 10 amber glass prescription bottles; 5 plastic and 5 glass bottles were stored at 4 degrees C, and the remaining bottles were kept at 25 degrees C. Samples were collected at intervals up to 91 days and tested for pyrimethamine concentration by stability-indicating high-performance liquid chromatography. Pyrimethamine remained stable throughout the three-month study period under all conditions. At 4 degrees C, pyrimethamine concentrations remained above 96% of the initial concentration; at 25 degrees C, pyrimethamine concentrations remained above 91%. No substantial changes in pH were observed. Pyrimethamine was stable for at least 91 days in an oral suspension stored in plastic or glass prescription bottles at 4 or 25 degrees C.
Improvements in SiC{sub w}/Al{sub 2}O{sub 3} composites through colloidally stabilized suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crimp, M.J.; Oppermann, D.A.; Zhang, M.
1994-12-31
Through manipulation of colloidal parameters, suspensions of SiC(whisker)/Al{sub 2}O{sub 3} were prepared, at 5, 10 and 20 vol% SiC whisker, using processing conditions established in Stable Suspension{copyright}. Utilizing Hogg, Healy and Furstenau`s modifications to DLVO theory, this program predicts stability conditions for composite suspensions. Variations in the suspension pH induce changes in the attractive/repulsive interactions between components. This type of interaction in turn influences the packing and green density. Composite suspensions were prepared, freeze dried, then cold consolidated. The distribution of the SiC whiskers within the Al{sub 2}O{sub 3} matrix was determined from SEM micrographs and the composite green densitymore » correlated to the extent of homo- versus heterostability within the composite suspension. The green density of the pure Al{sub 2}O{sub 3} and the 5 vol% SiC whisker additions was the highest at the pH of maximum stability for each interaction. In contrast, at whisker additions of 10 and 20 vol%, the green density is the highest at a pH of low heterostability.« less
Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Kiggans, Jim; Wood, David L
2013-09-01
Addition of polyethyleneimine (PEI) to aqueous LiFePO4 nanoparticle suspensions improves stability and reduces agglomerate size, which is beneficial to lithium-ion battery cathode manufacturing. This research examines the effect of both PEI concentration and molecular weight (MW) on dispersing LiFePO4 and Super P C45 in multicomponent aqueous suspensions. It is demonstrated that the optimal conditions for obtaining stable suspensions with minimal agglomerate size are 1.5 wt% PEI with MW=2000 g mol(-1) and 5.0 wt% PEI with MW=10,000 g mol(-1) for LiFePO4 and Super P C45, respectively. The mixing sequence also affects rheological properties of these suspensions. It is found that dispersing the LiFePO4 and Super P C45 separately yielded suspensions with superior properties (Newtonian rheological behavior, smaller agglomerate size, improved settling, etc.). In particular, dispersing the LiFePO4 prior to the Super P C45 when making the final multicomponent suspension is found to be beneficial, which was evidenced by higher half-cell discharge capacity. Copyright © 2013 Elsevier Inc. All rights reserved.
Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review
NASA Astrophysics Data System (ADS)
Toma, Filofteia-Laura; Potthoff, Annegret; Berger, Lutz-Michael; Leyens, Christoph
2015-10-01
Research and development work for about one decade have demonstrated many unique thermal spray coating properties, particularly for oxide ceramic coatings by using suspensions of fine powders as feedstock in APS and HVOF processes. Some particular advantages are direct feeding of fine nano- and submicron-scale particles avoiding special feedstock powder preparation, ability to produce coating thicknesses ranging from 10 to 50 µm, homogeneous microstructure with less anisotropy and lower surface roughness compared to conventional coatings, possibility of retention of the initial crystalline phases, and others. This paper discusses the main aspects of thermal spraying with suspensions which have been taken into account in order to produce these coatings on an economical way. The economic efficiency of the process depends on the availability of suitable additional system components (suspension feeder, injectors), on the development and handling of stable suspensions, as well as on the high process stability for acceptance at industrial scale. Special focus is made on the development and processability of highly concentrated water-based suspensions. While costs and operational safety clearly speak for use of water as a liquid media for preparing suspensions on an industrial scale, its use is often critically discussed due to the required higher heat input during spraying compared to alcoholic suspensions.
Xiang, Tian-Xiang; Anderson, Bradley D
2002-08-01
A method for obtaining clear supersaturated aqueous solutions for parenteral administration of the poorly soluble experimental anti-cancer drug silatecan 7-t-butyldimethylsilyl-10-hydroxycamptothecin (DB-67) has been developed. Equilibrium solubilities of DB-67 were determined in various solvents and pH values, and in the presence of chemically modified water-soluble beta-cyclodextrins. The stoichiometry and binding constants for complexes of the lactone form of DB-67 and its ring-opened carboxylate with sulfobutyl ether and 2-hydroxypropyl substituted beta-cyclodextrins (SBE-CD and HP-CD) were obtained by solubility and circular dichroism spectroscopy, respectively. Kinetics for the reversible ring-opening of DB-67 in aqueous solution and for lactone precipitation were determined by HPLC with UV detection. Solubilities of DB-67 lactone in various injectable solvent systems were found to be at least one order of magnitude below the target concentration (2 mg/ml). DB-67 forms inclusion complexes with SBE-CD and HP-CD but the solubilization attainable is substantially less than the target concentration. Slow addition of DB-67/ DMSO into 22.2% (w/v) SBE-CD failed to yield stable supersaturated solutions due to precipitation. Stable supersatured solutions were obtained, however, by mixing a concentrated alkaline aqueous solution of DB-67 carboxylate with an acidified 22.2% (w/v) SBE-CD solution. Ring-closure yielded supersaturated solutions that could be lyophilized and reconstituted to clear, stable, supersaturated solutions. The method developed provides an alternative to colloidal dispersions (e.g., liposomal suspensions, emulsions, etc.) for parenteral administration of lipophilic camptothecin analogs.
Muśko, Monika; Sznitowska, Małgorzata
2013-01-01
The stability of theophylline (T) and propranolol hydrochloride (P) in extemporaneously compounded oral suspensions (25 mg/mL or 50 mg/mL for T and 2 mg/mL or 5 mg/mL for P) were studied. Suspension with P and T were prepared with bulk substance or tablets using three different suspending vehicles: Ora-Sweet (M1), modified Ora-Sweet (M2) and simple syrup with glycerol and sorbitol (M3). Each suspension was stored for 35 days in a dark place at 25 degrees C and 4 degrees C. The results demonstrated that the prepared suspensions with P either from tablets or from a substance were stable in all three studied vehicles (more than 95% of initial concentration remaining). However, it is recommended that storage at 4 degrees C of suspensions prepared with M2 should be avoided because of crystallization of the buffer substances. Extemporaneous suspensions with T in an appropriate pediatric concentrations of the drug were not obtained because the problem of fast crystallization of T was not eliminated.
Fabrication and characterization of biotissue-mimicking phantoms in the THz frequency range
NASA Astrophysics Data System (ADS)
Liakhov, E.; Smolyanskaya, O.; Popov, A.; Odlyanitskiy, E.; Balbekin, N.; Khodzitsky, M.
2016-08-01
The study revealed the most promising candidates for phantoms mimicking different biological tissues in the terahertz frequency range. Closest to biological tissues in terms of the refractive index appeared to be gelatin-based gels; in terms of the absorption coefficient they were agar-based gels. Gelatin is more stable in time, but requires special storage conditions to limit water evaporation. The dense structure of the agar-based phantom allows its use without mold and risk of damage. However, agar is a nutrient medium for bacteria and its parameters degrade even when the phantom form and water content are retained. Use of liquid suspensions of lecithin and milk powder are found to be extremely limited.
Optical demodulation system for digitally encoded suspension array in fluoroimmunoassay
NASA Astrophysics Data System (ADS)
He, Qinghua; Li, Dongmei; He, Yonghong; Guan, Tian; Zhang, Yilong; Shen, Zhiyuan; Chen, Xuejing; Liu, Siyu; Lu, Bangrong; Ji, Yanhong
2017-09-01
A laser-induced breakdown spectroscopy and fluorescence spectroscopy-coupled optical system is reported to demodulate digitally encoded suspension array in fluoroimmunoassay. It takes advantage of the plasma emissions of assembled elemental materials to digitally decode the suspension array, providing a more stable and accurate recognition to target biomolecules. By separating the decoding procedure of suspension array and adsorption quantity calculation of biomolecules into two independent channels, the cross talk between decoding and label signals in traditional methods had been successfully avoided, which promoted the accuracy of both processes and realized more sensitive quantitative detection of target biomolecules. We carried a multiplexed detection of several types of anti-IgG to verify the quantitative analysis performance of the system. A limit of detection of 1.48×10-10 M was achieved, demonstrating the detection sensitivity of the optical demodulation system.
Influence of Dosage Form on the Intravitreal Pharmacokinetics of Diclofenac
Durairaj, Chandrasekar; Kim, Stephen J.; Edelhauser, Henry F.; Shah, Jaymin C.; Kompella, Uday B.
2009-01-01
Purpose To prepare a suspension form of diclofenac and compare the influence of the injected form (suspension versus solution) on the intravitreal pharmacokinetics of diclofenac in Dutch belted pigmented rabbits. Methods Diclofenac acid was prepared and characterized in a suspension formulation. Rabbit eyes were injected with either diclofenac sodium solution (0.3 mg) or diclofenac acid suspension (10 mg) prepared in 0.1 mL balanced salt solution. Rabbits were killed at regular time intervals, the eyes enucleated, and drug content quantified in the vitreous humor and retina-choroid tissue by high-performance liquid chromatography. Pharmacokinetic models were developed for both the dosage forms, and simulations were performed for different doses. Results Diclofenac acid with an approximate 5-μm particle size exhibited 3.5-fold lower solubility in vitreous humor, when compared with its sodium salt. The estimated settling velocity of the suspension in the vitreous humor was 3 cm/h. After diclofenac sodium salt solution injection, drug levels declined rapidly with no drug levels detectable after 24 hours in the vitreous humor and 4 hours in the RC. Throughout the assessed time course, drug levels were higher in the vitreous. However, sustained, high drug levels were observed in both the vitreous humor and the retina-choroid even on day 21 after diclofenac acid suspension injection, with retina-choroid drug levels being higher beginning at 0.25 hour. The elimination half-life of diclofenac suspension was 24 and 18 days in vitreous and retina-choroid, respectively, compared to 2.9 and 0.9 hours observed with diclofenac sodium. The pharmacokinetic models developed indicated a slow-release distribution or depot compartment for the diclofenac acid suspension in the posterior segment. Simulations indicated the inability of a 10-mg dose of diclofenac sodium solution to sustain drug levels in the vitreous beyond 11 days. Conclusions By choosing a less soluble form of a drug such as diclofenac acid, vitreous elimination half-life can be prolonged up to 24 days, potentially resulting in therapeutic levels in the posterior segment tissues for a few months. Higher detectable drug levels in the retina-choroid suggest rapid settling and persistent retention of suspension in retina-choroid tissue. PMID:19516015
Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells.
Zare, Mehrak; Soleimani, Masoud; Mohammadian, Mozhdeh; Akbarzadeh, Abolfazl; Havasi, Parvaneh; Zarghami, Nosratollah
2016-01-01
Induced pluripotent stem (iPS) cells are generated from differentiated adult somatic cells by reprogramming them. Unlimited self-renewal, and the potential to differentiate into any cell type, make iPS cells very promising candidates for basic and clinical research. Furthermore, iPS cells can be genetically manipulated for use as therapeutic tools. DNA can be introduced into iPS cells, using lentiviral vectors, which represent a helpful choice for efficient transduction and stable integration of transgenes. In this study, we compare two methods of lentiviral transduction of iPS cells, namely, the suspension method and the hanging drop method. In contrast to the conventional suspension method, in the hanging drop method, embryoid body (EB) formation and transduction occur concurrently. The iPS cells were cultured to form EBs, and then transduced with lentiviruses, using the conventional suspension method and the hanging drop method, to express miR-128 and green fluorescent protein (GFP). The number of transduced cells were assessed by fluorescent microscopy and flow cytometry. MTT assay and real-time PCR were performed to determine the cell viability and transgene expression, respectively. Morphologically, GFP+ cells were more detectable in the hanging drop method, and this finding was quantified by flow cytometric analysis. According to the results of the MTT assay, cell viability was considerably higher in the hanging drop method, and real-time PCR represented a higher relative expression of miR-128 in the iPS cells introduced with lentiviruses in drops. Altogether, it seems that lentiviral transduction of challenging iPS cells using the hanging drop method offers a suitable and sufficient strategy in their gene transfer, with less toxicity than the conventional suspension method.
NASA Astrophysics Data System (ADS)
KIM, E.; Jung, J.; Kang, S.; Choi, Y.
2016-12-01
In-situ bioremediation using bubbles as an oxygen carrier has shown its applicability for aerobic biodegradation of organic pollutants in the subsurface. By recent progresses, generation of nano-sized bubbles is possible, which have enhanced oxygen transfer efficiencies due to their high interfacial area and stability. We are developing an in-situ bioremediation technique using nano-bubbles as an oxygen carrier. In this study, nano-bubbles were characterized for their size and oxygen supply capacity. Nano-bubbles were generated with pure oxygen and pure helium gas. The stable nano-bubbles suspended in water were sonicated to induce the bubbles to coalesce, making them to rise and be released out of the water. By removing the bubbles, the water volume was decreased by 0.006%. The gas released from the bubble suspension was collected to measure the amount of gas in the nano-bubbles. For sparingly soluble helium gas 17.9 mL/L was released from the bubble suspension, while for oxygen 46.2 mL/L was collected. For the oxygen nano-bubble suspension, it is likely that the release of dissolved oxygen (DO) contributed to the collected gas volume. After removing the oxygen nano-bubbles, 36.0 mg/L of DO was still present in water. Altogether, the oxygen nano-bubble suspension was estimated to have 66.2 mg/L of oxygen in a dissolved form and 25.6 mg/L as nano-bubbles. A high DO level in the water was possible because of their large Laplace pressure difference across the fluid interface. Applying Young-Laplace equation and ideal gas law, the bubble diameter was estimated to be approximately 10 nm, having an internal pressure of 323 atm. Considering the saturation DO of 8.26 mg/L for water in equilibrium with the atmosphere, the total oxygen content of 91.8 mg/L in the nano-bubble suspension suggests its great potential as an oxygen carrier. Studies are underway to verify the enhanced aerobic biodegradation of organic pollutants in soils by injecting nano-bubble suspensions.
Vera-Estrella, Rosario; Miranda-Vergara, Maria Cristina; Barkla, Bronwyn J
2009-03-01
Arabidopsis halleri is increasingly employed as a model plant for studying heavy metal hyperaccumulation. With the aim of providing valuable tools for studies on cellular physiology and molecular biology of metal tolerance and transport, this study reports the development of successful and highly efficient methods for the in vitro regeneration of A. halleri plants and production of stable cell suspension lines. Plants were regenerated from leaf explants of A. halleri via a three-step procedure: callus induction, somatic embryogenesis and shoot development. Efficiency of callus proliferation and regeneration depended on the initial callus induction media and was optimal in the presence of 1 mg L(-1) 2,4-dichlorophenoxyacetic acid, and 0.05 mg L(-1) benzylaminopurine. Subsequent shoot and root regeneration from callus initiated under these conditions reached levels of 100% efficiency. High friability of the callus supported the development of cell suspension cultures with minimal cellular aggregates. Characterization of regenerated plants and cell cultures determined that they maintained not only the zinc tolerance and requirement of the whole plant but also the ability to accumulate zinc; with plants accumulating up to 50.0 micromoles zinc g(-1) FW, and cell suspension cultures 30.9 micromoles zinc g(-1) DW. Together this work will provide the experimental basis for furthering our knowledge of A. halleri as a model heavy metal hyperaccumulating plant.
Barwe, Stefan; Masa, Justus; Andronescu, Corina; Mei, Bastian; Schuhmann, Wolfgang; Ventosa, Edgar
2017-07-10
Engineering stable electrodes using highly active catalyst nanopowders for electrochemical water splitting remains a challenge. We report an innovative and general approach for attaining highly stable catalyst films with self-healing capability based on the in situ self-assembly of catalyst particles during electrolysis. The catalyst particles are added to the electrolyte forming a suspension that is pumped through the electrolyzer. Particles with negatively charged surfaces stick onto the anode, while particles with positively charged surfaces stick to the cathode. The self-assembled catalyst films have self-healing properties as long as sufficient catalyst particles are present in the electrolyte. The proof-of-concept was demonstrated in a non-zero gap alkaline electrolyzer using NiFe-LDH and Ni x B catalyst nanopowders for anode and cathode, respectively. Steady cell voltages were maintained for at least three weeks during continuous electrolysis at 50-100 mA cm -2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Correia, D M; Sencadas, V; Ribeiro, C; Martins, P M; Martins, P; Gama, F M; Botelho, G; Lanceros-Méndez, S
2016-08-15
Biodegradable poly(l-lactic acid) (PLLA) and PLLA/CoFe2O4 magnetic microspheres with average sizes ranging between 0.16-3.9μm and 0.8-2.2μm, respectively, were obtained by an oil-in-water emulsion method using poly(vinyl alcohol) (PVA) solution as the emulsifier agent. The separation of the microspheres in different size ranges was then performed by centrifugation and the colloidal stability assessed at different pH values. Neat PLLA spheres are more stable in alkaline environments when compared to magnetic microspheres, both types being stable for pHs higher than 4, resulting in a colloidal suspension. On the other hand, in acidic environments the microspheres tend to form aggregates. The neat PLLA microspheres show a degree of crystallinity of 40% whereas the composite ones are nearly amorphous (17%). Finally, the biocompatibility was assessed by cell viability studies with MC3T3-E1 pre-osteoblast cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Crystal nucleation and metastable bcc phase in charged colloids: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Ji, Xinqiang; Sun, Zhiwei; Ouyang, Wenze; Xu, Shenghua
2018-05-01
The dynamic process of homogenous nucleation in charged colloids is investigated by brute-force molecular dynamics simulation. To check if the liquid-solid transition will pass through metastable bcc, simulations are performed at the state points that definitely lie in the phase region of thermodynamically stable fcc. The simulation results confirm that, in all of these cases, the preordered precursors, acting as the seeds of nucleation, always have predominant bcc symmetry consistent with Ostwald's step rule and the Alexander-McTague mechanism. However, the polymorph selection is not straightforward because the crystal structures formed are not often determined by the symmetry of intermediate precursors but have different characters under different state points. The region of the state point where bcc crystal structures of large enough size are formed during crystallization is narrow, which gives a reasonable explanation as to why the metastable bcc phase in charged colloidal suspensions is rarely detected in macroscopic experiments.
Approach to magnetic neutron capture therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, Anatoly A.; Podoynitsyn, Sergey N.; Filippov, Victor I.
2005-11-01
Purpose: The method of magnetic neutron capture therapy can be described as a combination of two methods: magnetic localization of drugs using magnetically targeted carriers and neutron capture therapy itself. Methods and Materials: In this work, we produced and tested two types of particles for such therapy. Composite ultradispersed ferro-carbon (Fe-C) and iron-boron (Fe-B) particles were formed from vapors of respective materials. Results: Two-component ultradispersed particles, containing Fe and C, were tested as magnetic adsorbent of L-boronophenylalanine and borax and were shown that borax sorption could be effective for creation of high concentration of boron atoms in the area ofmore » tumor. Kinetics of boron release into the physiologic solution demonstrate that ultradispersed Fe-B (10%) could be applied for an effective magnetic neutron capture therapy. Conclusion: Both types of the particles have high magnetization and magnetic homogeneity, allow to form stable magnetic suspensions, and have low toxicity.« less
Incipient flocculation molding: A new ceramic-forming technique
NASA Astrophysics Data System (ADS)
Arrasmith, Steven Reade
Incipient Flocculation Molding (IFM) was conceived as a new near-net-shape forming technique for ceramic components. It was hypothesized that the development of a temperature-dependent deflocculant would result in a forming technique that is flexible, efficient, and capable of producing a superior microstructure with improved mechanical properties from highly reactive, submicron ceramic powders. IFM utilizes a concentrated, nonaqueous, sterically stabilized ceramic powder and/or colloidal suspension which is injected into a non-porous mold. The suspension is then flocculated by destabilizing the suspension by lowering the temperature. Flocculation is both rapid and reversible. Cooling to -20°C produces a green body with sufficient strength for removal from the mold. The solvent is removed from the green body by evaporation. The dried green body is subsequently sintered to form a dense ceramic monolith. This is the first ceramic forming method based upon the manipulation of a sterically-stabilized suspension. To demonstrate IFM, the process of grafting polyethylene glycol (PEG), with molecular weights from 600 to 8000, to alumina powders was investigated. The maximum grafted amounts were achieved by the technique of dispersing the alumina powders in molten polymer at 195°C. The ungrafted PEG was then removed by repeated centrifuging and redispersion in fresh distilled water. The rheological behavior of suspensions of the PEG-grafted powders in water, 2-propanol and 2-butanol were characterized. All of the aqueous suspensions were shear thinning. The PEG 4600-grafted alumina powder aqueous suspensions were the most fluid. Sample rods and bars were molded from 52 vol% PEG-grafted alumina suspensions in 2-butanol. The best results were obtained with a preheated aluminum mold lubricated with a fluorinated oil mold-release. The samples were dried, sintered, and their microstructure and density were compared with sintered samples dry pressed from the same alumina powder. Densities and microstructures were quite similar to those obtained by dry pressing and sintering these powders. Dried green samples with densities of ca. 57% of theoretical sintered to >96% of theoretical density. This research has demonstrated IFM as a viable ceramic forming process which has potential to be developed into an industrial process. Further research is needed to determine preferred molding parameters, other possible polymer-solvent systems, and investigate the use of other ceramic powders. The concepts developed for IFM may have potential applications in other ceramic forming processes, such as extrusion and rapid prototyping.
Bladh, Nina; Blychert, Eva; Johansson, Karin; Backlund, Anna; Lundin, Christina; Niazi, Mohammad; Pettersson, Gunilla; Fjellman, Mia
2007-04-01
A packet (sachet) formulation of esomeprazole for suspension has been developed for use in patients who have difficulty swallowing. This article reports the in vitro characteristics of the new esomeprazole formulation, including stability in suspension and suitability for administration orally or via enteral tubes. It also describes the pharmacokinetic profile of the esomeprazole 40-mg packet compared with that of existing solid dosage forms (capsules and tablets) in a clinical bioequivalence study. The stability in suspension of the packet formulation was assessed after reconstitution at various strengths (2.5, 10, and 40 mg) and a different pH (3.4-5.0) in strength-appropriate volumes of water held at temperatures ranging from 5 degrees C to 37 degrees C for up to 60 minutes. Suitability for oral administration was examined in terms of reconstitution time and the actual dose delivered after simulated oral administration, as well as in terms of the actual dose delivered by enteral tubes ranging in diameter from 6 to 20 Fr. Chemical stability and suspension characteristics were also analyzed using alternative reconstitution vehicles (applesauce, apple juice, and orange juice). The comparative pharmacokinetics of the packet, capsule, and tablet formulations of esomeprazole were evaluated in a randomized, open-label, 3-way crossover study in healthy volunteers, who received single 40-mg doses of each formulation. Bioequivalence was assumed if the 90% CIs for the ratios of the geometric mean AUC and CmaX were between 0.80 and 1.25. Reversephase liquid chromatography with ultraviolet detection was used to assess the esomeprazole content and/or degradation products of esomeprazole in the tests for in-suspension stability, dose delivery, and acid resistance. Normal-phase liquid chromatography was used to assess the esomeprazole content of the plasma samples in the bioequivalence study. At the pH and temperature ranges investigated, the packet formulation was stable for up to 60 minutes after reconstitution. Chemical degradation was low (<0.1%) for all reconstitution vehicles investigated. Reconstitution time was 2 minutes with water and 9 to 10 minutes with apple or orange juice. Dose delivery was >/=98% after simulated oral administration and was generally >/=96% after administration via enteral tubes. Ninety-six healthy volunteers (56 women, 40 men; mean age, 24.9 years; mean weight, 68.9 kg) participated in the randomized, crossover, comparative pharmacokinetic study of the packet and capsule/tablet formulations. The estimated ratios of the geometric mean AUC and C(max) for the packet:capsule and packet: tablet formulations were 0.98 (90% CI, 0.93-1.03) and 0.99 (90% CI, 0.94-1.04), respectively. In these analyses, the packet (sachet) formulation of esomeprazole was chemically stable in suspension and when administered orally and via enteral tubes. The formulation had a short reconstitution time, remaining fully dispersed in water for at least 30 minutes, and was dispersed in applesauce, apple juice, or orange juice without compromising its stability or dispersion characteristics. The packet formulation met the regulatory definition for bioequivalence to the tablet and capsule formulations.
Son, Jino; Vavra, Janna; Li, Yusong; Seymour, Megan; Forbes, Valery
2015-04-01
The preparation of a stable nanoparticle stock suspension is the first step in nanotoxicological studies, but how different preparation methods influence the physicochemical properties of nanoparticles in a solution, even in Milli-Q water, is often under-appreciated. In this study, a systematic approach using a central composite design (CCD) was employed to investigate the effects of sonication time and suspension concentration on the physicochemical properties (i.e. hydrodynamic diameter, zeta potential and ion dissolution) of silver (Ag) and copper oxide (CuO) nanoparticles (NPs) and to identify optimal conditions for suspension preparation in Milli-Q water; defined as giving the smallest particle sizes, highest suspension stability and lowest ion dissolution. Indeed, all the physicochemical properties of AgNPs and CuONPs varied dramatically depending on how the stock suspensions were prepared and differed profoundly between nanoparticle types, indicating the importance of suspension preparation. Moreover, the physicochemical properties of AgNPs and CuONPs, at least in simple media (Milli-Q water), behaved in predictable ways as a function of sonication time and suspension concentration, confirming the validity of our models. Overall, the approach allows systematic assessment of the influence of various factors on key properties of nanoparticle suspensions, which will facilitate optimization of the preparation of nanoparticle stock suspensions and improve the reproducibility of nanotoxicological results. We recommend that further attention be given to details of stock suspension preparation before conducting nanotoxicological studies as these can have an important influence on the behavior and subsequent toxicity of nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Titania-graphene anode electrode paper
Liu, Jun; Choi, Daiwon; Bennett, Wendy D.; Graff, Gordon L.; Shin, Yongsoon
2015-05-26
A method for forming a nanocomposite material, the nanocomposite material formed thereby, and a battery made using the nanocomposite material. Metal oxide and graphene are placed in a solvent to form a suspension. The suspension is then applied to a current collector. The solvent is then evaporated to form a nanocomposite material. The nanocomposite material is then electrochemically cycled to form a nanocomposite material of at least one metal oxide in electrical communication with at least one graphene layer.
Titania-graphene anode electrode paper
Liu, Jun; Choi, Daiwon; Bennett, Wendy D; Graff, Gordon L; Shin, Yongsoon
2013-10-15
A method for forming a nanocomposite material, the nanocomposite material formed thereby, and a battery made using the nanocomposite material. Metal oxide and graphene are placed in a solvent to form a suspension. The suspension is then applied to a current collector. The solvent is then evaporated to form a nanocomposite material. The nanocomposite material is then electrochemically cycled to form a nanocomposite material of at least one metal oxide in electrical communication with at least one graphene layer.
Micro-Magnetic Suspension Motor Design for Miniature Optical Drive
NASA Astrophysics Data System (ADS)
Wang, Chien‑Chang; Yao, Yeong‑Der; Liu, Chien‑Sheng; Cheng, Lung‑Yu
2006-07-01
The main purpose of this study is to develop a low vibration micromotor applied in a miniature optical drive. To minimize the micromotor vibration, passive magnetic suspension technology has been used. The magnetic forces between the permanent magnets are estimated using the finite element method; the stable zone of operation of the motor developed was determined. A new micromotor with 62% of the radial vibration of the conventional micro-ball-bearing motor has been successfully developed. In addition, the new motor demonstrates lower friction torque loss.
McHenry, Adam R; Wempe, Michael F; Rice, Peter J
2017-01-01
This study evaluated the stability of the antimalarial and anti-rheumatic drug hydroxychloroquine sulfate in two commercially available suspension vehicles, Oral Mix and Oral Mix SF (Medisca Pharmaceutique Inc.). Hydroxychloroquine sulfate (25 mg/mL) suspension was prepared, packaged in amber 50-mL polyethylene terephthalate bottles and amber 3-mL syringes, and stored at room temperature or at 4°C. Samples were collected and analyzed over a 16-week period by high-performance liquid chromatography with ultraviolet detection at 340 nm. Approximately 99.8% of the hydroxychloroquine remained at the conclusion of the study, with no observable difference between room temperature and refrigerated storage. Hydroxychloroquine sulfate is stable for at least 90 days in Medisca Oral Mix or Oral Mix SF suspension media at 25°C and 4°C. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Fabrication of (K0.5Na0.5)(Nb0.7Ta0.3)O3 thick films by electrophoretic deposition
NASA Astrophysics Data System (ADS)
Vineetha, P.; Saravanan, K. Venkata
2018-05-01
(K0.5Na0.5)(Nb0.7Ta0.3)O3 (KNNT) thick films were prepared by electrophoretic deposition method on copper plates (substrates). Prior to the deposition, stable suspensions of KNNT powder were prepared in isopropyl alcohol medium with and without adding triethanolamine (TEA) as dispersant. The optical transmittance spectra with time for both the suspensions were recorded and compared. Suspensions with dispersant has shown low transmittance, which indicate that the particles were dispersed very well in isopropyl alcohol. Fourier Transform Infrared (FTIR) spectroscopy was used to analyze the adsorption of TEA on KNNT particles. Suspension with dispersant was used for electrophoretic deposition. The depositions were carried out at various d.c voltages, keeping the deposition duration and inter electrode distance constant. X-Ray diffraction was used for the phase analysis of the films.
Process for the production of superconductor containing filaments
Tuominen, Olli P.; Hoyt, Matthew B.; Mitchell, David F.; Morgan, Carol W.; Roberts, Clyde Gordon; Tyler, Robert A.
2002-01-01
Superconductor containing filaments having embedments of superconducting material surrounded by a rayon matrix are formed by preparing a liquid suspension which contains at least 10 weight percent superconducting material; forming a multicomponent filament having a core of the suspension and a viscose sheath which contains cellulose xanthate; and thereafter, regenerating cellulose from the cellulose xanthate to form a rayon matrix.
NASA Astrophysics Data System (ADS)
Mikac, L.; Jurkin, T.; Štefanić, G.; Ivanda, Mile; Gotić, Marijan
2017-09-01
The silver nanoparticles (AgNPs) were synthesized upon γ-irradiation of AgNO3 precursor suspensions in the presence of diethylaminoethyl-dextran hydrochloride (DEAE-dextran) cationic polymer as a stabilizer. The dose rate of γ-irradiation was 32 kGy h-1, and absorbed doses were 30 and 60 kGy. The γ-irradiation of the precursor suspension at acidic or neutral pH conditions produced predominantly the silver(I) chloride (AgCl) particles, because of the poor solubility of AgCl already present in the precursor suspension. The origin of AgCl in the precursor suspension was due to the presence of chloride ions in DEAE-dextran hydrochloride polymer. The addition of ammonia to the precursor suspension dissolved the AgCl precipitate, and the γ-irradiation of such colourless suspension at alkali pH produced a stable aqueous suspension with rather uniform spherical AgNPs of approximately 30 nm in size. The size of AgNPs was controlled by varying the AgNO3/DEAE-dextran concentration in the suspensions. The surface-enhanced Raman scattering (SERS) activities of synthesized AgNPs were examined using organic molecules rhodamine 6G, pyridine and 4-mercaptobenzoic acid (4-MBA). The NaBH4 was used as SERS aggregation agent. The SERS results have shown that in the presence of synthesized AgNPs, it was possible to detect low concentration of tested compounds.
21 CFR 522.163 - Betamethasone dipropionate and betamethasone sodium phosphate aqueous suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... sodium phosphate aqueous suspension. 522.163 Section 522.163 Food and Drugs FOOD AND DRUG ADMINISTRATION... INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.163 Betamethasone dipropionate and betamethasone sodium phosphate aqueous suspension. (a) Specifications. Betamethasone dipropionate and betamethasone sodium...
Design and analysis of a magnetorheological damper for train suspension
NASA Astrophysics Data System (ADS)
Lau, Yiu-Kee; Liao, Wei-Hsin
2004-07-01
The development of high-speed railway vehicles has been a great interest of many countries because high-speed trains have been proven as an efficient and economical transportation means while minimizing air pollution. However, the high speed of the train would cause significant car body vibrations. Thus effective vibration control of the car body is needed to improve the ride comfort and safety of the railway vehicle. Various kinds of railway vehicle suspensions such as passive, active, and semi-active systems could be used to cushion passengers from vibrations. Among them, semi-active suspensions are believed to achieve high performance while maintaining system stable and fail-safe. In this paper, it is aimed to design a magnetorheological (MR) fluid damper, which is suitable for semi-active train suspension system in order to improve the ride quality. A double-ended MR damper is designed, fabricated, and tested. Then a model for the double-ended MR damper is integrated in the secondary suspension of a full-scale railway vehicle model. A semi-active on-off control strategy based on the absolute velocity measurement of the car body is adopted. The controlled performances are compared with other types of suspension systems. The results show the feasibility and effectiveness of the semi-active train suspension system with the developed MR dampers.
Evaluating Suspension Formulations of Theophylline Cocrystals With Artificial Sweeteners.
Aitipamula, Srinivasulu; Wong, Annie B H; Kanaujia, Parijat
2018-02-01
Pharmaceutical cocrystals have garnered significant interest as potential solids to address issues associated with formulation development of drug substances. However, studies concerning the understanding of formulation behavior of cocrystals are still at the nascent stage. We present results of our attempts to evaluate suspension formulations of cocrystals of an antiasthmatic drug, theophylline, with 2 artificial sweeteners. Stability, solubility, drug release, and taste of the suspension formulations were evaluated. Suspension that contained cocrystal with acesulfame showed higher drug release rate, while a cocrystal with saccharin showed a significant reduction in drug release rate. The cocrystal with saccharin was found stable in suspension for over 9 weeks at accelerated test condition; in contrast, the cocrystal with acesulfame was found unstable. Taste analysis using an electronic taste-sensing system revealed improved sweetness of the suspension formulations with cocrystals. Theophylline has a narrow therapeutic index with a short half-life which necessitates frequent dosing. This adversely impacts patient compliance and enhances risk of gastrointestinal and cardiovascular adverse effects. The greater thermodynamic stability, sweetness, and sustained drug release of the suspension formulation of theophylline-saccharin could offer an alternative solution to the short half-life of theophylline and make it a promising formulation for treating asthmatic pediatric and geriatric patients. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Suspension and optical properties of the crystalline lens in the eyes of basal vertebrates.
Kröger, Ronald H H; Gustafsson, Ola S E; Tuminaite, Inga
2014-06-01
We have investigated the apparatus suspending the crystalline lens in the eyes of basal vertebrates. Data are presented for Holocephali (Chondrichthyes) and the actinopterygians Polypteriformes, Polyodontidae (Acipenseriformes), Lepisosteiformes, Amiiformes, and one teleost species, the banded archerfish (Toxotes jaculatrix). We also studied the optical properties of the lens in Polypteriformes, Lepisosteiformes, and the archerfish. Together with previously published results, our findings show that there are three basic types of lens suspension in vertebrates. These are i) a rotationally symmetric suspension (Petromyzontida, lampreys; Ceratodontiformes, lungfishes; Tetrapoda), ii) a suspension with a dorso-ventral axis of symmetry and a ventral papilla (all Chondrichthyes and Acipenseriformes), and iii) an asymmetric suspension with a ventral muscle and a varying number of ligaments (all Actinopterygii except for Acipenseriformes). Large eyes with presumably high spatial resolution have evolved in all groups. Multifocal lenses creating well-focused color images are also present in all groups studied. Stable and exact positioning of the lens, in many cases in combination with accommodative changes in lens position or shape, is achieved by all three types of lens suspension. It is somewhat surprising that lens suspensions are strikingly similar in Chondrichthyes and Acipenseriformes (Actinopterygii), while the suspension apparatus in Polypteriformes, usually being regarded as an actinopterygian group more basal than Acipenseriformes, are considerably more teleostean-like. This study completes a series of investigations on lens suspensions in nontetrapod vertebrates, covering all major groups except for the rare and highly derived coelacanths. Copyright © 2013 Wiley Periodicals, Inc.
Youn, Sung Won; Jung, Keun-Hwa; Chu, Kon; Lee, Jong-Young; Lee, Soon-Tae; Bahn, Jae-jun; Park, Dong-Kyu; Yu, Jung-Suk; Kim, So-Yun; Kim, Manho; Lee, Sang Kun; Han, Moon-Hee; Roh, Jae-Kyu
2015-01-01
Stem cell therapy is currently being studied with a view to rescuing various neurological diseases. Such studies require not only the discovery of potent candidate cells but also the development of methods that allow optimal delivery of those candidates to the brain tissues. Given that the blood-brain barrier (BBB) precludes cells from entering the brain, the present study was designed to test whether hyperosmolar mannitol securely opens the BBB and enhances intra-arterial cell delivery. A noninjured normal canine model in which the BBB was presumed to be closed was used to evaluate the feasibility and safety of the tested protocol. Autologous adipose tissue-derived pericytes with platelet-derived growth factor receptor β positivity were utilized. Cells were administered 5 min after mannitol pretreatment using one of following techniques: (1) bolus injection of a concentrated suspension, (2) continuous infusion of a diluted suspension, or (3) bolus injection of a concentrated suspension that had been shaken by repeated syringe pumping. Animals administered a concentrated cell suspension without mannitol pretreatment served as a control group. Vital signs, blood parameters, neurologic status, and major artery patency were kept stable throughout the experiment and the 1-month posttreatment period. Although ischemic lesions were noted on magnetic resonance imaging in several mongrel dogs with concentrated cell suspension, the injection technique using repeated syringe shaking could avert this complication. The cells were detected in both ipsilateral and contralateral cortices and were more frequent at the ipsilateral and frontal locations, whereas very few cells were observed anywhere in the brain when mannitol was not preinjected. These data suggest that intra-arterial cell infusion with mannitol pretreatment is a feasible and safe therapeutic approach in stable brain diseases such as chronic stroke.
Stability of an extemporaneous oral liquid aprepitant formulation.
Dupuis, L Lee; Lingertat-Walsh, Karen; Walker, Scott E
2009-06-01
Aprepitant is currently recommended for the prevention of acute antineoplastic-induced nausea and vomiting in adults receiving highly emetogenic therapy. The lack of an oral liquid dosage form is one barrier to its use in children. The purpose of this study was to develop a stable oral liquid formulation of aprepitant using the marketed aprepitant capsules. Aprepitant 20-mg/mL oral liquid was prepared from 125-mg capsule contents in Orablend(R). Twelve test samples were prepared: six packaged in amber glass and six in polyethylene terephthalate (PET) containers, three of each stored at either 23 degrees C or 4 degrees C. The physical characteristics of the oral aprepitant liquid stored in amber glass bottles were evaluated at the time of compounding and on days 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, and 91. The aprepitant content of three test solutions of each container type and storage temperature was determined using a stability-indicating assay at 5, 9, 14, 29, 48, 62, 73, and 111 days after compounding. All samples stored in glass demonstrated suitable physical characteristics and those stored in either glass or PET retained more than 94.0% of the initial concentration. Based on the higher limit of the 95% confidence interval of the degradation rate, suspensions stored at 23 degrees C achieved 10% loss within 66 to 85 days, compared to greater than 100 days when stored at 4 degrees C. The extemporaneous aprepitant oral suspension formulation described is physically and chemically stable for at least 90 days when refrigerated. The bioavailability of this formulation is unknown.
Dynamic analysis of suspension cable based on vector form intrinsic finite element method
NASA Astrophysics Data System (ADS)
Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun
2017-10-01
A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.
Preservative-free triamcinolone acetonide suspension developed for intravitreal injection.
Bitter, Christoph; Suter, Katja; Figueiredo, Verena; Pruente, Christian; Hatz, Katja; Surber, Christian
2008-02-01
All commercially available triamcinolone acetonide (TACA) suspensions, used for intravitreal treatment, contain retinal toxic vehicles (e.g., benzyl alcohol, solubilizer). Our aim was to find a convenient and reproducible method to compound a completely preservative-free TACA suspension, adapted to the intraocular physiology, with consistent quality (i.e., proven sterility and stability, constant content and dose uniformity, defined particle size, and 1 year shelf life). We evaluated two published (Membrane-filter, Centrifugation) and a newly developed method (Direct Suspending) to compound TACA suspensions for intravitreal injection. Parameters as TACA content (HPLC), particle size (microscopy and laser spectrometry), sterility, and bacterial endotoxins were assessed. Stability testing (at room temperature and 40 degrees C) was performed: color and homogeneity (visually), particle size (microscopically), TACA content and dose uniformity (HPLC) were analyzed according to International Conference on Harmonisation guidelines. Contrary to the known methods, the direct suspending method is convenient, provides a TACA suspension, which fulfills all compendial requirements, and has a 2-year shelf life. We developed a simple, reproducible method to compound stable, completely preservative-free TACA suspensions with a reasonable shelf-life, which enables to study the effect of intravitreal TACA--not biased by varying doses and toxic compounds or their residues.
A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood
NASA Astrophysics Data System (ADS)
Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin
2016-02-01
Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j
21 CFR 520.903b - Febantel suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.903b Febantel suspension. (a... considerations. Febantel suspension may be used in combination with trichlorfon oral liquid in accordance with...
21 CFR 520.390c - Chloramphenicol palmitate oral suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Chloramphenicol palmitate oral suspension. 520... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390c Chloramphenicol palmitate oral suspension. (a) Specifications. Each milliliter contains chloramphenicol palmitate...
In Vitro Evaluation of Eslicarbazepine Delivery via Enteral Feeding Tubes.
Reindel, Kristin; Zhao, Fang; Hughes, Susan; Dave, Vivek S
2017-12-01
Purpose: The feasibility of preparing an eslicarbazepine acetate suspension using Aptiom tablets for administration via enteral feeding tubes was evaluated. Methods: Eslicarbazepine acetate suspension (40 mg/mL) was prepared using Aptiom tablets after optimizing the tablet crushing methods and the vehicle composition. A stability-indicating high-performance liquid chromatography (HPLC) method was developed to monitor the eslicarbazepine stability in the prepared suspension. Three enteric feeding tubes of various composition and dimensions were evaluated for the delivery of the suspensions. The suspension was evaluated for the physical and chemical stability for 48 hours. Results: The reproducibility and consistency of particle size reduction was found to be best with standard mortar/pestle. The viscosity analysis and physical stability studies showed that ORA-Plus:water (50:50 v/v) was optimal for suspending ability and flowability of suspension through the tubes. The developed HPLC method was found to be stability indicating and suitable for the assay of eslicarbazepine acetate in the prepared suspension. The eslicarbazepine concentrations in separately prepared suspensions were within acceptable range (±3%), indicating accuracy and reproducibility of the procedure. The eslicarbazepine concentrations in suspensions before and after delivery through the enteric feeding tubes were within acceptable range (±4%), indicating absence of any physical/chemical interactions of eslicarbazepine with the tubes and a successful delivery of eslicarbazepine dosage via enteric feeding tubes. The stability study results showed that eslicarbazepine concentration in the suspension remained unchanged when stored at room temperature for 48 hours. Conclusion: The study presents a convenient procedure for the preparation of a stable suspension of eslicarbazepine acetate (40 mg/mL) using Aptiom tablets, for administration via enteral feeding tubes.
Characterization of an extemporaneous liquid formulation of lisinopril.
Thompson, Karen C; Zhao, Zhongxi; Mazakas, Jessica M; Beasley, Christopher A; Reed, Robert A; Moser, Cheryl L
2003-01-01
The stability of lisinopril in an extemporaneously prepared suspension stored at or below 25 degrees C for 28 days under ambient light exposure was studied. A formulation of 1-mg/mL oral suspension was prepared from commercially available 20-mg lisinopril tablets, using Bicitra and Ora-Sweet SF as the compounding vehicles to make a final volume of 200 mL. Individual samples, stored in 8-oz amber polyethylene terephthalate bottles, were used for each test performed. All samples were stored at 25 degrees C. Appropriateness of the extemporaneous preparation method was performed by shaking three lots of each suspension for 30, 60, and 90 seconds. To test the robustness and reproducibility of the method, two chemists prepared the suspensions from the same three lots of lisinopril tablets. Chemical and physical stability were established by analyzing duplicate samples at time zero and after one, two, four, and six weeks. The solubility of lisinopril was tested from suspensions stored for four weeks. In-use stability was also examined over four weeks. Photochemical stability was examined by exposing three batches of the suspension to maximum light stress in accordance with the International Conference on Harmonization. Antimicrobial-effectiveness testing was also conducted with freshly prepared suspensions and suspensions stored for six weeks. The preparation method used was appropriate and effective. Lisinopril is fully dissolved in the suspension matrix. Satisfactory chemical, physical, and microbiological results were obtained after the suspensions were stored for six weeks at 25 degrees C and 35% relative humidity. Lisinopril suspensions extemporaneously prepared from tablets are stable for at least four weeks when stored at or below 25 degrees C under ambient light exposure.
Dynamics and cluster formation in charged and uncharged Ficoll70 solutions
NASA Astrophysics Data System (ADS)
Palit, Swomitra; Yethiraj, Anand
2017-08-01
We apply pulsed-field-gradient NMR (PFG NMR) technique to measure the translational diffusion for both uncharged and charged polysaccharide (Ficoll70) in water. Analysis of the data indicates that the NMR signal attenuation above a certain packing fraction can be adequately fitted with a bi-exponential function. The self-diffusion measurements also show that the Ficoll70, an often-used compact, spherical polysucrose molecule, is itself nonideal, exhibiting signs of both softness and attractive interactions in the form of a stable suspension consisting of monomers and clusters. Further, we can quantify the fraction of monomers and clusters. This work strengthens the picture of the existence of a bound water layer within and around a porous Ficoll70 particle.
Stability of gabapentin in extemporaneously compounded oral suspensions.
Friciu, Mihaela; Roullin, V Gaëlle; Leclair, Grégoire
2017-01-01
This study reports the stability of extemporaneously prepared gabapentin oral suspensions prepared at 100 mg/mL from bulk drug and capsules in either Oral Mix or Oral Mix SF suspending vehicles. Suspensions were packaged in amber plastic bottles and amber plastic syringes at 25°C / 60%RH for up to 90 days. Throughout the study period, the following tests were performed to evaluate the stability of the preparations: organoleptic inspection to detect homogeneity, color or odor changes; pH measurements; and gabapentin assay using a stability-indicating HPLC-UV method. As crystallization was observed at 5°C, storage at this temperature condition is not recommended. All preparations stored at 25°C / 60%RH remained stable for the whole study duration of 90 days.
Evolution of conducting states and the maximum dissipated power
NASA Astrophysics Data System (ADS)
Bezryadin, A.; Tinkham, M.
1998-03-01
Evolution of conducting states in adaptable systems below the percolation threshold is studied experimentally. The sample consists of a pair of metal electrodes immersed into a colloidal suspension of conducting graphite nanoparticles in an electrically insulating liquid (toluene, mineral oil). When this initially homogeneous system is driven far from equilibrium by biasing the electrodes with a high DC voltage, a breaking of translational symmetry occurs and the conductivity increases by many orders of magnitude. Two qualitatively different conducting states are observed. The first is a self-organized critical state characterized by a sequence of avalanches with a 1/f^α power spectrum. In the process of evolution this state may transform into the second, ordered stable state with higher conductivity. The transition into the stable state occurs only if the system reaches the point when the power dissipated in the suspension is the maximum allowed by the bias voltage and series resistor. The critical states decay within a few hours while the stable states, which are characterized by visible strings of particles connecting the electrodes, exist much longer.
Hyung, Hoon; Kim, Jae-Hong
2008-06-15
The effect of natural organic matter (NOM) characteristics and water quality parameters on NOM adsorption to multiwalled carbon nanotubes (MWNT) was investigated. Isotherm experiment results were fitted well with a modified Freundlich isotherm model that took into account the heterogeneous nature of NOM. The preferential adsorption of the higher molecular weight fraction of NOM was observed by size exclusion chromatographic analysis. Experiments performed with various NOM samples suggested that the degree of NOM adsorption varied greatly depending on the type of NOM and was proportional to the aromatic carbon content of NOM. The NOM adsorption to MWNT was also dependent on water quality parameters: adsorption increased as pH decreased and ionic strength increased. As a result of NOM adsorption to MWNT, a fraction of MWNT formed a stable suspension in water and the concentration of MWNT suspension depended on the amount of NOM adsorbed per unit mass of MWNT. The amount of MWNT suspended in water was also affected by ionic strength and pH. The findings in this study suggested that the fate and transport of MWNT in natural systems would be largely influenced by NOM characteristics and water quality parameters.
NASA Astrophysics Data System (ADS)
Zhang, Wenyan; Chen, Jiahua; Wang, Wei; Lu, GongXuan; Hao, Lingyun; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi
2017-03-01
Super-paramagnetic core-shell microspheres were synthesized by ultrasonic assisted routine under low ultrasonic irradiation powers. Compared with conventional routine, ultrasonic effect could not only improve the uniformity of the core-shell structure of Fe3O4@SiO2, but shorten the synthesis time in large scale. Owing to their hydrophilicity and high surface charge, the Fe3O4@SiO2 microspheres could be dispersed well in distilled water to form homogeneous colloidal suspension. The suspensions have favorable magneto-chromatic ability that they sensitively exhibit brilliant colorful ribbons by magnetic attraction. The colorful ribbons, which distributed along the magnetic lines, make morphology of the magnetic fields become "visible" to naked eyed. Those colorful ribbons originate from strong magnetic interaction between the microspheres and magnetic fields. Furthermore, the magneto-chromatic performance is reversible as the colorful ribbons vanished rapidly with the removing of magnetic fields. The silica layer effectively enhanced the acid resistance and surface-oxidation resistance of theFe3O4@SiO2 microspheres, so they could exhibit stable magnetic nature and robust magneto-chromatic property in acid environment.
Morgen, Michael; Bloom, Corey; Beyerinck, Ron; Bello, Akintunde; Song, Wei; Wilkinson, Karen; Steenwyk, Rick; Shamblin, Sheri
2012-02-01
To demonstrate drug/polymer nanoparticles can increase the rate and extent of oral absorption of a low-solubility, high-permeability drug. Amorphous drug/polymer nanoparticles containing celecoxib were prepared using ethyl cellulose and either sodium caseinate or bile salt. Nanoparticles were characterized using dynamic light scattering, transmission and scanning electron microscopy, and differential scanning calorimetry. Drug release and resuspension studies were performed using high-performance liquid chromatography. Pharmacokinetic studies were performed in dogs and humans. A physical model is presented describing the nanoparticle state of matter and release performance. Nanoparticles dosed orally in aqueous suspensions provided higher systemic exposure and faster attainment of peak plasma concentrations than commercial capsules, with median time to maximum drug concentration (Tmax) of 0.75 h in humans for nanoparticles vs. 3 h for commercial capsules. Nanoparticles released celecoxib rapidly and provided higher dissolved-drug concentrations than micronized crystalline drug. Nanoparticle suspensions are stable for several days and can be spray-dried to form dry powders that resuspend in water. Drug/polymer nanoparticles are well suited for providing rapid oral absorption and increased bioavailability of BCS Class II drugs.
Stability of Prednisone in Oral Mix Suspending Vehicle.
Friciu, Mihaela; Plourde, Kevin; Leclair, Grégoire; Danopoulos, Panagiota; Savji, Taslim
2015-01-01
The stability of prednisone (5 mg/mL) formulated as a suspension in Oral Mix vehicle was evaluated. Oral Mix is a novel oral, dye-free suspending vehicle developed by Medisca Pharmaceutique Inc. for preparation of extemporaneous dosage forms. This drug was chosen based on its high frequency of prescription among the pediatric population. Suspensions were prepared from both pure active and commercial tablets utilizing two different container closures: amber glass bottles and polypropylene syringes (PreciseDose Dispenser Medisca Pharmaceutique Inc.). Formulations were stored at 5°C or 25°C and organoleptic properties, pH, and concentration were evaluated at predetermined time points up to 90 days. Validated stability-indicating high-performance liquid chromatography methods were developed. Beyond-use date was evaluated by statistical analysis of the overall degradation trend. Prednisone was stable for at least 90 days at 25°C. No changes in organoleptic properties or pH were observed for either of the formulations, and the global stability was roughly equivalent and sometimes superior to the stability of the same drugs in other previously used vehicles. Thus, Oral Mix was found to be a suitable dye-free vehicle for extemporaneous formulations.
NASA Astrophysics Data System (ADS)
Dong, Feng; Valsami-Jones, Eugenia; Kreft, Jan-Ulrich
2016-09-01
It is unclear whether the antimicrobial activities of silver nanoparticles (AgNPs) are exclusively mediated by the release of silver ions (Ag+) or, instead, are due to combined nanoparticle and silver ion effects. Therefore, it is essential to quantify dissolved Ag in nanosilver suspensions for investigations of nanoparticle toxicity. We developed a method to measure dissolved Ag in Ag+/AgNPs mixtures by combining aggregation of AgNPs with centrifugation. We also describe the reproducible synthesis of stable, uncoated AgNPs. Uncoated AgNPs were quickly aggregated by 2 mM Ca2+, forming large clusters that could be sedimented in a low-speed centrifuge. At 20,100g, the sedimentation time of AgNPs was markedly reduced to 30 min due to Ca2+-mediated aggregation, confirmed by the measurements of Ag content in supernatants with graphite furnace atomic absorption spectrometry. No AgNPs were detected in the supernatant by UV-Vis absorption spectra after centrifuging the aggregates. Our approach provides a convenient and inexpensive way to separate dissolved Ag from AgNPs, avoiding long ultracentrifugation times or Ag+ adsorption to ultrafiltration membranes.
Stability and compatibility of tegaserod from crushed tablets mixed in beverages and foods.
Carrier, Marie-Noëlle; Garinot, Olivier; Vitzling, Christian
2004-06-01
The stability and compatibility of tegaserod from crushed tablets in selected beverages and foods were studied. Suspensions of tegaserod maleate tablets containing 6 mg of the drug base were prepared by crushing the tablets and mixing the powder with tap water, apple juice, orange juice, milk, applesauce, yogurt, and chocolate-hazelnut spread. Drug stability, drug comparability, suspension homogeneity, and completeness of a dose were measured by high-performance liquid chromatography at intervals up to three days at 20-25 degrees C and 5 degrees C. In vitro dissolution profiles were determined for crushed tegaserod tablets in water, apple juice, orange juice, and applesauce. Tegaserod from crushed tablets was stable in and compatible with water, apple juice, orange juice, and applesauce, and the suspensions were homogeneous. The complete dose was delivered with these media. The dissolution profiles of crushed tegaserod tablets in water and in apple juice were comparable to those of intact tablets; the dissolution profiles in orange juice and applesauce were not comparable with those of intact tablets. The results with milk, yogurt, and chocolate-hazelnut spread as vehicles were inconclusive. The suspension in milk was not homogeneous, and the dose was incomplete. Tegaserod from crushed tablets was stable in and compatible with water, apple juice, orange juice, and applesauce, but the dissolution profile in orange juice or applesauce was not acceptable. Apple juice may be the preferred vehicle because it masks the drug's taste.
Santoveña, A; Sánchez-Negrín, E; Charola, L; Llabrés, M; Fariña, J B
2014-12-30
This paper describes a rational method of characterizing the biopharmaceutical stability of two oral suspensions of ursodeoxycholic acid (UDCA) used in pediatrics. Because there is no commercial presentation of UDCA that can administer appropriate doses for infants and children, an active pharmaceutical ingredient (API) formulation is required. Due to its very low solubility and low dose in the formula (1.5%), two different suspensions with minimal use of excipients were studied, avoiding the use of complex additives and those not recommended by the European Medicines Agency (EMA). Adherence to Standard Operating Procedure (SOP) allows the preparation of formulations with appropriately sized and stable particles, and suitable rheological behavior in withdrawing the dose after stirring. Dose uniformity, expressed as mass and content variability, was determined using the criteria of the European and the United States Pharmacopoeia. Additionally, dose content variation of every mass determined was studied. A rational method was developed for determining the dose uniformity of UDCA in suspensions, whether freshly prepared or after storage under different conditions for 30 and 60 days. This method permits detection of differences between doses taken at different heights in the vessel at various times and storage conditions. UDCA was stable under all conditions studied, requiring the presence of glycerol in the formulation to obtain the declared API value after stirring. Storage of UDCA suspensions in a refrigerator increased variability between doses. Copyright © 2014 Elsevier B.V. All rights reserved.
21 CFR 522.88 - Sterile amoxicillin trihydrate for suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.88 Sterile amoxicillin trihydrate for suspension. (a)(1) Specifications. Each vial... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sterile amoxicillin trihydrate for suspension. 522...
21 CFR 522.88 - Sterile amoxicillin trihydrate for suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.88 Sterile amoxicillin trihydrate for suspension. (a)(1) Specifications. Each vial... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sterile amoxicillin trihydrate for suspension. 522...
21 CFR 522.88 - Sterile amoxicillin trihydrate for suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.88 Sterile amoxicillin trihydrate for suspension. (a)(1) Specifications. Each vial... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sterile amoxicillin trihydrate for suspension. 522...
21 CFR 522.88 - Sterile amoxicillin trihydrate for suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.88 Sterile amoxicillin trihydrate for suspension. (a)(1) Specifications. Each vial... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sterile amoxicillin trihydrate for suspension. 522...
Sae Yoon, Attawadee; Sawatdee, Somchai; Woradechakul, Chuthamas; Sae Chee, Kridsada; Atipairin, Apichart
2015-01-01
Sildenafil is a potent and selective phosphodiesterase-5 inhibitor that is effectively used in the treatment of pulmonary arterial hypertension. In several countries, hospital pharmacists prepare the drug in an extemporaneous liquid preparation as there are no liquid formulations available for pediatric and adult uses. The purpose of this study was to evaluate the stability of an extemporaneous sildenafil citrate oral suspension for 90 days, according to the ASEAN guideline on stability studies of drug products. The results showed that the preparation was a white suspension with a sweet taste. It was a viscous and weakly acidic mixture with pseudoplastic behavior. The drug content was in the range between 99.23% and 102.23%, and the microbial examination met the general requirements throughout the study period. Therefore, the extemporaneously compounded sildenafil suspensions were physically, chemically, and microbiologically stable for at least 90 days when stored at 30° and 40°C. Furthermore, the in-use stability study showed that the preparations had acceptable attributes at least 14 days after the first-time use. This might provide an alternative option when the commercial suspension is unavailable. PMID:26839846
Sae Yoon, Attawadee; Sawatdee, Somchai; Woradechakul, Chuthamas; Sae Chee, Kridsada; Atipairin, Apichart
2015-01-01
Sildenafil is a potent and selective phosphodiesterase-5 inhibitor that is effectively used in the treatment of pulmonary arterial hypertension. In several countries, hospital pharmacists prepare the drug in an extemporaneous liquid preparation as there are no liquid formulations available for pediatric and adult uses. The purpose of this study was to evaluate the stability of an extemporaneous sildenafil citrate oral suspension for 90 days, according to the ASEAN guideline on stability studies of drug products. The results showed that the preparation was a white suspension with a sweet taste. It was a viscous and weakly acidic mixture with pseudoplastic behavior. The drug content was in the range between 99.23% and 102.23%, and the microbial examination met the general requirements throughout the study period. Therefore, the extemporaneously compounded sildenafil suspensions were physically, chemically, and microbiologically stable for at least 90 days when stored at 30° and 40°C. Furthermore, the in-use stability study showed that the preparations had acceptable attributes at least 14 days after the first-time use. This might provide an alternative option when the commercial suspension is unavailable.
Basics of Sterile Compounding: Ophthalmic Preparations, Part 2: Suspensions and Ointments.
Allen, Loyd V
2016-01-01
Ophthalmic preparations are used to treat allergies, bacterial and viral infections, glaucoma, and numerous other eye conditions. When the eye's natural defensive mechanisms are compromised or overcome, an ophthalmic preparation, in a solution, suspension, or ointment form, may be indicated, with solutions being the most common form used to deliver a drug to the eye. This article discusses ophthalmic suspensions and ointments and represents part 2 of a 2-part article, the first of which discussed ophthalmic solutions. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Principles of an enhanced MBR-process with mechanical cleaning.
Rosenberger, S; Helmus, F P; Krause, S; Bareth, A; Meyer-Blumenroth, U
2011-01-01
Up to date, different physical and chemical cleaning protocols are necessary to limit membrane fouling in membrane bioreactors. This paper deals with a mechanical cleaning process, which aims at the avoidance of hypochlorite and other critical chemicals in MBR with submerged flat sheet modules. The process basically consists of the addition of plastic particles into the loop circulation within submerged membrane modules. Investigations of two pilot plants are presented: Pilot plant 1 is equipped with a 10 m(2) membrane module and operated with a translucent model suspension; pilot plant 2 is equipped with four 50 m(2) membrane modules and operated with pretreated sewage. Results of pilot plant 1 show that the establishment of a fluidised bed with regular particle distribution is possible for a variety of particles. Particles with maximum densities of 1.05 g/cm(3) and between 3 and 5 mm diameter form a stable fluidised bed almost regardless of activated sludge concentration, viscosity and reactor geometry. Particles with densities between 1.05 g/cm(3) and 1.2 g/cm(3) form a stable fluidised bed, if the velocity at the reactor bottom is sufficiently high. Activities within pilot plant 2 focused on plant optimisation and the development of an adequate particle retention system.
NASA Astrophysics Data System (ADS)
Metcalfe, Craig; Kuhn, Joel; Kesler, Olivera
2013-12-01
Composite Ni-Y0.15Zr0.85O1.925 anodes were fabricated by axial-injection suspension plasma spraying in open atmosphere conditions. The composition of the anode is controllable by adjustment of the plasma gas composition, stand-off distance, and suspension feed rate. The total porosity is controllable through the addition of carbon black to the suspension as a sacrificial pore-forming material as well as by adjustment of the suspension feed rate. The size of the NiO particles in suspension affects both the composition and total porosity, with larger NiO particles leading to increased Ni content and porosity in the deposited coatings. The surface roughness increases with a decrease of the in-flight droplet momentum, which results from both smaller NiO particles in suspension and the addition of low density pore-forming materials. A solid oxide fuel cell was fabricated with both electrodes and electrolyte fabricated by axial-injection plasma spraying. Peak power densities of 0.718 W cm-2 and 1.13 W cm-2 at 750 °C and 850 °C, respectively, were achieved.
Richardson, J Craig; Dettmar, Peter W; Hampson, Frank C; Melia, Colin D
2005-01-01
Sodium alginate suspensions in a range of water miscible vehicles were investigated as novel bioadhesive liquids for targeting the oesophageal mucosa. Such a dosage form might be utilised to coat the oesophageal surface and provide a protective barrier against gastric reflux, or to deliver therapeutic agents site-specifically. Alginate suspensions swelled and formed an adherent viscous layer on contact with the mucosa. The swelling kinetics of alginate particles on the oesophageal surface was examined with respect to vehicle composition and related to the extent, duration and location of bioadhesion within the oesophagus. Mucosal retention was evaluated in two in vitro models utilising tissue immersion and a peristaltic tube. By varying the vehicle composition it was possible to modulate the rate of swelling of alginate particles on the mucosa and the mucosal retention of suspensions. Suspensions containing predominantly glycerol exhibited superior retention and were preferentially retained within the lower oesophagus. The propensity of these suspensions to rapidly swell on the mucosa and establish adhesive/cohesive bonds may explain their enhanced retention. The potential to control, through vehicle composition, the extent, duration and location of oesophageal retention could provide a useful tool for site targeting of viscous polymers to the oesophagus.
NASA Astrophysics Data System (ADS)
Singh, Raman Preet; Jain, Sanyog; Ramarao, Poduri
2013-10-01
Nanoparticles (NPs) are thermodynamically unstable system and tend to aggregate to reduce free energy. The aggregation property of NPs results in inhomogeneous exposure of cells to NPs resulting in variable cellular responses. Several types of surfactants are used to stabilize NP dispersions and obtain homogenous dispersions. However, the effects of these surfactants, per se, on cellular responses are not completely known. The present study investigated the application of Pluronic F68 (PF68) for obtaining stable dispersion of NPs using carbon nanotubes as model NPs. PF68-stabilized NP suspensions are stable for long durations and do not show signs of aggregation or settling during storage or after autoclaving. The polyethylene oxide blocks in PF68 provide steric hindrance between adjacent NPs leading to stable NP dispersions. Further, PF68 is biocompatible in nature and does not affect integrity of mitochondria, lysosomes, DNA, and nuclei. Also, PF68 neither induce free radical or cytokine production nor does it interfere with cellular uptake mechanisms. The results of the present study suggest that PF68-assisted dispersion of NPs produced suspensions, which are stable after autoclaving. Further, PF68 does not interfere with normal physiological functions suggesting its application in nanomedicine and nanotoxicity evaluation.
Baba, Koichi; Pudavar, Haridas E.; Roy, Indrajit; Ohulchanskyy, Tymish Y.; Chen, Yihui; Pandey, Ravindra; Prasad, Paras N.
2008-01-01
A carrier free method for delivery of a hydrophobic drug in its pure form, using nanocrystals (nano sized crystals) is proposed. To demonstrate this technique, nanocrystals of a hydrophobic photosensitizing anticancer drug 2-devinyl-2-(1-hexyloxyethyl)pyropheophorbide (HPPH), have been synthesized using re-precipitation method. The resulting drug nanocrystals were monodispersed and stable in aqueous dispersion, without the necessity of an additional stabilizer (surfactant). As shown by confocal microscopy, these pure drug nanocrystals were taken-up by the cancer cells with high avidity. Though the fluorescence and photodynamic activity of the drug were substantially quenched in the form of nanocrystals in aqueous suspension, both these characteristics were recovered under in vitro and in vivo conditions. This recovery of drug activity and fluorescence is possibly due to the interaction of nanocrystals with serum albumin, resulting in conversion of the drug nanocrystals into the molecular form. This was confirmed by demonstrating similar recovery in presence of Fetal Bovine Serum (FBS) or Bovine Serum Albumin (BSA). Under similar treatment conditions, the HPPH in nanocrystal form or in 1% Tween 80/water formulation showed comparable in vitro and in vivo efficacy. PMID:17266331
Han, J; Beeton, A; Long, P F; Wong, I; Tuleu, C
2006-04-01
An extemporaneous suspension of tacrolimus for paediatric use has recently been developed but poor bioavailability and erratic plasma concentrations were observed during clinical use. It was not clear whether this was due to changes in the physical properties of the suspension during storage. The aim of this work was to investigate the physical and microbiological stability over the recommended 8-week shelf-life of this extemporaneous tacrolimus suspension. Suspensions (0.5 mg/mL) were custom made by a special manufacturer under Good Manufacturing Practice conditions. The procedure involved mixing tacrolimus capsule contents into Ora Plus and Simple Syrup (1 : 1) using a mortar and pestle followed by an homogenization step. The particle sizes of the suspensions were measured using a MasterSizer. A light microscope equipped with polarizers was used to visualize any particle size changes or crystal growth. Viable bacterial and fungal contamination was assessed using standard colony count techniques on solid media. The suspensions were kept at 22-26 degrees C and evaluated weekly. The volume mean diameter d((4,3)) from laser diffraction did not change significantly. Light microscopy did not reveal any significant change in particle size or crystal growth. Contamination by viable and culturable micro-organisms could not be detected. The suspension was physically (particle size) and microbiologically stable during the 8-week study period suggesting other factors including poor dosing could be responsible for the pharmacokinetic variation observed during clinical use which warrants further investigation.
NASA Astrophysics Data System (ADS)
Yao, Jun; Zhang, Jinqiu; Zhao, Mingmei; Li, Xin
2018-07-01
This study investigated the stability of vibration in a nonlinear suspension system with slow-varying sprung mass under dual-excitation. A mathematical model of the system was first established and then solved using the multi-scale method. Finally, the amplitude-frequency curve of vehicle vibration, the solution's stable region and time-domain curve in Hopf bifurcation were derived. The obtained results revealed that an increase in the lower excitation would reduce the system's stability while an increase in the upper excitation can make the system more stable. The slow-varying sprung mass will change the system's damping from negative to positive, leading to the appearance of limit cycle and Hopf bifurcation. As a result, the vehicle's vibration state is forced to change. The stability of this system is extremely fragile under the effect of dynamic Hopf bifurcation as well as static bifurcation.
Chemistry and catalysis at the surface of nanomaterials
NASA Astrophysics Data System (ADS)
White, Brian Edward
This thesis will delve into three main areas of nanomaterials research: (I) Designing, building, and utilizing a chemical vapor deposition (CVD) system for the growth of CNTs; (II) Aqueous suspensions of carbon nanotubes (CNT) solubilized by various surfactants, and the oxidative chemistry that can occur at CNT surfaces; (III) Catalytic CO oxidation over supported Cu2O nanoparticle systems. An introduction to nanomaterials in general, with a particular emphasis on carbon nanotubes and nanoparticles will be given in Chapter one. Chapter two provides a summary of common techniques used to grow carbon nanotubes, and introduces a new method we have developed. This method is based on previous chemical vapor deposition techniques, but uses liquids, specifically ethanol, as the carbon source. Using ethanol has several advantages, including ease of use and safety, as well as chemical benefits. Our new process affords long, aligned, single-walled nanotubes, with a relatively narrow diameter distribution. This method can also be used to grow CNTs across slits, which can then be studied spectroscopically. In Chapter three CNT-surfactant aqueous suspensions will be discussed in depth, including a new robust polymer surfactant. Poly(maleic acid/octyl vinyl ether) (PMAOVE) is stable over a large range of temperatures and pH values, and is well suited for the study of the oxidative chemistry that can occur on SWNT surfaces. Our aqueous suspensions were found to be quite stable by zeta potential studies and their emissive properties exhibited a pH dependence, quenching at higher concentrations of H+. We attribute this dependence to chemisorbed oxygen and its protonation at lower pH values. By heating the suspensions of SWNTs, O2 can be driven off, thus eliminating the dependence on pH. We also reproducibly add oxygen back into the system in the form of 1DeltaO2 , obtained from an endoperoxide. This method allows us to calculate the number of oxygen molecules needed for fluorescence quenching and absorption bleaching. With the aid of theoretical calculations, we propose a structure for the oxygen-nanotube species, as well as its protonated form. The final two chapters describe our development of a Cu2O nanoparticle based catalyst that can efficiently oxidize CO to CO2. Chapter four discusses the characterization of our catalytic system by TEM, XRD, TGA, BET, and elemental analysis, and the theoretical calculations that were carried out to verify our experimental findings in support of the redox mechanism of the reaction. The biggest drawback of this catalyst was the short lifetime, which was approximately 12 hours. The addition of CeO2 nanoparticles was used to increase lifetime, and this methodology is demonstrated in Chapter five. Efficient catalytic oxidation of CO was observed for over 200 hours, as well as the preferential oxidation of CO in a hydrogen environment.
USDA-ARS?s Scientific Manuscript database
Bioavailability of phosphorus (P) in aquatic macrophytes and algae on lake eutrophication was studied by evaluation their P forms and quantities in their water suspensions and impact by alkaline phosphatase hydrolysis. using solution 31P-nuclear magnetic resonance (NMR). The laboratory suspension an...
21 CFR 520.300a - Cambendazole suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Cambendazole suspension. 520.300a Section 520.300a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300a Cambendazole suspension...
21 CFR 520.905a - Fenbendazole suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Fenbendazole suspension. 520.905a Section 520.905a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.905a Fenbendazole suspension...
21 CFR 520.300a - Cambendazole suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Cambendazole suspension. 520.300a Section 520.300a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300a Cambendazole suspension...
21 CFR 520.300a - Cambendazole suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Cambendazole suspension. 520.300a Section 520.300a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300a Cambendazole suspension...
21 CFR 520.300a - Cambendazole suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cambendazole suspension. 520.300a Section 520.300a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300a Cambendazole suspension...
Both Suspension and Alternatives Work, Depending on One's Aim
ERIC Educational Resources Information Center
Bear, George G.
2012-01-01
In this commentary on the special series, I argue that whereas a zero-tolerance approach to school discipline is "something stupid" (Kauffman & Brigham, 2000) the use of suspension might not be. Despite its limitations, suspension and other forms of punishment serve as effective deterrents of behavior problems for most children, especially when…
21 CFR 522.1696a - Penicillin G benzathine and penicillin G procaine suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Penicillin G benzathine and penicillin G procaine... FORM NEW ANIMAL DRUGS § 522.1696a Penicillin G benzathine and penicillin G procaine suspension. (a) Specifications. Each milliliter of aqueous suspension contains penicillin G benzathine and penicillin G procaine...
21 CFR 522.1696a - Penicillin G benzathine and penicillin G procaine suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Penicillin G benzathine and penicillin G procaine... FORM NEW ANIMAL DRUGS § 522.1696a Penicillin G benzathine and penicillin G procaine suspension. (a) Specifications. Each milliliter of aqueous suspension contains penicillin G benzathine and penicillin G procaine...
21 CFR 522.1696a - Penicillin G benzathine and penicillin G procaine suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin G benzathine and penicillin G procaine... FORM NEW ANIMAL DRUGS § 522.1696a Penicillin G benzathine and penicillin G procaine suspension. (a) Specifications. Each milliliter of aqueous suspension contains penicillin G benzathine and penicillin G procaine...
21 CFR 522.1696a - Penicillin G benzathine and penicillin G procaine suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Penicillin G benzathine and penicillin G procaine... FORM NEW ANIMAL DRUGS § 522.1696a Penicillin G benzathine and penicillin G procaine suspension. (a) Specifications. Each milliliter of aqueous suspension contains penicillin G benzathine and penicillin G procaine...
21 CFR 522.1696a - Penicillin G benzathine and penicillin G procaine suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Penicillin G benzathine and penicillin G procaine... FORM NEW ANIMAL DRUGS § 522.1696a Penicillin G benzathine and penicillin G procaine suspension. (a) Specifications. Each milliliter of aqueous suspension contains penicillin G benzathine and penicillin G procaine...
Process for sequestering carbon dioxide and sulfur dioxide
Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA
2009-10-20
A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.
21 CFR 520.1182 - Iron dextran suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... dose dispenser. (2) Indications for use. For the prevention of iron deficiency anemia in baby pigs. (3... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Iron dextran suspension. 520.1182 Section 520.1182... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1182 Iron dextran suspension...
21 CFR 520.1182 - Iron dextran suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... dose dispenser. (2) Indications for use. For the prevention of iron deficiency anemia in baby pigs. (3... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Iron dextran suspension. 520.1182 Section 520.1182... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1182 Iron dextran suspension...
21 CFR 520.1182 - Iron dextran suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... dose dispenser. (2) Indications for use. For the prevention of iron deficiency anemia in baby pigs. (3... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Iron dextran suspension. 520.1182 Section 520.1182... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1182 Iron dextran suspension...
21 CFR 520.1182 - Iron dextran suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... dose dispenser. (2) Indications for use. For the prevention of iron deficiency anemia in baby pigs. (3... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron dextran suspension. 520.1182 Section 520.1182... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1182 Iron dextran suspension...
21 CFR 520.1182 - Iron dextran suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... dose dispenser. (2) Indications for use. For the prevention of iron deficiency anemia in baby pigs. (3... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Iron dextran suspension. 520.1182 Section 520.1182... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1182 Iron dextran suspension...
Method for the removal of ultrafine particulates from an aqueous suspension
Chaiko, David J.; Kopasz, John P.; Ellison, Adam J. G.
2000-01-01
A method of separating ultra-fine particulates from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel containing the particulates, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.
Method for the Removal of Ultrafine Particulates from an Aqueous Suspension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaiko, David J.; Kopasz, John P.; Ellison, Adam J.G.
1999-03-05
A method of separating ultra-fine particulate from an aqueous suspension such as a process stream or a waste stream. The method involves the addition of alkali silicate and an organic gelling agent to a volume of liquid, from the respective process or waste stream, to form a gel. The gel then undergoes syneresis to remove water and soluble salts from the gel-containing the particulate, thus, forming a silica monolith. The silica monolith is then sintered to form a hard, nonporous waste form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Debasish; Basu, Rajendra N., E-mail: rnbasu@cgcri.res.in
2013-09-01
Graphical abstract: - Highlights: • Stable suspension of yttria stabilized zirconia (YSZ) obtained in isopropanol medium. • Suspension chemistry and process parameters for electrophoretic deposition optimized. • Deposited film quality changed with iodine and water (dispersants) concentration. • Dense YSZ film (∼5 μm) fabricated onto non-conducting porous NiO-YSZ anode substrate. - Abstract: Suspensions of 8 mol% yttria stabilized zirconia (YSZ) particulates in isopropanol medium are prepared using acetylacetone, iodine and water as dispersants. The effect of dispersants concentration on suspension stability, particle size distribution, electrical conductivity and pH of the suspensions are studied in detail to optimize the suspension chemistry.more » Electrophoretic deposition (EPD) has been conducted to produce thin and dense YSZ electrolyte films. Deposition kinetics have been studied in depth and good quality films on conducting substrate are obtained at an applied voltage of 15 V for 3 min. YSZ films are also fabricated on non-conducting NiO-YSZ anode substrate using a steel plate on the reverse side of the substrate. Upon co-firing at 1400 °C for 6 h a dense YSZ film of thickness ∼5 μm is obtained. Such a half cell (anode + electrolyte) can be used to fabricate a solid oxide fuel cell on applying a suitable cathode layer.« less
Dickie, Ray A.; Mangels, John A.
1984-01-01
The method concerns forming a relatively stable slip of silicon metal particles and yttrium containing particles. In one embodiment, a casting slip of silicon metal particles is formed in water. Particles of a yttrium containing sintering aid are added to the casting slip. The yttrium containing sintering aid is a compound which has at least some solubility in water to form Y.sup.+3 ions which have a high potential for totally flocculating the silicon metal particles into a semiporous solid. A small amount of a fluoride salt is added to the casting slip which contains the yttrium containing sintering aid. The fluoride salt is one which will produce fluoride anions when dissolved in water. The small amount of the fluoride anions produced are effective to suppress the flocculation of the silicon metal particles by the Y.sup.+3 ions so that all particles remain in suspension in the casting slip and the casting slip has both an increased shelf life and can be used to cast articles having a relatively thick cross-section. The pH of the casting slip is maintained in a range from 7.5 to 9. Preferably, the fluoride salt used is one which is based on a monovalent cation such as sodium or ammonia. The steps of adding the yttrium containing sintering aid and the fluoride salt may be interchanged if desired, and the salt may be added to a solution containing the sintering aid prior to addition of the silicon metal particles.
Isotropic-nematic phase transition in aqueous sepiolite suspensions.
Woolston, Phillip; van Duijneveldt, Jeroen S
2015-01-01
Aqueous suspensions of sepiolite clay rods in water tend to form gels on increase of concentration. Here it is shown how addition of a small amount (0.1% of the clay mass) of a common stabiliser for clay suspensions, sodium polyacrylate, can allow the observation of an isotropic-nematic liquid crystal phase transition. This transition was found to move to higher clay concentrations upon adding NaCl, with samples containing 10(-3) M salt or above only displaying a gel phase. Even samples that initially formed liquid crystals had a tendency to form gels after several weeks, possibly due to Mg(2+) ions leaching from the clay mineral. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Oya, H.; Safayi, S.; Jeffery, N. D.; Viljoen, S.; Reddy, C. G.; Dalm, B. D.; Kanwal, J. K.; Gillies, G. T.; Howard, M. A.
2013-10-01
We have characterized the mechanical compliance of an improved version of the suspension system used to position the electrode-bearing membrane of an intradural neuromodulator on the dorsal pial surface of the spinal cord. Over the compression span of 5 mm, it exhibited a restoring force of 2.4 μN μm-1 and a mean pressure of 0.5 mm Hg (=66 Pa) on the surface below it, well within the range of normal intrathecal pressures. We have implanted prototype devices employing this suspension and a novel device fixation technique in a chronic ovine model of spinal cord stimulation and found that it maintains stable contact at the electrode-pia interface without lead fracture, as determined by measurement of the inter-contact impedances.
Stability of gabapentin in extemporaneously compounded oral suspensions
Friciu, Mihaela; Roullin, V. Gaëlle
2017-01-01
This study reports the stability of extemporaneously prepared gabapentin oral suspensions prepared at 100 mg/mL from bulk drug and capsules in either Oral Mix or Oral Mix SF suspending vehicles. Suspensions were packaged in amber plastic bottles and amber plastic syringes at 25°C / 60%RH for up to 90 days. Throughout the study period, the following tests were performed to evaluate the stability of the preparations: organoleptic inspection to detect homogeneity, color or odor changes; pH measurements; and gabapentin assay using a stability-indicating HPLC-UV method. As crystallization was observed at 5°C, storage at this temperature condition is not recommended. All preparations stored at 25°C / 60%RH remained stable for the whole study duration of 90 days. PMID:28414771
Development of a simulation model of semi-active suspension for monorail
NASA Astrophysics Data System (ADS)
Hasnan, K.; Didane, D. H.; Kamarudin, M. A.; Bakhsh, Qadir; Abdulmalik, R. E.
2016-11-01
The new Kuala Lumpur Monorail Fleet Expansion Project (KLMFEP) uses semiactive technology in its suspension system. It is recognized that the suspension system influences the ride quality. Thus, among the way to further improve the ride quality is by fine- tuning the semi-active suspension system on the new KL Monorail. The semi-active suspension for the monorail specifically in terms of improving ride quality could be exploited further. Hence a simulation model which will act as a platform to test the design of a complete suspension system particularly to investigate the ride comfort performance is required. MSC Adams software was considered as the tool to develop the simulation platform, where all parameters and data are represented by mathematical equations; whereas the new KL Monorail being the reference model. In the simulation, the model went through step disturbance on the guideway for stability and ride comfort analysis. The model has shown positive results where the monorail is in stable condition as an outcome from stability analysis. The model also scores a Rating 1 classification in ISO 2631 Ride Comfort performance which is very comfortable as an overall outcome from ride comfort analysis. The model is also adjustable, flexibile and understandable by the engineers within the field for the purpose of further development.
An observational study of the effect of vibration on the caking of suspensions in oily vehicles.
Jain, Rohit; Bork, Olaf; Alawi, Fadil; Nanjan, Karthigeyan; Tucker, Ian G
2016-11-30
An oily suspension of penethamate (PNT) that was physically stable on storage, caked solidly during road/air transport. This paper reports on the caking behaviour of PNT oily suspension formulations exposed to vibrations in a lab-based test designed to simulate road/air transport. The lab-test was used to study the effects of container type (glass v PET) and formulation (oil, surfactant type and concentration) on the physical stability of suspension under vibration. Redispersibility of the sediment was lower at longer vibrations times and at higher intensity of vibration. Caking on vibration was strongly influenced by the type of container (caking in glass but not in PET) possibly due to tribo-charging of particles. Caking on vibration was dependent on the formulation: type and concentration of surfactant; type of oil. The physical stability of oily suspensions, and the effect of vibration are two areas which have been largely neglected in the pharmaceutical literature. This paper discusses some potential mechanisms for the observations but studies using fully characterised materials are required. Finally we conclude that static testing of physical stability of oily suspensions is not sufficient and that a vibrational stress test is required. Copyright © 2016 Elsevier B.V. All rights reserved.
A three-dimensional printed patient-specific scaphoid replacement: a cadaveric study.
Honigmann, Philipp; Schumacher, Ralf; Marek, Romy; Büttner, Franz; Thieringer, Florian; Haefeli, Mathias
2018-05-01
We present our first cadaveric test results of a three-dimensional printed patient-specific scaphoid replacement with tendon suspension, which showed normal motion behaviour and preservation of a stable scapholunate interval during physiological range of motion.
Mechanism synthesis and 2-D control designs of an active three cable crane
NASA Technical Reports Server (NTRS)
Yang, Li-Farn; Mikulas, Martin M., Jr.
1992-01-01
A Lunar Crane with a suspension system based on a three cable mechanism is investigated to provide a stable end-effector for hoisting, positioning, and assembling large components during construction and servicing of a Lunar Base. The three cable suspension mechanism consists of a structural framework of three cables pointing to a common point that closely coincides with the suspended payload's center of gravity. The vibrational characteristics of this three cable suspension system are investigated by comparing a simple 2-D symmetric suspension model and a swinging pendulum in terms of their analytical natural frequency equations. A study is also made of actively controlling the dynamics of the crane using two different actuator concepts. Also, Lyapunov-based control algorithms are developed to determine two regulator-type control laws performing the system vibrational suppression for both system dynamics. Simulations including initial-valued dynamic responses as well as control performances for two different system dynamics are also presented.
Model for capping of membrane receptors based on boundary surface effects
Gershon, N. D.
1978-01-01
Crosslinking of membrane surface receptors may lead to their segregation into patches and then into a single large aggregate at one pole of the cell. This process is called capping. Here, a novel explanation of such a process is presented in which the membrane is viewed as a supersaturated solution of receptors in the lipid bilayer and the adjacent two aqueous layers. Without a crosslinking agent, a patch of receptors that is less than a certain size cannot stay in equilibrium with the solution and thus should dissolve. Patches greater than a certain size are stable and can, in principle, grow by the precipitation of the remaining dissolved receptors from the supersaturated solution. The task of the crosslinking molecules is to form such stable patches. These considerations are based on a qualitative thermodynamic calculation that takes into account the existence of a boundary tension in a patch (in analogy to the surface tension of a droplet). Thermodynamically, these systems should cap spontaneously after the patches have reached a certain size. But, in practice, such a process can be very slow. A suspension of patches may stay practically stable. The ways in which a cell may abolish this metastable equilibrium and thus achieve capping are considered and possible effects of capping inhibitors are discussed. PMID:274724
Characterizing dense suspensions: two case studies from the pharmaceutical industry
NASA Astrophysics Data System (ADS)
Goldfarb, David J.; Khawaja, Nazia; Kazakevich, Irina; Bhattacharjee, Himanshu; Heslinga, Michael; Dalton, Chad
2015-11-01
Liquid suspensions of Active Pharmaceutical Ingredient powders are present as pharmaceutical dosage forms in the form of oral suspensions and injectables. We present two case studies, both dense (~ 30-40%) suspensions, in which the physical characterization of the product, specifically, particle size & shape and rheology were key to understanding the key product attributes as pertaining to the manufacturing process and to patient administration. For the one case study, an oral suspension, identifying variations in particle morphology during the wet milling of the product was key to the product understanding necessary to modify the milling process. Rheological measurements were applied as well. For the second case study, an injectable, results from different particle size measurement techniques and rheological measurements indicated the possibility of flocculation in a formulation. Additionally, measurements were obtained to assess the ``injectability'' of the product via rheometer and texture analyzer measurements and Poiseuille flow modeling. As a result, the relevant shear rate regime for this drug product administration was identified.
Lahav, N
1975-08-05
The formation of packets of parallel oriented platelets and separating distances of several angstrom units in montmorillonite-water systems produces an intrinsic inhomogeneity with respect to the proton donating power of internal and external zones. Stable packets can be induced by both inorganic and organic molecules or ions, in suspensions or in drying-out systems. The coexistence of zones with different proton donating power was demonstrated by the pH-sensitive color reaction of benzidine, where stable packets of montmorillonite platelets were formed by the use of either paraquat or diquat. The close proximity of the two types of zones, which can be of the order of several angstroms, produces the conditions which were defined by Katchalsky as essential for the polymerization of amino acids. Since these enviromental conditions are quite common in nature, both at present and in prebiotic times, it is proposed that the inhomogeneity of clay-water systems with respect to proton donating power should be taken into account in both theoretical and experimental efforts to demonstrate the catalytic activity of clays in prebiotic synthesis.
Blasi, Davide; Nikolaidou, Domna M; Terenziani, Francesca; Ratera, Imma; Veciana, Jaume
2017-03-29
In this work, the luminescence properties of new materials based on open-shell molecular systems are studied. In particular, we prepared polymeric films and organic nanoparticles (ONPs) doped with triphenylmethyl radical molecules. ONPs exhibit a uniform size distribution, spherical morphology and high colloidal stability. The emission spectrum of low-doped ONP suspensions and low-doped films is very similar to the emission spectrum of TTM in solution, while the luminescence lifetime and the luminescence quantum yield (LQY) are highly increased. Increasing the radical doping leads to a progressive decrease of the LQY and the appearance of a new broad excimeric band at longer wavelengths, both for ONPs and films. Thus, not only the luminescence properties were improved, but also the formation of excimers from stable and persistent supramolecular radical-pairs was observed for the first time. The good stability and luminescence properties with emission in the red-NIR region (650-800 nm), together with the open-shell nature of the emitter, make these free-radical excimer-forming materials promising candidates for optoelectronic and bioimaging applications.
The Minor Rivers of Black Sea North-Western Coast
NASA Astrophysics Data System (ADS)
Alyukaeva, Alevtina
2017-04-01
The generalisations and conclusions have been done based on the expeditional monitoring of minor rivers of the Russian Federation Black Sea Coast for summer-autumn mean water in 2011-2015. The length of coastal line under monitoring was 300 km with 78 rivers with length no longer, then 50 km. The monitoring task was to establish the natural background of river effluent for the region under study. The observation parameters are physical measures (temperature, pH, Eh), solution (salts) and suspension forms of effluent (feculence, suspension chemical composition). 1. The tendency to decrease minor river water temperature at isthmus correspondent to movement from north-west to south-east along the coastal line. The causes are the growing length of the rivers and steepness of the relief along the Black Sea Caucasus. 2. The dependence between the size of coagulated suspension and water temperature is established. Moreover the intensive mix is not able to compensate the negative influence of the low temperature. 3. The value of hydrogen index, mineralization and specific electric conductivity for minor river are growing from north-west to south-east along the coastal line. 4. By the main ionic composition of the minor rivers of Black Sea north-eastern coast can be classified as hydrocarbonate. The main characteristic (marker) of colt composition for the region is the sensible concentrations of potassium and sodium. 5. The amount of suspension substance in the river water and its feculence changes between 50 mg/dm3 дo 280 mg/dm3. In particle size distribution composition of river suspensions the politic fractions (up to 70%) are prevailed, sand and silt fractions are presented less (25%). 6. Suspension form content of microelements depends on general amount of suspension in river water. The suspension form migration is significant for lead, cobalt, tin and silver. Other metals "prefer" the solution forms and can be arranged approximately in the following: vanadium, manganese, nickel, zinc, copper. The maximal quantities of microelements are transferred by the waters of the southern rivers.
Dynamics, stability, and control of maglev systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; Chen, S.S.; Rote, D.M.
1993-06-01
The dynamic response of maglev systems is important in several respects: Safety and ride quality, guideway design, and system costs. The dynamic response of vehicles is the key element in the determination of ride quality, and vehicle stability is one of the important elements relative to safety. To design a proper guideway that provides acceptable ride quality in the stable region, the vehicle dynamics must be understood. The trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. This paper is a summary of our previous work on dynamics,more » stability and control of maglev systems. First of all, the importance of dynamics of vehicle/guideway of maglev systems is discussed. Emphasis is placed on the modeling vehicle/guideway interactions of maglev systems with a multicar, or multiload vehicle traversing on a single or double-span flexible guideway. Coupled effects of vehicle/guideway interactions in wide range of vehicle speeds with various vehicle and guideway parameters for maglev systems are investigated. Secondly, the alternative control designs of maglev vehicle suspension systems are investigated in this study to achieve safe, stable operation and acceptable ride comfort requires some form of vehicle motion control. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. Finally, this paper discusses the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.« less
Dynamics, stability, and control of maglev systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; Chen, S.S.; Rote, D.M.
1993-01-01
The dynamic response of maglev systems is important in several respects: Safety and ride quality, guideway design, and system costs. The dynamic response of vehicles is the key element in the determination of ride quality, and vehicle stability is one of the important elements relative to safety. To design a proper guideway that provides acceptable ride quality in the stable region, the vehicle dynamics must be understood. The trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are to be economically feasible. This paper is a summary of our previous work on dynamics,more » stability and control of maglev systems. First of all, the importance of dynamics of vehicle/guideway of maglev systems is discussed. Emphasis is placed on the modeling vehicle/guideway interactions of maglev systems with a multicar, or multiload vehicle traversing on a single or double-span flexible guideway. Coupled effects of vehicle/guideway interactions in wide range of vehicle speeds with various vehicle and guideway parameters for maglev systems are investigated. Secondly, the alternative control designs of maglev vehicle suspension systems are investigated in this study to achieve safe, stable operation and acceptable ride comfort requires some form of vehicle motion control. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. Finally, this paper discusses the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.« less
Temozolomide stability in extemporaneously compounded oral suspensions.
Trissel, Lawrence A; Zhang, Yanping; Koontz, Susannah E
2006-01-01
Temozolomide, commercially available in capsules, is an oral alkylating agent used to treat brain tumors. The purpose of this study was to determine the pharmaceutical acceptability and chemical stability of temozolomide in two extemporaneously compounded suspension formulations prepared from the capsules. The temozolomide oral suspensions were prepared from 100-mg commercial capsules yielding a nominal temozolomide concentration of 10 mg/mL. The suspension vehicles selected for testing were an equal parts mixture of Ora-Plus and Ora-Sweet and an equal parts mixture of Ora-Plus and Ora-Sweet SF. The suspensions were packaged in amber plastic screw-cap prescription bottles, which were stored at 23 deg C for 21 days or 4 deg C for 60 days. Stability-indicating high-performance liquid chromatographic analysis revealed that the temozolomide concentration in both suspension vehicle combinations exhibited little or no loss for 60 days at 4 deg C. At 23 deg C, temozolomide losses were somewhat greater. In the Ora-Sweet formulation, the loss was 6% at 7 days; in the Ora-Sweet SF formulation, losses were about 8% at 14 days and 10% to 11% at 21 days. Temozolomide extemporaneously prepared as oral suspensions from capsules in equal parts mixtures of Ora-Plus suspension vehicle with Ora-Sweet and with ora-Sweet SF syrups with added povidine k-30 and acidified with citric acid were pharmaceutically acceptable and chemically stable for at least 60 days at 4 deg C. Refrigerated storage is recommended. The suspensions should not be stored at room temperature longer than 1 week if Ora-Sweet is used or longer than 2 weeks if Ora-Sweet SF is used.
Nahata, Milap C; Morosco, Richard S; Brady, Michael T
2006-02-01
The stability of sildenafil citrate 2.5 mg/mL in two extemporaneously prepared oral suspensions stored at 4 and 25 degrees C was studied. Thirty 25-mg tablets of sildenafil citrate were ground to powder, and the powder was combined with a 1:1 mixture of Ora-Sweet and Ora-Plus or a 1:1 mixture of methylcellulose 1% and Simple Syrup, NF, to produce two 2.5-mg/mL suspensions. Five plastic bottles of each suspension were stored in amber plastic prescription bottles at 4 or 25 degrees C. Samples were collected on days 0, 7, 14, 28, 42, 56, 70, and 91 for analysis of sildenafil content by high-performance liquid chromatography; pH was also measured. Samples were visually observed against black and white backgrounds. The mean concentration of sildenafil citrate exceeded 98% of the initial concentration in all samples at both temperatures throughout the 91-day study period. No changes in pH, odor, or physical appearance were observed. Sildenafil citrate 2.5 mg/mL in two extemporaneously compounded oral suspensions was stable for 91 days in plastic prescription bottles at 4 and 25 degrees C.
Böni, Lukas; Rühs, Patrick A.; Windhab, Erich J.; Fischer, Peter; Kuster, Simon
2016-01-01
Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v) and with a soy emulsion (commercial soy milk) to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making “soy slime”, a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food products. PMID:26808048
Böni, Lukas; Rühs, Patrick A; Windhab, Erich J; Fischer, Peter; Kuster, Simon
2016-01-01
Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v) and with a soy emulsion (commercial soy milk) to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making "soy slime", a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food products.
Synthesis and characterization of covalently bound benzocaine graphite oxide derivative
NASA Astrophysics Data System (ADS)
Kabbani, Ahmad; Kabbani, Mohamad; Safadi, Khadija
2015-09-01
Graphite oxide (GO) derived materials include chemically functionalize or reduced graphene oxide (exfoliated from GO) sheets, assembled paper-like forms , and graphene-based composites GO consists of intact graphitic regions interspersed with sp3-hybridized carbons containing hydroxyl and epoxide functional groups on the top and bottom surfaces of each sheet and sp2-hybridized carbons containing carboxyl and carbonyl groups mostly at the sheet edges. Hence, GO is hydrophilic and readily disperses in water to form stable colloidal suspensions Due to the attached oxygen functional groups, GO was used to prepare different derivatives which result in some physical and chemical properties that are dramatically different from their bulk counterparts .The present work discusses the covalent cross linking of graphite oxide to benzocaine or ethyl ester of para-aminobenzoic acid,structure I,used in many over-the-counter ointment drug.Synthesis is done via diazotization of the amino group.The product is characterized via IR,Raman, X-ray photoelectron spectroscopy as well as electron microscopy.
Magnetically Driven Flows of Suspensions of Rods to Deliver Clot-Busting Drugs to Dead-End Arteries
NASA Astrophysics Data System (ADS)
Bonnecaze, Roger; Clements, Michael
2014-11-01
Suspensions of iron particles in the presence of a magnetic field create flows that could significantly increase the delivery of drugs to dissolve clots in stroke victims. An explanation of this flow rests on the foundation of the seminal works by Prof. Acrivos and his students on effective magnetic permittivity of suspensions of rods, hydrodynamic diffusion of particles, and the flow of suspensions. Intravenous administration of the clot dissolving tissue plasminogen activator (tPA) is the most used therapy for stroke. This therapy is often unsuccessful because the tPA delivery is diffusion-limited and too slow to be effective. Observations show that added iron particles in a rotating magnetic field form rotating rods along the wall of the occluded vessel, creating a convective flow that can carry tPA much faster than diffusion. We present a proposed mechanism for this magnetically driven flow in the form of coupled particle-scale and vessel-scale flow models. At the particle-scale, particles chain up to form rods that rotate, diffuse and translate in the presence of the flow and magnetic fields. Localized vorticity created by the rotating particles drives a macroscopic convective flow in the vessel. Suspension transport equations describe the flow at the vessel-scale. The flow affects the convection and diffusion of the suspension of particles, linking the two scales. The model equations are solved asymptotically and numerically to understand how to create convective flows in dead-end or blocked vessels.
Time response analysis in suspension system design of a high-speed car
NASA Astrophysics Data System (ADS)
Pagwiwoko, Cosmas Pandit
2010-03-01
A land speed record vehicle is designed to run on a flat surface like salt lake where the wheels are normally made from solid metal with a special suspension system. The suspension is designed to provide a stable platform to keep the wheel treads on tract, to insulate the car and the driver from the surface irregularities and to take part of good handling properties. The surface condition of the lake beds is basically flat without undulations but with inconsistent surface textures and ridges. Spring with nonlinear rate is used with the reason that the resistance builds up roughly proportional to the aerodynamic download for keeping the height more nearly constant. The objective of the work is to produce an efficient method for assisting the design of suspension system. At the initial step, the stiffness and the damping constants are determined based on RMS optimization by following the optimization strategy i.e. to minimize the absolute acceleration respect to the relative displacement of the suspension. Power bond graph technique is then used to model the nonlinearity of the components i.e. spring and dashpot of the suspension system. This technique also enables to incorporate the interactions of dynamic response of the vehicle's body with aerodynamic flow as a result of the base excitation of the ground to the wheels. The simulation is conducted on the platform of Simulink-MATLAB and the interactions amongst the components within the system are observed in time domain to evaluate the effectiveness of the suspension.
Dustan, A C; Cohen, B; Petrie, J G
2005-05-30
An understanding of the mechanisms which control solids formation can provide information on the characteristics of the solids which are formed. The nature of the solids formed in turn impacts on dewatering behaviour. The 'upstream' solids formation determines a set of suspension characteristics: solids concentration, particle size distribution, solution ionic strength and electrostatic surface potential. These characteristics together define the suspension's rheological properties. However, the complicated interdependence of these has precluded the prediction of suspension rheology from such a fundamental description of suspension characteristics. Recent shear yield stress models, applied in this study to compressive yield, significantly reduce the empiricism required for the description of compressive rheology. Suspension compressibility and permeability uniquely define the dewatering behaviour, described in terms of settling, filtration and mechanical expression. These modes of dewatering may be described in terms of the same fundamental suspension mechanics model. In this way, it is possible to link dynamically the processes of solids formation and dewatering of the resultant suspension. This, ultimately, opens the door to improved operability of these processes. In part I of this paper we introduced an integrated system model for solids formation and dewatering. This model was demonstrated for the upstream processes using experimental data. In this current paper models of colloidal interactions and dewatering are presented and compared to experimental results from batch filtration tests. A novel approach to predicting suspension compressibility and permeability using a single test configuration is presented and tested.
Method of producing nano-scaled inorganic platelets
Zhamu, Aruna; Jang, Bor Z.
2012-11-13
The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.
Decoupling analysis of a novel bearingless flux-switching permanent magnet motor
NASA Astrophysics Data System (ADS)
Zhao, Chenyin; Zhu, Huangqiu; Qin, Yuemei
2017-05-01
In this paper, a novel 12/10 stator/rotor pole bearingless flux-switching permanent magnet (BFSPM) motor is proposed to overcome the drawbacks of rotor permanent magnet type bearingless motors. The basic motor configuration, including motor configuration and winding configuration, is introduced firstly. Then, based on the principle of reverse direction magnetization for symmetrical rotor teeth, the radial suspension forces generation principle is analyzed in detail. Finally, decoupling performances between suspension force windings and torque windings are investigated. The results show that the proposed BFSPM not only ensures the merits of high torque output capability compared with conventional 12/10 stator/rotor pole FSPM motor, but also achieves stable radial suspension forces which have little mutual effect with torque. The validity of the proposed structure has been verified by finite element analysis (FEA).
Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh
2016-01-01
Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis. PMID:27306323
Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh
2016-06-16
Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis.
Combining Ferric Salt and Cactus Mucilage for Arsenic Removal from Water.
Fox, Dawn I; Stebbins, Daniela M; Alcantar, Norma A
2016-03-01
New methods to remediate arsenic-contaminated water continue to be studied, particularly to fill the need for accessible methods that can significantly impact developing communities. A combination of cactus mucilage and ferric (Fe(III)) salt was investigated as a flocculation-coagulation system to remove arsenic (As) from water. As(V) solutions, ferric nitrate, and mucilage suspensions were mixed and left to stand for various periods of time. Visual and SEM observations confirmed the flocculation action of the mucilage as visible flocs formed and settled to the bottom of the tubes within 3 min. The colloidal suspensions without mucilage were stable for up to 1 week. Sample aliquots were tested for dissolved and total arsenic by ICP-MS and HGAFS. Mucilage treatment improved As removal (over Fe(III)-only treatment); the system removed 75-96% As in 30 min. At neutral pH, removal was dependent on Fe(III) and mucilage concentration and the age of the Fe(III) solution. The process is fast, achieving maximum removal in 30 min, with the majority of As removed in 10-15 min. Standard jar tests with 1000 μg/L As(III) showed that arsenic removal and settling rates were pH-dependent; As removal was between 52% (high pH) and 66% (low pH).
NASA Astrophysics Data System (ADS)
Jenkins, Jessica Shawn
Advanced composite materials could be revolutionized by the development of methods to incorporate living cells into functional materials and devices. This could be accomplished by continuously and rapidly depositing thin ordered arrays of adhesive colloidal latex particles and live cells that maintain stability and preserve microbial reactivity. Convective assembly is one method of rapidly assembling colloidal particles into thin (<10 microm thick), ordered films with engineered compositions, thicknesses, and particle packing that offer several advantages over thicker randomly ordered composites, including enhanced cell stability and increased reactivity through minimized diffusion resistance to nutrients and reduced light scattering. This method can be used to precisely deposit live bacteria, cyanobacteria, yeast, and algae into biocomposite coatings, forming reactive biosensors, photoabsorbers, or advanced biocatalysts. This dissertation developed new continuous deposition and coating characterization methods for fabricating and characterizing <10 microm thick colloid coatings---monodispersed latex particle or cell suspensions, bimodal blends of latex particles or live cells and microspheres, and trimodal formulations of biomodal latex and live cells on substrates such as aluminum foil, glass, porous Kraft paper, polyester, and polypropylene. Continuous convective-sedimentation assembly (CSA) is introduced to enable fabrication of larger surface area and long coatings by constantly feeding coating suspension to the meniscus, thus expanding the utility of convective assembly to deposit monolayer or very thin films or multi-layer coatings composed of thin layers on a large scale. Results show thin, tunable coatings can be fabricated from diverse coating suspensions and critical coating parameters that control thickness and structure. Particle size ratio and charge influence deposition, convective mixing or demixing and relative particle locations. Substrate wettability and suspension composition influence coating microstructure by controlling suspension delivery and spreading across the substrate. Microbes behave like colloidal particles during CSA, allowing for deposition of very thin stable biocomposite coatings of latex-live cell blends. CSA of particle-cell blends result in open-packed structures (15-45% mean void space), instead of tightly packed coatings attainable with single component systems, confirming the existence of significant polymer particle-cell interactions and formation of particle aggregates that disrupt coating microstructure during deposition. Tunable process parameters, such as particle concentration, fluid sonication, and fluid density, influence coating homogeneity when the meniscus is continuously supplied. Fluid density modification and fluid sonication affect particle sedimentation and distribution in the coating growth front whereas the suspended particle concentration strongly affects coating thickness, but has almost no effect on void space. Changing the suspension delivery mode (topside versus underside CCSA) yields disparate meniscus volumes and uneven particle delivery to the drying front, which enables control of the coating microstructure by varying the total number of particles available for deposition. The judicious combination of all these parameters will enable deposition of uniform, thin, latex-cell monolayers over areas on the order of tens of square centimeters or larger. To demonstrate the utility of biocomposite coatings, this dissertation investigated photoreactive coatings (artificial leaves) from suspensions of latex particles and nitrogen-limited Rps. palustris CGA009 or sulfur-limited C. reinhardtii CC-124. These coatings demonstrated stable, sustained (>90 hours) photohydrogen production under anoxygenic conditions. Nutrient reduction slows cell division, minimizing coating outgrowth, and promotes photohydrogen generation, improving coating reactivity. Scanning electron microscopy of microstructure revealed how coating reactivity can be controlled by the size and distribution of the nanopores in the biocomposite layers. Variations in colloid microsphere size and suspension composition do not affect coating reactivity, but both parameters alter coating microstructure. Porous paper coated with thin coatings of colloidal particles and cells to enable coatings to be used in a gas-phase without dehydration may offer higher volumetric productivity for hydrogen production. Future work should focus on optimization of cell density, light intensity, media cycling, and acetate concentration.
Moghimipour, Eskandar; Salimi, Anayatollah; Rezaee, Saeed; Balack, Maryam; Handali, Somayeh
2014-05-01
Nitrofurantoin is a nitrofuran antibiotic that has been used for treatment of urinary tract against positive and negative bacteria. The aim of this study was to evaluate the effect of structural vehicles and flocculating agents on physical stability and rheological behavior of nitrofurantoin suspension. To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated and their particle sizes were determined using the sieve method. Then to achieve controlled flocculation, sodium citrate and aluminum chloride were added. After choosing the suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose and Veegum were evaluated individually and in combination. In addition, the effect of sorbitol on density of continuous phase and some physical stability parameters such as sedimentation volume, degree of flocculation and ease of redispersion of the suspensions were evaluated. After incorporation of structural vehicles, the rheological properties of formulations were also determined to find their flow behavior. According to the results, glycerin (0.2%) and sodium citrate (0.3%) had the best effect on the suspension stability as wetting and flocculating agents, respectively. Rheological properties of formulations showed pseudoplastic behavior with some degree of thixotropy. In conclusion, the suspension containing Veegum 1%, sodium carboxy methyl cellulose 1%, glycerine 0.2%, sodium citrate 0.3% and sorbitol 20 % was chosen as the most physically stable formulation.
NASA Astrophysics Data System (ADS)
Gunnars, Anneli; Blomqvist, Sven; Johansson, Peter; Andersson, Christian
2002-03-01
The formation of Fe(III) oxyhydroxide colloids by oxidation of Fe(II) and their subsequent aggregation to larger particles were studied in laboratory experiments with natural water from a freshwater lake and a brackish coastal sea. Phosphate was incorporated in the solid phase during the course of hydrolysis of iron. The resulting precipitated amorphous Fe(III) oxyhydroxide phases were of varying composition, depending primarily on the initial dissolved Fe/P molar ratio, but with little influence by salinity or concentration of calcium ions. The lower limiting Fe/P ratio found for the solid phase suggests the formation of a basic Fe(III) phosphate compound with a stoichiometric Fe/P ratio of close to two. This implies that an Fe/P stoichiometry of ≈2 ultimately limits the capacity of precipitating Fe(III) to fix dissolved phosphate at oxic/anoxic boundaries in natural waters. In contrast to phosphorus, the uptake of calcium seemed to be controlled by sorption processes at the surface of the iron-rich particles formed. This uptake was more efficient in freshwater than in brackish water, suggesting that salinity restrains the uptake of calcium by newly formed Fe(III) oxyhydroxides in natural waters. Moreover, salinity enhanced the aggregation rate of the colloids formed. The suspensions were stabilised by the presence of organic matter, although this effect was less pronounced in seawater than in freshwater. Thus, in seawater of 6 to 33 ‰S, the removal of particles was fast (removal half time < 200 h), whereas the colloidal suspensions formed in freshwater were stable (removal half time > 900 h). Overall, oxidation of Fe(II) and removal of Fe(III) oxyhydroxide particles were much faster in seawater than in freshwater. This more rapid turnover results in lower iron availability in coastal seawater than in freshwater, making iron more likely to become a limiting element for chemical scavenging and biologic production.
Process for preparing a stabilized coal-water slurry
Givens, E.N.; Kang, D.
1987-06-23
A process is described for preparing a stabilized coal particle suspension which includes the steps of providing an aqueous media substantially free of coal oxidizing constituents, reducing, in a nonoxidizing atmosphere, the particle size of the coal to be suspended to a size sufficiently small to permit suspension thereof in the aqueous media and admixing the coal of reduced particle size with the aqueous media to release into the aqueous media coal stabilizing constituents indigenous to and carried by the reduced coal particles in order to form a stabilized coal particle suspension. The coal stabilizing constituents are effective in a nonoxidizing atmosphere to maintain the coal particle suspension at essentially a neutral or alkaline pH. The coal is ground in a nonoxidizing atmosphere such as an inert gaseous atmosphere to reduce the coal to a sufficient particle size and is admixed with an aqueous media that has been purged of oxygen and acid-forming gases. 2 figs.
Process for preparing a stabilized coal-water slurry
Givens, Edwin N.; Kang, Doohee
1987-01-01
A process for preparing a stabilized coal particle suspension which includes the steps of providing an aqueous media substantially free of coal oxidizing constituents, reducing, in a nonoxidizing atmosphere, the particle size of the coal to be suspended to a size sufficiently small to permit suspension thereof in the aqueous media and admixing the coal of reduced particle size with the aqueous media to release into the aqueous media coal stabilizing constituents indigenous to and carried by the reduced coal particles in order to form a stabilized coal particle suspension. The coal stabilizing constituents are effective in a nonoxidizing atmosphere to maintain the coal particle suspension at essentially a neutral or alkaline pH. The coal is ground in a nonoxidizing atmosphere such as an inert gaseous atmosphere to reduce the coal to a sufficient particle size and is admixed with an aqueous media that has been purged of oxygen and acid-forming gases.
Hindlimb suspension reduces muscle regeneration
NASA Technical Reports Server (NTRS)
Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.
1998-01-01
Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.
Rivera-Leyva, J. C.; García-Flores, M.; Valladares-Méndez, A.; Orozco-Castellanos, L. M.; Martínez-Alfaro, M.
2012-01-01
In vitro dissolution studies for solid oral dosage forms have recently widened the scope to a variety of special dosage forms such as suspensions. For class II drugs, like Ibuprofen, it is very important to have discriminative methods for different formulations in physiological conditions of the gastrointestinal tract, which will identify different problems that compromise the drug bioavailability. In the present work, two agitation speeds have been performed in order to study ibuprofen suspension dissolution. The suspensions have been characterised relatively to particle size, density and solubility. The dissolution study was conducted using the following media: buffer pH 7.2, pH 6.8, 4.5 and 0.1 M HCl. For quantitative analysis, the UV/Vis spectrophotometry was used because this methodology had been adequately validated. The results show that 50 rpm was the adequate condition to discriminate the dissolution profile. The suspension kinetic release was found to be dependent on pH and was different compared to tablet release profile at the same experimental conditions. The ibuprofen release at pH 1.0 was the slowest. PMID:23626386
Controlled placement and orientation of nanostructures
Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M
2014-04-08
A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.
PRELIMINARY STUDIES OF THE GASTROINTESTINAL TRACT WITH COLLOIDAL BARIUM
Windholz, Frank; Kaplan, Henry S.; Jones, Henry H.
1951-01-01
A stable colloidal suspension of barium sulfate has been developed and tested in roentgen examination of the gastrointestinal tract. The new material is rather distinctive in radiographic appearance and can usually be differentiated from simple barium-water mixtures by inspection of roentgenograms of the opacified stomach and small intestine. It usually affords a satisfactory demonstration of the mucosal folds of the stomach and duodenal bulb and is considerably more resistant to flocculation and precipitation by retained gastric secretions. In the small intestine, it has little tendency to undergo flocculation and fragmentation, and permits visualization of fine mucosal configurations with unusual clarity. Its motility is about the same as that of conventional suspensions. Air contrast colon examinations with the colloidal preparation exhibit a very uniform, opaque, and stable coating of the bowel wall and are more consistently satisfactory than when simple barium-water mixtures are used. ImagesFigure 1.Figure 1.Figure 1.Figure 1.Figure 2.Figure 2.Figure 3.Figure 4.Figure 4.Figure 5.Figure 5.Figure 6. PMID:14812347
NASA Astrophysics Data System (ADS)
Hiebel, P.; Tixador, P.; Chaud, X.
1995-06-01
Since their discovery in the years 1986/87, the high critical temperature superconductors have reached nowadays performances interesting enough to conceive passive magnetic bearings and suspensions which would combined permanent magnets and naturally stable superconducting pellets. After underlining the principal factors that affect the superconductormagnet interaction, different experimental results are given about vertical and axial forces with some stiffness values. The magnetization curve of a superconductor help to understand the hysteretic behavior of the force as a function of the distance between superconductor and magnet. So called simple and hybrid structures of superconducting magnetic suspension are presented. Finally simple numerical simulations allow to draw some interesting conclusions about both geometry and best fitting structure of permanent magnets. Depuis leur découverte dans les années 1986/87, les supraconducteurs à haute température critique ont désormais atteint des performances intéressantes et rendent envisageables des paliers et suspensions magnétiques passives associant aimants permanents et pastilles supraconductrices naturellement stables. Après avoir indiqué les termes importants influençant l'interaction supraconducteur - aimant, différents relevés expérimentaux sont donnés pour les forces verticales et transversales avec quelques valeurs de raideurs. La courbe d'aimantation d'un supraconducteur permet de comprendre le comportement hystérétique de la force en fonction de la distance supraconducteur-aimant. Les structures dites simple et hybride des suspensions magnétiques supraconductrices sont présentées. Enfin quelques simulations numériques simples permettent de dégager quelques conclusions intéressantes quant aux géométries respectives et aux structures d'aimants permanents les mieux adaptées.
Muscle Activation during Push-Ups with Different Suspension Training Systems.
Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C; Martín, Fernando F; Rogers, Michael E; Behm, David G; Andersen, Lars L
2014-09-01
The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29) performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p < 0.001). Individually, the suspended push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation. Key PointsCompared with standard push-ups on the floor, suspended push-ups increase core muscle activation.A one-anchor system with a pulley is the best option to increase TRICEP, TRAPS, LUMB and FEM muscle activity.More stable conditions such as the standard push-up or a parallel band system provide greater increases in DELT and PEC muscle activation.A suspended push-up is an effective method to achieve high muscle activity levels in the ABS.
Muscle Activation during Push-Ups with Different Suspension Training Systems
Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C.; Martín, Fernando F; Rogers, Michael E.; Behm, David G.; Andersen, Lars L.
2014-01-01
The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29) performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p < 0.001). Individually, the suspended push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation. Key Points Compared with standard push-ups on the floor, suspended push-ups increase core muscle activation. A one-anchor system with a pulley is the best option to increase TRICEP, TRAPS, LUMB and FEM muscle activity. More stable conditions such as the standard push-up or a parallel band system provide greater increases in DELT and PEC muscle activation. A suspended push-up is an effective method to achieve high muscle activity levels in the ABS. PMID:25177174
Effect of buffer and antioxidant on stability of a mercaptopurine suspension.
Aliabadi, Hamidreza Montazeri; Romanick, Marcel; Desai, Sunil; Lavasanifar, Afsaneh
2008-03-01
The stability of standard and modified mercaptopurine suspensions when stored at room temperature and under refrigerated conditions to test the feasibility of increasing shelf life was studied. A 50-mg/mL mercaptopurine suspension was compounded by adding simple syrup, cherry syrup, and sterile water for irrigation to triturated mercaptopurine tablets for the initial reference formulation. Three additional formulations were prepared by adding an antioxidant (ascorbic acid 10 mg), a buffer (sodium phosphate monobasic monohydrate 500 mg), and a combination of antioxidant and buffer to the reference formulation. Each compounded batch was divided into two parts and stored in amber bottles at room temperature (19-23 degrees C) or under refrigerated conditions (4-8 degrees C). Analysis through high-performance liquid chromatography determined mercaptopurine levels after three and seven days and weekly thereafter for at least two weeks after shelf life was reached under specified storage conditions. Solutions with at least 93% of the original mercaptopurine concentration and with no observable sign of aggregation or cake formation were considered stable. The reference suspension of mercaptopurine showed an acceptable physical and chemical stability of up to 5 weeks when stored at room temperature. The addition of ascorbic acid extended the shelf life of the compounded suspension to 11 weeks. However, the addition of sodium phosphate monobasic did not improve the stability of mercaptopurine in the suspension. The results showed a higher stability for all formulations after storage at room temperature compared with those stored in a refrigerator. A standard oral suspension of mercaptopurine contained an acceptable drug concentration for up to 5 weeks when stored at room temperature. The addition of ascorbic acid at a concentration of 0.1% w/v to the standard formulation increased the suspension's shelf life at room temperature to 11 weeks.
Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance.
Zhang, Zhizhou; Li, Xiaolong
2018-05-11
In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement.
Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance
Zhang, Zhizhou; Li, Xiaolong
2018-01-01
In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement. PMID:29751610
High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu
Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated overmore » longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.« less
Polonini, Hudson C; Loures, Sharlene; Lima, Luis Claudio; Ferreira, Anderson O; Brandão, Marcos Antônio F
2016-01-01
The objective of this study was to evaluate the stability of 10 commonly used active pharmaceutical ingredients compounded in oral suspensions using SyrSpend SF PH4 (atenolol 1.0 and 5.0 mg/mL, clonazepam 0.2 mg/mL, dexamethasone 1.0 mg/mL, diclofenac sodium 5.0 mg/mL, diltiazem 12.0 mg/mL, enalapril maleate 1.0 mg/mL, ketoprofen 20.0 mg/mL, lamotrigine 1.0 mg/mL, penicillamine-D 50.0 mg/mL, thiamine 100 mg/m) and stored both at controlled refrigerated (2°C to 8°C) and room temperature (20°C to 25°C). Stability was assessed by means of measuring percent recovery at varying time points throughout a 90-day period. The quantification of the active pharmaceutical ingredients was performed by a stability-indicating, high-performance liquid chromatographic method. The beyond-use date of the products was found to be at least 90 days for all suspensions (except atenolol 1 mg/mL, which was stable up to 60 days), both for controlled refrigerated temperature and room temperature. This confirms that SyrSpend SF PH4 is a stable suspending vehicle for compounding with a broad range of different active pharmaceutical ingredients.
Atef, Eman; Belmonte, Albert A
2008-11-15
The aim of this study is to develop and characterize a self-emulsifying drug delivery system (SEDDS) of phenytoin, and to compare its relative bioavailability to a commercially available suspension. Four phenytoin SEDDS were prepared and evaluated. Following emulsification, the optimized formula was selected to have the smallest mean particle size and the highest absolute zeta potential, which should yield the formation of a stable emulsion. Its dissolution characteristics were superior to the other SEDDS formulas. In vivo and in vitro tests were run to compare the optimized formula, SEDDS II, to a commercially available Dilantin suspension. The in vitro dissolution indicated a significant improvement in phenytoin release characteristics. The in vivo study using male rats showed a clear enhancement in phenytoin oral absorption from SEDDS compared to Dilantin suspension. The area under the curve AUC((-10min-->10h)) of phenytoin after SEDDS administration increased by 2.3 times compared to Dilantin (p<0.05), and the rate of absorption of phenytoin was significantly faster from the SEDDS. The concentration after 30min (C(30min)) of SEDDS administration was 4.9 times higher than C(30min) after Dilantin administration (p<0.05). A sustained effect of phenytoin in plasma was also observed. After 12 weeks storage, SEDDS II was found to be chemically and physically stable under stressed conditions.
Reconstructing Tsunami Flow Speed from Sedimentary Deposits
NASA Astrophysics Data System (ADS)
Jaffe, B. E.; Gelfenbaum, G. R.
2014-12-01
Paleotsunami deposits contain information about the flow that created them that can be used to reconstruct tsunami flow speed and thereby improving assessment of tsunami hazard. We applied an inverse tsunami sediment transport model to sandy deposits near Sendai Airport, Japan, that formed during the 11 March 2011 Tohoku-oki tsunami to test model performance and explore the spatial variations in tsunami flow speed. The inverse model assumes the amount of suspended sediment in the water column is in equilibrium with local flow speed and that sediment transport convergences, primarily from bedload transport, do not contribute significantly to formation of the portion of the deposit we identify as formed by sediment settling out of suspension. We interpret massive or inversely graded intervals as forming from sediment transport convergences and do not model them. Sediment falling out of suspension forms a specific type of normal grading, termed 'suspension' grading, where the entire grain size distribution shifts to finer sizes higher up in a deposit. Suspension grading is often observed in deposits of high-energy flows, including turbidity currents and tsunamis. The inverse model calculates tsunami flow speed from the thickness and bulk grain size of a suspension-graded interval. We identified 24 suspension-graded intervals from 7 trenches located near the Sendai Airport from ~250-1350 m inland from the shoreline. Flow speeds were highest ~500 m from the shoreline, landward of the forested sand dunes where the tsunami encountered lower roughness in a low-lying area as it traveled downslope. Modeled tsunami flow speeds range from 2.2 to 9.0 m/s. Tsunami flow speeds are sensitive to roughness, which is unfortunately poorly constrained. Flow speed calculated by the inverse model was similar to those calculated from video taken from a helicopter about 1-2 km inland. Deposit reconstructions of suspension-graded intervals reproduced observed upward shifts in grain size distributions reasonably well. As approaches to estimating paleo-roughness improve, the flow speed and size of paleotsunamis will be better understood and the ability to assess tsunami hazard from paleotsunami deposits will improve.
Annular suspension and pointing system with controlled DC electromagnets
NASA Technical Reports Server (NTRS)
Vu, Josephine Lynn; Tam, Kwok Hung
1993-01-01
The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.
Interaction and rheology of vesicle suspensions in confined shear flow
NASA Astrophysics Data System (ADS)
Shen, Zaiyi; Farutin, Alexander; Thiébaud, Marine; Misbah, Chaouqi
2017-10-01
Dynamics and rheology of a confined suspension of vesicles (a model for red blood cells) are studied numerically in two dimensions by using an immersed boundary lattice Boltzmann method. We pay particular attention to the link between the spatiotemporal organization and the rheology of the suspension. Besides confinement, we analyze the effect of concentration of the suspension, ϕ (defined as the area fraction occupied by the vesicles in the simulation domain), as well as the viscosity contrast λ (defined as the ratio between the viscosity of the fluid inside the vesicles, ηint, and that of the suspending fluid, ηext). The hydrodynamic interaction between two vesicles is shown to play a key role in determining the spatial organization. For λ =1 , the pair of vesicles settles into an equilibrium state with constant interdistance, which is regulated by the confinement. The equilibrium interdistance increases with the gap between walls, following a linear relationship. However, no stable equilibrium interdistance between two tumbling vesicles is observed for λ =10 . A quite ordered suspension is observed concomitant with the existence of an equilibrium interdistance between a vesicle pair. However, a disordered suspension prevails when no pair equilibrium interdistance exists, as occurs for tumbling vesicles. We then analyze the rheology, focusing on the effective viscosity, denoted as η , as well as on normalized viscosity, defined as [η ] =(η -ηext) /(ηextϕ ) . Ordering of the suspension is accompanied by a nonmonotonic behavior of [η ] with ϕ , while η exhibits plateaus. The nonmonotonic behavior of [η ] is suppressed when a disordered pattern prevails.
Stability of an extemporaneously compounded minoxidil oral suspension.
Song, Yunmei; Chin, Zen Whey; Ellis, David; Lwin, Ei Mon Phyo; Turner, Sean; Williams, Desmond; Garg, Sanjay
2018-03-01
Results of a study to determine the stability of an extemporaneously compounded minoxidil oral suspension under various temperature and stress conditions are reported. Commercially available minoxidil tablets (10 mg) were crushed to a fine powder, and predetermined amounts of 2 suspending vehicles were added to produce a 1-mg/mL suspension, which was stored in glass bottles at room temperature (25 ± 2 °C) or in a refrigerator (4 ± 2 °C). To simulate daily patient use, 5 days weekly 1 bottle of the suspension was removed from refrigerated storage and shaken and 0.5 mL of the contents discarded. At each specified time point, samples were analyzed in duplicate ( n = 6 for each test condition) using a validated high-performance liquid chromatography method. Samples were visually observed and their pH measured at each time point. Microbiological studies were performed on day 0 and at week 24. The mean percentage of initial minoxidil concentration remaining in all refrigerated samples exceeded 90% throughout the 24-week study, with no change in appearance, pH, microbial activity, odor, or redispersibility. During storage at room temperature, the suspension exhibited a color change at week 4, with slight sedimentation after 6 weeks, although minoxidil recovery exceeded 90% for 10 weeks. An extemporaneously compounded minoxidil oral suspension was stable for 24 weeks when stored in a refrigerator. This suspension can be used for up to 3 weeks when stored at room temperature. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers
USDA-ARS?s Scientific Manuscript database
Stable aqueous suspensions of cellulose nano-crystals (CNCs) were fabricated from both native and mercerized cotton fibers by sulfuric acid hydrolysis, followed by high-pressure homogenization. Fourier Transform Infrared Spectrometry and Wide-angle X-Ray Diffraction data showed that the fibers had b...
NASA Astrophysics Data System (ADS)
Xiong, Qing; Liu, Hongbin; Lu, Weiping; Chen, Qiang; Xu, Le; Wang, Xia; Zhu, Qunlin; Zeng, Xue; Yi, Ping
2017-05-01
Plasma medicine applications are currently attracting significant interest all over the world. Bactericidal treatments of Candida glabrata cultured in saline suspension are performed in this study by a room-temperature reactive afterglow of a DC-driven argon discharge. Water vapor was added to the discharge to study the inactivation contributions of reactive hydrolytic species including OH and H2O2 transporting along the gas flow to the treated solutions. The inactivation results indicate that the dominant roles in the bactericidal treatments are played by the short-lived aqueous active species, but not the stable species like H2O2aq (aq indicates an aqueous species). Further analysis shows that the ·OHaq radicals play an important role in the inactivation process. The ·OHaq radicals in the suspension are mostly produced from the direct dissolution of the OH species in the reactive afterglow. With the increase of added water vapor content, the ·OHaq production increases and enhances the inactivation efficiency of C. glabrata. Furthermore, it is found that the ambient air diffusion shows essential effects on the bactericidal activity of the remote humid argon discharge. Higher bactericidal effects can be obtained in open-space treatments compared to in a controlled Ar + H2O gas atmosphere. Key active air-byproduct species are believed to be generated in the suspension during the treatments and contributing to the inactivation process. Based on chemical analysis, the peroxynitrous acid ONOOHaq is considered as the key antimicrobial air-byproduct species. These results indicate the important dependence of plasma biomedical effects on the processing environment, which finally relates to the critical contributions of the key reactive species formed therein.
Chattopadhyay, Ankur; Rani, Poonam; Srivastava, Rajendra; Dhar, Purbarun
2018-06-01
The present article discusses the typical influence of grafted conducting polymers in the mesoscale pores of dielectric particles on the static and dynamic electrorheology and electro-viscoelastic behavior of corresponding colloids. Nanocrystalline meso-nanoporous zeolite has been prepared by chemical synthesis and subsequently polyaniline (PANI) coating has been implemented. Electrorheological (ER) suspensions have been formed by dispersing the nanoparticles in silicone oil and their viscoelastic behaviors are examined to understand the nature of such complex colloidal systems under electric fields. PANI-Zeolite ER fluids demonstrate higher static electroviscous effects and yield stress potential than untreated Zeolite, typically studied in literature. Transient electro-viscous characterizations show a stable and negligible hysteresis behavior when both the fluids are exposed to constant as well as time varying electric field intensities. Further oscillatory shear experiments of frequency and strain sweeps exhibit predominant elastic behavior in case of Zeolite based ER suspensions as compared to PANI systems. Detailed investigations reveal Zeolite based ER suspensions display enhanced relative yielding as well as electro-viscoelastic stability than the PANI-Zeolite. The steady state viscous behaviors are scaled against the non-dimensional Mason number to model the system behavior for both fluids. Experimental data of flow behaviors of both the ER fluids are compared with semi-classical models and it is found that the CCJ model possesses a closer proximity than traditional Bingham model, thereby revealing the fluids to be generic pseudo-linear fluids. The present article reveals that while the PANI based fluids are typically hailed superior in literature, it is only restricted to steady shear utilities. In case of dynamic and oscillatory systems, the traditional Zeolite based fluids exhibit superior ER caliber. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Wanjun; He, Tian
1996-01-01
A five degrees of freedom high precision micropositioner based on spring suspension and electromagnetic driving has been designed, constructed, and tested. The device consists of two parts: a moving part and a stationary part. The moving part, named as ``motor'', is formed with a rigid frame and three groups of coils fixed on it. The stationary part of the device, called ``stator'', includes a chassis and twelve U-shaped magnetic ``shoes''. The motor is attached to the stator with flat springs whose linear suspension allows it to move in all dimensions except the rotation around z axis. The coils have been laid out in such a way that fractions of them pass through the air gaps between the facing magnets in the magnetic shoes. When electrical currents are supplied to the coils, the resulting Lorenz forces drive the motor to move in the five degrees of freedom allowed by the spring suspension. Since the system is inherently stable and there is no mechanical friction, the open-loop resolutions of the device are found to be limited only by that of the 12-bit D/A board used. A closed-loop translation resolution of 0.3 μm has been achieved over a working space of 180 μm by 180 μm by 680 μm. A closed-loop rotation resolution of 2.73×10-6 rad has been achieved over a working space of 1.38×10-3 rad. Potentially the device can be used for high precision microprobing and testing, cellular biology, microsurgery, and testing of micromechanical devices in the fast developing MEMS area.
Karashima, Masatoshi; Kimoto, Kouya; Yamamoto, Katsuhiko; Kojima, Takashi; Ikeda, Yukihiro
2016-10-01
The aim of the present study was to develop a novel solubilization technique consisting of a nano-cocrystal suspension by integrating cocrystal and nanocrystal formulation technologies to maximize solubilization over current solubilizing technologies. Monodisperse carbamazepine-saccharin, indomethacin-saccharin, and furosemide-caffeine nano-cocrystal suspensions, as well as a furosemide-cytosine nano-salt suspension, were successfully prepared with particle sizes of less than 300nm by wet milling with the stabilizers hydroxypropyl methylcellulose and sodium dodecyl sulfate. Interestingly, the properties of resultant nano-cocrystal suspensions were dramatically changed depending on the physicochemical and structural properties of the cocrystals. In the formulation optimization, the concentration and ratio of the stabilizers also influenced the zeta potentials and particles sizes of the resultant nano-cocrystal suspensions. Raman spectroscopic analysis revealed that the crystalline structures of the cocrystals were maintained in the nanosuspensions, and were physically stable for at least one month. Furthermore, their dissolution profiles were significantly improved over current solubilization-enabling technologies, nanocrystals, and cocrystals. In the present study, we demonstrated that nano-cocrystal formulations can be a new promising option for solubilization techniques to improve the absorption of poorly soluble drugs, and can expand the development potential of poorly soluble candidates in the pharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Physical and Chemical Stability of Budesonide Mucoadhesive Oral Suspensions (MucoLox).
Ip, Kendice; Carvalho, Maria; Shan, Ashley; Banov, Daniel
2017-01-01
Budesonide is a corticosteroid that has been shown effective in the treatment of eosinophilic esophagitis, but there are currently no commercial medicines to treat this chronic allergic/immune condition, despite its prevalence in the U.S. Therefore, pharmaceutical compounding is the alternative choice to meet the therapeutic need of eosinophilic esophagitis patients. Two budesonide mucoadhesive oral suspensions (1 mg/10 mL and 2 mg/10 mL) were developed using the compounding vehicle MucoLox, a proprietary mucoadhesive polymer blend that promotes mucosal adhesion. The physical and chemical stability of the oral suspensions was tested over a period of 182 days, at room temperature and refrigerated conditions, in order to determine the corresponding beyond-use date. The physical characterization consisted in observing all samples for color/appearance and odor, and testing for pH and density, whereas the chemical characterization consisted in ultra-performance liquid chromatography assay testing. Both oral suspensions were proven physically and chemically stable, and the ultra-performance liquid chromatography method was proven stability indicating. As a result, the beyond-use date of the budesonide 1-mg/10-mL and 2-mg/10-mL mucoadhesive oral suspensions (MucoLox), in amber plastic bottles, is six months at both room temperature and refrigerated conditions. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Knepp, V M; Muchnik, A; Oldmark, S; Kalashnikova, L
1998-07-01
To identify a suitable nonaqueous, parenterally acceptable suspending vehicle whereby a therapeutic protein is delivered as a stable flowable powder, making it amenable to delivery from sustained delivery systems maintained at body temperature. Formulations of plasma derived Factor IX (pdFIX) and recombinant human alpha interferon (rhalpha-IFN) were formulated as dry powders, suspended in various vehicles (perfluorodecalin, perfluorotributylamine, methoxyflurane, polyethylene glycol 400, soybean oil, tetradecane or octanol) and stored at 37 degrees C. Stability was assessed by size exclusion chromatography, reverse phase chromatography, ion exchange chromatography, and bioassay, and was compared to the stability of dry powder formulations stored at 37 degrees C and -80 degrees C. PdFIX was stable when stored at 37 degrees C as a dry powder, or when the dry powder was suspended in the pharmaceutically acceptable vehicles perfluorodecalin or perfluorotributylamine. Suspensions of the powder in other pharmaceutically/parenterally acceptable vehicles such as soybean oil or PEG 400 resulted in aggregation and loss of bioactivity. A dry powder formulation of rhalpha-IFN suspended in perfluorodecalin was also stable at 37 degrees C. This study shows the potential utility of perfluorinated hydrocarbons as nonaqueous suspending vehicles for long term in-vivo delivery of therapeutic proteins.
How Insulating Particles Increase the Conductivity of a Suspension
NASA Astrophysics Data System (ADS)
Pannacci, N.; Lobry, L.; Lemaire, E.
2007-08-01
Nonconducting particles suspended in a liquid usually decreases the bulk conductivity since they form obstacles to the ions’ migration. However, for sufficiently high dc electric fields, these particles rotate spontaneously (Quincke rotation) and facilitate the ions migration: the effective conductivity of the suspension is thus increased. We present a theoretical analysis and show experimental results which demonstrate that the apparent conductivity of the whole suspension can be higher than that of the suspending liquid.
Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs.
Chen, Yongzhu; Tang, Chengkang; Zhang, Jie; Gong, Meng; Su, Bo; Qiu, Feng
2015-01-01
Finding a suitable delivery system to improve the water solubility of hydrophobic drugs is a critical challenge in the development of effective formulations. In this study, we used A6K, a self-assembling surfactant-like peptide, as a carrier to encapsulate and deliver hydrophobic pyrene. Pyrene was mixed with A6K by magnetic stirring to form a suspension. Confocal laser scanning microscopy, transmission electron microscopy, dynamic light scattering, atomic force microscopy, fluorescence, and cell uptake measurements were carried out to study the features and stability of the nanostructures, the state and content of pyrene, as well as the pyrene release profile. The suspension formed contained pyrene monomers trapped in the hydrophobic cores of the micellar nanofibers formed by A6K, as well as nanosized pyrene crystals wrapped up and stabilized by the nanofibers. The two different encapsulation methods greatly increased the concentration of pyrene in the suspension, and formation of pyrene crystals wrapped up by A6K nanofibers might be the major contributor to this effect. Furthermore, the suspension system could readily release and transfer pyrene into living cells. A6K could be further exploited as a promising delivery system for hydrophobic drugs.
Quantifying plant phenotypes with isotopic labeling and metabolic flux analysis
USDA-ARS?s Scientific Manuscript database
Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other more complex tissues such a...
Stability of an Alcohol-free, Dye-free Hydrocortisone (2 mg/mL) Compounded Oral Suspension.
Manchanda, Arushi; Laracy, Melissa; Savji, Taslim; Bogner, Robin H
2018-01-01
The stability of hydrocortisone in a commercially available dye-free oral vehicle was monitored to establish a beyond-use date for hydrocortisone oral suspension 2 mg/mL. Hydrocortisone oral suspension (2 mg/mL) was prepared from 10-mg tablets in a dye-free oral vehicle (Oral Mix, Medisca) and stored at 4°C and 25°C for 90 days in amber, plastic prescription bottles and oral syringes. The suspendability and dose repeatability of the oral suspension were evaluated. The solubility of hydrocortisone in the dye-free vehicle was determined. Over 90 days, pH and concentration of hydrocortisone in the oral suspension were measured. The stability-indicating nature of a high-pressure liquid chromatographic assay was evaluated in detail. The solubility of hydrocortisone in the dye-free vehicle was 230 mcg/mL at 25°C. This means that about 90% of the drug remains in the solid state where it is less susceptible to degradation. The preparation suspended well to support dose repeatability. The chromatographic assay resolved hydrocortisone from cortisone, excipients in the vehicle, and all degradation products. The assay passed United States Pharmacopeia system suitability tests. Hydrocortisone oral suspension (2 mg/mL) compounded using a dye-free, alcohol-free oral vehicle, Oral Mix, was stable in amber plastic bottles and syringes stored at 4°C and 25°C for 90 days within a 95% confidence interval. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Gye, Hyun Jung; Nishizawa, Toyohiko
2016-09-02
Nervous necrosis virus (NNV) belongs to the genus Betanodavirus (Nodaviridae). It is highly pathogenic to various marine fishes. Here, we investigated the antigenicity changes of cultured NNV suspensions during 14days of dialyses using a dialysis tube at 1.4×10(4) molecular weight cut off (MWCO) in three different buffers (Dulbecco's phosphate buffered saline (D-PBS), 15mM Tris-HCl (pH 8.0), and deionized water (DIW)). Total NNV antigen titers of cultured NNV suspension varied depending on different dialysis buffers. For example, total NNV antigen titer during D-PBS dialysis was increased once but then decreased. During Tris-HCl dialysis, it was relatively stable. During dialysis in DIW, total NNV antigen titer was increased gradually. These antigenicity changes in NNV suspension might be due to changes in the aggregation state of NNV particles and/or coat proteins (CPs). ELISA values of NNV suspension changed due to changing aggregates state of NNV antigens. NNV particles in suspension were aggregated at a certain level. These aggregates were progressive after D-PBS dialysis, but regressive after Tris-HCl dialysis. The purified NNV particles self-aggregated after dialysis in D-PBS or in Tris-HCl containing 600mM NaCl, but not after dialysis in Tris-HCl or DIW. Quantitative analysis is merited to determine NNV antigens in the highly purified NNV particles suspended in buffer at low salt condition. Copyright © 2016 Elsevier B.V. All rights reserved.
Moghimipour, Eskandar; Salimi, Anayatollah; Rezaee, Saeed; Balack, Maryam; Handali, Somayeh
2014-01-01
Background: Nitrofurantoin is a nitrofuran antibiotic that has been used for treatment of urinary tract against positive and negative bacteria. Objectives: The aim of this study was to evaluate the effect of structural vehicles and flocculating agents on physical stability and rheological behavior of nitrofurantoin suspension. Materials and Methods: To formulate the suspensions, the effect of glycerin and polysorbate 80 as wetting agents was evaluated and their particle sizes were determined using the sieve method. Then to achieve controlled flocculation, sodium citrate and aluminum chloride were added. After choosing the suitable wetting and flocculating agents, structural vehicles such as sodium carboxyl methyl cellulose and Veegum were evaluated individually and in combination. In addition, the effect of sorbitol on density of continuous phase and some physical stability parameters such as sedimentation volume, degree of flocculation and ease of redispersion of the suspensions were evaluated. After incorporation of structural vehicles, the rheological properties of formulations were also determined to find their flow behavior. Results: According to the results, glycerin (0.2%) and sodium citrate (0.3%) had the best effect on the suspension stability as wetting and flocculating agents, respectively. Rheological properties of formulations showed pseudoplastic behavior with some degree of thixotropy. Conclusions: In conclusion, the suspension containing Veegum 1%, sodium carboxy methyl cellulose 1%, glycerine 0.2%, sodium citrate 0.3% and sorbitol 20 % was chosen as the most physically stable formulation. PMID:24872937
Stability of sotalol hydrochloride in extemporaneously prepared oral suspension formulations.
Sidhom, Madiha B; Rivera, Nadya; Almoazen, Hassan; Taft, David R; Kirschenbaum, Harold L
2005-01-01
The physical, chemical, and microbial stabilities of extemporaneously compounded oral liquid formulations of sotalol hydrochloride were studied. Sotalol hydrochloride oral liquid suspensions (5mg/mL) were prepared from commercially available tablets (Betapace) in a 1:1 mixture of Ora-Plus: Ora-Sweet, a 1:1 mixture of Ora-Plus:Ora-Sweet SF, and a 1:2.4 mixture of simple syrup:methylcellulose vehicle. Six batches of each formulation were prepared; three were stored at refrigerated temperature (2 deg to 8 deg C) and three at room temperature (20 deg to 25 deg C). Samples were collected from each batch weekly for 6 weeks, and again at 12 weeks. Samples were analyzed by means of a high-performance liquid chromatographic method, and the concentrations obtained were compared to the theoretical time zero value. Samples were examined for pH, odor, color, and consistency changes. The suspensions also were evaluated for their microbial stability. Sotalol hydrochloride oral liquid suspensions (5mg/mL) were chemically stable for 12 weeks regardless of storage conditions (room temperature or refrigerated). Bacterial growth was not supported by any of the formulations. Suspensions stored at refrigerated temperature retained better physical quality (e.g., odor, color, and consistency) than suspensions stored at room temperature. Overall, this study demonstrates that oral formulations of sotalol hydrochloride can be readily prepared with commercially available vehicles. The method of preparation is relatively simple, the materials are relatively inexpensive, and the products have a shelf-life of at least 12 weeks.
NASA Technical Reports Server (NTRS)
Britcher, Colin; Yang, Yan
1997-01-01
This thesis covers the activities associated with (1) recommissioning of the 6-inch Magnetic Suspension and Balance System (MSBS) and (2) enhancing the Annular Suspension and Pointing System (ASPS). These activities continue the program of research in the multi degree of freedom magnetic suspension program at Old Dominion University. The 6-inch MSBS is a large gap magnetic suspension system used as a model support and balance system in wind tunnels. The first stage of recommissioning of the 6-inch MSBS for the 6-inch subsonic wind tunnel is performed. Experimental data and computational results for the magnetic field distribution of the MSBS are given and compared with the estimated magnetic field strength. The comparison indicates that the magnet system is still operating as designed. The Electromagnetic Position Sensor used in the 6-inch MSBS is analyzed before its find reinstatement. The ASPS is a small gap magnetic suspension system providing orientation, mechanical isolation and fine pointing of space payloads. The control system of the ASPS is improved by designing a new code to realize red time control over the system. The original Proportional-Derivative controller is upgraded to a Proportional-Integral-Derivative controller. This progress leads to a system which is more stable and robust with less noise. This new controller is generic and can be adapted to the 6-inch MSBS. Finally, future work on these two systems is proposed.
Ceramic Near-Net Shaped Processing Using Highly-Loaded Aqueous Suspensions
NASA Astrophysics Data System (ADS)
Rueschhoff, Lisa
Ceramic materials offer great advantages over their metal counterparts, due to their lower density, higher hardness and wear resistance, and higher melting temperatures. However, the use of ceramics in applications where their properties would offer tremendous advantages are often limited due to the difficulty of forming them into complex and near-net shaped parts. Methods that have been developed to injection-mold or cast ceramics into more complicated shapes often use significant volume fractions of a carrier (often greater than 35 vol.% polymer), elevated temperature processing, or less-than-environmentally friendly chemicals where a complex chemical synthesis reaction must be timed perfectly for the approach to work. Furthermore, the continuing maturation of additive manufacturing methods requires a new approach for flowing/placing ceramic powders into useful designs. This thesis addresses the limitations of the current ceramic forming approaches by developing highly-stabilized and therefore high solids loading ceramic suspensions, with the requisite rheology for a variety of complex and near-net shaped forming techniques. Silicon nitride was chosen as a material of focus due to its high fracture toughness compared to other ceramic materials. Designing ceramic suspensions that are flowable at room temperature greatly simplifies processing as neither heating nor cooling are required during forming. Highly-loaded suspensions (>40 vol.%) are desired because all formed ceramic bodies have to be sintered to remove pores. Finally, using aqueous-based suspensions reduces any detrimental effect on the environment and tooling. The preparation of highly-loaded suspensions requires the development of a suitable dispersant through which particle-particle interactions are controlled. However, silicon nitride is difficult to stabilize in water due to complex surface and solution chemistry. In this study, aqueous silicon nitride suspensions up to 45 vol.% solids loading were dispersed using commercially available comb-type copolymer. These copolymers are used as superplasticizers in the concrete industry and are referred to as water-reducing admixtures (WRAs). Four different WRA dispersants were examined and chemical analysis determined that each was made up of a sodium salt of polyacrylic acid (PAA-Na) backbone with neutral polyethylene oxide (PEO) side chains that afford steric stabilization. The general structures of the WRAs were compared to each other by measuring the relative areas of their prominent FTIR peaks and calculating a PAA-Na/PEO peak ratio. Suspensions were made with as-received silicon nitride powders with 5 wt.% aluminum oxide and 5 wt.% yttrium oxide added as sintering aids. Three of the four WRA dispersants studied were able to produce suspensions with 43 vol.% solids loading and 5 vol.% polymer dispersant, while exhibiting a yield-pseudoplastic behavior for shear rates up to 30 s-1. At higher solids loading (45 to 47 vol.%), a shift to shear thickening behavior was observed at a critical shear rate for these WRAs. Those WRAs with a lower PAA-Na/PEO peak ratio displayed better stabilization and diminished shear thickening behavior. The vol.% of the dispersant was optimized, producing yield-pseudoplastic suspensions containing 45 vol.% solids loading with yield stresses less than 75 Pa, no shear thickening behavior, and viscosities less than 75 Pa-s for shear rates in the range of 1 to 30 s-1. Using suspensions prepared with two of the WRAs investigated in this work, silicon nitride near-net shaped parts were formed via a novel injection molding process by loading each suspension in a syringe and injecting them at a controlled rate into a mold. Each suspensions had carefully tailored yield-pseudoplastic rheology such that they can be injection molded at room temperature and low pressures (< 150 kPa). Four suspensions were studied; two different commercially available concrete water-reducing admixtures (WRAs) were used as dispersants with and without a polymer binder (Polyvinylprolidone, PVP) added for rheological modification and improved green body strength. Test bars formed via this process were sintered to high densities (up to 97% TD) without the use of external pressure, and had complete conversion to the desirable beta-Si3N4 phase with high flexural strengths up to 700 MPa. The specimen sets with the smallest average pore size on the fracture surface (77 mum) had the highest average flexural strengths of 573 MPa. The hardness of all specimens was approximately 16 GPa. The water-based suspensions, ease and low cost of processing, and robust mechanical properties obtained demonstrate this as a viable process for the economical and environmentally friendly production of Si3N4 parts. Finally, additive manufacturing was also used as a method to overcome ceramic forming difficulties and to create near-net shaped dense components via room-temperature direct ink writing. In this processes, highly loaded aqueous alumina suspensions were extruded in a layer-by-layer fashion using a low-cost syringe style 3D printer. With alumina as a model material, the effect of solids loading on rheology, specimen uniformity, density, microstructure, and mechanical properties was studied. All suspensions contained a polymer binder ( 5 vol.%), dispersant, and 51 to 58 vol.% alumina powder. Rheological measurements indicated all suspensions to be yield-pseudoplastic, and both yield stress and viscosity were found to increase with increasing alumina solids loading. Shear rates ranging from 19.5 to 24.2 s-1, corresponding to viscosities of 9.8 to 17.2 Pa·s, for the 53 - 56 vol.% alumina suspensions were found to produce the best results for the 1.25 mm tip employed during writing. All parts were sintered to greater than 98% of true density, with grain sizes ranging from 3.2 to 3.7 mum. The average flexure strength, which ranged from 134 to 157 MPa, was not influenced by the alumina solids loading. In limited study, additive manufacturing of silicon nitride suspensions stabilized with a WRA has been established. These processing routes have been proven as low-cost and viable means for producing robust ceramic parts, both of which can be tailored to many systems to expand the use of ceramics materials. Further studies on utilizing the flow stress behavior during both injection molding and direct ink writing could be beneficial in creating ceramic materials with carefully tailored microstructure to increase mechanical performance.
Preparation of Chitin Nanofibers-Gold Metallic Nanocomposite by Phase Transfer Method
NASA Astrophysics Data System (ADS)
Shervani, Zameer; Taisuke, Yukawa; Ifuku, Shinsuke; Saimoto, Hiroyuki; Morimoto, Minoru
2012-10-01
Chitin nanofibers (CNFs)-Au(0) nanoparticles (Au NPs) blends in dispersion, flakes and thin film or sheet forms were first prepared by mixing pre-organized Au NPs prepared in triblock copolymer with diluted CNFs suspension. Water soluble polymer triblock copolymer poly (methyl vinyl ether, PMVE) in the amount 0.6 wt.% was used to prepare NPs and 0.12 wt.% net chitin content was used as CNFs suspension to prepare the blended composite. Au NPs of size 4.4 nm (σ = 1.2) were obtained when Au salt (HAuCl4ṡ3H2O (hydrogen tetrachloroaurate (III) trihydrate) was reduced by 5 equivalents of NaBH4. PMVE polymer acted as a stabilizing or capping agent for pre-organized NPs. Completion of reaction was fast, all salt reduced to metallic form in just 15 min after the addition of NaBH4. CNFs (1 wt.% chitin) which was used to prepare CNFs-Au NPs blend composite were prepared from crab shell in never dried acidic condition by established combination of chemical and mechanical processes that gave 25-40 nm width and high aspect ratio CNFs. When polymer capped Au NPs mixed with CNF suspension, all Au NPs and 56% polymer were mass transferred from water phase to entangle with more polar moieties of CNFs-water suspension as no trace of Au NPs were noticed in water-polymer mother liquor after blending with CNFs suspension. Particles size of CNFs-Au NPs composite was measured by employing TEM, SAXS and SEM techniques. CNFs-Au NPs composite were characterized in solution and compressed dried sheet form by recording digital images, UV-vis and XRD spectroscopies. CNFs-Au NPs suspension had antibacterial activity against gram positive bacteria S. aureus.
Stability of oseltamivir in various extemporaneous liquid preparations.
Ford, Stephen M; Kloesel, Lawson G; Grabenstein, John D
2007-01-01
The purpose of this study was to determine the stability of oseltamivir, the active ingredient in Tamiflu, in contemporaneously compounded suspensions for a period of not less than 90 days. The suspension vehicles provided for the study were chosen because of ease of preparation, commercial availability, and palatability. Stability of the active ingredient was demonstrated for suspensions prepared in PCCA-Plus, PCCA Acacia, and 1% methylcellulose and was independent of storage temperature (tested temperatures were 2 deg C to 8 deg C and 25 deg C). A control sample of the commercial liquid form of Tamiflu was prepared, stored and analyzed along with the samples prepared from the contents of capsules. There was no difference in the apparent stability of the two forms of the drug preparation.
Study on needs for a magnetic suspension system operating with a transonic wind tunnel
NASA Technical Reports Server (NTRS)
Martindale, W. R.; Butler, R. W.; Starr, R. F.
1985-01-01
The U.S. aeronautical industry was surveyed to determine if current and future transonic testing requirements are sufficient to justify continued development work on magnetic suspension and balance systems (MSBS) by NASA. The effort involved preparation of a brief technical description of magnetic suspension and balance systems, design of a survey form asking specific questions about the role of the MSBS in satisfying future testing requirements, selecting nine major aeronautics companies to which the description and survey forms were sent, and visiting the companies and discussing the survey to obtain greater insight to their response to the survey. Evaluation and documentation of the survey responses and recommendations which evolved from the study are presented.
Development and validation of a discriminative dissolution test for nimesulide suspensions.
da Fonseca, Laís Bastos; Labastie, Márcio; de Sousa, Valéria Pereira; Volpato, Nadia Maria
2009-01-01
The dissolution test for oral dosage forms has recently widened to a variety of special dosage forms such as suspensions. For class II drugs, such as nimesulide (NMS), this study is very important because formulation problems may compromise drug bioavailability. In the present work, tests with four brands of commercially available NMS (RA, TS, TB, and TC) have been performed in order to study their dissolution at different conditions. The suspensions have been characterized relatively to particle size, pH, and density besides NMS assay and the amount of drug in solution in the suspension vehicles. The dissolution study was conducted using the following media: simulated intestinal fluid, pH 6.8, containing polysorbate 80 (P80) or sodium lauryl sulfate (SLS); phosphate buffer, pH 7.4, with P80 and aqueous solution of SLS. Concerning the quantitative analysis, the UV-VIS spectrophotometry could have been used in substitution to high-performance liquid chromatography since the methodology had been adequately validated. The influence of the drug particle size distribution was significant on the dissolution profiles of NMS formulations, confirming to be a factor that should be strictly controlled in the development of oral suspensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuo; Zhong, Lirong; Li, Guanghe
Colloidal silica (fumed silica) suspensions are being tested as carriers for remedial amendment delivery in subsurface remediation and as media for underground contamination containment. The knowledge of the rheological behavior of the silica suspensions is lack in the literature while it is essential for the preparation and field injection of the suspensions. This contribution is focused on the rheological characteristics of colloidal silica suspensions under various environmental conditions relevant to amendment delivery for subsurface remediation. We investigated the influence of silica particle concentration, water source, ionic strength, pH, aging, amendment type and concentration, and subsurface sediment on the rheological behaviormore » of the suspensions. All tested suspension formulations exhibited shear thinning before gelation. Higher silica particle concentration and salinity (Na+ and K+) increased suspensions’ viscosity and the degree of shear thinning. The viscosity of suspensions increased with aging. The suspensions at natural pH exhibited the highest viscosity compared to the acidic and alkaline suspensions with the same silica concentration. Addition of KMnO4 amendment to aqueous silica suspensions increased viscosity, while addition of alcohol amendment decreased suspensions’ viscosity. The presence of amendment did not reduce shear thinning. The gelation rate of silica suspensions was increased with silica concentration and with the addition of sediments. The rheological characteristics of shear thinning aqueous fumed silica suspensions were compared to that of shear thinning solutions formed with organic polymer xanthan gum, which was applied for amendment delivery in subsurface remediation.« less
DC conductivity of a suspension of insulating particles with internal rotation
NASA Astrophysics Data System (ADS)
Pannacci, N.; Lemaire, E.; Lobry, L.
2009-04-01
We analyse the consequences of Quincke rotation on the conductivity of a suspension. Quincke rotation refers to the spontaneous rotation of insulating particles dispersed in a slightly conducting liquid and subject to a high DC electric field: above a critical field, each particle rotates continuously around itself with an axis pointing in any direction perpendicular to the DC field. When the suspension is subject to an electric field lower than the threshold one, the presence of insulating particles in the host liquid decreases the bulk conductivity since the particles form obstacles to ion migration. But for electric fields higher than the critical one, the particles rotate and facilitate ion migration: the effective conductivity of the suspension is increased. We provide a theoretical analysis of the impact of Quincke rotation on the apparent conductivity of a suspension and we present experimental results obtained with a suspension of PMMA particles dispersed in weakly conducting liquids.
Gas hydrate suspensions formation and transportation research
NASA Astrophysics Data System (ADS)
Gulkov, A. N.; Gulkova, S.; Zemenkov, Yu D.; Lapshin, V. D.
2018-05-01
An experimental unit for studying the formation of gas hydrate suspensions and their transport properties is considered. The scheme of installation and the basic processes, which can be studied, are described. The results of studies of gas hydrates and a gas hydrate suspension’ formation in an adiabatic process in a stream of seawater are given. The adiabatic method of obtaining gas hydrates and forming gas hydrate suspensions is offered to use. Directions for further research are outlined.
Microscopic suspension feeders near boundaries: Effects of external water flow
NASA Astrophysics Data System (ADS)
Pepper, Rachel; Koehl, M. A. R.
2015-11-01
Microscopic sessile suspension feeders are an important part of aquatic ecosystems and form a vital link in the transfer of carbon in aquatic food webs. These suspension feeders live attached to boundaries, consume bacteria and small detritus, and are in turn eaten by larger organisms. Many create a feeding current that draws fluid towards them, and from which they filter their food. In still water, the feeding current consists of recirculating eddies which form as a result of fluid forcing near a boundary. These recirculating eddies can be depleted of food and significantly decrease nutrient uptake; a variety of strategies have been proposed for how attached feeders increase their access to undepleted water. We investigate the interaction of the flow produced by a microscopic suspension feeder with external environmental flow, such as the current in a stream or ocean. We show through calculations that even very slow flow (on the order of microns per second) is sufficient to provide a constant supply of undepleted water to suspension feeders when the feeders are modeled with perfect nutrient capture efficiency and in the absence of diffusion. We also discuss which natural flow environments exceed the threshold to supply undepleted water and which do not, and we examine how characteristics of the suspension feeders themselves, such as stalk length and feeding disk size, influence feeding currents and their interactions with external flows.
Winiarski, Aleksander P; Infeld, Martin H; Tscherne, Ronald; Bachynsky, Maria; Rucki, Richard; Nagano-Mate, Kathy
2007-01-01
To develop a simple, standardized method for the extemporaneous compounding of an oral liquid form of oseltamivir from commercially available Tamiflu 75 mg capsules (Roche Pharmaceuticals) and to determine the stability of oseltamivir in this preparation. Chemical and microbial stability study. Laboratory. None. Extemporaneous oral liquid formulations of oseltamivir (15 mg/mL) were prepared in Cherry Syrup (Humco) and Ora-Sweet SF (Paddock Laboratories) using methods consistent with current compounding practice in a pharmacy setting. Preparations were stored in amber glass and amber polyethyleneterephthalate bottles at 5 degrees C +/- 2 degrees C (41 degrees F +/- 4 degrees F) and 25 degrees C +/- 2 degrees C (77 degrees F +/- 4 degrees F) at 60% +/- 5% relative humidity (RH) for 35 days and 30 degrees C +/- 2 degrees C (86 degrees F +/- 4 degrees F) at 65% +/- 5% RH for 13 days. Samples were monitored for appearance, pH, assay, degradation products, and microbiologic stability. The Cherry Syrup preparation, in either bottle type, was stable for up to 35 days under refrigeration (5 degrees C) and up to 5 days at room temperature (25 degrees C). It was not stable when stored at 30 degrees C for 5 days. The Ora-Sweet SF preparation was stable for up to 35 days at 5 degrees C or 25 degrees C and for up to 13 days at 30 degrees C in either bottle type. Both preparations maintained microbiologic stability for 35 days. Both preparations are stable under the described conditions and may provide an option in situations where the marketed suspension is unavailable.
Method for forming thin composite solid electrolyte film for lithium batteries
NASA Technical Reports Server (NTRS)
Attia, Alan I. (Inventor); Nagasubramanian, Ganesan (Inventor)
1997-01-01
A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a cosolvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.
Method for forming thin composite solid electrolyte film for lithium batteries
NASA Technical Reports Server (NTRS)
Nagasubramanian, Ganesan (Inventor); Attia, Alan I. (Inventor)
1994-01-01
A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a co-solvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.
48 CFR 1222.406-9 - Withholding from or suspension of contract payments.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Labor Standards for Contracts Involving Construction 1222.406-9 Withholding from or suspension of... 4220.7, Employee Claim for Wage Restitution, is obtained from each employee claiming restitution under the contract. The Comptroller General (Claims Division) must receive this form with a completed...
48 CFR 1222.406-9 - Withholding from or suspension of contract payments.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Labor Standards for Contracts Involving Construction 1222.406-9 Withholding from or suspension of... 4220.7, Employee Claim for Wage Restitution, is obtained from each employee claiming restitution under the contract. The Comptroller General (Claims Division) must receive this form with a completed...
48 CFR 1222.406-9 - Withholding from or suspension of contract payments.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Labor Standards for Contracts Involving Construction 1222.406-9 Withholding from or suspension of... 4220.7, Employee Claim for Wage Restitution, is obtained from each employee claiming restitution under the contract. The Comptroller General (Claims Division) must receive this form with a completed...
48 CFR 1222.406-9 - Withholding from or suspension of contract payments.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Labor Standards for Contracts Involving Construction 1222.406-9 Withholding from or suspension of... 4220.7, Employee Claim for Wage Restitution, is obtained from each employee claiming restitution under the contract. The Comptroller General (Claims Division) must receive this form with a completed...
48 CFR 1222.406-9 - Withholding from or suspension of contract payments.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Labor Standards for Contracts Involving Construction 1222.406-9 Withholding from or suspension of... 4220.7, Employee Claim for Wage Restitution, is obtained from each employee claiming restitution under the contract. The Comptroller General (Claims Division) must receive this form with a completed...
21 CFR 522.1885 - Prednisolone tertiary butylacetate suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Prednisolone tertiary butylacetate suspension. 522.1885 Section 522.1885 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW...
21 CFR 522.1890 - Sterile prednisone suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sterile prednisone suspension. 522.1890 Section 522.1890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS...
Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meissner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin
2009-04-01
Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobalt-doped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendrocyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Chemical-physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect.
Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meißner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin
2009-01-01
Background Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. Objective We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobaltdoped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. Methods We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendro cyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Results Chemical–physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Conclusions Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect. PMID:19440490
Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S
2014-11-04
Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.
NASA Astrophysics Data System (ADS)
Taglieri, Giuliana; Felice, Benito; Daniele, Valeria; Ferrante, Fabiola
2015-10-01
Nanoparticles form the fundamental building blocks for many exciting applications in various scientific disciplines. However, the problem of the large-scale synthesis of nanoparticles remains challenging. An original, eco-friendly, single step, and scalable method to produce magnesium hydroxide nanoparticles in aqueous suspensions is here presented. The method, based on an exchange ion process, is extremely simple and rapid (few minutes). It employs cheap or renewable reactants, operates at room temperature and does not require intermediate steps (washings/purifications) to eliminate undesired compounds. Moreover, it is possible to regenerate the exchange material and to reuse it for new operation of synthesis, according to a cyclic procedure, providing potential aptitudes of scalability of nanoparticles production. Some of the synthesis parameters are varied, and structural and morphological features of the produced nanoparticles, after few seconds from the beginning of the synthesis up to the ending time, are investigated by means of several techniques, such as X-ray diffraction (profile fitting and Rietveld refinement), transmission electron microscopy, infrared spectroscopy, thermal analyses, and surface area measurements. In any case, pure and stable suspensions are produced, characterized by crystalline and mesoporous Mg(OH)2 nanoparticles, with lamellar morphology. In particular, the nanolamellas appeared constituted by a superimposition of hexagonally plated and crystalline nanosized precursors (2-3 nm in dimensions), crystallographically oriented.
A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery.
Crombez, Laurence; Morris, May C; Heitz, Frederic; Divita, Gilles
2011-01-01
The dramatic acceleration in identification of new nucleic acid-based therapeutic molecules such as short interfering RNA (siRNA) and peptide-nucleic acid (PNA) analogues has provided new perspectives for therapeutic targeting of specific genes responsible for pathological disorders. However, the poor cellular uptake of nucleic acids together with the low permeability of the cell membrane to negatively charged molecules remain major obstacles to their clinical development. Several non-viral strategies have been proposed to improve the delivery of synthetic short oligonucleotides both in cultured cells and in vivo. Cell-penetrating peptides constitute very promising tools for non-invasive cellular import of oligonucleotides and analogs. We recently described a non-covalent strategy based on short amphiphatic peptides (MPG8/PEP3) that have been successfully applied ex vivo and in vivo for the delivery of therapeutic siRNA and PNA molecules. PEP3 and MPG8 form stable nanoparticles with PNA analogues and siRNA, respectively, and promote their efficient cellular uptake, independently of the endosomal pathway, into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. This chapter describes easy-to-handle protocols for the use of MPG-8 or PEP-3-nanoparticle technologies for PNA and siRNA delivery into adherent and suspension cell lines as well as in vivo into cancer mouse models.
A two cable, six link boom crane for lunar construction
NASA Technical Reports Server (NTRS)
Taylor, Robert M.; Mikulas, Martin M., Jr.; Hedgepeth, John M.
1993-01-01
This paper presents the conceptual design and analysis of a modified crane boom and cable suspension which provide contro1 over all six degrees of freedom of a payload. Two cables pass around pulleys to form six links between the payload and boom. A linearization of the pulley mechanics was derived to create finite element models of the system. The models were experimentally verified and used to explore variations of the suspension geometry. Several crane concepts which use the suspension are discussed and illustrated.
NASA Astrophysics Data System (ADS)
Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume
2017-06-01
In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.
High-pressure high-temperature rheological studies of colloidal suspensions with carbon nanotube
NASA Astrophysics Data System (ADS)
Baby, Anoop; Sadr, Reza; Yarc, Rommel; Amani, Mahmood
2017-11-01
Selection of the drilling fluid, drilling mud, is vital in minimizing the cost and time required for the drilling in oil fields. Drilling mud aids in cooling, lubricating drilling bit, removing the debries from the drill bore and maintaining the wellbore stability. Owing to the enhanced thermo-physical properties and stable nature, suspensions of nanoparticles have been suggested for drilling fluids. High-pressure and high-temperature rheology of a nanomud suspension (nano particles suspended in a mud solution) is studied here. The nanomud is prepared by dispersing a water-based drilling mud suspension (water with 1% Bentonite and 7% Barite particles) with multi-walled carbon nanotubes, MWCNT. The effect of pressure, temperature, and shear rate are independently studied for the various particle loading of the nanoparticles. Viscosity values are measured at a maximum pressure of 170MPa with temperatures ranging from ambient to 180oC. The effect of MWCNT concentration and variation in shear rate are also investigated A shear thinning non-Newtonian behavior is observed for the basemud and the nanomud samples for all cases. The basemud showed an increase in viscosity with an increase in pressure. However, with MWCNT particle addition, this trend is observed to have reversed.
Kalam, Mohd Abul; Raish, Mohammad; Ahmed, Ajaz; Alkharfy, Khalid M; Mohsin, Kazi; Alshamsan, Aws; Al-Jenoobi, Fahad I; Al-Mohizea, Abdullah M; Shakeel, Faiyaz
2017-07-01
Thymoquinone (TQ) is a poorly water soluble bioactive compound which shows poor oral bioavailability upon oral administration. Due to poor aqueous solubility and bioavailability of TQ, various self-nanoemulsifying drug delivery systems (SNEDDS) of TQ were developed and evaluated for enhancement of its hepatoprotective effects and oral bioavailability. Hepatoprotective and pharmacokinetic studies of TQ suspension and TQ-SNEDDS were carried out in rat models. Different SNEDDS formulations of TQ were developed and thermodynamically stable TQ-SNEDDS were characterized for physicochemical parameters and evaluated for drug release studies via dialysis membrane. Optimized SNEDDS formulation of TQ was selected for further evaluation of in vivo evaluation. In vivo hepatoprotective investigations showed significant hepatoprotective effects for optimized TQ-SNEDDS in comparison with TQ suspension. The oral administration of optimized SNEDDS showed significant improvement in in vivo absorption of TQ in comparison with TQ suspension. The relatively bioavailability of TQ was enhanced 3.87-fold by optimized SNEDDS in comparison with TQ suspension. The results of this research work indicated the potential of SNEDDS in enhancing relative bioavailability and therapeutic effects of natural bioactive compounds such as TQ. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Stuart, Keith; Bartosh, Blake
1993-01-01
Innovative Information Systems (IIS), Inc. is in the process of designing and fabricating a high bandwidth force and moment measuring device (i.e. the Magnetic Thruster Test Stand). This device will use active magnetic suspension to allow direct measurements of the forces and torques generated by the rocket engines of the missile under test. The principle of operation of the Magnetic Thruster Test Stand (MTTS) is based on the ability to perform very precise, high bandwidth force and position measurements on an object suspended in a magnetic field. This ability exists due to the fact that the digital servo control mechanism that performs the magnetic suspension uses high bandwidth (10 kHz) position data (via an eddy-current proximity sensor) to determine the amount of force required to maintain stable suspension at a particular point. This force is converted into required electromagnet coil current, which is then output to a current amplifier driving the coils. A discussion of how the coil current and magnetic gap distance (the distance between the electromagnet and the object being suspended) is used to determine the forces being applied from the suspended assembly is presented.
Ferreira, Anderson O; Polonini, Hudson C; Loures da Silva, Sharlene; Cerqueira de Melo, Victor Augusto; de Andrade, Laura; Brandão, Marcos Antônio Fernandes
2017-01-01
The objective of this study was to evaluate the stability of 10 commonly used active pharmaceutical ingredients compounded in oral suspensions using an internationally used suspending vehicle (SyrSpend SF PH4): alprazolam 1.0 mg/mL, atropine sulfate 0.1 mg/mL, glutamine 250.0 mg/mL, levofloxacin 50.0 mg/mL, metoprolol tartrate 10.0 mg/mL, nitrofurantoin 2.0 mg/mL, ondansetron hydrochloride 0.8 mg/mL, oxandrolone 3.0 mg/mL, pregabaline 20.0 mg/mL, riboflavin 10.0 mg/mL. All suspensions were stored at both controlled refrigeration (2°C to 8°C) and controlled room temperature (20°C to 25°C). Stability was assessed by measuring the percent recovery at varying time points throughout a 90-day period. Active pharmaceutical ingredients quantification was performed by high-performance liquid chromatography via a stability-indicating method. Given the percentage of recovery of the active pharmaceutical ingredients within the suspensions, the beyond-use date of the final products (active pharmaceutical ingredients + vehicle) was at least 90 days for all suspensions with regard to both temperatures. This suggests that the vehicle is stable for compounding active pharmaceutical ingredients from different pharmacological classes. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations.
Baumgartner, Ramona; Eitzlmayr, Andreas; Matsko, Nadejda; Tetyczka, Carolin; Khinast, Johannes; Roblegg, Eva
2014-12-30
Since more than 40% of today's drugs have low stability, poor solubility and/or limited ability to cross certain biological barriers, new platform technologies are required to address these challenges. This paper describes a novel continuous process that converts a stabilized aqueous nano-suspension into a solid oral formulation in a single step (i.e., the NANEX process) in order to improve the solubility of a model drug (phenytoin). Phenytoin nano-suspensions were prepared via media milling using different stabilizers. A stable nano-suspension was obtained using Tween(®) 80 as a stabilizer. The matrix material (Soluplus(®)) was gravimetrically fed into the hot melt extruder. The suspension was introduced through a side feeding device and mixed with the molten polymer to immediately devolatilize the water in the nano-suspension. Phenytoin nano-crystals were dispersed and embedded in the molten polymer. Investigation of the nano-extrudates via transmission electron microscopy and atomic force microscopy showed that the nano-crystals were embedded de-aggregated in the extrudates. Furthermore, no changes in the crystallinity (due to the mechanical and thermal stress) occurred. The dissolution studies confirmed that the prepared nano-extrudates increased the solubility of nano-crystalline phenytoin, regardless of the polymer. Our work demonstrates that NANEX represents a promising new platform technology in the design of novel drug delivery systems to improve drug performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Moore, Kenneth T; Krook, Mark A; Vaidyanathan, Seema; Sarich, Troy C; Damaraju, C V; Fields, Larry E
2014-07-01
Because some patients have difficulty swallowing a whole tablet, we investigated the relative bioavailability of a crushed 20 mg rivaroxaban tablet and of 2 alternative crushed tablet dosing strategies. Stability and nasogastric (NG) tube adsorption characteristics of a crushed rivaroxaban tablet were assessed. Then, in 55 healthy adults, relative bioavailability of rivaroxaban administered orally as a whole tablet (Reference [Whole-Oral]), crushed tablet in applesauce suspension (Crushed-Oral), or crushed tablet in water suspension via NG tube (Crushed-NG) were determined. There were no significant changes in mean percent of non-degraded rivaroxaban recovered over 4 hours from crushed tablet suspensions (>98.4% recovery across all suspensions and time points) or after NG tube exposure (recovery: 99.1% for silicone and 98.9% for polyvinyl chloride NG tubes). Relative bioavailability was similar between Crushed-Oral and Reference dosing (Cmax and AUC∞ were within the 80-125% bioequivalence limits). Relative bioavailability was also similar between the Crushed-NG and Reference dosing (AUC∞ was within bioequivalence limits; Cmax [90% CI range: 78.5-85.8%] was only slightly below the 80% lower bioequivalence limit). A crushed rivaroxaban tablet was stable and when administered orally or via NG tube, displayed similar relative bioavailability compared to a whole tablet administered orally. © 2014, The American College of Clinical Pharmacology.
Stability of penethamate, a benzylpenicillin ester prodrug, in oily vehicles.
Jain, Rohit; Bork, Olaf; Tucker, Ian G
2015-01-01
Penethamate (PNT) is an ester prodrug of benzylpenicillin which is marketed as dry powder for reconstitution with aqueous vehicle prior to injection. The purpose of this paper was to investigate the chemical stability of PNT in oily formulations to provide a basis for a ready-to-use (RTU) oil-based PNT formulation. The chemical stability of PNT solutions and suspensions in light liquid paraffin (LP), medium chain triglyceride (MIG), ethyl oleate (EO) and sunflower oil (SO) was investigated at 30 °C. Solid state stability of PNT powder and stability of PNT in EO suspensions with different moisture contents were also evaluated. The solubility of PNT in the oils was in order SO > EO > MIG > LP. Degradation of PNT was rapid in oily solutions and less than 10% remained after 7-15 days. Stability of PNT decreased with increase in moisture content in ethyl oleate suspensions. PNT was stable over four weeks in the solid state. Hydrolysis, due to moisture in the oil formulation is not the only degradation mechanism. PNT stability (% drug remaining) in oily suspensions after 3.5 months was in the order LP (96.2%) > MIG (95.4%) > EO (94.1%) > SO (86%). A shelf-life of up to 5.5 years at 30 °C may be achieved for PNT suspension in these oils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Truex, Michael J.; Kananizadeh, Negin
In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and good longevity. Distribution of vegetable oil in the subsurface, because it is a non-aqueous phase material, has typically been addressed by creating emulsified oil solutions. In this study, inexpensive waste vegetable oils were suspended in a xanthan gum solution, a shear-thinning fluid, as an alternative oil delivery mechanism. The stability,more » oil droplet size and distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and oil distribution in porous medium were evaluated in column tests. Numerical modeling of the oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil and xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into porous medium. This study provided evidence that vegetable oil suspensions in xanthan are a potential substrate to support in situ anaerobic bioremediation with favorable injection properties.« less
The effect of fluorine atom on the synthesis and composition of gametocidal ethyl oxanilates.
Iskra, Jernej; Titan, Primož; Meglič, Vladimir
2013-01-01
Three derivatives of ethyl oxanilate were synthesized in order to test their application as gametocides on the hermaphrodite plants like common wheat (Triticum aestivum L.). A substituent at para position (F, Br, CN) of aniline defined its reactivity towards diethyl oxalate 2. Classical reaction in toluene was not selective and amidation occurred also at the second carbonyl groups of 2. Alternative synthesis under solvent-free conditions with application of low pressure for removal of EtOH provided selectively with ethyl oxanilate 3a and 3b. 4-Cyanoaniline did not react selectively and the corresponding ethyl oxanilate 3c was prepared from mono acid chloride of oxalic acid. Fluoro derivative 3a was found to be the only one that gives stable aqueous suspension for its application as chemical hybridizing agent for common wheat, while bromo- 3b and cyano- 3c analogues were not soluble enough and suspension was stable for less than 2 hours. Fluoro derivative had shown the best induction of male sterility, while in comparison with standard chemical hybridizing agent they were substantially less toxic for plant.
Sorting process of nanoparticles and applications of same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, Timothy P.; Henry, Anne-Isabelle; Van Duyne, Richard P.
In one aspect of the present invention, a method for sorting nanoparticles includes preparing a high-viscosity density gradient medium filled in a container, dispersing nanoparticles into an aqueous solution to form a suspension of the nanoparticles, each nanoparticle having one or more cores and a shell encapsulating the one or more cores, layering the suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container, and centrifugating the layered suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container at a predetermined speed for a predetermined period of timemore » to form a gradient of fractions of the nanoparticles along the container, where each fraction comprises nanoparticles in a respective one of aggregation states of the nanoparticles.« less
21 CFR 524.1044h - Gentamicin sulfate, mometasone furoate, clotrimazole otic suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Gentamicin sulfate, mometasone furoate... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1044h Gentamicin sulfate, mometasone furoate, clotrimazole otic suspension. (a) Specifications. Each gram contains gentamicin sulfate, United States Pharmacopeia (USP...
21 CFR 524.1044h - Gentamicin sulfate, mometasone furoate, clotrimazole otic suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate, mometasone furoate... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1044h Gentamicin sulfate, mometasone furoate, clotrimazole otic suspension. (a) Specifications. Each gram contains gentamicin sulfate, United States Pharmacopeia (USP...
21 CFR 524.1044h - Gentamicin sulfate, mometasone furoate, clotrimazole otic suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentamicin sulfate, mometasone furoate... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1044h Gentamicin sulfate, mometasone furoate, clotrimazole otic suspension. (a) Specifications. Each gram contains gentamicin sulfate, United States Pharmacopeia (USP...
21 CFR 524.1044h - Gentamicin sulfate, mometasone furoate, clotrimazole otic suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gentamicin sulfate, mometasone furoate... TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1044h Gentamicin sulfate, mometasone furoate, clotrimazole otic suspension. (a) Specifications. Each gram contains gentamicin sulfate, United States Pharmacopeia (USP...
Kids Get a Positive Lesson from this Discipline Program.
ERIC Educational Resources Information Center
Shropshire, John
1982-01-01
Sequoia Freshman School, a ninth-grade school in Fresno (California), has drastically reduced suspensions through a noontime in-school suspension program that helps students recognize inappropriate behavior, gives them counseling, and alerts parents or guardians to student misbehavior. A copy of the notification form is included. (Author/RW)
"Red water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to brown depending on water chemistry and particle properties. Iron can originate from the source water and from distribution ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... suspension for the treatment of lower respiratory tract infections in horses. DATES: This rule is effective... ceftiofur crystalline free acid injectable suspension for the treatment of lower respiratory tract... of lower respiratory tract infections in horses caused by susceptible strains of Streptococcus equi...
Zhao, B B; Yang, Z J; Wang, Q; Pan, Z M; Zhang, W; Li, D R; Li, L
2016-10-25
Objective: Establish and validation of combined detecting of CCL18, CXCL1, C1D, TM4SF1, FXR1, TIZ suspension array technology. Methods: (1)CCL18, CXCL1 monoclonal antibody and C1D, TM4SF1, FXR1, TIZ protein were coupled with polyethylene microspheres. Biotinylated CCL18, CXCL1 polyclonal antibody and sheep anti-human IgG polyclonal antibody were prepared simultaneously. The best packaged concentrations of CCL18, CXCL1 monoclonal antibody and C1D, TM4SF1, FXR1, TIZ antigens were optimized. The best packaged concentrations of CCL18, CXCL1 polyclonal antibodys and C1D, TM4SF1, FXR1, TIZ sheep anti-human IgG polyclonal antibody were optimized to establish a stable detected suspension array.(2)Sixty patients confirmed by pathological examination with ovarian cancer(ovarian cancer group)which treated in Affiliated Tumor Hospital of Guangxi Medical University, 30 patients with ovarian benign tumor(benign group)and 30 cases of healthy women(control group)were chosen between September 2003 and December 2003. Suspension array technology and ELISA method were used to detect expression of CCL18, CXCL1 antigen and C1D, TM4SF1, FXR1 and TIZ IgG autoantibody contented in 3 groups of serum, then to compare the diagnostic efficiency and diagnostic accuracy of two methods(coefficient of variation between batch and batch). Results: (1)This research successfully established stable detecting system of CCL18, CXCL1, C1D, TM4SF1, FXR1 and TIZ IgG autoantibody. The best concentration of CCL18, CXCL1 monoclonal antibody and C1D, TM4SF1, FXR1, TIZ antigen package were 8, 8, 12, 8, 4 and 8 μg/ml; the best detection of CCL18, CXCL1 biotin polyclonal antibody and C1D, TM4SF1, FXR1, TIZ sheep anti-huamne IgG polyclonal antibody were respectively 4, 2, 2, 4, 4 and 2 μg/ml.(2)Suspension array technology and ELISA method were used to detect CCL18, CXCL1 antigen and C1D, TM4SF1, FXR1, TIZ IgG autoantibody of three groups in serum were similar( P >0.05).(3)The comparison of two methods in the diagnosis of efficiency: the diagnostic accuracy of two methods were 99.2%(119/120)and 94.2%(113/120), the difference was statistically significant( P =0.031). The sensitivity of the diagnosis of ovarian cancer of two methods were 100.0%(60/60)and 93.3%(56/60), specific degrees were 100.0%(59/59)and 93.4%(57/61), positive predictive value was 100.0%(60/60)and 93.3%(56/60), negative predictive value was 98.3%(59/60)and 95.0%(57/60), the difference was statistically significant( P <0.05).(4)The detected results of CCL18, CXCL1 antigen and C1D, TM4SF1, FXR1, TIZ IgG autoantibody shown that the diagnostic accuracy of suspension array technology was superior to those of ELISA method(all P <0.05). Conclusion: The study has established the stable detection of suspension array technology, and the diagnostic efficiency and diagnostic accuracy was much better than that by ELISA.
NASA Astrophysics Data System (ADS)
Szkoda, Mariusz; Siuzdak, Katarzyna; Lisowska-Oleksiak, Anna
2016-10-01
Titanium dioxide is a well-known photoactive semiconductor with a variety of possible applications. The procedure of pollutant degradation is mainly performed using TiO2 powder suspension. It can also be exploited an immobilized catalyst on a solid support. Morphology and chemical doping have a great influence on TiO2 activity under illumination. Here we compare photoactivity of titania nanotube arrays doped with non-metal atoms: nitrogen, iodine and boron applied for photodegradation of organic dye - methylene blue and terephtalic acid. The doped samples act as a much better photocatalyst in the degradation process of methylene blue and lead to the formation of much higher amount of hydroxyl radicals (•OH) than undoped TiO2 nanotube arrays. The use of a catalyst active under solar light illumination in the form of thin films on a stable substrate can be scaled up for an industrial application.
Arízaga, Gregorio Guadalupe Carbajal; Oviedo, Mariana J; López, Oscar Edel Contreras
2012-10-01
GaN was synthesized onto sapphire substrates by chemical vapor deposition, reacting gallium, ammonium chloride and ammonia. The polycrystalline films were immersed in glycine, aspartic acid and cysteine solutions. Cysteine chemisorbed onto GaN films produced detectable changes in conductivity, mobility and Hall coefficient indicating that GaN is capable of detecting and reacting with thiolate groups, which was confirmed by X-ray photoelectron spectroscopy. The Cys-GaN film solution was adjusted to pH 10, upon which the GaN nanoparticles were transferred to the aqueous phase forming a suspension stable for seven days. The alkaline colloid was then further adjusted down to pH 3 retaining stability for three days. The GaN colloid obtained represents a suitable medium to study GaN properties for biological applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Recent Advances in the Theory and Simulation of Model Colloidal Microphase Formers.
Zhuang, Yuan; Charbonneau, Patrick
2016-08-18
This mini-review synthesizes our understanding of the equilibrium behavior of particle-based models with short-range attractive and long-range repulsive (SALR) interactions. These models, which can form stable periodic microphases, aim to reproduce the essence of colloidal suspensions with competing interparticle interactions. Ordered structures, however, have yet to be obtained in experiments. In order to better understand the hurdles to periodic microphase assembly, marked theoretical and simulation advances have been made over the past few years. Here, we present recent progress in the study of microphases in models with SALR interactions using liquid-state theory and density-functional theory as well as numerical simulations. Combining these various approaches provides a description of periodic microphases, and gives insights into the rich phenomenology of the surrounding disordered regime. Ongoing research directions in the thermodynamics of models with SALR interactions are also presented.
Origins of microstructural transformations in charged vesicle suspensions: the crowding hypothesis.
Seth, Mansi; Ramachandran, Arun; Murch, Bruce P; Leal, L Gary
2014-09-02
It is observed that charged unilamellar vesicles in a suspension can spontaneously deflate and subsequently transition to form bilamellar vesicles, even in the absence of externally applied triggers such as salt or temperature gradients. We provide strong evidence that the driving force for this deflation-induced transition is the repulsive electrostatic pressure between charged vesicles in concentrated suspensions, above a critical effective volume fraction. We use volume fraction measurements and cryogenic transmission electron microscopy imaging to quantitatively follow both the macroscopic and microstructural time-evolution of cationic diC18:1 DEEDMAC vesicle suspensions at different surfactant and salt concentrations. A simple model is developed to estimate the extent of deflation of unilamellar vesicles caused by electrostatic interactions with neighboring vesicles. It is determined that when the effective volume fraction of the suspension exceeds a critical value, charged vesicles in a suspension can experience "crowding" due to overlap of their electrical double layers, which can result in deflation and subsequent microstructural transformations to reduce the effective volume fraction of the suspension. Ordinarily in polydisperse colloidal suspensions, particles interacting via a repulsive potential transform into a glassy state above a critical volume fraction. The behavior of charged vesicle suspensions reported in this paper thus represents a new mechanism for the relaxation of repulsive interactions in crowded situations.
NASA Astrophysics Data System (ADS)
Goltz, Douglas; Boileau, Michael; Plews, Ian; Charleton, Kimberly; Hinds, Michael W.
2006-07-01
Spark ablation or electric dispersion of metal samples in aqueous solution can be a useful approach for sample preparation. The ablated metal forms a stable suspension that has been described as colloidal, which is easily dissolved with a small amount of concentrated (16 M) HNO 3. In this study, we have examined some of the properties of the spark ablation process for a variety of metals (Rh and Au) and alloys (stainless steel) using a low power spark (100-300 W). Particle size distributions and conductivity measurements were carried out on selected metals to characterize the stable suspensions. A LASER diffraction particle size analyzer was useful for showing that ablated particles varied in size from 1 to 30 μm for both the silver and the nickel alloy, Inconel. In terms of weight percent most of the particles were between 10 and 30 μm. Conductivity of the spark ablation solution was found to increase linearly for approximately 3 min before leveling off at approximately 300 S cm 3. These measurements suggest that a significant portion of the ablated metal is also ionic in nature. Scanning electron microscope measurements revealed that a low power spark is much less damaging to the metal surface than a high power spark. Crater formation of the low power spark was found in a wider area than expected with the highest concentration where the spark was directed. The feasibility of using spark ablation for metal dissolution of a valuable artifact such as gold was also performed. Determinations of Ag (4-12%) and Cu (1-3%) in Bullion Reference Material (BRM) gave results that were in very good agreement with the certified values. The precision was ± 0.27% for Ag at 4.15% (RSD = 6.5%) and ± 0.09% for Cu at 1% (RSD = 9.0%).
Razmi T, Muhammed; Kumar, Ravinder; Rani, Seema; Kumaran, Sendhil M; Tanwar, Sushma; Parsad, Davinder
2018-03-01
Epidermal cell suspension (ECS) and follicular cell suspension (FCS) are successful surgical modalities for the treatment of stable vitiligo. However, repigmentation in generalized and acrofacial vitiligo and over acral or bony sites (eg, elbows, knees, iliac crests, and malleoli), which are difficult to treat, is challenging. To study the efficacy of transplanting a combination of autologous, noncultured ECS and FCS (ECS + FCS) compared with ECS alone in stable vitiligo. A prospective, observer-blinded, active-controlled, randomized clinical trial was conducted at a tertiary care hospital, with treatment administered as an outpatient procedure. Thirty participants who had stable vitiligo with symmetrical lesions were recruited between October 18, 2013, and October 28, 2016. All of the lesions were resistant to medical modalities with minimum lesional stability of 1 year. Intent-to-treat analysis was used. ECS + FCS was prepared by mixing equal amounts (in cell number) of FCS with ECS. After manual dermabrasion, ECS was applied to 1 lesion and ECS + FCS was applied to the anatomically based paired lesion of the same patient. No adjuvant treatment was given. Patients were followed up at 4, 8, and 16 weeks by a blinded observer and extent of repigmentation, color match, pattern of repigmentation, patient satisfaction and complications were noted. Both the visual and the computerized image analysis methods were used for outcome assessment. Cell suspensions were assessed post hoc for OCT4+ stem cell counts using flow cytometry; expression of stem cell factor and basic fibroblast growth factor was evaluated using quantitative relative messenger RNA expression. Of the 30 patients included in the study, 18 (60%) were women; mean (SD) age was 23.4 (6.4) years. Seventy-four percent of the lesions (62 of 84) were difficult-to-treat vitiligo. ECS + FCS showed superior repigmentation outcomes compared with ECS: extent (76% vs 57%, P < .001), rapidity (48% vs 31%, P = .001), color match (73% vs 61%, P < .001), and patient satisfaction (mean [SD] patient global assessment score, 23.30 [6.89] vs 20.81 [6.61], P = .047). Melanocyte stem cell counts (2% in ECS + FCS vs 0.5% in ECS) as well as expression of basic fibroblast growth factor (11.8-fold) and stem cell factor (6.0-fold) were higher in ECS + FCS suspension (P<.05 for both). The findings from this study establish ECS + FCS as a novel approach in vitiligo surgery for attaining good to excellent repigmentation in a short period with good color match, even in difficult-to-treat vitiligo. ctri.nic.in Identifier: CTRI/2017/05/008692.
Formation of a disordered solid via a shock-induced transition in a dense particle suspension
NASA Astrophysics Data System (ADS)
Petel, Oren E.; Frost, David L.; Higgins, Andrew J.; Ouellet, Simon
2012-02-01
Shock wave propagation in multiphase media is typically dominated by the relative compressibility of the two components of the mixture. The difference in the compressibility of the components results in a shock-induced variation in the effective volume fraction of the suspension tending toward the random-close-packing limit for the system, and a disordered solid can take form within the suspension. The present study uses a Hugoniot-based model to demonstrate this variation in the volume fraction of the solid phase as well as a simple hard-sphere model to investigate the formation of disordered structures within uniaxially compressed model suspensions. Both models are discussed in terms of available experimental plate impact data in dense suspensions. Through coordination number statistics of the mesoscopic hard-sphere model, comparisons are made with the trends of the experimental pressure-volume fraction relationship to illustrate the role of these disordered structures in the bulk properties of the suspensions. A criterion for the dynamic stiffening of suspensions under high-rate dynamic loading is suggested as an analog to quasi-static jamming based on the results of the simulations.
Oesophageal bioadhesion of sodium alginate suspensions: particle swelling and mucosal retention.
Richardson, J Craig; Dettmar, Peter W; Hampson, Frank C; Melia, Colin D
2004-09-01
This paper describes a prospective bioadhesive liquid dosage form designed to specifically adhere to the oesophageal mucosa. It contains a swelling polymer, sodium alginate, suspended in a water-miscible vehicle and is activated by dilution with saliva to form an adherent layer of polymer on the mucosal surface. The swelling of alginate particles and the bioadhesion of 40% (w/w) sodium alginate suspensions were investigated in a range of vehicles: glycerol, propylene glycol, PEG 200 and PEG 400. Swelling of particles as a function of vehicle dilution with artificial saliva was quantified microscopically using 1,9-dimethyl methylene blue (DMMB) as a visualising agent. The minimum vehicle dilution to initiate swelling varied between vehicles: glycerol required 30% (w/w) dilution whereas PEG 400 required nearly 60% (w/w). Swelling commenced when the Hildebrand solubility parameter of the diluted vehicle was raised to 37 MPa(1/2). The bioadhesive properties of suspensions were examined by quantifying the amount of sodium alginate retained on oesophageal mucosa after washing in artificial saliva. Suspensions exhibited considerable mucoretention and strong correlations were obtained between mucosal retention, the minimum dilution to initiate swelling, and the vehicle Hildebrand solubility parameter. These relationships may allow predictive design of suspensions with specific mucoretentive properties, through judicious choice of vehicle characteristics.
Santoveña, Ana; Suárez-González, Javier; Martín-Rodríguez, Cristina; Fariña, José B
2017-03-01
The formulation of an active pharmaceutical ingredient (API) as oral solution or suspension in pediatrics is a habitual practice, due to the non-existence of many commercialized medicines in pediatric doses. It is also the simplest way to prepare and administer them to this vulnerable population. The design of a formulation that assures the dose and the system stability depends on the physico-chemical properties of the API. In this study, we formulate a class IV API, Acetazolamide (AZM) as suspension for oral administration to pediatric population. The suspension must comply attributes of quality, safety and efficacy for this route of administration. We use simple compounding procedures, as well as fewer pure excipients, as recommended for children. Mass and uniformity content assays and physical and chemical stability studies were performed. To quantify the API an UPLC method was used. We verified the physico-chemical stability of the suspensions and that they passed the mass test of the European Pharmacopeia (EP), but not the dose uniformity test. This reveals that AZM must be formulated as liquid forms with a more complex system of excipients (not usually indicated in pediatrics), or otherwise solid forms capable of assuring uniformity of mass and dose for every dosage unit.
Frank, Kerstin J; Boeck, Georg
2016-05-25
The aim was to develop a nanosuspension of the poorly soluble BI XX. The nanosuspension is intended for intravenous (iv) administration in preclinical studies and should not cause any unwanted side effects. Thus, only stabilizers that are accepted for iv application should be used and isotonicity, euhydria and the absence of living microorganisms were targeted. Suspensions were prepared in a ball-mill (mixing mill MM 400 from Retsch). There were various vials used as containers; HPLC-vials were used for the small scale screening of stabilizers and injection vials for preparation of larger quantities of the nanosuspensions. Particle size distribution was analyzed by laser diffraction measurement (Mastersizer 2000). Lyophilization was used for processing of the suspensions (Christ freeze dryer). Stable nanosuspensions (d90 remained <1μm up to 7days) were prepared with several FDA-accepted stabilizers. Freeze drying was evaluated for one formulation containing 2% of the API, 0.5% of arginine and 4% of mannitol. The particle size distribution before freeze drying and after re-dispersion was comparable. After milling for 2h, no living microorganisms were detected in the nanosuspension. Various FDA accepted excipients were identified which resulted in stable nanosuspensions of BI XX. The most stable formulation was successfully freeze dried. It was proven that milling in the ball-mill decreases the presence of living microorganisms. Copyright © 2016. Published by Elsevier B.V.
Long-time behavior for suspension bridge equations with time delay
NASA Astrophysics Data System (ADS)
Park, Sun-Hye
2018-04-01
In this paper, we consider suspension bridge equations with time delay of the form u_{tt}(x,t) + Δ ^2 u (x,t) + k u^+ (x,t) + a_0 u_t (x,t) + a_1 u_t (x, t- τ ) + f(u(x,t)) = g(x). Many researchers have studied well-posedness, decay rates of energy, and existence of attractors for suspension bridge equations without delay effects. But, as far as we know, there is no work about suspension equations with time delay. In addition, there are not many studies on attractors for other delayed systems. Thus we first provide well-posedness for suspension equations with time delay. And then show the existence of global attractors and the finite dimensionality of the attractors by establishing energy functionals which are related to the norm of the phase space to our problem.
Bioconvection and front formation of Paramecium tetraurelia
NASA Astrophysics Data System (ADS)
Kitsunezaki, So; Komori, Rie; Harumoto, Terue
2007-10-01
We have investigated the bioconvection of Paramecium tetraurelia in high-density suspensions made by centrifugal concentration. When a suspension is kept at rest in a Hele-Shaw cell, a crowded front of paramecia is formed in the vicinity of the bottom and it propagates gradually toward the water-air interface. Fluid convection occurs under this front, and it is driven persistently by the upward swimming of paramecia. The roll structures of the bioconvection become turbulent with an increase in the depth of the suspension; they also change rapidly as the density of paramecia increases. Our experimental results suggest that lack of oxygen in the suspension causes the active individual motions of paramecia to induce the formation of this front.
Green density variations in relation to colloidal packing in SiC/Si{sub 3}N{sub 4} composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crimp, M.J.; Oppermann, D.A.
1995-12-31
Composites of SiC/Si{sub 3}N{sub 4}, were produced using the processing conditions established in Stable Suspension{copyright}. This program utilizes Hogg, Healy and Furstenau`s modifications to DLVO theory to predict the stability conditions for composite suspensions. By altering the suspension pH, the conditions for SiC to SiC and Si{sub 3}N{sub 4} to Si{sub 3}N{sub 4} (homostability) attractions and the SiC to Si{sub 3}N{sub 4} (heterostability) attractions have been manipulated to obtain different green packing structures. The degree of homo- versus heterostability was controlled and the distribution of the Si{sub 3}N{sub 4} within the SiC determined. Additionally, this distribution was related to themore » green density of the composite. Results from density measurements versus the degree of homo- and heterocoagulation are presented along with SEM photomicrographs indicating the microstructural packing in the green body.« less
Preparation of fluorescent nanodiamond suspensions using bead-assisted ultrasonic disintegration
NASA Astrophysics Data System (ADS)
Głowacki, Maciej J.; Gardas, Mateusz; Ficek, Mateusz; Sawczak, Mirosław; Bogdanowicz, Robert
2017-08-01
Nitrogen-vacancy (N-V) centers are the most widely studied crystallographic defect in the diamond lattice since their presence causes strong and stable fluorescence. The negative charge state of the defect (NV-) is especially desired because of its potential for quantum information processing. In this study, fluorescent suspensions of diamond particles have been produced by microbead-assisted ultrasonic disintegration of commercially obtained diamond powder containing N-V color centers. Zirconium dioxide ZrO2 was chosen as an abrasive and a mixture of deionized water and dimethyl sulfoxide (DMSO) was used as a solvent. Raman spectrum of the starting material has been obtained and the resulting liquids have been measured in terms of photoluminescence. Moreover, thin layer of the diamond particles has been deposited on a silicon substrate and examined using scanning electron microscopy (SEM). During the course of the experiment a new method, which uses sodium chloride NaCl as an abrasive, has been proposed. The results of fluorescence measurements of the suspension prepared using this technique are highly promising.
Ondansetron: design and development of oral pharmaceutical suspensions.
Gallardo Lara, V; Gallardo, M Lopez-Viota; Morales Hernandez, Ma E; Ruiz Martinez, Ma A
2009-02-01
Ondansetron is a carbazol with antiemetic properties that acts as a competitive and selective antagonist for the 5 HT3 serotonin receptors. It is used primarily to control nausea and vomiting caused by cytotoxic chemotherapy and radiotherapy, as well as in postoperative vomiting in gynecological surgery. The main aim of this work was to obtain a stable, long-acting oral suspension of ondansetron. To prolong the action, latexes are used as transport vehicles, specifically we tested, Aquateric, which comprises mainly cellulose acetophthalate. We prepared a complex drug-polymer, and the release profile of ondansetron was evaluated at acid, basic and acid-basic pH. This complex is additioned to a vehicle with xanthan gum and sodium carboxymethylcellulose (CMCNa) as thickeners to retard as much as possible particle sedimentation and thus increase physical stability of the suspension. The results obtained for sediment volume and degree of flocculation suggest that xanthan gum provides the best results, with better organolepticcharacteristics, appearance, physical stability and easy redispersability.
NASA Astrophysics Data System (ADS)
Zhu, G. Y.; Lin, C. T.; Chen, J. M.; Lei, D. M.; Zhu, G. X.
2018-01-01
Green grass fragrance has been widely used in many fields. However, fragrances are volatile compounds that do not last long. In order to prolong its odor, nanocapsules encapsulated green grass fragrance were prepared. The paper deals with the preparation of green grass fragrance nanocapsules by emulsion polymerization. N-butylcyanoacrylate (BCA) with excellent biocompatibility and biodegradability was used as encapsulant. The nanocapsule suspension systems were characterized and its stability was investigated. The physicochemical properties of polymeric nanocapsules (average diameter and polydispersity) were evaluated as a function of time to assess the system stability. The result showed that the system (containing 0.8% of green grass fragrance, with a polydispersity index (PDI) near 0.1 and an average diameter in the range of 20-30 nm) was an ideal state and relatively stable. Besides, the distinction of stability of three nanocapsule suspensions with different green grass fragrance content was also obvious from scanning electron microscopy (SEM).
Walther, Christa G; Whitfield, Robert; James, David C
2016-04-01
The biopharmaceutical production process relies upon mammalian cell technology where single cells proliferate in suspension in a chemically defined synthetic environment. This environment lacks exogenous growth factors, usually contributing to proliferation of fibroblastic cell types such as Chinese hamster ovary (CHO) cells. Use of CHO cells for production hence requires a lengthy 'adaptation' process to select clones capable of proliferation as single cells in suspension. The underlying molecular changes permitting proliferation in suspension are not known. Comparison of the non-suspension-adapted clone CHO-AD and a suspension-adapted propriety cell line CHO-SA by flow cytometric analysis revealed a highly variable bi-modal expression pattern for cell-to-cell contact proteins in contrast to the expression pattern seen for integrins. Those have a uni-modal expression on suspension and adherent cells. Integrins showed a conformation distinguished by regularly distributed clusters forming a sphere on the cell membrane of suspension-adapted cells. Actin cytoskeleton analysis revealed reorganisation from the typical fibrillar morphology found in adherent cells to an enforced spherical subcortical actin sheath in suspension cells. The uni-modal expression and specific clustering of integrins could be confirmed for CHO-S, another suspension cell line. Cytochalasin D treatment resulted in breakdown of the actin sheath and the sphere-like integrin conformation demonstrating the link between integrins and actin in suspension-adapted CHO cells. The data demonstrates the importance of signalling changes, leading to an integrin rearrangement on the cell surface, and the necessity of the reinforcement of the actin cytoskeleton for proliferation in suspension conditions.
Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya
2015-01-01
Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles. PMID:25996055
Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya
2015-05-21
Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.
Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; ...
2015-05-21
Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions.more » We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. As a result, our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.« less
21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dithiazanine iodide and piperazine citrate suspension. 520.763c Section 520.763c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dithiazanine iodide and piperazine citrate suspension. 520.763c Section 520.763c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dithiazanine iodide and piperazine citrate suspension. 520.763c Section 520.763c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.390c - Chloramphenicol palmitate oral suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Chloramphenicol palmitate oral suspension. 520.390c Section 520.390c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390c...
21 CFR 520.390c - Chloramphenicol palmitate oral suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Chloramphenicol palmitate oral suspension. 520.390c Section 520.390c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390c...
21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dithiazanine iodide and piperazine citrate suspension. 520.763c Section 520.763c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide and piperazine citrate suspension. 520.763c Section 520.763c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.390c - Chloramphenicol palmitate oral suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Chloramphenicol palmitate oral suspension. 520.390c Section 520.390c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390c...
Schools or Students? Identifying High School Effects on Student Suspensions
ERIC Educational Resources Information Center
Baker-Smith, E. Christine
2015-01-01
Evidence is clear that discipline in high school is associated with negative outcomes across the life course. Not only are suspensions related to declining academic trajectories during high school in the form of attendance and academic achievement, students suspended once are also more likely to be suspended again and also substantially increase…
Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platuyrus
The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (term...
Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platyurus
The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (termed aqu/C60 and aqu/C70) for approximately 100 d. Th...
21 CFR 524.1484h - Neomycin, penicillin, polymyxin B, and hydrocortisone suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Neomycin, penicillin, polymyxin B, and... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484h Neomycin, penicillin, polymyxin B, and hydrocortisone suspension... equivalent to 17.5 milligrams of neomycin, 10,000 international units of penicillin G procaine, 5,000...
"Red water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to brown depending on water chemistry and particle properties. Iron can originate from the source water and from distributio...
Solid freeform fabrication using chemically reactive suspensions
Morisette, Sherry L.; Cesarano, III, Joseph; Lewis, Jennifer A.; Dimos, Duane B.
2002-01-01
The effects of processing parameters and suspension chemorheology on the deposition behavior of SFF components derived from polymeric-based gelcasting suspensions combines the advantages associated with SFF fabrication, including the ability to spatially tailor composition and structure as well as reduced tooling costs, with the improved handling strength afforded by the use of gel based formulations. As-cast free-formed Al.sub.2 O.sub.3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no discernable micro-defects (e.g., bubbles or cracking).
Extemporaneous compounding in a sample of New Zealand hospitals: a retrospective survey.
Kairuz, Therése; Chhim, Srey; Hasan, Fhazeel; Kumar, Karishma; Lal, Aarti; Patel, Roshni; Singh, Ranjani; Dogra, Mridula; Garg, Sanjay
2007-03-23
To determine the extent and nature of extemporaneous compounding of liquid preparations in a sample of New Zealand hospitals. Retrospective data were collected from eight hospitals known to provide compounding services during the period 1 June 2004 to 31 December 2004; including dosage form, volume, and quantity prepared. Data were collected on site from compounding logbooks and batch sheets. Demographic patient data was limited to age and was only collected from pharmacy departments where this information was readily available. Off-label use was analysed where appropriate data were available. 2015 products were compounded over the 7-month period; an average of 251.9 per month. More oral dosage forms were compounded (n=152) compared to topical dosage forms (n=100); 74 drugs required extemporaneous preparation for oral use. There were 16 drugs used in an off-label manner on 144 occasions for paediatric patients. Most off-label drugs were reformulated as suspensions; omeprazole suspension was compounded at all of the hospitals. Off-label use of four drugs (sotalol, labetalol, diazoxide, and clonidine) was analysed for different paediatric age groups. Suspensions are the most frequently compounded dosage form and omeprazole is the drug that is most frequently reformulated. Off-label medicines form a small but integral role in the supply of medicinal products.
Solid lipid microparticles containing loratadine prepared using a Micromixer.
Milak, Spomenka; Medlicott, Natalie; Tucker, Ian G
2006-12-01
Solid lipid microparticles were investigated as a taste-masking approach for a lipophilic weak base in a suspension. The idea was that the drug concentration in the aqueous phase of a suspension might be reduced by its partitioning into the solid lipid particles. Loratadine, as a model drug, was used to prepare Precirol ATO 5 microparticles by a Micromixer. The effects of three process variables: drug loading, PVA concentration and water/lipid ratio on the microparticle size, encapsulation efficiency, surface appearance, in-vitro release and drug partitioning in a suspension were studied. Loratadine release was slow in simulated saliva and very fast at the pH of stomach. In suspension of loratadine lipid microparticles, drug was released into the aqueous phase to the same concentration as in a drug suspension. Therefore, the usefulness of these microparticles for taste-masking in liquids is limited. However, they might be useful for taste-masking in solid dosage forms.
Brownian motion in inhomogeneous suspensions.
Yang, Mingcheng; Ripoll, Marisol
2013-06-01
The Langevin description of Brownian motion in inhomogeneous suspensions is here revisited. Inhomogeneous suspensions are characterized by a position-dependent friction coefficient, which can significantly influence the dynamics of the suspended particles. Outstanding examples are suspensions in confinement or in the presence of a temperature gradient. The Langevin approach in inhomogeneous systems encounters a fundamental difficulty related to the interpretation of the multiplicative noise induced by the position-dependent friction. We show that the so-called Ito-Stratonovich dilemma is originated by the violation of the macroscopic force balance condition in the traditional procedure of eliminating the fast variables. Repairing this deficit, we rederive the extended overdamped Langevin equation directly from the infradamped Langevin equation. This is without invoking the Fokker-Planck formalism, such that the self-completeness of the Langevin framework is restored. Furthermore, we derive the generalized forms of the drift-force relation and the Smoluchowski equation for inhomogeneous suspensions in a straightforward manner.
Influence of crystal habit on trimethoprim suspension formulation.
Tiwary, A K; Panpalia, G M
1999-02-01
The role of crystal habit in influencing the physical stability and pharmacokinetics of trimethoprim suspensions was examined. Different habits for trimethoprim (TMP) were obtained by recrystallizing the commercial sample (PD) utilizing solvent-change precipitation method. Four distinct habits (microscopic observation) belonging to the same polymorphic state (DSC studies) were selected for studies. Preformulation and formulation studies were carried out on suspension dosage forms containing these crystals. The freshly prepared suspensions were also evaluated for their pharmacokinetic behaviour on healthy human volunteers using a cross over study. Variation of crystallization conditions produces different habits of TMP. Among the different crystal habits exhibiting same polymorphic state, the most anisometric crystal showed best physical stability in terms of sedimentation volume and redispersibility. However, habit did not significantly affect the extent of TMP excreted in urine. Modification of surface morphology without significantly altering the polymorphic state can be utilized for improving physical stability of TMP suspensions. However, the pharmacokinetic profile remains unaltered.
Spontaneous ordering and vortex states of active fluids in circular confinement
NASA Astrophysics Data System (ADS)
Theillard, Maxime; Ezhilan, Barath; Saintillan, David
2015-11-01
Recent experimental, theoretical and simulation studies have shown that confinement can profoundly affect self-organization in active suspensions leading to striking features such as directed fluid pumping in planar confinement, formation of steady and spontaneous vortices in radial confinement. Motivated by this, we study the dynamics in a suspension of biologically active particles confined in spherical geometries using a mean-field kinetic theory for which we developed a novel numerical solver. In the case of circular confinement, we conduct a systematic exploration of the entire parameter space and distinguish 3 broad states: no-flow, stable vortex and chaotic and several interesting sub-states. Our efficient numerical framework is also employed to study 3D effects and dynamics in more complex geometries.
Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets
Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.
2010-11-02
The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.
Compounded Apixaban Suspensions for Enteral Feeding Tubes.
Caraballo, Maria L; Donmez, Seda; Nathan, Kobi; Zhao, Fang
2017-07-01
Objective: There is limited information on compounded apixaban formulations for administration via enteral feeding tubes. This study was designed to identify a suitable apixaban suspension formulation that is easy to prepare in a pharmacy setting, is compatible with commonly used feeding tubes, and has a beyond-use date of 7 days. Methods: Apixaban suspensions were prepared from commercially available 5-mg Eliquis tablets. Several vehicles and compounding methods were screened for ease of preparation, dosage accuracy, and tube compatibility. Two tubing types, polyurethane and polyvinyl chloride, with varying lengths and diameters, were included in the study. They were mounted on a peg board during evaluation to mimic the patient body position. A 7-day stability study of the selected formulation was also conducted. Results: Vehicles containing 40% to 60% Ora-Plus in water all exhibited satisfactory flowability through the tubes. The mortar/pestle compounding method was found to produce more accurate and consistent apixaban suspensions than the pill crusher or crushing syringe method. The selected formulation, 0.25 mg/mL apixaban in 50:50 Ora-Plus:water, was compatible with both tubing types, retaining >98% drug in posttube samples. The stability study also confirmed that this formulation was stable physically and chemically over 7 days of storage at room temperature. Conclusions: A suitable apixaban suspension formulation was identified for administration via enteral feeding tubes. The formulation consisted of 0.25 mg/mL apixaban in 50:50 Ora-Plus:water. The stability study results supported a beyond-use date of 7 days at room temperature.
Ferreira, Anderson O; Polonini, Hudson C; Silva, Sharlene L; Patrício, Fernando B; Brandão, Marcos Antônio F; Raposo, Nádia R B
2016-01-25
The objective of this study was to evaluate the feasibility of 10 commonly used active pharmaceutical ingredients (APIs) compounded in oral suspensions using an internationally used suspending vehicle (SyrSpend(®) SF PH4 liquid): (i) amlodipine, (as besylate) 1.0mg/mL; (ii) chloroquine phosphate,15.0 mg/mL; (iii) dapsone, 2.0 mg/mL; (iv) phenytoin, 15.0 mg/mL; (v) pyridoxine hydrochloride, 50.0 mg/mL; (vi) sulfadiazine, 100.0 mg/mL; (vii) sulfasalazine, 100.0 mg/mL; (viii) tetracycline hydrochloride, 25.0 mg/mL; (ix) trimethoprim, 10.0 mg/mL; and (x) zonisamide, 10.0 mg/mL. All suspensions were stored both at controlled refrigeration (2-8 °C) and controlled room temperature (20-25 °C). Feasibility was assessed by measuring the percent recovery at varying time points throughout a 90-day period. API quantification was performed by high-performance liquid chromatography (HPLC-UV), via a stability-indicating method. Given the percentage of recovery of the APIs within the suspensions, the expiration date of the final products (API+vehicle) was at least 90 days for all suspensions with regard to both the controlled temperatures. This suggests that the vehicle is stable for compounding APIs from different pharmacological classes. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Groom, Nelson J.; Britcher, Colin P.
1991-01-01
Mathematical models of a 5, 6, 7, and 8 coil large gap magnetic suspension system (MSDS) are presented. Some of the topics covered include: force and torque equations, reduction of state-space form, natural modes, origins of modes, effect of rotation in azimuth (yaw), future work, and n-coil ring conclusions.
21 CFR 520.90d - Ampicillin trihydrate for oral suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ampicillin trihydrate for oral suspension. 520.90d Section 520.90d Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90d Ampicillin...
21 CFR 520.90d - Ampicillin trihydrate for oral suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ampicillin trihydrate for oral suspension. 520.90d Section 520.90d Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90d Ampicillin...
ERIC Educational Resources Information Center
Roach, William Farris, Jr.
2012-01-01
This qualitative study sought to better understand the lived experiences of students, teachers, and administrators with regards to the In-School Suspension program. This study was grounded in a theoretical framework which included basic concepts of behaviorism and social exchange theory. With these theories this research study sought to explain…
Superhard Transparent Coatings
1975-04-01
alcohol has OH groups and polymethacrylic acid has carboxyl COOH groups. These form a clear suspension with the sub- micron hydrophilic particles...PHOSPHORIC ACID /SILICA/PVA 38 SYSTEM 3: ALON/POLYSILICIC ACID /BORACIC ACID 38 SYSTEM 4: ALON/SILICA/CYMEL - MOH HARDNESS VS...60 POLYSILICIC ACID 60 Methods for the Preparation of a Polystllcate/ Alon Suspension 61 Compositions 62 STRETCHED PLEX 63 OPTIMUM COMPOSITIONS
Self-Assembling Nanoclay Diffusion Gels for Bioactive Osteogenic Microenvironments.
Shi, Pujiang; Kim, Yang-Hee; Mousa, Mohamed; Sanchez, Roxanna Ramnarine; Oreffo, Richard O C; Dawson, Jonathan I
2018-06-17
Laponite nanoparticles have attracted attention in the tissue engineering field for their protein interactions, gel-forming properties, and, more recently, osteogenic bioactivity. Despite growing interest in the osteogenic properties of Laponite, the application of Laponite colloidal gels to host the osteogenic differentiation of responsive stem cell populations remains unexplored. Here, the potential to harness the gel-forming properties of Laponite to generate injectable bioactive microenvironments for osteogenesis is demonstrated. A diffusion/dialysis gelation method allows the rapid formation of stable transparent gels from injectable, thixotropic Laponite suspensions in physiological fluids. Upon contact with buffered saline or blood serum, nanoporous gel networks exhibiting, respectively, fivefold and tenfold increases in gel stiffness are formed due to the reorganization of nanoparticle interactions. Laponite diffusion gels are explored as osteogenic microenvironments for skeletal stem cell containing populations. Laponite films support cell adhesion, proliferation, and differentiation of human bone marrow stromal cells in 2D. Laponite gel encapsulation significantly enhances osteogenic protein expression compared with 3D pellet culture controls. In both 2D and 3D conditions, cell associated mineralization is strongly enhanced. This study demonstrates that Laponite diffusion gels offer considerable potential as biologically active and clinically relevant bone tissue engineering scaffolds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure of Particle Networks in Capillary Suspensions with Wetting and Nonwetting Fluids
2016-01-01
The mechanical properties of a suspension can be dramatically altered by adding a small amount of a secondary fluid that is immiscible with the bulk phase. The substantial changes in the strength of these capillary suspensions arise due to the capillary force inducing a percolating particle network. Spatial information on the structure of the particle networks is obtained using confocal microscopy. It is possible, for the first time, to visualize the different types of percolating structures of capillary suspensions in situ. These capillary networks are unique from other types of particulate networks due to the nature of the capillary attraction. We investigate the influence of the three-phase contact angle on the structure of an oil-based capillary suspension with silica microspheres. Contact angles smaller than 90° lead to pendular networks of particles connected with single capillary bridges or clusters comparable to the funicular state in wet granular matter, whereas a different clustered structure, the capillary state, forms for angles larger than 90°. Particle pair distribution functions are obtained by image analysis, which demonstrate differences in the network microstructures. When porous particles are used, the pendular conformation also appears for apparent contact angles larger than 90°. The complex shear modulus can be correlated to these microstructural changes. When the percolating structure is formed, the complex shear modulus increases by nearly three decades. Pendular bridges lead to stronger networks than the capillary state network conformations, but the capillary state clusters are nevertheless much stronger than pure suspensions without the added liquid. PMID:26807651
Low-resolution simulations of vesicle suspensions in 2D
NASA Astrophysics Data System (ADS)
Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George
2018-03-01
Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.
Stability of extemporaneously prepared oxandrolone oral suspensions.
Johnson, Cary E; Cober, Mary Petrea; Hawkins, Katherine A; Julian, Justin D
2011-03-15
The stability of extemporaneously prepared oxandrolone oral suspensions was studied. Oxandrolone oral suspension (1 mg/mL) was prepared using oxandrolone tablets, Ora-Plus, and either Ora-Sweet or Ora-Sweet SF. Three identical samples of each formulation were prepared and stored in 2-oz amber plastic bottles with child-resistant caps at room temperature (23-25 °C). After thorough but gentle shaking by hand to prevent foaming, a 1-mL sample was withdrawn from each of the six bottles, diluted with mobile phase to an expected concentration of 200 μg/mL, and assayed in duplicate by injecting 5 μL into the high-performance liquid chromatography system immediately after preparation and at 7, 14, 35, 60, and 90 days. The samples were examined for any change in color or pH on each day of analysis. The stability of the suspensions was determined by calculating the percentage of the initial oxandrolone concentration remaining on each test day. Stability was defined as the retention of at least 90% of the initial oxandrolone concentration. At least 98% of the original oxandrolone concentration remained in both formulations at the end of the 90-day study period. There was no appreciable change in odor, taste, color, or pH. Both suspensions remained white in color and sweet with no aftertaste throughout the study period. The oxandrolone was easily resuspended with gentle shaking. Extemporaneously prepared suspensions of oxandrolone 1 mg/mL in 1:1 mixtures of Ora-Plus and either Ora-Sweet or Ora-Sweet SF were stable for at least 90 days when stored in 2-oz amber plastic bottles at room temperature.
Detrimental Effect of Water Submersion of Stools on Development of Strongyloides stercoralis
Anamnart, Witthaya; Pattanawongsa, Attarat; Intapan, Pewpan Maleewong; Morakote, Nimit; Janwan, Penchom; Maleewong, Wanchai
2013-01-01
Strongyloidiasis is prevalent in Thailand, yet its prevalence in the south is lower than in other parts of the country. This might be due to the long rainy season in the south resulting in stool submersion in water inhibiting worm development. In this study, the effect of water submersion of fecal samples on development of Strongyloides stercoralis was investigated. Ten ml of a 1∶5 fecal suspension were placed in 15-ml tubes, 35-mm dishes, and 90-mm dishes producing the depths of 80 mm, 11 mm and 2 mm-suspensions, respectively. The worm development was followed at 1/6, 4, 6, 8, 10, 12, 14, 16, 24, and 36 h, by determining the number of filariform larva (FL) generated from agar-plate cultures (APC). Fecal suspensions kept in tubes and 35-mm dishes showed a decline in FL yield relative to incubation time and reached zero production 14 h after incubation. In contrast, the number of FL generated from the suspension kept in 90-mm dishes remained stable up to 36 h. Cumulatively, all tubes and 35-mm dishes became negative in APC after 14 h while 90-mm dishes remained APC-positive up to 36 h. Adding more water or stool suspension to dishes resulted in a decreased number of FL. Mechanical aeration of the suspensions in tubes restored an almost normal FL yield. It appears that the atmospheric air plays a significant role in growth and development of S. stercoralis in the environment and may be one of factors which contribute to a lower prevalence of human strongyloidiasis in the south of Thailand. PMID:24358173
Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles-A Platform for Drug Development.
Wickström, Henrika; Hilgert, Ellen; Nyman, Johan O; Desai, Diti; Şen Karaman, Didem; de Beer, Thomas; Sandler, Niklas; Rosenholm, Jessica M
2017-11-21
Mesoporous silica nanoparticles (MSNs) have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV) and poorly permeable (BCS class III, IV) drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN) ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D) for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI) surface functionalized MSNs, as well as drug-free and drug-loaded MSN-PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.
Thompson; Parks; Brown
2000-02-15
The uptake and release behavior of cobalt(II) was studied over thousands of hours in CO(2)-free aqueous suspensions of kaolinite under three pairs of total cobalt concentration (Co(T)) and near-neutral pH (7.5-7.8) conditions. Dissolved cobalt, aluminum, and silicon concentrations were monitored by ICPMS, and cobalt-containing products were identified by EXAFS spectroscopy. In each uptake experiment, cobalt sorbed to kaolinite as a mixture of surface-adsorbed monomers or polymers and hydrotalcite-like precipitates of the approximate composition Co(x)Al(OH)(2x+2)(A(n-))(1/n), where 2=x=4 and A(n-) is nitrate or silicate anion. Precipitate stoichiometry varied with experimental conditions, with the highest Co:Al ratio in the high Co(T)/high pH experiment. Cobalt surface adsorption occurred within seconds, whereas precipitation was slower and continued for the duration of the experiments. Consequently, the proportion of precipitate in the sorbed mixture increased with time in all experiments. The most rapid precipitation occurred in the high Co(T)/high pH experiment, where solutions were most supersaturated with respect to cobalt hydrotalcite. Precipitates incorporated some previously adsorbed cobalt, as well as cobalt from solution. Cobalt release from the solid phase was effected by lowering solution pH to 7.0. Release experiments initiated after shorter sorption times returned a larger fraction of cobalt to solution than those initiated after longer sorption times, for a fixed duration of release. In other words, sorption product stability increased with sorption time. Specifically, under the conditions of the release experiments, the hydrotalcite-like precipitates are more stable than smaller adsorbates, and precipitates that formed over longer time periods are more stable than those that formed rapidly. The latter result suggests that precipitates ripened or modified their structure or composition to become more stable over the course of the several-thousand-hour sorption experiments. Precipitates that formed over hundreds of hours or longer did not dissolve over thousands of hours at the lower pH. Copyright 2000 Academic Press.
Electrohydrodynamic Flows in Electrochemical Systems
NASA Technical Reports Server (NTRS)
Saville, D. A.
2005-01-01
Recent studies have established a new class of assembly processes with colloidal suspensions. Particles are driven together to form large crystalline structures in both dc and ac fields. The current work centers on this new class of flows in ac fields. In the research carried out under the current award, it was established that: (i) Small colloidal particles crystallize near an electrode due to electrohydrodynamic flows induced by an sinusoidally varying applied potential. (ii) These flows originate due to disturbances in the electrode polarization layer arising from the presence of the particles. Inasmuch as the charge and the field strength both scale on the applied field, the flows are proportional to the square of the applied voltage. (iii) Suspensions of two different sorts of particles can be crystallized and will form well-ordered binary crystals. (iv) At high frequencies the EHD flows die out. Thus, with a homogeneous system the particles become widely spaced due to dipolar repulsion. With a binary suspension, however, the particles may become attractive due to dipolar attraction arising from differences in electrokinetic dipoles. Consequently binary crystals form at both high and low frequencies.
Polonini, H C; Silva, S L; Cunha, C N; Brandão, M A F; Ferreira, A O
2016-04-01
A challenge with compounding oral liquid formulations is the limited availability of data to support the physical, chemical and microbiological stability of the formulation. This poses a patient safety concern and a risk for medication errors. The objective of this study was to evaluate the compatibility of the following active pharmaceutical ingredients (APIs) in 10 oral suspensions, using SyrSpend SF PH4 (liquid) as the suspending vehicle: cholecalciferol 50,000 IU/mL, haloperidol 0.5 mg/mL, imipramine hydrochloride 5.0 mg/mL, levodopa/carbidopa 5.0/1.25 mg/mL, lorazepam 1.0 mg/mL, minocycline hydrochloride 10.0 mg/mL, tacrolimus monohydrate 1.0 mg/mL, terbinafine 25.0 mg/mL, tramadol hydrochloride 10.0 mg/mL and valsartan 4.0 mg/mL. The suspensions were stored both refrigerated (2 - 8 degrees C) and at controlled room temperature (20 - 25 degrees C). This is the first stability study for these APIs in SyrSpend SF PH4 (liquid). Further, the stability of haloperidol,ilmipramine hydrochloride, minocycline, and valsartan in oral suspension has not been previously reported in the literature. Compatibility was assessed by measuring percent recovery at varying time points throughout a 90 days period. Quantification of the APIs was performed by high performance liquid chromatography (HPLC-UV). Given the percentage of recovery of the APIs within the suspensions, the beyond-use date of the final preparations was found to be at least 90 days for most suspensions both refrigerated and at room temperature. Exceptions were: Minocycline hydrochloride at both storage temperatures (60 days), levodopa/carbidopa at room temperature (30 days), and lorazepam at room temperature (60 days). This suggests that compounded suspensions of APIs from different pharmacological classes in SyrSpend SF PH4 (liquid) are stable.
Kuentz, Martin; Egloff, Peter; Röthlisberger, Dieter
2006-05-01
Many new drugs exhibit poor wetting behaviour and low aqueous solubility. This is particularly an issue for preclinical studies like toxicological trials, in which considerably higher doses and volumes are being administered compared to clinical studies. Preclinical vehicles typically contain high levels of surfactants that can exert biological effects. However, the biological inertness of vehicles is pivotal for the application in preclinical studies stressing the need in finding new excipients to solve formulation problems of today's drug discovery. The present study investigated the technical feasibility of surfactant-free suspensions using a new poorly soluble drug as model. It was shown that octenyl succinate-modified starches adequately wetted the drug and homogenous tasteless suspensions were obtained. The polymer xanthan gum was identified as macroscopically compatible gelling agent. Concentration effects of xanthan, drug and different modified starches were studied in a D-optimal design with respect to rheological properties. The suspensions were also tested in an analytical centrifuge using NIR transmission profiles to obtain a measure of sedimentation stability under accelerated conditions. The modified starches exhibited only little influence on the viscosity as well as on the yield point in contrast to the rheological effects of xanthan gum. This gelling agent was the main stabilising excipient as the modified starches hindered to a lesser extent sedimentation. The most stable suspensions displayed convenient flow properties. The viscosity at 100 s(-1) and 25 degrees C was in technically acceptable range of 120-140 mPa s in view of a application via gavage or a syringe in animal studies. The results demonstrated that surfactant-free drug suspensions with excellent technical performance can be obtained using octenyl succinate-modified starches. The vehicles were tasteless and based on the experience of modified starches in the food industry, the vehicles should exhibit good tolerability. The future use of such surfactant-free drug suspensions in toxicological, pharmacokinetic and pharmacodynamic studies will have to determine their advantage in terms of biological inertness.
The Relationship between Delinquent Behavior and Work Values of Noninstitutionalized Youth.
ERIC Educational Resources Information Center
Just, David A.
1985-01-01
A study was conducted to determine whether the work values of delinquent youth differ from those of other youth, and if so, how. Results showed that even as delinquency increases, work values tend to remain stable. Other factors (gender, race, and suspension from school) appear to have a greater impact on work values than does delinquency itself.…
Supercritical fluid processing of drug nanoparticles in stable suspension.
Pathak, Pankaj; Meziani, Mohammed J; Desai, Tarang; Foster, Charles; Diaz, Julian A; Sun, Ya-Ping
2007-07-01
Significant effort has been directed toward the development of drug formulation and delivery techniques, especially for the drug of no or poor aqueous solubility. Among various strategies to address the solubility issue, the reduction of drug particle sizes to the nanoscale has been identified as a potentially effective and broadly applicable approach. Complementary to traditional methods, supercritical fluid techniques have found unique applications in the production and processing of drug particles. Here we report the application of a newly developed supercritical fluid processing technique, Rapid Expansion of a Supercritical Solution into a Liquid Solvent, to the nanosizing of potent antiparasitic drug Amphotericin B particles. A supercritical carbon dioxide-cosolvent system was used for the solubilization and processing of the drug. The process produced well-dispersed nanoscale Amphotericin B particles suspended in an aqueous solution, and the suspension was intrinsically stable or could be further stabilized in the presence of water-soluble polymers. The properties of the drug nanoparticles were found to be dependent on the type of cosolvent used. The results on the use of dimethyl sulfoxide and methanol as cosolvents and their effects on the properties of nanosized Amphotericin B particles are presented and discussed.
Missaghi, Shahrzad; Young, Cara; Fegely, Kurt; Rajabi-Siahboomi, Ali R
2010-02-01
Formulation of proton pump inhibitors (PPIs) into oral solid dosage forms is challenging because the drug molecules are acid-labile. The aim of this study is to evaluate different formulation strategies (monolithic and multiparticulates) for three PPI drugs, that is, rabeprazole sodium, lansoprazole, and esomeprazole magnesium, using delayed release film coating applications. The core tablets of rabeprazole sodium were prepared using organic wet granulation method. Multiparticulates of lansoprazole and esomeprazole magnesium were prepared through drug layering of sugar spheres, using powder layering and suspension layering methods, respectively. Tablets and drug-layered multiparticulates were seal-coated, followed by delayed release film coating application, using Acryl-EZE(R), aqueous acrylic enteric system. Multiparticulates were then filled into capsules. The final dosage forms were evaluated for physical properties, as well as in vitro dissolution testing in both compendial acid phase, 0.1N HCl (pH 1.2), and intermediate pH, acetate buffer (pH 4.5), followed by phosphate buffer, pH 6.8. The stability of the delayed release dosage forms was evaluated upon storage in accelerated conditions [40 degrees C/75% relative humidity] for 3 months. All dosage forms demonstrated excellent enteric protection in the acid phase, followed by rapid release in their respective buffer media. Moreover, the delayed release dosage forms remained stable under accelerated stability conditions for 3 months. Results showed that Acryl-EZE enteric coating systems provide excellent performance in both media (0.1N HCl and acetate buffer pH 4.5) for monolithic and multiparticulate dosage forms.
Calladine, C. R.
2015-01-01
Davies Gilbert's work on the catenary is notable on two counts. First, it influenced Thomas Telford in formulating his final design for the Menai Strait suspension bridge (1826); and second, it established for the first time the form of the ‘catenary of equal strength’. The classical catenary is a uniform flexible chain or cable hanging freely under gravity between supports. The ‘catenary of equal strength’ is the form of a cable whose cross-sectional area is made proportional to the tension at each point, so that the tensile stress is uniform throughout. In this paper I provide a sketch of the lives and achievements of Gilbert and Telford, and of their interaction over the Menai Bridge. There follows a commentary on Gilbert's 1826 paper, and on his two related publications; and a brief sketch of the earlier history of the catenary. I then describe the development of the suspension bridge up to the present time. Finally, I discuss relations between mathematical analysts and practical engineers. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750153
Calladine, C R
2015-04-13
Davies Gilbert's work on the catenary is notable on two counts. First, it influenced Thomas Telford in formulating his final design for the Menai Strait suspension bridge (1826); and second, it established for the first time the form of the 'catenary of equal strength'. The classical catenary is a uniform flexible chain or cable hanging freely under gravity between supports. The 'catenary of equal strength' is the form of a cable whose cross-sectional area is made proportional to the tension at each point, so that the tensile stress is uniform throughout. In this paper I provide a sketch of the lives and achievements of Gilbert and Telford, and of their interaction over the Menai Bridge. There follows a commentary on Gilbert's 1826 paper, and on his two related publications; and a brief sketch of the earlier history of the catenary. I then describe the development of the suspension bridge up to the present time. Finally, I discuss relations between mathematical analysts and practical engineers. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Effect of Amphiphiles on the Rheology of Triglyceride Networks
NASA Astrophysics Data System (ADS)
Seth, Jyoti
2014-11-01
Networks of aggregated crystallites form the structural backbone of many products from the food, cosmetic and pharmaceutical industries. Such materials are generally formulated by cooling a saturated solution to yield the desired solid fraction. Crystal nucleation and growth followed by aggregation leads to formation of a space percolating fractal-network. It is understood that microstructural hierarchy and particle-particle interactions determine material behavior during processing, storage and use. In this talk, rheology of suspensions of triglycerides (TAG, like tristearin) will be explored. TAGs exhibit a rich assortment of polymorphs and form suspensions that are evidently sensitive to surface modifying additives like surfactants and polymers. Here, a theoretical framework will be presented for suspensions containing TAG crystals interacting via pairwise potentials. The work builds on existing models of fractal aggregates to understand microstructure and its correlation with material rheology. Effect of amphiphilic additives is derived through variation of particle-particle interactions. Theoretical predictions for storage modulus will be compared against experimental observations and data from the literature and micro structural predictions against microscopy. Such a theory may serve as a step towards predicting short and long-term behavior of aggregated suspensions formulated via crystallization.
Stability diagram for dense suspensions of model colloidal Al2O3 particles in shear flow.
Hecht, Martin; Harting, Jens; Herrmann, Hans J
2007-05-01
In Al2O3 suspensions, depending on the experimental conditions, very different microstructures can be found, comprising fluidlike suspensions, a repulsive structure, and a clustered microstructure. For technical processing in ceramics, the knowledge of the microstructure is of importance, since it essentially determines the stability of a workpiece to be produced. To enlighten this topic, we investigate these suspensions under shear by means of simulations. We observe cluster formation on two different length scales: the distance of nearest neighbors and on the length scale of the system size. We find that the clustering behavior does not depend on the length scale of observation. If interparticle interactions are not attractive the particles form layers in the shear flow. The results are summarized in a stability diagram.
Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies
NASA Astrophysics Data System (ADS)
Meißner, Tobias; Oelschlägel, Kathrin; Potthoff, Annegret
2014-08-01
The increasing use of zinc oxide (ZnO) nanoparticles in sunscreens and other cosmetic products demands a risk assessment that has to be done in toxicological studies. Such investigations require profound knowledge of the behavior of ZnO in cell culture media. The current study was performed to get well-dispersed suspensions of a hydrophilic (ZnO-hydro) and a lipophilic coated (ZnO-lipo) ZnO nanomaterial for use in in vitro tests. Therefore, systematic tests were carried out with common dispersants (phosphate, lecithin, proteins) to elucidate chemical and physical changes of ZnO nanoparticles in water and physiological solutions (PBS, DMEM). Non-physiological stock suspensions were prepared using ultrasonication. Time-dependent changes of pH, conductivity, zeta potential, particle size and dissolution were recorded. Secondly, the stock suspensions were added to physiological media with or without albumin (BSA) or serum (FBS), to examine characteristics such as agglomeration and dissolution. Stable stock suspensions were obtained using phosphate as natural and physiological electrostatic stabilizing agent. Lecithin proved to be an effective wetting agent for ZnO-lipo. Although the particle size remained constant, the suspension changed over time. The pH increased as a result of ZnO dissolution and formation of zinc phosphate complexes. The behavior of ZnO in physiological media was found to depend strongly on the additives used. Applying only phosphate as additive, ZnO-hydro agglomerated within minutes. In the presence of lecithin or BSA/serum, agglomeration was inhibited. ZnO dissolution was higher under physiological conditions than in the stock suspension. Serum especially promoted this process. Using body-related dispersants (phosphate, lecithin) non-agglomerating stock suspensions of hydrophilic and lipophilic ZnO were prepared as a prerequisite to perform meaningful toxicological investigation. Both nanomaterials showed a non-negligible dissolution behavior that strongly depended on the surrounding conditions. Agglomeration of ZnO particles in physiological media is a complex function of particle coating, used dispersants and serum proteins if supplemented. The present study gives a clear guideline how to prepare and handle suspensions with ZnO for in vitro testing and allows the correlation between the chemical-physical particles behavior with findings from toxicological tests.
Thrilling News Revisited: The Role of Suspense for the Enjoyment of News Stories.
Kaspar, Kai; Zimmermann, Daniel; Wilbers, Anne-Kathrin
2016-01-01
Previous research on news perception has been dominated by a cognitively oriented perspective on reception processes, whereas emotions have been widely neglected. Consequently, it has remained open which features of a news story might elicit affective responses and hence modulate news perception, shifting the focus to the emotional potential of the narrative. According to the affective-disposition theory, the experience of suspense is the striving force of immersion in fictional dramas. Thereby, a positive affective disposition toward the protagonist of a story and a high likelihood of a bad ending should increase suspense that, in turn, should positively influence reading appreciation and lingering interest in the story. We investigated whether suspense and its determinants also play such a key role in the context of news stories. Study 1 ( n = 263) successfully replicated results of an earlier study, whereas Studies 2 ( n = 255) and 3 ( n = 599) challenged the generalizability of some effects related to manipulated characteristics of a news story. In contrast, correlational relationships between perceived news characteristics and news evaluation were relatively stable. In particular, participants' liking of the protagonist and the perceived likelihood of a good ending were positively associated with suspense, reading appreciation, and lingering interest. This result indicates a preference for happy endings and contradicts the notion that likely negative outcomes are beneficial for suspense and the enjoyment of news stories, as postulated by the affective-disposition theory in the context of fictional dramas. Moreover, experienced suspense reliably mediated the correlations between, on the one hand, participants' liking of the protagonist and the perceived likelihood of a good ending and, on the other hand, reading appreciation and lingering interest. The news story's personal relevance was less influential than expected. Further, we observed a large absence of interaction effects, indicating that central characteristics of a news story can be independently varied to a large degree. In a nutshell, we may conclude that suspense significantly mediates the correlation between perceived news characteristics and the enjoyment of news stories, whereas manipulations of news characteristics do not necessarily influence the enjoyment of narratives as desired.
Thrilling News Revisited: The Role of Suspense for the Enjoyment of News Stories
Kaspar, Kai; Zimmermann, Daniel; Wilbers, Anne-Kathrin
2016-01-01
Previous research on news perception has been dominated by a cognitively oriented perspective on reception processes, whereas emotions have been widely neglected. Consequently, it has remained open which features of a news story might elicit affective responses and hence modulate news perception, shifting the focus to the emotional potential of the narrative. According to the affective-disposition theory, the experience of suspense is the striving force of immersion in fictional dramas. Thereby, a positive affective disposition toward the protagonist of a story and a high likelihood of a bad ending should increase suspense that, in turn, should positively influence reading appreciation and lingering interest in the story. We investigated whether suspense and its determinants also play such a key role in the context of news stories. Study 1 (n = 263) successfully replicated results of an earlier study, whereas Studies 2 (n = 255) and 3 (n = 599) challenged the generalizability of some effects related to manipulated characteristics of a news story. In contrast, correlational relationships between perceived news characteristics and news evaluation were relatively stable. In particular, participants' liking of the protagonist and the perceived likelihood of a good ending were positively associated with suspense, reading appreciation, and lingering interest. This result indicates a preference for happy endings and contradicts the notion that likely negative outcomes are beneficial for suspense and the enjoyment of news stories, as postulated by the affective-disposition theory in the context of fictional dramas. Moreover, experienced suspense reliably mediated the correlations between, on the one hand, participants' liking of the protagonist and the perceived likelihood of a good ending and, on the other hand, reading appreciation and lingering interest. The news story's personal relevance was less influential than expected. Further, we observed a large absence of interaction effects, indicating that central characteristics of a news story can be independently varied to a large degree. In a nutshell, we may conclude that suspense significantly mediates the correlation between perceived news characteristics and the enjoyment of news stories, whereas manipulations of news characteristics do not necessarily influence the enjoyment of narratives as desired. PMID:28018260
Peacock, Gina F; Sauvageot, Jurgita; Hill, Ashley; Killian, Alyssa
2016-01-01
Mercaptopurine is commonly used to treat acute lymphoblastic leukemia and has historically been commercially available only in tablet form. Since tablets may be difficult for children and elderly patients to swallow, many pharmacists have compounded mercaptopurine suspensions. The U.S. Food and Drug Administration recently approved a commercial suspension, but it is not widely available at this time. Therefore, pharmacists may still need to compound mercaptopurine suspension for use in areas where it is not available or if the commercial suspension is in short supply. Stability studies must be conducted in order to assign appropriate beyond-use dates for compounded preparations. The objective of this study was to evaluate the stability of extemporaneously compounded suspensions using commercially available mercaptopurine tablets, as well as active pharmaceutical ingredient in a vehicle of Ora-Sweet and Ora-Plus (1:1) stored in plastic and glass containers at room temperature. Each mercaptopurine preparation was analyzed using a validated stability-indicating high-performance liquid chromatography method at the following time points: 0, 7, 14, 21, 30, 60, and 90 days. Suspensions were also observed for changes in appearance or odor, and pH was tested at each time point. The suspension compounded from Roxane generic tablets was extremely viscous and was therefore eliminated from the study. All other suspensions showed no observed physical changes and maintained greater than 93% of initial concentration of mercaptopurine for the entire study period.
NASA Astrophysics Data System (ADS)
Perera, M. Tharanga D.
Microstructure is key to understanding rheological behaviors of flowing particulate suspensions. During the past decade, Stokesian Dynamics simulations have been the dominant method of determining suspension microstructure. Structure results obtained numerically reveal that an anisotropic structure is formed under high Peclet (Pe) number conditions. Researchers have used various experimental techniques such as small angle neutron scattering (SANS) and light scattering methods to validate microstructure. This work outlines an experimental technique based on confocal microscopy to study microstructure of a colloidal suspension in an index-matched fluid flowing in a microchannel. High resolution scans determining individual particle locations in suspensions 30-50 vol % yield quantitative results of the local microstructure in the form of the pair distribution function, g(r). From these experimentally determined g(r), the effect of shear rate, quantified by the Peclet number as a ratio of shear and Brownian stress, on the suspension viscosity and normal stress follow that seen in macroscopic rheological measurements and simulations. It is generally believed that shear thickening behavior of colloidal suspensions is driven by the formation of hydroclusters. From measurements of particle locations, hydroclusters are identified. The number of hydroclusters grows exponentially with increasing Pe, and the onset of shear thickening is driven by the increase in formation of clusters having 5-8 particles. At higher Pe, we notice the emergence of 12 or more particle clusters. The internal structure of these hydroclusters has been investigated, and there is some evidence that particles internal to hydroclusters preferentially align along the 45° and 135° axis. Beyond observations of bulk suspension behavior, the influence of boundaries on suspension microstructure is also investigated. Experiments were performed for suspensions flowing over smooth walls, made of glass coverslips, and over rough walls having a high density coating of particles. These results show that there is more order in structure near smooth boundaries while near rough boundaries the structure is similar to that found in the bulk. The relative viscosity and normal stress differences also indicate that boundaries have an effect up as far as 6 particle diameters away from the boundary. Finally, we investigate the microstructure evolvement in a model porous medium and notice that such boundary effects come into play in such real process flows. The confocal microscopy technique also provides us with the advantage of measuring structure in real process flows. We have investigated how the microstructure evolves upstream and downstream in a porous medium. We notice more structure in a high volume fraction suspension and notice anisotropic behavior at regions where shear from the wall of the posts dominate. In other cases, a mixed flow behavior is observed due to collisions between pore surfaces and other particles resulting in a deviation from flow streamlines.
Li, Yongshen; Song, Yunna; Ma, Zheng; Niu, Shuai; Li, Jihui; Li, Ning
2018-06-01
In this article, phosphonic acid silver-graphene oxide nanomaterials (Nano-PAS-GO) was synthesized from silver nitrate (AgNO 3 ) solution and phosphoric graphene oxide (PGO) via the convenient ultrasonic-assisted method, and the structure and morphology were characterized, and the photocatalytic activity and recyclability were evaluated through photocatalyzing degradation of Rhodamin B (RhB) aqueous solution, and the possible photocatalytic mechanism was also discussed. Based on those, it was confirmed that Nano-PAS-GO has been synthesized from AgNO 3 solution and PGO colloidal suspension under ultrasonic-assisted condition, and Nano-PAS-GO has consisted of phosphoric acid silver nanoparticles and GO with 2D lattice (2D GO lattice) connected in the form of C-P bonds, and the photodegradation rate of Nano-PAS-GO for RhB aqueous solution has reached 93.99%, and Nano-PAS-GO has possessed the nicer recyclability when the photocatalytic time was 50 min. From those results, the strong and stable interface . between PAS nanoparticles and 2D GO lattice connected in the form of the covalent bonds has effectively inhibited the occurrence of the photocorrosion phenomenon. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Morissette, Sherry L.
A new gelcasting system based on aqueous, alumina-poly(vinyl alcohol) (PVA) suspensions cross-linked by an organotitanate coupling agent has been developed. Both the chemorheological properties and forming behavior of this system exhibited a strong compositional dependence. A sol- gel phase diagram was established, which yielded the critical titanium concentration [Ti] c required for gelation at a given PVA volume fraction, as well as the minimum PVA volume fraction ( fminPVA = 0.0245) and titanium PVA concentration ([Ti]min = 9.984 x 10--4 g Ti/ml) below which gelation was not observed irrespective of solution composition. The gelation time of suspensions of constant PVA volume fraction ( fsolnPVA ) decreased with increasing cross-linking agent concentration, PVA temperature, and solids volume fraction. The steady-state viscosity and elastic modulus of polymer solutions ( fsolnPVA = 0.05) of varying [Ti] were well described by the PVA percolation model, giving scaling exponents of 0.84 and 1.79, respectively. The steady-state elastic modulus of gel casting suspensions, which provides a measure of their handling strength in the as-gelled state, increased with increasing solids volume fraction. Gelcasting suspensions were used as feedstock for solid free-form fabrication (SFF) of ceramic components. The influence of processing conditions (e.g., tip diameter, mixing rate, table speed, etc.) and suspension rheology on deposition behavior was investigated. Continuous printablity was achieved for tip diameters ranging from dt = 0.254 -- 1.370 mm for all mixing rates (Rmix 5 -- 300 rpm) and suspension compositions (i.e., fAl2O3 = 0.45, φPVA = 0.275, [Ti] 0 -- 6.30 x 10--3 g Ti/ml) probed, where the minimum tip diameter for continuous printing was 0.203 mm. Printed lines were uniform with good edge definition. Line dimensions were independent of mixing rate for the given process conditions. The as-cast alumina volume fraction ( fAl2O3 ) depended on casting conditions and cross-linking agent concentration, where fAl2O3 decreased with increasing tip diameter and increased with increasing cross-linking agent concentration. Free-fomied Al2O3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no detectable micro-defects (e.g., bubbles or cracking).
Tunable Stable Levitation Based on Casimir Interaction between Nanostructures
NASA Astrophysics Data System (ADS)
Liu, Xianglei; Zhang, Zhuomin M.
2016-03-01
Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.
Mesoscale fabrication and design
NASA Astrophysics Data System (ADS)
Hayes, Gregory R.
A strong link between mechanical engineering design and materials science and engineering fabrication can facilitate an effective and adaptable prototyping process. In this dissertation, new developments in the lost mold-rapid infiltration forming (LM-RIF) process is presented which demonstrates the relationship between these two fields of engineering in the context of two device applications. Within the LM-RIF process, changes in materials processing and mechanical design are updated iteratively, often aided by statistical design of experiments (DOE). The LM-RIF process was originally developed by Antolino and Hayes et al to fabricate mesoscale components. In this dissertation the focus is on advancements in the process and underlying science. The presented advancements to the LM-RIF process include an augmented lithography procedure, the incorporation of engineered aqueous and non-aqueous colloidal suspensions, an assessment of constrained drying forces during LM-RIF processing, mechanical property evaluation, and finally prototype testing and validation. Specifically, the molding procedure within the LM-RIF process is capable of producing molds with thickness upwards of 1mm, as well as multi-layering to create three dimensional structures. Increasing the mold thickness leads to an increase in the smallest feature resolvable; however, the increase in mold thickness and three dimensional capability has expanded the mechanical design space. Tetragonally stabilized zirconia (3Y-TZP) is an ideal material for mesoscale instruments, as it is biocompatible, exhibits high strength, and is chemically stable. In this work, aqueous colloidal suspensions were formulated with two new gel-binder systems, increasing final natural orifice translumenal endoscopic surgery (NOTES) instrument yield from 0% to upwards of 40% in the best case scenario. The effects of the gel-binder system on the rheological behavior of the suspension along with the thermal characteristics of the gel-binder system were characterized. Finally, mechanical properties of ceramic specimens were obtained via 3-point bend testing. Another candidate material for NOTES devices as well as cellular contact aided compliant mechanisms (C3M) devices is 300 series stainless steel (300 series stainless steel). 300 series stainless steel is a common biocompatible material; it is used in surgical applications, exhibits a high corrosion resistance, and has high strength to failure. New, high solids loading, non-aqueous colloidal suspensions of 300 series stainless steel were formulated and incorporated into the LM-RIF process. The rheological behavior and thermal characteristics of the non-aqueous colloidal suspensions were analyzed and engineered to operate within the LM-RIF process. Final part yield with the non-aqueous colloidal suspensions was higher than that of the aqueous ceramic suspensions. Mechanical properties of 300 series stainless steel specimens were determined via 3-point bend testing. Furthermore, new composite non-aqueous colloidal suspensions of 3Y-TZP and 300 series stainless steel were formulated and incorporated into the LM-RIF process. The composite materials showed an increase in final part yield, and an increase in yield strength compared to pure 300 series stainless steel was determined by Vickers hardness testing. The successful incorporation of composite suspensions in the LM-RIF process was facilitated through an analysis of the rheological behavior as a function of solids loading and ceramic to metal ratio. Optimized designs of NOTES instruments, as well as C3M devices were manufactured using the LM-RIF process with the non-aqueous 300 series stainless steel suspension. The performance of the prototype NOTES instruments was evaluated and compared against the theoretically predicted performance results, showing good agreement. Similarly, good agreement was seen between the stress-displacement behavior of prototype C3M devices when compared to the theoretically calculated stress-displacement results. Finally, in a comparison by endoscopic surgeons at Hershey Medical Center between an existing industry standard endoscopic device and the mesoscale instrument prototypes fabricated via the LM-RIF process, the prototype design performed favorably in almost all categories. (Abstract shortened by UMI.)
Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts
Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane
2015-04-21
A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.
NASA Astrophysics Data System (ADS)
Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.
2018-03-01
In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via an intermediate FCC phase.
Towards the SQL: Status of the direct thermal-noise measurements at the ANU
NASA Astrophysics Data System (ADS)
Mow-Lowry, C. M.; Goßler, S.; Slagmolen, B. J. J.; Cumpston, J.; Gray, M. B.; McClelland, D. E.
2006-03-01
We present the preliminary results for an experiment that aims to perform direct measurements of suspension thermal noise. The experiment is based on a niobium flexure membrane approximately 200 µm thickness that is operated as a stable inverted pendulum. A 0.25 g mirror suspended by this flexure membrane is used as the end mirror of a Fabry-Perot test cavity. This test cavity has a length of 12mm and a finesse of about 800. It is mounted at the lowest stage of a quadruple cascaded pendulum suspension, enclosed in a high-vacuum envelope. The length of test cavity is stabilized with 1Hz bandwidth to a Nd:YAG laser, which itself is stabilized with high bandwidth to the length of a suspended Zerodur reference cavity of finesse 6000.
Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles.
Hull, Matthew S; Chaurand, Perrine; Rose, Jerome; Auffan, Melanie; Bottero, Jean-Yves; Jones, Jason C; Schultz, Irvin R; Vikesland, Peter J
2011-08-01
Nanoparticles resistant to salt-induced aggregation are continually being developed for biomedical and industrial applications. Because of their colloidal stability these functionalized nanoparticles are anticipated to be persistent aquatic contaminants. Here, we show that Corbicula fluminea, a globally distributed clam that is a known sentinel of aquatic ecosystem contamination, can uptake and biodeposit bovine serum albumin (BSA) stabilized gold nanoparticles. Nanoparticle clearance rates from suspension were dictated by diameter and concentration, with the largest particles cleared most quickly on a mass basis. Particle capture facilitates size-selective 'biopurification' of particle suspensions with nanoscale resolution. Nanoparticles were retained either within the clam digestive tract or excreted in feces. Our results suggest that biotransformation and biodeposition will play a significant role in the fate and transport of persistent nanoparticles in aquatic systems.
Engineering of Novel Biocolloid Suspensions
NASA Technical Reports Server (NTRS)
Hammer, D. A.; Rodges, S.; Hiddessen, A.; Weitz, D. A.
1999-01-01
Colloidal suspensions are materials with a variety of uses from cleaners and lubricants to food, cosmetics, and coatings. In addition, they can be used as a tool for testing the fundamental tenets of statistical physics. Colloidal suspensions can be synthesized from a wide variety of materials, and in the form of monodisperse particles, which can self-assemble into highly ordered colloidal crystal structures. As such they can also be used as templates for the construction of highly ordered materials. Materials design of colloids has, to date, relied on entropic self-assembly, where crystals form as result of lower free energy due to a transition to order. Here, our goal is to develop a completely new method for materials fabrication using colloidal precursors, in which the self-assembly of the ordered colloidal structures is driven by a highly controllable, attractive interaction. This will greatly increase the range of potential structures that can be fabricated with colloidal particles. In this work, we demonstrate that colloidal suspensions can be crosslinked through highly specific biological crosslinking reactions. In particular, the molecules we use are protein-carbohydrate interactions derived from the immune system. This different driving force for self-assembly will yield different and novel suspensions structures. Because the biological interactions are heterotypic (A binding to B), this chemical system can be used to make binary alloys in which the two colloid subpopulations vary in some property - size, density, volume fraction, magnetic susceptibility, etc. An additional feature of these molecules which is unique - even within the realm of biological recognition - is that the molecules bind reversibly on reasonable time-scales, which will enable the suspension to sample different configurations, and allow us to manipulate and measure the size of the suspension dynamically. Because of the wide variety of structures that can be made from these novel colloids, and because the suspension structure can be altered dynamically, we believe this biocolloid system will yield a novel set of materials with many technological applications, including sensors (both biological and non-biological), optical filters and separation media.
Viscosity of a concentrated suspension of rigid monosized particles
NASA Astrophysics Data System (ADS)
Brouwers, H. J. H.
2010-05-01
This paper addresses the relative viscosity of concentrated suspensions loaded with unimodal hard particles. So far, exact equations have only been put forward in the dilute limit, e.g., by Einstein [A. Einstein, Ann. Phys. 19, 289 (1906) (in German); Ann. Phys. 34, 591 (1911) (in German)] for spheres. For larger concentrations, a number of phenomenological models for the relative viscosity was presented, which depend on particle concentration only. Here, an original and exact closed form expression is derived based on geometrical considerations that predicts the viscosity of a concentrated suspension of monosized particles. This master curve for the suspension viscosity is governed by the relative viscosity-concentration gradient in the dilute limit (for spheres the Einstein limit) and by random close packing of the unimodal particles in the concentrated limit. The analytical expression of the relative viscosity is thoroughly compared with experiments and simulations reported in the literature, concerning both dilute and concentrated suspensions of spheres, and good agreement is found.
Suppressing Crack Formation in Particulate Systems by Utilizing Capillary Forces
Schneider, Monica; Maurath, Johannes; Fischer, Steffen B.; Weiß, Moritz; Willenbacher, Norbert; Koos, Erin
2017-01-01
Cracks, formed during the drying of particulate films, can reduce the effectiveness or even render products useless. We present a novel, generic approach to suppress crack formation in thin films made from hard particle suspensions, which are otherwise highly susceptible to cracking, using the capillary force between particles present when a trace amount of an immiscible liquid is added to a suspension. This secondary liquid preserves the particle cohesion, modifying the structure and increasing the drying rate. Crack-free films can be produced at thicknesses much greater than the critical cracking thickness for a suspension without capillary interactions, and even persists after sintering. This capillary suspension strategy is applicable to a broad range of materials including suspensions of metals, semiconductive and ceramic oxides or glassy polymeric particles and can be easily implemented in many industrial processes since it is based on well-established unit operations. Promising fields of application include ceramic foils and printed electronic devices. PMID:28263554
The Design and Performance Evaluation of Hydroformed Tubular Torsion Beam Axle
NASA Astrophysics Data System (ADS)
Kim, Jaehyun; Oh, Jinho; Choi, Hanho
2010-06-01
Suspensions for vehicles are structural devices used for suspending a vehicle body and absorbing shocks from the road. Thus, the suspensions must be designed such that they can attenuate shocks from a road and make passengers feel comfortable despite the shocks, and improve steering stability, determined by the ground contact force of tires during running of vehicles. Another important factor to be considered while designing suspensions is that the suspensions must maintain desired stiffness and desired durability despite the repeated application of shocks from roads thereto. The present relates, in general, to a tubular torsion beam for rear suspensions of vehicles and a manufacturing method thereof and, more particularly, to the provision of tubular torsion beams having excellent roll stiffness and excellent roll strength, produced through hydroforming. The hydroforming technology has a lot of benefit which is shape accuracy, good durability caused by compressive pressure, and good forming quality. In this study, the performance evaluation of the hydroformed tubular torsion beam axle is evaluated.
Eskola, M; Bäckman, S; Möttönen, S; Kekomäki, R
2015-04-01
Total colony-forming cells from thawed cord blood units (CBUs) include megakaryocytic colony-forming units (CFU-Mks), which survive the freezing process. The aim of this study was to evaluate whether different megakaryocytic progenitors from unseparated CBUs survive the freezing process and a short-term liquid culture. Thawed samples of CBUs were cultured in liquid medium. During the cultures, serial samples were drawn to assess the growth of different megakaryocytic progenitors in a semisolid collagen medium with identical cytokines as in the liquid medium. Megakaryocytic cells were detected using immunohistochemistry and flow cytometry. In suspension culture, the megakaryocytic progenitors almost completely lost the ability to generate large (burst-forming unit-like, BFU-like) megakaryocytic colonies in semisolid cultures (large colonies, median count per chamber d0: 7.25 vs. d7: 1.5; P < 0.0001), whereas the number of small colonies (median count per chamber d0: 7.25 vs. d7: 16.0; P = 0.0505) peaked at day seven. Further 7-day culture in suspension resulted in the decline of small colonies as well (d7: 16.0 vs. d14: 5.75; P = 0.0088). Total CFU-Mk count declined from 23.3 (range 12.5-34.0) at d0 to 7.25 (range 1.0-13.5) at d14 (P < 0.0001). Immediately post-thaw, CBUs possess an ability to generate large BFU-like megakaryocytic colonies, whereas the colonies were not detectable in most CBUs in semisolid culture after a short suspension culture. Small CFU-Mks were observed throughout the cultures. It may be that the BFU-Mk colonies matured and acquired CFU-Mk behaviour. © 2014 International Society of Blood Transfusion.
Kaolinite flocculation induced by smectite addition - a transmission X-ray microscopic study.
Zbik, Marek S; Song, Yen-Fang; Frost, Ray L
2010-09-01
The influence of smectite addition on kaolinite suspensions in water was investigated by transmission X-ray microscopy (TXM) and Scanning Electron Microscopy (SEM). Sedimentation test screening was also conducted. Micrographs were processed by the STatistic IMage Analysing (STIMAN) program and structural parameters were calculated. From the results of the sedimentation tests important influences of small smectite additions to about 3wt.% on kaolinite suspension flocculation has been found. In order to determine the reason for this smectite impact on kaolinite suspension, macroscopic behaviour micro-structural examination using Transmission X-ray Microscope (TXM) and SEM has been undertaken. TXM & SEM micrographs of freeze-dried kaolinite-smectite suspensions with up to 20% smectite showed a high degree of orientation of the fabric made of highly oriented particles and greatest density when 3wt.% of smectite was added to the 10wt.% dense kaolinite suspension. In contrast, suspensions containing pure kaolinite do not show such platelet mutual orientation but homogenous network of randomly oriented kaolinite platelets. This suggests that in kaolinite-smectite suspensions, smectite forms highly oriented basic framework into which kaolinite platelets may bond in face to face preferential contacts strengthening structure and allowing them to show plastic behaviour which is cause of platelets orientation. Copyright 2010 Elsevier Inc. All rights reserved.
Order and gelation of cellulose nanocrystal suspensions: an overview of some issues
NASA Astrophysics Data System (ADS)
Gray, Derek G.
2017-12-01
Cellulose nanocrystals (CNCs) are polydisperse rod-shaped particles of crystalline cellulose I, typically prepared by sulfuric acid hydrolysis of natural cellulose fibres to give aqueous colloidal suspensions stabilized by sulfate half-ester groups. Sufficiently dilute suspensions are isotropic fluids, but as the concentration of CNC in water is increased, a critical concentration is reached where a spontaneously ordered phase is observed. The (equilibrium) phase separation of the ordered chiral nematic phase is in competition with a tendency of the CNC suspension to form a gel. Qualitatively, factors that reduce the stability of the CNC suspension favour the onset of gelation. The chiral nematic structure is preserved, at least partially, when the suspension dries. Solid chiral nematic films of cellulose are of interest for their optical and templating properties, but the preparation of the films requires improvement. The processes that govern the formation of solid chiral nematic films from CNC suspensions include phase separation, gelation and also the effects of shear on CNC orientation during evaporation. Some insight into these processes is provided by polarized light microscopy, which indicates that the relaxation of shear-induced orientation to give a chiral nematic structure may occur via an intermediate twist-bend state. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.
Stability of an extemporaneous alcohol-free melatonin suspension.
Johnson, Cary E; Cober, Mary Petrea; Thome, Tennille; Rouse, Emily
2011-03-01
The stability of alcohol-free oral suspensions of melatonin 1 mg/mL, extemporaneously prepared from two commercially available melatonin tablet products, was studied. Four 1-mg/mL melatonin suspensions were prepared. Formulations A and B contained 20 crushed 3-mg tablets of melatonin combined with a 1:1 mixture of Ora-Plus and either Ora-Sweet or Ora-Sweet SF to produce a volume of 60 mL. Formulations C and D were prepared by crushing 20 combination tablets containing melatonin 3 mg and pyridoxine hydrochloride 10 mg and then combining the powder with a 1:1 mixture of Ora-Plus and either Ora-Sweet or Ora-Sweet SF to produce a 60-mL volume. The suspensions were prepared in triplicate and stored at room temperature in amber plastic prescription bottles. Immediately after preparation and on days 7, 15, 30, 60, and 90, the samples were assayed in duplicate by stability-indicating high-performance liquid chromatography (HPLC). The samples were also evaluated for any changes in color, odor, and taste. HPLC analysis demonstrated that at least 94% of the initial melatonin concentration in formulations A and B, and at least 98% of that in formulations C and D, remained throughout the 90-day study period. Detectable changes in color, odor, or taste occurred in all of the formulations. Extemporaneously prepared, alcohol-free, 1-mg/mL suspensions of melatonin and melatonin-pyridoxine hydrochloride in a 1:1 mixture of Ora-Plus and either Ora Sweet or Ora Sweet SF were stable for at least 90 days when stored in 2-oz amber plastic bottles at room temperature.
Effects of water suspension and wet-dry cycling on fertility of Douglas-fir pollen.
Donald L. Copes; Nan C. Vance
2000-01-01
Studies were made to determine how long Douglas-fir pollen remains viable after suspension in cool water form 0 to 34 days. Linear regression analysis of in vivo and in vitro tests indicated that filled seed efficiency and pollen viability, respectively, decreased about 3 percent per day. The relation may have been nonlinear the first 6 days, as little decrease...
3D modelling of squeeze flow of unidirectional and fabric composite inserts
NASA Astrophysics Data System (ADS)
Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Keunings, Roland
2016-10-01
The enhanced design flexibility provided to the thermo-forming of thermoplastic materials arises from the use of both continuous and discontinuous thermoplastic prepregs. Discontinuous prepregs are patches used to locally strengthen the part. In this paper, we propose a new modelling approach for suspensions involving composite patches that uses theoretical concepts related to discontinuous fibres suspensions, transversally isotropic fluids and extended dumbbell models.
Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO
2011-11-15
Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).
NASA Astrophysics Data System (ADS)
Saha, Saikat; Alam, Meheboob
2017-12-01
The hydrodynamics and rheology of a sheared dilute gas-solid suspension, consisting of inelastic hard-spheres suspended in a gas, are analysed using anisotropic Maxwellian as the single particle distribution function. The closed-form solutions for granular temperature and three invariants of the second-moment tensor are obtained as functions of the Stokes number ($St$), the mean density ($\
Fluid flows created by swimming bacteria drive self-organization in confined suspensions
Lushi, Enkeleida; Wioland, Hugo; Goldstein, Raymond E.
2014-01-01
Concentrated suspensions of swimming microorganisms and other forms of active matter are known to display complex, self-organized spatiotemporal patterns on scales that are large compared with those of the individual motile units. Despite intensive experimental and theoretical study, it has remained unclear the extent to which the hydrodynamic flows generated by swimming cells, rather than purely steric interactions between them, drive the self-organization. Here we use the recent discovery of a spiral-vortex state in confined suspensions of Bacillus subtilis to study this issue in detail. Those experiments showed that if the radius of confinement in a thin cylindrical chamber is below a critical value, the suspension will spontaneously form a steady single-vortex state encircled by a counter-rotating cell boundary layer, with spiral cell orientation within the vortex. Left unclear, however, was the flagellar orientation, and hence the cell swimming direction, within the spiral vortex. Here, using a fast simulation method that captures oriented cell–cell and cell–fluid interactions in a minimal model of discrete particle systems, we predict the striking, counterintuitive result that in the presence of collectively generated fluid motion, the cells within the spiral vortex actually swim upstream against those flows. This prediction is then confirmed by the experiments reported here, which include measurements of flagella bundle orientation and cell tracking in the self-organized state. These results highlight the complex interplay between cell orientation and hydrodynamic flows in concentrated suspensions of microorganisms. PMID:24958878
Anders, Catherine B; Chess, Jordan J; Wingett, Denise G; Punnoose, Alex
2015-12-01
Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.
NASA Astrophysics Data System (ADS)
Anders, Catherine B.; Chess, Jordan J.; Wingett, Denise G.; Punnoose, Alex
2015-11-01
Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.
Palma-Aguirre, Jose Antonio; Absalón-Reyes, Jose Antonio; Novoa-Heckel, Germán; de Lago, Alberto; Oliva, Iván; Rodríguez, Zulema; González-de la Parra, Mario; Burke-Fraga, Victoria; Namur, Salvador
2007-06-01
Acyclovir is an important antiviral drug, used extensively for treatment of herpes simplex and varicella zoster. Six oral generic formulations of acyclovir are available in Mexico; however, a literature search failed to identify data information concerning the bioavailability of these formulations in the Mexican population. The aim of these 2 studies was to compare the bioavailability of 4 oral formulations of acyclovir 400 mg--2 tablet formulations and 2 suspension formulations--with their corresponding listed drug references in Mexico (a list issued by Mexican Health Authorities). Two separate, single-dose, open-label, randomized, 2-period crossover studies were conducted at the Centro de Estudios Científicos y Clínicos Pharma, S.A. de C.V. (clinical unit), Mexico City, Mexico. For each study, a different set of eligible subjects were selected. They included healthy Mexican volunteers of either sex. For each study, subjects were randomly assigned to receive 1 test formulation of acyclovir 400 mg followed by the reference formulation, or vice versa, with a 1-week washout period between doses. After a 12-hour (overnight) fast, subjects received a single 400-mg dose (tablet or 10-mL suspension) of the corresponding formulation. For the analysis of pharmacokinetic properties, including C(max), AUC from time 0 (baseline) to time t (AUC(0-t)), and AUC from baseline to infinity (AUC(0-infinity)), blood samples were drawn at baseline, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2, 3, 4, 6, 8, 12, and 24 hours after dosing. The formulations were considered bioequivalent if the natural logarithm (ln)-transformed ratios of Cmax and AUC were within the predetermined equivalence range of 80% to 125% and if P
Frasnelli, Matteo; Cristofaro, Francesco; Sglavo, Vincenzo M; Dirè, Sandra; Callone, Emanuela; Ceccato, Riccardo; Bruni, Giovanna; Cornaglia, Antonia Icaro; Visai, Livia
2017-02-01
The production of stable suspensions of strontium-substituted hydroxyapatite (Sr-HA) nanopowders, as Sr ions vector for bone tissue regeneration, was carried out in the present work. Sr-HA nanopowders were synthesized via aqueous precipitation methods using Sr 2+ amount from 0 to 100mol% and were characterized by several complementary techniques such as solid-state Nuclear Magnetic Resonance spectroscopy, X-ray diffraction, Infrared spectroscopy, N 2 physisorption and Transmission Electron Microscopy. The substitution of Ca 2+ with Sr 2+ in HA is always isomorphic with gradual evolution between the two limit compositions (containing 100% Ca and 100% Sr), this pointing out the homogeneity of the synthesized nanopowders and the complete solubility of strontium in HA lattice. Strontium addition is responsible for an increasing c/a ratio in the triclinic unit cell. A significant variation of the nanopowders shape and dimension is also observed, a preferential growth along the c-axis direction being evident at higher strontium loads. Modifications in the local chemical environment of phosphate and hydroxyl groups in the apatite lattice are also observed. Stable suspensions were produced by dispersing the synthesized nanopowders in bovine serum albumin. Characterization by Dynamic Light Scattering and ζ-potential determination allowed to show that Ca 2+ →Sr 2+ substitution influences the hydrodynamic diameter, which is always twice the particles size determined by TEM, the nanoparticles being always negatively charged as a result from the albumin rearrangement upon the interaction with nanoparticles surface. The biocompatibility of the suspensions was studied in terms of cell viability, apoptosis, proliferation and morphology, using osteosarcoma cell line SAOS-2. The data pointed out an increased cell proliferation for HA nanoparticles containing larger Sr 2+ load, the cells morphology remaining essentially unaffected. Copyright © 2016 Elsevier B.V. All rights reserved.
Preparation of powders suitable for conversion to useful .beta.-aluminas
Morgan, Peter E. D.
1982-01-01
A process for forming a precursor powder which, when suitably pressed and sintered forms highly pure, densified .beta.- or .beta."-alumina, comprising the steps of: (1) forming a suspension (or slurry) of Bayer-derived Al(OH).sub.3 in a water-miscible solvent; (2) adding an aqueous solution of a Mg compound, a Li compound, a Na compound or mixtures thereof to the Bayer-derived Al(OH).sub.3 suspension while agitating the mixture formed thereby, to produce a gel; (3) drying the gel at a temperature above the normal boiling point of water to produce a powder material; (4) lightly ball milling and sieving said powder material; and (5) heating the ball-milled and sieved powder material at a temperature of between 350.degree. to 900.degree. C. to form the .beta.- or .beta."-alumina precursor powder. The precursor powder, thus formed, may be subsequently isopressed at a high pressure and sintered at an elevated temperature to produce .beta.- or .beta."-alumina. BACKGROUND OF THE INVENTION
Modeling aerosol suspension from soils and oceans as sources of micropollutants to air.
Qureshi, Asif; MacLeod, Matthew; Hungerbühler, Konrad
2009-10-01
Soil and marine aerosol suspension are two physical mass transfer processes that are not usually included in models describing fate and transport of environmental pollutants. Here, we review the literature on soil and marine aerosol suspension and estimate aerosol suspension mass transfer velocities for inclusion in multimedia models, as a global average and on a 1 x 1 scale. The yearly, global average mass transfer velocity for soil aerosol suspension is estimated to be 6 x 10(-10)mh(-1), approximately an order of magnitude smaller than marine aerosol suspension, which is estimated to be 8 x 10(-9)mh(-1). Monthly averages of these velocities can be as high as 10(-7)mh(-1) and 10(-5)mh(-1) for soil and marine aerosol suspension, respectively, depending on location. We use a unit-world multimedia model to analyze the relevance of these two suspension processes as a mechanism that enhances long-range atmospheric transport of pollutants. This is done by monitoring a metric of long-range transport potential, phi-one thousand (phi1000), that denotes the fraction of modeled emissions to air, water or soil in a source region that reaches a distance of 1000 km in air. We find that when the yearly, globally averaged mass transfer velocity is used, marine aerosol suspension increases phi1000 only fractionally for both emissions to air and water. However, enrichment of substances in marine aerosols, or speciation between ionic and neutral forms in ocean water may increase the influence of this surface-to-air transfer process. Soil aerosol suspension can be the dominant process for soil-to-air transfer in an emission-to-soil scenario for certain substances that have a high affinity to soil. When a suspension mass transfer velocity near the maximum limit is used, soil suspension remains important if the emissions are made to soil, and marine aerosol suspension becomes important regardless of if emissions are made to air or water compartments. We recommend that multimedia models designed to assess the environmental fate and long-range transport behavior of substances with a range of chemical properties include both aerosol suspension processes, using the mass transfer velocities estimated here.
Fluorescent single walled nanotube/silica composite materials
Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.
2013-03-12
Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.
Rheology and Extrusion of Cement-Fly Ashes Pastes
NASA Astrophysics Data System (ADS)
Micaelli, F.; Lanos, C.; Levita, G.
2008-07-01
The addition of fly ashes in cement pastes is tested to optimize the forming of cement based material by extrusion. Two sizes of fly ashes grains are examinated. The rheology of concentrated suspensions of ashes mixes is studied with a parallel plates rheometer. In stationary flow state, tested suspensions viscosities are satisfactorily described by the Krieger-Dougherty model. An "overlapped grain" suspensions model able to describe the bimodal suspensions behaviour is proposed. For higher values of solid volume fraction, Bingham viscoplastic behaviour is identified. Results showed that the plastic viscosity and plastic yield values present minimal values for the same optimal formulation of bimodal mixes. The rheological study is extended to more concentrated systems using an extruder. Finally it is observed that the addition of 30% vol. of optimized ashes mix determined a significant reduction of required extrusion load.
NASA Astrophysics Data System (ADS)
Vollick, Brandon McRae
This thesis describes the preparation of iridescent, birefringent, composite films composed of cellulose nanocrystals (CNCs), latex nanoparticles (NPs) and a NP crosslinker; hexanediamine (HDA). First, aqueous suspensions were prepared with varying quantities of CNCs, NPs and HDA before equilibrating for one week. The cholesteric (Ch) phase was then cast and dried into a film. The optical, structural and mechanical properties of the film was analyzed. Second, films with identical compositions of CNCs, NPs, and HDA were fabricated in three different ways to yield films of different morphology, (i) fast drying of an isotropic suspension, yielding an isotropic film, (ii) slow drying of an isotropic suspension, yielding a partially Ch films, (iii) slow drying of an equilibrated suspension, yielding a highly Ch film. The optical and mechanical properties of the films was analyzed.
Sedimentation and gravitational instability of Escherichia coli Suspension
NASA Astrophysics Data System (ADS)
Douarche, Carine; Salin, Dominique; Collaboration between Laboratory FAST; LPS Collaboration
2016-11-01
The successive run and tumble of Escherichia coli bacteria provides an active matter suspension of rod-like particles with a large swimming diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering and instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analyzing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume.
Walko, Gernot; Viswanathan, Priyalakshmi; Tihy, Matthieu; Nijjher, Jagdeesh; Dunn, Sara-Jane; Lamond, Angus I
2017-01-01
Epidermal homeostasis depends on a balance between stem cell renewal and terminal differentiation. The transition between the two cell states, termed commitment, is poorly understood. Here, we characterise commitment by integrating transcriptomic and proteomic data from disaggregated primary human keratinocytes held in suspension to induce differentiation. Cell detachment induces several protein phosphatases, five of which - DUSP6, PPTC7, PTPN1, PTPN13 and PPP3CA – promote differentiation by negatively regulating ERK MAPK and positively regulating AP1 transcription factors. Conversely, DUSP10 expression antagonises commitment. The phosphatases form a dynamic network of transient positive and negative interactions that change over time, with DUSP6 predominating at commitment. Boolean network modelling identifies a mandatory switch between two stable states (stem and differentiated) via an unstable (committed) state. Phosphatase expression is also spatially regulated in vivo and in vitro. We conclude that an auto-regulatory phosphatase network maintains epidermal homeostasis by controlling the onset and duration of commitment. PMID:29043977
Self-assembly of metal nanowires induced by alternating current electric fields
NASA Astrophysics Data System (ADS)
García-Sánchez, Pablo; Arcenegui, Juan J.; Morgan, Hywel; Ramos, Antonio
2015-01-01
We describe the reversible assembly of an aqueous suspension of metal nanowires into two different 2-dimensional stable configurations. The assembly is induced by an AC electric field of magnitude around 10 kV/m. It is known that single metal nanowires orientate parallel to the electric field for all values of applied frequency, according to two different mechanisms depending on the frequency. These different mechanisms also govern the mutual interaction between nanowires, which leads to directed-assembly into distinctive structures, the shape of which depends on the frequency of the applied field. We show that for frequencies higher than the typical frequency for charging the electrical double layer at the metal-electrolyte interface, dipole-dipole interaction leads to the formation of chains of nanowires. For lower frequencies, the nanowires form wavy bands perpendicular to the electric field direction. This behavior appears to be driven by the electroosmotic flow induced on the metal surface of the nanowires. Remarkably, no similar structures have been reported in previous studies of nanowires.
Shahbazi, Mohammad-Ali; Almeida, Patrick V; Mäkilä, Ermei; Correia, Alexandra; Ferreira, Mónica P A; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A
2014-03-01
Currently, developing a stable nanocarrier with high cellular internalization and low toxicity is a key bottleneck in nanomedicine. Here, we have developed a successful method to covalently conjugate poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of (3-aminopropyl)triethoxysilane-functionalized thermally carbonized porous silicon nanoparticles (APSTCPSi NPs), forming a surface negatively charged nanovehicle with unique properties. This polymer conjugated NPs could modify surface smoothness, charge, and hydrophilicity of the developed NPs, leading to considerable improvement in the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the polymer-conjugated NPs, the cellular internalization was increased in both MDA-MB-231 and MCF-7 breast cancer cells. These results provide a proof-of-concept evidence that such polymer-based PSi nanocomposite can be extensively used as a promising candidate for intracellular drug delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chou, Po-Chien; Lin, Yu-Cheng; Cheng, Stone
2011-01-01
Technological obstacles to the use of rotary-type swing arm actuators to actuate optical pickup modules in small-form-factor (SFF) disk drives stem from a hinge’s skewed actuation, subsequently inducing off-axis aberrations and deteriorating optical quality. This work describes a dual-stage seesaw-swivel actuator for optical pickup actuation. A triple-layered bimorph bender made of piezoelectric materials (PZTs) is connected to the suspension of the pickup head, while the tunable vibration absorber (TVA) unit is mounted on the seesaw swing arm to offer a balanced force to reduce vibrations in a focusing direction. Both PZT and TVA are designed to satisfy stable focusing operation operational requirements and compensate for the tilt angle or deformation of a disc. Finally, simulation results verify the performance of the dual-stage seesaw-swivel actuator, along with experimental procedures and parametric design optimization confirming the effectiveness of the proposed system. PMID:22163877
A non-covalent peptide-based carrier for in vivo delivery of DNA mimics.
Morris, May C; Gros, Edwige; Aldrian-Herrada, Gudrun; Choob, Michael; Archdeacon, John; Heitz, Frederic; Divita, Gilles
2007-01-01
The dramatic acceleration in identification of new nucleic-acid-based therapeutic molecules has provided new perspectives in pharmaceutical research. However, their development is limited by their poor cellular uptake and inefficient trafficking. Here we describe a short amphipathic peptide, Pep-3, that combines a tryptophan/phenylalanine domain with a lysine/arginine-rich hydrophilic motif. Pep-3 forms stable nano-size complexes with peptide-nucleic acid analogues and promotes their efficient delivery into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. We demonstrate that Pep-3-mediated delivery of antisense-cyclin B1-charged-PNA blocks tumour growth in vivo upon intratumoral and intravenous injection. Moreover, we show that PEGylation of Pep-3 significantly improves complex stability in vivo and consequently the efficiency of antisense cyclin B1 administered intravenously. Given the biological characteristics of these vectors, we believe that peptide-based delivery technologies hold a true promise for therapeutic applications of DNA mimics.
A non-covalent peptide-based carrier for in vivo delivery of DNA mimics
Morris, May C.; Gros, Edwige; Aldrian-Herrada, Gudrun; Choob, Michael; Archdeacon, John; Heitz, Frederic; Divita, Gilles
2007-01-01
The dramatic acceleration in identification of new nucleic-acid-based therapeutic molecules has provided new perspectives in pharmaceutical research. However, their development is limited by their poor cellular uptake and inefficient trafficking. Here we describe a short amphipathic peptide, Pep-3, that combines a tryptophan/phenylalanine domain with a lysine/arginine-rich hydrophilic motif. Pep-3 forms stable nano-size complexes with peptide-nucleic acid analogues and promotes their efficient delivery into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. We demonstrate that Pep-3-mediated delivery of antisense-cyclin B1-charged-PNA blocks tumour growth in vivo upon intratumoral and intravenous injection. Moreover, we show that PEGylation of Pep-3 significantly improves complex stability in vivo and consequently the efficiency of antisense cyclin B1 administered intravenously. Given the biological characteristics of these vectors, we believe that peptide-based delivery technologies hold a true promise for therapeutic applications of DNA mimics. PMID:17341467
Recombinant protein production from stable mammalian cell lines and pools.
Hacker, David L; Balasubramanian, Sowmya
2016-06-01
We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sexton, M. R.; Elwood Madden, M. E.; Swindle, A. L.; Hamilton, V. E.; Bickmore, B. R.; Elwood Madden, A. S.
2017-04-01
The enigmatic and unexpected occurrence of coarse crystalline (gray) hematite spherules at Terra Meridiani on Mars in association with deposits of jarosite-rich sediments fueled a variety of hypotheses to explain their origin. In this study, we tested the hypothesis that freezing of aqueous hematite nanoparticle suspensions, possibly produced from low-temperature weathering of jarosite-bearing deposits, could produce coarse-grained hematite aggregate spherules. We synthesized four hematite nanoparticle suspensions with a range of sizes and morphologies and performed freezing experiments. All sizes of hematite nanoparticles rapidly aggregate during freezing. Regardless of the size or shape of the initial starting material, they rapidly collect into aggregates that are then too big to push in front of a stable advancing ice front, leading to incohesive masses of particles, rather than solid spherules. We also explored the effects of "seed" silicates, a matrix of sand grains, various concentrations of NaCl and CaCl2, and varying the freezing temperature on hematite nanoparticle aggregation. However, none of these factors resulted in mm-scale spherical aggregates. By comparing our measured freezing rates with empirical and theoretical values from the literature, we conclude that the spherules on Mars could not have been produced through the freezing of aqueous hematite nanoparticle suspensions; ice crystallization front instability disrupts the aggregation process and prevents the formation of mm-scale continuous aggregates.
Trucksess, Mary W; Brewer, Vickery A; Williams, Kristina M; Westphal, Carmen D; Heeres, James T
2004-01-01
Peanuts are one of the 8 most common allergenic foods and a large proportion of peanut-allergic individuals have severe reactions, some to minimal exposure. Specific protein constituents in the peanuts are the cause of the allergic reactions in sensitized individuals who ingest the peanuts. To avoid accidental ingestion of peanut-contaminated food, methods of analysis for the determination of the allergenic proteins in foods are important tools. Such methods could help identify foods inadvertently contaminated with peanuts, thereby reducing the incidence of allergic reactions to peanuts. Commercial immunoassay kits are available but need study for method performance, which requires reference materials for within- and between-laboratory validations. In this study, National Institute of Standards and Technology Standard Reference Material 2387 peanut butter was used. A polytron homogenizer was used to prepare a homogenous aqueous Peanut Butter suspension for the evaluation of method performance of some commercially available immunoassay kits such as Veratox for Peanut Allergen Test (Neogen Corp.), Ridascreen Peanut (R-Biopharm GmbH), and Bio-Kit Peanut Protein Assay Kit (Tepnel). Each gram of the aqueous peanut butter suspension contained 20 mg carboxymethylcellulose sodium salt, 643 microg peanut, 0.5 mg thimerosal, and 2.5 mg bovine serum albumin. The suspension was homogenous, stable, reproducible, and applicable for adding to ice cream, cookies, breakfast cereals, and chocolate for recovery studies at spike levels ranging from 12 to 90 microg/g.
Experimental study of droplet formation of dense suspensions
NASA Astrophysics Data System (ADS)
Martensson, Gustaf; Carson, Fabian
2017-11-01
As with the jet printing of dyes and other low-viscosity fluids, the jetting of dense fluid suspensions is dependent on the repeatable break-off of the fluid filament into well-formed droplets. It is well known that the break-off of dense suspensions is dependent on the volume fraction of the solid phase, particle size and morphology, fluid phase viscosity et cetera, see for example van Deen et al. (2013). The purpose of this study is to establish a deeper understanding of the formation process of droplets of dense suspensions. Previous experiments have utilised a filament break-off device (FilBO) developed in-house. These experiments utilise an ejection device based on rapid volumetric displacement of the fluid through a conical nozzle. The suspension samples consist of a resin-based flux and spherical particles with diameters of dp = 5 - 25 μ m. A droplet of of the suspension with a volume of Vdrop = 2 - 50 nl is ejected from the nozzle. Correlations between droplet speed and the temporal development of the volumetric displacement will be presented. Further results relating break-off length and rate versus particle diameter, volume fraction and probe speed will be presented.
Equations of motion of slung load systems with results for dual lift
NASA Technical Reports Server (NTRS)
Cicolani, Luigi S.; Kanning, Gerd
1990-01-01
General simulation equations are derived for the rigid body motion of slung load systems. These systems are viewed as consisting of several rigid bodies connected by straight-line cables or links. The suspension can be assumed to be elastic or inelastic, both cases being of interest in simulation and control studies. Equations for the general system are obtained via D'Alembert's principle and the introduction of generalized velocity coordinates. Three forms are obtained. Two of these generalize previous case-specific results for single helicopter systems with elastic or inelastic suspensions. The third is a new formulation for inelastic suspensions. It is derived from the elastic suspension equations by choosing the generalized coordinates so as to separate motion due to cable stretching from motion with invariant cable lengths. The result is computationally more efficient than the conventional formulation, and is readily integrated with the elastic suspension formulation and readily applied to the complex dual lift and multilift systems. Equations are derived for dual lift systems. Three proposed suspension arrangements can be integrated in a single equation set. The equations are given in terms of the natural vectors and matrices of three-dimensional rigid body mechanics and are tractable for both analysis and programming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasser, U., E-mail: urs.gasser@psi.ch; Hyatt, J. S.; Lietor-Santos, J.-J.
We study the form factor of thermoresponsive microgels based on poly(N-isopropylacrylamide) at high generalized volume fractions, ζ, where the particles must shrink or interpenetrate to fit into the available space. Small-angle neutron scattering with contrast matching techniques is used to determine the particle form factor. We find that the particle size is constant up to a volume fraction roughly between random close packing and space filling. Beyond this point, the particle size decreases with increasing particle concentration; this decrease is found to occur with little interpenetration. Noteworthily, the suspensions remain liquid-like for ζ larger than 1, emphasizing the importance ofmore » particle softness in determining suspension behavior.« less
Alijani Ardeshir, Rashid; Rastgar, Sara; Peyravi, Majid; Jahanshahi, Mohsen; Shokuhi Rad, Ali
2017-10-01
Landfill leachate contains environmental pollutants that are generally resistant to biodegradation. In this study, indigenous and exogenous bacteria in leachate were acclimated in both biofilm and suspension forms to increase the removal of soluble chemical oxygen demand (SCOD). The bacteria from the leachate and sewage were acclimated to gradually increasing leachate concentration prepared using a reverse osmosis membrane over 28 days. The SCOD removal was measured aerobically or nominally anaerobically. Biofilms were prepared using different carrier media (glass, rubber, and plastic). The maximum SCOD removal in suspensions was 32% (anaerobic) and in biofilms was 39% (aerobic). In the suspension form, SCOD removal using acclimated bacteria from leachate and sewage anaerobically increased in comparison with the control (P < .05). In the biofilm form, the aerobic condition and the use of acclimated bacteria from leachate and sewage increased the removal efficiency of SCOD in comparison with other biofilm groups (P < .05). Three species of bacteria, including Bacillus cereus, Bacillus subtilis, and Pseudomonas aeruginosa were identified in the biofilm from leachate and sewage. Bioaugmentation technology using biofilms and acclimations can be an effective, inexpensive, and simple way to decrease SCOD in old landfill leachate.
NASA Astrophysics Data System (ADS)
Gatea, Florentina; Teodor, Eugenia Dumitra; Seciu, Ana-Maria; Covaci, Ovidiu Ilie; Mănoiu, Sorin; Lazăr, Veronica; Radu, Gabriel Lucian
2015-07-01
The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.
Khattab, Abeer; Hassanin, Lobna; Zaki, Nashwah
2017-07-01
The aim of our investigation is to develop and characterize self-nanoemulsifying drug delivery systems (SNEDDS) of CoQ 10 to improve its water solubility, dissolution rate, and bioavailability, and then evaluate its biochemical and physiological effect on liver cirrhosis in rats compared with CoQ 10 powder. SNEDDS are isotropic and thermodynamically stable mixture of oil, surfactant, co-surfactant, and drug that form an oil/water nanoemulsion when added to aqueous phases with soft agitation. Upon administration, self-nanoemulsifying system becomes in contact with gastrointestinal fluid and forms o/w nanoemulsion by the aid of gastrointestinal motility. When the nanoemulsion is formed in the gastrointestinal tract, it presents the drug in a solubilized form inside small nano-sized droplets that provide a large surface area for enhancing the drug release and absorption. Solubility of CoQ 10 in various oils, surfactants, and co-surfactants were studied to identify the components of SNEDDS; pseudo-ternary phase diagrams were plotted to identify the efficient self-emulsifying regions. CoQ 10 -loaded SNEDDS were prepared using isopropyl myristate as oil; Cremophor El, Labrasol, or Tween80 as surfactant; and Transcutol as co-surfactant. The amount of CoQ 10 in each vehicle was 3%. The formulations that passed thermostability evaluation test were assessed for particle size analysis, morphological characterization, refractive index, zeta potential, viscosity, electroconductivity, drug release profile, as well as ex vivo permeability. Pharmacokinetics and hepatoprotective efficiency of the optimized SNEDDS of CoQ 10 compared with CoQ 10 suspension were performed. Results showed that all optimized formulae have the ability to form a good and stable nanoemulsion when diluted with water; the mean droplet size of all formulae was in the nanometric range (11.7-13.5 nm) with optimum polydispersity index values (0.2-0.21). All formulae showed negative zeta potential (-11.3 to -17.2), and maximum drug loading efficiency. One hundred percent of CoQ 10 was released from most formulae within 30 min. One hundred percent of CoQ 10 was permeated from all formulae through 10 h. The pharmacokinetic study in rabbits revealed a significant increase in bioavailability of CoQ 10 SNEDDS to 2.1-fold compared with CoQ 10 suspension after oral administration. Comparative effect of the optimized formulae on acute liver injury compared with CoQ 10 powder was also studied; it was found that all the liver biochemical markers as alanine transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), total protein (TP), and albumin were significantly improved at p < 0.05. Also, histochemical and histopthological studies confirm the biochemical results. Our results suggest the potential use of SNEDDS to increase the solubility of liphophilic drug as poorly water-soluble CoQ 10 and improve its oral absorption, so it can be more efficient to improve liver damage compared to CoQ 10 powder. These results demonstrated that CoQ 10 SNEDDS inhibited thioacetamide (TAA)-induced liver fibrosis mainly through suppression of collagen production.
Stability of Spironolactone Oral Suspension in PCCA Base, SuspendIt.
Graves, Richard; Phan, Kelly V; Bostanian, Levon A; Mandal, Tarun K; Pramar, Yashoda V
2017-01-01
Spironolactone (Aldactone) is a potassium-sparing diuretic used to treat hypertension and heart failure and may also be used to treat edema resulting from kidney disease, low potassium levels, or excess aldosterone. No commercial liquid dosage form of spironolactone exists. An extemporaneously compounded suspension from pure drug powder or commercial tablets would provide an alternative option to meet unique patient needs. The purpose of this study was to determine the physicochemical stability of spironolactone in the PCCA base SuspendIt. This base is a sugar-free, paraben-free, dye-free, and gluten-free thixotropic vehicle containing a natural sweetener obtained from the monk fruit. It thickens upon standing to minimize settling of any insoluble drug particles and becomes fluid upon shaking to allow convenient pouring during administration to the patient. A robust stability-indicating highperformance liquid chromatographic assay for the determination of spironolactone in PCCA base SuspendIt was developed and validated. This assay was used to determine the chemical stability of the drug in SuspendIt. Samples were prepared and stored under three different temperature conditions (5°C, 25°C, 40°C) and assayed using the high-performance liquid chromatographic assay at pre-determined intervals over an extended period of time as follows: 0, 7, 14, 29, 46, 60, 90, 120, and 180 days at each designated temperature. Physical data such as pH, viscosity, and appearance were also monitored. The study showed that drug concentration did not go below 90% of the label claim (initial drug concentration) at all three temperatures studied. Viscosity and pH values also did not change significantly. This study demonstrates that spironolactone is physically and chemically stable in SuspendIt for 180 days in the refrigerator and at room temperature, thus providing a viable, compounded alternative for spironolactone in a liquid dosage form, with an extended beyond-use date to meet patient needs. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, Katherine
2009-01-01
The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions canmore » be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the hydrogen bonding between particles, particle/additive and/or particle/solvent dictates the behavior of nanosized alumina particle suspensions. The addition of dispersants can change the particle interactions and hence reduce the suspension viscosity. This was demonstrated with saccharides in the aqueous system and with benzoic acid in suspensions with BECy.« less
Fundamental and applied studies in nanoparticle biomedical imaging, stabilization, and processing
NASA Astrophysics Data System (ADS)
Pansare, Vikram J.
Nanoparticle carrier systems are gaining importance in the rapidly expanding field of biomedical whole animal imaging where they provide long circulating, real time imaging capability. This thesis presents a new paradigm in imaging whereby long wavelength fluorescent or photoacoustically active contrast agents are embedded in the hydrophobic core of nanocarriers formed by Flash NanoPrecipitation. The long wavelength allows for improved optical penetration depth. Compared to traditional contrast agents where fluorophores are placed on the surface, this allows for improved signal, increased stability, and molecular targeting capabilities. Several types of long wavelength hydrophobic dyes based on acene, cyanine, and bacteriochlorin scaffolds are utilized and animal results obtained for nanocarrier systems used in both fluorescent and photoacoustic imaging modes. Photoacoustic imaging is particularly promising due to its high resolution, excellent penetration depth, and ability to provide real-time functional information. Fundamental studies in nanoparticle stabilization are also presented for two systems: model alumina nanoparticles and charge stabilized polystyrene nanoparticles. Motivated by the need for stable suspensions of alumina-based nanocrystals for security printing applications, results are presented for the adsorption of various small molecule charged hydrophobes onto the surface of alumina nanoparticles. Results are also presented for the production of charge stabilized polystyrene nanoparticles via Flash NanoPrecipitation, allowing for the independent control of polymer molecular weight and nanoparticle size, which is not possible by traditional emulsion polymerization routes. Lastly, methods for processing nanoparticle systems are explored. The increasing use of nanoparticle therapeutics in the pharmaceutical industry has necessitated the development of scalable, industrially relevant processing methods. Ultrafiltration is particularly well suited for concentrating and purifying macromolecular suspensions. Processing parameters are defined and optimized for PEGylated nanoparticles, charge stabilized latices, and solutions of albumin. The fouling characteristics are compared and scale-up recommendations made. Finally, a pilot scale spray drying system to produce stable nanocrystalline powders of highly crystalline drugs which cannot be stably formulated by traditional spray drying methods is presented. To accomplish this, a novel mixing device was developed and implemented at pilot scale, demonstrating feasibility beyond the lab scale.
New gelling systems to fabricate complex-shaped transparent ceramics
NASA Astrophysics Data System (ADS)
Yang, Yan; Wu, Yiquan
2013-06-01
The aim of this work was to prepare transparent ceramics with large size and complex-shapes by a new water-soluble gelling agent poly(isobutylene-alt-maleic anhydride). Alumina was used as an example of the application of the new gelling system. A stable suspension with 38vol% was prepared by ball milling. Trapped bubbles were removed before casting to obtain homogenous green bodies. The microstructure and particle distribution of alumina raw material were tested. The thermal behavior of the alumina green body was investigated, which exhibited low weight loss when compared with other gelling processes. The influence of solid loading and gelling agent addition were studied on the basis of rheological behavior of the suspension. The microstructures of alumina powders, green bodies before and after de-bindering process, were compared to understand the gelling condition between alumina particles and gelling agent.
McGill, Stuart M; Cannon, Jordan; Andersen, Jordan T
2014-10-01
This study examined pulling exercises performed on stable surfaces and unstable suspension straps. Specific questions included: which exercises challenged particular muscles, what was the magnitude of resulting spine load, and did technique coaching influence results. Fourteen males performed pulling tasks while muscle activity, external force, and 3D body segment motion were recorded. These data were processed and input to a sophisticated and anatomically detailed 3D model that used muscle activity and body segment kinematics to estimate muscle force, in this way the model was sensitive to each individual's choice of motor control for each task. Muscle forces and linked segment joint loads were used to calculate spine loads. There were gradations of muscle activity and spine load characteristics to every task. It appears that suspension straps alter muscle activity less in pulling exercises, compared to studies reporting on pushing exercises. The chin-up and pull-up exercises created the highest spine load as they required the highest muscle activation, despite the body "hanging" under tractioning gravitational load. Coaching shoulder centration through retraction increased spine loading but undoubtedly adds proximal stiffness. An exercise atlas of spine compression was constructed to help with the decision making process of exercise choice for an individual. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ross, D W; Bishop, C; Henderson, A; Kaplow, L
1990-01-01
We adapted previously published methods for nonspecific esterase and alkaline phosphatase staining of white blood cells in suspension for use on a Technicon H-1 hematology analyzer. The objective was to develop a semiautomated method using whole blood that could be employed on a large scale for hematology laboratory applications, including toxicology studies, measurement of neutrophil left shift, and cytochemical classification of myeloid leukemias. The nonspecific esterase method uses the pararosaniline stain, generating the unstable substrate from two stable precursors. Whole blood is added to the substrate plus dye mix. Next, acid lysis and fixation steps destroy red cells and stabilize the monocyte staining. The alkaline phosphatase stain employs a stable naphthyl phosphate substrate and fast blue B coupling dye. The red cells are lysed with a pH 10.3 propanediol buffer, and the white blood cells are then stabilized with formalin fixation. For both methods the staining is performed off-line, and the sample is then diluted with propanediol to match the refractive index of the sheath on the H-1 analyzer, before aspiration into the direct cytometry port. A cytogram of scattered versus absorbed light is obtained. The number of cells staining and the intensity of the stain can be quantified from the cytogram.
The Additional Error of Inertial Sensors Induced by Hypersonic Flight Conditions
Karachun, Volodimir; Mel’nick, Viktorij; Korobiichuk, Igor; Nowicki, Michał; Szewczyk, Roman; Kobzar, Svitlana
2016-01-01
The emergence of hypersonic technology pose a new challenge for inertial navigation sensors, widely used in aerospace industry. The main problems are: extremely high temperatures, vibration of the fuselage, penetrating acoustic radiation and shock N-waves. The nature of the additional errors of the gyroscopic inertial sensor with hydrostatic suspension components under operating conditions generated by forced precession of the movable part of the suspension due to diffraction phenomena in acoustic fields is explained. The cause of the disturbing moments in the form of the Coriolis inertia forces during the transition of the suspension surface into the category of impedance is revealed. The boundaries of occurrence of the features on the resonance wave match are described. The values of the “false” angular velocity as a result of the elastic-stress state of suspension in the acoustic fields are determined. PMID:26927122
Derivation of Hunt equation for suspension distribution using Shannon entropy theory
NASA Astrophysics Data System (ADS)
Kundu, Snehasis
2017-12-01
In this study, the Hunt equation for computing suspension concentration in sediment-laden flows is derived using Shannon entropy theory. Considering the inverse of the void ratio as a random variable and using principle of maximum entropy, probability density function and cumulative distribution function of suspension concentration is derived. A new and more general cumulative distribution function for the flow domain is proposed which includes several specific other models of CDF reported in literature. This general form of cumulative distribution function also helps to derive the Rouse equation. The entropy based approach helps to estimate model parameters using suspension data of sediment concentration which shows the advantage of using entropy theory. Finally model parameters in the entropy based model are also expressed as functions of the Rouse number to establish a link between the parameters of the deterministic and probabilistic approaches.
Photosensitized degradation of losartan potassium in an extemporaneous suspension formulation.
Seburg, Randal A; Ballard, John M; Hwang, Tsang-Lin; Sullivan, Caitlin M
2006-10-11
During development of an extemporaneous suspension formulation for losartan potassium, previously unknown degradation products were observed in experimental suspensions prepared in a commercial cherry syrup vehicle. These degradates increased rapidly when analytical solutions prepared from that suspension were exposed to ambient light. The structures of the degradates were determined using a combination of preparative HPLC, LC/MS, (13)C and (1)H NMR (1D and 2D), and mechanistic chemistry. Each degradate results from destruction of the imidazole ring of losartan. Formation of the two major degradates required exposure to light (UV or visible) and the presence of oxygen. Experiments using Rose Bengal (a singlet oxygen photosensitizer) and 1,4-diazabicyclooctane (DABCO; a singlet oxygen quencher) established that the major photodegradates are formed via the intermediacy of singlet oxygen. The identity of the photosensitizer in the formulation was not unequivocally determined; however, the experiments implicated the artificial flavoring in fulfilling this role.
Suppression of Psyllium Husk Suspension Viscosity by Addition of Water Soluble Polysaccharides.
Kale, Madhuvanti S; Yadav, Madhav P; Hanah, Kyle A
2016-10-01
Psyllium seed husk is an insoluble dietary fiber with many health benefits. It can absorb many times its weight in water, forming very viscous suspensions, which have low palatability and consumer acceptance. We report here a novel approach for decreasing its viscosity, involving inclusion of a soluble polysaccharide in the suspension. This leads to a drastic decrease (up to 87%) in viscosity of suspensions, while maintaining the same dosage level of psyllium and also delivering a significant amount of soluble dietary fiber such as corn bio-fiber gum in a single serving. Four soluble polysaccharides with a range of molecular weights and solution viscosities have been studied for their viscosity suppression effect. Besides improving palatability, another advantage of this approach is that it makes it possible to deliver 2 different dietary fibers in significant quantities, thus offering even greater health benefits. © 2016 Institute of Food Technologists®.
Armaković, Sanja J; Armaković, Stevan; Četojević-Simin, Dragana D; Šibul, Filip; Abramović, Biljana F
2018-02-01
In this work we have investigated in details the process of degradation of the 4-amino-6-chlorobenzene-1,3-disulfonamide (ABSA), stable hydrolysis product of frequently used pharmaceutical hydrochlorothiazide (HCTZ), as one of the most ubiquitous contaminants in the sewage water. The study encompassed investigation of degradation by hydrolysis, photolysis, and photocatalysis employing commercially available TiO 2 Degussa P25 catalyst. The process of direct photolysis and photocatalytic degradation were investigated under different type of lights. Detailed insights into the reactive properties of HCTZ and ABSA have been obtained by density functional theory calculations and molecular dynamics simulations. Specifically, preference of HCTZ towards hydrolysis was confirmed experimentally and explained using computational study. Results obtained in this study indicate very limited efficiency of hydrolytic and photolytic degradation in the case of ABSA, while photocatalytic degradation demonstrated great potential. Namely, after 240 min of photocatalytic degradation, 65% of ABSA was mineralizated in water/TiO 2 suspension under SSI, while the nitrogen was predominantly present as NH 4 + . Reaction intermediates were studied and a number of them were detected using LC-ESI-MS/MS. This study also involves toxicity assessment of HCTZ, ABSA, and their mixtures formed during the degradation processes towards mammalian cell lines (rat hepatoma, H-4-II-E, human colon adenocarcinoma, HT-29, and human fetal lung, MRC-5). Toxicity assessments showed that intermediates formed during the process of photocatalysis exerted only mild cell growth effects in selected cell lines, while direct photolysis did not affect cell growth. Copyright © 2017 Elsevier Ltd. All rights reserved.
12 CFR Appendix A to Part 37 - Short Form Disclosures
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND DEBT SUSPENSION AGREEMENTS Pt. 37, App. A Appendix A to Part 37—Short Form Disclosures • This product is optional Your purchase of [PRODUCT NAME] is optional. Whether or not you purchase [PRODUCT NAME...
12 CFR Appendix A to Part 37 - Short Form Disclosures
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND DEBT SUSPENSION AGREEMENTS Pt. 37, App. A Appendix A to Part 37—Short Form Disclosures • This product is optional Your purchase of [PRODUCT NAME] is optional. Whether or not you purchase [PRODUCT NAME...
A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect.
Chen, Dianzhong; Liu, Xiaowei; Zhang, Haifeng; Li, Hai; Weng, Rui; Li, Ling; Rong, Wanting; Zhang, Zhongzhao
2018-01-31
Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG) and electrostatically suspended gyroscopes (ESG)) with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement on fabrication technology. In the proposed gyroscope, a ball-disk shaped rotor is supported by a water-film bearing, formed by centrifugal force to deionized water at the cavity of the lower supporting pillar. Water-film bearing provides stable mechanical support, without the need for complicated electronics and control system for rotor suspension. To decrease sliding friction between the rotor ball and the water-film bearing, a supherhydrophobic surface (SHS) with nano-structures is fabricated on the rotor ball, resulting in a rated spinning speed increase of 12.4% (under the same driving current). Rotor is actuated by the driving scheme of brushless direct current motor (BLDCM). Interaction between the magnetized rotor and the magnetic-conducted stator produces a sinusoidal rotor restoring torque, amplitude of which is proportional to the rotor deflection angle inherently. Utilization of this magnetic restoring effect avoids adding of a high amplitude voltage for electrostatic feedback, which may cause air breakdown. Two differential capacitance pairs are utilized to measure input angular speeds at perpendicular directions of the rotor plane. The bias stability of the fabricated gyroscope is as low as 0.5°/h.
Stability of an extemporaneously prepared alcohol-free phenobarbital suspension.
Cober, Mary Petrea; Johnson, Cary E
2007-03-15
The physical and chemical short-term stability of alcohol-free, oral suspensions of phenobarbital 10 mg/mL prepared from commercially available tablets in both a sugar and a sugar-free vehicle was assessed at room temperature. Phenobarbital oral suspension 10 mg/mL was prepared by crushing 10 60-mg tablets of phenobarbital with a mortar and pestle. A small amount of Ora-Plus was added to the phenobarbital powder to sufficiently wet the particles. A 1:1 mixture of Ora-Plus and either Ora-Sweet or Ora-Sweet SF was combined with the phenobarbital powder to produce a final volume of 60 mL. Three identical samples of each of the two different formulations were prepared and stored at room temperature in 2-oz amber plastic bottles. Immediately after preparation and at 15, 30, 60, and 115 days, the samples were assayed in duplicate by stability-indicating high-performance liquid chromatography. The samples were tasted and inspected for color and odor changes. The percent of the initial concentration remaining at each study time for each phenobarbital suspension was determined. Stability was defined as the retention of at least 90% of the initial concentration. There were no detectable changes in color, odor, and taste and no visible microbial growth in any sample. At least 98% of the initial phenobarbital concentration remained throughout the 115-day study period in both preparations. An extemporaneously prepared alcohol-free suspension of phenobarbital 10 mg/mL in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF was stable for at least 115 days when stored in 2-oz amber plastic bottles at room temperature.
Bachu, Rinda Devi; Stepanski, Marina; Alzhrani, Rami M; Jung, Rose; Boddu, Sai H S
2018-05-01
The purpose of this study was to develop and evaluate a novel dexamethasone- and tobramycin-loaded microemulsion for its potential for treating anterior segment eye infections. The microemulsion was evaluated for pH, particle size, zeta potential, light transmittance, morphology, and in vitro drug release. Sterility of the microemulsion was evaluated by direct as well as plate inoculation methods. Anti-inflammatory activity of dexamethasone, bactericidal activity of tobramycin, and cytotoxicity of the microemulsion were assessed and compared to that of the marketed eye drop suspension (Tobradex ® ). Histological evaluation was performed in bovine corneas to assess the safety of microemulsion in comparison to Tobradex suspension. In addition, the stability of the microemulsion was studied at 4°C, 25°C, and 40°C. The pH of the microemulsion was close to the pH of tear fluid. The microemulsion displayed an average globule size under 20 nm, with light transmittance around 95%-100%. The aseptically prepared microemulsion remained sterile for up to 14 days. The cytotoxicity of the microemulsion in bovine corneal endothelial cells was comparable to that of the Tobradex suspension. The anti-inflammatory activity of dexamethasone and the antibacterial activity of tobramycin from the microemulsion were significantly higher than those of the Tobradex suspension (P < 0.05). Histological evaluation showed an intact corneal epithelium without any signs of toxicity, and the developed microemulsion was found to be stable at 4°C and 25°C for 3 months. In conclusion, the developed microemulsion could be explored as a suitable alternative to the marketed suspension for treating anterior segment eye infections.
Fracture in Kaolinite clay suspensions
NASA Astrophysics Data System (ADS)
Kosgodagan Acharige, Sebastien; Jerolmack, Douglas J.; Arratia, Paulo E.
2017-11-01
Clay minerals are involved in many natural (landslides, river channels) and industrial processes (ceramics, cosmetics, oil recovery). They are plate shaped charged colloids and exhibit different flow properties than simpler colloids when suspended in a liquid such as thixotropy and shear-banding. kaolinite platelets are non-swelling, meaning that the stacks formed by the platelets do not have water layers, and thus the suspension does not have a sol-gel transition. However, it has been shown that kaolinite suspensions possesses a non-zero yield stress even at low concentrations, indicating that the particles arrange themselves in a structure through attractive interactions. Here, we experimentally investigate the sedimentation of kaolinite suspensions in a Hele-Shaw cell. The sedimentation of these dilute suspensions can display solid behavior like fracture, revealed in cross-polarized light, which is linked to the failure of the weakly-bonded structure (typical yield stress 10-2 Pa). By changing the interaction potential of the particles (by sonication or introducing salts), we show through these sedimentation experiments, how the fracture pattern can be avoided. Research was sponsored by the Army Research Laboratory and was accomplished under Grant Number 569074.
Flow-induced phase separation of active particles is controlled by boundary conditions.
Thutupalli, Shashi; Geyer, Delphine; Singh, Rajesh; Adhikari, Ronojoy; Stone, Howard A
2018-05-22
Active particles, including swimming microorganisms, autophoretic colloids, and droplets, are known to self-organize into ordered structures at fluid-solid boundaries. The entrainment of particles in the attractive parts of their spontaneous flows has been postulated as a possible mechanism underlying this phenomenon. Here, combining experiments, theory, and numerical simulations, we demonstrate the validity of this flow-induced ordering mechanism in a suspension of active emulsion droplets. We show that the mechanism can be controlled, with a variety of resultant ordered structures, by simply altering hydrodynamic boundary conditions. Thus, for flow in Hele-Shaw cells, metastable lines or stable traveling bands can be obtained by varying the cell height. Similarly, for flow bounded by a plane, dynamic crystallites are formed. At a no-slip wall, the crystallites are characterized by a continuous out-of-plane flux of particles that circulate and re-enter at the crystallite edges, thereby stabilizing them. At an interface where the tangential stress vanishes, the crystallites are strictly 2D, with no out-of-plane flux. We rationalize these experimental results by calculating, in each case, the slow viscous flow produced by the droplets and the long-ranged, many-body active forces and torques between them. The results of numerical simulations of motion under the action of the active forces and torques are in excellent agreement with experiments. Our work elucidates the mechanism of flow-induced phase separation in active fluids, particularly active colloidal suspensions, and demonstrates its control by boundaries, suggesting routes to geometric and topological phenomena in an active matter.
Ullah, Majeed; Shah, Mohammad Raza; Bin Asad, Muhammad Hassham Hassan; Hasan, S M Farid; Hussain, Izhar
2017-11-01
Currently cocrystals are considered as an established approach for making crystalline solids with overall improved physico-chemical properties. However, some otherwise well behaving cocrystals undergo rapid dissociation during dissolution, with ultimate conversion to parent drug and thus apparent loss of improved solubility. The polymeric carriers are long known to manipulate this conversion during dissolution to parent crystalline drug, which may hinder or accelerate the dissolution process if used in a dosage form. The goal of this study was to deliver in vivo a more soluble carbamazepine-succinic acid (CBZ-SUC) cocrystal in suspension formulation utilizing Hydroxypropyl methyl cellulose (HPMC-AS) as a crystallization inhibitor and Polyvinyl carpolactam-polyvinyl acetate-polyethylene glycol graft copolymer ® as solubilizer. The concentration of these polymers were systemically varied during in vitro dissolution studies, while selected formulations from dissolution studies were tested in vivo. Pharmacokinetic studies (PK) in rabbits demonstrated that formulation F7-X (1% cocrystal, 1% HPMC-AS and 2% Polyvinyl carpolactam-polyvinyl acetatepolyethylene glycol graft co-polymer®) caused almost 6fold improvement in AUC0-72 (***P k 0.05) as well as much higher C max of 4.73μ.mL-1 to that of 1.07μ.mL-1 of unformulated 'neat' cocrystal given orally. When reference formulation of CBZ (F5-X) with similar composition to F7-X were given to rabbits, cocrystal formulation gave 1.37fold (***P k 0.05) bioavailability than CBZ reference formulation. C max of reference formulation observed was 3.9μmL-1.
NASA Astrophysics Data System (ADS)
Rodríguez Sartori, Damián; Lillo, Cristian R.; Romero, Juan J.; Dell‧Arciprete, María Laura; Miñán, Alejandro; de Mele, Mónica Fernández Lorenzo; Gonzalez, Mónica C.
2016-11-01
Grafting of polyethylene glycol (PEG) to ultrasmall photoluminescent silicon dots (SiDs) is expected to improve and expand the applications of these particles to aqueous environments and biological systems. Herein we report a novel one-pot synthesis of robust, highly water compatible PEG-coated SiDs (denoted as PEG-SiDs) of (3.3 ± 0.5) nm size. The nanoparticles’ synthesis is based on the liquid phase oxidation of magnesium silicide using PEG as reaction media and leading to high PEG density grafting. PEG-SiDs enhanced photophysical, photosensitising, and solution properties in aqueous environments are described and compared to those of 2 nm size PEG-coated SiDs with low PEG density grafting (denoted as PEG-NHSiDs) obtained from a multistep synthesis strategy. PEG-SiDs form highly dispersed suspensions in water showing stable photoluminescence and quantum yields of Φ = 0.13 ± 0.04 at 370 nm excitation in air-saturated suspensions. These particles exhibited the capacity of photosensitising the formation of singlet molecular oxygen, not observed for PEG-NHSiDs. PEG robust shielding of the silicon core luminescent properties is further demonstrated in bio-imaging experiments stressing the strong interaction between PEG-SiDs and Staphylococcus aureus smears by observing the photoluminescence of particles. PEG-SiDs were found to be nontoxic to S. aureus cells at concentrations of 100 mg ml-1, though a bacteriostatic effect on S. aureus biofilms was observed upon UV-A irradiation under conditions where light alone has no effect.
Nano-proniosomes enhancing the transdermal delivery of mefenamic acid.
Wen, Ming Ming; Farid, Ragwa M; Kassem, Abeer A
2014-12-01
Mefenamic acid (MA) is a BCS II class NSAID drug. It is available only in the form of tablets, capsules, and pediatric suspensions. Oral administration of MA is associated with severe gastrointestinal side effects. The aim of this study was to develop a convenient and low-cost transdermal drug delivery system for MA using proniosome as a novel carrier without the addition of penetration enhancers. The formulation factors, such as the presence of cholesterol, types of lecithin, and surfactants were investigated for their influence on the entrapment efficiency, rate of hydration, vesicle size, and zeta potential, in vitro drug release and skin permeation in order to optimize the proniosomal formulations with the minimum dose of the drug. Furthermore, the in vivo anti-inflammatory effect was evaluated on a formalin-induced rat paw edema model. The results showed that the type of surfactants had higher impact on the entrapment efficiency than the type of lecithins, with the highest in Span 80 (82.84%). The release of MA from Span 80 proniosomal gel was significantly affected by the type of lecithin used. The addition of cholesterol significantly increased both the drug release and the skin permeation flux of MA. Zeta potential showed a stable A4 noisomal suspension. DSC revealed the molecular dispersion of MA into the loaded proniosomes. In vivo study of the treatment group with MA proniosome gel showed a significant inhibition of rat paw edema compared with the same gel without the drug (control). The results of this study suggest that proniosomes are promising nano vesicular carriers and safe alternatives to enhance the transdermal delivery of MA.
Static optical sorting in a laser interference field
NASA Astrophysics Data System (ADS)
Jákl, Petr; Čižmár, Tomáš; Šerý, Mojmír; Zemánek, Pavel
2008-04-01
We present a unique technique for optical sorting of heterogeneous suspensions of microparticles, which does not require the flow of the immersion medium. The method employs the size-dependent response of suspended dielectric particles to the optical field of three intersecting beams that form a fringelike interference pattern. We experimentally demonstrate sorting of a polydisperse suspension of polystyrene beads of diameters 1, 2, and 5.2μm and living yeast cells.
Sexually mature transgenic American chestnut trees via embryogenic suspension-based transformation.
Andrade, Gisele M; Nairn, Campbell J; Le, Huong T; Merkle, Scott A
2009-09-01
The availability of a system for direct transfer of anti-fungal candidate genes into American chestnut (Castanea dentata), devastated by a fungal blight in the last century, would offer an alternative or supplemental approach to conventional breeding for production of chestnut trees resistant to the blight fungus and other pathogens. By taking advantage of the strong ability of embryogenic American chestnut cultures to proliferate in suspension, a high-throughput Agrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into the tree was established. Proembryogenic masses (PEMs) were co-cultivated with A. tumefaciens strain AGL1 harboring the plasmid pCAMBIA 2301, followed by stringent selection with 50 or 100 mg/l Geneticin. A protocol employing size-fractionation to enrich for small PEMs to use as target material and selection in suspension culture was applied to rapidly produce transgenic events with an average efficiency of four independent transformation events per 50 mg of target tissue and minimal escapes. Mature somatic embryos, representing 18 transgenic events and derived from multiple American chestnut target genotypes, were germinated and over 100 transgenic somatic seedlings were produced and acclimatized to greenhouse conditions. Multiple vigorous transgenic somatic seedlings produced functional staminate flowers within 3 years following regeneration.
Wang, Zhuang; Gao, Yucheng; Wang, Se; Fang, Hao; Xu, Defu; Zhang, Fan
2016-06-01
Knowledge of the interaction between graphene-based materials and low-molecular-weight organic acids (LOAs) is essential to understand fate and effects of graphene-based materials in the aquatic environment, but this interaction remains poorly elucidated. In this study, the effects of LOAs on the physicochemical properties of graphene nanoplatelets (GNPs) in an aqueous medium and on the GNP toxicity to algae were studied. The unicellular green alga Scenedesmus obliquus was exposed to GNP suspensions in the presence of benzoic acid or gallic acid at various concentrations. The GNPs had smaller hydrodynamic sizes and the GNP suspensions were more stable and had higher or lower surface zeta potentials in the presence of LOAs than when LOAs were not present. The toxic effects in S. obliquus cultures incubated with GNP suspensions containing LOAs were related to the LOA concentration, and the presence of LOAs caused three effects: stimulation, alleviation, and synergistic inhibition. The intensities of the effects mainly correlated with the LOA concentration, the extent of agglomeration, and particle-induced oxidative stress. The results indicate that the environmental fates and toxicities of GNPs are strongly affected by the binding of GNPs to LOAs.
Enhanced gel formation in binary mixtures of nanocolloids with short-range attraction
NASA Astrophysics Data System (ADS)
Harden, James L.; Guo, Hongyu; Bertrand, Martine; Shendruk, Tyler N.; Ramakrishnan, Subramanian; Leheny, Robert L.
2018-01-01
Colloidal suspensions transform between fluid and disordered solid states as parameters such as the colloid volume fraction and the strength and nature of the colloidal interactions are varied. Seemingly subtle changes in the characteristics of the colloids can markedly alter the mechanical rigidity and flow behavior of these soft composite materials. This sensitivity creates both a scientific challenge and an opportunity for designing suspensions for specific applications. In this paper, we report a novel mechanism of gel formation in mixtures of weakly attractive nanocolloids with modest size ratio. Employing a combination of x-ray photon correlation spectroscopy, rheometry, and molecular dynamics simulations, we find that gels are stable at remarkably weaker attraction in mixtures with size ratio near two than in the corresponding monodisperse suspensions. In contrast with depletion-driven gelation at larger size ratio, gel formation in the mixtures is triggered by microphase demixing of the species into dense regions of immobile smaller colloids surrounded by clusters of mobile larger colloids that is not predicted by mean-field thermodynamic considerations. These results point to a new route for tailoring nanostructured colloidal solids through judicious combination of interparticle interaction and size distribution.
Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels
Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H
2014-04-01
A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.
Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels
Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr, Joe H.
2016-07-05
A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.
Shafa, Mehdi; Krawetz, Roman; Zhang, Yuan; Rattner, Jerome B; Godollei, Anna; Duff, Henry J; Rancourt, Derrick E
2011-12-14
Embryonic stem cells (ESCs) can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs). However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Murine D3-MHC-neo(r) ESCs formed embyroid bodies (EBs) and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin) was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC differentiation protocols within suspension bioreactors demands a more complete understanding of the impacts of shear forces on the regulation of pluripotency and differentiation in pluripotent stem cells.
2011-01-01
Background Embryonic stem cells (ESCs) can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs). However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Results Murine D3-MHC-neor ESCs formed embyroid bodies (EBs) and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin) was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. Conclusions This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC differentiation protocols within suspension bioreactors demands a more complete understanding of the impacts of shear forces on the regulation of pluripotency and differentiation in pluripotent stem cells. PMID:22168552
Integrated Assessment of Vegetation and Soil Conditions Following Herbicide Application
2017-07-25
41. The white suspension formed when mixing Remedy Ultra (RU) with water...or shallow soil to a petrocalcic horizon. Soils are well drained and form in loamy calcareous gravelly alluvium. Typical locations for Cho soil are...drained soils. Nuff soil is formed in interbedded marl, limestone, and shale with slopes ranging between 1 and 6%. This soil is formed on erosional
Stability of extemporaneously prepared moxifloxacin oral suspensions.
Hutchinson, David J; Johnson, Cary E; Klein, Kristin C
2009-04-01
The stability of extemporaneously prepared moxifloxacin oral suspensions was studied. An oral suspension of moxifloxacin 20 mg/mL was prepared by thoroughly grinding three 400-mg tablets of moxifloxacin in a glass mortar. Thirty milliliters of Ora-Plus and 30 mL of either Ora-Sweet or Ora-Sweet SF were mixed and added to the powder to make a final volume of 60 mL. Three identical samples of each formulation were prepared and placed in 2-oz amber plastic bottles with child-resistant caps and were stored at room temperature (23-25 degrees C). A 1-mL sample was withdrawn from each of the six bottles with a micropipette immediately after preparation and at 7, 14, 28, 60, and 90 days. After further dilution to an expected concentration of 8 microg/ mL with sample diluent, the samples were assayed in duplicate by stability-indicating high-performance liquid chromatography. Stability was defined as the retention of at least 90% of the initial concentration. At least 99% of the initial moxifloxacin remained throughout the 90-day study period in both preparations. There were no detectable changes in color, odor, taste, and pH and no visible microbial growth in any sample. Extemporaneously compounded suspensions of moxifloxacin 20 mg/mL in a 1:1 mixture of Ora-Plus and Ora-Sweet or Ora-Sweet SF were stable for at least 90 days when stored in 2-oz amber plastic bottles at room temperature.
Liu, Dandan; Pan, Hao; He, Fengwei; Wang, Xiaoyu; Li, Jinyu; Yang, Xinggang; Pan, Weisan
2015-01-01
The purpose of this work was to explore the particle size reduction effect of carvedilol on dissolution and absorption. Three suspensions containing different sized particles were prepared by antisolvent precipitation method or in combination with an ultrasonication process. The suspensions were characterized for particle size, surface morphology, and crystalline state. The crystalline form of carvedilol was changed into amorphous form after antisolvent precipitation. The dissolution rate of carvedilol was significantly accelerated by a reduction in particle size. The intestinal absorption of carvedilol nanosuspensions was greatly improved in comparison with microsuspensions and solution in the in situ single-pass perfusion experiment. The in vivo evaluation demonstrated that carvedilol nanosuspensions and microsuspensions exhibited markedly increased Cmax (2.09- and 1.48-fold) and AUC0−t (2.11- and 1.51-fold), and decreased Tmax (0.34- and 0.48-fold) in contrast with carvedilol coarse suspensions. Moreover, carvedilol nanosuspensions showed good biocompatibility with the rat gastric mucosa in in vivo gastrointestinal irritation test. The entire results implicated that the dissolution rate and the oral absorption of carvedilol were significantly affected by the particle size. Particle size reduction to form nanosized particles was found to be an efficient method for improving the oral bioavailability of carvedilol. PMID:26508852
Self-microemulsifying drug delivery system improves curcumin dissolution and bioavailability.
Wu, Xuemei; Xu, Jianhua; Huang, Xiuwang; Wen, Caixia
2011-01-01
Curcumin has a wide spectrum of biological and pharmacological activities, but it has not yet been approved as a therapeutic agent because of its low solubility and stability in aqueous solution, and the relatively low bioavailability in vivo. To overcome these limitations, self-microemulsifying drug delivery system (SMEDDS) of curcumin was developed. Various oils, surfactants, and cosurfactants were selected to optimize the formulation. Pseudoternary phase diagrams were constructed and orthogonal design was used to compare the oil-in-water (o/w) microemulsion-forming capacity of different oils/surfactants/cosurfactants. The solubility of curcumin in various oils and cosurfactants was determined to find suitable ingredients with a good solubilizing capacity. Droplet size was measured to obtain the concentration of oil, surfactant, and cosurfactant for forming stable microemulsion. Furthermore, its quality and bioavailability in mice were assessed. Pseudoternary phase diagrams and solubility test showed that the formulation of SMEDDS composed of 20% ethanol, 60% Cremophor RH40®, and 20% isopropyl myristate, in which the concentration of curcumin reached 50 mg/mL. Curcumin was released completely from SMEDDS at 10 minutes. The developed SMEDDS formulation improved the oral bioavailability of curcumin significantly, and the relative oral bioavailability of SMEDDS compared with curcumin suspension was 1213%. The SMEDDS can significantly increase curcumin dissolution in vitro and bioavailability in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham Minh, Doan, E-mail: doan.phamminh@mines-albi.fr; Nzihou, Ange; Sharrock, Patrick
Highlights: • Carbonated apatite (CAP) could be easily obtained from CaCO{sub 3} and orthophosphates. • Highest CaCO{sub 3} dissolution and apatitic carbonate content were obtained with H{sub 3}PO{sub 4}. • A-B-type CAP was formed. • The synthesized CAP was thermally stable up to 1000 °C. • This CAP showed high biomineralization activity before and after thermal treatment. - Abstract: The one-step synthesis of carbonated hydroxyapatite (CAP) using calcite and different orthophosphates was investigated in a closed batch reactor. Only orthophosphoric acid could lead to the complete decomposition of calcite particles, when the reaction temperature was set at 80 °C. Onmore » the other hand, the reaction time and the dilution of the initial calcite suspension had no significant influence on the formation of the solid products. CAP was formed as the main crystalline calcium phosphate with the carbonate content in the range of 4.2–4.6 wt.%. The thermal decarbonation of the synthesized CAP started at 750 °C but it was only significant at 1000 °C under air atmosphere. This thermal decarbonation was total at 1200 °C or above. All CAP samples and products following thermal treatments were found bioactive in the test using simulated body fluid (SBF) solution.« less
Privalova, Larisa I.; Katsnelson, Boris A.; Loginova, Nadezhda V.; Gurvich, Vladimir B.; Shur, Vladimir Y.; Beikin, Yakov B.; Sutunkova, Marina P.; Minigalieva, Ilzira A.; Shishkina, Ekaterina V.; Pichugova, Svetlana V.; Tulakina, Ludmila G.; Beljayeva, Svetlana V.
2014-01-01
We used stable water suspensions of copper oxide particles with mean diameter 20 nm and of particles containing copper oxide and element copper with mean diameter 340 nm to assess the pulmonary phagocytosis response of rats to a single intratracheal instillation of these suspensions using optical, transmission electron, and semi-contact atomic force microscopy and biochemical indices measured in the bronchoalveolar lavage fluid. Although both nano and submicron ultrafine particles were adversely bioactive, the former were found to be more toxic for lungs as compared with the latter while evoking more pronounced defense recruitment of alveolar macrophages and especially of neutrophil leukocytes and more active phagocytosis. Based on our results and literature data, we consider both copper solubilization and direct contact with cellular organelles (mainly, mitochondria) of persistent particles internalized by phagocytes as probable mechanisms of their cytotoxicity. PMID:25421246
NASA Astrophysics Data System (ADS)
Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe
2018-02-01
A stable numerical solution of the steady Stokes problem requires compatibility between the choice of velocity and pressure approximation that has traditionally proven problematic for meshless methods. In this work, we present a discretization that couples a staggered scheme for pressure approximation with a divergence-free velocity reconstruction to obtain an adaptive, high-order, finite difference-like discretization that can be efficiently solved with conventional algebraic multigrid techniques. We use analytic benchmarks to demonstrate equal-order convergence for both velocity and pressure when solving problems with curvilinear geometries. In order to study problems in dense suspensions, we couple the solution for the flow to the equations of motion for freely suspended particles in an implicit monolithic scheme. The combination of high-order accuracy with fully-implicit schemes allows the accurate resolution of stiff lubrication forces directly from the solution of the Stokes problem without the need to introduce sub-grid lubrication models.
Model of heap formation in vibrated gravitational suspensions.
Ebata, Hiroyuki; Sano, Masaki
2015-11-01
In vertically vibrated dense suspensions, several localized structures have been discovered, such as heaps, stable holes, expanding holes, and replicating holes. Because an inclined free fluid surface is difficult to maintain because of gravitational pressure, the mechanism of those structures is not understood intuitively. In this paper, as a candidate for the driving mechanism, we focus on the boundary condition on a solid wall: the slip-nonslip switching boundary condition in synchronization with vertical vibration. By applying the lubrication approximation, we derived the time evolution equation of the fluid thickness from the Oldroyd-B fluid model. In our model we show that the initially flat fluid layer becomes unstable in a subcritical manner, and heaps and convectional flow appear. The obtained results are consistent with those observed experimentally. We also find that heaps climb a slope when the bottom is slightly inclined. We show that viscoelasticity enhances heap formation and climbing of a heap on the slope.
Tan, Xinyi; Zhong, Yue; He, Luying; Zhang, Yuanyuan; Jing, Guanghui; Li, Song; Wang, Jing; He, Haibing; Tang, Xing
2017-05-01
Many formulation and manufacturing processes can lead to morphological and crystalline transitions in many polycrystalline drugs, changing the properties of active pharmaceutical ingredients (APIs) such as solubility and physical stability which influence their therapeutic effects and safety and so limit their usefulness. Here, we report significant changes in crystal forms and morphology, including the shape and size of particles during the manufacture of off-white aripiprazole (APZ) dry powders used for long-acting and injectable suspensions. With the optimal top-down approach, powders were prepared by recrystallizing uniform monohydrous APZ (MA) and polycrystalline anhydrous APZ (AA) form III, characterized by thermal analysis, PXRD, and FT-IR. However, powders involving MA (MAP) with a lower mean size (2.126 μm), narrower distribution (span = 1.90), and higher stability compared with AA dry powders (AAP) were found to exhibit dehydration behavior and morphological changes after completion of the preparation processes based on the results of thermal analysis. In the case of APZ powders, we wished to obtain more information to guide in the industrial production and experimental design of suspensions in the future.
Effect of surface hydrophobicity on the formation and stability of oxygen nanobubbles.
Pan, Gang; Yang, Bo
2012-06-04
The formation mechanism of a nanoscale gas state is studied on inorganic clay surfaces modified with hexamethyldisilazane, which show different contact angles in ethanol-water solutions. As the dissolved oxygen becomes oversaturated due to the decrease in ethanol-water ratio, oxygen nanoscale gas state are formed and stabilized on the hydrophobic surfaces so that the total oxygen content in the suspension is increased compared to the control solution without the particles. However, the total oxygen content in the suspension with hydrophilic surfaces is lower than the control solution without the particles because the hydrophilic particle surfaces destabilize the nanobubbles on the surfaces by spreading and coagulating them into microbubbles that quickly escape from the suspension solution. No significant correlation was observed between the nanobubble formation and the shape or roughness of the surfaces. Our results suggest that a nanoscale gas state can be formed on both hydrophobic and hydrophilic particle surfaces, but that the stability of the surface nanoscale gas state can vary greatly depending on the hydrophobicity of the solid surfaces. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent Advances in Chiral Nematic Structure and Iridescent Color of Cellulose Nanocrystal Films
Gray, Derek G.
2016-01-01
One unique property of cellulose nanocrystals (CNC) is their property of forming suspensions with chiral nematic order. This order can be preserved in films cast from the suspensions, raising the possibility of applications as photonic materials and templates. However, it has proved difficult to generate uniform, well-ordered chiral nematic materials from CNC. Recently, the importance of kinetic arrest due to gel formation in the later stages of evaporation has been recognized as a key step in film formation. In this brief review, recent developments regarding the structure of chiral nematic suspensions and films as monitored by polarized light microscopy are outlined, and attention is drawn to the importance of shear forces on the self-organization process. PMID:28335340
Kadam, A. U.; Sakarkar, D. M.; Kawtikwar, P. S.
2008-01-01
An oral controlled release suspension of chlorpheniramine maleate was prepared using ion-exchange resin technology. A strong cation exchange resin Indion 244 was utilized for the sorption of the drug and the drug resinates was evaluated for various physical and chemical parameters. The drug-resinate complex was microencapsulated with a polymer Eudragit RS 100 to further retard the release characteristics. Both the drug-resinate complex and microencapsulated drug resinate were suspended in a palatable aqueous suspension base and were evaluated for controlled release characteristic. Stability study indicated that elevated temperature did not alter the sustained release nature of the dosage form indicating that polymer membrane surrounding the core material remained intact throughout the storage period. PMID:20046790
Method of making controlled morphology metal-oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Soydan; Lu, Yuan
2016-05-17
A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor tomore » metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.« less
Formulation and Development of Metered Dose Inhalations of Salbutamol in Solution Form
Khale, Anubha; Bajaj, Amrita
2011-01-01
In the present study attempts were made to prepare metered dose inhalation of salbutamol in solution form and compared it with the marketed metered dose inhalation in suspension form. Solution form of the drug was found better than marketed suspension formulation with respect to homogeneity and content uniformity. Propellant blend P-11 and P-12 in the proportion 30:70 was selected as it gave optimum vapour pressure. Surfactant oleic acid in concentration 10 mg per can was selected as it gave best results with clarity, spray pattern, vapour pressure, content per spray and rate of evaporation. Ethyl alcohol 2 ml per can was used as a cosolvent to give a clear solution, optimum vapour pressure, maximum content per spray and fair rate of evaporation. The selected formulation was subjected to the physico-chemical evaluation tests as per the standard pharmacopoeial procedures and the characteristics of the formulations were further compared with a conventional marketed formulation. In vitro study reveled the net respirable fraction was better than marketed preparation. PMID:22923867
Kollamaram, Gayathri; Hopkins, Simon C; Glowacki, Bartek A; Croker, Denise M; Walker, Gavin M
2018-03-30
Drop-on-demand inkjet printing is a potential enabling technology both for continuous manufacturing of pharmaceuticals and for personalized medicine, but its use is often restricted to low-viscosity solutions and nano-suspensions. In the present study, a robust electromagnetic (valvejet) inkjet technology has been successfully applied to deposit prototype dosage forms from solutions with a wide range of viscosities, and from suspensions with particle sizes exceeding 2 μm. A detailed solid-state study of paracetamol, printed from a solution ink on hydroxypropyl methylcellulose (HPMC), revealed that the morphology of the substrate and its chemical interactions can have a considerable influence on polymorphic selectivity. Paracetamol ink crystallized exclusively into form II when printed on a smooth polyethylene terephthalate substrate, and exclusively into form I when in sufficient proximity to the rough surface of the HPMC substrate to be influenced by confinement in pores and chemical interactions. The relative standard deviation in the strength of the dosage forms was <4% in all cases, for doses as low as 0.8 mg, demonstrating the accuracy and reproducibility associated with electromagnetic inkjet technology. Good adhesion of indomethacin on HPMC was achieved using a suspension ink with hydroxypropyl cellulose, but not on an alternative polyethylene terephthalate substrate, emphasising the need to tailor the binder to the substrate. Future work will focus on lower-dose drugs, for which dosing flexibility and fixed dose combinations are of particular interest. Copyright © 2018 Elsevier B.V. All rights reserved.
[Experimental study on chemotherapy of acute glanders].
Iliukhin, V I; Rotov, K A; Senina, T V; Snatenkov, E A; Tikhonov, S N; Plekhanova, N G; Kulikova, A S; Shubnikova, E V; Korol', E V; Nekhezina, M O
2012-01-01
Glanders is a zoonotic infection inducing acute forms of the disease (pneumonia, sepsis) in humans and animals under certain conditions, which even with the use of modern chemotherapy have unfavourable prognosis. Insufficient of efficacy of antibiotics with in vitro low MIC for planktonic bacterial suspension of Burkholderia mallei in chemotherapy of acute forms of glanders was due to the capacity of the pathogen for intracellular survival and formation of biofilms. Under such conditions the susceptibility of B. mallei to antibiotics lowered by several orders of magnitude. Chemotherapy of the glanders acute forms in animals usually provided only an increase of the lifespan, while among the survivors there was recorded a high relapse rate. More favourable outcomes were observed with the use of in vitro effective antibiotics in the form of clathrate compounds or especially liposomal forms. In the experiments with golden hamsters the survival rate reached 100% in 1000 Dlm infection even with the treatment onset by meropenem liposomal form 48 hours after the infection. Chemotherapeutics in the liposomal form significantly lowered resistance of B. mallei in both the experiments with a suspension of planktonic organisms and the use of bacteria interned in eukaryotic cells (Tetrahymena pyriformis).
Dynamically stable magnetic suspension/bearing system
Post, R.F.
1996-02-27
A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw`s Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements. 32 figs.
Dynamically stable magnetic suspension/bearing system
Post, Richard F.
1996-01-01
A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw's Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements.
NASA Astrophysics Data System (ADS)
Filatov, Alexei Vladimirovich
2002-09-01
Using electromagnetic forces to suspend rotating objects (rotors) without mechanical contact is often an appealing technical solution. Magnetic suspensions are typically required to have adequate load capacity and stiffness, and low rotational loss. Other desired features include low price, high reliability and manufacturability. With recent advances in permanent-magnet materials, the required forces can often be obtained by simply using the interaction between permanent magnets. While a magnetic bearing based entirely on permanent magnets could be expected to be inexpensive, reliable and easy to manufacture, a fundamental physical principle known as Earnshaw's theorem maintains that this type of suspension cannot be statically stable. Therefore, some other physical mechanisms must be included. One such mechanism employs the interaction between a conductor and a nonuniform magnetic field in relative motion. Its advantages include simplicity, reliability, wide range of operating temperature and system autonomy (no external wiring and power supplies are required). The disadvantages of the earlier embodiments were high rotational loss, low stiffness and load capacity. This dissertation proposes a novel type of magnetic bearing stabilized by the field-conductor interaction. One of the advantages of this bearing is that no electric field, E, develops in the conductor during the rotor rotation when the system is in no-load equilibrium. Because of this we refer to it as the Null-E Bearing. Null-E Bearings have potential for lower rotational loss and higher load capacity and stiffness than other bearings utilizing the field-conductor interaction. Their performance is highly insensitive to manufacturing inaccuracies. The Null-E Bearing in its basic form can be augmented with supplementary electronics to improve its performance. Depending on the degree of the electronics involvement, a variety of magnetic bearings can be developed ranging from a completely passive to an active magnetic bearing of a novel type. This dissertation contains theoretical analysis of the Null-E Bearing operation, including derivation of the stability conditions and estimation of some of the rotational losses. The validity of the theoretical conclusions has been demonstrated by building and testing a prototype in which non-contact suspension of a 3.2-kg rotor is achieved at spin speeds above 18 Hz.
12 CFR Appendix B to Part 37 - Long Form Disclosures
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Long Form Disclosures B Appendix B to Part 37 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY DEBT CANCELLATION CONTRACTS AND DEBT SUSPENSION AGREEMENTS Pt. 37, App. B Appendix B to Part 37—Long Form Disclosures • This...
Zhang, An; Chu, Wei-Hua
2017-01-01
Quorum sensing (QS) plays an important role in the production of virulence factors and pathogenicity in Pseudomonas aeruginosa , and the interruption of QS will be a hopeful pathway to combat bacterial infection. In this study, we selected Forsythia suspense (Thunb.) Vahl from traditional Chinese herbal medicines for its anti-QS activity. Anti-QS of F. suspense extracts (FSE) was monitored using the Chromobacterium violaceum 12472 bioassay. Standard methods were used to investigate the effects of FSE on QS-controlled virulence factors production, swimming motility, and biofilm establishment in P. aeruginosa PAO1. FSE could obviously inhibit the violacein production in C. violaceum 12472 and also could inhibit quorum sensing-regulated virulence factors production and biofilm formation in P. aeruginosa in a concentration-dependent manner. The elastase activity and pyocyanin production were inhibited at a maximum of 40.97 and 47.58% when P. aeruginosa was grown in the presence of 0.25 g/mL FSE, which can also inhibit swimming motility of P. aeruginosa . The biofilm formation ability was decreased about 72.45% when in PAO1 cultured with the 0.25 g/mL FSE. The results suggested that FSE may be used as an alternative drug to control and handle harmful infections caused by bacterial pathogens based on QS inhibition. Forsythia suspense water extract could obviously inhibit the purple pigment production in C. violaceum 12472 Forsythia suspense water extract could inhibit QS-regulated virulence factors production and biofilm formation in P. aeruginosa . Abbreviations used: QS: Quorum sensing, Pseudomonas aeruginosa P. aeruginosa , Forsythia suspense F. suspense , FSE: F. suspense extracts, Chromobacterium violaceum 12472 C. violaceum 12472, AIs: autoinducers, AHLs: N -acyl-homoserinelactones, LB: Luria-Bertani, MICs: Minimum inhibitory concentrations, CFU: Colony-Forming Units, ATCC: American Type Culture Collection, PBS: phosphate buffered saline.
Curtis, Colin K; Marek, Antonin; Smirnov, Alex I
2017-01-01
This article reports a comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively (hydroxylated) or negatively (carboxylated) charged nanodiamonds (ND). Immersion in −ND suspensions resulted in a decrease in the macroscopic friction coefficients to values in the range 0.05–0.1 for both stainless steel and alumina, while +ND suspensions yielded an increase in friction for stainless steel contacts but little to no increase for alumina contacts. Quartz crystal microbalance (QCM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements were employed to assess nanoparticle uptake, surface polishing, and resistance to solid–liquid interfacial shear motion. The QCM studies revealed abrupt changes to the surfaces of both alumina and stainless steel upon injection of –ND into the surrounding water environment that are consistent with strong attachment of NDs and/or chemical changes to the surfaces. AFM images of the surfaces indicated slight increases in the surface roughness upon an exposure to both +ND and −ND suspensions. A suggested mechanism for these observations is that carboxylated −NDs from aqueous suspensions are forming robust lubricious deposits on stainless and alumina surfaces that enable gliding of the surfaces through the −ND suspensions with relatively low resistance to shear. In contrast, +ND suspensions are failing to improve tribological performance for either of the surfaces and may have abraded existing protective boundary layers in the case of stainless steel contacts. This study therefore reveals atomic scale details associated with systems that exhibit starkly different macroscale tribological properties, enabling future efforts to predict and design complex lubricant interfaces. PMID:29046852
Flagellum synchronization inhibits large-scale hydrodynamic instabilities in sperm suspensions
NASA Astrophysics Data System (ADS)
Schöller, Simon F.; Keaveny, Eric E.
2016-11-01
Sperm in suspension can exhibit large-scale collective motion and form coherent structures. Our picture of such coherent motion is largely based on reduced models that treat the swimmers as self-locomoting rigid bodies that interact via steady dipolar flow fields. Swimming sperm, however, have many more degrees of freedom due to elasticity, have a more exotic shape, and generate spatially-complex, time-dependent flow fields. While these complexities are known to lead to phenomena such as flagellum synchronization and attraction, how these effects impact the overall suspension behaviour and coherent structure formation is largely unknown. Using a computational model that captures both flagellum beating and elasticity, we simulate suspensions on the order of 103 individual swimming sperm cells whose motion is coupled through the surrounding Stokesian fluid. We find that the tendency for flagella to synchronize and sperm to aggregate inhibits the emergence of the large-scale hydrodynamic instabilities often associated with active suspensions. However, when synchronization is repressed by adding noise in the flagellum actuation mechanism, the picture changes and the structures that resemble large-scale vortices appear to re-emerge. Supported by an Imperial College PhD scholarship.
Stowable Energy-Absorbing Rocker-Bogie Suspensions
NASA Technical Reports Server (NTRS)
Harrington, Brian; Voorhees, Christopher
2007-01-01
A report discusses the design of the rocker-bogie suspensions of the Mars Exploration Rover vehicles, which were landed on Mars in January 2004. Going beyond the basic requirements regarding mobility on uneven terrain, the design had to satisfy requirements (1) to enable each suspension to contort so that the rover could be stowed within limited space in a tetrahedral lander prior to deployment and (2) that the suspension be able to absorb appreciable impact loads, with limited deflection, during egress from the lander and traversal of terrain. For stowability, six joints (three on the right, three on the left) were added to the basic rocker-bogie mechanism. One of the joints on each side was a yoke-and-clevis joint at the suspension/differential interface, one was a motorized twist joint in the forward portion of the rocker, and one was a linear joint created by modifying a fixed-length bogie member into a telescoping member. For absorption of impact, the structural members were in the form of box beams made by electron-beam welding of machined, thin-walled, C-channel, titanium components. The box beams were very lightweight and could withstand high bending and torsional loads.
Bioavailability of an extemporaneous suspension of propafenone made from tablets.
Olguín, Hugo Juárez; Pérez, Carmen Flores; Pérez, Janett Flores; Mendiola, Blanca Ramírez; Portugal, Miriam Carrasco; Chávez, Jesús Bobadilla
2006-07-01
Propafenone is an effective antiarrhythmic agent used in children, while in Mexico no specific formulation for children is available, which causes errors in adequate dosage. The aim of this study was to determine the bioavailability of a suspension prepared extemporaneously using commercial tablets of propafenone. The bioavailability was determined in two groups of rabbits (n = 8): the first group received a single intravenous dose of 2 mg/kg of propafenone; the second was orally administered an extemporaneous suspension of propafenone prepared from commercial tablets. Blood samples were drawn at several times during the next 24 h and analysed by HPLC to determine drug levels. The extemporaneous suspension was tested previously with satisfactory results regarding physicochemical and microbiologic stability. The area under the curve (AUC) for the i.v. route was 5600.6 ng/ml.h and for oral administration the AUC was 3327.6 ng/ml.h. The bioavailability was calculated at 59.41%. These results are consistent with previous reports for solid dosage forms. The propafenone suspension prepared extemporaneously using commercial tablets is bioavailable using an animal model; nevertheless, it is necessary to carry out human studies either in volunteers or in patients to confirm these results.
Physical gelation of a microfiber suspension.
NASA Astrophysics Data System (ADS)
Perazzo, Antonio; Nunes, Janine K.; Guido, Stefano; Stone, Howard A.
2015-11-01
Hydrogels are among the most exploited materials in tissue engineering and there is growing interest in injectable hydrogels, especially as applied to surgical adhesives and bioprinting materials. Here we report a method to produce a hydrogel in a desired location by simply extruding a suspension of high aspect ratio and flexible microfibers from a syringe. The mechanism of gel formation is purely physical and based on irreversible entanglements formed by the microfibers under the action of flow. The single microfibers have been produced and finely tailored by microfluidic methods. Shear rheology has been performed in order to get insights on the entanglements, and results show that the formation of entanglements is related to a shear thickening behavior of the suspension, which in turn depends on shear rate and concentration of fibers. When shearing the suspension, highly non-linear viscoelastic behavior is observed and probed by a highly positive first normal stress difference. We also report the hydrogel swelling behavior and its linear viscoelastic properties as obtained by imposing small oscillatory stress to the material.
Immune response in mice infected with Candida albicans in the mycelial form.
Bibas Bonet de Jorrat, M E; de Valdez, G A; de Petrino, S F; Sirena, A; Perdigón, G
1989-05-01
The effect of the infection with the mycelial form of a Candida albicans strain (Mycology Dept.) upon the immune system in mice was studied. BALB/c mice were infected intraperitoneally in a single dose of a 3 x 10(6), 6 x 10(6) and 12 x 10(6) cell suspension of the strain. Macrophages's activity was studied the days 7, 14, 21, 28, 35, and 42 after inoculation, by the following assays: phagocytosis in vitro, mononucleated phagocytic system by the colloidal carbon clearance technique, the lymphocyte's activity by the direct plaque forming cells technique (PFC) and delayed hypersensitivity (DTH). Infection with the mycelial form did not affect the peritoneal macrophage's phagocytic ability, neither modified the delayed hypersensitivity to sheep red blood cells (SRBC). However, a slight and transient depression of the lymphocyte stimulation was found. Suppression of PFC to SRBC was high when a 12 x 10(6) cell suspension was used in contrast to the infection with blastospores. These results suggest that systemic infection by Candida albicans in its mycelial form do not induce a non specific immunosuppression.
NASA Astrophysics Data System (ADS)
Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.
2014-01-01
Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.
Ionene modified small polymeric beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor)
1977-01-01
Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension.
Porous ceramic scaffolds with complex architectures
NASA Astrophysics Data System (ADS)
Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.
2008-06-01
This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.
Larsen, A T; Holm, R; Müllertz, A
2017-08-01
In this study, the potential of co-administering an aqueous suspension with a placebo lipid vehicle, i.e. chase dosing, was investigated in rats relative to the aqueous suspension alone or a solution of the drug in the lipid vehicle. The lipid investigated in the present study was Labrafil M2125CS and three evaluated poorly soluble model compounds, danazol, cinnarizine and halofantrine. For cinnarizine and danazol the oral bioavailability in rats after chase dosing or dosing the compound dissolved in Labrafil M21515CS was similar and significantly higher than for the aqueous suspension. For halofantrine the chase dosed group had a tendency towards a low bioavailability relative to the Labrafil M2125CS solution, but still a significant higher bioavailability relative to the aqueous suspension. This could be due to factors such as a slower dissolution rate in the intestinal phase of halofantrine or a lower solubility in the colloidal structures formed during digestion, but other mechanisms may also be involved. The study thereby supported the potential of chase dosing as a potential dosing regimen in situations where it is beneficial to have a drug in the solid state, e.g. due to chemical stability issues in the lipid vehicle. Copyright © 2017 Elsevier B.V. All rights reserved.
Horsak, Brian; Kiener, Marion; Pötzelsberger, Andreas; Siragy, Tarique
2017-01-01
Push-up plus variations are commonly prescribed to clients during shoulder rehabilitation. The purpose of this study was to compare electromyographic (EMG) activities of the serratus anterior (SA), upper (UT), and lower trapezius (LT) during a knee push-up plus and knee-plus exercise performed on various surfaces. Within-subjects Repeated-Measure Design. 19 healthy, young female participants performed both exercises on a stable and unstable surface and during sling-suspension. Surface EMG activities were recorded and average amplitudes were presented as a percentage of the maximal voluntary contraction. A two-way repeated-measures ANOVA was performed to determine differences in activity for each muscle. SA showed no significant differences between exercises and was independent of the base of support (p > 0.05). Muscle activity of UT (95% CI [1.2, 1.4]) and LT (95% CI [2.4, 3.5]) showed slightly greater values when performing the knee push-up plus compared to the knee-plus exercise. The isolated protraction of the shoulder girdle in a kneeling position is as sufficient as the push-up plus in activating the SA selectively. Therefore, we recommended this exercise for clients who are unable to perform an entire push-up or should avoid detrimental stress on the shoulder joint. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pharmacokinetic behavior of intravitreal triamcinolone acetonide prepared by a hospital pharmacy.
Oishi, Masako; Maeda, Shinichiro; Hashida, Noriyasu; Ohguro, Nobuyuki; Tano, Yasuo; Kurokawa, Nobuo
2008-01-01
We developed a new hospital pharmaceutical preparation of triamcinolone acetonide (TA) for intravitreal injections using sodium hyaluronate as the vehicle. The purpose of this study was to compare the pharmacokinetic behavior of this hospital pharmacy preparation of TA (HPP-TA) to that of a commercial preparation of TA (CP-TA) in rats. We injected the two preparations of TA into the vitreous humor of male Wistar rats. The rats were killed between days 1 and 21, and the concentration of TA in the vitreous was measured by high-performance liquid chromatography to determine the pharmacokinetic parameters. We also examined the microscopic appearance of the TA particles in these preparations. The elimination half-life was 6.08 days for the CP-TA and 5.78 days for the HPP-TA. A two-compartment model was suitable to approximate the pharmacokinetic behavior of HPP-TA in the vitreous body, but this model was not suitable for CP-TA, because its pharmacokinetic behavior was not sufficiently stable. The particle size of CP-TA was largest, followed by TA powder and HPP-TA. Many particles were agglutinated in the CP-TA preparation, whereas the TA particles were fine and dispersed in the HPP-TA medium. The TA particle size and the suspension medium are likely important factors in the preparation of a safe and stable suspension of TA. HPP-TA satisfied these requirements and should be suitable for clinical use.
Ghosh, Indrajit; Michniak-Kohn, Bozena
2012-09-15
In transdermal drug delivery systems (TDDS), it is a challenge to achieve stable and prolonged high permeation rates across the skin since the concentrations of the drug dissolved in the matrix have to be high in order to maintain zero order release kinetics. Several attempts have been reported to improve the permeability of poorly soluble drug compounds using supersaturated systems, however, due to thermodynamic challenges, there was a high tendency for the drug to nucleate immediately after formulating or even during storage. The present study focuses on the efficiency of drug crystals at the submicron/nano range in presence of different solubilizers to improve the permeation rate. Effect of several solubilizers, e.g. Pluronic F-127, Vitamin E TPGS, propylene glycol were studied on the submicron suspension systems of ibuprofen as a model drug. Various stabilizers such as hydroxylpropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were examined to evaluate their crystal inhibitory effects on particle growth of the drug compound at submicron range. The overall permeation enhancement process through the skin seems to be influenced by the presence of solubilizers and also the presence of submicron drug crystal. The most promising stable formulation was developed with Vitamin E TPGS+HPMC submicron suspension, which produced higher permeation rate compared to other vehicles. Copyright © 2012 Elsevier B.V. All rights reserved.
A new solution chemical method to make low dimensional thermoelectric materials
NASA Astrophysics Data System (ADS)
Ding, Zhongfen
2001-11-01
Bismuth telluride and its alloys are currently the best thermoelectric materials known at room temperature and are therefore used for portable solid-state refrigeration. If the thermal electric figure of merit ZT could be improved by a factor of about 3, quiet and rugged solid-state devices could eventually replace conventional compressor based cooling systems. In order to test a theory that improved one-dimensional or two-dimensional materials could enhance ZT due to lower thermal conductivity, we are developing solution processing methods to make low dimensional materials. Bismuth telluride and its p-type and n-type alloys have layered structures consisting of 5 atom thick Te-Bi-Te-Bi-Te sheets, each sheet about 10 A thick. Lithium ions are intercalated into the layered materials using liquid ammonia. The lithium-intercalated materials are then exfoliated in water to form colloidal suspensions with narrow particle size distributions and are stable for more than 24 hours. The layers are then deposited on substrates, which after annealing at low temperatures, form highly c-axis oriented thin films. The exfoliated layers can potentially be restacked with other ions or layered materials in between the sheets to form novel structures. The restacked layers when treated with nitric acid and sonication form high yield nanorod structured materials. This new intercalation and exfoliation followed by sonication method could potentially be used for many other layered materials to make nanorod structured materials. The low dimensional materials are characterized by powder X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), inductively coupled plasma (ICP) and dynamic light scattering.
Mass Transfer and Rheology of Fiber Suspensions
NASA Astrophysics Data System (ADS)
Wang, Jianghui
Rheological and mass transfer properties of non-Brownian fiber suspensions are affected by fiber characteristics, fiber interactions, and processing conditions. In this thesis we develop several simulation methods to study the dynamics of single fibers in simple shear flow, as well as the rheology and mass transfer of fiber suspensions. Isolated, rigid, neutrally-buoyant, non-Brownian, slightly curved, nonchiral fibers in simple shear flow of an incompressible Newtonian fluid at low Reynolds number can drift steadily in the gradient direction without external forces or torques. The average drift velocity and direction depend on the fiber aspect ratio, curvature and initial orientation. The drift results from the coupling of rotational and translational dynamics, and the combined effects of flipping, scooping, and spinning motions of the fiber. Irreversible fiber collisions in the suspensions cause shear-induced diffusion. The shear-induced self-diffusivity of dilute suspensions of fibers increases with increasing concentration and increasing static friction between contacts. The diffusivities in both the gradient and vorticity directions are larger for suspensions of curved fibers than for suspensions of straight fibers. For suspensions of curved fibers, significant enhancements in the diffusivity in the gradient direction are attributed to fiber drift in the gradient direction. The shear-induced self-diffusivity of concentrated suspensions of fibers increases with increasing concentration before fiber networks or flocs are formed, after which the diffusivity decreases with increasing concentration. The diffusivity increases with increasing fiber equilibrium bending angle, effective stiffness, coefficient of static friction, and rate of collisions. The specific viscosity of fiber suspensions increases with increasing fiber curvature, friction coefficient between mechanical contacts, and solids concentration. The specific viscosity increases linearly with concentration in the dilute regime, and increases with the cube of the concentration in the semi-dilute regime. Concentrated fiber suspensions are highly viscous, shear thinning, and exhibit significant yield stresses and normal stress differences. Yield stresses scale with volume concentration and fiber aspect ratio in the same way as that observed in experiments. The first normal stress difference increases linearly with shear rate. The shear-induced diffusivity increases linearly with the derivative of the particle contribution to stress for dilute suspensions with respective to concentration. This correlation between rheology and shear-induced diffusion makes it possible to predict diffusivity from easily measured rheological properties.
... that the oral suspension contains aspartame that forms phenylalanine. ... Linezolid may cause side effects. Tell your doctor if any of these symptoms are severe or do not go away: diarrhea headache nausea vomiting ...
Du, Junze; Zhang, Yongsong; Ming, Jia; Liu, Jing; Zhong, Ling; Liang, Quankun; Fan, Linjun; Jiang, Jun
2016-06-22
Carbon nanoparticle suspension, using smooth carbon particles at a diameter of 21 nm added with suspending agents, is a stable suspension of carbon pellets of 150 nm in diameter. It is obviously inclined to the lymphatic system. There were some studies reporting that carbon nanoparticles are considered as superior tracers for sentinel lymph nodes because of their stability and operational feasibility. However, there were few study concerns about the potential treatment effect including tracing and local chemotherapeutic effect of carbon nanoparticle-epirubicin suspension on breast cancer with axillary metastasis. In the current study, a randomized controlled analysis was performed to investigate the potential treatment effect of carbon nanoparticle-epirubicin suspension on breast cancer with axillary metastasis. A total of 90 breast cancer patients were randomly divided into three equal groups: control, tracer, and drug-load groups. The control group patients did not receive any lymphatic tracers, the tracer group patients were subcutaneously injected with 1 ml carbon nanoparticle suspension, and the drug-load group patients were injected with 3 ml carbon nanoparticle-epirubicin suspension at four separate sites around the areola 24 h before surgery. Modified radical mastectomy, endoscopic subcutaneous mammary resection plus axillary lymph node dissection, and immediate reconstruction with implants or breast-conserving surgery were performed. The mean number of the dissected lymph nodes per patient was significantly higher in the tracer (21.3 ± 6.1) and drug-load (19.5 ± 3.7) groups than in the control group (16.7 ± 3.4) (P < 0.05). Most lymph nodes in the former two groups were stained black (75.7 and 73.3 %, respectively), but with no significant difference between the groups. Most metastatic lymph nodes were also stained black in the tracer group (68.6 %) and drug-load group (78.1 %) and with no significant difference between the groups (P = 0.198). Microscopic examination revealed that the carbon nanoparticles were localized around or among the cancer cell masses and residues of necrotized cancer cells surrounded by fibroblastic proliferation could be found within the stained lymph nodes in the drug-load group. The majority of axillary lymph nodes were stained black by the suspension of carbon nanoparticles, which helped identify the lymph nodes from the surrounding tissues and avoided aggressive axillary treatment. Thus, a combination therapy of carbon nanoparticles with epirubicin could play an important role in lymphatic chemotherapy without affecting tracing. ChiCTRTRC13003419.
Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria
Oremland, R.S.; Herbel, M.J.; Blum, J.S.; Langley, S.; Beveridge, T.J.; Ajayan, P.M.; Sutto, T.; Ellis, A.V.; Curran, S.
2004-01-01
Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, ???300 nm) of Se(0) having monoclinic crystalline structures. Intracellular packets of Se(0) were also noted. The number of intracellular Se(0) packets could be reduced by first growing cells with nitrate as the electron acceptor and then adding selenite ions to washed suspensions of the nitrate-grown cells. This resulted in the formation of primarily extracellular Se nanospheres. After harvesting and cleansing of cellular debris, we observed large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species. The spectral properties in turn differed substantially from those of amorphous Se(0) formed by chemical oxidation of H2Se and of black, vitreous Se(0) formed chemically by reduction of selenite with ascorbate. The microbial synthesis of Se(0) nanospheres results in unique, complex, compacted nanostructural arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes involved in the dissimilatory reduction that are subtly different in different microbes. Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.
Potential application of SERS for arsenic speciation in biological matrices.
Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong
2017-08-01
Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.
40 CFR 22.5 - Filing, service, and form of all filed documents; business confidentiality claims.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Filing, service, and form of all filed... PENALTIES AND THE REVOCATION/TERMINATION OR SUSPENSION OF PERMITS General § 22.5 Filing, service, and form... association which is subject to suit under a common name, complainant shall serve an officer, partner, a...
Analysis of soybean tissue culture protein dynamics using difference gel electrophoresis.
Miernyk, Ján A; Jett, Alissa A; Johnston, Mark L
2016-01-01
Excised hypocotyls from developing soybean (Glycine max (L.) merr. cv. Jack) were cultivated on agar-solidified medium until callus formed. The calli were then propagated in liquid medium until stable, relatively uniform, finely-divided suspension cultures were obtained. Cells were typically transferred to fresh medium at 7-day intervals. Cultures were harvested by filtration five days (early log phase) or eight days (late log phase) after transfer. In order to evaluate dynamic changes, both intracellular and extracellular proteins were analyzed by 2-dimensional difference gel electrophoresis. Selected spots were subjected to in-gel tryptic-digestion and the resultant peptides were analyzed by nLC-MS/MS. In follow-up studies gel-free shot-gun analyses led to identification of 367 intracellular proteins and 188 extracellular proteins. The significance of the described research is two-fold. First a gel-based proteomics method was applied to the study of the dynamics of the secretome (extracellular proteins). Second, results of a shot-gun non-gel based proteomic survey of both cellular and extracellular proteins are presented. Published by Elsevier B.V.
Chen, Jingjing; Zheng, Jinkai; McClements, David Julian; Xiao, Hang
2014-09-01
The aim of this study was to design a colloidal delivery system to encapsulate poor water-soluble bioactive flavonoid tangeretin so that it could be utilized in various food products as functional ingredient. Tangeretin-loaded protein nanoparticles were produced by mixing an organic phase containing zein and tangeretin with an aqueous phase containing β-lactoglobulin and then converted into powder by freeze-drying. This powder formed a colloidal suspension when dispersed in water that is relatively stable to particle aggregation and sedimentation. The influence of temperature, ionic strength, and pH on the stability of the protein nanoparticles was tested. Extensive particle aggregation occurred at high ionic strength (>100mM) and intermediate pH (4.5-5.5) due to reduced electrostatic repulsion. Extensive aggregation also occurred at temperatures exceeding 60 °C, which was presumably due to increased hydrophobic attraction. Overall, this study shows that protein-based nanoparticles can be used to encapsulate bioactive tangeretin so that it can be readily dispersed in compatible food products. Copyright © 2014 Elsevier Ltd. All rights reserved.